WO2018177259A1 - 一种数据传输方法、网络设备和终端 - Google Patents

一种数据传输方法、网络设备和终端 Download PDF

Info

Publication number
WO2018177259A1
WO2018177259A1 PCT/CN2018/080551 CN2018080551W WO2018177259A1 WO 2018177259 A1 WO2018177259 A1 WO 2018177259A1 CN 2018080551 W CN2018080551 W CN 2018080551W WO 2018177259 A1 WO2018177259 A1 WO 2018177259A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
resource block
terminal
network device
Prior art date
Application number
PCT/CN2018/080551
Other languages
English (en)
French (fr)
Inventor
李铕
唐小勇
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18777036.7A priority Critical patent/EP3595346B1/en
Priority to BR112019020240A priority patent/BR112019020240A2/pt
Publication of WO2018177259A1 publication Critical patent/WO2018177259A1/zh
Priority to US16/581,752 priority patent/US11464006B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, a network device, and a terminal in the field of wireless communication.
  • mMTC Massive Machine Type Communication
  • mMTC-type services due to the wide variety of services, there is a big difference in network requirements.
  • two kinds of services that need to be: one is a service that requires reliable transmission but is not sensitive to delay; the other is a service that requires low latency and high reliability transmission.
  • a service that requires reliable transmission but are not sensitive to delay it is easier to handle; however, for services that require low latency and high reliability, if the transmission is unreliable, it will cause retransmission and the transmission delay will be too large to meet the requirements. .
  • the base station needs to perform blind detection on the uplink data sent by the terminal on the unlicensed transmission resource, and the demodulation complexity is extremely high. How to reduce the demodulation complexity is an urgent technical problem to be solved.
  • the embodiment of the present application provides a data transmission method, a network device, and a terminal.
  • a data transmission method provided by the application includes:
  • the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks; each of the time-frequency resource blocks is configured with corresponding configuration information;
  • the network device divides the uplink transmission time-frequency resource into multiple time-frequency resource blocks, and stores an uplink transmission time-frequency resource that is divided into multiple time-frequency resource blocks;
  • a device development or maintenance personnel allocates a table or parameter information of the uplink transmission time-frequency resource into a plurality of time-frequency resource blocks on the network device.
  • the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks, one way is to associate the uplink transmission time-frequency resource with the terminal group, and divide the uplink transmission time-frequency resource according to the terminal group, and then each The uplink transmission time-frequency resources of the terminal group are further divided into different time-frequency resource blocks; the other way is: the uplink transmission time-frequency resources are directly divided into different time-frequency resource blocks without distinguishing the terminal groups.
  • the configuration information is associated with each time-frequency resource block, and the time-frequency resource block corresponding to the terminal group to which the terminal belongs is selected, and the uplink transmission configuration corresponding to the time-frequency resource block can be used.
  • the uplink transmission time-frequency resource described herein refers to a time-frequency resource reserved for the uplink unlicensed transmission reserved by the network device to the terminal, or a contention transmission unit (CTU) for unlicensed transmission is divided into multiple Time-frequency resource blocks.
  • the configurable range of the uplink transmission time-frequency resource is a time-frequency resource of a group of terminals performing uplink unlicensed transmission or a time-frequency resource of the entire bandwidth.
  • the time-frequency resource blocks may be different in size or in the same manner.
  • the time-frequency resource blocks are distinguished by sub-bands in the frequency domain dimension; each time-frequency resource in the multiple time-frequency resource blocks.
  • the bandwidth occupied by the blocks is the same, or at least two of the plurality of time-frequency resource blocks occupy different bandwidths; the number of sub-carriers included in each sub-band may be the same or different.
  • the time-frequency resource block is distinguished by a subframe or a time slot or a small time slot in the time domain dimension, each time-frequency resource block occupies the same number of symbols in the time domain, or at least two time-frequency resource blocks are in the time domain.
  • the number of symbols occupied by the above is different, and can be flexibly divided according to requirements; the terminal can flexibly select the time-frequency resource block size suitable for the current transmission according to the transmission requirement.
  • each time-frequency resource block is one sub-band.
  • the configuration information includes the identifier information of the configured time-frequency resource block in the uplink transmission time-frequency resource, where the identifier information is a start position or an index number of the corresponding time-frequency resource block.
  • the configuration information further includes the number of configured time-frequency resource blocks in the uplink transmission time-frequency resource.
  • the configuration information further includes an upper limit value of the number of available time-frequency resource blocks in the uplink transmission time-frequency resource.
  • the configuration information further includes a length or a termination position of each time-frequency resource block in the uplink transmission time-frequency resource.
  • the configuration information is explicitly indicated by signaling or implicitly indicated by a pilot pattern or a pilot sequence.
  • the network device After configuring the configuration information for each time-frequency resource block, the network device sends multiple time-frequency resource blocks and corresponding configuration information to the terminal; in a possible implementation manner, the network device is before the terminal needs to send an uplink signal. , configuration information sent to the terminal.
  • the terminal When the terminal has uplink data to be transmitted, selecting one time-frequency resource block for performing uplink transmission from the plurality of time-frequency resource blocks; configuring, in the configuration information, time-frequency resource block parameters and coverage enhancement of the terminal for uplink transmission
  • the required parameter, the time-frequency resource block parameter includes at least the identifier information of the time-frequency resource block, and the identifier information may be a starting position of the resource block, or may be an index number of the resource block, and further, the time-frequency resource block parameter It also includes the length of the time-frequency resource block or the end position of the time-frequency resource block, the granularity of the time-frequency resource block, and the like; and the parameter information required for the coverage enhancement such as the power control parameter or the TTI bundling size indication or the Repetition size indication.
  • the uplink data is sent, the uplink data is transmitted on the selected at least one time-frequency resource block according to the configuration information of the selected at least one time-frequency resource block.
  • the terminal when sending the uplink data, may also notify the network device of the identifier information of the selected time-frequency resource block.
  • the identification information of the time-frequency resource block may be sent together with the uplink data, or may be sent independently (ie, not sent together with the uplink data).
  • the terminal when the configuration information of the current frequency resource block includes the starting position or the index number, the terminal sends the uplink data by using the time-frequency resource block indicated by the starting position of the time-frequency resource block or the index number; the configuration information of the current frequency resource block Further, when the start position and the length are included, the terminal sends the uplink data on the time-frequency resource block corresponding to the length starting from the start position of the time-frequency resource block; the configuration information of the current frequency resource block includes the start position and the termination.
  • the terminal sends the uplink data on the time-frequency resource block represented by the end position of the time-frequency resource block with the starting position of the time-frequency resource block as the starting point; the configuration information of the current frequency resource block includes the starting position and At the granularity, the terminal sends the uplink data on the time-frequency resource block represented by the width of the time-frequency resource with the starting position of the time-frequency resource block as the starting point; the configuration information of the current-frequency resource block includes the starting position and the power.
  • the terminal starts with the starting position of the time-frequency resource block, and the power represented by the power control parameter is sent on the corresponding time-frequency resource block.
  • the terminal when the configuration information of the current frequency resource block includes the starting position and the TTI bundling size indication, the terminal starts with the starting position of the time-frequency resource block, and is bound by several time intervals indicated by the TTI bundling size.
  • the time unit sends the uplink data; the terminal starts with the starting position of the time-frequency resource block as the starting point, and sends the uplink data in the Repetition size indication for several repeated transmission time units.
  • the network device can correctly demodulate the uplink data from the terminal by blind detection.
  • the identification information of the time-frequency resource block is indicated in the configuration information
  • the blind detection of the network device according to the identification information is a limited number of blind detections within a limited range, and the network device does not need to pass multiple blind solutions. Try a variety of possibilities to reduce the complexity of blind detection.
  • the terminal further carries the identifier information of the selected at least one time-frequency resource block in the uplink information to the network device.
  • the terminal sends the identifier of the selected at least one time-frequency resource block to the network device by using the uplink control signaling, and the uplink data is sent to the network device by using the data channel;
  • the network device can determine the start position of the corresponding time-frequency resource block by detecting the sequence sent by the terminal, and detect the uplink data transmitted by the terminal at the start position.
  • Network equipment can be properly demodulated, further reducing the complexity of demodulation.
  • the data transmission method provided by the present application is configured, because the uplink transmission time-frequency resource pre-allocated by the network device is divided into multiple time-frequency resource blocks, the terminal can select a time-frequency resource with a narrower bandwidth for uplink transmission, thereby improving the terminal. Transmit power; further, the network device also configures configuration information for each time-frequency resource block, and the configuration information may carry sub-band parameters or coverage enhancement parameters, or carry sub-band parameters and coverage enhancement parameters at the same time, therefore, the terminal selects After performing the uplink transmission time-frequency resource block, performing uplink transmission according to the corresponding configuration information may further improve the transmission power; and the network device may also perform demodulation on the correct time-frequency resource block according to the configuration information, thereby improving demodulation. Efficiency, avoiding processing delays.
  • the embodiment of the present application provides a network device, which may be a base station or a control node.
  • the network device includes:
  • a transceiver configured to send, to the terminal, information for transmitting a time-frequency resource of the uplink data, where the time-frequency resource includes multiple time-frequency resource blocks, where the time-frequency resource block is divided into multiple sub-portions at least on the frequency domain resource
  • the information of the time-frequency resource includes each time-frequency resource block and its corresponding configuration information; the configuration information includes at least the identification information of the corresponding time-frequency resource block;
  • a processor configured to detect uplink data transmitted by the terminal on the selected at least one time-frequency resource block of the terminal.
  • the embodiment of the present application provides a base station, which has a function of realizing the behavior of the base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or signaling involved in the foregoing method to the terminal, and receive information or instructions sent by the base station.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication unit.
  • the controller/processor may be used to coordinate resource management and configuration between multiple base stations, and may be used to perform the method steps of configuring time-frequency resources for the terminal described in the foregoing embodiments.
  • the memory can be used to store program code and data for the control node.
  • the communication unit is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
  • the embodiment of the present application provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the functions can be implemented in hardware, including:
  • a processor configured to acquire a time-frequency resource for transmitting uplink data, where the time-frequency resource is: selecting at least one time-frequency resource block from the plurality of time-frequency resource blocks; each of the multiple time-frequency resource blocks The time-frequency resource block corresponds to one configuration information; the configuration information includes at least the identifier information of the corresponding time-frequency resource block;
  • a transceiver configured to transmit uplink data on the selected at least one time-frequency resource block according to configuration information of the at least one time-frequency resource block selected by the processor.
  • the terminal may further include a memory for storing information of a time-frequency resource for transmitting uplink data, where the time-frequency resource includes a plurality of time-frequency resource blocks.
  • the memory can be integrated in the processor.
  • the terminal can also implement corresponding software implementation through hardware.
  • the hardware or software includes at least one module corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the embodiment of the present application further provides a processing apparatus, including a processor and an interface;
  • the processor is configured to acquire information about a time-frequency resource for transmitting uplink data, where the time-frequency resource includes a plurality of time-frequency resource blocks, where the information of the time-frequency resource includes a corresponding time-frequency resource block.
  • Configuration information includes at least identifier information of a corresponding time-frequency resource block;
  • the processor is further configured to: when the uplink data needs to be sent, select at least one time-frequency resource block from the multiple time-frequency resource blocks; and select the selected at least one time-frequency resource block by using an interface. Provided to the transceiver to cause the transceiver to transmit uplink data on the selected at least one time-frequency resource block.
  • the processing device may be a chip, and the processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software,
  • the processor can be a general purpose processor, which is implemented by reading software code stored in a memory.
  • the memory can be integrated in the processor and can exist independently of the processor.
  • an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect.
  • the control node in the above embodiment may also be included.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the base station, which includes a program for performing the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program for performing the above aspects.
  • the network device and the terminal provided by the present application are configured to divide the uplink transmission time-frequency resources pre-allocated by the network device into multiple sub-bands, so the terminal can select a time-frequency resource with a narrower bandwidth for uplink transmission, and improve the transmission power of the terminal. Further, the network device further configures configuration information for each sub-band, and the configuration information may carry sub-band parameters or coverage enhancement parameters, or carry sub-band parameters and coverage enhancement parameters. Therefore, the terminal selects a sub-transmission sub-port. After the band is transmitted according to the corresponding configuration information, the transmit power can be further improved; and the network device can also perform demodulation on the correct time-frequency resource block according to the configuration information, thereby improving the efficiency of demodulation and avoiding processing delay. .
  • FIG. 1 is a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of dividing an uplink transmission time-frequency resource in the prior art
  • FIG. 4 is a schematic diagram of dividing an uplink transmission time-frequency resource in an embodiment of the present application.
  • FIG. 5 is still another schematic diagram of dividing an uplink transmission time-frequency resource in the embodiment of the present application.
  • FIG. 6 is still another schematic diagram of dividing an uplink transmission time-frequency resource in the embodiment of the present application.
  • FIG. 7 is still another schematic diagram of dividing an uplink transmission time-frequency resource in the embodiment of the present application.
  • FIG. 8 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of MAC CE signaling in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a MAC subheader in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of MAC CE signaling transmitted in a MAC PDU in an embodiment of the present application
  • FIG. 12 is still another schematic diagram of MAC CE signaling in the embodiment of the present application.
  • FIG. 13 is still another schematic diagram of MAC CE signaling in the embodiment of the present application.
  • FIG. 14 is still another schematic diagram of MAC CE signaling in the embodiment of the present application.
  • 15 is another schematic diagram of MAC CE signaling in the embodiment of the present application.
  • 16 is a schematic diagram showing a starting position of an uplink transmission subband by using a pilot pattern in the embodiment of the present application
  • 17 is a schematic diagram showing the granularity of an uplink transmission subband by using a pilot pattern in the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the TTI bundling (transmission time interval bundling) is used to enable the terminal to transmit the same signal in consecutive subframes, and the network device combines the signals transmitted on the subframes. Thereby improving the quality of signal demodulation;
  • the base station in order to ensure the correct transmission of data, can adjust the time-frequency resources of each terminal for uplink transmission in real time, for example:
  • the terminal When the terminal has uplink data to be sent, the terminal sends an uplink resource scheduling request to the base station.
  • the base station may configure multiple subframes or slots for the terminal to perform TTI bundling; or the base station reduces the terminal.
  • the transmission bandwidth in the frequency domain is used to improve the transmission power of the terminal in a single time-frequency resource block (RB); or the base station uses a combination of the foregoing two methods for the terminal.
  • the terminal sends uplink data according to the scheduling of the base station, and the base station performs data demodulation at the time-frequency position specified by the scheduling information.
  • NGMN Next Generation Mobile Network
  • eMBB Enhanced Mobile Broadband
  • uRLLC Ultra-reliable and Low-latency Communications
  • mMTC massive Scale Machine Communication
  • mMTC covers scenarios where high connection density is required, such as smart cities, smart agriculture, to meet people's needs for a digital society.
  • the typical feature of the scenario is that the connection is large, that is, the number of terminals is large, the service type is mainly small packet service, and there are certain requirements for low latency.
  • uRLLC focuses on services that are extremely sensitive to time delays, such as autonomous driving/assisted driving; for car networking, driverless, industrial control, etc., system capacity is not a major problem, but it has a lot of delay and reliability. High requirements.
  • the unlicensed transmission is considered to be a more suitable uplink data transmission method than the authorized transmission.
  • the unlicensed transmission does not have to go through the process of transmitting the uplink resource scheduling request and waiting for the authorization of the receiving base station, which greatly shortens the transmission delay and can meet the requirements in terms of delay.
  • the inventors have found that under the unlicensed transmission mechanism, resources for data transmission by the terminal are reserved in advance, and the reserved resources are usually directed to multiple terminals in some scenarios.
  • the base station performs real-time adjustment of the reserved resources according to the change of the coverage requirement of the terminal, a large signaling overhead and a transmission delay are introduced.
  • the base station does not know the time-frequency position of the terminal data transmission in advance, and needs to try multiple possibilities through multiple blind solutions, which increases the complexity and processing of the demodulation. Delay.
  • the uplink transmission time-frequency resource configured for the terminal is divided into multiple time-frequency resource blocks, so the terminal can select a time-frequency resource with a narrower bandwidth for uplink transmission, thereby increasing the transmission power of the terminal.
  • the network device configures corresponding configuration information for each sub-time-frequency resource block, and the configuration information may carry time-frequency resource block parameters or coverage enhancement parameters, or both parameters are carried.
  • the terminal selects uplink transmission After the frequency resource block, the uplink transmission is performed according to the corresponding configuration information, and the transmission power can be further improved; and the network device can also perform demodulation on the correct time-frequency resource block according to the configuration information, thereby improving the efficiency of demodulation and avoiding processing. Delay.
  • the embodiment of the present application provides an uplink transmission technology.
  • the technical solution provided by the present application is not limited to the application in the uRLLC and mMTC scenarios, and the data transmission method, the terminal, and the network device provided by the present application can be applied to any other unlicensed transmission scenario that does not require base station scheduling.
  • the license-free transmission involved in the embodiment of the present application may be expressed as Grant Free abbreviation GF.
  • the unauthorized transfer can also have other representations, such as Grantless or Contention based. This article does not limit the meaning of the unauthorized transfer. It can be understood that the unauthorized transfer is not a proper noun. Other applications may also be used in the application, but they do not depart from the essence of the patent application.
  • the unlicensed transmission is usually for uplink data transmission, which can be understood as any one or more of the following meanings, but is limited to these.
  • an unauthorized transfer may also be understood as a combination of some of the various technical features described below or other similar meanings:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal of the plurality of transmission resources; when the terminal has the uplink data transmission requirement, selects at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and sends the selected transmission resource by using the selected transmission resource.
  • Uplink data the network device detects uplink data transmitted by the terminal on at least one of the pre-assigned plurality of transmission resources. The detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal of multiple transmission resources, so that when the terminal has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected transmission is used.
  • the resource sends upstream data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when there is an uplink data transmission requirement, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may refer to a method for realizing uplink data transmission of the terminal without dynamic scheduling of the network device, where the dynamic scheduling may refer to a type of transmission resource indicated by the network device for each uplink data transmission of the terminal by signaling. Scheduling method.
  • implementing uplink data transmission of the terminal may be understood as allowing data of two or more terminals to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be a transmission resource of at least one transmission time unit after the moment when the terminal receives the signaling.
  • a transmission time unit may refer to a minimum time unit of one transmission, such as TTI, the value may be 1 ms, or may be a preset transmission time unit.
  • Unauthorized transmission can mean that the terminal performs uplink data transmission without requiring network device authorization.
  • the authorization may be performed by the terminal sending an uplink scheduling request to the network device, and after receiving the scheduling request, the network device sends an uplink grant to the terminal, where the uplink grant indicates an uplink transmission resource allocated to the terminal.
  • the unlicensed transmission may refer to: a contention transmission mode, which may specifically mean that multiple terminals simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without the base station performing authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources:
  • Time domain resources such as radio frames, subframes, symbols, time slots, mini-slots, etc.
  • Frequency domain resources such as subcarriers, subbands, etc.
  • Airspace resources such as transmit antennas, beams, etc.
  • Code domain resources such as a sparse code multiple access (Sparse Code Multiple Access, referred to as "SCMA") codebook, a low density signature (Low Density Signature, "LDS”) sequence, a CDMA code, etc.;
  • SCMA Sparse Code Multiple Access
  • LDS Low Density Signature
  • the uplink transmission technical solution provided by the embodiment of the present application can be applied to various communication systems of a wireless cellular network, for example, a Global System for Mobile communications (GSM) system, and Code Division Multiple Access (CDMA).
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • next-generation mobile communication systems for example, 5G
  • M2M Machine to Machine
  • the embodiment of the present application provides a communication system 100.
  • the communication system 100 includes at least one network device 20 and a plurality of terminals, such as terminal 1, terminal 2, terminal 3, terminal 4, and the like. Some of these terminals can communicate with each other, such as terminal 3 and terminal 4, and some can also be used for cellular communications, such as terminal 1, terminal 2, and terminal 4. Communication between terminals includes communication modes such as D2D (Device to Device), M2M (Machine to Machine), and UE cooperation (UE cooperation). Cellular communication refers to communication between a terminal and a network device.
  • the control node 60 connected to the network device 20 can perform unified scheduling on resources in the system, and can allocate resources to the terminal, perform resource reuse decision, or interfere with coordination.
  • the network device referred to in the embodiment of the present application is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the network device may include an improved or upgraded device to a base station in a conventional wireless communication system.
  • the base stations mentioned herein may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B (Node B) or the like, and is called an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB) in an LTE system.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • gNB instead of the eNB of the LTE system.
  • the control node involved in the embodiment of the present application is a control node 60 in a communication system, which can connect multiple base stations and allocate resources for multiple terminals covered by multiple base stations.
  • the control node can be a wireless network cross-system collaborative controller or the like.
  • the terminal involved in the embodiment of the present application may include various handheld devices, in-vehicle devices, and wearable devices having wireless communication functions. , a computing device, or other processing device connected to a wireless modem.
  • the terminal may also be referred to as a mobile station (MS), and may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, and a personal digital assistant (personal).
  • WLL wireless local loop
  • MTC machine type communication
  • the application scenario of the embodiment of the present application is described above with reference to FIG. 2 .
  • the implementation process of the data transmission method in the embodiment of the present application is described in the following, from the perspective of the network device and the terminal.
  • the process of dividing the transmission time-frequency resources is described in detail.
  • the network device reserves time-frequency resources for uplink unlicensed transmission reserved by the network device, or reserves a contention transmission unit (CTU) for unlicensed transmission to the terminal. And notifying the terminal of the plurality of transmission resources; when the terminal has the uplink data transmission requirement, selecting at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and transmitting the uplink data by using the selected transmission resource; the network device is pre-allocated
  • the uplink data transmitted by the terminal is detected on one or more of the plurality of transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks by using the uplink transmission time-frequency resource for the unlicensed transmission.
  • the terminal performs uplink transmission on a narrower bandwidth time-frequency resource, and the transmission power can be enhanced to obtain better transmission performance.
  • the configurable range of the uplink transmission time-frequency resource is a time-frequency resource of a group of terminals performing uplink unlicensed transmission or a time-frequency resource of the entire bandwidth.
  • the time-frequency resource blocks may be different in size, or may be the same.
  • the time-frequency resource block distinguishes each of the plurality of time-frequency resource blocks by using a sub-band in the frequency domain dimension.
  • the occupied bandwidth is the same, or at least two of the plurality of time-frequency resource blocks occupy different bandwidths; the number of sub-carriers included in each sub-band may be the same or different.
  • each time-frequency resource block is one sub-band.
  • the time-frequency resource block is distinguished by a subframe or a time slot or a small time slot in the time domain dimension, each time-frequency resource block occupies the same number of symbols in the time domain, or at least two time-frequency resource blocks are in the time domain.
  • the number of symbols occupied by the above is different, and can be flexibly divided according to requirements; the terminal can flexibly select the time-frequency resource block size suitable for the current transmission according to the transmission requirement.
  • time-frequency resource block it may be first divided into multiple sub-bands from the frequency domain, and optionally, one sub-band is divided into multiple time-frequency resource blocks in the time domain. It can also be divided into multiple small time-frequency resources from the time domain, and then the time-frequency resources of one time domain unit are divided into sub-bands from the frequency domain.
  • the network device divides the uplink transmission time-frequency resource into multiple time-frequency resource blocks, and stores an uplink transmission time-frequency resource that is divided into multiple time-frequency resource blocks;
  • a device development or maintenance personnel configures a table or parameter information indicating that the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks on the network device.
  • the manner of dividing the uplink transmission time-frequency resources includes but is not limited to the following two types:
  • Manner 1 Associate the uplink transmission time-frequency resource with a specific terminal group. For example, the uplink transmission time-frequency resources are first divided according to the terminal group, and then the uplink transmission time-frequency resources of each terminal group are further further divided into different time-frequency resource blocks; or the uplink transmission time-frequency resources are further further divided into Different time-frequency resource blocks are then allocated to different terminal groups.
  • the unlicensed uplink transmission time-frequency resource configured by the network device for multiple terminals is first divided into two parts: the first part is shared by the terminal group 1; the second part is shared by the terminal group 2; further, the A part of resources are further divided into time-frequency resource block 1-1, time-frequency resource block 1-2, time-frequency resource block 2, time-frequency resource block 3, and time-frequency resource block 4; the second part of the resource is further divided by the network device into Time-frequency resource block 1, time-frequency resource block 2, time-frequency resource block 3, and time-frequency resource block 4.
  • time-frequency resource block 1-1 and the time-frequency resource block 1-2 have the same bandwidth of the sub-bands in the time domain (both occupying the sub-band 1), but occupy different time slots, such as time-frequency resources.
  • Block 1-1 occupies slot 1
  • time-frequency resource block 1-2 occupies slot 2
  • time-frequency resource block 4-1, and time-frequency resource block 4-2 are similar.
  • the subbands here include different numbers of subcarriers; the slots contain different numbers of symbols.
  • the unlicensed uplink transmission time-frequency resource configured by the network device for multiple terminals is first divided into two parts: the first part is shared by the terminal group 1; the second part is shared by the terminal group 2; The first part of the resource is further divided into a plurality of time-frequency resource blocks by the network device, and each time-frequency resource block is a sub-band, for example, sub-band 1, sub-band 2, sub-band 3, sub-band 4; It is further divided into subband 1, subband 2, subband 3, and subband 4 by network devices.
  • This division mode makes the network device control the transmission resource more accurate.
  • it knows which group of terminals the time-frequency resource block is used by, which improves the detection efficiency.
  • Manner 2 The terminal group is not distinguished, that is, the uplink transmission time-frequency resource is directly divided into different time-frequency resource blocks, and the time-frequency resource block is selected by the terminal, and the corresponding time-frequency resource block is used for uplink transmission.
  • the unlicensed uplink transmission time-frequency resources configured by the network device for multiple terminals are directly divided into time-frequency resource blocks 1-1, time-frequency resource blocks 1-2, and time-frequency resource blocks 2 by the network device.
  • the time-frequency resource block 1 to the time-frequency resource block 8 can be shared by a plurality of terminals.
  • the unlicensed uplink transmission time-frequency resource configured by the network device for multiple terminals is directly divided into multiple time-frequency resource blocks by the network device, and each time-frequency resource block is a sub-band.
  • each time-frequency resource block is a sub-band.
  • the sub-band 1 to sub-band 8 can be shared by a plurality of terminals.
  • This division mode makes the terminal more flexible when selecting the time-frequency resource block, and the transmission performance is better.
  • the size of the time-frequency resource blocks may be different or different.
  • the time-frequency resource blocks are distinguished by sub-bands in the frequency domain dimension, and the bandwidth occupied by the sub-bands may be the same or different.
  • the sub-band granularity may be a sub-carrier, or an RB or an RBG; in the time domain dimension, the number of symbols is distinguished, and the number of symbols is different or the same, and may be flexibly divided according to requirements, and the terminal may be transmitted according to requirements. It is necessary to flexibly select the time-frequency resource block size suitable for the current transmission.
  • time slot or minislot in the time domain dimension.
  • the network device in the embodiment of the present application further configures configuration information corresponding to the time-frequency resource block, where the configuration information mainly includes time-frequency resource block parameters and The coverage enhancement parameter, where the time-frequency resource block parameter is related to the time-frequency resource block, such as the identification information of the time-frequency resource block (starting position or index number), the number of time-frequency resource blocks, and the number of times The limit value, the granularity of the time-frequency resource block, and the length of the granularity; and the coverage enhancement parameter is a parameter for improving the received signal-to-noise ratio and satisfying the coverage requirement by enhancing the received power of the signal, for example, Power control parameters, TTI bundling size indication or Repetition size indication, and so on.
  • the uplink transmission time-frequency resource used for the unlicensed transmission is divided into multiple uplink transmission time-frequency resource blocks, and the corresponding configuration information is configured for each uplink transmission time-frequency resource block.
  • the data transmission method provided by the embodiment is as follows:
  • Step 101 The network device sends information about a time-frequency resource for transmitting uplink data to the terminal, where the time-frequency resource includes multiple time-frequency resource blocks, where the information of the time-frequency resource includes each time-frequency resource block and Corresponding configuration information; the configuration information includes at least the identifier information of the corresponding time-frequency resource block, where the identifier information may be a start position or an index number of the time-frequency resource block; optionally, the network device needs to send the uplink data at the terminal Before transmitting information to the terminal for transmitting time-frequency resources of the uplink data;
  • Step 102 The terminal saves multiple time-frequency resource blocks and corresponding configuration information allocated by the network device.
  • Step 103 When the terminal has uplink data to be transmitted, select at least one time-frequency resource block for transmitting uplink data from multiple time-frequency resource blocks;
  • Step 104 The terminal transmits uplink data on the selected at least one time-frequency resource block according to the configuration information of the selected at least one time-frequency resource block.
  • Step 105 The network device receives uplink data sent by the terminal to the time-frequency resource block.
  • the data transmission method provided by the present application is configured, because the uplink transmission time-frequency resource pre-allocated by the network device is divided into multiple time-frequency resource blocks, the terminal can select a time-frequency resource with a narrower bandwidth to transmit uplink data, thereby improving the terminal. Transmit power; further, the network device also configures configuration information for each time-frequency resource block, and the configuration information may carry time-frequency resource block parameters or coverage enhancement parameters, or both parameters are carried, and therefore, the terminal selects for After transmitting the time-frequency resource block of the uplink data, the uplink data is transmitted according to the corresponding configuration information, and the transmission power can be further improved; and the network device can also perform demodulation on the correct time-frequency resource block according to the configuration information, thereby improving demodulation. Efficiency, avoiding processing delays.
  • the time-frequency resource block is associated with the terminal group, and the method includes:
  • Time-frequency resource block partitioning information for uplink transmission time-frequency resources of multiple terminal groups the information 1 may be sent to all terminals in the cell, or may only be notified to the terminal group in each terminal group.
  • the object to be sent by the information 2 may be multiple terminals in the terminal group;
  • This information 3 can be sent to each terminal in the same terminal group.
  • the foregoing information 1 is a basic configuration for the terminal to perform the unlicensed transmission, and is used to indicate the uplink transmission time-frequency resource reserved by the network device for the terminal group or the terminal.
  • the information 2 and the information 3 are optional, and the coverage enhancement parameter is used to indicate how the terminal uses the uplink transmission time-frequency resource to implement coverage enhancement.
  • the identification information in the configuration information of the time-frequency resource block may be the start position or index number of the time-frequency resource block in the information 1.
  • each time-frequency resource block may be assigned an index number, as shown in Table 1:
  • Time-frequency resource block The index number Time-frequency resource block 1 1 Time-frequency resource block 2 2 Time-frequency resource block 3 3 Time-frequency resource block 4 4 Time-frequency resource block 5 5 Time-frequency resource block 6 6 Time-frequency resource block 7 7 Time-frequency resource block 8 8
  • the terminal may send the index number of the selected time-frequency resource block to the network device, so that the network device can accurately detect.
  • mapping relationship of the terminal group is added, as shown in Table 2:
  • Time-frequency resource block The index number affiliated terminal group Time-frequency resource block 1 1 1 Time-frequency resource block 2 2 1 Time-frequency resource block 3 3 1 Time-frequency resource block 4 4 1
  • Time-frequency resource block 5 5 2 Time-frequency resource block 6 6 2 Time-frequency resource block 7 7 2 Time-frequency resource block 8 8 2
  • the foregoing information 1, information 2, and information 3 may be through system messages or RRC (radio resource control) signaling or MAC CE (medium access control control element) or DCI (downlink control information) bearer.
  • RRC radio resource control
  • MAC CE medium access control control element
  • DCI downlink control information
  • the signaling combination shown in Table 3 is used to implement the bearer of the configuration information:
  • An implementation manner is as follows: the information 1 can be sent to the terminal by using a system message when the system is configured by the network device, and then when the RRC bearer is established, the network device sends the information 2 and the information 3 through the RRC signaling.
  • the foregoing information 1, information 2, and information 3 are carried by RRC signaling, and the signaling overhead is smaller and the degree of flexibility is higher.
  • the network device may also send configuration information to the terminal by using more signaling combinations according to actual requirements.
  • the implementation process of the data transmission method in the embodiment of the present application is described in the following description of the manner in which the uplink transmission time-frequency resource is divided into the time-frequency resource block and is associated with the terminal group. It should be understood that the following embodiments describe configuration information and its bearer implementation form when the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks, specifically multiple sub-band forms. If the time-frequency resource block divides the smaller time-frequency resource block by using the time domain as the dimension, the indication manner of the starting position, the number, the length, and the like may be added to the corresponding time slot or symbol identifier.
  • Embodiment 1 Carrying configuration information by RRC signaling
  • the first implementation manner of the first embodiment is that the configuration information carried in the RRC includes the split information of the time-frequency resource block, for example, the start position of the time-frequency resource block, so that the terminal can select an appropriate time-frequency resource block for transmission.
  • the length of the time-frequency resource block continues by default to the start position of the next time-frequency resource block.
  • the message format is as follows:
  • the configuration message also carries a starting position on the time domain, such as the first symbol.
  • the uplink time-frequency resource may be first divided by using the time domain as a dimension, and then the uplink time-frequency resource is divided by using the frequency domain as a dimension to obtain multiple time-frequency resource blocks.
  • the principles of the subsequent embodiments are the same and will not be described here.
  • the second implementation manner of the first embodiment is: the configuration information carried in the RRC includes the split information of the time-frequency resource block, for example, the length of the time-frequency resource block, so that the terminal can select an appropriate time-frequency resource block for transmission, thereby improving the transmission. power.
  • the starting position in the frequency domain of the first time-frequency resource block may be the starting position of the available sub-band, and the starting position of the subsequent sub-band is "the starting position of the sub-band + the length of all the preceding sub-bands +1"
  • the starting position on the time domain of the first time-frequency resource block may be the starting position of the available symbols, and the starting position of the subsequent time-frequency resource block is "the starting position of the symbol + all the lengths of the preceding symbols +1" .
  • the message format is as follows:
  • the message format may also be a length in the carrying time domain, such as “the symbol start position + all previous symbol lengths +1”.
  • the third implementation manner of the first embodiment is that the configuration information carried in the RRC includes the split information of the time-frequency resource block, such as the start position of the time-frequency resource block and the length of the time-frequency resource block, so that the terminal can select an appropriate one.
  • the time-frequency resource block is transmitted to increase the transmission power.
  • the message format is as follows:
  • the message format will also carry the starting position and length in the time domain, such as the “starting position”. It is the 4th symbol and its length is n".
  • the fourth implementation manner of the first embodiment is that the configuration information carried in the RRC includes not only the time-frequency resource block division information, but also the power control parameter corresponding to the time-frequency resource block.
  • the network device may quantize the power level by using three bits, 000 indicates that the transmission power is transmitted with (1/2) o of the total power, and the 001 flag is transmitted with (1/2) 1 of the total power, And so on.
  • the message format is as follows:
  • the message format may indicate the control control parameter of the time-frequency resource block.
  • the network device may also define an upper limit value of the number of time-frequency resource blocks at the same time, and the time-frequency resource block is a sub-band as an example, for example:
  • the network device can also define the termination location of the time-frequency resource block at the same time.
  • the split information of the time-frequency resource block may not include the length of the time-frequency resource block, and the length of the time-frequency resource block is the start position to the end position of the time-frequency resource block.
  • the time-frequency resource block is a sub-band
  • the configuration information carried in the RRC includes an initial position of the sub-band and a length of the sub-band as an example, for example:
  • Embodiment 2 Carrying configuration information by using MAC CE signaling
  • the network device needs to newly define a MAC CE and define a corresponding MAC sub-header.
  • Each sub-band is configured by using one MAC CE; if the network device needs to indicate the configuration of multiple time-frequency resource blocks to the terminal, multiple MAC CEs are sent to the terminal.
  • LCID Logical Channel ID
  • LCID Logical Channel ID
  • LCID can use the reserved field of TS 36321-e00, for example, 10111. Associate the newly defined MAC CE.
  • the MAC CE CE is represented by the reserved field 10111 as an example, and may be represented by other reserved fields in other implementation manners.
  • the newly defined MAC CE may also be carried by a newly defined MAC PDU (MAC Protocol Data Unit) format, as shown in FIG. 11, or may be a DL-SCH (Downlink Shared Channel) defined by the existing LTE protocol. MAC SDU bearer of the downlink shared channel).
  • MAC PDU MAC Protocol Data Unit
  • DL-SCH Downlink Shared Channel
  • the network device may also configure the granularity of the time-frequency resource block, that is, the configuration information may further carry the granularity of the time-frequency resource block.
  • the granularity of the time-frequency resource block includes a subcarrier or a RB (resource block) or an RBG (resource block group).
  • One RB here contains 12 subcarriers.
  • the network device may indicate subcarriers, RBs, or RBGs by using 2-bit information, as shown in Table 5:
  • Embodiment 3 Carrying configuration information by using DCI.
  • the configuration information is carried by the DCI, and the DCI is carried in the PDCCH (physical downlink control channel).
  • the PDCCH is scrambled by the RNTI (radio network temporary identifier) of the terminal group, and the network device can configure one or more terminals in the terminal group.
  • RNTI radio network temporary identifier
  • DCI format contains the following information:
  • the DCI format may also include information about the length of the subband:
  • Number of Narrowband gives the number of subbands configured in the current DCI message
  • Start Point indicates the starting position of the subband, 0001 represents the first RB, 0010 represents the second RB, and so on;
  • Length indicates the length of the subband, 0000 represents the length of 1,0001 for length 2, 0010 for length 4, and so on.
  • the termination position of the previous subband can be obtained from the "start position of the next subband-1", and therefore, the configuration of the subband may not include the Length field.
  • the starting and ending positions of the subband can also be configured.
  • the configuration information including the sub-band granularity indication may also be carried by system message, RRC signaling, MAC CE, or DCI, which will be described in detail below.
  • the DCI message format further includes parameter information in the time domain.
  • Embodiment 4 Carrying configuration information including a time-frequency resource block granularity indication by using a system message
  • the network device adds a RRC information element (Radio resource control information elements) in the system message to indicate the granularity of the time-frequency resource block.
  • a RRC information element Radio resource control information elements
  • the message format is as follows:
  • the granularity indication information of the subband may be added in the "RadioResourceConfigComm-onSIB" defined by the LTE, and transmitted by the network device to the terminal through a system message.
  • the message format is as follows:
  • the above DCI message format may include parameter information in the time domain, and the principle is the same and will not be described again.
  • Embodiment 5 Carrying configuration information including a time-frequency resource block granularity indication by using RRC signaling
  • the network device adds a RRC information element (Radio resource control information elements) to indicate the granularity of the time-frequency resource block.
  • RRC information element Radio resource control information elements
  • the message format is as follows:
  • the granularity indication information of the subband may be added to the RRC Connection Setup message or the RRC ConnectionReconfiguration message defined by the LTE, and passed to the terminal by the network device.
  • the DCI message format may include parameter information in the time domain.
  • Embodiment 6 Carrying configuration information including a time-frequency resource block granularity indication by using a MAC CE
  • An implementation manner of Embodiment 6 is: newly defining a MAC CE, and defining a corresponding LCID, as shown in FIG. 12 .
  • the LCID corresponding to the MAC CE needs to be newly defined.
  • the LCID can use the reserved field of TS 36321-e00.
  • 10110 is selected to associate the newly defined MAC CE.
  • the updated table is as shown in Table 6 below:
  • the MAC CE is represented by the reserved field 10110 as an example. In other implementations, other reserved fields may also be used.
  • the newly defined MAC CE may be carried by a MAC PDU (MAC Protocol Data Unit) of a DL-SCH (Downlink Shared Channel) defined by the LTE protocol, as shown in FIG. .
  • MAC PDU MAC Protocol Data Unit
  • DL-SCH Downlink Shared Channel
  • the second implementation manner of Embodiment 6 is: in the second embodiment, the newly defined MAC CE shown in FIG. 9 is extended to indicate the granularity of the time-frequency resource block, as shown in FIG. 13:
  • the value of the LCID corresponding to the MAC CE in the second embodiment remains unchanged, that is, the LCID is not added, and the table 4 can be used.
  • the terminal can also accumulate power in the time domain by using TTI bundling or Repetition transmission mode, thereby improving the demodulation signal to noise ratio of the network device.
  • the network device in the embodiment of the present application is configured for the terminal.
  • the TTI bundling size or Repetition size indication may be further configured when the uplink transmission of the time-frequency resource is not authorized.
  • the terminal may perform uplink transmission according to the TTI bundling size or Repetition size indication, and the network device may adopt the correct bundling size or Repetition size. Perform demodulation.
  • TTI bundling size indication Take the TTI bundling size indication as an example, as shown in Table 7 below:
  • time-frequency resource blocks of the same bandwidth can be configured with different bundling sizes to adapt to different service requirements of the terminal.
  • the TTI bundling size indication or the Repetition size indication may be implemented by adding the corresponding TTI bundling size indication field to the RRC signaling shown in the foregoing Embodiment 1 or the MAC CE shown in the second embodiment. The following is still indicated by the TTI bundling size. For example, it is described separately by the seventh embodiment and the eighth embodiment.
  • Embodiment 7 Carrying configuration information including a TTI bundling size indication by using RRC signaling
  • An implementation manner of the seventh embodiment is: the power control parameter and the TTI bundling size indication are carried in the configuration information at the same time, and the time-frequency resource block is taken as an example, and the message format is as follows:
  • the DCI message format further includes parameter information in the time domain.
  • the configuration information carries a TTI bundling size indication, does not include a power control parameter, and takes a time-frequency resource block as a sub-band as an example, and the message format is as follows:
  • the DCI message format may include parameter information in the time domain.
  • Embodiment 8 Carrying configuration information including a TTI bundling size indication by using a MAC CE
  • the network device needs to newly define one MAC CE, and each time-frequency resource block is configured by using one MAC CE; if the network device needs to indicate the configuration of multiple time-frequency resource blocks to the terminal, multiple MAC CE.
  • Embodiment 8 An implementation manner of Embodiment 8 is: the power control parameter and the TTI bundling size indication are carried in the configuration information at the same time, and the new MAC CE definition is as shown in FIG. 14 , wherein the meanings of the fields are as follows:
  • Embodiment 8 the configuration information includes a TTI bundling size indication, and does not include a power control parameter, and the new MAC CE definition is as shown in FIG. 15, wherein the meanings of the fields are as follows:
  • Corresponding MAC sub-headers are required to be associated with the two types of MAC CEs.
  • the corresponding MAC sub-header is shown in FIG. 10 and will not be described here.
  • the foregoing first embodiment to the eighth embodiment respectively describe, based on the network device, that the uplink transmission time-frequency resource to be used for the unlicensed transmission is divided into a plurality of time-frequency resource blocks associated with the terminal group.
  • the RRC, the MAC CE, the system message, and the implementation process of the DCI bearer configuration information where the parameters carried in the configuration information are further divided into a power control parameter, a TTI bundling size indication, a granularity of the time-frequency resource block, a length, and a time-frequency resource block index number. , or the start or end position of the time-frequency resource block, and so on.
  • the first type the terminal randomly selects the time-frequency resource block for uplink transmission.
  • an uplink transmission time-frequency resource for the unlicensed transmission into a plurality of time-frequency resource blocks associated with the terminal group, and configuring, for each time-frequency resource block, configuration information for performing uplink transmission.
  • one or more time-frequency resource blocks satisfying its own transmission requirements are selected from the time-frequency resource blocks owned by the terminal group to which the terminal belongs.
  • each time-frequency resource block is configured with configuration information
  • the terminal randomly selects the time-frequency resource block and performs transmission according to the configuration information corresponding to the sub-band, and can also achieve the technical effect of coverage enhancement.
  • the terminal 1 belongs to the terminal group 1, and the selectable sub-bands include the time-frequency resource block 1-1, the time-frequency resource block 1-2, the time-frequency resource block 2, the time-frequency resource block 3, the time-frequency resource block 4, and the terminal 1
  • the uplink frequency transmission is performed by selecting the time-frequency resource block 4-1
  • the uplink transmission is performed by using the configuration information corresponding to the time-frequency resource block 4-1.
  • the second type the terminal selects the time-frequency resource block for uplink transmission according to the measurement result of the channel quality.
  • the terminal can perform uplink grant-free transmission by selecting a time-frequency resource block according to the channel quality measurement result, so that a better coverage enhancement effect is obtained.
  • the terminal performs channel quality measurement according to the following formula (1):
  • SNR_target is the target signal to noise ratio
  • Pathloss is a path loss, which can be obtained by measurement; this is a technical means well known to those skilled in the art, and will not be described here;
  • P_noise is the noise power
  • P_ul_tx is the uplink transmission power; it is calculated by the following formula (2);
  • P_ul_total is the total transmit power allowed for uplink transmission
  • the TTIbundling size takes a value of 1.
  • the terminal can calculate the number of time-frequency resource blocks for performing uplink transmission according to the above formula (3), search for configuration information according to the number of time-frequency resource blocks, and select a time-frequency resource block corresponding to the configuration information for uplink unlicensed transmission. .
  • the embodiment of the present application may also calculate the power required for the uplink transmission, or the granularity of the time-frequency resource block, or The TTI bundling size indication or the Repetition size indication and the like, and then the corresponding time-frequency resource block is selected, and the calculation formula is set as needed, and details are not described herein again.
  • the third type the terminal selects the time-frequency resource block for uplink transmission based on the previous data transmission success rate statistics result.
  • the terminal when performing initial transmission, may randomly select a time-frequency resource block or select an appropriate time-frequency resource block for uplink transmission according to the value of the path loss (Pathloss);
  • the terminal when the terminal receives the NACK message from the network device N times, it triggers selection of a time-frequency resource block of a narrower bandwidth for uplink transmission; when the terminal receives an ACK message from the network device, the terminal may select a wider bandwidth.
  • the time-frequency resource block is used for uplink transmission.
  • the network device can configure the threshold of N so that the terminal can count whether the data transmission succeeds.
  • the fourth type the terminal selects at least one time-frequency resource block for uplink transmission according to the required transmission power.
  • the terminal uses the length 1 indicated by the length of 0001 at the beginning of the first RB indicated by 0001, the (1/2) o of the total power expressed by 000 as the transmission power, and the length represented by n4 as the bundling size.
  • TTI bundling 4 for uplink transmission.
  • the terminal After selecting the time-frequency resource block by using any one of the foregoing four methods, the terminal performs uplink transmission according to corresponding configuration information of the time-frequency resource block (for example, coverage enhancement parameter or time-frequency resource block parameter, etc.); when transmitting uplink data
  • the CRC (Cyclic redundancy check) scrambling is performed by using the terminal ID or the intra group ID.
  • the pilot or reference signal (RS, reference signal) or preamble (preamble sequence) used by the network device for terminal detection is selected from the corresponding terminal grouping configuration.
  • the pilot can be in one-to-one correspondence with the terminal for terminal identification.
  • the terminal ID may be a C-RNTI (Cell-Radio Network Temporary Identity) or an intra group ID (inner group ID).
  • C-RNTI Cell-Radio Network Temporary Identity
  • intra group ID inner group ID
  • the C-RNTI is configured during the access procedure or handover procedure; the intra-group identification number is provided by the terminal packet resource configuration.
  • the base station may perform new data demodulation by blind decoding, that is, perform data processing on the previously configured time-frequency resource block position; at this time, each possible time-frequency resource block start position or index number It has been pre-set, so the base station only needs to make a small number of attempts, and the existing method needs to use a variety of possible bandwidths to try at any time-frequency resource block location.
  • the terminal may send the uplink control signaling for carrying the resource selection result while transmitting the uplink data, and notify the network device of the transmission time-frequency resource block selected by the terminal, for example, using the time-frequency resource block.
  • the identification information (such as the starting position or index number of the time-frequency resource block) is indicated.
  • the terminal may also transmit the selected remaining parameter configurations, such as TTI bundling size, on the time-frequency resource block.
  • the time-frequency resource for signaling may be pre-agreed with the base station, and the base station is associated with the terminal through the resource location.
  • the uplink control signaling may carry the terminal ID, and after receiving the signaling, the base station identifies the time-frequency resource block information used by the terminal and the terminal, and performs corresponding reception.
  • the foregoing describes the implementation manner in which the network device configures the time-frequency resource block to be associated with the terminal group, and the terminal performs uplink transmission according to the configuration information.
  • the implementation process of configuring corresponding configuration information for each time-frequency resource block based on the network device configuring the sub-band to be not associated with the terminal group will be described below.
  • the uplink transmission time-frequency resource is divided into time-frequency resource blocks by using different signaling bearer manners. Specifically, the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks; the time-frequency resource block and the terminal are The implementation process of the data transmission method in the embodiment of the present application is not related to the second method.
  • Time-frequency resource block partitioning information for uplink transmission time-frequency resources of multiple terminals the identification information in the configuration information of the time-frequency resource block may be the starting position or index number of the time-frequency resource block in the information 1.
  • each time-frequency resource block may be assigned an index number, as shown in Table 8:
  • Time-frequency resource block The index number Time-frequency resource block 1 1 Time-frequency resource block 2 2 Time-frequency resource block 3 3 Time-frequency resource block 4 4 Time-frequency resource block 5 5 Time-frequency resource block 6 6 Time-frequency resource block 7 7 Time-frequency resource block 8 8
  • the terminal may send the index number of the selected time-frequency resource block to the network device, so that the network device can accurately detect.
  • mapping relationship of the terminal is added, as shown in Table 9:
  • Time-frequency resource block The index number affiliated terminal Time-frequency resource block 1 1 1 Time-frequency resource block 2 2 2 Time-frequency resource block 3 3 3 Time-frequency resource block 4 4 4 Time-frequency resource block 5 5 5 Time-frequency resource block 6 6 6 Time-frequency resource block 7 7 7 Time-frequency resource block 8 8 8
  • the information 2 can be broadcasted by the network device at the system level, that is, sent to the terminal through a system message, or configured through RRC signaling or MAC CE in the terminal connection establishment. It should be understood that the manner of carrying the bearer through RRC signaling has less signaling overhead and higher flexibility.
  • the following describes the implementation process of the data transmission method in the embodiment of the present application, in the second mode, which is used to describe the uplink transmission time-frequency resource in the unit of the time-frequency resource block and is not associated with the terminal group.
  • the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks, specifically in the form of sub-bands, and its configuration information and its bearer implementation form, and the time-frequency resource block is further
  • the time domain divides the smaller time-frequency resource block into dimensions, the indication of the starting position, number, length, and the like may be added to the corresponding time slot or symbol identifier.
  • Embodiment 9 Carrying configuration information of time-frequency resource blocks by using RRC signaling
  • the ninth embodiment is similar to the foregoing embodiment, and defines a new RRC signaling to carry the configuration information, and is sent to the terminal by the RRC connection setup message "RRCConnectionSetup message" or the RRC connection reset message "RRC ConnectionReconfiguration message”.
  • the configuration information including the granularity indication of the time-frequency resource block is carried by the RRC signaling, and the TTI can be included in the RRC signaling bearer as in the foregoing seventh embodiment.
  • Embodiment 10 Carrying configuration information by using MAC CE signaling
  • a network device is required to newly define a MAC CE, and a corresponding MAC sub-header is defined.
  • the specific message format and field meanings are also as in the foregoing second embodiment.
  • the configuration information including the granularity indication of the time-frequency resource block may be carried by the MAC CE as in the foregoing Embodiment 6; and the configuration information including the TTI bundling size indication or the Repetition size indication may be carried by the MAC CE as in the foregoing Embodiment 8; For the sake of brevity, it will not be repeated here.
  • Embodiment 11 Carrying configuration information by using system messages
  • the definition of the newly added element definition and the RRC signaling transmission is also required.
  • the new element can be added to the "RadioResourceConfigCommonSIB" defined by the existing LTE protocol, and the system message is delivered to the terminal:
  • the configuration information including the time-frequency resource block granularity indication is carried by the system message as in the previous embodiment 4.
  • the system message As in the previous embodiment 4, details are not described herein again.
  • Embodiment 9 to Embodiment 11 respectively describe, from the perspective of the network device, that the uplink transmission time-frequency resource used for the unlicensed transmission is divided into multiple time-frequency resource blocks (not associated with the terminal group).
  • the parameters carried in the configuration information are further divided into a power control parameter, a TTI bundling size indication or a Repetition size indication, and a granularity of the time-frequency resource block.
  • the terminal when the terminal selects the time-frequency resource block, the terminal also has 1, randomly selected; 2. selects according to the channel quality measurement result; 3. based on the previous data. Statistical selection of transmission success rate; 4. Four implementation methods based on selection of transmission power requirements.
  • each terminal needs to be in transmitting uplink data when performing uplink unlicensed transmission.
  • the identifier of the terminal is added to the uplink data, for example, the terminal identifier is carried by using MAC CE or RRC signaling. Since the pilot or reference signal (RS, reference signal) or preamble (preamble sequence) corresponding to the time-frequency resource block is not allocated to a fixed terminal or terminal group, the terminal cannot be distinguished. Therefore, it is necessary to carry the terminal ID displayed during data transmission, so that the network device distinguishes the terminal or the terminal group and further processes or distributes the uplink data after receiving the data.
  • RS reference signal
  • preamble sequence preamble sequence
  • data scrambling is performed using the ID corresponding to the time-frequency resource block instead of the terminal ID.
  • This subband ID corresponds only to the time-frequency resource block, not to the fixed terminal or terminal group.
  • the pilot or reference signal (RS, reference signal) or preamble (preamble sequence) used by the network device for terminal detection is selected from the corresponding time-frequency resource block configuration; the network device uses the ID of the time-frequency resource block.
  • the CRC processes and further processes or distributes the uplink data according to the terminal ID in the uplink data.
  • the ID of the time-frequency resource block may be a C-RNTI (Cell-Radio Network Temporary Identity), or may be a newly defined RNTI capable of distinguishing multiple time-frequency resource blocks in a cell, and
  • the configuration information of the frequency resource block is sent together by the network device to the terminal.
  • the terminal ID may be a C-RNTI or a global user identifier, such as an International Mobile Subscriber Identification Number (IMSI) or a Temporary Mobile Subscriber Identity (Temporary Mobile Subscriber Identity). TMSI”) and so on.
  • IMSI International Mobile Subscriber Identification Number
  • TMSI Temporary Mobile Subscriber Identity
  • the embodiment of the present invention only uses the C-RNTI, the IMSI, and the TMSI as an example to describe the terminal ID.
  • the application is not limited thereto, and the terminal ID may be used to determine other terminal identifiers.
  • the time-frequency resource block ID or the terminal ID may be carried by the SIB (system information block), RRC, MAC CE, and the like.
  • the foregoing embodiment describes that the network device divides the uplink transmission time-frequency resources used for the uplink unlicensed transmission into multiple time-frequency resource blocks, how the network device configures the corresponding configuration information, and how the terminal selects the time-frequency resource block. And use configuration information for various implementations of uplink unlicensed transmission.
  • the start position or length of the subband of the time-frequency resource block is represented by a character.
  • the value of 0001 indicates that the start position of the time-frequency resource block is the first RB; 0010 indicates that the start position of the time-frequency resource block is the second RB, etc.; for the field "Length” Its value is 0001 for the length of 1,0001 for length 2, 0010 for length 4, and so on.
  • configuration information corresponding to different sub-bands may also be represented by a pilot pattern or a pilot sequence, which will be described in detail below. It should be noted that, when the time-frequency resource block further divides the smaller time-frequency resource block by using the time domain as the dimension, the indication manner of the starting position, the number, the length, and the like, plus the corresponding time slot or symbol identifier, may be This will not be repeated here.
  • the terminal When the terminal performs data transmission, it needs to simultaneously transmit pilots for channel estimation and for data demodulation. As bandwidth changes, protocols define different pilot patterns with efficiency and performance in mind.
  • the time-frequency resource block defines a new pilot pattern with a subcarrier as a granularity, such as a pilot pattern for one subcarrier as shown in FIG. 16, a pilot pattern for two subcarriers, and a pilot pattern for four subcarriers. This is just an example.
  • the index code or the starting position of the time-frequency resource block can be obtained only by sequentially indicating the pilot pattern used by each time-frequency resource block, as shown in the following tenth embodiment. two.
  • Embodiment 12 Deriving a starting position of a time-frequency resource block by using a pilot pattern in RRC signaling
  • the present embodiment for example, in the foregoing first embodiment, defines a new RRC information element (Radio resource control information element) and delivers it in the RRC message-RRCConnectionSetup.
  • RRC information element Radio resource control information element
  • the message format is as follows:
  • the message format describes an implementation form in which the uplink transmission time-frequency resource is divided into multiple time-frequency resource blocks, specifically in the form of sub-bands, and the time-frequency resource block is divided into smaller by time domain.
  • the time-frequency resource block When the time-frequency resource block is used, its index number, starting position, number, length, and terminating position may be added to the corresponding time slot or symbol identifier.
  • the configuration information including the TTI bundling size indication or the Repetition size indication may be carried by the RRC signaling as in the foregoing Embodiment 7.
  • the RRC signaling as in the foregoing Embodiment 7.
  • the RRC signaling bearer configuration information is used as an example, and the configuration information including the pilot pattern may also be carried by using a MAC CE, a DCI, or a system message.
  • a new pilot pattern may also be defined to represent a Width of a time-frequency resource block, which may be a subcarrier, or an RB or an RBG.
  • the pilot pattern of the sub-band granularity is a sub-carrier
  • the pilot pattern of the sub-band granularity is RB
  • the pilot pattern of the RBG (including 3 RBs) of the RBG including 3 RBs).
  • the corresponding configuration information is configured for the time-frequency resource block, only the pilot pattern is sequentially indicated, and the granularity of the sub-band can be obtained, as shown in the following thirteenth embodiment.
  • Embodiment 13 Representing the granularity of a time-frequency resource block by using a pilot pattern in RRC signaling
  • the present embodiment for example, in the foregoing first embodiment, defines a new RRC information element (Radio resource control information element) and delivers it in the RRC message-RRCConnectionSetup.
  • RRC information element Radio resource control information element
  • the message format is as follows:
  • the configuration information including the TTI bundling size indication or the Repetition size indication may be carried by the RRC signaling as in the foregoing Embodiment 7.
  • the RRC signaling as in the foregoing Embodiment 7.
  • the starting position, the ending position, the number, and the granularity of the time-frequency resource block may be represented by a pilot pattern, and the other fields are represented in the same manner as the foregoing Embodiments 1 to 12, for the sake of brevity. No longer.
  • the starting position or the number of time-frequency resource blocks may also be represented by a pilot sequence; for example:
  • the network device determines the starting position or number of the corresponding time-frequency resource block by detecting which sequence the terminal sends.
  • the network device When the network device indicates the configuration information of the time-frequency resource block in the manner of the pilot pattern or the pilot sequence, when the terminal side receives the configuration information carrying the pilot pattern or the pilot sequence, the corresponding time-frequency resource block is selected for transmission.
  • the method is similar to the previous embodiment, and there are also 1. random selection; 2. selection according to channel quality measurement result; 3. statistical selection based on previous data transmission success rate; 4. selection based on transmission power requirement, and the like. . For the sake of brevity, it will not be repeated here.
  • pilot sequence is a ZC (Zadoff-Chu) sequence is only an example; for example, the pilot sequence may also be an Activity Detection Reference Signal ("ADRS"), and a pseudo noise sequence (Pseudo) - Noise Sequence), also referred to as PN sequence, M sequence, Walsh code, etc., but embodiments of the present invention are not limited thereto.
  • ADRS Activity Detection Reference Signal
  • Pseudo pseudo noise sequence
  • M sequence M sequence
  • Walsh code etc.
  • the terminal mapped to the same sub-band can be distinguished by the cyclic shift value and the root number; if the pilot sequence uses the M sequence, A terminal mapped to the same sub-band may be distinguished by a cyclic shift value, that is, a pilot sequence of a terminal mapped to the same sub-band corresponds to a different cyclic shift value.
  • the uplink transmission technology provided by the embodiment of the present application is described from the perspective of method implementation. It should be understood that the steps or operations shown in the methods of the foregoing various embodiments are merely examples, and other implementations may be performed. Operation or deformation of various operations. Also, in the specific implementation, the various steps may be performed in a different order than that described in the embodiments of the present application, and may not perform all the operations or steps shown in the embodiments of the present application. Alternatively, it is also possible to perform more of the operations or steps shown in the various embodiments of the present application.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the terminal 500 provided by the embodiment of the present application includes at least a processor 504 and a transceiver 508.
  • the terminal can also include a memory 519 that stores computer execution instructions;
  • the processor 504 is configured to acquire time-frequency resources for transmitting uplink data, where the time-frequency resource is: selecting at least one time-frequency resource block from the plurality of time-frequency resource blocks; and each time-frequency resource block of the time-frequency resource block The block corresponds to one configuration information; the configuration information includes at least the identification information of the corresponding time-frequency resource block; the transceiver 508 is configured to select, according to the configuration information of the at least one time-frequency resource block selected by the processor 504, The uplink data is transmitted on at least one time-frequency resource block.
  • the processor 504 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 508 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the transceiver 508 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the processor 504 and the memory 519 described above may be integrated into one processing device, and the processor 504 is configured to execute program code stored in the memory 519 to implement the above functions.
  • the memory 519 can also be integrated in the processor 504 when implemented.
  • the terminal may further include a power source 512 for providing power to various devices or circuits in the terminal.
  • the terminal may include an antenna 510 for transmitting uplink data or uplink control signaling output by the transceiver 508 through the wireless signal.
  • the terminal may further include one or more of an input unit 514, a display unit 516, an audio circuit 518, a camera 520, a sensor 522, and the like, and the audio circuit may further include Speaker 5182, microphone 5184, and the like.
  • the network device provided by the embodiment of the present application includes at least a processor 604 and a transceiver 608.
  • the network device may further include a memory 603, configured to save information about time-frequency resources for transmitting uplink data, where the time-frequency resource includes multiple time-frequency resource blocks;
  • the transceiver 608 of the network device is configured to send information about a time-frequency resource for transmitting uplink data to the terminal, where the time-frequency resource includes multiple time-frequency resource blocks, and the information of the time-frequency resource includes each a time-frequency resource block and corresponding configuration information; the configuration information includes at least identifier information of a corresponding time-frequency resource block;
  • the processor 604 is configured to detect uplink data transmitted by the terminal on the selected at least one time-frequency resource block.
  • the processor 604 and the memory 603 may be combined to form a processing device, and the processor 604 is configured to execute the program code stored in the memory 603 to implement the above functions.
  • the memory 603 can also be integrated in the processor 604 when implemented.
  • the processor 604 of the network device is further configured to divide the uplink transmission time-frequency resource into multiple time-frequency resource blocks; each of the time-frequency resource blocks is configured with corresponding configuration information; and the memory 603, And configured to store an uplink transmission time-frequency resource that is divided into a plurality of time-frequency resource blocks by the processor 604; each of the time-frequency resource blocks is configured with corresponding configuration information; and the uplink is divided into multiple time-frequency resource blocks.
  • the transmission time-frequency resource and the corresponding configuration information may be stored in the memory 603 by the system configurator in the form of a table, or the processor 604 may divide the uplink transmission time-frequency resource into a time-frequency resource block and configure the corresponding configuration information. And stored in the memory 603.
  • the transceiver 608 of the network device sends multiple time-frequency resource blocks and corresponding configuration information to the terminal when the terminal needs to send uplink data;
  • the transceiver 608 of the network device is further configured to receive uplink data that the terminal sends to the selected time-frequency resource block according to the corresponding configuration information.
  • the network device may further include an antenna 610, configured to send downlink data or downlink control signaling output by the transceiver 608 by using a wireless signal.
  • the processor 504 of the terminal and the processor 604 of the network device may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination.
  • the memory 12 of the terminal and the memory 22 of the network device may include a volatile memory, such as a random access memory (RAM), and may also include a non-volatile memory.
  • a volatile memory such as a random access memory (RAM)
  • RAM random access memory
  • non-volatile memory such as a flash memory, a hard disk drive (HDD), or a solid-state drive (SSD); the memory may further include a combination of the above types of memories.
  • the terminal can perform wireless communication with the network device by using the above-mentioned unauthorized transfer.
  • the terminal can also perform wireless communication by authorizing the transmission of spectrum resources.
  • the network device in the embodiment of the present application may correspond to the network device in the first to the twelfth embodiments of the present application
  • the terminal may correspond to the terminal in the first to the twelfth embodiments of the present application.
  • the foregoing and other operations and/or functions of the respective modules of the network device and the terminal are respectively implemented to implement the corresponding processes of the first embodiment to the twelfth embodiment.
  • the description of the method embodiment of the present application may be applied to the device embodiment. I will not repeat them here.
  • the network device and the terminal provided by the present application are configured to divide the uplink transmission time-frequency resources pre-allocated by the network device into a plurality of uplink transmission time-frequency resources in units of time-frequency resource blocks, so that the terminal can select a narrower bandwidth.
  • the frequency resource is used for uplink transmission, and the transmission power of the terminal is improved.
  • the network device also configures configuration information for each time-frequency resource block, and the configuration information may carry time-frequency resource block parameters or coverage enhancement parameters, or two parameters. Both are carried. Therefore, after the terminal selects the time-frequency resource block for uplink transmission, the uplink transmission is performed according to the corresponding configuration information, and the transmission power can be further improved; and the network device can also perform the correct time-frequency resource block according to the configuration information. Demodulation, thereby improving the efficiency of demodulation and avoiding processing delays.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法,网络设备和终端。所述方法由终端执行时,包括:终端获取用于传输上行数据的时频资源,所述时频资源是从所述多个时频资源块中选择至少一个时频资源块;时频资源块所述每个时频资源块对应一个配置信息;所述配置信息中至少包括对应时频资源块的标识信息;所述终端根据所述选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块上传输上行数据。实施本申请,终端可以选择更窄的带宽进行上行传输,提高了终端的发射功率,并且终端根据对应配置信息进行上行传输,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。

Description

一种数据传输方法、网络设备和终端
本申请要求于2017年4月1日提交中国专利局、申请号为201710214560.0、申请名称为“一种数据传输方法、网络设备和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及无线通信领域的数据传输方法,网络设备和终端。
背景技术
目前的通信***主要是支持语音通信和数据通信,通常来说,一个传统基站支持的连接数量有限。下一代移动通信***不仅需要支持传统的语音通信和数据通信,还将支持机器对机器(Machine to Machine,简称为“M2M”)通信,或者称为大规模机器通信(Massive Machine Type Communication,简称为“mMTC”)。根据预测,到2020年,连接在网络上的mMTC设备将会达到500到1000亿,这将远超现在的连接数量。
对mMTC类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下两种需求的业务:一种是需要可靠传输,但对时延不敏感的业务;另一种是需要低延迟,并且高可靠传输的业务。对于需要可靠传输但对时延不敏感的业务,较容易处理;但是,对于需要低延迟并且高可靠传输的业务,如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
为了解决未来网络中大量的mMTC类业务,以及满足低时延、高可靠的业务传输,上行免授权(Grant Free)传输的方案将应用到此类业务中。在免授权传输***中,存在大量的终端,但同时接入网络的终端数量很少,终端可以随机选择免授权传输资源发送数据。
免授权传输机制下,基站需要在免授权传输资源上对终端发送的上行数据进行盲检,解调复杂度极高,如何降低解调复杂度是亟待解决的技术问题。
发明内容
本申请实施例提供一种数据传输方法,网络设备和终端。
本申请提供的一种数据传输方法,包括:
首先将上行传输时频资源划分成多个时频资源块;每一个所述时频资源块配置有对应的配置信息;
一种可能的实现方式中,由网络设备将所述上行传输时频资源划分成多个时频资源块,存储被划分成多个时频资源块的上行传输时频资源;
另一种可能的实现方式中,由设备开发或维护人员,把所述上行传输时频资源划 分成多个时频资源块的表格或者参数信息配置在所述网络设备上。
另外,将上行传输时频资源划分成多个时频资源块,一种方式是将上行传输时频资源与终端组相关联,将上行传输时频资源先按照终端组进行划分,然后将每一终端组的上行传输时频资源再划分成不同的时频资源块;另一种方式是:不区分终端组,直接将上行传输时频资源划分成不同的时频资源块。配置信息与各个时频资源块相关联,终端选择哪个时频资源块,或者选择自己所属终端组对应的时频资源块,即可使用该时频资源块对应的上行传输配置。
这里所述的上行传输时频资源是指将网络设备给终端预留的用于上行免授权传输的时频资源,或者用于免授权传输的竞争传输单元(Contention Transmission Unit,CTU)划分为多个时频资源块。根据需求,所述上行传输时频资源可配置的范围为一组终端进行上行免授权传输的时频资源或者整个带宽的时频资源。以上两种方式中,时频资源块的大小可以不同,也可以相同,具体的,时频资源块在频域维度上以子带区分;所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同;每个子带包含的子载波个数可以相同也可以不同。时频资源块在时域维度上以子帧或者时隙,或者小时隙区分,每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同,可以根据需要灵活划分;终端可以根据传输需要灵活选择适合当前传输的时频资源块大小。一种实现方式中,所述每个时频资源块为一个子带。
一种方式中,所述配置信息包括上行传输时频资源内已配置的时频资源块的标识信息,该标识信息为对应时频资源块的起始位置或者索引号。
其中,所述配置信息还包括所述上行传输时频资源内已配置的时频资源块的数目。
其中,所述配置信息还包括所述上行传输时频资源内可用时频资源块的数目的上限值。
其中,所述配置信息还包括上行传输时频资源内各个时频资源块的长度或终止位置。
其中,所述配置信息通过信令显性指示或者通过导频图案隐性指示或者导频序列指示。
给每个时频资源块配置好配置信息之后,网络设备向终端发送多个时频资源块和对应的配置信息;在一种可能的实现方式中,网络设备是在终端有上行信号需要发送之前,向终端发送的配置信息。
终端接收网络设备向其发送的多个时频资源块和对应的配置信息,并保存在本地,以备进行上行传输时使用;
当终端有上行数据需要发送时,从所述多个时频资源块中选择进行上行传输的一个或时频资源块;该配置信息中配置了终端进行上行传输的时频资源块参数和覆盖增强所需的参数,时频资源块参数至少包括时频资源块的标识信息,该标识信息可以是资源块的起始位置,也可以是资源块的索引号,此外,所述时频资源块参数还包括时频资源块的长度或时频资源块的终止位置,时频资源块的粒度等等;而覆盖增强所需的参数例如功率控制参数或TTI bundling size指示或者Repetition size指示等参数信息。最后,发送上行数据时,所述根据所述选择的至少一个时频资源块的配置信息,在所 述选择的至少一个时频资源块上传输上行数据。
一种可选的实施方式中,终端在发送上行数据时,还可以将其选择的时频资源块的标识信息通知给网络设备。所述时频资源块的标识信息可以与所述上行数据一起发送,也可以独立发送(即不与所述上行数据一起发送)。
具体的,当时频资源块的配置信息包括起始位置或索引号时,终端以该时频资源块的起始位置或索引号指示的时频资源块发送上行数据;当时频资源块的配置信息进一步包括起始位置和长度时,终端以该时频资源块的起始位置为起点,在该长度对应的时频资源块上发送上行数据;当时频资源块的配置信息包括起始位置和终止位置时,终端以该时频资源块的起始位置为起点以终止位置为时频资源块的终点所代表的时频资源块上发送上行数据;当时频资源块的配置信息包括起始位置和粒度时,终端以该时频资源块的起始位置为起点,以粒度为时频资源的宽度所代表的时频资源块上发送上行数据;当时频资源块的配置信息包括起始位置和功率控制参数时,终端以该时频资源块的起始位置为起点,以功率控制参数表示的功率,在对应的时频资源块上发送上行数据;当时频资源块的配置信息包括起始位置和TTI bundling size指示时,终端以该时频资源块的起始位置为起点,以TTI bundling size指示的几个时间间隔,在绑定几个时间单位发送上行数据;终端以该时频资源块的起始位置为起点,在Repetition size指示为几个重复传输时间单位发送上行数据。
网络设备通过盲检的方式接收来自终端的上行数据能正确解调。相比现有技术而言,由于配置信息中指示了时频资源块的标识信息,根据该标识信息网络设备的盲检是在有限范围内有限次数的盲检,无需网络设备通过多次盲解来尝试多种可能,从而能够降低盲检的复杂度。
一种可能的实现方式中,终端还将其选择的至少一个时频资源块的标识信息携带在所述上行信息中发送给网络设备;
另一种可能的实现方式中,终端将其选择的至少一个时频资源块的标识通过上行控制信令发送给网络设备,上行数据通过数据信道发送给网络设备;
再一种可能的实现方式中,网络设备通过检测终端发送的序列判断对应的时频资源块的起始位置,并在该起始位置上检测终端传输的上行数据上述三种方式,都能使得网络设备能正确解调,进一步降低解调的复杂度。
实施本申请提供的数据传输方法,由于网络设备为终端预分配的上行传输时频资源划分为多个时频资源块,因此终端可以选择更窄带宽的时频资源进行上行传输,提高了终端的发射功率;进一步的,网络设备还为每一个时频资源块配置了配置信息,该配置信息可以携带子带参数或者覆盖增强参数,或者同时携带子带参数和覆盖增强参数,因此,终端选择了进行上行传输的时频资源块之后,根据对应配置信息进行上行传输,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。
另一方面,本申请实施例提供了网络设备,该网络设备可以是一种基站,也可以是一种控制节点。
该网络设备包括:
收发器,用于向终端发送用于传输上行数据的时频资源的信息,所述时频资源包 括多个时频资源块,所述时频资源块至少在频域资源上被划分为多个子带;所述时频资源的信息中包括每个时频资源块及其对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
处理器,用于在所述终端在其选择的至少一个时频资源块上检测终端传输的上行数据。
另一方面,本申请实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者信令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本申请实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信单元。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置,可以用于执行上述实施例描述的为终端配置时频资源的方法步骤。存储器可以用于存储控制节点的程序代码和数据。所述通信单元,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
又一方面,本申请实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,包括:
处理器,用于获取用于传输上行数据的时频资源,所述时频资源是从所述多个时频资源块中选择至少一个时频资源块;所述多个时频资源块中每个时频资源块对应一个配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
收发器,用于根据所述处理器选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块上传输上行数据。
其中,所述终端还可以包括存储器,用于保存有用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块。
其中,所述存储器可以集成在处理器中。
所述终端也可以通过硬件执行相应的软件实现。所述硬件或软件包括至少一个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
再一方面,本申请实施例还提供了一种处理装置,包括处理器和接口;
所述处理器,用于获取用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块,所述时频资源的信息中包括每个时频资源块对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
所述处理器还用于,在所述有上行数据需要发送时,从所述多个时频资源块中选择至少一个时频资源块;并通过接口将所述选择的至少一个时频资源块提供给收发器,以使收发器在所述选择的至少一个时频资源块上传输上行数据。
所述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来 实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
又一方面,本申请实施例提供了一种通信***,该***包括上述方面所述的基站和终端。可选地,还可以包括上述实施例中的控制节点。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所涉及的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所涉及的程序。
实施本申请提供的网络设备和终端,由于网络设备为终端预分配的上行传输时频资源划分为多个子带,因此终端可以选择更窄带宽的时频资源进行上行传输,提高了终端的发射功率;进一步的,网络设备还为每一个子带配置了配置信息,该配置信息可以携带子带参数或者覆盖增强参数,或者携带子带参数和覆盖增强参数,因此,终端选择了进行上行传输的子带之后,根据对应配置信息进行上行传输,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的基础上,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的数据传输方法的应用场景示意图;
图2是本申请实施例提供的通信***的结构示意图;
图3是现有技术中对上行传输时频资源进行划分的一种示意图;
图4是本申请实施例中对上行传输时频资源进行划分的一种示意图;
图5是本申请实施例中对上行传输时频资源进行划分的又一示意图;
图6是本申请实施例中对上行传输时频资源进行划分的又一示意图;
图7是本申请实施例中对上行传输时频资源进行划分的又一示意图;
图8是本申请实施例提供的数据传输方法的流程示意图;
图9是本申请实施例中MAC CE信令的一种示意图;
图10是本申请实施例中MAC子头的一种示意图;
图11是本申请实施例中MAC CE信令在MAC PDU中传输的示意图;
图12是本申请实施例中MAC CE信令的又一示意图;
图13是本申请实施例中MAC CE信令的又一示意图;
图14是本申请实施例中MAC CE信令的又一示意图;
图15是本申请实施例中MAC CE信令的又一示意图;
图16是本申请实施例中用导频图案表示上行传输子带的起始位置的示意图;
图17是本申请实施例中用导频图案表示上行传输子带的粒度的示意图;
图18为本申请实施例提供的终端的结构示意图;
图19为本申请实施例提供的网络设备的结构示意图。
具体实施方式
在通信***中,为了保证数据正确传输或通信质量,通常采用如下两种方式中的至少一种:
(1)通过TTI bundling(transmission time interval bundling,传输时间间隔绑定)的方式,使得终端在连续的几个子帧上传输相同的信号,由网络设备对这几个子帧上传输的信号进行合并,从而提升信号解调的质量;
(2)提升终端单次发送信号的功率。
目前,在长期演进(Long Term Evolution,简称为“LTE”)***的授权传输机制下,为了保证数据的正确传输,基站可以实时调整每个终端进行上行传输的时频资源,例如:
当终端有上行数据需要发送时,终端向基站发送上行资源调度请求,为了提升通信质量,基站可以给终端配置多个子帧或时隙(slot),以便终端进行TTI bundling;或基站减小终端在频域上的传输带宽,以便提升终端在单个时频资源块(Resource Block,RB)的发送功率;或者基站对终端采用前述两种方式的组合。
相应的,终端依据基站的调度发送上行数据,基站在调度信息指定的时频位置进行数据解调。
新的通信需求对现有网络提出了包括技术上和商业模式上的种种挑战,需要下一代移动网络(Next Generation Mobile Network,NGMN)来满足。如图1所示,NGMN主要将移动网络业务划分为三类场景:增强移动宽带(eMBB,Enhanced Mobile Broadband),低时延高可靠性通信(uRLLC,Ultra-reliable and Low-latency Communications)以及大规模机器通信(mMTC,Massive Machine Type Communications)。
mMTC覆盖对于联接密度要求较高的场景,例如智慧城市,智能农业,满足人们对于数字化社会的需求。该场景的典型特征是大连接,即终端数量庞大,业务类型以小数据包业务为主,而且对低时延有一定的要求。
uRLLC聚焦对时延极其敏感的业务,例如自动驾驶/辅助驾驶;对车联网、无人驾驶、工业控制等业务来说,***容量并不是主要的问题,但是对于时延和可靠性却有着很高的要求。
在以上两种场景中,免授权传输被认为是一种优于授权传输、更加适用的上行数据传输方法。免授权传输相比于基站调度的授权传输方案,不必经过发送上行资源调度请求和等待接收基站的授权这一过程,大大缩短了传输时延,可以满足在时延方面的需求。
但是,发明人发现,在免授权传输机制下,终端进行数据传输的资源是事先预留的,并且预留的资源在某些场景下通常针对多个终端。为了解决覆盖问题,若基站根据终端覆盖需求的变化进行预留资源的实时调整,会引入较大的信令开销和传输时延。
另一方面,如果终端自行调整传输资源及对应发送参数时,基站预先不知道终端数据传输出现的时频位置,需要通过多次盲解来尝试多种可能,会增加解调的复杂度 和处理时延。
有鉴于此,为了解决未来网络大量的uRLLC和mMTC类业务,以及满足低时延、高可靠的业务传输,在免授权传输机制下解决覆盖增强的技术问题,本申请实施例提出了一种技术方案:将为终端配置的上行传输时频资源划分成多个时频资源块,因此终端可以选择更窄带宽的时频资源进行上行传输,从而增加终端的发射功率。进一步的,网络设备为每个子时频资源块配置对应的配置信息,该配置信息可以携带时频资源块参数或者覆盖增强参数,或者两个参数都携带,因此,终端选择了进行上行传输的时频资源块之后,根据对应配置信息进行上行传输,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。
应理解的是:为了保证上述提及的uRLLC和mMTC场景下进行免授权传输的可靠性,本申请实施例提供了一种上行传输技术。当然本申请提供的技术方案不仅仅限于应用在uRLLC和mMTC场景下,在其他任何一种不需要基站调度的免授权传输场景中,都可以应用本申请提供的数据传输方法,终端和网络设备。
还应理解的是:本申请实施例中涉及的免授权传输,其英文可以表示为Grant Free简称GF。但是,免授权传输还可以有其他的表示方式,例如Grantless或Contention based,本文并不以此限定免授权传输的含义,可以理解的是,这里的免授权传输并不是一个专有名词,在实际应用中也有可能会采用其它的叫法,但是都不离本专利申请的实质。免授权传输通常是针对上行数据传输的,其可以理解为如下含义中的任一一种或多种,但是并限于这几种。例如,免授权传输也有可能被理解为是下述多种含义中的部分技术特征的组合或其他类似含义:
免授权传输可以指:网络设备预先分配并告知终端多个传输资源;终端有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的至少一个传输资源上检测终端传输的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
免授权传输可以指:网络设备预先分配并告知终端多个传输资源,以使终端有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
免授权传输可以指:不需要网络设备动态调度即可实现终端的上行数据传输的方法,所述动态调度可以是指网络设备为终端的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端的上行数据传输可以理解为允许两个或两个以上终端的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是终端接收所述的信令的时刻以后的至少一个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如TTI,数值可以为1ms,或者可以是预先设定的传输时间单元。
免授权传输可以指:终端在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端发送上行调度请求给网络设备,网络设备接收调度请求后,向终端发送上行授权,其中所述上行授权指示分配给终端的上行传输资源。
免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
所述传输资源可以包括但不限于如下资源的一种或多种的组合:
时域资源,如无线帧、子帧、符号,时隙,小时隙等;
频域资源,如子载波、子带等;
空域资源,如发送天线、波束等;
码域资源,如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)码本、低密度签名(Low Density Signature,简称为“LDS”)序列、CDMA码等;
上行导频资源。
本申请实施例提供的上行传输技术方案,可以应用于无线蜂窝网络的各种通信***,例如:全球移动通信(Global System for Mobile communications,GSM)***,码分多址(Code Division Multiple Access,CDMA)***,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)***,通用分组无线业务(General Packet Radio Service,GPRS)***,长期演进(Long Term Evolution,LTE)***,通用移动通信***(Universal Mobile Telecommunications System,UMTS),下一代移动通信***(例如,5G),和机器与机器(Machine to Machine,M2M)通信***等。
如图2所示,本申请实施例提供了一种通信***100。该通信***100至少包括至少一个网络设备20和多个终端,例如终端1、终端2、终端3,终端4等等。这些终端中有些可以互相通信,例如终端3和终端4,有些也可以用于蜂窝通信,例如终端1,终端2和终端4。终端之间互相通信包括D2D(Device to Device,设备与设备),M2M(机器与机器,Machine to Machine),UE cooperation(UE协作)等通信模式。蜂窝通信是指终端和网络设备之间进行的通信。与网络设备20连接的控制节点60,可以对***中的资源进行统一调度,可以给终端配置资源,进行资源复用决策,或者干扰协调等。
本申请实施例所指网络设备是一种部署在无线接入网中用以为终端提供无线通信功能的装置。该网络设备可以包括对传统无线通信***中的基站进行改进或升级后的设备。此处提到的基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如,在LTE***中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)***中,称为节点B(Node B)等,LTE***中称为演进通用陆地无线接入网(E-UTRAN)节点B(eNB)。下一代通信***,有可能使用“gNB”代替LTE***的eNB,当然,也有可能叫其它的名字。
本申请实施例中所涉及到的控制节点,如图2所示通信***中的控制节点60,其可 以连接多个基站,并为多个基站覆盖下的多个终端配置资源。控制节点可以为无线网络跨制式协同控制器等。
本申请实施例中所涉及到的终端,如图2所示的通信***100中的终端1、终端2、终端3等,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以称为移动台(mobile station,简称MS),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上文中结合图2描述了本申请实施例的应用场景,下面将分别从网络设备和终端的角度描述本申请实施例的数据传输方法的实现过程,在此之前,先对本申请实施例中的上行传输时频资源的划分过程做详细描述。
现有技术如图3所示,网络设备给终端预留的用于上行免授权传输的时频资源,或者将用于免授权传输的竞争传输单元(Contention Transmission Unit,CTU)预留给终端,并告知终端多个传输资源;终端有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端传输的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
本申请实施例划分上行传输时频资源是将用于免授权传输的上行传输时频资源进一步划分为多个时频资源块。如此,终端在更窄带宽的时频资源上进行上行传输,其发射功率可以得到增强,能获得更好的传输性能。
需要说明的是,所述上行传输时频资源可配置的范围为一组终端进行上行免授权传输的时频资源或者整个带宽的时频资源。以上两种方式中,时频资源块的大小可以不同,也可以相同,具体的,时频资源块在频域维度上以子带区分所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同;每个子带包含的子载波个数可以相同也可以不同。一种具体的实现方式中,所述每个时频资源块为一个子带。
时频资源块在时域维度上以子帧或者时隙,或者小时隙区分,每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同,可以根据需要灵活划分;终端可以根据传输需要灵活选择适合当前传输的时频资源块大 小。
需要说明的是,对于时频资源块的划分,可以先从频域上将其划分为多个子带,可选的,再将一个子带在时域上划分成多个时频资源块。也可以先从时域上将其划分为多个小的时频资源,然后再将一个时域单位的时频资源从频域上划分为子带。
一种可能的实现方式中,由网络设备将所述上行传输时频资源划分成多个时频资源块,存储被划分成多个时频资源块的上行传输时频资源;
另一种可能的实现方式中,由设备开发或维护人员,将表示把所述上行传输时频资源划分成多个时频资源块的表格或者参数信息配置在所述网络设备上。
划分上行传输时频资源的方式包括但不限于如下两种:
方式一:将上行传输时频资源与特定终端组进行关联。例如,将上行传输时频资源先按照终端组进行划分,然后将每个终端组的上行传输时频资源再进一步划分成不同的时频资源块;或者,将上行传输时频资源再进一步划分成不同的时频资源块,然后将这些时频资源块分配给不同的终端组。
具体如图4所示:网络设备为多个终端配置的免授权上行传输时频资源被首先划分为两部分:第一部分被终端组1共享;第二部分被终端组2共享;进一步的,第一部分资源又被划分为时频资源块1-1,时频资源块1-2,时频资源块2,时频资源块3,时频资源块4;第二部分资源又被网络设备划分为时频资源块1,时频资源块2,时频资源块3,时频资源块4。这里的时频资源块1-1和时频资源块1-2,其在时域上所占的子带的带宽相同(都占用子带1),但是占用不同的时隙,例如时频资源块1-1占用时隙1,时频资源块1-2占用时隙2;时频资源块4-1,和时频资源块4-2同理。需要说明的是,这里的子带包含不同个数的子载波;时隙包含不同的符号数。
图5是另一种实现方式,网络设备为多个终端配置的免授权上行传输时频资源被首先划分为两部分:第一部分被终端组1共享;第二部分被终端组2共享;进一步的,第一部分资源又被网络设备划分为多个时频资源块,每个时频资源块为一个子带,例如:子带1,子带2,子带3,子带4;第二部分资源又被网络设备划分为子带1,子带2,子带3,子带4。
这种划分方式,使得网络设备对于传输资源的控制更加准确,其在不同的时频资源块上进行检测的时候,就知道该时频资源块被哪组的终端所使用,从而提高了检测效率。方式二:不区分终端组,即直接将上行传输时频资源划分成不同的时频资源块,终端选择哪个时频资源块,则使用对应的时频资源块进行上行传输。
具体如图6所示:网络设备为多个终端配置的免授权上行传输时频资源直接被网络设备划分为时频资源块1-1,时频资源块1-2,时频资源块2,时频资源块3,时频资源块4-1,时频资源块4-2,时频资源块5,时频资源块6,时频资源块7,时频资源块8。该时频资源块1~时频资源块8可以被多个终端共享。
如图7所示是另一种实现方式:网络设备为多个终端配置的免授权上行传输时频资源直接被网络设备划分为多个时频资源块,每个时频资源块为一个子带;例如子带1,子带2,子带3,子带4,子带5,子带6,子带7,子带8。该子带1~子带8可以被多个终 端共享。
这种划分方式,使得终端在进行时频资源块的选择时,更加的灵活,其传输性能更优。
以上两种方式中,时频资源块的大小可以不同,也可以相同,具体的,该时频资源块在频域维度上以子带区分,其子带所占的带宽可以相同也可以不同。应理解的是,子带的粒度可以是子载波,或者RB或者RBG;在时域维度上以符号数进行区分,其符号数有多有少或者相同,可以根据需要灵活划分,终端可以根据传输需要灵活选择适合当前传输的时频资源块大小。当然,这里仅为举例,在时域维度上还可以以时隙或者小时隙进行区分。
在上述两种将上行传输时频资源划分成时频资源块的基础上,本申请实施例的网络设备进一步为时频资源块配置对应的配置信息,该配置信息主要包括时频资源块参数和覆盖增强参数,这里所说的时频资源块参数是跟时频资源块相关的信息,例如时频资源块的标识信息(起始位置或索引号),时频资源块的数目,数目的上限值,时频资源块的粒度,粒度的长度中的一种或多种;而覆盖增强参数是用于通过增强信号的接收功率,来提升接收信噪比,满足覆盖的要求的参数,例如功率控制参数,TTI bundling size指示或Repetition size指示等等。
参见图8,基于上述网络设备将用于免授权传输的上行传输时频资源划分为多个上行传输时频资源块,并为每个上行传输时频资源块分别配置对应的配置信息,本申请实施例提供的数据传输方法如下:
步骤101,网络设备向终端发送用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块,所述时频资源的信息中包括每个时频资源块及其对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息,该标识信息可以是时频资源块的起始位置或索引号;可选的,网络设备在终端需要发送上行数据之前,向终端发送用于传输上行数据的时频资源的信息;
步骤102,终端保存网络设备分配的多个时频资源块和对应的配置信息;
步骤103,终端有上行数据需要发送时,从多个时频资源块中选择用于传输上行数据的至少一个时频资源块;
步骤104,终端根据所述选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块上传输上行数据;
步骤105,网络设备接收终端在所述时频资源块上向其发送的上行数据。
实施本申请提供的数据传输方法,由于网络设备为终端预分配的上行传输时频资源划分为多个时频资源块,因此终端可以选择更窄带宽的时频资源传输上行数据,提高了终端的发射功率;进一步的,网络设备还为每一个时频资源块配置了配置信息,该配置信息可以携带时频资源块参数或者覆盖增强参数,或者两个参数都携带,因此,终端选择了用于传输上行数据的时频资源块之后,根据对应配置信息进行传输上行数据,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。
本申请实施例提供的数据传输方法,在网络设备采用上述方式一对上行传输资源 进行划分时,即将时频资源块与终端组进行关联,具体包括:
信息1:针对多个终端组的上行传输时频资源的时频资源块划分信息,该信息1可以向小区内所有终端进行发送,也可以仅告知每个终端组内的终端其所在终端组对应的上行传输时频资源的划分情况;
信息2:时频资源块对应的覆盖增强参数;
该信息2发送的对象可以是终端组内的多个终端;
信息3:时频资源块与终端组的映射关系。
该信息3可以发送给同一终端组内的每一个终端。
上述的信息1是终端进行免授权传输的基本配置,用于指示网络设备为终端组或终端预留的上行传输时频资源。而信息2和信息3为可选的,其涉及的覆盖增强参数用于指示终端如何使用该上行传输时频资源实现覆盖增强。时频资源块的配置信息中的标识信息,可以是信息1中时频资源块的起始位置或者索引号。
具体的,当网络设备针对多个终端组的上行传输时频资源的时频资源块进行划分时,可以给每个时频资源块分配一个索引号,如表1所示:
表1
时频资源块 索引号
时频资源块1 1
时频资源块2 2
时频资源块3 3
时频资源块4 4
时频资源块5 5
时频资源块6 6
时频资源块7 7
时频资源块8 8
终端在选择时频资源块进行上行传输的时候,可以将其选择的时频资源块的索引号发送给网络设备,以便网络设备能准确检测。
若加上终端组的映射关系,如表2所示:
表2
时频资源块 索引号 所属终端组
时频资源块1 1 1
时频资源块2 2 1
时频资源块3 3 1
时频资源块4 4 1
时频资源块5 5 2
时频资源块6 6 2
时频资源块7 7 2
时频资源块8 8 2
包括时频资源块参数或者覆盖增强参数的信息2,在后续详细描述。
上述的信息1、信息2、信息3在具体实现中,可通过***消息或RRC(radio resource control,无线资源控制)信令或MAC CE(medium access control control element,媒体接入控制控制元素)或DCI(downlink control information,下行控制信息)承载。
结合各种信令所能携带的信息量,采用如表3所示的信令组合来实现配置信息的承载:
表3
处理流程 ***消息 RRC信令 MAC CE DCI
方式1 信息1 信息2,信息3    
方式2 信息1 信息2 信息3  
方式3 信息1 信息2   信息3
方式4 信息1   信息2,信息3  
方式5 信息1   信息2 信息3
方式6   信息1,信息2,信息3    
方式7   信息1 信息2,信息3  
方式8   信息1 信息2 信息3
一种实现方式是:上述信息1可以通过由网络设备在进行***配置的时候,通过***消息发送至终端,然后在RRC承载建立的时候,网络设备再把信息2和信息3通过RRC信令发送至终端;又一种实现方式是:上述信息1,信息2,信息3通过RRC信令进行承载的方式,其信令的开销更小,灵活程度更高。
应理解的是,上述方式1~方式8仅为举例,网络设备还可以根据实际需求,采用更多的信令组合方式将配置信息发送到终端。
下面将从不同的信令承载方式描述以时频资源块为单位划分上行传输时频资源且与终端组相关联的方式一中,本申请实施例的数据传输方法的实现过程。应理解的是,下面的实施例描述了上行传输时频资源被划分为多个时频资源块具体是多个子带形式时,其配置信息及其承载实现形式。如果时频资源块以时域为维度进行划分更小的时频资源块时,其起始位置,数目,长度等指示方式加上对应的时隙或者符号标识即可。
实施例一:以RRC信令承载配置信息
此种方式是定义一种新的RRC信令,并放在RRC连接建立(RRC Connection Setup) 中进行传递。
实施例一的第一种实现方式是:RRC中携带的配置信息包含时频资源块的划分信息,例如时频资源块的起始位置,使得终端可以选择合适的时频资源块进行传输。这里,时频资源块的长度则默认持续到下一个时频资源块的起始位置。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000001
若时频资源块在子带的基础上,进一步以时域为维度进行划分更小的时频资源块时,上述配置消息中还将携带时域上的起始位置,比如第几个符号。
本申请实施例中,也可以先以时域为维度对上行时频资源进行划分,再以频域为维度对上行时频资源进行划分,得到多个时频资源块。后续实施例原理相同,在此不再赘述。
实施例一的第二种实现方式是:RRC中携带的配置信息包含时频资源块的划分信息,例如时频资源块的长度,使得终端可以选择合适的时频资源块进行传输,从而提高发射功率。这里,第一个时频资源块的频域上的起始位置可以是可用子带的起始位置,后续子带的起始位置是“子带起始位置+前面所有的子带长度+1”;第一个时频资源块的时域上的起始位置可以是可用符号的起始位置,后续时频资源块的起始位置是“符号起始位置+前面所有的符号长度+1”。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000002
Figure PCTCN2018080551-appb-000003
若以时域为维度进行划分更小的时频资源块时,上述消息格式还可以是携带时域上的长度,比如“符号起始位置+前面所有的符号长度+1”。
实施例一的第三种实现方式是:RRC中携带的配置信息包含时频资源块的划分信息,例如时频资源块的起始位置和时频资源块的长度等,使得终端可以选择合适的时频资源块进行传输,从而提高发射功率。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000004
若时频资源块在子带的基础上,进一步以时域为维度进行划分更小的时频资源块时,上述消息格式还将携带时域上的起始位置和长度,比如“起始位置为第4个符号,其长度为n”。
实施例一的第四种实现方式是:在RRC中携带的配置信息不仅包含时频资源块划分信息,还进一步包含时频资源块对应的功率控制参数。终端使用不同的时频资源块 发送上行数据时,不同的时频资源块对应的功率等级配置为不同,如此提高覆盖增强。具体实现中,网络设备可以使用3个比特对功率等级进行量化,000表示发射功率用总功率的(1/2) o进行发送,而001标识用总功率的(1/2) 1进行发送,以此类推。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000005
若以时域为维度进行划分更小的时频资源块时,上述消息格式可以指示该的时频资源块的控制控制参数。
上述四种实现方式中,各字段的含义如下:
Figure PCTCN2018080551-appb-000006
Figure PCTCN2018080551-appb-000007
进一步的,对于RRC信令来讲,网络设备还可以同时定义时频资源块数目的上限值,以时频资源块是子带为例,例如:
maxNarrowband          INTEGER::=8
进一步的,网络设备还可以同时定义时频资源块的终止位置。此种情况下,时频资源块的划分信息可以不包含时频资源块的长度,时频资源块的长度则为时频资源块的起始位置到终止位置。
以时频资源块是子带,RRC中携带的配置信息包含子带的起始位置和子带的长度为例,例如:
EndPoint            BIT STRING(SIZE(5))
应理解的是,以上各字段的表示方式和取值仅为举例,本申请实施例的实现方式不仅限于此。
实施例二:用MAC CE信令承载配置信息
本实施例二中,需要网络设备新定义一个MAC CE,并定义对应的MAC子头(sub-header)。
每个子带使用一个MAC CE进行配置;若网络设备需要向终端指示多个时频资源块的配置,则向终端发送多个MAC CE。
新的MAC CE定义如图9所示,其中字段的含义如下:
Figure PCTCN2018080551-appb-000008
对应的MAC sub-header如图10所示,相应的,新定义的MAC CE对应的LCID(Logical Channel ID)如表4所示,该LCID可以使用TS 36321-e00的预留字段,例如10111来关联新定义的MAC CE。
表4
用于下行共享信道的LCID的值(Values of LCID for DL-SCH)
Figure PCTCN2018080551-appb-000009
应理解的是,此处用预留字段10111来表示MAC CE仅为举例,在其他的实现方式中还可以通过其他预留的字段表示。
上述新定义的MAC CE还可由新定义的MAC PDU(MAC Protocol Data Unit,MAC协议数据单元)格式承载,如图11所示,也可以由现有LTE协议定义的DL-SCH(Downlink Shared Channel,下行共享信道)的MAC SDU承载。
为使终端根据传输需求选择相应的时频资源块,本申请实施例中,网络设备还可以对时频资源块的粒度进行配置,也即配置信息中还可以携带时频资源块的粒度,所述时频资源块的粒度包括子载波或RB(resource block)或RBG(resource block group)。这里的一个RB包含12个子载波。
在具体实现中,网络设备可以用2比特信息指示子载波,RB或RBG,如表5所示:
表5
子带粒度指示 含义
00 保留
01 子载波
10 RB
11 RBG
实施例三:用DCI承载配置信息。
本实施例中,将配置信息用DCI进行承载,而DCI承载在PDCCH(physical downlink control channel,物理下行控制信道)里。PDCCH由终端组的RNTI(radio network temporary identifier,无线网络临时标识)加扰,网络设备可对终端组内的一个或多个终端进行配置。
以时频资源块为子带为例,新定义DCI格式(DCI format),包含下述信息:
-Number of Narrowband–3bits
-For Narrowband 1:
-Start Point-4 bits
-For Narrowband 2:
-Start Point-4 bits
可选择的,DCI格式中还可以包括关于子带的长度的信息:
Length–3 bits
其中,
Number of Narrowband给出了当前DCI消息里配置的子带数目;
Start Point表示子带的起始位置,0001代表从第一个RB,0010代表从第二个RB,以此类推;
Length表示子带的长度,0000代表长度1,0001代表长度2,0010代表长度4,以此类推。
在子带连续配置的情况下,上一个子带的终止位置可以由“下一子带的起始位置-1”得到,因此,子带的配置可以不包含Length字段。
类似的,还可以配置子带的起始位置和终止位置。
同样的,包含子带粒度指示的配置信息也可以通过***消息,RRC信令,MAC CE,或者DCI进行承载,下面将详细描述。
若时频资源块在子带的基础上,进一步以时域为维度进行划分更小的时频资源块时,上述DCI消息格式进一步包含时域上的参数信息。
实施例四:用***消息承载包含时频资源块粒度指示的配置信息
本实施例中,网络设备在***消息中,新增一个RRC信息元素(Radio resource control information elements)用于指示上述时频资源块的粒度。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000010
Figure PCTCN2018080551-appb-000011
其中的字段含义如下:
Figure PCTCN2018080551-appb-000012
该子带的粒度指示信息可以添加在LTE定义的“RadioResourceConfigComm-onSIB”中,由网络设备通过***消息传递给终端。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000013
若以时域为维度进行划分更小的时频资源块时,上述DCI消息格式可以包含时域上的参数信息,原理相同不再赘述。
实施例五:用RRC信令承载包含时频资源块粒度指示的配置信息
本实施例中,网络设备新增一个RRC信息元素(Radio resource control information elements)用于指示上述时频资源块的粒度。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000014
Figure PCTCN2018080551-appb-000015
其中的字段含义如下:
Figure PCTCN2018080551-appb-000016
该子带的粒度指示信息可以添加在LTE定义的“RRCConnectionSetup message”或者“RRC ConnectionReconfiguration message”中,由网络设备通过传递给终端。
若以时域为维度进行划分更小的时频资源块时,上述DCI消息格式可以包含时域上的参数信息。
实施例六:用MAC CE承载包含时频资源块粒度指示的配置信息
实施例六的一种实现方式是:新定义一个MAC CE,并定义对应的LCID,具体表示如图12所示。
其字段含义如下:
Figure PCTCN2018080551-appb-000017
同样的,需要新定义MAC CE对应的LCID。LCID可以使用TS 36321-e00的预留字段,本实施例中,选择10110来关联新定义的MAC CE,更新后的表格如下表6所示:
表6
用于下行共享信道的LCID的值(Values of LCID for DL-SCH)
Figure PCTCN2018080551-appb-000018
应理解的是,此处用预留字段10110来表示MAC CE仅为举例,在其他的实现方式中还可以通过其他预留的字段还表示。同样的,上述新定义的MAC CE还可以由LTE协议定义的DL-SCH(Downlink Shared Channel,下行共享信道)的MAC PDU(MAC Protocol Data Unit,MAC协议数据单元)去承载,如图11所示。
实施例六的第二种实现方式是:在实施例二中如图9所示的新定义的MAC CE基础上扩充字段以表示时频资源块的粒度,具体如图13所示:
其中字段的含义如下:
Figure PCTCN2018080551-appb-000019
此种实现方式中,实施例二中的MAC CE对应的LCID的值保持不变,即不用新增LCID,其可以沿用表4。
为了解决覆盖增强的问题,终端还可以通过TTI bundling或者Repetition的传输方式,在时域内累加功率,从而提高网络设备的解调信噪比。
但是在免授权传输机制下,如果网络设备不知道终端传输使用的TTI bundling size 或者Repetition size配置,则需要尝试不同的绑定大小(bundling size)或者不同的重复传输大小(Repetition size)甚至不同的起始位置区进行数据接收,这种多次尝试的方式会成倍的增加解调的复杂度,也会引入更过的处理时延,因此,本申请实施例的网络设备在为终端配置用于免授权传输的上行传输时频资源时,还可以进一步配置TTI bundling size或Repetition size指示,终端根据该TTI bundling size或Repetition size指示进行上行传输,网络设备便可以采用正确的bundling size或Repetition size进行解调。
以TTI bundling size指示为例进行说明,如下表7所示:
表7
时频资源块索引号 bundling size 含义
1 000 Size=2 0=1
2 001 Size=2 1=2
3 010 Size=2 2=4
4 110
如上表7所示,相同的带宽的时频资源块可以配置不同的bundling size,以便适应终端的不同业务需求。
上述的TTI bundling size指示或Repetition size指示可以在前述实施例一所示的RRC信令或实施例二所示的MAC CE中加入相应的TTI bundling size指示字段来实现,下面仍以TTI bundling size指示为例,通过实施例七和实施例八分别描述。
实施例七:通过RRC信令承载包含TTI bundling size指示的配置信息
本实施例中,仍然需要定义一种新的RRC信令,并放在RRC Connection Setup中进行传递。
实施例七的一种实现方式是:功率控制参数和TTI bundling size指示同时携带在配置信息中,以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000020
Figure PCTCN2018080551-appb-000021
若时频资源块在子带的基础上,进一步以时域为维度进行划分更小的时频资源块时,上述DCI消息格式进一步包含时域上的参数信息。
实施例七的另一种实现方式是:配置信息中携带TTI bundling size指示,不包含功率控制参数,以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000022
其中字段的含义如下:
Figure PCTCN2018080551-appb-000023
若以时域为维度进行划分更小的时频资源块时,上述DCI消息格式可以包含时域上的参数信息。
实施例八:通过MAC CE承载包含TTI bundling size指示的配置信息
本实施例中,需要网络设备新定义一个MAC CE,并且每个时频资源块使用一个MAC CE进行配置;若网络设备需要向终端指示多个时频资源块的配置,则向终端发送多个MAC CE。
实施例八的一种实现方式是:功率控制参数和TTI bundling size指示同时携带在配置信息中,新的MAC CE定义如图14所示,其中字段的含义如下:
Figure PCTCN2018080551-appb-000024
实施例八的另一种实现方式是:配置信息包含TTI bundling size指示,不包含功率控制参数,新的MAC CE定义如图15所示,其中字段的含义如下:
Figure PCTCN2018080551-appb-000025
对应上述两种MAC CE,需要定义对应的MAC子头(sub-header),对应的MAC sub-header如图10所示,在此不再赘述。
前述实施例一至实施例八分别从网络设备的角度,描述了在采用方式一即将用于免授权传输的上行传输时频资源划分成多个与终端组相关联的时频资源块的基础上,利用RRC,MAC CE,***消息,DCI承载配置信息的实现过程,其中配置信息携带的参数又分为功率控制参数,TTI bundling size指示,时频资源块的粒度,长度,时频资源块索引号,或者时频资源块的起始位置或终止位置等等。
下面,将从终端侧描述在子带与终端组关联的基础上,每个终端进行上行传输的实现方式,其大致可分为以下三种:
第一种:终端随机选择时频资源块进行上行传输。
在基于前述网络设备将用于免授权传输的上行传输时频资源划分成与终端组划相关联的多个时频资源块,且为每个时频资源块配置有进行上行传输的配置信息的基础上,某个终端需要发送上行数据信号时,从自己所属的终端组拥有的时频资源块中,挑选一个或者多个满足自己传输需求的时频资源块进行上行免授权传输。
由于每个时频资源块都配置有配置信息,因此终端随机选择时频资源块,遵从该子带对应的配置信息进行传输,也能达到覆盖增强的技术效果。例如终端1属于终端组1,其可以选择的子带有时频资源块1-1,时频资源块1-2,时频资源块2,时频资源块3,时频资源块4,终端1选择时频资源块4-1,进行上行传输,则选择使用时频资源块4-1对应的配置信息进行上行传输。
第二种:终端根据信道质量的测量结果,选择时频资源块进行上行传输。
此种方式中,终端可以根据信道质量测量结果,更有针对性的选择时频资源块进行上行免授权传输,因此更够获得更好的覆盖增强效果。
具体的,终端根据如下公式(1)进行信道质量测量:
SNR_target=P_ul tx–Pathloss-P_noise  (1)
其中,SNR_target为目标信噪比;
Pathloss为路径损耗,其可以通过测量得到;此为本领域技术人员所熟知的技术手段,在此不再赘述;
P_noise为噪声功率;
P_ul_tx为上行传输功率;其通过如下公式(2)计算得到;
P_ul_tx=P_ul_total-10*log(Num_RB*TTI bundlingsize)     (2)
其中,P_ul_total是上行传输允许的总发射功率;
因此,测得了Pathloss就能得到发送所需的RB的数目Num_RB*TTI bundlingsize
Num_RB*TTI bundlingsize=10^(P_ul_total–Pathloss-P_noise)/10     (3)
在一种实现方式中,时频资源块为子带时,TTIbundling size取值为1。
终端根据上述公式(3)即可计算得到进行上行传输的时频资源块的数目,根据该时频资源块的数目,查找配置信息,选择该配置信息对应的时频资源块进行上行免授权传输。
此处,仅例举了通过计算上行传输的时频资源块数目选择对应的时频资源块的过程,本申请实施例还可以计算上行传输所需的功率,或者时频资源块的粒度,或者TTI bundling size指示或Repetition size指示等等参数,然后再选择相应的时频资源块,其计算公式按需设置,在此不再赘述。
第三种:终端基于之前数据传输成功率统计结果,选择时频资源块进行上行传输。
具体实现中,终端在进行初始传输时,可以随机选择一个时频资源块或者根据路径损耗(Pathloss)的值,选择一个合适的时频资源块来进行上行传输;
然后,当终端N次收到来自网络设备的NACK消息时,则触发选择更窄带宽的时频资源块来进行上行传输;当终端收到来自网络设备的ACK消息时,则可以选择更宽带宽的时频资源块来进行上行传输。此时,网络设备可以配置N的阈值,以便终端可以统计数据传输成功是否。
第四种:终端根据自己所需的发射功率,选择至少一个时频资源块进行上行传输。
例如终端在0001表示的第一个RB的起始位置上,采用长度为0001表示的长度1,用000表示的总功率的(1/2) o作为发射功率,以n4表示的长度为bundling size=4的TTI bundling进行上行传输。
终端采取以上四种方式中任一种选择时频资源块后,按该时频资源块的对应的配置信息(例如覆盖增强参数或者时频资源块参数等)进行上行传输;在发送上行数据时,采用终端ID或者组内身份识别号(inner Group ID)进行CRC(Cyclic redundancy check,循环冗余校验)加扰。网络设备在进行终端检测时采用的导频(pilot)或参考信号(RS,reference Signal)或preamble(前导序列)是从对应的终端分组配置中选取。导频可以和终端一一对应,以便进行终端识别。
终端ID可以是C-RNTI(Cell-Radio Network Temporary Identity,小区无线网络临时标识),也可以是组内身份识别号(inner Group ID)。C-RNTI在接入过程或切换过程进行配置;组内身份识别号由终端分组资源配置时提供。
终端进行上行传输后,基站可以通过盲解来进行新数据解调,即,在之前配置的时频资源块位置上进行数据处理;此时每个可能的时频资源块起始位置或索引号已经预先设定,因此基站只需要进行少量的尝试,而现有方式需要在任意的时频资源块位置使用多种可能的带宽进行尝试。
为进一步减少盲解带来的开销,可以考虑终端进行上行数据发送的同时发送用于携带资源选择结果的上行控制信令,把终端选择的传输时频资源块告知网络设备,例如用时频资源块的标识信息(例如时频资源块的起始位置或索引号)进行指示。进一步的,还可以上报终端在该时频资源块上传输所选定的其余参数配置,如TTI bundling size。为了区分不同终端发送的上述控制信令(即将该控制信令与终端关联),可以和基站预先约定信令发送的时频资源,基站通过资源位置与终端关联。可选的,可以在上述上行控制信令携带终端ID,基站在收到该信令后识别终端和终端所用的时频资源块信息,并对应进行接收。
以上描述了网络设备将时频资源块配置为与终端组关联的基础上,终端根据配置信息进行上行传输的实现方式。下面将描述网络设备将子带配置为不与终端组关联的基础上,为每个时频资源块配置对应的配置信息的实现过程。
下面将从不同的信令承载方式描述以时频资源块为单位划分上行传输时频资源,具体的,该上行传输时频资源被划分为多个时频资源块;该时频资源块与终端组不相 关联的方式二中,本申请实施例的数据传输方法的实现过程。
信息1:针对多个终端的上行传输时频资源的时频资源块划分信息;时频资源块的配置信息中的标识信息,可以是信息1中时频资源块的起始位置或者索引号。
信息2:时频资源块对应的覆盖增强参数;
具体的,当网络设备针对多个终端的上行传输时频资源的时频资源块进行划分时,可以给每个时频资源块分配一个索引号,如表8所示:
表8
时频资源块 索引号
时频资源块1 1
时频资源块2 2
时频资源块3 3
时频资源块4 4
时频资源块5 5
时频资源块6 6
时频资源块7 7
时频资源块8 8
终端在选择时频资源块进行上行传输的时候,可以将其选择的时频资源块的索引号发送给网络设备,以便网络设备能准确检测。
若加上终端的映射关系,如表9所示:
表9
时频资源块 索引号 所属终端
时频资源块1 1 1
时频资源块2 2 2
时频资源块3 3 3
时频资源块4 4 4
时频资源块5 5 5
时频资源块6 6 6
时频资源块7 7 7
时频资源块8 8 8
包括时频资源块参数或者覆盖增强参数的信息2,在后续详细描述。
该信息2可以由网络设备进行***级的广播,即通过***消息发送至终端,也可在终端连接建立通过RRC信令或MAC CE进行配置。应理解的是,通过RRC信令进行承载的方式,其信令的开销更小,灵活程度更高。
下面将从不同的信令承载方式描述以时频资源块为单位划分上行传输时频资源,且不与终端组相关联的方式二中,本申请实施例的数据传输方法的实现过程。
应理解的是,下面的实施例主要描述了上行传输时频资源被划分为多个时频资源块具体是以子带形式时,其配置信息及其承载实现形式,该时频资源块进一步以时域为维度进行划分更小的时频资源块时,其起始位置,数目,长度等指示方式加上对应的时隙或者符号标识即可。
实施例九:以RRC信令承载时频资源块的配置信息
本实施例九与前述实施例一类似,定义一种新的RRC信令来携带配置信息,并由RRC连接建立消息“RRCConnectionSetup message”或者RRC连接重置消息“RRC ConnectionReconfiguration message”发送至终端。
其消息格式和字段含义如前述实施例一。另外,本实施例中,也可以同前述实施例五一样,用RRC信令承载包含时频资源块的粒度指示的配置信息,以及可以同前述实施例七那样,通过RRC信令承载包含TTI bundling size指示或Repetition size指示的配置信息;为了简洁,在此不再赘述。
实施例十:用MAC CE信令承载配置信息
本实施例十也是需要网络设备新定义一个MAC CE,并定义对应的MAC子头(sub-header),其具体的消息格式和字段含义也如前实施例二;另外,本实施例中,也可以如前述实施例六那样,用MAC CE承载包含时频资源块的粒度指示的配置信息;以及可以同前述实施例八那样,通过MAC CE承载包含TTI bundling size指示或Repetition size指示的配置信息;为了简洁,在此不再赘述。
实施例十一:用***消息承载配置信息
本实施例中,也需要新增元素定义同RRC信令传输时的定义方式。
新增元素可添加在现有LTE协议定义的“RadioResourceConfigCommonSIB”中,由***消息传递给终端:
其消息格式表示如下:
Figure PCTCN2018080551-appb-000026
Figure PCTCN2018080551-appb-000027
本实施例也可以如前实施例四一样,利用***消息承载包含时频资源块粒度指示的配置信息,为了简洁,在此不再赘述。
前述实施例九至实施例十一分别从网络设备的角度,描述了在采用方式二,即将用于免授权传输的上行传输时频资源划分成多个时频资源块(未与终端组关联)的基础上,利用RRC,MAC CE,***消息,DCI承载配置信息的实现过程,其中配置信息携带的参数又分为功率控制参数,TTI bundling size指示或Repetition size指示,时频资源块的粒度,长度,时频资源块的索引号,时频资源块的起始位置或终止位置等等。
与前述子带与终端组相关联的实施例相似,本实施例中,终端在选择时频资源块的时候,同样有1、随机选择;2、根据信道质量测量结果选择;3、基于之前数据传输成功率的统计选择;4、基于发射功率需求进行选择等四种实现方式。
区别于前述时频资源块与终端组相关联的实施例,在时频资源块未与终端组关联的实现方式中,每个终端在进行上行免授权传输时,在发送上行数据时,需要在上行数据中增加终端的标识,例如用MAC CE或RRC信令携带终端标识。由于时频资源块对应的导频(pilot)或参考信号(RS,reference Signal)或preamble(前导序列)不是分配给固定的终端或终端组,无法区分终端。因此有必要在数据传输时显示的携带终端ID,以便网络设备在接收数据后区分终端或终端组并对上行数据的进一步处理或分发。类似的,数据加扰使用时频资源块对应的ID进行而不是终端ID。因为这一子带ID只与时频资源块对应,而不是分配给固定的终端或终端组。网络设备在进行终端检测时采用的导频(pilot)或参考信号(RS,reference Signal)或preamble(前导序列)是从对应的时频资源块配置中选取;网络设备用时频资源块的ID进行CRC处理,并根据上行数据中的终端ID进行上行数据的进一步处理或分发。
时频资源块的ID可以是C-RNTI(Cell-Radio Network Temporary Identity,小区无线网络临时标识),也可以是新定义的能在小区内区分多个时频资源块的RNTI,并随着时频资源块的配置信息一起由网络设备发送至终端。
而终端ID可以是C-RNTI,或者是全局的用户标识,例如国际移动用户识别码 (International Mobile Subscriber Identification Number,简称为“IMSI”)、临时移动用户识别码(Temporary Mobile Subscriber Identity,简称为“TMSI”)等。
应理解,本发明实施例仅以C-RNTI、IMSI和TMSI为例对终端ID进行说明,但本申请并不限于此,用于确定该终端ID还可以采用其它用户标识。
同样的,其时频资源块ID或终端ID可以由SIB(system information block,***消息块)、RRC、MAC CE等信令进行承载。
前述实施例分别描述了网络设备将用于上行免授权传输的上行传输时频资源划分为多个时频资源块的基础上,网络设备如何配置对应的配置信息,以及终端如何选择时频资源块并使用配置信息进行上行免授权传输的各种实现方式。前述的配置信息中,时频资源块的子带的起始位置或长度都是通过字符进行表示的。例如对于字段“StartPoint”,其取值为0001表示时频资源块的起始位置是第一个RB;0010表示时频资源块的起始位置是第二个RB等等;对于字段“Length”,其取值为0001代表长度1,0001代表长度2,0010代表长度4,以此类推。
在另一种实现方式中,不同的子带对应的配置信息还可以通过导频图案或导频序列进行表示,下面将详细描述。需要说明的是,时频资源块进一步以时域为维度进行划分更小的时频资源块时,其起始位置,数目,长度等指示方式加上对应的时隙或者符号标识即可,在此不再赘述。
终端在进行数据传输时,需要同时发送导频以便信道估计,并用于数据解调。随着带宽的变化,协议在兼顾效率和性能的情况下会定义不同的导频图案。
具体的:
时频资源块以子载波为粒度,定义新的导频图案,如图16所示的1个子载波时的导频图案、2个子载波时的导频图案、4个子载波时的导频图案,此处仅为举例。
在对时频资源块配置对应的配置信息时,只需要按序的指示各个时频资源块所用的导频图案,就能获取时频资源块的索引号或者起始位置,具体如下实施例十二。
实施例十二:在RRC信令中用导频图案表示时频资源块的起始位置
本实施例如前述实施例一,定义一种新的RRC信息元素(Radio resource control information element),并在放RRC message–RRCConnectionSetup中传递。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000028
Figure PCTCN2018080551-appb-000029
其中字段含义如下:
Figure PCTCN2018080551-appb-000030
应理解的是,该消息格式描述了上行传输时频资源被划分为多个时频资源块具体是以子带形式时的实现形式,该时频资源块以时域为维度进行划分更小的时频资源块时,其索引号,起始位置,数目,长度,终止位置等指示方式加上对应的时隙或者符号标识即可。
另外,本实施例中,也可以同前述实施例七那样,通过RRC信令承载包含TTI bundling size指示或Repetition size指示的配置信息;为了简洁,在此不再赘述。
上述实施例仅以RRC信令承载配置信息为例,其包含导频图案的配置信息还可以通过MAC CE,DCI或者***消息进行承载。
本申请实施例中,还可以定义新的导频图案表示时频资源块的粒度(Width),该粒度可以为子载波,或者RB或者RBG。如图17所示的子带粒度为子载波的导频图案、子带粒度为RB的导频图案、时频资源块粒度为RBG(包含3个RB)的导频图案,此处仅为举例。
在对时频资源块配置对应的配置信息时,只需要按序的指示导频图案,就能获取子带的粒度,具体如下实施例十三。
实施例十三:在RRC信令中用导频图案表示时频资源块的粒度
本实施例如前述实施例一,定义一种新的RRC信息元素(Radio resource control information element),并在放RRC message–RRCConnectionSetup中传递。
以时频资源块为子带为例,其消息格式表示如下:
Figure PCTCN2018080551-appb-000031
Figure PCTCN2018080551-appb-000032
其中字段含义如下:
Figure PCTCN2018080551-appb-000033
另外,本实施例中,也可以同前述实施例七那样,通过RRC信令承载包含TTI bundling size指示或Repetition size指示的配置信息;为了简洁,在此不再赘述。
除了子带的索引号,起始位置、终止位置,数目以及时频资源块的粒度可以采用导频图案表示,其他字段的表示方式与前述实施例一至实施例十二类似,为了简洁,在此不再赘述。
在另一种实现方式中,还可以通过导频序列表示时频资源块的起始位置或数目;例如:
Figure PCTCN2018080551-appb-000034
其中
Figure PCTCN2018080551-appb-000035
是ZC序列长度,n表示序列元素编号,q为ZC序列的根(root)。不同的根对应不同的ZC序列。网络设备通过检测终端发送了哪个序列判断对应的时频资源块的起始位置或数目。
在网络设备以上述导频图案或者导频序列的方式表示时频资源块的配置信息时,终端侧接收到携带导频图案或导频序列的配置信息时,选择相应的时频资源块进行传输,其方式如前述实施例相似,同样有1、随机选择;2、根据信道质量测量结果选择;3、基于之前数据传输成功率的统计选择;4、基于发射功率需求进行选择等四种实现方式。为了简洁,在此不再赘述。
应理解,导频序列为ZC(Zadoff-Chu)序列仅为举例;又例如,该导频序列还可以为状态检测参考信号(Activity Detection Reference Signal,简称为“ADRS”),伪 噪声序列(Pseudo-Noise Sequence),也称之为PN序列,M序列,Walsh码等,但本发明实施例并不限于此。
还应理解,在本发明实施例中,如果导频序列使用Zadoff-Chu序列,则映射到同一子带的终端可以通过循环移位值和根编号进行区分;如果导频序列使用M序列,则映射到同一子带的终端可以通过循环移位值进行区分,即映射到同一子带的终端的导频序列对应不同的循环移位值。
上文结合图4至图17,从方法实现的角度描述了本申请实施例提供的上行传输技术,应理解,以上各个实施例的方法中所示的步骤或操作仅仅作为示例,也可以执行其他操作或者各种操作的变形。并且,在具体实施时,各个步骤还可以按照与本申请实施例中所述的不同的顺序来执行,并且有可能并非执行本申请实施例所示出的全部操作或步骤。或者,也可能执行本申请各实施例所示出的更多的操作或步骤。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下,结合图18,将从网络设备和终端的角度,描述本申请实施例提供的上行传输的装置。
参见图18所示,本申请实施例提供的终端500,至少包括处理器504和收发器508。
该终端还可以包括存储器519,其存储计算机执行指令;
处理器504,获取用于传输上行数据的时频资源,所述时频资源是从所述多个时频资源块中选择至少一个时频资源块;时频资源块所述每个时频资源块对应一个配置信息;所述配置信息中至少包括对应时频资源块的标识信息;收发器508,用于根据所述处理器504选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块上传输上行数据。
上述处理器504可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器508可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器504和存储器519可以集成为一个处理装置,处理器504用于执行存储器519中存储的程序代码来实现上述功能。具体实现时,该存储器519也可以集成在处理器504中。
上述终端还可以包括电源512,用于给终端中的各种器件或电路提供电源;上述终端可以包括天线510,用于将收发器508输出的上行数据或上行控制信令通过无线信号发送出去。
除此之外,为了使得终端的功能更加完善,该终端还可以包括输入单元514,显示单元516,音频电路518,摄像头520和传感器522等中的一个或多个,所述音频电路还可以包括扬声器5182,麦克风5184等。
参见图19所示,本申请实施例提供的网络设备,至少包括处理器604和收发器608。
网络设备在具体实现中,还可以包括存储器603,用于保存用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块;
所述网络设备的收发器608,用于向终端发送用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块;所述时频资源的信息中包括每个时频资源块及其对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
处理器604,用于在所述终端在选择的至少一个时频资源块上检测终端传输的上行数据。
上述处理器604和存储器603可以合成一个处理装置,处理器604用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器604中。可选的,所述网络设备的处理器604还用于将上行传输时频资源划分为多个时频资源块;每一个所述时频资源块配置有对应的配置信息;所述存储器603,用于存储被处理器604划分为多个时频资源块的上行传输时频资源;每一个所述时频资源块配置有对应的配置信息;所述被分为多个时频资源块的上行传输时频资源以及对应的配置信息可以是***配置者以表格的形式预先存储在存储器603中,也可以是处理器604将上行传输时频资源划分成时频资源块并配置对应的配置信息之后,再存储在存储器603中。
网络设备的收发器608在终端需要发送上行数据时向终端发送多个时频资源块及其对应的配置信息;
所述网络设备的收发器608还用于接收终端在其选择的时频资源块上根据对应的配置信息向其发送的上行数据。
上述网络设备还可以包括天线610,用于将收发器608输出的下行数据或下行控制信令通过无线信号发送出去。
需要说明的是:所述终端的处理器504和网络设备的处理器604可以是中央处理器(central processing unit,简称CPU),网络处理器(network processor,简称NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。
终端的存储器12和网络设备的存储器22可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,简称RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器还可以包括上述种类的存储器的组合。
在本申请实施例中,终端能够通过上述免授权传输与网络设备之间进行无线通信。另外,终端也可以通过授权频谱资源传输进行无线通信。
本申请装置实施例的网络设备可对应于本申请方法实施例一至实施例十二中的网 络设备,终端可对应于本申请方法实施例一至实施例十二中的终端。并且,网络设备和终端的各个模块的上述和其它操作和/或功能分别为了实现实施例一至实施例十二的相应流程,为了简洁,本申请方法实施例的描述可以适用于该装置实施例,在此不再赘述。
实施本申请提供的网络设备和终端,由于网络设备为终端预分配的上行传输时频资源划分为多个以时频资源块为单位的上行传输时频资源,因此终端可以选择更窄带宽的时频资源进行上行传输,提高了终端的发射功率;进一步的,网络设备还为每一个时频资源块配置了配置信息,该配置信息可以携带时频资源块参数或者覆盖增强参数,或者两个参数都携带,因此,终端选择了进行上行传输的时频资源块之后,根据对应配置信息进行上行传输,可以进一步的提高发射功率;而网络设备也能根据配置信息在正确的时频资源块上进行解调,从而提高解调的效率,避免产生处理时延。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端获取用于传输上行数据的时频资源,所述时频资源是从多个时频资源块中选择至少一个时频资源块;所述多个时频资源块中每个时频资源块对应一个配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
    所述终端根据所述选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块传输上行数据。
  2. 如权利要求1所述的数据传输方法,其特征在于,所述标识信息为对应时频资源块的起始位置或者索引号。
  3. 如权利要求1或2所述的数据传输方法,其特征在于,所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同。
  4. 如权利要求1或2所述的数据传输方法,其特征在于,所述多个时频资源块中每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同。
  5. 如权利要求1或2所述的数据传输方法,其特征在于,所述终端从多个时频资源块中选择至少一个时频资源块,包括:
    所述终端从所述多个时频资源块中随机选择至少一个时频资源块;
    或所述终端根据信道质量的测量结果,从所述多个时频资源块中选择至少一个时频资源块;
    或所述终端根据功率需求,从所述多个时频资源块中选择至少一个时频资源块;
    或所述终端根据传输成功率,从所述多个时频资源块中选择至少一个时频资源块。
  6. 如权利要求1或2所述的数据传输方法,其特征在于,所述终端通过所述选择的至少一个时频资源块传输上行数据时,将所述选择的至少一个时频资源块的标识信息通知给网络设备。
  7. 如权利要求1或2所述的数据传输方法,其特征在于,所述配置信息还包括对应时频资源块的功率控制参数。
  8. 如权利要求1或2所述的数据传输方法,其特征在于,所述配置信息还包括对应时频资源块的传输时间间隔绑定大小TTI bundling size指示或重复传输大小Repetition size指示。
  9. 如权利要求1至8任一项所述的数据传输方法,其特征在于,所述方法还包括: 所述终端在有上行数据需要传输之前,接收网络设备发送的所述配置信息。
  10. 如权利要求1至8任一项所述的数据传输方法,其特征在于,所述配置信息通过***消息或无线资源控制信令或媒体接入控制控制元素或下行控制信息承载。
  11. 一种数据传输方法,其特征在于,所述方法由网络设备执行,包括:
    网络设备向终端发送用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块,所述时频资源的信息中包括每个时频资源块及其对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
    所述网络设备在所述终端选择的至少一个时频资源块上检测终端传输的上行数据。
  12. 如权利要求11所述的数据传输方法,其特征在于,所述标识信息为对应时频资源块的起始位置或者索引号。
  13. 如权利要求11或12所述的数据传输方法,其特征在于,所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同。
  14. 如权利要求11或12所述的数据传输方法,其特征在于,所述多个时频资源块中每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同。
  15. 如权利要求11或12所述的数据传输方法,其特征在于,所述配置信息还包括对应时频资源块的功率控制参数。
  16. 如权利要求11或12所述的数据传输方法,其特征在于,所述配置信息还包括对应时频资源块的传输时间间隔绑定大小TTI bundling size指示或重复传输大小Repetition size指示。
  17. 如权利要求11或12所述的数据传输方法,其特征在于,所述网络设备存储所述多个时频资源块的信息,所述网络设备在其存储的所述多个时频资源块上检测所述终端传输的上行数据。
  18. 如权利要求11或12所述的数据传输方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端发送的所述至少一个时频资源块的标识信息,所述网络设备根据接收到的标识信息在所述至少一个时频资源块上检测所述终端传输的上行数据。
  19. 如权利要求11至18中任一项所述的数据传输方法,其特征在于,所述网络 设备以所述配置信息中在所述传输时间间隔绑定大小TTI bundling size指示所绑定的时间间隔上检测所述终端传输的上行数据,或在所述重复传输大小Repetition size指示的重复时间单位上检测上行所述终端传输的上行数据。
  20. 如权利要求11至18中任一项的数据传输方法,其特征在于,所述配置信息通过***消息或无线资源控制信令或媒体接入控制控制元素或下行控制信息承载。
  21. 一种终端,其特征在于,包括:
    处理器,用于获取用于传输上行数据的时频资源,所述时频资源是从所述多个时频资源块中选择的至少一个时频资源块;所述多个时频资源块中每个时频资源块对应一个配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
    收发器,用于根据所述处理器选择的至少一个时频资源块的配置信息,在所述选择的至少一个时频资源块上传输上行数据。
  22. 如权利要求21所述的终端,其特征在于,所述标识信息为对应时频资源块的起始位置或者索引号。
  23. 如权利要求21或22所述终端,其特征在于,所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同。
  24. 如权利要求21或22所述的终端,其特征在于,所述多个时频资源块中每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同。
  25. 如权利要求21或22所述的终端,其特征在于,所述处理器用于从所述多个时频资源块中随机选择至少一个时频资源块;或根据信道质量的测量结果,从所述多个时频资源块中选择至少一个时频资源块;或根据功率需求,从所述多个时频资源块中选择至少一个时频资源块;或根据传输成功率,从所述多个时频资源块中选择至少一个时频资源块。
  26. 如权利要求21或22所述的终端,其特征在于,所述收发器通过所述选择的至少一个时频资源块传输上行数据时,将所述选择的至少一个时频资源块的标识信息通知给所述网络设备。
  27. 如权利要求21或22所述的终端,其特征在于,所述存储器中存储的配置信息还包括对应时频资源块的功率控制参数。
  28. 如权利要求21或22所述的终端,其特征在于,所述存储器存储的配置信息 还包括对应时频资源块的传输时间间隔绑定大小TTI bundling size指示或重复传输大小Repetition size指示。
  29. 如权利要求21至28中任一项所述的终端,其特征在于,所述收发器,用于在所述终端有上行数据需要传输之前,接收网络设备发送的所述配置信息。
  30. 如权利要求21至28中任一项所述的终端,其特征在于,所述配置信息通过***消息或无线资源控制信令或媒体接入控制控制元素或下行控制信息承载。
  31. 一种网络设备,其特征在于,包括:
    收发器,用于向终端发送用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块;所述时频资源的信息中包括每个时频资源块及其对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
    处理器,用于在所述终端在选择的至少一个时频资源块上检测终端传输的上行数据。
  32. 如权利要求31所述的网络设备,其特征在于,所述标识信息为对应时频资源块的起始位置或者索引号。
  33. 如权利要求31或32所述的网络设备,其特征在于,所述存储器中存储的所述多个时频资源块中每个时频资源块所占的带宽相同,或者所述多个时频资源块中至少有两个时频资源块所占的带宽不同。
  34. 如权利要求31或32所述网络设备,其特征在于,所述存储器中存储的多个时频资源块中每个时频资源块在时域上所占的符号数相同,或至少有两个时频资源块在时域上所占的符号数不同。
  35. 如权利要求31或32所述的网络设备,其特征在于,所述配置信息还包括对应时频资源块的功率控制参数。
  36. 如权利要求31或32所述的网络设备,其特征在于,配置信息还包括对应时频资源块的传输时间间隔绑定大小TTI bundling size指示或重复传输大小Repetition size指示。
  37. 如权利要求31或32所述的网络设备,其特征在于,所述网络设备还包括存储器,其用于存储所述多个时频资源块的信息;
    所述处理器还用于在所述存储器存储的时频资源块上检测所述终端传输的上行数据。
  38. 如权利要求31或32所述的网络设备,其特征在于,所述收发器还用于接收所述终端发送的所述至少一个时频资源块的标识信息,所述处理器根据所述收发器接收到的标识信息在所述至少一个时频资源块上检测所述终端传输的上行数据。
  39. 如权利要求31至38中任一项所述的网络设备,其特征在于,所述处理器所述网络设备以所述配置信息中在所述传输时间间隔绑定大小TTI bundling size指示所绑定的时间间隔上检测所述终端传输的上行数据,或在所述重复传输大小Repetition size指示的重复时间单位上检测上行所述终端传输的上行数据。
  40. 如权利要求31至38中任一项所述的网络设备,其特征在于,所述配置信息通过***消息或无线资源控制信令或媒体接入控制控制元素或下行控制信息承载。
  41. 一种芯片,其特征在于,包括处理器和接口;
    所述处理器,用于获取用于传输上行数据的时频资源的信息,所述时频资源包括多个时频资源块,所述时频资源的信息中包括每个时频资源块对应的配置信息;所述配置信息中至少包括对应时频资源块的标识信息;
    所述处理器还用于,在所述有上行数据需要发送时,从所述多个时频资源块中选择至少一个时频资源块,并通过所述接口将所述选择的至少一个时频资源块提供给收发器。
  42. 一种计算机存储介质,其特征在于,其用于储存为所述权利要求31~40中任一项所述网络设备所用的计算机软件指令,其包含用于执行所述权利要求11~20中任一项方法所涉及的程序。
  43. 一种计算机存储介质,其特征在于,其用于储存为所述权利要求21~30中任一项所述终端所用的计算机软件指令,其包含用于执行所述权利要求1~10中任一项方法所涉及的程序。
PCT/CN2018/080551 2017-04-01 2018-03-26 一种数据传输方法、网络设备和终端 WO2018177259A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18777036.7A EP3595346B1 (en) 2017-04-01 2018-03-26 Data transmission method, network device and terminal
BR112019020240A BR112019020240A2 (pt) 2017-04-01 2018-03-26 método de transmissão de dados, dispositivo de rede, terminal, chip, e mídia de armazenamento legível por computador
US16/581,752 US11464006B2 (en) 2017-04-01 2019-09-25 Data transmission method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710214560.0 2017-04-01
CN201710214560.0A CN108668367B (zh) 2017-04-01 2017-04-01 一种数据传输方法、网络设备和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/581,752 Continuation US11464006B2 (en) 2017-04-01 2019-09-25 Data transmission method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2018177259A1 true WO2018177259A1 (zh) 2018-10-04

Family

ID=63675201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080551 WO2018177259A1 (zh) 2017-04-01 2018-03-26 一种数据传输方法、网络设备和终端

Country Status (5)

Country Link
US (1) US11464006B2 (zh)
EP (1) EP3595346B1 (zh)
CN (1) CN108668367B (zh)
BR (1) BR112019020240A2 (zh)
WO (1) WO2018177259A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056003A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种通信方法和装置
EP3869886A4 (en) * 2018-11-09 2022-01-05 Huawei Technologies Co., Ltd. DATA TRANSFER PROCESS AND COMMUNICATION DEVICE

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370701B (zh) * 2016-05-11 2020-05-08 华为技术有限公司 传输信号的方法、发送端和接收端
KR102353972B1 (ko) * 2017-04-11 2022-01-21 삼성전자 주식회사 무선 통신 시스템에서 서브프레임 결합을 이용한 신호 복조 방법 및 장치
CN109121166A (zh) * 2017-06-22 2019-01-01 维沃移动通信有限公司 一种数据传输方法、基站和用户终端
CN109219113B (zh) * 2017-07-05 2020-07-17 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和***
EP3726914A1 (en) * 2017-08-10 2020-10-21 Comcast Cable Communications, LLC Activation of grant-free transmission
RU2747887C1 (ru) * 2017-10-11 2021-05-17 Телефонактиеболагет Лм Эрикссон (Пабл) Uci по безгрантовому pusch
WO2019090720A1 (zh) * 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 传输数据的方法和设备
US20200014599A1 (en) * 2018-07-06 2020-01-09 Qualcomm Incorporated Apparatus and method for requesting narrower bandwidth channel to address communication link issue
JP7284258B2 (ja) * 2018-10-30 2023-05-30 オッポ広東移動通信有限公司 リソース構成方法、ネットワークデバイス及び端末デバイス
CN111132318B (zh) * 2018-10-31 2022-07-19 华为技术有限公司 一种资源调度方法和装置
WO2020087468A1 (zh) 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 无线通信方法和设备
WO2020124487A1 (zh) * 2018-12-20 2020-06-25 北京小米移动软件有限公司 数据传输方法及装置
CN111436135A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 数据传输方法及装置
WO2020147054A1 (zh) * 2019-01-16 2020-07-23 Oppo广东移动通信有限公司 一种数据复制传输的指示方法、终端设备及网络设备
CN112714441B (zh) * 2019-10-24 2024-06-14 华为技术有限公司 一种数据传输方法、通信装置及通信***
US11653343B2 (en) * 2020-03-13 2023-05-16 Huawei Technologies Co., Ltd. Spectrum allocation for multiple resource units in a wireless network
US11882576B2 (en) * 2020-05-01 2024-01-23 Qualcomm Incorporated Techniques for dynamic signaling for wireless coverage enhancement
US20230300778A1 (en) * 2020-08-11 2023-09-21 Beijing Xiaomi Mobile Software Co., Ltd. Method for resource processing, and communication device
CN114071682B (zh) * 2021-11-04 2023-05-16 中国联合网络通信集团有限公司 一种分布式网络架构的功率选择方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227698A (zh) * 2008-02-03 2008-07-23 普天信息技术研究院有限公司 一种资源调整的方法
CN101296212A (zh) * 2007-04-27 2008-10-29 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
CN101345974A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 一种调度移动终端发送上行信道探测导频的方法及***
US20110195704A1 (en) * 2010-02-09 2011-08-11 Choi Hyun Ho Communication system of performing uplink communication and downlink communication using overlapping radio resource
CN104936133A (zh) * 2015-05-29 2015-09-23 广东欧珀移动通信有限公司 机器类型通信的方法、基站以及终端
WO2016209055A1 (ko) * 2015-06-26 2016-12-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 빔 스캐닝 신호를 전송하는 방법 및 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1808039B1 (en) * 2004-10-29 2014-07-16 Telefonaktiebolaget LM Ericsson (publ) Resource allocation in communication networks
CN101911758B (zh) * 2007-11-05 2015-03-25 苹果公司 用于资源分配的方法和***
US8416741B2 (en) * 2010-09-07 2013-04-09 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks
US9504027B2 (en) * 2010-11-25 2016-11-22 Lg Electronics Inc. Method and apparatus for transmitting a control channel and a data channel in a wireless communication system
US9538518B2 (en) * 2012-08-28 2017-01-03 Lg Electronics Inc. Method for detecting downlink control channel in wireless communication system and apparatus for same
US10028302B2 (en) * 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN105491665B (zh) * 2014-09-15 2019-07-23 中兴通讯股份有限公司 导频配置方法及装置
US9743423B2 (en) * 2015-07-27 2017-08-22 Futurewei Technologies, Inc. Link adaptation in grant-free multiple access systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296212A (zh) * 2007-04-27 2008-10-29 华为技术有限公司 资源请求指示信息的时频资源分配方法、装置及基站
CN101345974A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 一种调度移动终端发送上行信道探测导频的方法及***
CN101227698A (zh) * 2008-02-03 2008-07-23 普天信息技术研究院有限公司 一种资源调整的方法
US20110195704A1 (en) * 2010-02-09 2011-08-11 Choi Hyun Ho Communication system of performing uplink communication and downlink communication using overlapping radio resource
CN104936133A (zh) * 2015-05-29 2015-09-23 广东欧珀移动通信有限公司 机器类型通信的方法、基站以及终端
WO2016209055A1 (ko) * 2015-06-26 2016-12-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 빔 스캐닝 신호를 전송하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595346A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869886A4 (en) * 2018-11-09 2022-01-05 Huawei Technologies Co., Ltd. DATA TRANSFER PROCESS AND COMMUNICATION DEVICE
US12016044B2 (en) 2018-11-09 2024-06-18 Huawei Technologies Co., Ltd. Data transmission method and communications apparatus
CN113056003A (zh) * 2019-12-26 2021-06-29 大唐移动通信设备有限公司 一种通信方法和装置
EP4084549A4 (en) * 2019-12-26 2023-02-08 Datang Mobile Communications Equipment Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN113056003B (zh) * 2019-12-26 2024-03-22 大唐移动通信设备有限公司 一种通信方法和装置

Also Published As

Publication number Publication date
CN108668367B (zh) 2020-06-02
US20200022125A1 (en) 2020-01-16
EP3595346A1 (en) 2020-01-15
BR112019020240A2 (pt) 2020-04-22
EP3595346A4 (en) 2020-03-18
CN108668367A (zh) 2018-10-16
US11464006B2 (en) 2022-10-04
EP3595346B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2018177259A1 (zh) 一种数据传输方法、网络设备和终端
US10979194B2 (en) Resource indication method, user equipment, and network device
CN110741705B (zh) 无线通信***中由终端执行的下行链路控制信道接收方法以及使用该方法的终端
US11877317B2 (en) Method and device used for wireless communication
TWI747160B (zh) 未授權新無線電中確定信令無線電承載的通道存取優先順序等級的方法及使用者設備
TW201815109A (zh) 指示以及實現新ue能力的方法以及裝置
EP3554118B1 (en) Grant-free transmission method, terminal device and network device
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
EP3740008B1 (en) Method for determining location of control channel, and device and processor-readable storage medium
US20210160852A1 (en) Resource configuration method and terminal device
WO2016205988A1 (zh) 数据传输的功率控制方法和装置
WO2019214301A1 (zh) 通信方法和设备
CN114375053A (zh) 数据传输方法、终端设备和网络设备
CN110267226B (zh) 信息发送的方法和装置
KR20210028699A (ko) 업링크 채널들에 대한 시간 리소스들
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
TW202008828A (zh) 資源配置的方法和終端設備
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
WO2018028604A1 (en) Methods and apparatus for ul data transmission
CN116711439A (zh) 无线通信的方法、终端设备和网络设备
EP3117554B1 (en) Enb, ue and method for physical resource block allocation in mtc ue
WO2021062811A1 (zh) 数据传输方法及相关设备
EP4108022A1 (en) Communication apparatuses and communication methods for mode 2 resource (re-)selection for packet delay budget limited scenario
TW202013919A (zh) 一種資料傳輸方法、終端設備及網路設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020240

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018777036

Country of ref document: EP

Effective date: 20191010

ENP Entry into the national phase

Ref document number: 112019020240

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190927