WO2018178436A1 - Composición y conformado de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico - Google Patents

Composición y conformado de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico Download PDF

Info

Publication number
WO2018178436A1
WO2018178436A1 PCT/ES2018/070161 ES2018070161W WO2018178436A1 WO 2018178436 A1 WO2018178436 A1 WO 2018178436A1 ES 2018070161 W ES2018070161 W ES 2018070161W WO 2018178436 A1 WO2018178436 A1 WO 2018178436A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
composition
micrometers
uniaxial pressing
heat treatment
Prior art date
Application number
PCT/ES2018/070161
Other languages
English (en)
French (fr)
Inventor
Carlos CONCEPCIÓN HEYDORN
Francisco Sanmiguel Roche
Óscar RUIZ VEGA
Vicente FERRANDO CATALÁ
Original Assignee
Torrecid, S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torrecid, S.A filed Critical Torrecid, S.A
Priority to US16/498,100 priority Critical patent/US20210101837A1/en
Priority to EP18776639.9A priority patent/EP3584233A4/en
Publication of WO2018178436A1 publication Critical patent/WO2018178436A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/20Preparing or treating the raw materials individually or as batches for dry-pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a composition and forming of ceramic material that has a low coefficient of thermal expansion (CDT) and a high resistance to thermal shock or sudden temperature changes, once subjected to a heat treatment with a maximum temperature of 1 180 ° C and with a maximum duration of 60 minutes.
  • CDT coefficient of thermal expansion
  • the ceramic material object of the invention is intended for those applications that require high temperature stability and that are subject to heating and cooling cycles.
  • applications but not limited to, are ceramic tiles, radiators, heaters, heaters, high temperature particle filters, kitchen surfaces and countertops and work surfaces in laboratories.
  • the present invention is encompassed within ceramic materials that require prior heat treatment and are intended for high temperature or thermal shock applications.
  • Ceramic materials with a low coefficient of thermal expansion are especially useful in applications where heating and cooling cycles take place as well as sudden temperature changes, also known as thermal shock.
  • ceramic material compositions are described which, after a heat treatment, are characterized by a low coefficient of thermal expansion.
  • US8257831 B2 protects a ceramic material composition composed essentially of Si0 2 , Al 2 0 3 and Li 2 0 including P 2 0 5 and characterized in that, once subjected to a heat treatment of fusion, nucleation and crystallization, it has a coefficient of thermal expansion between -10x10 "7 ° C " 1 and 50x10 "7 ° C " 1 in the temperature range of 25 ° C to 100 ° C.
  • US8257831 B2 is characterized by using heat treatment temperatures between 600 ° C and 1500 ° C and with a duration of between 2 hours and 40 hours.
  • the presence of P 2 0 5 in the composition reduces the chemical resistance of the final product.
  • patent application WO2004094334A2 describes a composition of ceramic material containing as main phase the compound of formula CaAI 4 0 7 as a result of a heat treatment between 1450 ° C and 1600 ° C and characterized by presenting a thermal expansion coefficient of less than 10x10 "7 ° C " 1 in the temperature range between 25 ° C and 800 ° C and high resistance to thermal shock.
  • the heat treatment time is 6 hours.
  • the composition according to patent application WO2004094334A2 includes Fe 2 0 3 which would color it unnecessarily or, in the case of using pigments, forcing pigmentation corrections.
  • patent application WO201 1008938A1 discloses a composition of ceramic material of formula (0 ⁇ x ⁇ 1) as a result of heat treatment between 1200 ° C and 1700 ° C, preferably between 1400 ° C and 1600 ° C, of a mixture comprising raw materials, expressed in oxides, Ti0 2 , Al 2 0 3 , MgO and Si0 2 .
  • the ceramic material is characterized by a thermal expansion coefficient of less than 30.0x10 "7 K " 1 in the temperature range between 30 ° C and 1000 ° C.
  • said application WO201 1008938A1 preferably includes the use of frits as a source of Si0 2 due to its industrial availability as well as feldspar as a source of Al 2 0 3 .
  • raw materials based on Ti0 2 and Al 2 0 3 are refractory, that is, high melting point, requiring high temperatures, preferably between 1400 ° C and 1600 ° C to achieve correct sintering and therefore the objective properties.
  • the ceramic materials described in the previous patents present the particular disadvantages indicated in addition to the common one that all require temperatures above 1200 ° C, in some cases reaching 1600 ° C, and high heat treatment times, not less than 2 hours.
  • the objective of the present invention is a composition of ceramic material of low coefficient of thermal expansion and high resistance to thermal shock characterized by solving existing technical problems and requiring a thermal treatment with a maximum temperature of 1180 ° C and a duration not exceeding 60 minutes. This decrease in temperature and heat treatment time also provides a reduction in energy consumption and therefore in cost and environmental impact.
  • the present invention is a ceramic material comprising at least one frit and at least one inorganic raw material.
  • heat treatment refers to a thermal cycle that makes it possible to transform a shaped powder into a compact and coherent product, as a result of the physical-chemical bonding of the initial components and that it can additionally cause chemical reactions of transformation of the initial components into new chemical species
  • the frits used in the present invention have the function of lowering the maximum heat treatment temperature and acting as a binder between the other ceramic components of the material.
  • the frits have a coefficient of thermal expansion between 18x10 "7 ° C " 1 and 50x10 "7 ° C " 1 in the temperature range between 25 ° C and 500 ° C and is found in the composition of the ceramic material in a weight percentage between 15% and 45%, preferably between 15% and 35%.
  • the main components of frits, expressed in oxides, are indicated below. The final value of each component of the frit will depend on the final thermal expansion coefficient that you want to achieve.
  • frit the main elements of the frit are expressed in oxides, in the formulation of the frit both oxides and inorganic salts (carbonates, silicates, nitrates, feldspars, among others) of the corresponding cations can be used.
  • fried is understood as the result of a mixture of inorganic compounds that has undergone a melting and subsequent cooling process to obtain an amorphous glassy compound, that is, without a crystalline structure.
  • the ceramic material contains in its composition at least one inorganic raw material in a weight percentage between 55% and 85%.
  • inorganic raw material refers to any chemical compound other than the frits which is incorporated directly into the composition of the ceramic material object of the invention and which is selected from magnesium carbonate, carbonate of calcium, spodumene, montmorillonite clays, preferably bentonite, kaolinitic clays, preferably kaolin, wollastonite, dolomite, cordierite, kaolinite, Hita, nepheline, zinc oxide, aluminum oxide, titanium oxide, magnesium silicate, zirconium silicate, zirconium oxide, feldspars, aluminosilicate sodium, potassium aluminosilicate, magnesium aluminosilicate, boric acid or mixture thereof.
  • the inorganic raw material of the ceramic material comprises spodumene -LiAI (Si0 3 ) 2 - in a weight percentage comprised between 55% and 85%.
  • the ceramic material composition contains at least one ceramic pigment, with a particle size D100 of up to 5 micrometers if, additionally, it is required to provide chromatic and / or optical properties to the composition.
  • the ceramic pigments are found in the composition of ceramic material in a weight percentage between 0% and 10% and are selected from simple oxides, mixed oxides and crystalline structures of any composition.
  • the ceramic material object of the invention can be shaped by any of the existing industrial methods.
  • examples are uniaxial pressing, band pressing, casting molding, extrusion, injection molding and lamination among others.
  • the composition may also include specific additives to facilitate said process, in a weight percentage comprised between 0% and 5%.
  • additives by way of example but not limitation, are acrylic derivatives, polyvinyl alcohol and their derivatives and cellulose derivatives.
  • the present invention also includes the option of applying, on the surface of the ceramic material formed and prior to heat treatment, a composition called "surface layer" intended to increase properties such as chemical resistance, resistance to cleaning agents, scratch resistance and / or resistance to corrosion, as well as to reduce roughness.
  • Said surface layer is applied by the different deposition techniques of ceramic materials such as fillet, bell, disc, gun, screen printing, inkjet, etc.
  • the surface layer composition may contain a ceramic pigment with a D100 particle size of up to 5 micrometers and in a weight percentage between 5% and 15%, silicon dioxide with a D100 particle size of up to 2 micrometers and in a weight percentage between 0% and 10%, zirconium silicate with a D100 particle size of up to 5 micrometers and in a weight percentage included between 5% and 15%, zinc oxide with a D100 particle size of up to 5 micrometers and in a weight percentage between 0% and 10%, a silicon alkoxide that is liquid at room temperature, also known as organosilane, in a percentage by weight between 70% and 95% or mixture thereof.
  • the forming and heat treatment of the ceramic material composition is performed by uniaxial pressing and using a method according to the usual production methods in the manufacture of ceramic tiles comprising the following steps:
  • Atomization means an industrial process that allows the transformation of suspended solids into spherical and hollow particles.
  • the process is characterized by spraying a suspension or dispersion, normally aqueous, of the material through a nozzle in the opposite direction to a stream of hot air.
  • a suspension or dispersion normally aqueous
  • the ceramic material object of the present invention has a thermal expansion coefficient of less than 25x10 "7 ° C " 1 in the temperature range between 25 ° C and 500 ° C.
  • the measurement of the coefficient of thermal expansion (also known by the acronym CDT) is widely known by a person skilled in the art and is carried out by means of a dilatometer (of the BAHR type Model DIL801 L THERMO ANALYSE or similar).
  • a piece of ceramic material of dimensions 10 cm x 10 cm is prepared and cooked at the heat treatment temperature in accordance with the present invention. Once the cooking is done, a piece of the piece 5 cm long and 3 cm wide is cut and polished until it adopts a cylindrical shape. Once the cylinder is obtained, it is introduced into the dilatometer to measure the CDT in the desired temperature range.
  • the ceramic material composition resulting from the heat treatment is characterized by supporting at least 10 consecutive cycles of thermal shock between 600 ° C and 25 ° C without the formation of cracks or structural changes.
  • the ceramic material object of the invention is formed in a test tube of 10 cm x 10 cm and 4 mm thick and is subjected to the corresponding heat treatment according to the present invention.
  • the evaluation of the resistance to thermal shock begins. For this, the piece is placed in an oven and heated to 600 ° C, keeping at that temperature for 10 minutes. It is then removed from the oven and suddenly placed in a water bath at 25 ° C for 5 minutes.
  • the bathroom part is removed and an inspection is performed to detect the presence of cracks or other defects. If the part remains unchanged, the heating cycle is repeated at 600 ° C, immersion in a water bath at 25 ° C and evaluation until the presence of cracks or structural changes is detected. If the piece resists 10 consecutive cycles, it is considered to have a high resistance to thermal shock. In certain applications such as laboratory work surfaces and outdoor applications, it is also very important that the ceramic material does not absorb liquids to avoid effects such as frost breakage, degradation by chemical agents, low stain resistance, etc. . In this sense, the ceramic material object of the present invention is characterized by having a water absorption of less than 1%. The average water absorption allows to evaluate the impermeability of the material.
  • the measurement method consists in submerging a piece of ceramic material of dimensions 5 cm x 5 cm and 6 mm thick and of known mass (mO), in a water bath at a temperature of 25 ° C for 24 hours. After that time, the piece is dried at 25 ° C for 15 minutes to remove surface water and weighed again, noting its mass (m1). Finally, the ratio between (m1-m0) / m0 expressed as a percentage, indicates the percentage of water absorption.
  • Examples 1, 2, 3, 4, 5, 6 and 7. Formed by uniaxial pressing using the usual technical means in the manufacture of ceramic tiles. From the compositions C1, C2, C3, C4, C5, C6 and C7 described above, a shaping of each one was performed using an industrial uniaxial press commonly used in the manufacture of ceramic tiles, in order to obtain pieces of 30 cm x 30 cm and 10 mm thick, referred to respectively as P1, P2, P3, P4, P5, P6 and P7. Part P1 was obtained from composition C1, P2 from composition C2, P3 from composition C3, P4 from composition C4, P5 from composition C5, P6 from C6 and P7 from composition C7.
  • the process of forming and heat treatment of the compositions C1, C2, C3, C4 C5, C6 and C7 comprised the following steps: (1) Grinding of each composition C1 to C7 with additives for grinding and water until a D100 particle size of up to 40 micrometers is achieved.
  • Example 8 Formed by uniaxial pressing using the usual technical means in the manufacture of ceramic tiles with application of a surface layer.
  • compositions comprised the following steps:
  • composition C1 Joint milling of composition C1 with milling additives and water until a D100 particle size of up to 40 micrometers is achieved.
  • compositions C1 and C3 described above From the compositions C1 and C3 described above, a forming of each of them was carried out by extrusion using the conventional manufacturing procedures generally used in the industry in order to achieve laminated pieces of 30 cm x 30 cm and 5 mm of thickness, respectively named P9 and P10. Part P9 was prepared from composition C1 and the P10 from composition C3. Once both pieces were formed, a heat treatment was carried out at a temperature of 1170 ° C and with a duration of 55 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

La presente invención es una composición y conformado de material cerámico que comprende al menos una frita y al menos una materia prima inorgánica. Algunas de las ventajas son que requiere un tratamiento térmico no superior a 1180ºC, que la duración de dicho tratamiento térmico no es superior a 60 minutos, que después del tratamiento térmico tiene un coeficiente de dilatación térmica menor de 25 x10-7 °C-1 en el intervalo de temperaturas comprendido entre 25º C y 500º C y que presenta una alta resistencia al choque térmico, soportando al menos 10 ciclos consecutivos de choque térmico entre 600º C y 25ºC sin la formación de grietas o cambios estructurales. Composición de material cerámico que es conformada mediante prensado uniaxial, prensado en banda, moldeo por colado, extrusión, moldeo por inyección o laminación.

Description

COMPOSICION Y CONFORMADO DE MATERIAL CERÁMICO DE BAJO COEFICI ENTE DE DILATACIÓN TÉRMICA Y ELEVADA RESISTENCIA AL CHOQUE
TÉRMICO
DESCRIPCIÓN
Objeto de la invención
La presente invención se refiere a una composición y conformado de material cerámico que presenta un bajo coeficiente de dilatación térmica (CDT) y una elevada resistencia al choque térmico o cambios bruscos de temperatura, una vez sometida a un tratamiento térmico con una temperatura máxima de 1 180°C y con una duración máxima de 60 minutos.
Gracias a estas dos propiedades, el material cerámico objeto de invención está destinado a aquellas aplicaciones que requieren presentar estabilidad a elevadas temperaturas y que están sometidas a ciclos de calentamiento y enfriamiento. Ejemplos de aplicaciones, a título enunciativo pero no limitativo, son azulejos cerámicos, radiadores, calefactores, calentadores, filtros de partículas a alta temperatura, superficies y encimeras de cocina y superficies de trabajo en laboratorios.
La presente invención se engloba dentro de los materiales cerámicos que requieren un tratamiento térmico previo y que están destinados a aplicaciones de alta temperatura o choque térmico.
Descripción del estado del arte
Los materiales cerámicos de bajo coeficiente de dilatación térmica son especialmente útiles en aplicaciones en las que tienen lugar ciclos de calentamiento y enfriamiento así como cambios bruscos de temperatura, también conocido como choque térmico. De hecho, en el estado de la técnica anterior a la presente invención se describen composiciones de material cerámico que, después de un tratamiento térmico, se caracterizan por un bajo coeficiente de dilatación térmica.
Así, la patente US8257831 B2 protege una composición de material cerámico compuesta esencialmente por Si02, Al203 y Li20 incluyendo P205 y caracterizada porque, una vez sometida a un tratamiento térmico de fusión, nucleación y cristalización, tiene un coeficiente de dilatación térmica comprendido entre -10x10"7°C"1 y 50x10"7°C"1 en el intervalo de temperaturas de 25°C a 100°C. Asimismo la patente US8257831 B2 se caracteriza por emplear temperaturas de tratamiento térmico de entre 600°C y 1500°C y con una duración del mismo comprendida entre 2 horas y 40 horas. Además, la presencia de P205 en la composición reduce la resistencia química del producto final.
Por otra parte, la solicitud de patente WO2004094334A2 describe una composición de material cerámico que contiene como fase principal el compuesto de fórmula CaAI407 como resultado de un tratamiento térmico comprendido entre 1450°C y 1600°C y que se caracteriza por presentar un coeficiente de dilatación térmica inferior a 10x10"7°C"1 en el intervalo de temperaturas entre 25°C y 800°C y una elevada resistencia al choque térmico. Además, tal y como se describe en el documento WO2004094334A2, el tiempo de tratamiento térmico es de 6 horas. Además, la composición según la solicitud de patente WO2004094334A2 incluye Fe203 que colorearía la misma de forma innecesaria o, caso de utilizar pigmentos, obligando a realizar correcciones de la pigmentación.
Asimismo, la solicitud de patente WO201 1008938A1 divulga una composición de material cerámico de fórmula
Figure imgf000003_0001
(0<x<1) como resultado del tratamiento térmico entre 1200°C y 1700°C, preferentemente entre 1400°C y 1600°C, de una mezcla que comprende las materias primas, expresadas en óxidos, Ti02, Al203, MgO y Si02. El material cerámico se caracteriza por un coeficiente de dilatación térmica menor de 30,0x10"7 K"1 en el intervalo de temperaturas comprendido entre 30°C y 1000°C. Adicionalmente dicha solicitud WO201 1008938A1 recoge preferentemente el uso de fritas como fuente de Si02 debido a su disponibilidad industrial así como feldespato como fuente de Al203. En cuanto al tiempo de tratamiento térmico, tal y como se indica en los ejemplos, no es inferior a 34 horas. Además, las materias primas basadas en Ti02 y Al203 son refractarias, es decir, de alto punto de fusión, que exigen temperaturas elevadas, preferentemente entre 1400°C y 1600°C para conseguir una correcta sinterización y por lo tanto las propiedades objetivo.
Los materiales cerámicos descritos en las anteriores patentes presentan los inconvenientes particulares indicados además del común de que todas requieren temperaturas superiores a 1200°C, llegando en algunos casos a 1600°C, y elevados tiempos de tratamiento térmico, no menos de 2 horas. En base a estas limitaciones en el estado de la técnica actual, el objetivo de la presente invención es una composición de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico caracterizada por resolver los problemas técnicos existentes y requerir un tratamiento térmico con una temperatura máxima de 1180°C y una duración no superior a 60 minutos. Esta disminución en la temperatura y en el tiempo del tratamiento térmico proporcionan, además, una reducción en el consumo energético y por lo tanto, en el coste y en el impacto ambiental.
Descripción de la invención A lo largo de la invención y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
La presente invención es un material cerámico que comprende al menos una frita y al menos una materia prima inorgánica. Algunas de las ventajas son que requiere un tratamiento térmico a una temperatura máxima de 1 180°C, que la duración de dicho tratamiento térmico no es superior a 60 minutos, que, después del tratamiento térmico, tiene un coeficiente de dilatación térmica menor de 25 x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C y que presenta una alta resistencia al choque térmico.
El término "tratamiento térmico" tal y como se utiliza en la presente invención se refiere a un ciclo térmico que permite transformar un producto en polvo conformado, en otro compacto y coherente, como resultado de la unión físico-química de los componentes iniciales y que puede adicionalmente provocar reacciones químicas de transformación de los componentes iniciales en nuevas especies químicas
Las fritas empleadas en la presente invención tienen como función disminuir la temperatura máxima de tratamiento térmico y actuar como ligante entre los demás componentes cerámicos del material. Para ello las fritas tiene un coeficiente de dilatación térmica entre 18x10"7°C"1 y 50x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C y se encuentra en la composición del material cerámico en un porcentaje en peso comprendido entre 15% y 45%, preferentemente entre 15% y 35%. Los componentes principales de las fritas, expresados en óxidos, indican a continuación. El valor final de cada componente de la frita dependerá coeficiente de dilatación térmica final que se quiera conseguir.
Elemento % en peso
Si02 50-60%
Al203 8-25%
Li20 1-10%
B203 5-30%
CaO 0.1-10%
MgO 0.1-5%
T¡02 0-2.5%
ZnO 0-10%
BaO 0-10%
Zr02 0-3%
Na20 0-2%
K20 0-2%
Conviene resaltar que si bien los elementos principales de la frita están expresados en óxidos, en la formulación de la frita se pueden emplear tanto óxidos como sales inorgánicas (carbonatos, silicatos, nitratos, feldespatos, entre otros) de los cationes correspondientes.
En la presente invención se entiende por "frita" el resultado de una mezcla de compuestos inorgánicos que se ha sometido a un proceso de fusión y posterior enfriamiento para obtener un compuesto vidrioso amorfo, es decir, sin estructura cristalina
Otro aspecto de la presente invención es que el material cerámico contiene en su composición al menos una materia prima inorgánica en un porcentaje en peso comprendido entre 55% y 85%.
El término "materia prima inorgánica" tal y como se utiliza en la presente invención se refiere a todo compuesto químico distinto de las fritas que se incorpora directamente a la composición del material cerámico objeto de invención y que se selecciona entre, carbonato de magnesio, carbonato de calcio, espodumeno, arcillas montmorilloníticas, preferentemente bentonita, arcillas caoliníticas, preferentemente caolín, wollastonita, dolomita, cordierita, caolinita, ¡Hita, nefelina, óxido de zinc, óxido de aluminio, óxido de titanio, silicato de magnesio, silicato de zirconio, óxido de zirconio, feldespatos, aluminosilicato de sodio, aluminosilicato de potasio, aluminosilicato de magnesio, ácido bórico o bien mezcla de ellos.
En una realización preferida, la materia prima inorgánica del material cerámico comprende espodumeno -LiAI(Si03)2- en un porcentaje en peso comprendido entre 55% y 85%.
En otra realización preferida la composición de material cerámico contiene al menos un pigmento cerámico, con un tamaño de partícula D100 de hasta 5 micrómetros si, adicionalmente, se requiere aportar propiedades cromáticas y/o ópticas a la composición. En este caso los pigmentos cerámicos se encuentran en la composición de material cerámico en un porcentaje en peso comprendido entre 0% y 10% y se seleccionan entre óxidos sencillos, óxidos mixtos y estructuras cristalinas de cualquier composición.
El material cerámico objeto de invención se puede conformar mediante cualquiera de los métodos industriales existentes. Ejemplos, a título enunciativo pero no limitativo, son prensado uniaxial, prensado en banda, moldeo por colado, extrusión, moldeo por inyección y laminación entre otros. Con el fin de facilitar el conformado, la composición puede incluir también aditivos específicos para facilitar dicho proceso, en un porcentaje en peso comprendido entre 0% y 5%. Ejemplos de aditivos, a título enunciativo pero no limitativo, son derivados acrílicos, polivinilalcohol y sus derivados y derivados de celulosa.
La presente invención también recoge la opción de aplicar, sobre la superficie del material cerámico conformado y previamente al tratamiento térmico, una composición denominada "capa superficial" destinada a incrementar propiedades como la resistencia química, resistencia a agentes de limpieza, resistencia al rayado y/o resistencia a la corrosión, así como a disminuir la rugosidad. Dicha capa superficial se aplica mediante las distintas técnicas de deposición de materiales cerámicos como filera, campana, disco, pistola, serigrafía, inyección de tinta, etc. La composición de la capa superficial puede contener un pigmento cerámico con un tamaño de partícula D100 de hasta 5 micrómetros y en un porcentaje en peso comprendido entre 5% y 15%, dióxido de silicio con un tamaño de partícula D100 de hasta 2 micrometros y en un porcentaje en peso comprendido entre 0% y 10%, silicato de zirconio con un tamaño de partícula D100 de hasta 5 micrometros y en un porcentaje en peso comprendido entre 5% y 15%, óxido de zinc con un tamaño de partícula D100 de hasta 5 micrometros y en un porcentaje en peso comprendido entre 0% y 10%, un alcóxido de silicio que es líquido a temperatura ambiente, también conocido como organosilano, en un porcentaje en peso comprendido entre 70% y 95% o bien mezcla de ellos. Finalmente también puede contener agua cuyo contenido variará en función de la técnica de aplicación. En una realización preferida de la invención, el conformado y tratamiento térmico de la composición de material cerámico se realiza mediante prensado uniaxial y empleando un procedimiento según los métodos de producción habituales en la fabricación de azulejos cerámicos que comprende las siguientes etapas:
(1) Molturación conjunta de una composición de material cerámico según la invención, aditivos para molturación y agua hasta conseguir un tamaño de partícula D100 de hasta 40 micrometros.
(2) Adición de al menos un pigmento cerámico, en el caso de que se requiera, y aditivos para el conformado por prensado uniaxial, si fuesen necesarios.
(3) Atomización de la mezcla anterior para obtener partículas atomizadas con una distribución granulométrica D100 comprendida entre 100 micrometros y 600 micrometros. Por atomización se entiende un proceso industrial que permite transformar sólidos en suspensión en partículas esféricas y huecas. El proceso se caracteriza por pulverizar una suspensión o dispersión, normalmente acuosa, del material a través de una boquilla en dirección opuesta a una corriente de aire caliente. Como consecuencia se produce la formación de partículas esféricas y huecas del material que recibe el nombre de atomizado.
(4) Prensado uniaxial con el fin de conseguir piezas de material cerámico objeto de invención bien lisas o bien con un determinado relieve y de un espesor de 3 mm o más. (5) Opcionalmente, sobre la superficie de la pieza anteriormente conformada se puede aplicar una composición denominada "capa superficial". (6) Secado de la pieza conformada a una temperatura entre 100°C y 200°C.
(7) Tratamiento térmico de la pieza conformada a una temperatura máxima de 1 180°C y un tiempo no superior a 60 minutos.
Como se ha indicado anteriormente, el material cerámico objeto de la presente invención tiene un coeficiente de dilatación térmica menor de 25x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C. La medida del coeficiente de dilatación térmica (también conocido por las siglas CDT) es ampliamente conocido por un experto en la materia y se realiza mediante un dilatómetro (del tipo marca BAHR Modelo DIL801 L THERMO ANALYSE o similares). Para ello se prepara una pieza del material cerámico de dimensiones 10 cm x 10 cm y se cuece a la temperatura de tratamiento térmico de acuerdo con la presente invención. Una vez realizada la cocción, se corta un trozo de la pieza de 5 cm de largo y 3 cm de ancho y se pule hasta que adopte una forma cilindrica. Una vez obtenido el cilindro, se introduce en el dilatómetro para realizar la medida del CDT en el intervalo de temperatura deseado.
De acuerdo con la presente invención, la composición de material cerámico resultante del tratamiento térmico se caracteriza por soportar al menos 10 ciclos consecutivos de choque térmico entre 600°C y 25°C sin la formación de grietas o cambios estructurales. Para la medida de la resistencia al choque térmico se conforma el material cerámico objeto de invención en una probeta de 10 cm x 10 cm y 4 mm de espesor y se somete al tratamiento térmico correspondiente según la presente invención. Una vez realizado el tratamiento térmico, se inicia la evaluación de la resistencia al choque térmico. Para ello la pieza se introduce en un horno y se calienta a 600°C, manteniéndose a dicha temperatura durante 10 minutos. Seguidamente, se retira del horno y súbitamente se introduce en un baño de agua a 25°C durante 5 minutos. Pasado este tiempo, se extrae la pieza del baño y se realiza una inspección de la misma para detectar la presencia de grietas u otros defectos. Si la pieza permanece invariable, se repite el ciclo de calentamiento a 600°C, inmersión en baño de agua a 25°C y evaluación hasta que se detecta la presencia de grietas o cambios estructurales. Si la pieza resiste 10 ciclos consecutivos se considera que presenta una elevada resistencia al choque térmico. En ciertas aplicaciones como es el caso de superficies de trabajo en laboratorio y aplicaciones para exteriores, es también muy importante que el material cerámico no absorba líquidos para evitar efectos como la ruptura por heladas, degradación por agentes químicos, baja resistencia a las manchas, etc. En este sentido el material cerámico objeto de la presente invención se caracteriza por tener una absorción de agua inferior a 1 %. La media de la absorción de agua permite evaluar la impermeabilidad del material. El método de medida consiste en sumergir una pieza del material cerámico de dimensiones 5 cm x 5 cm y 6 mm de espesor y de masa conocida (mO), en un baño de agua a una temperatura de 25°C durante 24h. Transcurrido ese tiempo se seca la pieza a 25°C durante 15 minutos para eliminar el agua superficial y se vuelve a pesar anotándose su masa (m1). Finalmente el cociente entre (m1-m0)/m0 expresado en tanto por cien, indica el porcentaje de absorción de agua.
Formas preferentes de realización Para completar la descripción que se está realizando y con el objeto de ayudar a una mejor comprensión de sus características, se acompaña a la presente memoria descriptiva, varios ejemplos de realización del material cerámico objeto de la presente invención.
Todos los ejemplos de realización descritos lo son a título enunciativo y no limitativo. Se prepararon siete composiciones de material cerámico según la presente invención denominadas C1 , C2, C3, C4, C5, C6 y C7 respectivamente. En la composición C3 se incluyó un pigmento cerámico azul que permite aportar coloración al material cerámico. Todas las composiciones están expresadas como porcentaje en peso.
Figure imgf000009_0001
Caolín 3,5% 5% 5%
ZrS¡04 5% 5% 0,5%
Pigmento cerámico Azul de estructura
4,5%
Espinela de Cobalto
Figure imgf000010_0001
Ejemplos 1 ,2, 3, 4, 5, 6 y 7. Conformado mediante presando uniaxial empleando los medios técnicos habituales en la fabricación de azulejos cerámicos. A partir de las composiciones C1 , C2, C3, C4, C5, C6 y C7 descritas anteriormente se realizó un conformado de cada una de ellas utilizando una prensa uniaxial industrial empleada habitualmente en la fabricación de azulejos cerámicos, con el fin de conseguir piezas de 30 cm x 30 cm y 10 mm de espesor, denominadas respectivas P1 , P2, P3, P4, P5, P6 y P7. La pieza P1 se obtuvo a partir de la composición C1 , la P2 a partir de la composición C2, la P3 a partir de la composición C3, la P4 a partir de la composición C4, la P5 a partir de la composición C5, la P6 a partir de C6 y la P7 a partir de la composición C7.
El procedimiento de conformado y tratamiento térmico de las composiciones C1 , C2, C3, C4 C5, C6 y C7 comprendió los siguientes pasos: (1) Molturación de cada composición C1 a C7 con aditivos para molturación y agua hasta conseguir un tamaño de partícula D100 de hasta 40 micrómetros.
(2) Adición de un 2% en peso de la mezcla según el paso 1 de ligante acrílico como aditivo para conformado, excepto en la composición C7 que se adicionó un 2% de dicho ligante acrílico y un 1 % de polivinilalcohol.
(3) Atomización de la mezcla anterior para obtener partículas atomizadas con una distribución granulométrica D100 comprendida entre 100 micrómetros y 600 micrómetros.
(4) Prensado uniaxial con una presión de 400 Kg/cm2 para conseguir piezas de 30 cm x 30 cm y un espesor de 10mm.
(5) Secado de las piezas a una temperatura de 150°C durante 20 minutos.
(6) Tratamiento térmico de las piezas en un horno de gas industrial empleado habitualmente en la fabricación de baldosas cerámicas a una temperatura máxima de 1120°C y con una duración de 50 minutos. Una vez realizado el tratamiento térmico indicado, cada una las piezas de material cerámico presentaban las siguientes propiedades. Como se indica, todas las piezas superaron el test de resistencia al choque térmico, tras realizarse al menos 10 ciclos consecutivos.
Figure imgf000011_0001
Propiedades P5 P6 P7
CDT (a25°c-5oo°c) (x10"7oC"1) 25,01 13,75 12, 10 Resistencia a choque térmico 10 10 10
Absorción de agua (%) 0, 15% 0,050% 0,050
Resistencia a las manchas
5 4 4
(Norma ISO 10545-14: 1995)
Resistencia química
Clase A Clase A Clase A
(Norma UNE-EN ISO10545-13)
Ejemplo 8. Conformado mediante presando uniaxial empleando los medios técnicos habituales en la fabricación de azulejos cerámicos con aplicación de una capa superficial.
Adicionalmente se preparó otra pieza (P8) consistente en la composición de material cerámico C1 sobre la que se aplicó, una vez conformada mediante presando uniaxial, una composición de capa superficial. La composición de la capa superficial realizada a modo de ejemplo, se indica a continuación:
Figure imgf000012_0001
El procedimiento de conformado para dichas composiciones comprendió los siguientes pasos:
(1) Molturación conjunta de la composición C1 con aditivos para molturación y agua hasta conseguir un tamaño de partícula D100 de hasta 40 micrómetros.
(2) Adición de un 2% en peso de la mezcla según el paso 1 de ligante acrílico como aditivo para conformado. (3) Atomización de la mezcla anterior para conseguir partículas atomizadas con una distribución granulométrica D100 comprendida entre 100 micrómetros y 600 micrómetros.
(4) Prensado uniaxial con una presión de 400 Kg/cm2 para conseguir piezas de 30 cm x 30 cm y un espesor de 10 mm. (5) Aplicación de la composición de la capa superficial mediante aerografía depositando un gramaje de 7,5 g/m2 sobre la superficie de la pieza conformada en el paso (4).
(6) Secado de la pieza a una temperatura de 150°C durante 20 minutos.
(7) Tratamiento térmico de la pieza en un horno de gas industrial empleado habitualmente en la fabricación de baldosas cerámicas a una temperatura máxima de 1120°C y con una duración de 50 minutos.
En la siguiente tabla se muestra las propiedades de la pieza obtenida a partir del ejemplo 1 (P1) y del ejemplo 8 (P8).
Figure imgf000013_0001
Los resultados indican que la pieza P8, que contiene la capa superficial, mejora la resistencia a las manchas y disminuye la rugosidad de la superficie en 2,3 micrómetros. Por otra parte ambas piezas superaron el test de resistencia al choque térmico.
Ejemplos 9 y 10. Conformado mediante extrusión.
A partir de las composiciones C1 y C3 descritas anteriormente, se realizó un conformado de cada una de ellas mediante extrusión utilizando los procedimientos de fabricación convencionales generalmente utilizados en la industria con el fin de conseguir piezas laminadas de 30 cm x 30 cm y 5 mm de espesor, denominadas respectivamente P9 y P10. La pieza P9 se preparó a partir de la composición C1 y la P10 a partir de la composición C3. Una vez conformadas ambas piezas se realizó un tratamiento térmico a una temperatura de 1170°C y con una duración de 55 minutos.
La siguiente tabla muestra las propiedades de las piezas obtenidas según la invención.
Propiedad P9 P10
CDT (a25°c-5oo°c) (x10"7oC"1) 12,40 14, 10
Resistencia a choque térmico 10 10
Absorción de agua (%) 0,080% 0,060%

Claims

REIVINDICACIONES
1. Una composición de material cerámico para conformar caracterizada porque comprende:
- Al menos una frita en un porcentaje en peso comprendido entre 15% y 45% con un coeficiente de dilatación térmica entre 18x10"7°C"1 y 50x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C, y
- Al menos una materia prima inorgánica en un porcentaje en peso comprendido entre 55% y 85%.
2. La composición, según la reivindicación 1 , donde la materia prima inorgánica comprende espodumeno en un porcentaje en peso entre 55% y 85%.
3. La composición, según cualquiera de las reivindicaciones anteriores, donde el porcentaje en peso de la frita está comprendido entre 15% y 35%.
4. La composición, según cualquiera de las reivindicaciones anteriores, que comprende al menos un pigmento cerámico con un tamaño de partícula D100 de hasta 5 micrómetros y en un porcentaje en peso comprendido entre 0% y 10%.
5. Partícula atomizada para el prensado uniaxial caracterizada porque comprende:
- una composición de material cerámico según las reivindicaciones 1 a 4,
- aditivos para molturación,
- aditivos para el conformado por prensado uniaxial, - una distribución granulométrica D100 comprendida entre 100 micrómetros y
600 micrómetros.
6. Procedimiento de obtención de partícula atomizada para el prensado uniaxial caracterizado porque comprende:
(1) Molturación conjunta de la composición de material cerámico según las reivindicaciones 1 a 4 con aditivos para molturación y agua hasta conseguir un tamaño de partícula D100 de hasta 40 micrómetros,
(2) Adición de aditivos para el conformado por prensado uniaxial, y (3) Atomización de la mezcla anterior para obtener partículas atomizadas con una distribución granulométrica D100 comprendida entre 100 micrómetros y 600 micrómetros.
7. Un material cerámico conformado caracterizado porque comprende: - una composición de material cerámico según cualquiera de las reivindicaciones 1 a 4, y
- un coeficiente de dilatación térmica menor de 25x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C
8. Procedimiento de obtención de un material cerámico conformado según la reivindicación 7, caracterizado porque comprende al menos las siguientes etapas:
(1) Mezclado de una composición de material cerámico según reivindicaciones
1 a 4,
(2) Conformado de la mezcla, y
(3) Tratamiento térmico de la mezcla conformada a una temperatura máxima de 1 180°C y una duración no superior a 60 minutos para obtener un material cerámico con un coeficiente de dilatación térmica menor de 25 x10"7°C"1 en el intervalo de temperaturas comprendido entre 25°C y 500°C.
9. Procedimiento, según la reivindicación 8, donde la etapa de conformado de la mezcla se realiza mediante prensado uniaxial y/o prensado en banda y/o moldeo por colado y/o extrusión y/o, moldeo por inyección y/o laminación.
10. Procedimiento, según la reivindicación 8 caracterizado porque la etapa de conformado de la mezcla comprende, al menos:
(1) Obtención de partículas atomizadas para el prensado uniaxial según la reivindicación 6, y (2) Prensado uniaxial de dichas partículas atomizadas.
PCT/ES2018/070161 2017-03-27 2018-03-06 Composición y conformado de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico WO2018178436A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/498,100 US20210101837A1 (en) 2017-03-27 2018-03-06 Composition and shaping of a ceramic material with low thermal expansion coefficient and high resistance to thermal shock
EP18776639.9A EP3584233A4 (en) 2017-03-27 2018-03-06 COMPOSITION AND SHAPES OF A CERAMIC MATERIAL WITH LOW THERMAL EXPANSION COEFFICIENT AND HIGH THERMAL SHOCK RESISTANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730419A ES2687800B1 (es) 2017-03-27 2017-03-27 Composicion y conformado de material ceramico de bajo coeficiente de dilatacion termica y elevada resistencia al choque termico
ESP201730419 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018178436A1 true WO2018178436A1 (es) 2018-10-04

Family

ID=63675375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070161 WO2018178436A1 (es) 2017-03-27 2018-03-06 Composición y conformado de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico

Country Status (4)

Country Link
US (1) US20210101837A1 (es)
EP (1) EP3584233A4 (es)
ES (1) ES2687800B1 (es)
WO (1) WO2018178436A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2956017A1 (es) * 2022-04-29 2023-12-11 Thesize Surfaces S L Material ceramico esmaltado con un bajo coeficiente de dilatacion termica
CN115893984B (zh) * 2022-10-27 2023-06-27 湖南驰鑫特种隔热材料有限公司 一种陶瓷蛭石隔热板及其制备工艺
CN115594486B (zh) * 2022-11-15 2023-08-22 景德镇陶瓷大学 一种低膨胀堇青石耐热紫砂陶瓷的制备方法及其制得的产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB853613A (en) * 1956-02-07 1960-11-09 English Electric Co Ltd Improvements in or relating to ceramic materials
US3309208A (en) * 1965-04-23 1967-03-14 Robert H Arlett Methods for controlling the thermal expansion properties of ceramics
WO2004094334A2 (en) 2003-04-01 2004-11-04 Corning Incorporated Low thermal expansion calcium aluminate articles
CN101538164A (zh) * 2009-04-24 2009-09-23 景德镇陶瓷学院 超低膨胀陶瓷材料的制备工艺方法
WO2011008938A1 (en) 2009-07-15 2011-01-20 E.I. Du Pont De Nemours And Company Aluminium magnesium titanate composite ceramics
WO2011083193A1 (es) * 2009-12-21 2011-07-14 Consejo Superior De Investigaciones Científicas (Csic) Material compuesto con coeficiente de expansión térmica controlado con cerámicas oxidicas y su procedimiento de obtención
US8257831B2 (en) 2007-04-27 2012-09-04 Ohara Inc. Glass-ceramics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756809A (fr) * 1969-09-29 1971-03-01 Metallgesellschaft Ag Procede pour la fabrication de pieces moulees et de revetementsa faibledilatation thermique en porcelaine au lithium
ES2190356B1 (es) * 2001-08-30 2004-09-16 Colorobbia España, S.A. Frita ceramica capaz de cristalizar mullita en ciclos termicos de cocido industrial, su obtencion y aplicaciones.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB853613A (en) * 1956-02-07 1960-11-09 English Electric Co Ltd Improvements in or relating to ceramic materials
US3309208A (en) * 1965-04-23 1967-03-14 Robert H Arlett Methods for controlling the thermal expansion properties of ceramics
WO2004094334A2 (en) 2003-04-01 2004-11-04 Corning Incorporated Low thermal expansion calcium aluminate articles
US8257831B2 (en) 2007-04-27 2012-09-04 Ohara Inc. Glass-ceramics
CN101538164A (zh) * 2009-04-24 2009-09-23 景德镇陶瓷学院 超低膨胀陶瓷材料的制备工艺方法
WO2011008938A1 (en) 2009-07-15 2011-01-20 E.I. Du Pont De Nemours And Company Aluminium magnesium titanate composite ceramics
WO2011083193A1 (es) * 2009-12-21 2011-07-14 Consejo Superior De Investigaciones Científicas (Csic) Material compuesto con coeficiente de expansión térmica controlado con cerámicas oxidicas y su procedimiento de obtención

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI RUIFENG ET AL.: "Effect of B2O3-Bi2O3-PbO frit on the performance of LaBaCo2O5 cathode for intermediate-temperature solid oxide fuel cells", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 37, no. 21, 29 August 2012 (2012-08-29), pages 16117 - 16122, XP028944147, ISSN: 0360-3199, DOI: doi:10.1016/j.ijhydene.2012.08.043 *
See also references of EP3584233A4 *
ZANELLI ET AL.: "Glass-ceramic frits for porcelain stoneware bodies: Effects on sintering, phase composition and technological properties", CERAMICS INTERNATIONAL, vol. 34, no. 3, 11 February 2008 (2008-02-11), pages 455 - 465, XP022476454, ISSN: 0272-8842, DOI: doi:10.1016/j.ceramint.2006.11.008 *

Also Published As

Publication number Publication date
EP3584233A1 (en) 2019-12-25
ES2687800A1 (es) 2018-10-29
US20210101837A1 (en) 2021-04-08
EP3584233A4 (en) 2020-12-02
ES2687800B1 (es) 2019-08-06

Similar Documents

Publication Publication Date Title
US5922271A (en) Method for the manufacture of dense-sintered glass ceramic moldings
WO2018178436A1 (es) Composición y conformado de material cerámico de bajo coeficiente de dilatación térmica y elevada resistencia al choque térmico
US20230035460A1 (en) Coated glass or glass ceramic substrate, coating comprising closed pores, and method for coating a substrate
ES2658411T3 (es) Sustrato provisto de un recubrimiento basado en un fundente de vidrio, material fundente de vidrio, así como procedimientos para el recubrimiento de un sustrato de vidrio o de cerámica de vidrio
US20160264455A1 (en) Substrate coated with a noise-optimized glass-based coating and method of producing such a coating
ES2820453T3 (es) Composición de esmalte para vitrocerámica
ES2360781A1 (es) Composición y procedimiento para la obtención de materiales para el recubrimiento de cuerpos cerámicos y los artículos así obtenidos.
CN103224331B (zh) 一种一次烧金棕色熔块干粒及其制备方法
CN103224415A (zh) 一种一次烧钴蓝色熔块干粒及其制备方法
ES2674978A1 (es) Esmalte cerámico de elevado tamaño de partícula y contenido en sólidos
EP1966099B1 (en) Composition, frit, enamel and ceramic components and process to make the same
US3804666A (en) Glazed ceramic ware
ES2849848T3 (es) Tinta mate transparente para la protección de recubrimientos cerámicos
CN103771904A (zh) 一种憎污面釉及用其制作陶瓷产品的方法
US4004935A (en) Glazing compositions for ceramic articles
WO2020099704A1 (es) Composición de tinta para decoración de vajilla
CN103224329B (zh) 一种一次烧米黄色熔块干粒及其制备方法
ES2805129T3 (es) Composición de tinta para recubrimientos cerámicos transparentes brillantes
ES2444740B2 (es) Material vitrocerámico traslúcido estructura albita
BR112020010277B1 (pt) Substrato de vidro ou cerâmica de vidro revestido
KR20110139357A (ko) 내열자기 제조용 물질 조성물 및 그를 이용한 내열자기
CN103224330B (zh) 一种一次烧艳黑色熔块干粒及其制备方法
CN101191624A (zh) 一种纳米瓷电磁炉面板及其制备方法
WO2023209467A1 (es) Material cerámico esmaltado con un bajo coeficiente de dilatación térmica
JPH0152352B2 (es)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018776639

Country of ref document: EP

Effective date: 20190918

NENP Non-entry into the national phase

Ref country code: DE