WO2018176881A1 - 一种半透明太阳电池器件及应用 - Google Patents

一种半透明太阳电池器件及应用 Download PDF

Info

Publication number
WO2018176881A1
WO2018176881A1 PCT/CN2017/113363 CN2017113363W WO2018176881A1 WO 2018176881 A1 WO2018176881 A1 WO 2018176881A1 CN 2017113363 W CN2017113363 W CN 2017113363W WO 2018176881 A1 WO2018176881 A1 WO 2018176881A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell device
layer
translucent solar
transport layer
Prior art date
Application number
PCT/CN2017/113363
Other languages
English (en)
French (fr)
Inventor
叶轩立
孙辰
夏若曦
黄飞
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/499,282 priority Critical patent/US20210111361A1/en
Publication of WO2018176881A1 publication Critical patent/WO2018176881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of optoelectronic materials and devices, and relates to a translucent solar cell device which can be used as a smart window in an exterior wall of an automobile and a building.
  • the new solar cell technology which can be processed by organic solar cells, has attracted much attention in recent years due to its advantages of light weight and large-area printing production.
  • the absorption spectrum of the photoactive layer of these new batteries can be adjusted to achieve absorption in different wavelength bands, and thus can be used as a translucent solar cell device in smart windows, and the market potential is huge.
  • solar insulation film has been widely used in automotive and building exterior walls, and its excellent thermal insulation performance can maintain indoor temperature suitable for all seasons, such as reducing heat into the room in summer, reducing air conditioning operating costs. Winter reduces heat loss.
  • most buildings or automotive solar films can block UV rays, extend the service life of indoor furniture and clothing, reduce glare and eye discomfort, and provide a more energy-saving and comfortable environment.
  • the current thermal insulation film on the market can transmit most of visible light, non-visible light emission or scattering, and can not truly realize the effective use of energy.
  • a primary object of the present invention is to provide a translucent solar cell device that can be applied to the exterior walls of automobiles and buildings.
  • the material of the solar cell photoactive layer is a solution processable organic material, a dye sensitizing material or an organic-inorganic hybrid battery material having a perovskite structure.
  • the photoactive layer absorbs in other wavelength bands than visible light, especially in the infrared and near-infrared bands. By adjusting the solar cell light The absorption spectrum of the absorption layer and the optical field distribution in the device are adjusted by the optical control layer to make as much visible light as possible, non-visible reflection or scattering, and then absorbed and utilized by the photoactive layer.
  • Another object of the present invention is to provide a novel automotive and architectural insulation film.
  • the semi-transparent solar cell is combined with the heat-insulating film to absorb and utilize the infrared portion of the heat-generating layer, thereby imparting excellent thermal insulation properties to such devices. Make full use of different bands of light energy, improve the utilization of light energy, and provide theoretical and technical guidance for the development of new automotive or building smart window materials in the future.
  • a translucent solar cell device comprising an anode, a hole transport layer, a photoactive layer, an electron transport layer and a cathode; the photoactive layer having absorption in the near infrared and infrared bands having a wavelength range of more than 780 nm.
  • the donor and acceptor materials in the photoactive layer are solution processable organic polymer or small molecule materials having a conjugated backbone and blends thereof.
  • Solution processing method of photoactive layer mixing donor and acceptor materials in a molar ratio of 1:10 to 10:1, dissolving in an organic solvent (such as chlorobenzene, o-dichlorobenzene, etc.), by coating or vapor deposition A photoactive layer is formed.
  • organic solvent such as chlorobenzene, o-dichlorobenzene, etc.
  • the coating method can be spin coating, brush coating, spray coating, dip coating, roll coating, screen printing, printing or ink jet printing.
  • the donor and acceptor materials are preferably PBDTTT-E-T and IEICO.
  • the thickness of the anode, the hole transporting layer, the photoactive layer, the electron transporting layer, and the cathode are 150 ⁇ 30 nm, 40 ⁇ 10 nm, 100 ⁇ 20 nm, 10 ⁇ 5 nm, and 10-20 nm, respectively.
  • the electron transport layer is preferably an organic conjugated polymer containing a strong polar group.
  • the electron transport layer may be a composite interface layer after the addition of nanoparticles to improve light absorption.
  • the strong polar group in the electron transport layer is one or more of an amine group, a quaternary ammonium salt group, a phosphate group, a phosphate group, a sulfonate group, a carboxyl group, and a hydroxyl group.
  • the electron transport layer is preferably PNDIT-F3N-Br.
  • the hole transporting layer is an organic conjugated polymer (preferably poly 3,4-ethylenedioxythiophene/polystyrene sulfonate) or an inorganic semiconductor.
  • the hole transport layer may be a composite interface layer after the addition of nanoparticles to improve light absorption.
  • the cathode is also coated with an optical conditioning layer.
  • the optical control layer is an adjustable multilayer structure composed of an optical material.
  • the cathode is aluminum, silver, gold, calcium/aluminum alloy or calcium/silver alloy.
  • the anode is a metal, a metal oxide such as an indium tin oxide conductive film (ITO), doped tin dioxide (FTO), zinc oxide (ZnO), indium gallium zinc oxide (IGZO), and graphene and derivatives thereof. At least one of them.
  • ITO indium tin oxide conductive film
  • FTO doped tin dioxide
  • ZnO zinc oxide
  • IGZO indium gallium zinc oxide
  • graphene and derivatives thereof At least one of them.
  • the translucent solar cell device has thermal insulation properties and can be used as a thermal insulation film.
  • the device is attached to the glass of an automobile or building exterior as a smart window.
  • the invention adjusts the absorption spectrum of the solar cell light absorbing layer and adjusts the light field distribution in the device through the optical control layer to make as much visible light as possible, non-visible reflection or scattering, and then absorbed and utilized by the photoactive layer.
  • the invention adjusts the absorption spectrum of the light absorbing layer of the solar cell to make as much visible light as possible, and the non-visible light is reflected and absorbed by the light absorbing layer, thereby improving the photoelectric conversion efficiency of the translucent solar cell.
  • the device of the invention fully utilizes the light energy of different wavelength bands, improves the utilization rate of light energy, and combines the translucent solar cell with the heat insulation film, not only can be used as a photovoltaic cell for power generation application, but also has excellent thermal insulation performance of the device itself. It can be attached to the glass of the exterior wall of a car or building as a thermal insulation film. It solves the problems of high visible light transmittance, high photoelectric conversion efficiency, thermal insulation and UV protection required by smart windows for automobiles and buildings.
  • Fig. 1 is a chart showing the absorption spectrum of a film of the photoactive layer used in Example 1.
  • Example 2 is a current-voltage graph of a translucent solar cell device using silver electrodes of different thicknesses in Example 1.
  • Example 3 is a graph showing the external quantum efficiency of a translucent solar cell device using silver electrodes of different thicknesses in Example 1.
  • Example 4 is a graph showing the transmittance of a translucent solar cell device using silver electrodes of different thicknesses in Example 1.
  • Figure 5 is a schematic view showing the structure of a translucent solar cell device of the present invention.
  • the invention is further illustrated by the following specific examples, including material characterization, device preparation and performance testing.
  • ITO conductive glass There are several ITO conductive glass, the sheet resistance is about 20 ohms/square, and the specification is 15 mm ⁇ 15 mm square.
  • the ITO glass sheets were treated with oxygen plasma for 4 minutes before use.
  • a PEDOT:PSS (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate) aqueous dispersion purchased from Bayer Corporation, Clevios P VP AI 4083 was used as a hole transport layer, and a homogenizer (KW) was used.
  • the photoactive layer has a thickness of 80 to 100 nm.
  • the electron transport layer was obtained by spin coating a layer of PNDIT-F3N-Br solution on the surface of the photoactive layer.
  • the PNDIT-F3N-Br solid (prepared according to the method reported in the patent CN 104725613 A) was dissolved in a methanol solvent at a concentration of 1 mg/ml, and spin-coated at 2000 rpm to obtain an electron having a film thickness of about 10 nm. Transport layer film.
  • the silver electrodes of different thicknesses were vapor-deposited by vacuum evaporation to obtain translucent solar cell devices with different transmittances.
  • Fig. 1 is a chart showing the absorption spectrum of a film of the photoactive layer used in Example 1.
  • the photoactive layer material has a film absorption side of up to 900 nm, which has exceeded the visible light region and has strong light absorption in the near-infrared light region.
  • FIG. 2 is a current-voltage graph of a translucent solar cell device using silver electrodes of different thicknesses in Example 1.
  • the device structure used was a formal device: ITO/PEDOT: PSS/photoactive layer/PNDIT-F3N-Br/silver electrode. It can be seen from Fig. 2 that as the thickness of the silver electrode increases, the reflection effect of the electrode on the light increases, the short-circuit current of the device gradually increases, and the open circuit voltage and the filling factor of the device remain substantially unchanged. The conversion efficiency also increases in turn. Under this structure, when the thickness of the silver electrode is 10 nm, 14 nm, and 20 nm, the device efficiency is up to 6.8%, 7.9%, and 9.0%, respectively.
  • V oc , J sc , FF , PCE , and Best PCE refer to open circuit voltage, short circuit current, fill factor, photoelectric conversion efficiency, and maximum photoelectric conversion efficiency, respectively.
  • the specific visible light (380-780 nm) transmittance of specific silver thickness is shown in Table 2.
  • a translucent solar cell prepared using the light absorbing layer material can be obtained by combining the device efficiency analysis in Table 1.
  • the device can achieve better photoelectric conversion efficiency ( ⁇ 7%) while maintaining a high average visible light transmittance ( ⁇ 20%).
  • the main reason is that the light absorbing layer material has strong absorption in the near-infrared region, and the photons absorbed in this region contribute to the improvement of the short-circuit current of the device, but do not affect the average visible light transmittance of the overall device. It can be inferred that other similar photoactive layer materials with near infrared absorption can also achieve similar device effects.
  • the translucent solar cell device prepared in Example 1 was placed in a solar film tester (Lin LS182) to test its thermal insulation performance.
  • the specific performance indexes are shown in Table 3.
  • such translucent solar cells of different thicknesses of silver electrodes have a high infrared ray rejection (greater than 70%).
  • the infrared blocking rate has reached 90%, indicating that it has excellent heat insulation effect.
  • the heat insulation effect not only comes from the light absorption of the infrared active region by the photoactive layer, but also the reflection effect of the silver electrode on the infrared light.
  • we adjust the light intensity distribution in the device through the optical control layer which can further enhance the utilization of the infrared light in the whole device.
  • Examples 1 and 2 that by adjusting the light absorbing properties of the material and absorbing a relatively strong light absorbing layer material in the near-infrared region, it is possible to achieve a semi-transparent solar cell device while maintaining a high average visible light transmittance. Better photoelectric conversion efficiency.
  • the translucent film device since the translucent film device has a high infrared ray blocking rate, it can be used as a heat insulating film in automobiles and building exterior walls.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种半透明太阳电池器件及应用。该电池器件包括阳极、空穴传输层、光活性层、电子传输层及阴极;所述光活性层对波长范围大于780nm的近红外及红外波段光有吸收。该电池器件充分利用不同波段光能,提高了光能利用率,将半透明太阳电池与隔热膜结合起来,不仅可作为光伏电池进行发电应用,还由于器件本身具备优异的隔热性能,可以附着于汽车或建筑物外墙的玻璃上作为隔热膜使用。一次性解决了汽车及建筑物智能窗所要求的高可见光透过率、高光电转换效率、隔热保温、防紫外线等问题,具备环保节能的优点。

Description

一种半透明太阳电池器件及应用 技术领域
本发明属于光电材料与器件技术领域,涉及一种可应用于汽车及建筑物外墙中作为智能窗户使用的半透明太阳电池器件。
背景技术
以有机太阳电池为代表的可溶液加工的新型太阳电池技术由于其柔性质轻、可大面积印刷生产等优势,在近几年备受关注。相比于传统的无机硅太阳电池,此类新型电池的光活性层的吸收光谱可调,可实现不同波段的吸收,进而可作为半透明太阳电池器件应用于智能窗户中,市场潜力巨大。
而在市场应用方面,太阳隔热膜已被广泛应用于汽车及建筑物外墙,其优异的隔热保温性能可保持室内一年四季温度适宜,如在夏天减少热量进入室内,降低空调运营成本;冬天减少热量流失。同时大部分建筑或汽车太阳膜还可阻隔紫外线,延长室内家具及衣物的使用寿命,减少眩光和眼睛不适,提供更加节能舒适的环境。但目前市场上的隔热膜可使大部分的可见光透过、非可见光发射或散射,并不能真正实现能源地有效利用。
发明内容
本发明的首要目的在于提供一种可应用于汽车及建筑物外墙中的半透明太阳电池器件。所述的太阳电池光活性层的材料为可溶液加工的有机材料、染料敏化材料或具有钙钛矿结构的有机-无机杂化电池材料。所述的光活性层在可见光外的其他波段,尤其是红外及近红外波段有吸收。通过调节太阳电池光 吸收层的吸收光谱及通过光学调控层调节器件内的光场分布,使尽量多的可见光透过、非可见光反射或散射进而被光活性层吸收利用。
本发明的另一目的在于提供一种新型汽车及建筑隔热膜。将半透明太阳电池与隔热膜结合起来,使主要产生热量的红外部分光被光吸收层吸收利用,进而赋予此类器件优异的隔热性能。充分利用不同波段光能,提高了光能利用率,对未来发展新型汽车或建筑智能窗材料提供了理论及技术指导。
本发明的目的通过下述方案实现:
一种半透明太阳电池器件,包括阳极、空穴传输层、光活性层、电子传输层及阴极;所述光活性层对波长范围大于780nm的近红外及红外波段光有吸收。
所述光活性层中的给体和受体材料为可溶液加工的具有共轭主链的有机聚合物或小分子材料及它们的共混材料。
光活性层的溶液加工方法:把给体和受体材料按摩尔比1:10~10:1混合,溶于有机溶剂(如氯苯、邻二氯苯等)后,通过涂覆或蒸镀形成光活性层。
所述涂覆的方法可为旋涂、刷涂、喷涂、浸涂、辊涂、丝网印刷、印刷或喷墨打印方式。
所述给体和受体材料优选为PBDTTT-E-T和IEICO。
所述阳极、空穴传输层、光活性层、电子传输层及阴极的厚度分别为150±30nm,40±10nm,100±20nm,10±5nm,10-20nm。
所述电子传输层优选为含强极性基团的有机共轭聚合物。电子传输层可以为添加纳米颗粒改善光吸收后的复合界面层。
所述电子传输层中的强极性基团为胺基、季铵盐基团、磷酸根、磷酸酯基、磺酸根、羧基和羟基中的一种或两种以上。
所述电子传输层优选为PNDIT-F3N-Br。
所述空穴传输层为有机共轭聚合物(优选聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)或无机半导体。空穴传输层可以为添加纳米颗粒改善光吸收后的复合界面层。
所述阴极上还涂覆有光学调控层。所述光学调控层为光学材料组成的可调节的多层结构。
所述阴极为铝、银、金、钙/铝合金或钙/银合金。
所述阳极为金属、金属氧化物,如氧化铟锡导电膜(ITO),掺杂二氧化锡(FTO),氧化锌(ZnO),铟镓锌氧化物(IGZO)和石墨烯及其衍生物中的至少一种。
所述的半透明太阳电池器件具有隔热性能,可作为隔热膜使用。
所述器件附着于汽车或建筑物外墙的玻璃上,作为一种智能窗户。
本发明通过调节太阳电池光吸收层的吸收光谱及通过光学调控层调节器件内的光场分布,使尽量多的可见光透过、非可见光反射或散射进而被光活性层吸收利用。
与现有技术相比,本发明的优点在于:
1、本发明通过调节太阳电池光吸收层的吸收光谱,使尽量多的可见光透过、非可见光被反射进而被光吸收层吸收利用,提高半透明太阳电池光电转换效率。
2、本发明器件充分利用不同波段光能,提高了光能利用率,将半透明太阳电池与隔热膜结合起来,不仅可作为光伏电池进行发电应用,还由于器件本身具备优异的隔热性能,可以附着于汽车或建筑物外墙的玻璃上作为隔热膜使用。一次性解决了汽车及建筑物智能窗所要求的高可见光透过率、高光电转换效率、隔热保温、防紫外线等问题。
附图说明
图1为实施例1采用的光活性层的薄膜吸收光谱图。
图2为实施例1采用不同厚度的银电极的半透明太阳电池器件的电流-电压曲线图。
图3为实施例1采用不同厚度的银电极的半透明太阳电池器件的外量子效率曲线图。
图4为实施例1采用不同厚度的银电极的半透明太阳电池器件的透过率图。
图5为本发明半透明太阳电池器件的结构示意图。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,具体包括材料表征、器件制备与性能测试。
实施例1
半透明太阳电池器件的制备:
ITO导电玻璃若干,方块电阻约20欧/方,规格为15毫米×15毫米方片。依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇超声清洗半小时以上,置于恒温烘箱备用。使用前,ITO玻璃片在氧等离子体处理4分钟。将PEDOT:PSS(聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)水分散液(购自Bayer公司,Clevios P VP AI 4083)作为空穴传输层,采用匀胶机(KW-4A)高速旋涂于ITO上,膜厚40纳米左右为佳,厚度由溶液浓度和转速决定,用表面轮廓仪(Tritek公司Alpha-Tencor-500型)实测监控。成膜后,于空气中150℃加热20分钟,转移至手套箱备用。将光活性层材料PBDTTT-E-T:IEICO(PBDTTT-E-T和IEICO摩尔比1:1,均可在solarmer公司购买)溶于氯苯溶剂中,浓度为12毫克/毫升,在1200rpm的转速下将其旋涂到PEDOT:PSS层上, 然后100℃加热退火10分钟。光活性层的厚度为80-100纳米。电子传输层通过在光活性层表面旋涂一层PNDIT-F3N-Br溶液得到。将PNDIT-F3N-Br固体(根据专利CN 104725613 A报道方法制备)溶于甲醇溶剂中,浓度为1毫克/毫升,采用2000rpm的转速旋凃成膜,即可得到膜厚约为10纳米的电子传输层薄膜。最后采用真空蒸镀的方法蒸镀不同厚度的银电极,分别得到不同透光率的半透明太阳电池器件。
图1为实施例1采用的光活性层的薄膜吸收光谱图。这一光活性层材料的薄膜吸收边可达900纳米,已超出可见光区并在近红外光区域有较强光吸收。
图2为实施例1采用不同厚度的银电极的半透明太阳电池器件的电流-电压曲线图。所采用的器件结构为正装器件:ITO/PEDOT:PSS/光活性层/PNDIT-F3N-Br/银电极。由图2中可以看出,随着银电极厚度的增加,电极对光的反射效果不断增强,器件的短路电流逐渐升高,而器件的开路电压和填充因子基本保持不变,最终器件的光电转换效率也依次升高。在此结构下,当银电极的厚度为10纳米、14纳米、20纳米时,器件效率最高分别可达6.8%、7.9%和9.0%。
具体的太阳电池器件效率如表1所示。表中Voc、Jsc、FF、PCE、Best PCE分别指开路电压、短路电流、填充因子、光电转换效率、最高光电转换效率。
表1 不同银电极厚度的半透明太阳电池器件的效率分析
银电极厚度 Voc(伏) Jsc(毫安/厘米2) FF PCE(%) Best PCE(%)
10纳米 0.81±0.01 12.6±0.5 0.65±0.01 6.4±0.4 6.8
14纳米 0.81±0.01 14.4±0.4 0.66±0.01 7.7±0.3 7.9
20纳米 0.81±0.01 16.6±0.3 0.67±0.01 8.7±0.3 9.0
具体的不同银厚度的平均可见光(380-780纳米)透过率如表2所示。结合表1中的器件效率分析可得,采用此光吸收层材料制备的半透明太阳电池器 件可在维持较高平均可见光透过率(~20%)的前提下达到较好的光电转换效率(~7%)。其主要原因为光吸收层材料在近红外区域有较强吸收,这一区域吸收的光子对器件短路电流的提升有贡献,但并不影响整体器件的平均可见光透过率。由此可推知,其它类似的具备近红外吸收的光活性层材料也可得到类似的器件效果。
表2 半透明太阳电池器件的平均可见光(380-780纳米)透过率
银电极厚度 平均可见光透过率(%)
10纳米 27.8
14纳米 23.7
20纳米 17.0
实施例2
半透明太阳电池隔热性能测试:
将实施例1中所制得的半透明太阳电池器件放于太阳膜测试仪(林上LS182)中测试其隔热性能,具体性能指标如表3所示。由表3可知,此类不同银电极厚度的半透明太阳电池均具有较高的红外线阻隔率(大于70%)。且当银电极的厚度为20纳米时,其红外线阻隔率已达90%,说明其具有优异的隔热效果。此隔热效果不仅来自于光活性层对红外区域的光吸收,银电极对红外线的反射作用也具有明显效果。此外,我们通过光学调控层对器件内的光强分布进行调节,可进一步增强整体器件对红外区域光的利用。
表3 不同薄膜的透过率及隔热性能指标
可见光透过率(%) 红外线阻隔率(%)
玻璃 90.4 10.3
10纳米 银电极 25.1 75.0
14纳米 银电极 23.8 81.0
20纳米 银电极 17.7 90.0
由实施例1~2可见,我们通过调节材料的吸光性能,并采用近红外区吸收较强的光吸收层材料,可实现半透明太阳电池器件在维持较高平均可见光透过率的前提下达到较好的光电转换效率。同时由于此半透明薄膜器件具有较高的红外线阻隔率,可在汽车及建筑物外墙中作为隔热膜使用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种半透明太阳电池器件,其特征在于,包括阳极、空穴传输层、光活性层、电子传输层及阴极;所述光活性层对波长范围大于780nm的近红外及红外波段光有吸收。
  2. 根据权利要求1所述的半透明太阳电池器件,其特征在于,所述光活性层中的给体和受体材料为可溶液加工的具有共轭主链的有机聚合物或小分子材料及它们的共混材料。
  3. 根据权利要求2所述的半透明太阳电池器件,其特征在于,光活性层的溶液加工方法:把给体和受体材料按摩尔比1:10~10:1混合,溶于有机溶剂后,通过涂覆或蒸镀形成光活性层。
  4. 根据权利要求3所述的半透明太阳电池器件,其特征在于,所述给体和受体材料为PBDTTT-E-T和IEICO。
  5. 根据权利要求4所述的半透明太阳电池器件,其特征在于,所述阳极、空穴传输层、光活性层、电子传输层及阴极的厚度分别为150±30nm,40±10nm,100±20nm,10±5nm,10-20nm。
  6. 根据权利要求5所述的半透明太阳电池器件,其特征在于,所述电子传输层为PNDIT-F3N-Br;所述空穴传输层为聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐。
  7. 根据权利要求6所述的半透明太阳电池器件,其特征在于,所述电子传输层和空穴传输层均为添加纳米颗粒改善光吸收后的复合界面层。
  8. 根据权利要求1~7任意一项所述的半透明太阳电池器件,其特征在于,所述阴极上还涂覆有光学调控层;所述阴极为铝、银、金、钙/铝合金或钙/银 合金;所述阳极为氧化铟锡导电膜(ITO),掺杂二氧化锡(FTO),氧化锌(ZnO),铟镓锌氧化物(IGZO)和石墨烯及其衍生物中的至少一种。
  9. 权利要求1~8任意一项所述的半透明太阳电池器件的应用,其特征在于,所述器件作为隔热膜使用。
  10. 根据权利要求9所述的应用,其特征在于,所述器件附着于汽车或建筑物外墙的玻璃上。
PCT/CN2017/113363 2017-03-31 2017-11-28 一种半透明太阳电池器件及应用 WO2018176881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/499,282 US20210111361A1 (en) 2017-03-31 2017-11-28 Semi-transparent solar cell device and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710209714.7 2017-03-31
CN201710209714.7A CN106876594A (zh) 2017-03-31 2017-03-31 一种半透明太阳电池器件及应用

Publications (1)

Publication Number Publication Date
WO2018176881A1 true WO2018176881A1 (zh) 2018-10-04

Family

ID=59160570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113363 WO2018176881A1 (zh) 2017-03-31 2017-11-28 一种半透明太阳电池器件及应用

Country Status (3)

Country Link
US (1) US20210111361A1 (zh)
CN (1) CN106876594A (zh)
WO (1) WO2018176881A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223988A (zh) * 2018-11-23 2020-06-02 国家纳米科学中心 一种磷酸根分子修饰的钙钛矿光伏器件及其制备方法和用途
CN111883672A (zh) * 2020-08-26 2020-11-03 中国科学院重庆绿色智能技术研究院 一种精细调节活性层原溶液浓度提升全小分子有机太阳能电池光电效率的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876594A (zh) * 2017-03-31 2017-06-20 华南理工大学 一种半透明太阳电池器件及应用
CN108365098B (zh) * 2018-01-10 2019-11-15 浙江大学 一种高效率的三元有机太阳电池
CN108550702A (zh) * 2018-04-28 2018-09-18 华南协同创新研究院 半透明有机太阳能电池及其制法与在光伏农业大棚中的应用
CN109348696B (zh) * 2018-10-15 2020-08-07 安徽理工大学 一种铁掺杂二氧化锡/还原氧化石墨烯纳米复合吸波材料的制备方法
US20220037603A1 (en) * 2018-12-04 2022-02-03 King Abdullah University Of Science And Technology Radiative heat-blocking materials
CN111682110B (zh) * 2020-05-13 2022-04-22 华南理工大学 一种含非富勒烯受体的近红外光谱响应聚合物光探测器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531711A (zh) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 一种双结有机太阳能电池
US20140174528A1 (en) * 2011-09-02 2014-06-26 Fujifilm Corporation Flexible organic electronic device
CN104241411A (zh) * 2014-07-04 2014-12-24 华南理工大学 一种阳极界面修饰的高效碲化镉纳米晶肖特基结太阳电池及其制备方法
US20160268530A1 (en) * 2015-03-10 2016-09-15 Kabushiki Kaisha Toshiba Photoelectric conversion element and solar cell
CN106876594A (zh) * 2017-03-31 2017-06-20 华南理工大学 一种半透明太阳电池器件及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082236A (zh) * 2010-12-06 2011-06-01 电子科技大学 一种半透明有机薄膜太阳能电池及其制备方法
EP4007003A1 (en) * 2011-01-26 2022-06-01 Massachusetts Institute Of Technology Transparent photovoltaic cells
CN106067514A (zh) * 2016-08-11 2016-11-02 华南理工大学 一种半透明有机太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174528A1 (en) * 2011-09-02 2014-06-26 Fujifilm Corporation Flexible organic electronic device
CN103531711A (zh) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 一种双结有机太阳能电池
CN104241411A (zh) * 2014-07-04 2014-12-24 华南理工大学 一种阳极界面修饰的高效碲化镉纳米晶肖特基结太阳电池及其制备方法
US20160268530A1 (en) * 2015-03-10 2016-09-15 Kabushiki Kaisha Toshiba Photoelectric conversion element and solar cell
CN106876594A (zh) * 2017-03-31 2017-06-20 华南理工大学 一种半透明太阳电池器件及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223988A (zh) * 2018-11-23 2020-06-02 国家纳米科学中心 一种磷酸根分子修饰的钙钛矿光伏器件及其制备方法和用途
CN111223988B (zh) * 2018-11-23 2023-04-07 国家纳米科学中心 一种磷酸根分子修饰的钙钛矿光伏器件及其制备方法和用途
CN111883672A (zh) * 2020-08-26 2020-11-03 中国科学院重庆绿色智能技术研究院 一种精细调节活性层原溶液浓度提升全小分子有机太阳能电池光电效率的方法

Also Published As

Publication number Publication date
US20210111361A1 (en) 2021-04-15
CN106876594A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2018176881A1 (zh) 一种半透明太阳电池器件及应用
Hou et al. High-performance perovskite solar cells by incorporating a ZnGa2O4: Eu3+ nanophosphor in the mesoporous TiO2 layer
CN108767118B (zh) 一种三元全聚合物太阳能电池
Jin et al. Improving efficiency and light stability of perovskite solar cells by incorporating YVO4: Eu3+, Bi3+ nanophosphor into the mesoporous TiO2 layer
Huang et al. High performance as-cast semitransparent polymer solar cells
CN107359243A (zh) 一种三元共混有机聚合物太阳能电池器件
CN105280826A (zh) 一种双电子传输层的新型聚合物太阳能电池
CN113224241A (zh) 钙钛矿太阳能电池及其制备方法
JP6072586B2 (ja) 遮断熱機能を有する太陽光発電フィルム
CN108281553B (zh) 一种聚3,4-乙烯二氧噻吩包覆氧化钨纳米棒、制备方法及其应用
Lojpur et al. Efficient and novel Sb2S3 based solar cells with chitosan/poly (ethylene glycol)/electrolyte blend
KR102192918B1 (ko) 금속 산화물층을 포함하는 정공 전달층, 그를 포함하는 페로브스카이트 태양전지 및 그의 제조방법
WO2019127765A1 (zh) 稀土络合物掺杂二氧化硅微球溶液和改性太阳能电池的制备方法
CN108767112B (zh) 具有不同空穴传输层的BiI3太阳能电池及其制备方法
Xie et al. Highly air-stable and efficient CH3NH3PbI3 solar cells enhanced by ZnO-embedded PCBM electron transport layers
AU2021293998A1 (en) Semi-transparent perovskite-based photovoltaic cells and process for preparing them
CN103325945B (zh) 一种聚合物太阳能电池及其制备方法
Lampande et al. Effectiveness of a polyvinylpyrrolidone interlayer on a zinc oxide film for interfacial modification in inverted polymer solar cells
CN110600617B (zh) 一种以氯化铵改性氧化锌作为电子传输材料的无机钙钛矿太阳能电池及其制备方法
WO2014054759A1 (ja) 有機薄膜太陽電池
Lim et al. Photovoltaic performance of inverted polymer solar cells using hybrid carbon quantum dots and absorption polymer materials
CN114335349A (zh) 一种可用作发电窗户的高效三元有机太阳电池和发电窗户
WO2023097646A1 (zh) 钙钛矿太阳能电池、光伏组件
CN111933806B (zh) 太阳电池的光学增透膜及其应用
Lampande et al. Solution processed n-type mixed metal oxide layer for electron extraction in inverted polymer solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17902630

Country of ref document: EP

Kind code of ref document: A1