WO2018177416A1 - 光学镜头和成像设备 - Google Patents

光学镜头和成像设备 Download PDF

Info

Publication number
WO2018177416A1
WO2018177416A1 PCT/CN2018/081353 CN2018081353W WO2018177416A1 WO 2018177416 A1 WO2018177416 A1 WO 2018177416A1 CN 2018081353 W CN2018081353 W CN 2018081353W WO 2018177416 A1 WO2018177416 A1 WO 2018177416A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
convex
Prior art date
Application number
PCT/CN2018/081353
Other languages
English (en)
French (fr)
Inventor
谢前森
王东方
姚波
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Priority to US16/498,247 priority Critical patent/US11333856B2/en
Publication of WO2018177416A1 publication Critical patent/WO2018177416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to the field of optical lenses and imaging devices, and more particularly to optical lenses and imaging devices capable of achieving high resolution while keeping the lens downsized.
  • Imaging devices such as a camera-mounted mobile device and a digital still camera using, for example, a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) as solid-state imaging elements are well known.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the resolution can be improved by increasing the number of lenses in the optical lens, but accordingly, the volume and weight of the optical lens are increased, which is disadvantageous for miniaturization of the optical lens and causes an increase in cost.
  • wide-angle optical lenses of megapixels or more usually use six lenses. Although the resolution is significantly improved compared to optical lenses with five lenses, the increase in the number of lenses makes the demand for miniaturization more prominent.
  • An object of the present invention is to provide a novel and improved optical lens and an image forming apparatus capable of achieving high resolution while keeping the lens miniaturized in view of the above-described drawbacks and deficiencies in the prior art.
  • An object of the present invention is to provide an optical lens and an image forming apparatus which contribute to high resolution while maintaining the miniaturization of the optical lens by the shape and power setting of the third lens in the optical lens.
  • An object of the present invention is to provide an optical lens and an image forming apparatus, in which a positive film is front-end by a fourth lens and a fifth lens glued to each other, and a negative film is behind, a light can be collected by a positive film to reduce a rear port diameter of the optical lens. size.
  • An object of the present invention is to provide an optical lens and an image forming apparatus.
  • the third lens is a glass lens to facilitate thermal compensation, and the third lens is an aspherical glass lens to further enhance the resolution.
  • An object of the present invention is to provide an optical lens and an image forming apparatus which can significantly shorten the optical length of an optical lens by optimizing the shape of each lens and rationally assigning the power of each lens, and ensuring miniaturization of the optical lens. At the same time improve the resolution.
  • an optical lens which includes, in order from the object side to the image side, a first lens which is a meniscus lens having a negative refractive power, and an object side of the first lens is a convex surface.
  • the image side is a concave surface;
  • the second lens has a negative power, the image side of the second lens is a concave surface;
  • the third lens is a meniscus lens having a positive power, and the object side of the third lens is a concave surface, the image side is a convex surface; a fourth lens; a fifth lens glued to the fourth lens; and a sixth lens having a positive power.
  • the fourth lens is a lenticular lens having a positive refractive power
  • the object side is a convex surface
  • the image side surface is a convex surface
  • the fifth lens is a meniscus lens having a negative refractive power
  • the side of the object is a concave surface
  • the side surface is a convex surface.
  • the second lens is a meniscus lens, and the object side surface thereof is a convex surface.
  • the second lens is a biconcave lens whose object side surface is a concave surface.
  • the object side surface of the sixth lens is a convex surface
  • the image side surface is a convex surface
  • four or more of the first to sixth lenses are aspherical lenses.
  • the second lens, the fourth lens, the fifth lens, and the sixth lens are aspherical lenses.
  • the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are aspherical lenses.
  • the third lens is a glass lens.
  • the third lens is a glass aspherical lens.
  • the optical lens further includes an aperture, and the aperture is located between the third lens and the fourth lens.
  • the first lens to the sixth lens satisfy the following conditional expression (1):
  • F3 is the focal length of the third lens, and F is the entire set of focal length values of the optical lens.
  • the first lens to the sixth lens satisfy the following conditional expression (2):
  • F is the entire set of focal length values of the optical lens
  • TTL is the optical length of the optical lens
  • an image forming apparatus comprising the above-described optical lens and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging apparatus provided by the present invention contribute to high resolution while maintaining the miniaturization of the optical lens by the shape and power setting of the third lens in the optical lens.
  • the optical lens and the image forming apparatus provided by the present invention can significantly shorten the optical length of the optical lens by optimizing the shape of each lens and rationally assigning the power of each lens, and can improve the resolution of the optical lens while ensuring miniaturization of the optical lens.
  • FIG. 1 illustrates a lens configuration of an optical lens according to a first embodiment of the present invention
  • FIG. 2 illustrates a lens configuration of an optical lens according to a second embodiment of the present invention
  • FIG. 3 illustrates a lens configuration of an optical lens according to a third embodiment of the present invention
  • FIG. 4 illustrates a lens configuration of an optical lens according to a fourth embodiment of the present invention
  • FIG. 5 is a schematic block diagram of an image forming apparatus according to an embodiment of the present invention.
  • the optical lens according to the embodiment of the present invention includes, in order from the object side to the image side, a first lens which is a meniscus lens having a negative refractive power, the object side surface being a convex surface, and the image side surface being a concave surface;
  • the second lens is a lens having a negative power, the image side is a concave surface;
  • the third lens is a meniscus lens having a positive power, the object side is a concave surface, the image side is a convex surface;
  • the fourth lens is glued;
  • the sixth lens is a lenticular lens having a positive power, and the object side surface is a convex surface and the image side surface is a convex surface.
  • the shape and the power setting of the third lens in the optical lens contribute to high resolution while maintaining the miniaturization of the optical lens, which will be described in further detail later.
  • the fourth lens is a lenticular lens having positive refractive power
  • the object side surface is a convex surface and the image side surface is a convex surface.
  • the fifth lens is a meniscus lens having a negative refractive power
  • the object side surface is a concave surface
  • the image side surface is a convex surface.
  • the second lens is a meniscus lens having a negative refractive power or a double concave lens having a negative refractive power. That is to say, the image side of the second lens is a concave surface, and the object side surface may be a convex surface or a concave surface.
  • the first to sixth lenses are aspherical lenses.
  • the third lens is a glass lens, and more preferably, the third lens is an aspherical glass lens.
  • the third lens is a glass lens, thermal compensation is facilitated.
  • the third lens is an aspherical glass lens, the resolution can be further enhanced.
  • the third lens is not limited to a glass lens or an aspherical glass lens.
  • the third lens may also be a plastic aspheric lens, which can achieve high resolution and low cost, but has poor temperature performance. Therefore, in practical applications, the mirror shape and material of the third lens can be determined according to specific needs.
  • the first to sixth lenses satisfy the following conditional expressions (1) and (2):
  • F3 is the focal length of the third lens
  • F is the entire set of focal length values of the optical lens
  • TTL is the optical length of the optical lens, that is, the distance from the outermost point of the object side of the first lens to the imaging focal plane.
  • the mirror shape and material of the third lens are not limited.
  • an aperture is further included.
  • the aperture is located between the third lens and the fourth lens to facilitate efficient beaming of light entering the optical system, reducing lens aperture of the optical system.
  • the aperture can also be located between any other discrete lens.
  • the optical lens according to the embodiment of the present invention includes an aperture
  • the first lens has a meniscus shape on the convex object side, the object side surface is a convex surface, and the image side surface is a concave surface.
  • the convexity of the first lens is convex toward the object side, so that the incident angle of the incident light on the attack surface is small, which is advantageous for collecting more light into the optical system of the embodiment of the present invention.
  • the convex surface is advantageous for adapting to the outdoor use of the vehicle front view lens, for example, when in an environment such as a rainy day, the convex surface can contribute to the falling of the water droplets, thereby reducing the influence on the imaging.
  • the first lens may be a spherical glass lens or an aspherical glass lens.
  • the cost of the optical lens can be reduced.
  • the first lens is an aspherical glass lens, the front port diameter of the lens can be reduced, the overall volume of the lens can be reduced, and the resolution can be further improved.
  • the second lens is a meniscus lens or a biconcave lens having a concave side surface, and the object side surface may be a convex surface or a concave surface. Since the first lens of the optical lens is a diverging lens, the light collected by the first lens is compressed by the configuration of the second lens, so that the light is relatively flat, so that the light smoothly transitions to the rear.
  • the third lens is a meniscus lens on the concave side, the object side surface being a concave surface, and the image side surface being a convex surface.
  • the third lens is a converging lens such that the divergent light smoothly enters the rear.
  • the third lens may balance the spherical aberration and positional chromatic aberration introduced by the first lens and the second lens. Further, as described above, the shape and power setting of the third lens are more reasonable, which is advantageous in maintaining the high resolution of the entire optical lens while shortening the total length of the optical system.
  • the aperture is located between the third lens and the fourth lens and the fifth lens cemented to each other for condensing the front and rear rays, shortening the total length of the optical system, and reducing the front and rear lens groups Caliber.
  • the fourth lens and the fifth lens which are glued to each other can correct the chromatic aberration, reduce the tolerance sensitivity, and may also partially chromatic aberration to balance the chromatic aberration of the system.
  • the positive film with positive power is in front
  • the negative film with negative power is behind
  • the front light can be further concentrated and then transitioned to the rear to reduce the diameter/size of the rear port of the optical lens. Thereby further reducing the total length of the system.
  • the sixth lens is a lenticular lens having a convex side and a side convex surface.
  • the sixth lens is a converging lens such that the light converges.
  • the sixth lens is an aspherical lens, which can satisfy a system with a small FNO, for example, FNO ⁇ 2, while reducing the optical path of the peripheral light reaching the imaging surface.
  • the sixth lens can perform a good correction effect on the off-axis point aberration, and optimize optical properties such as distortion and CRA.
  • optical lens according to the embodiment of the present invention can be applied to other lens applications that require weight reduction, miniaturization, low cost, and high resolution, in addition to the vehicle front view lens.
  • the embodiments of the invention are not intended to be limiting in any way.
  • Some of the lenses used in the examples have a non-spherical lens surface, and the aspherical surface shape is represented by the following expression (3):
  • Z(h) is the position of the aspherical surface at the height h along the optical axis direction, and the distance vector from the aspherical vertex is high.
  • c 1/r
  • r represents the radius of curvature of the lens surface
  • k is the conic coefficient
  • A, B, C, D and E are high-order aspheric coefficients
  • e in the coefficient represents a scientific notation, such as E-05 represents 10 - 5 .
  • Nd represents a refractive index
  • Vd represents an Abbe's coefficient
  • FIG. 1 illustrates a lens configuration of an optical lens according to a first embodiment of the present invention.
  • the optical lens according to the first embodiment of the present invention includes, in order from the object side to the image side, a first lens L1 having a meniscus having a negative refractive power, and a first surface S1 having a convex object side.
  • a second surface S2 on the concave image side a second lens L2 having a meniscus having a negative refractive power, having a first surface S3 on the convex object side and a second surface S4 on the concave image side; having positive light focus a third meniscus L3 having a meniscus having a first surface S5 on the concave object side and a second surface S6 on the convex image side; a stop STO; a fourth lens L4 and a fifth lens L5 glued to each other, wherein The fourth lens L4 is a biconvex shape having positive refractive power, and has a first surface S8 on the convex object side and a second surface S9 on the convex image side, and the fifth lens L5 is a meniscus shape having a negative refractive power.
  • a first surface S9 having a concave object side and a second surface S10 convex toward the image side
  • a sixth lens L6 having a biconvex shape of positive refractive power, having a first surface S11 on the convex object side and a convex image side a second surface S12
  • a planar lens L7 having a first surface S13 toward the object side and a second surface S14 toward the image side, generally a color filter
  • Flat lens L8, having a first surface toward a second surface S15 and S16 the image side toward the object side, generally protective glass for protecting the imaging surface
  • the lens data of the above lens is shown in Table 1 below:
  • the focal length F3 of the third lens, the entire set of focal length value F of the optical lens, and the optical length TTL of the optical lens and the relationship therebetween are as shown in Table 3 below.
  • the optical lens according to the first embodiment of the present invention satisfies the aforementioned conditional expressions (1), (2), thereby obtaining high resolution while maintaining miniaturization of the optical lens.
  • FIG. 2 illustrates a lens configuration of an optical lens according to a second embodiment of the present invention.
  • the optical lens according to the second embodiment of the present invention includes, in order from the object side to the image side, a first lens L1 having a meniscus having a negative refractive power, and a first surface S1 having a convex object side.
  • a second surface S2 on the concave image side a second lens L2 having a meniscus having a negative refractive power, having a first surface S3 on the convex object side and a second surface S4 on the concave image side; having positive light focus a third meniscus L3 having a meniscus having a first surface S5 on the concave object side and a second surface S6 on the convex image side; a stop STO; a fourth lens L4 and a fifth lens L5 glued to each other, wherein The fourth lens L4 is a biconvex shape having positive refractive power, and has a first surface S8 on the convex object side and a second surface S9 on the convex image side, and the fifth lens L5 is a meniscus shape having a negative refractive power.
  • a first surface S9 having a concave object side and a second surface S10 convex toward the image side
  • a sixth lens L6 having a biconvex shape of positive refractive power, having a first surface S11 on the convex object side and a convex image side a second surface S12
  • a planar lens L7 having a first surface S13 toward the object side and a second surface S14 toward the image side, generally a color filter
  • the planar lens L8 has a first surface S15 toward the object side and a second surface S16 toward the image side, generally a protective glass for protecting the image forming surface
  • L9 has an image forming surface S17, typically a chip.
  • the focal length F3 of the third lens, the entire set of focal length value F of the optical lens, and the optical length TTL of the optical lens and the relationship therebetween are as shown in Table 6 below.
  • the optical lens according to the second embodiment of the present invention satisfies the aforementioned conditional expressions (1), (2), thereby obtaining high resolution while maintaining miniaturization of the optical lens.
  • FIG. 3 illustrates a lens configuration of an optical lens according to a third embodiment of the present invention.
  • the optical lens according to the third embodiment of the present invention includes, in order from the object side to the image side, a first lens L1 having a meniscus having a negative refractive power, and a first surface S1 having a convex object side.
  • a second surface S2 on the concave image side a second lens L2 having a meniscus having a negative refractive power, having a first surface S3 on the convex object side and a second surface S4 on the concave image side; having positive light focus a third meniscus L3 having a meniscus having a first surface S5 on the concave object side and a second surface S6 on the convex image side; a stop STO; a fourth lens L4 and a fifth lens L5 glued to each other, wherein The fourth lens L4 is a biconvex shape having positive refractive power, and has a first surface S8 on the convex object side and a second surface S9 on the convex image side, and the fifth lens L5 is a meniscus shape having a negative refractive power.
  • a first surface S9 having a concave object side and a second surface S10 convex toward the image side
  • a sixth lens L6 having a biconvex shape of positive refractive power, having a first surface S11 on the convex object side and a convex image side a second surface S12
  • a planar lens L7 having a first surface S13 toward the object side and a second surface S14 toward the image side, generally a color filter
  • the planar lens L8 has a first surface S15 toward the object side and a second surface S16 toward the image side, generally a protective glass for protecting the image forming surface
  • L9 has an image forming surface S17, typically a chip.
  • the lens data of the above lens is shown in Table 7 below:
  • the focal length F3 of the third lens, the entire set of focal length value F of the optical lens, and the optical length TTL of the optical lens and the relationship therebetween are as shown in Table 9.
  • the optical lens according to the third embodiment of the present invention satisfies the aforementioned conditional expressions (1), (2), thereby obtaining high resolution while maintaining miniaturization of the optical lens.
  • FIG. 4 illustrates a lens configuration of an optical lens according to a fourth embodiment of the present invention.
  • the optical lens according to the fourth embodiment of the present invention includes, in order from the object side to the image side, a first lens L1 having a meniscus having a negative refractive power, and a first surface S1 having a convex object side.
  • a second surface S2 on the concave image side a second concave lens L2 having a negative refractive power, having a first surface S3 on the concave object side and a second surface S4 on the concave image side; having positive refractive power a third meniscus L3 having a meniscus having a first surface S5 on the concave object side and a second surface S6 on the convex image side; a stop STO; a fourth lens L4 and a fifth lens L5 glued to each other, wherein The fourth lens L4 is a biconvex shape having positive refractive power, and has a first surface S8 on the convex object side and a second surface S9 on the convex image side, and the fifth lens L5 is a meniscus shape having a negative refractive power.
  • a first surface S9 having a concave object side and a second surface S10 convex toward the image side
  • a sixth lens L6 having a biconvex shape of positive refractive power, having a first surface S11 on the convex object side and a convex image side a second surface S12
  • a planar lens L7 having a first surface S13 toward the object side and a second surface S14 toward the image side, generally filtering Sheet
  • flat lens L8 having a first surface S15 toward the object side toward the image and a second side surface S16, typically a cover glass for protecting the imaging surface
  • S17 L9 of having an imaging surface typically a chip.
  • the lens data of the above lens is shown in Table 10 below:
  • the focal length F3 of the third lens, the entire set of focal length value F of the optical lens, and the optical length TTL of the optical lens and the relationship therebetween are as shown in Table 12 below.
  • the optical lens according to the fourth embodiment of the present invention satisfies the aforementioned conditional expressions (1), (2), thereby obtaining high resolution while maintaining miniaturization of the optical lens.
  • the shape and the power setting of the third lens in the optical lens contribute to high resolution while maintaining the miniaturization of the optical lens.
  • the positive lens of the fourth lens and the fifth lens which are glued to each other is in front, and the negative film is rearward, the light can be collected by the positive film to reduce the diameter/size of the rear port of the optical lens.
  • the third lens is a glass lens, which is advantageous for thermal compensation, and further, the third lens is an aspherical glass lens, and the resolution can be further enhanced.
  • the TTL can be remarkably shortened, and the resolution can be improved while ensuring miniaturization of the optical lens.
  • the light is located between the third lens and the fourth lens, which facilitates effective light converging into the optical system and reduces the lens aperture of the optical system.
  • the optical lens according to the embodiment of the invention by arranging the fourth lens and the fifth lens glued to each other at a position close to the pupil, it contributes to the balance of the system aberration and the rationality of the structure.
  • the object side surface of the first lens is convex, so that the incident angle of the incident light on the attack surface is small, which is advantageous for collecting more light.
  • the object side surface of the first lens is convex, which is advantageous for outdoor use of the optical lens.
  • the cost of the optical lens can be reduced by the first lens being a spherical glass lens.
  • the front port diameter of the lens can be reduced, the overall volume of the lens can be reduced, and the resolution can be further improved.
  • the second lens having a negative power by the second lens having a negative power, the light collected by the first lens can be compressed by the configuration of the second lens, so that the light is relatively flat, thereby making the light stable. Transition to the rear.
  • the third lens is a converging lens having positive power, so that the divergent light smoothly enters the rear. And, the third lens can balance the spherical aberration and positional chromatic aberration introduced by the first lens and the second lens.
  • the fourth lens and the fifth lens are glued to each other by the fourth lens and the fifth lens, and the fourth lens and the fifth lens themselves can correct chromatic aberration, reduce tolerance sensitivity, and may also partially chromatic aberration to balance the system. Color difference.
  • the sixth lens is a converging lens having positive power, so that the light converges.
  • the sixth lens is an aspherical lens, which can satisfy a system with a small FNO, and at the same time reduce the optical path of the peripheral light reaching the imaging surface, and can correct the off-axis point aberration, optimize the distortion, Optical properties such as CRA.
  • an imaging apparatus including an optical lens and an imaging element for converting an optical image formed by the optical lens into an electrical signal, the optical lens sequentially including from the object side to the image side:
  • the first lens is a meniscus lens having a negative refractive power, the object side of the first lens is a convex surface, and the image side is a concave surface;
  • the second lens has a negative refractive power, and the image side of the second lens is a concave surface a third lens is a meniscus lens having a positive power, the object side of the third lens being a concave surface, the image side being a convex surface, a fourth lens, a fifth lens, and a fourth lens; and a sixth lens With positive power.
  • FIG. 5 is a schematic block diagram of an image forming apparatus according to an embodiment of the present invention.
  • an imaging apparatus 100 according to an embodiment of the present invention includes an optical lens 101 and an imaging element 102.
  • the optical lens 101 is used to acquire an optical image of a subject
  • the imaging element 102 is used to convert an optical image taken by the optical lens 101 into an electrical signal.
  • the fourth lens is a lenticular lens having a positive power
  • the object side is a convex surface
  • the image side is a convex surface
  • the fifth lens is a meniscus lens having a negative refractive power
  • the side is concave and the side is convex.
  • the second lens is a meniscus lens
  • the object side surface is a convex surface
  • the second lens is a biconcave lens whose object side surface is a concave surface.
  • the object side surface of the sixth lens is a convex surface
  • the image side surface is a convex surface
  • four or more lenses of the first lens to the sixth lens are aspherical lenses.
  • the second lens, the fourth lens, the fifth lens, and the sixth lens are aspherical lenses.
  • the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are aspherical lenses.
  • the third lens is a glass lens.
  • the third lens is a glass aspherical lens.
  • the optical lens further includes an aperture between the third lens and the fourth lens.
  • the first lens to the sixth lens satisfy the following conditional expression (1):
  • F3 is the focal length of the third lens, and F is the entire set of focal length values of the optical lens.
  • the first lens to the sixth lens satisfy the following conditional expression (2):
  • F is the entire set of focal length values of the optical lens
  • TTL is the optical length of the optical lens
  • the optical lens and the imaging apparatus according to the embodiment of the present invention contribute to high resolution while maintaining the miniaturization of the optical lens by the shape and power setting of the third lens in the optical lens.
  • the optical lens and the imaging apparatus can significantly shorten the TTL by optimizing the shape of each lens and rationally assigning the power of each lens, and can improve the resolution while ensuring miniaturization of the optical lens.
  • the optical lens and the image forming apparatus according to the embodiment of the present invention are in front of the positive film in which the fourth lens and the fifth lens are glued to each other, and the negative film is rearward, and the optical lens rear port diameter/size can be reduced by the positive film collecting light.
  • the optical lens and the imaging apparatus according to the embodiment of the present invention are a glass lens through the third lens, which is advantageous for thermal compensation, and further, the third lens is an aspherical glass lens, which can further enhance the resolution.
  • the optical lens and the imaging apparatus according to the embodiment of the present invention are disposed between the third lens and the fourth lens through the pupil, thereby facilitating effective light beam entering the optical system and reducing the lens aperture of the optical system.
  • optical lens and the image forming apparatus contribute to the balance of the system aberration and the rationality of the structure by arranging the fourth lens and the fifth lens which are glued to each other at a position close to the pupil.
  • the optical lens and the image forming apparatus it is also possible to arrange a lens having substantially no lens power. Therefore, in addition to the first to sixth lenses described above, an additional lens can be disposed.
  • the optical lens and the imaging apparatus according to the embodiment of the present invention may be configured with six or more lenses, and these lenses include additional lenses of an arrangement other than the above-described first to sixth lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头和成像设备,从物侧到像侧依次包括:第一透镜(L1),是具有负光焦度的弯月形透镜,第一透镜的物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(L2),具有负光焦度,第二透镜的像侧面(S4)为凹面;第三透镜(L3),是具有正光焦度的弯月形透镜,第三透镜的物侧面(S5)为凹面,像侧面(S6)为凸面;第四透镜(L4);第五透镜(L5),与第四透镜胶合;和,第六透镜(L6),具有正光焦度。通过光学镜头和成像设备,可以在保持光学镜头小型化的同时获得高解像力。

Description

光学镜头和成像设备 技术领域
本发明涉及光学镜头和成像设备的领域,特别涉及能够在保持镜头小型化的同时获得高解像力的光学镜头和成像设备。
背景技术
成像设备,例如安装有相机的移动设备和数字式静止相机,使用例如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)作为固态成像元件,这样的成像设备已经是熟知的。
随着科技发展,光学镜头的解像力要求越来越高,从原来的百万像素,朝着千万像素的方向不断提升,且高像素镜头越来越普及。
另外,随着移动设备的普及,需要应用越来越多的小尺寸的成像设备,例如应用于手机的成像设备,对于小尺寸的要求非常高。
一般来说,可以通过增加光学镜头中的透镜数量来实现解像力的提高,但相应地,光学镜头的体积以及重量都会增大,不利于光学镜头的小型化,同时引起成本上升。
目前,百万像素及以上的广角光学镜头通常采用6枚透镜,虽然解像力相比具有5枚透镜的光学镜头有明显提升,但透镜数目的增加使得小型化的需求更为突出。
在常规情况下,为了满足光学镜头小型化的需要,通常采用压缩镜头光学总长的方案,但是解像力会受到显著影响。同时,也可以通过增加采用非球面透镜来提高成像质量,但是,玻璃非球面透镜的成本较高,而塑料非球面透镜使用过多又会导致镜头的温度性能下降。
特别是,对于监控镜头或者车载镜头此类在室外环境下工作的镜头来说,一方面工作环境多变,无论炎热的高温天、寒冷的雨雪天都需要保持完美的解像清晰度,而另一方面,其安装空间有限。因此,如何在保证光学镜头小型化的同时获得尽可能高的成像质量成为了迫切需要解决的问题。
因此,存在对于改进的光学镜头和成像设备的需要。
发明内容
本发明的目的在于针对上述现有技术中的缺陷和不足,提供新颖的和改进的能够在保持镜头小型化的同时获得高解像力的光学镜头和成像设备。
本发明的一个目的在于提供一种光学镜头和成像设备,通过光学镜头中的第三透镜的形状和光焦度设置,有助于在保持光学镜头小型化的同时获得高解像力。
本发明的一个目的在于提供一种光学镜头和成像设备,通过彼此胶合的第四透镜和第五透镜中正片在前,负片在后,可以通过正片收束光线,减小光学镜头后端口径/尺寸。
本发明的一个目的在于提供一种光学镜头和成像设备,通过第三透镜为玻璃透镜,有利于热补偿,进一步通过第三透镜为非球面玻璃透镜,可以进一步提升解像力。
本发明的一个目的在于提供一种光学镜头和成像设备,通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以显著地缩短光学镜头的光学长度,并在保证光学镜头小型化的同时提升解像力。
本发明的一个目的在于提供一种光学镜头和成像设备,通过光阑位于第三透镜和第四透镜之间,有利于进入光学***的光线有效收束,减小光学***的镜片口径。
根据本发明的一方面,提供了一种光学镜头,从物侧到像侧依次包括:第一透镜,是具有负光焦度的弯月形透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;第二透镜,具有负光焦度,所述第二透镜的像侧面为凹面;第三透镜,是具有正光焦度的弯月形透镜,所述第三透镜的物侧面为凹面,像侧面为凸面;第四透镜;第五透镜,与第四透镜胶合;和,第六透镜,具有正光焦度。
在上述光学镜头中,所述第四透镜是具有正光焦度的双凸透镜,其物侧面为凸面,像侧面为凸面;和,所述第五透镜是具有负光焦度的弯月形透镜,其物侧面为凹面,像侧面为凸面。
在上述光学镜头中,所述第二透镜是弯月形透镜,其物侧面为凸面。
在上述光学镜头中,所述第二透镜是双凹透镜,其物侧面为凹面。
在上述光学镜头中,所述第六透镜的物侧面为凸面,像侧面为凸面。
在上述光学镜头中,所述第一透镜到所述第六透镜中的四个或者四个以上的透镜为非球面透镜。
在上述光学镜头中,所述第二透镜、所述第四透镜、所述第五透镜和所述第六透镜为非球面透镜。
在上述光学镜头中,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜为非球面透镜。
在上述光学镜头中,所述第三透镜是玻璃透镜。
在上述光学镜头中,所述第三透镜是玻璃非球面透镜。
在上述光学镜头中,所述光学镜头进一步包括光阑,所述光阑位于所述第三透镜和所述第四透镜之间。
在上述光学镜头中,所述第一透镜到所述第六透镜满足以下条件表达式(1):
F3/F≤5.5         (1)
其中,F3是所述第三透镜的焦距,F是所述光学镜头的整组焦距值。
在上述光学镜头中,所述第一透镜到所述第六透镜满足以下条件表达式(2):
TTL/F≤14.5             (2)
其中,F是所述光学镜头的整组焦距值,且TTL是所述光学镜头的光学长度。
根据本发明的另一方面,提供了一种成像设备,包括上述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
本发明提供的光学镜头和成像设备通过光学镜头中的第三透镜的形状和光焦度设置,有助于在保持光学镜头小型化的同时获得高解像力。
进一步,本发明提供的光学镜头和成像设备通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以显著地缩短光学镜头的光学长度,并在保证光学镜头小型化的同时提升解像力。
附图说明
图1图示根据本发明第一实施例的光学镜头的透镜配置;
图2图示根据本发明第二实施例的光学镜头的透镜配置;
图3图示根据本发明第三实施例的光学镜头的透镜配置;
图4图示根据本发明第四实施例的光学镜头的透镜配置;
图5是根据本发明实施例的成像设备的示意性框图。
具体实施方式
以下描述用于公开本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
以下说明书和权利要求中使用的术语和词不限于字面的含义,而是仅由本发明人使用以使得能够清楚和一致地理解本发明。因此,对本领域技术人员很明显仅为了说明的目的而不是为了如所附权利要求和它们的等效物所定义的限制本发明的目的而提供本发明的各种实施例的以下描述。
在这里使用的术语仅用于描述各种实施例的目的且不意在限制。如在此使用的,单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与现有技术中的术语的含义一致的含义。
下面结合附图和具体实施方式对本发明作进一步详细的说明:
[光学镜头的配置]
根据本发明实施例的光学镜头,从物侧到像侧依次包括:第一透镜,为具有负光焦度的弯月形透镜,其物侧面为凸面、像侧面为凹面;第二透镜,为具有负光焦度的透镜,其像侧面为凹面;第三透镜,为具有正光焦度的弯月形透镜,其物侧面为凹面、像侧面为凸面;第四透镜;第五透镜,与第四透镜胶合;第六透镜,为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面。
在根据本发明实施例的光学镜头中,通过光学镜头中的第三透镜的形状和光焦度设置,有助于在保持光学镜头小型化的同时获得高解像力,这将在后面进一步详细描述。
在上述光学镜头中,优选的,第四透镜为具有正光焦度的双凸透镜,其物侧面为凸面、像侧面为凸面。另外,第五透镜为具有负光焦度的弯月形透镜,其物侧面为凹面,像侧面为凸面。这样,通过从光线的入射方向来看正片在前,负片在后,可以通过正片收束光线,减小光学镜头后端口径/尺寸。
在上述光学镜头中,第二透镜为具有负光焦度的弯月形透镜或者具有负光焦度的双凹透镜。也就是说,第二透镜的像侧面为凹面,而物侧面可以是凸面或者凹面。
在上述光学镜头中,优选的,第一透镜到第六透镜中的四个或者四个以上的透镜为非球面透镜。
在上述光学镜头中,优选的,第三透镜为玻璃透镜,且更为优选的,第三透镜为非球面玻璃透镜。当第三透镜为玻璃透镜时,有利于热补偿。另外,当第三透镜为非球面玻璃透镜时,可以进一步提升解像力。这里,本领域技术人员可以理解,在根据本发明实施例的光学镜头中,第三透镜并不仅限于玻璃透镜或者非球面玻璃透镜。例如,第三透镜也可以是塑料非球面透镜,这可以实现高解像力和低成本,但是具有较差的温度性能。因此,在实际应用中,可以按照具体需求来确定第三透镜的镜面形状和材料。
优选地,在上述光学镜头中,第一透镜到第六透镜满足以下条件表达式(1)和(2):
F3/F≤5.5            (1)
TTL/F≤14.5              (2)
其中,F3是第三透镜的焦距,F是光学镜头的整组焦距值,且TTL是光学镜头的光学长度,即第一透镜的物侧最外点到成像焦平面的距离。
因此,在根据本发明实施例的光学镜头中,由于第三透镜的弯月形形状和正光焦度设置,有助于形成短的TTL,从而获得小型化的光学镜头。所以,在根据本发明实施例的光学镜头中,并不限制第三透镜的镜面形状和材料。
这里,本领域技术人员可以理解,除了第三透镜的形状和光焦度设置之外,在根据本发明实施例的光学镜头中,通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以显著地缩短TTL,并在保证光学镜头小型化的同时提升解像力。
在上述光学镜头中,进一步包括光阑。优选地,该光阑位于第三透镜和第四 透镜之间,从而有利于进入光学***的光线有效收束,减小光学***的镜片口径。当然,本领域技术人员可以理解,光阑也可以位于其它任意离散透镜之间。
另外,在根据本发明实施例的光学镜头包括光阑的情况下,考虑***像差的平衡性以及结构的合理性,优选地将彼此胶合的第四透镜和第五透镜设置在靠近光阑的位置。
下面,将对根据本发明实施例的光学镜头中的第一透镜到第六透镜的结构和功能进行进一步的详细说明。
在根据本发明实施例的光学镜头中,第一透镜为凸向物侧的弯月形形状,其物侧面为凸面,像侧面为凹面。第一透镜凸向物侧弯曲,可以使得入射光线在迎击面上入射角小,有利于收集更多的光线进入本发明实施例的光学***。另外,当应用于车载前视镜头时,考虑到车载镜头的室外安装使用环境,例如,会遇到处于雨雪等恶劣天气的情况。凸面有利于适应车载前视镜头的室外使用,例如,当处于例如雨天的环境中时,该凸面可以有助于水珠的滑落,从而减小对成像的影响。
另外,第一透镜可以为球面玻璃透镜或者非球面玻璃透镜。当第一透镜为球面玻璃透镜时,可以降低光学镜头的成本。而当第一透镜为非球面玻璃透镜时,可以减小镜头前端口径,减小镜头的整体体积,并进一步提高解像力。
在根据本发明实施例的光学镜头中,第二透镜为像侧面为凹面的弯月形透镜或者双凹透镜,其物侧面可以为凸面,也可以为凹面。因为光学镜头的第一透镜为发散透镜,所以利用第二透镜的配置将第一透镜收集的光线进行压缩,使得光线走势相对平缓,从而使得光线平稳过渡至后方。
在根据本发明实施例的光学镜头中,第三透镜为凹向物侧的弯月形透镜,其物侧面为凹面,像侧面为凸面。该第三透镜为会聚透镜,使得发散的光线顺利地进入后方。另外,第三透镜可以平衡补偿第一透镜和第二透镜引入的球差和位置色差。并且,如上所述,第三透镜的形状和光焦度设置更为合理,有利于在缩短光学***总长的同时保持光学镜头整体的高解像力。
在根据本发明实施例的光学镜头中,光阑位于第三透镜和彼此胶合的的第四透镜和第五透镜之间,用于收束前后光线,缩短光学***总长,并减小前后透镜组的口径。
在根据本发明实施例的光学镜头中,彼此胶合的第四透镜和第五透镜自身可 以矫正色差,减小公差敏感度,也可以残留部分色差以平衡***的色差。另外,从光线入射方向来看,具有正光焦度的正片在前,具有负光焦度的负片在后,可以将前方光线进一步汇聚后再过渡到后方,减小光学镜头后端口径/尺寸,从而进一步减小***总长。
在根据本发明实施例的光学镜头中,第六透镜为双凸透镜,其物侧面为凸面,像侧面为凸面。这样,该第六透镜为会聚透镜,使得光线会聚。另外,优选地,第六透镜为非球面透镜,可满足FNO较小的***,例如FNO≤2,同时减小周边光线到达成像面的光程。并且,利用非球面,第六透镜可以对轴外点像差起到良好的校正作用,优化畸变、CRA等光学性能。
这里,本领域技术人员可以理解,根据本发明实施例的光学镜头除了应用于车载前视镜头之外,还可以应用于其它需要轻量化、小型化、低成本以及高解像力的镜头应用场合,本发明实施例并不意在对此进行任何限制。
[光学镜头的数值实例]
下面,将参考附图和表格,描述根据本发明实施例的光学镜头的具体实施例和数值实例,在这些数值实例中,具体数值应用于相应的实施例。
实施例中使用的某些透镜具有非球形透镜表面,非球形面形状由以下表达式(3)表示:
Figure PCTCN2018081353-appb-000001
其中,Z(h)是非球面沿光轴方向在高度h的位置时,距非球面顶点的距离矢高。
c=1/r,r表示透镜表面的曲率半径,k为圆锥系数,A、B、C、D和E为高次非球面系数,系数中的e代表科学记号,如E-05表示10 -5
另外,Nd表示折射率,Vd表示阿贝系数。
第一实施例
图1图示根据本发明第一实施例的光学镜头的透镜配置。
如图1所示,根据本发明第一实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的 第二表面S2;具有负光焦度的弯月形的第二透镜L2,具有凸向物侧的第一表面S3和凹向像侧的第二表面S4;具有正光焦度的弯月形的第三透镜L3,具有凹向物侧的第一表面S5和凸向像侧的第二表面S6;光阑STO;彼此胶合的第四透镜L4和第五透镜L5,其中第四透镜L4为具有正光焦度的双凸形状,具有凸向物侧的第一表面S8和凸向像侧的第二表面S9,第五透镜L5为具有负光焦度的弯月形状,具有凹向物侧的第一表面S9和凸向像侧的第二表面S10;具有正光焦度的双凸形状的第六透镜L6,具有凸向物侧的第一表面S11和凸向像侧的第二表面S12;平面透镜L7,具有向着物侧的第一表面S13和向着像侧的第二表面S14,一般为滤色片;平面透镜L8,具有向着物侧的第一表面S15和向着像侧的第二表面S16,一般为保护玻璃,用于保护成像面;L9具有成像面S17,一般为芯片。
上述透镜的透镜数据由以下表1所示:
【表1】
表面 半径 厚度 Nd Vd
1 18.9422 1.0824 1.77 49.61
2 4.3000 2.5000
3 11.7094 1.0824 1.51 56.29
4 1.6321 1.7589
5 -17.9436 2.8000 1.80 35.00
6 -3.9704 0.5412
STO 无限 0.4059
8 6.5460 2.2000 1.51 56.00
9 -0.8515 0.6765 1.58 35.00
10 -36.5828 0.1353
11 4.6922 1.4864 1.63 28.00
12 -4.5496 0.1353
13 无限 0.5000 1.52 64.21
14 无限 0.0348
15 无限 0.4000 1.52 64.21
16 无限 0.0650
像面 无限
第二透镜的表面S3和S4,第三透镜的表面S5和S6,第四透镜和第五透镜的表面S8、S9和S10,以及第六透镜的表面S11和S12的圆锥系数k和高次非球面系数A、B、C、D和E如下表2所示。
【表2】
Figure PCTCN2018081353-appb-000002
Figure PCTCN2018081353-appb-000003
在根据本发明第一实施例的光学镜头中,第三透镜的焦距F3、光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如下表3所示。
【表3】
F3 5.815306
F 1.2717
TTL 15.8042
F3/F 4.572859951
TTL/F 12.42758355
从以上表3可以看到,根据本发明第一实施例的光学镜头满足前述条件表达式(1)、(2),从而在保持光学镜头的小型化的同时获得高的解像力。
第二实施例
图2图示根据本发明第二实施例的光学镜头的透镜配置。
如图2所示,根据本发明第二实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的第二表面S2;具有负光焦度的弯月形的第二透镜L2,具有凸向物侧的第一表面S3和凹向像侧的第二表面S4;具有正光焦度的弯月形的第三透镜L3,具有凹向物侧的第一表面S5和凸向像侧的第二表面S6;光阑STO;彼此胶合的第四透镜L4和第五透镜L5,其中第四透镜L4为具有正光焦度的双凸形状,具有凸向物侧的第一表面S8和凸向像侧的第二表面S9,第五透镜L5为具有负光焦度的弯月形状,具有凹向物侧的第一表面S9和凸向像侧的第二表面S10;具有正光焦度的双凸形状的第六透镜L6,具有凸向物侧的第一表面S11和凸向像侧的第二表面S12;平面透镜L7,具有向着物侧的第一表面S13和向着像侧的第二表面S14,一般为滤色片;平面透镜L8,具有向着物侧的第一表面S15和向着像侧的第二表面S16,一般为保护玻璃,用于保护成像面;L9具有成像面S17,一般为芯片。
上述透镜的透镜数据由以下表4所示:
【表4】
表面 半径 厚度 Nd Vd
1 15.0000 0.8000 1.88 49.61
2 3.0000 1.4000
3 10.0000 0.9000 1.65 25.00
4 1.3000 0.9000
5 -20.5000 2.9000 1.65 24.00
6 -3.4523 0.4000
STO 无限 0.3000
8 5.7027 1.9000 1.53 56.07
9 -1.5000 0.5000 1.64 23.53
10 -32.1000 0.1059
11 4.0466 1.2000 1.53 56.07
12 -3.9769 0.0999
13 无限 0.5500 1.52 64.21
14 无限 0.4494
15 无限 0.4000 1.52 64.21
16 无限 2.6513
像面 无限
第二透镜的表面S3和S4,第三透镜的表面S5和S6,第四透镜和第五透镜的表面S8、S9和S10,以及第六透镜的表面S11和S12的圆锥系数k和高次非球面系数A、B、C、D和E如下表5所示。
【表5】
表面 k A B C D E
3 -80.0000 4.8018E-04 -4.2988E-04 3.6609E-05 -1.0675E-06 5.5822E-07
4 -0.5000 4.5327E-03 9.7196E-04 3.6714E-04 -4.7687E-05 4.1918E-06
5 58.0000 -2.6974E-03 1.6130E-03 -3.5298E-04 -8.3369E-05 2.9957E-05
6 -10.0000 3.0601E-04 -3.7186E-04 -7.1133E-04 6.2489E-05 0.0000E+00
8 15.0000 2.7180E-02 1.1327E-03 4.5140E-03 -1.2699E-02 5.7306E-03
9 -0.7000 -6.4043E-02 2.9127E-02 -4.4537E-02 5.2769E-02 -9.8010E-03
10 250.0000 2.9380E-03 4.3431E-03 1.0727E-03 -1.5269E-04 -4.9561E-05
11 -5.0000 2.8688E-03 2.6012E-03 -1.2365E-04 4.3042E-04 -4.3041E-05
12 -8.8000 7.2289E-03 -2.1913E-04 6.7758E-04 -1.1743E-04 4.1572E-05
在根据本发明第二实施例的光学镜头中,第三透镜的焦距F3、光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如下表6所示。
【表6】
Figure PCTCN2018081353-appb-000004
Figure PCTCN2018081353-appb-000005
从以上表6可以看到,根据本发明第二实施例的光学镜头满足前述条件表达式(1)、(2),从而在保持光学镜头的小型化的同时获得高的解像力。
第三实施例
图3图示根据本发明第三实施例的光学镜头的透镜配置。
如图3所示,根据本发明第三实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的第二表面S2;具有负光焦度的弯月形的第二透镜L2,具有凸向物侧的第一表面S3和凹向像侧的第二表面S4;具有正光焦度的弯月形的第三透镜L3,具有凹向物侧的第一表面S5和凸向像侧的第二表面S6;光阑STO;彼此胶合的第四透镜L4和第五透镜L5,其中第四透镜L4为具有正光焦度的双凸形状,具有凸向物侧的第一表面S8和凸向像侧的第二表面S9,第五透镜L5为具有负光焦度的弯月形状,具有凹向物侧的第一表面S9和凸向像侧的第二表面S10;具有正光焦度的双凸形状的第六透镜L6,具有凸向物侧的第一表面S11和凸向像侧的第二表面S12;平面透镜L7,具有向着物侧的第一表面S13和向着像侧的第二表面S14,一般为滤色片;平面透镜L8,具有向着物侧的第一表面S15和向着像侧的第二表面S16,一般为保护玻璃,用于保护成像面;L9具有成像面S17,一般为芯片。
上述透镜的透镜数据由以下表7所示:
【表7】
Figure PCTCN2018081353-appb-000006
Figure PCTCN2018081353-appb-000007
第二透镜的表面S3和S4,第四透镜和第五透镜的表面S8、S9和S10,以及第六透镜的表面S11和S12的圆锥系数k和高次非球面系数A、B、C、D和E如下表8所示。
【表8】
表面 k A B C D E
3 -150.0000 4.1028E-04 -4.4139E-04 3.5402E-05 -1.1267E-06 1.2826E-08
4 -1.2000 7.7724E-03 3.1758E-03 1.2543E-03 -2.6210E-04 5.2830E-04
8 -5.5874 1.0757E-02 -3.9354E-03 6.9493E-03 -1.0753E-02 4.9358E-03
9 -2.7545 -1.9753E-02 6.3093E-02 -5.7279E-02 3.1369E-02 -1.1042E-02
10 367.1095 2.1598E-03 3.6372E-03 7.8116E-04 -2.2797E-04 -6.5804E-05
11 -20.1867 2.2618E-03 2.5660E-04 -6.5855E-05 4.5729E-05 -4.4022E-05
12 -3.3288 8.1143E-03 1.3740E-04 7.7529E-04 -9.5750E-05 4.5598E-06
在根据本发明第三实施例的光学镜头中,第三透镜的焦距F3、光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如下表9所示。
【表9】
F3 5.098837
F 1.29303
TTL 16.2497
F3/F 3.943324594
TTL/F 12.56714848
从以上表9可以看到,根据本发明第三实施例的光学镜头满足前述条件表达式(1)、(2),从而在保持光学镜头的小型化的同时获得高的解像力。
第四实施例
图4图示根据本发明第四实施例的光学镜头的透镜配置。
如图4所示,根据本发明第四实施例的光学镜头从物侧到像侧顺序包括:具有负光焦度的弯月形的第一透镜L1,具有凸向物侧的第一表面S1和凹向像侧的第二表面S2;具有负光焦度的双凹形状的第二透镜L2,具有凹向物侧的第一表面S3和凹向像侧的第二表面S4;具有正光焦度的弯月形的第三透镜L3,具有凹向物侧的第一表面S5和凸向像侧的第二表面S6;光阑STO;彼此胶合的第四透镜L4和第五透镜L5,其中第四透镜L4为具有正光焦度的双凸形状,具有凸 向物侧的第一表面S8和凸向像侧的第二表面S9,第五透镜L5为具有负光焦度的弯月形状,具有凹向物侧的第一表面S9和凸向像侧的第二表面S10;具有正光焦度的双凸形状的第六透镜L6,具有凸向物侧的第一表面S11和凸向像侧的第二表面S12;平面透镜L7,具有向着物侧的第一表面S13和向着像侧的第二表面S14,一般为滤色片;平面透镜L8,具有向着物侧的第一表面S15和向着像侧的第二表面S16,一般为保护玻璃,用于保护成像面;L9具有成像面S17,一般为芯片。
上述透镜的透镜数据由以下表10所示:
【表10】
表面 半径 厚度 Nd Vd
1 12.2752 0.9000 1.72 55.00
2 3.3496 2.9000
3 -23.4509 1.0000 1.51 56.29
4 1.9611 1.7000
5 -95.0426 2.8668 1.85 35.00
6 -6.1402 0.0000
STO 无限 0.8295
8 4.2212 2.4174 1.51 56.07
9 -1.5144 0.6000 1.64 23.53
10 -37.4389 0.1000
11 4.0960 1.4000 1.51 56.07
12 -5.8121 0.1248
13 无限 0.5500 1.52 64.21
14 无限 0.5617
15 无限 0.4000 1.52 64.21
16 无限 2.1366
像面 无限
第二透镜的表面S3和S4,第四透镜和第五透镜的表面S8、S9和S10,以及第六透镜的表面S11和S12的圆锥系数k和高次非球面系数A、B、C、D和E如下表11所示。
【表11】
Figure PCTCN2018081353-appb-000008
Figure PCTCN2018081353-appb-000009
在根据本发明第四实施例的光学镜头中,第三透镜的焦距F3、光学镜头的整组焦距值F和光学镜头的光学长度TTL及其之间的关系如下表12所示。
【表12】
F3 7.563929
F 1.43342
TTL 18.4868
F3/F 5.276840703
TTL/F 12.89698762
从以上表12可以看到,根据本发明第四实施例的光学镜头满足前述条件表达式(1)、(2),从而在保持光学镜头的小型化的同时获得高的解像力。
综上所述,在根据本发明实施例的光学镜头中,通过光学镜头中的第三透镜的形状和光焦度设置,有助于在保持光学镜头小型化的同时获得高解像力。
在根据本发明实施例的光学镜头中,通过彼此胶合的第四透镜和第五透镜中正片在前,负片在后,可以通过正片收束光线,减小光学镜头后端口径/尺寸。
在根据本发明实施例的光学镜头中,通过第三透镜为玻璃透镜,有利于热补偿,进一步通过第三透镜为非球面玻璃透镜,可以进一步提升解像力。
在根据本发明实施例的光学镜头中,通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以显著地缩短TTL,并在保证光学镜头小型化的同时提升解像力。
在根据本发明实施例的光学镜头中,通过光阑位于第三透镜和第四透镜之间,有利于进入光学***的光线有效收束,减小光学***的镜片口径。
在根据本发明实施例的光学镜头中,通过将彼此胶合的第四透镜和第五透镜设置在靠近光阑的位置,有助于实现***像差的平衡性以及结构的合理性。
另外,在根据本发明实施例的光学镜头中,通过第一透镜的物侧面为凸面,可以使得入射光线在迎击面上入射角小,有利于收集更多的光线。并且,通过第一透镜的物侧面为凸面,有利于适应光学镜头的室外使用。
另外,在根据本发明实施例的光学镜头中,通过第一透镜为球面玻璃透镜,可以降低光学镜头的成本。并且,通过第一透镜为非球面玻璃透镜,可以减小镜头前端口径,减小镜头的整体体积,并进一步提高解像力。
另外,在根据本发明实施例的光学镜头中,通过第二透镜具有负光焦度,可 以利用第二透镜的配置将第一透镜收集的光线进行压缩,使得光线走势相对平缓,从而使得光线平稳过渡至后方。
另外,在根据本发明实施例的光学镜头中,通过第三透镜为具有正光焦度的会聚透镜,使得发散的光线顺利地进入后方。并且,第三透镜可以平衡补偿第一透镜和第二透镜引入的球差和位置色差。
另外,在根据本发明实施例的光学镜头中,通过第四透镜和第五透镜彼此胶合,第四透镜和第五透镜自身可以矫正色差,减小公差敏感度,也可以残留部分色差以平衡***的色差。
另外,在根据本发明实施例的光学镜头中,通过第六透镜为具有正光焦度的会聚透镜,使得光线会聚。并且,通过第六透镜为非球面透镜,可满足FNO较小的***,同时减小周边光线到达成像面的光程,并且,可以对轴外点像差起到良好的校正作用,优化畸变、CRA等光学性能。
[成像设备的配置]
根据本发明实施例的另一方面,提供了一种成像设备,包括光学镜头和用于将光学镜头形成的光学图像转换为电信号的成像元件,该光学镜头从物侧到像侧依次包括:第一透镜,是具有负光焦度的弯月形透镜,该第一透镜的物侧面为凸面,像侧面为凹面;第二透镜,具有负光焦度,该第二透镜的像侧面为凹面;第三透镜,是具有正光焦度的弯月形透镜,该第三透镜的物侧面为凹面,像侧面为凸面;第四透镜;第五透镜,与第四透镜胶合;和,第六透镜,具有正光焦度。
图5是根据本发明实施例的成像设备的示意性框图。如图5所示,根据本发明实施例的成像设备100包括光学镜头101和成像元件102。其中,该光学镜头101用于采集被摄体的光学图像,且该成像元件102用于将该光学镜头101摄取的光学图像转换为电信号。
在上述光学镜头中,该第四透镜是具有正光焦度的双凸透镜,其物侧面为凸面,像侧面为凸面;和,该第五透镜是具有负光焦度的弯月形透镜,其物侧面为凹面,像侧面为凸面。
在上述光学镜头中,该第二透镜是弯月形透镜,其物侧面为凸面。
在上述光学镜头中,该第二透镜是双凹透镜,其物侧面为凹面。
在上述光学镜头中,该第六透镜的物侧面为凸面,像侧面为凸面。
在上述光学镜头中,该第一透镜到该第六透镜中的四个或者四个以上的透镜为非球面透镜。
在上述光学镜头中,该第二透镜、该第四透镜、该第五透镜和该第六透镜为非球面透镜。
在上述光学镜头中,该第二透镜、该第三透镜、该第四透镜、该第五透镜和该第六透镜为非球面透镜。
在上述光学镜头中,该第三透镜是玻璃透镜。
在上述光学镜头中,该第三透镜是玻璃非球面透镜。
在上述光学镜头中,该光学镜头进一步包括光阑,该光阑位于该第三透镜和该第四透镜之间。
在上述光学镜头中,该第一透镜到该第六透镜满足以下条件表达式(1):
F3/F≤5.5         (1)
其中,F3是该第三透镜的焦距,F是该光学镜头的整组焦距值。
在上述光学镜头中,该第一透镜到该第六透镜满足以下条件表达式(2):
TTL/F≤14.5          (2)
其中,F是该光学镜头的整组焦距值,且TTL是该光学镜头的光学长度。
这里,本领域技术人员可以理解,根据本发明实施例的成像设备中的光学镜头的其他细节与之间关于根据本发明实施例的光学镜头所描述的相同,且可以采用前述的本发明第一实施例到第四实施例的光学镜头的数值实例,因此为了避免冗余并不再追溯。
根据本发明实施例的光学镜头和成像设备通过光学镜头中的第三透镜的形状和光焦度设置,有助于在保持光学镜头小型化的同时获得高解像力。
进一步地,根据本发明实施例的光学镜头和成像设备通过优化设置各个透镜的形状并合理分配各个透镜的光焦度,可以显著地缩短TTL,并在保证光学镜头小型化的同时提升解像力。
根据本发明实施例的光学镜头和成像设备通过彼此胶合的第四透镜和第五透镜中正片在前,负片在后,可以通过正片收束光线,减小光学镜头后端口径/尺寸。
根据本发明实施例的光学镜头和成像设备通过第三透镜为玻璃透镜,有利于热补偿,进一步通过第三透镜为非球面玻璃透镜,可以进一步提升解像力。
根据本发明实施例的光学镜头和成像设备通过光阑位于第三透镜和第四透镜之间,有利于进入光学***的光线有效收束,减小光学***的镜片口径。
进一步地,根据本发明实施例的光学镜头和成像设备通过将彼此胶合的第四透镜和第五透镜设置在靠近光阑的位置,有助于实现***像差的平衡性以及结构的合理性。
在根据本发明实施例的光学镜头和成像设备中,也可以布置基本上没有透镜度数的透镜。因此,除了以上所述的第一透镜到第六透镜之外,还可以布置另外的透镜。在这种情况下,根据本发明实施例的光学镜头和成像设备可以配置有六个或者六个以上的透镜,且这些透镜包括除了上述第一透镜到第六透镜之外的布置的附加透镜。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离该原理下,本发明的实施方式可以有任何变形或修改。

Claims (13)

  1. 一种光学镜头,从物侧到像侧依次包括:
    第一透镜,是具有负光焦度的弯月形透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    第二透镜,具有负光焦度,所述第二透镜的像侧面为凹面;
    第三透镜,是具有正光焦度的弯月形透镜,所述第三透镜的物侧面为凹面,像侧面为凸面;
    第四透镜;
    第五透镜,与第四透镜胶合;和
    第六透镜,具有正光焦度。
  2. 根据权利要求1所述的光学镜头,其特征在于,
    所述第四透镜是具有正光焦度的双凸透镜,其物侧面为凸面,像侧面为凸面;和
    所述第五透镜是具有负光焦度的弯月形透镜,其物侧面为凹面,像侧面为凸面。
  3. 根据权利要求1所述的光学镜头,其特征在于,
    所述第二透镜是弯月形透镜,其物侧面为凸面。
  4. 根据权利要求1所述的光学镜头,其特征在于,
    所述第二透镜是双凹透镜,其物侧面为凹面。
  5. 根据权利要求1到4中任意一项所述的光学镜头,其特征在于,所述第一透镜到所述第六透镜中的四个或者四个以上的透镜为非球面透镜。
  6. 根据权利要求5所述的光学镜头,其特征在于,所述第二透镜、所述第四透镜、所述第五透镜和所述第六透镜为非球面透镜。
  7. 根据权利要求5所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜为非球面透镜。
  8. 根据权利要求1到4中任意一项所述的光学镜头,其特征在于,所述第三透镜是玻璃透镜。
  9. 根据权利要求8所述的光学镜头,其特征在于,所述第三透镜是玻璃非球面透镜。
  10. 根据权利要求1到9中任意一项所述的光学镜头,其特征在于,所述光学镜头进一步包括光阑,所述光阑位于所述第三透镜和所述第四透镜之间。
  11. 根据权利要求1到9中任意一项所述的光学镜头,其特征在于,所述第一透镜到所述第六透镜满足以下条件表达式(1):
    F3/F≤5.5    (1)
    其中,F3是所述第三透镜的焦距,F是所述光学镜头的整组焦距值。
  12. 根据权利要求1到9中任意一项所述的光学镜头,其特征在于,所述第一透镜到所述第六透镜满足以下条件表达式(2):
    TTL/F≤14.5    (2)
    其中,F是所述光学镜头的整组焦距值,且TTL是所述光学镜头的光学长度。
  13. 一种成像设备,其特征在于,包括权利要求1到12中任意一项所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
PCT/CN2018/081353 2017-03-31 2018-03-30 光学镜头和成像设备 WO2018177416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/498,247 US11333856B2 (en) 2017-03-31 2018-03-30 Optical lens assembly and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710208866.5A CN108663774B (zh) 2017-03-31 2017-03-31 光学镜头和成像设备
CN201710208866.5 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177416A1 true WO2018177416A1 (zh) 2018-10-04

Family

ID=63675263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081353 WO2018177416A1 (zh) 2017-03-31 2018-03-30 光学镜头和成像设备

Country Status (3)

Country Link
US (1) US11333856B2 (zh)
CN (1) CN108663774B (zh)
WO (1) WO2018177416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265188A (zh) * 2022-03-02 2022-04-01 江西联益光学有限公司 光学镜头及成像设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725405B (zh) * 2018-12-26 2024-03-12 歌尔光学科技有限公司 光学镜头和智能穿戴设备
CN111781701B (zh) * 2019-04-04 2022-02-15 宁波舜宇车载光学技术有限公司 光学镜头及成像设备
CN114815148A (zh) * 2019-06-13 2022-07-29 玉晶光电(厦门)有限公司 光学成像镜头
CN113589630A (zh) * 2021-08-02 2021-11-02 中山联合光电科技股份有限公司 超短焦投影光学***及投影设备
CN114879347B (zh) * 2022-07-01 2022-11-15 江西晶超光学有限公司 光学***、摄像模组和电子设备
TWI819758B (zh) * 2022-08-22 2023-10-21 新鉅科技股份有限公司 成像透鏡組及攝像模組

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029282A (ja) * 2002-06-25 2004-01-29 Kyocera Corp 超広角レンズ
JP2015190999A (ja) * 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
US20160187625A1 (en) * 2014-12-30 2016-06-30 Sheng-Feng Lin Vis-infrared correctiv fisheye lens system for extreme temperatures
CN106405792A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像***
CN106501922A (zh) * 2016-12-27 2017-03-15 东莞市宇瞳光学科技股份有限公司 小型超广角低畸变定焦镜头

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066523A (ja) * 1999-08-25 2001-03-16 Nikon Corp 接眼レンズ
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2009230040A (ja) * 2008-03-25 2009-10-08 Brother Ind Ltd 広角撮像レンズ
JP5369867B2 (ja) * 2009-04-24 2013-12-18 株式会社リコー 広角レンズおよび撮像装置
JP5510634B2 (ja) * 2009-09-09 2014-06-04 株式会社ニコン 広角レンズ、及び、この広角レンズを有する光学機器
CN104094155B (zh) * 2012-02-06 2016-06-01 富士胶片株式会社 超广角透镜及使用了该超广角透镜的摄像装置
TWI533018B (zh) * 2013-08-28 2016-05-11 揚明光學股份有限公司 定焦鏡頭
CN103576290B (zh) * 2013-10-30 2016-01-06 宁波舜宇车载光学技术有限公司 一种广角镜头
TWI533019B (zh) * 2014-08-29 2016-05-11 大立光電股份有限公司 攝像透鏡系統、取像裝置及電子裝置
US10495856B2 (en) * 2014-10-27 2019-12-03 Alex Ning Wide-angle lenses with low distortion
CN104407430B (zh) * 2014-12-02 2016-06-29 宁波舜宇车载光学技术有限公司 光学镜头
US10838178B2 (en) * 2015-11-20 2020-11-17 Sony Corporation Imaging lens
JP6643113B2 (ja) * 2016-01-28 2020-02-12 ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド 撮像レンズおよび撮像装置
KR101834555B1 (ko) * 2016-03-18 2018-03-06 주식회사 에이스솔루텍 촬영 렌즈 광학계
CN105739049A (zh) * 2016-04-14 2016-07-06 南京昂驰光电科技有限公司 星光级道路监控50毫米变焦光学镜头组件
CN205750081U (zh) * 2016-04-20 2016-11-30 广东思锐光学股份有限公司 广角镜头
CN205581384U (zh) * 2016-04-26 2016-09-14 中山联合光电科技股份有限公司 一种超广角小体积高像素光学镜头
CN106526795B (zh) * 2016-08-05 2019-07-26 玉晶光电(厦门)有限公司 光学镜片组
TWI613482B (zh) * 2017-01-25 2018-02-01 大立光電股份有限公司 光學影像鏡片系統組、取像裝置及電子裝置
TWI781987B (zh) * 2018-03-09 2022-11-01 光芒光學股份有限公司 鏡頭及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029282A (ja) * 2002-06-25 2004-01-29 Kyocera Corp 超広角レンズ
JP2015190999A (ja) * 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
US20160187625A1 (en) * 2014-12-30 2016-06-30 Sheng-Feng Lin Vis-infrared correctiv fisheye lens system for extreme temperatures
CN106405792A (zh) * 2015-07-31 2017-02-15 先进光电科技股份有限公司 光学成像***
CN106501922A (zh) * 2016-12-27 2017-03-15 东莞市宇瞳光学科技股份有限公司 小型超广角低畸变定焦镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265188A (zh) * 2022-03-02 2022-04-01 江西联益光学有限公司 光学镜头及成像设备
CN114265188B (zh) * 2022-03-02 2022-07-29 江西联益光学有限公司 光学镜头及成像设备

Also Published As

Publication number Publication date
CN108663774B (zh) 2020-10-27
US20200026044A1 (en) 2020-01-23
US11333856B2 (en) 2022-05-17
CN108663774A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018177416A1 (zh) 光学镜头和成像设备
US9128267B2 (en) Imaging lens and imaging apparatus including the imaging lens
CN108535834B (zh) 光学镜头和成像设备
CN106291887B (zh) 一种鱼眼镜头
US9261671B2 (en) Imaging lens and imaging apparatus including the imaging
WO2014155460A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2022089327A1 (zh) 光学镜头及成像设备
CN104793317B (zh) 摄像透镜和摄像装置
JP6741019B2 (ja) 撮像レンズ及び車載用撮像装置
TWM487440U (zh) 攝像透鏡及包含攝像透鏡的攝像裝置
JP2005284153A (ja) 撮像レンズ
TWM505614U (zh) 攝像透鏡及包括攝像透鏡的攝像裝置
WO2020107759A1 (zh) 光学镜头及成像设备
TWM498884U (zh) 攝像鏡頭及具備攝像鏡頭的攝像裝置
TWM486776U (zh) 攝像透鏡及包含攝像透鏡的攝像裝置
WO2014034025A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2021114458A1 (zh) 光学成像镜头及成像设备
WO2021026869A1 (zh) 光学***、取像模组及电子装置
TWM471598U (zh) 攝影透鏡以及具備攝影透鏡的攝影裝置
CN109324385B (zh) 光学镜头
JP2005316010A (ja) 撮像レンズ
TWM482749U (zh) 攝影透鏡以及具備攝影透鏡的攝影裝置
TWM484107U (zh) 成像透鏡及具備成像透鏡的成像裝置
CN108663773B (zh) 光学镜头和成像设备
TWM494923U (zh) 攝影透鏡以及具備攝影透鏡的攝影裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777072

Country of ref document: EP

Kind code of ref document: A1