WO2018176775A1 - 散热组件及电热油汀 - Google Patents

散热组件及电热油汀 Download PDF

Info

Publication number
WO2018176775A1
WO2018176775A1 PCT/CN2017/104262 CN2017104262W WO2018176775A1 WO 2018176775 A1 WO2018176775 A1 WO 2018176775A1 CN 2017104262 W CN2017104262 W CN 2017104262W WO 2018176775 A1 WO2018176775 A1 WO 2018176775A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
sub
single piece
sheet
Prior art date
Application number
PCT/CN2017/104262
Other languages
English (en)
French (fr)
Inventor
赵仁壮
周伟平
李腾鹤
陈志金
Original Assignee
广东美的环境电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710194802.4A external-priority patent/CN106907760B/zh
Priority claimed from CN201720317084.0U external-priority patent/CN206683043U/zh
Application filed by 广东美的环境电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的环境电器制造有限公司
Publication of WO2018176775A1 publication Critical patent/WO2018176775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/04Electric heating systems using electric heating of heat-transfer fluid in separate units of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details

Definitions

  • the invention relates to the field of household appliances, in particular to a heat dissipating component and an electric heating oil.
  • the present invention aims to at least solve one of the technical problems existing in the related art. To this end, the present invention needs to provide a heat dissipating component and an electric heating oil.
  • the heat dissipating component of the embodiment of the present invention is used for an electric heating oil.
  • the heat dissipating component comprises a plurality of heat dissipating single pieces connected, each of the heat dissipating single pieces comprises a body and a heat dissipating portion connected to the body, and the heat dissipating portion comprises Two heat sinks respectively connected to opposite end edges of the body, each of the heat sinks being at least opposite to a plane of the body toward a plane of the body One side is convex, and two heat dissipating portions of two adjacent heat dissipating single pieces are spaced apart and an air flow channel having a chimney effect is formed between two heat dissipating portions of two adjacent heat dissipating single pieces.
  • the air flow passage is formed between the two opposite heat radiating portions, the air flow passage has a chimney effect, so that under the guiding action of the air flow passage, the adjacent two heat radiating single pieces are The heat dissipated between them can form a heat convection effect in the air flow passage, so that the heat can flow upward at a faster speed in the air flow passage, thereby improving the heat dissipation efficiency of the electric heating oil having the heat dissipating component.
  • two of the fins of two adjacent ones of the heat dissipating fins are spaced apart from each other, and each of the fins protrudes in the same direction.
  • each of the heat sinks protrudes toward a side of a plane of the body with respect to a plane of the body, and each of the heat sinks protrudes in a width direction of the heat dissipation single piece.
  • the plurality of heat dissipation monoliths include a first heat dissipation single piece, a second heat dissipation single piece adjacent to the first heat dissipation single piece, and a third adjacent to the first heat dissipation single piece Heat sinking single piece, the second heat sinking single piece connection a first airflow channel is formed between the first heat dissipation monolith and the third heat dissipation portion of the first heat dissipation monolith and the second heat dissipation portion of the second heat dissipation monolith.
  • a second air flow passage is formed between the second heat dissipation portion of the second heat dissipation single piece and the third heat dissipation portion of the third heat dissipation single piece, and the two first heat dissipation fins of the first heat dissipation single piece are respectively.
  • the two second heat sinks of the second heat sink are disposed opposite to each other, and the two second heat sinks are respectively disposed opposite to the two third heat sinks of the third heat sink, the first The heat sink protrudes away from the corresponding second heat sink of the two second heat sinks, and the second heat sink faces the corresponding third heat sink of the two third heat sinks Protruding.
  • the plurality of heat dissipation monoliths include a fourth heat dissipation single piece adjacent to the third heat dissipation single piece, and the third heat dissipation single piece is connected to the fourth heat dissipation single piece and the second heat dissipation piece a third air flow channel is formed between the third heat dissipating portion and the fourth heat dissipating portion of the fourth heat dissipating single piece, and the two fourth heat dissipating fins of the fourth heat dissipating single piece are respectively separated from the two
  • the third fins are oppositely disposed, and the fourth fins protrude toward a direction away from the corresponding third fins of the two third fins, and the third fins are opposite to the two second fins
  • the corresponding second heat sink in the heat sink protrudes.
  • the third heat sink protrudes away from the corresponding one of the two second heat sinks.
  • the body is formed with a heat transfer oil package
  • the heat dissipation monolith includes a convection hole disposed adjacent to the heat transfer oil package, the convection hole communicating with the air flow passage.
  • the convection hole includes a first convection hole and a second convection hole, and the first convection hole is spaced apart from the second convection hole, the first convection hole and the second convection hole They are located on opposite sides of the heat transfer oil bag.
  • the number of the first convection holes is plural, the number of the second convection holes is plural, and the plurality of the first convection holes are linearly spaced, and the plurality of the second The convection holes are distributed in a straight line.
  • the heat sink includes a first heat dissipation sub-sheet extending from an end edge of the body, and an angle between the first heat dissipation sub-sheet and a plane of the body is greater than 90 degrees and less than 180 degree.
  • the heat sink includes a second heat dissipation sub-piece connected to the first heat dissipation sub-sheet, and an angle between the second heat dissipation sub-sheet and a plane of the body is greater than 0 degrees and less than At 180 degrees, the first heat dissipation sub-sheet and the second heat dissipation sub-sheet respectively protrude toward two sides of a plane of the body.
  • an angle between the second heat dissipation sub-sheet and a plane of the body is greater than or equal to 90 degrees and less than 180 degrees.
  • the second heat dissipation sub-sheets are disposed at different widths along the length direction of the heat dissipation monolith.
  • the body is formed with a heat transfer oil package, and a width of a portion of the second heat dissipation sub-sheet corresponding to the heat transfer oil package is greater than a width of other portions of the second heat dissipation power piece.
  • the second heat dissipation sub-sheet includes a first flange and a second flange, the width of the first flange being greater than the width of the second flange, the first flange Corresponding to the heat transfer oil package, and the length of the first flange is greater than or equal to the length of the heat transfer oil package.
  • the heat transfer oil package is formed with a heating chamber for providing a heating tube for heating, and a portion of the second heat dissipation sub-sheet corresponding to the heat transfer oil package is An orthographic projection on the heating tube covers the heating tube.
  • two of the first hem portions of two adjacent ones of the heat dissipating single sheets are oppositely disposed, and two of the two second hem portions of the adjacent two of the heat dissipating single sheets are opposed to each other.
  • the number of the heat transfer oil packages is two, two of the heat transfer oil packets are spaced apart, the number of the first flanges is two, and the second flange connects two The first fold.
  • the heat sink includes a third heat sink sub-piece, the third heat sink sub-piece is connected to the first heat sink sub-sheet and the second heat sink sub-sheet, and the third heat sink sub-paragraph is parallel to The plane in which the body is located.
  • the electric heating oil according to an embodiment of the present invention includes the heat dissipation assembly according to any of the above embodiments.
  • the air flow passage is formed between the two opposite heat radiating portions, the air flow passage has a chimney effect, so that under the guiding action of the air flow passage, the adjacent two heat radiating single pieces The heat dissipated between them can form a heat convection effect in the air flow passage, so that the heat can flow upward at a faster speed in the air flow passage, thereby improving the heat dissipation efficiency of the electric heating oil having the heat dissipating component.
  • FIG. 1 is a schematic plan view of a heat dissipating assembly according to an embodiment of the present invention.
  • FIG. 2 is another schematic plan view of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG 3 is another schematic plan view of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 4 is a further schematic plan view of a heat dissipating assembly according to an embodiment of the present invention.
  • FIG. 5 is still another schematic plan view of a heat dissipating assembly according to an embodiment of the present invention.
  • FIG. 6 is still another schematic plan view of a heat dissipating assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 9 is still another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 10 is still another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 11 is still another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 12 is still another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of a heat dissipation single piece of the heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 14 is still another schematic structural view of a heat dissipation single piece of the heat dissipation assembly according to the embodiment of the present invention.
  • FIG. 15 is another schematic structural view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • 16 is another schematic structural view of a heat dissipation single piece of the heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 17 is a schematic plan view showing a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 18 is another schematic plan view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 19 is another schematic plan view of a heat dissipation single piece of a heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 20 is still another schematic plan view of a heat dissipation single piece of the heat dissipation assembly according to an embodiment of the present invention.
  • 21 is still another schematic plan view of a heat dissipation single piece of the heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 22 is still another schematic plan view of a heat dissipation single piece of the heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 23 is still another schematic plan view of a heat dissipation single piece of the heat dissipation assembly according to the embodiment of the present invention.
  • the air flow passage 20 the first air flow passage 21, the second air flow passage 22, and the third air flow passage 23.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the heat dissipation assembly 100 of the embodiment of the present invention is used for an electric heating oil.
  • the heat dissipation assembly 100 includes a plurality of heat dissipation monoliths 10 connected thereto.
  • Each of the heat dissipation monoliths 10 includes a body 11 and a heat dissipation portion 12 connected to the body 11 .
  • the heat sink 12 includes two fins 13. Two fins 13 are attached to the opposite ends 118 of the body 11 respectively. Each of the fins 13 protrudes toward at least one of the two sides 119 of the plane 111 where the body 11 is located with respect to the plane 111 where the body 11 is located.
  • the two heat dissipating portions 12 of the adjacent two heat dissipating single sheets 10 are spaced apart and an air flow passage 20 having a chimney effect is formed between the two heat dissipating portions 12 of the adjacent two heat dissipating single sheets 10.
  • the air flow passage 20 is formed between the two heat dissipation portions 12 that are opposed to each other.
  • the air flow passage 20 has a chimney effect, so that the heat radiated between the adjacent two heat radiating monoliths 10 can form a heat convection effect in the air flow passage 20 under the guiding action of the air flow passage 20, thereby enabling heat
  • the upward flow in the air flow passage 20 at a relatively high speed increases the heat dissipation efficiency of the electric heating oil having the heat dissipation assembly 100.
  • the chimney effect airflow channel 20 can enhance the thermal convection effect between the adjacent two heat dissipation monoliths 10, so that part of the heat between the two heat dissipation monoliths 10 can be dissipated into the air through the form of heat convection. Thereby, the overall temperature of the external space can be increased.
  • the strong heat convection effect can improve the heat dissipation speed of the heat dissipation assembly 100 as a whole, and can effectively reduce heat dissipation.
  • the overall temperature of the assembly 100 increases the safety and service life of the heat dissipation assembly 100.
  • each of the fins 13 protrudes toward at least one side of the two sides 119 of the plane 111 of the body 11 with respect to the plane 111 of the body 11” means the position of each fin 13 distributed relative to the body 11 That is, when the plane 111 represents the body 11, the setting state of each of the fins 13 with respect to the plane 111 is required. Moreover, it is precisely because each of the fins 13 protrudes toward at least one side of the two sides 119 of the plane 111 of the body 11 with respect to the plane 111 where the body 11 is located, so that the heat radiated by the heat radiating portion 12 can be made on the heat sink 13. Covering a larger space area under the guiding action, thereby enhancing the lateral heat dissipation and longitudinal heat dissipation of the heat dissipation single piece 10.
  • plane 111 is the reference plane of body 11.
  • the heat dissipating monolith 10 can be processed with the flat surface 111 as a reference surface for welding.
  • Each of the fins 13 extends in the longitudinal direction of the heat radiating monolith 10 (shown in the Y-axis direction of FIG. 1) and in the width direction (shown in the X-axis direction of FIG. 1). Thus, the heat dissipation area of the heat sink 13 is large.
  • body 11 is constructed of a thermally conductive material and fins 13 are constructed of a thermally conductive material.
  • the body 11 is welded to the heat sink 13.
  • the two heat dissipating portions 12 of the adjacent two heat dissipating single sheets 10 can form a semi-wrapped structure for the body 11.
  • the width of the gap between the two heat dissipating portions 12 of the adjacent two heat dissipating single sheets 10 may be set as the case may be.
  • the width of the gap between the two heat dissipating portions 12 may be correspondingly set to be no larger than the width corresponding to the child's fist.
  • each of the fins 13 protrudes from the plane 111 of the body 11 toward both sides 119 of the plane 111 of the body 11.
  • the heat dissipation fins 13b are distributed on the two sides 119 of the plane 111 of the body 11, the heat dissipation area of the two sides 119 corresponding to the heat dissipation monolith 10 is increased, so that the heat dissipation monolith 10 is more uniformly radiated outward.
  • each of the fins 13 protrudes from the plane 111 of the body 11 toward both sides 119 of the plane 111 where the body 11 is located, and the convex directions of the two fins 13 are substantially uniform. In this way, the uniformity of heat dissipation of the entire heat dissipation monolith 10 is improved.
  • each of the fins 13 protrudes toward the both sides 119 of the plane 111 of the body 11 with respect to the plane 111 where the body 11 is located, and the convex directions of the two fins 13 are opposite.
  • the heat dissipated by the heat radiating single piece 10 covers a large space area.
  • each of the fins 13 protrudes toward the two sides 119 of the plane 111 of the body 11 with respect to the plane 111 where the body 11 is located, and each fin 13 is directed to both sides 119 of the plane 111 where the body 11 is located.
  • the degree of bulging is basically the same. In this way, the heat radiated from the heat dissipation monolith 10 to the two sides 119 is substantially the same, so that the heat dissipation is relatively uniform.
  • each of the fins 13 protrudes from a plane 111 of the body 11 toward a side of the two sides 119 of the plane 111 of the body 11 .
  • one of the two fins 13 protrudes toward the left side of the body 11, and the other fin 13 protrudes toward the right side of the body 11.
  • the space in which the two fins 13 are entirely covered is large.
  • left side and “right side” refer to a position state in which the heat dissipation single piece 10 is in a normal use state, for example, a position state as shown in FIG.
  • both of the fins 13 protrude toward the left side of the plane 111 where the body 11 is located. In this way, the heat dissipation area on the left side of the heat dissipation monolith 10 is increased.
  • left side refers to a position state in which the heat dissipation single piece 10 is in a normal use state, for example, a position state as shown in FIG.
  • both of the fins 13 are convex toward the right side of the plane 111 where the body 11 is located.
  • right side refers to a position state in which the heat dissipation single piece 10 is in a normal use state, for example, a position state as shown in FIG.
  • two fins 13 of two adjacent heat dissipating single sheets 10 are disposed opposite to each other. Each of the fins 13 protrudes in the same direction.
  • each of the fins 13 protrudes in the same direction, it is easy to maintain a relatively uniform heat dissipation speed of each of the air passages 20, so that the heat generated by the heat dissipating assembly 100 is more uniform to the surrounding heat radiation.
  • each of the fins 13 protrudes toward the two sides 119 of the plane 111 of the body 11 with respect to the plane 111 where the body 11 is located, and each of the fins 13 protrudes toward the width direction of the heat radiating monolith 10 (as shown in the X-axis direction of FIG. 10). Shown).
  • the value of the width d5 of the interval between any two adjacent fins 13 is the same.
  • the plurality of heat dissipation monoliths 10 includes a first heat dissipation single piece 10a, a second heat dissipation single piece 10b adjacent to the first heat dissipation single piece 10a, and a first heat dissipation sheet.
  • the sheet 10a is adjacent to the third heat dissipation single piece 10c.
  • the second heat dissipation single piece 10b connects the first heat dissipation single piece 10a and the third heat dissipation single piece 10c.
  • a first air flow path 21 is formed between the first heat radiating portion 12a of the first heat radiating single piece 10a and the second heat radiating portion 12b of the second heat radiating single piece 10b.
  • a second air flow passage 22 is formed between the second heat radiating portion 12b of the second heat radiating single piece 10b and the third heat radiating portion 12c of the third heat radiating single piece 10c.
  • the two first heat sinks 13a of the first heat radiating single piece 10a are respectively disposed opposite to the two second heat sinks 13b of the second heat radiating single piece 10b.
  • the two second fins 13b are respectively disposed opposite to the two third fins 13c of the third heat radiating single piece 10c.
  • the first heat sink 13a is away from the two second heat sinks 13b
  • the direction of the second heat sink 13b should be convex.
  • the second heat sink 13b protrudes toward the corresponding third heat sink 13c of the two third heat sinks 13c.
  • the space formed between the first heat sink 13a and the second heat sink 13b is relatively large, that is, the volume of the heat transfer space of the first air flow passage 21 having the chimney effect is larger than that of the second air flow passage 22 having the chimney effect.
  • the first air flow passage 21 corresponds to a larger chimney which is capable of carrying more heat and enables the first heat radiating single piece 10a and the second heat radiating single piece 10b to be cooled at a faster speed.
  • the second air flow passage 22 is equivalent to a smaller chimney, which at least functions to assist heat dissipation and can ensure the heat dissipation effect of the third heat sink 13c.
  • the combination of the chimneys of such a size can improve the heat dissipation speed of the heat dissipation assembly 100 as a whole, thereby effectively reducing the temperature of the entire heat dissipation assembly 100 and ensuring the safety and service life of the heat dissipation assembly 100.
  • the first heat sink 13a protrudes away from the corresponding second heat sink 13b of the two second heat sinks 13b” and “the second heat sink 13b corresponds to the two third heat sinks 13c”
  • the "corresponding" in the third heat sink 13c protrudes to mean that two adjacent heat sinks on the same side of the heat dissipation assembly 100 correspond to each other.
  • the plurality of heat dissipation monoliths 10 do not only include the above three heat dissipation fins, and the arrangement manners of the other heat dissipation fins in the heat dissipation assembly 100 can be set according to specific conditions.
  • the plurality of heat dissipation monoliths 10 includes a fourth heat dissipation monolith 10d adjacent to the third heat dissipation monolith 10c.
  • the third heat dissipation single piece 10c connects the fourth heat dissipation single piece 10d and the second heat dissipation single piece 10b.
  • a third air flow passage 23 is formed between the third heat radiating portion 12c and the fourth heat radiating portion 12d of the fourth heat radiating single piece 10d.
  • the two fourth heat sinks 13d of the fourth heat dissipation single piece 10d are disposed opposite to the two third heat sinks 13c, respectively.
  • the fourth heat sink 13d protrudes away from the corresponding third heat sink 13c of the two third heat sinks 13c.
  • the third heat sink 13c protrudes toward the corresponding second heat sink 13b of the two second heat sinks 13b.
  • the space formed between the third heat sink 13c and the fourth heat sink 13d is relatively large, that is, the volume of the heat transfer space of the third air flow passage 23 having the chimney effect is larger than that of the second air flow passage 22 having the chimney effect.
  • the third air flow passage 23 corresponds to a larger chimney which is capable of carrying more heat and enables the third heat sink 13c and the fourth heat sink 13d to be cooled at a faster speed.
  • the heat dissipating assembly 100 forms a combination of the size of the chimneys, thereby further ensuring the uniformity of heat dissipation of the heat dissipating assembly 100 as a whole.
  • the fourth heat sink 13d protrudes away from the corresponding third heat sink 13c of the two third heat sinks 13c
  • the third heat sink 13c corresponds to the two second heat sinks 13b
  • the "corresponding" of the second heat sink 13b protrudes to mean that two adjacent heat sinks on the same side of the heat dissipation assembly 100 correspond to each other.
  • the third heat sink 13c is away from the two second heat sinks 13b.
  • the direction of the second heat sink 13b should be convex.
  • the area of the third heat sink 13c protruding away from the second heat sink 13b is larger, which enlarges the heat conduction space of the second air flow passage 22, thereby reducing the third heat dissipation single piece 10c and the second heat dissipation single piece.
  • the overall temperature of 10b is larger.
  • the body 11 is formed with a heat transfer oil pack 16 .
  • the heat sinking monolith 10 includes a convection hole 112.
  • the convection hole 112 is disposed adjacent to the heat transfer oil pack 16.
  • the convection hole 112 communicates with the air flow passage 20.
  • the heat dissipation monolith 10 includes the convection hole 112 disposed adjacent to the heat transfer oil pack 16, the convection hole 112 communicates with the air flow passage 20.
  • effective air convection can be formed between the adjacent air flow passages 20 through the convection holes 112, so that the heat dissipation speed of the heat dissipation assembly 100 can be improved, thereby improving the heat dissipation efficiency of the electric heating oil.
  • the opening position of the convection hole 112 may be set according to a specific situation, wherein the convection hole 112 is disposed close to the heat transfer oil bag 16 so that the heat generated by the heat conduction oil bag 16 can pass through the convection hole 112 in the adjacent air flow channel. Effective convection is formed between 20 to increase the heat dissipation rate of the heat dissipation assembly 100.
  • the heat generated by the heat transfer oil pack 16 is circulated through the convection holes 112 to form a plurality of partial air flows between the respective air flow passages 20.
  • the heat generated by the heat transfer oil pack 16 can also be transferred outward in the form of heat radiation.
  • the arrangement distance between the convection hole 112 and the heat transfer oil pack 16 is not specifically limited, and the heat generated by the heat transfer oil pack 16 can form effective convection between the adjacent air flow passages 20 through the convection holes 112. It can be understood that if the distance between the convection hole 112 and the heat transfer oil pack 16 is relatively close, the heat generated by the heat transfer oil pack 16 can be transmitted to the convection hole 112 at a relatively fast speed. If the distance between the convection hole 112 and the heat transfer oil pack 16 is relatively far, the heat generated by the heat transfer oil pack 16 is transmitted to the convection hole 112 at a slow speed, and there may be a partial loss of heat during the transfer.
  • the distance between the convection hole 112 and the heat transfer oil pack 16 is not as close as possible. Too close to the set distance may increase the difficulty of setting the convection hole 112, and may increase the difficulty of forming the heat dissipation monolith 10, and may also affect the efficiency of the heat dissipation monolith 10 to transfer heat outward in the form of heat radiation.
  • the distance between the convection hole 112 and the heat transfer oil bag 16 is moderate, so that the convection hole 112 is not difficult to set up, and the heat generated by the heat transfer oil bag 16 can pass through the convection hole 112 and then in each air flow channel 20. The formation of a plurality of partial airflow cycles can also be effectively transmitted outward in the form of thermal radiation.
  • the heat sink 13 is provided with a convection hole 112.
  • the convection hole 112 includes a first convection hole 113 and a second convection hole 114.
  • the first convection hole 113 is spaced apart from the second convection hole 114.
  • One of the two fins 13 is provided with a first convection hole 113.
  • the other of the two fins 13 is provided with a second convection hole 114.
  • the first convection hole 113 and the second convection hole 114 enhance the air convection effect of the opposite ends of the body 11 and can make the heat dissipation of the heat dissipation assembly 100 more balanced.
  • the convection holes 112 may include only the first convection holes 113, or the convection holes 112 may include only the second convection holes 114.
  • the body 11 is provided with a convection hole 112 .
  • the convection hole 112 includes a first convection hole 113e and a second convection hole 114e.
  • the first convection hole 113e is spaced apart from the second convection hole 114e.
  • the first convection hole 113e and the second convection hole 114e are respectively located on opposite sides of the heat transfer oil pack 16.
  • the opposite sides of the heat transfer oil pack 16 can form a strong air convection, which can make the heat dissipation of the heat transfer oil pack 16 more balanced.
  • the convection hole 112 may include only the first convection hole 113e, or the convection hole 112 may include only the second convection hole 114e.
  • the number of the first convection holes 113e is plural.
  • the number of the second convection holes 114e is plural.
  • the plurality of first convection holes 113e are distributed in a linear interval.
  • the plurality of second convection holes 114e are distributed in a linear interval.
  • the heat generated by the heat transfer oil pack 16 is covered by the heat convection formed in the air flow passage 20 through the first convection hole 113e and the second convection hole 114e, so that the local temperature of the body 11 is prevented from being excessively high.
  • the manner in which the convection holes are spaced increases the strength of the heat dissipating monolith 10.
  • the number of heat transfer oil packs 16 is two. Two heat transfer oil packs 16 are spaced apart, one heat transfer oil pack 16 is disposed on the lower side of the body 11, and the other heat transfer oil pack 16 is disposed on the upper side of the body 11.
  • the number of the first convection holes 113e is plural.
  • the plurality of first convection holes 113e are linearly distributed on the right side of the heat transfer oil pack 16.
  • the number of the second convection holes 114e is plural.
  • the plurality of second convection holes 114e are linearly distributed on the left side of the heat transfer oil pack 16.
  • left side refers to the positional state of the heat dissipation single piece 10 in a normal use state, for example, the position state as shown in FIG.
  • the heat sink 13 includes a first heat dissipation fin 14 extending from an end edge of the body 11.
  • the angle a between the first heat dissipation fin 14 and the plane 111 where the body 11 is located is greater than 90 degrees and less than 180 degrees.
  • the angle a between the first heat dissipation sub-sheet 14 and the body 11 is larger, such that the area of the first heat dissipation sub-sheet 14 protruding relative to the body 11 is larger, and between the first heat dissipation sub-sheet 14 and the body 11.
  • a large heat conduction space can be formed, so that the heat radiated from the body 11 can be derived in time.
  • the first heat dissipating sub-sheet 14 has a certain guiding effect on the heat radiated from the heat dissipating portion 12, so that the heat radiated from the heat dissipating portion 12 can follow the first
  • the heat sinking fins 14 are led out to cover a large space area.
  • the angle a between the first heat dissipation fin 14 and the plane 111 of the body 11 may be 95 degrees, 100 degrees, 110 degrees, 120 degrees, 130 degrees, 140 degrees, 150 degrees, 160 degrees, 170 degrees. Degree or 175 degrees. It should be noted that the angle a between the first heat dissipation sub-sheet 14 and the body 11 is not limited to the values listed in the above examples.
  • each of the heat sinks 13 includes a first heat sink sub-piece 14, that is, the heat sink portion 12 includes two first heat sink sub-sheets 14.
  • the two first heat dissipation fins 14 are oppositely disposed.
  • the angle a between each of the first heat dissipation fins 14 and the plane 111 of the body 11 is 120 degrees.
  • the angle between the first heat dissipating sub-sheet 14 and the body 11 is relatively large, and the area of the fins 13 protruding toward the two sides 119 of the plane 111 of the body 11 is large, and the two sides 119 of the heat dissipating single piece 10 have a larger angle.
  • the heat dissipation area of the heat sink 13 is large.
  • the manner in which the first heat dissipation sub-sheet 14 is disposed may be set according to specific conditions, and is not limited to the examples listed in FIG. 17 described above.
  • the first heat dissipation sub-sheet 14 extends along the longitudinal direction of the heat dissipation monolith 10 (shown in the Y-axis direction of FIG. 15) and the width direction (shown in the X-axis direction of FIG. 15). As such, the heat dissipation area of the first heat dissipation sub-sheet 14 is large.
  • the heat sink 13 includes a second heat sink sub-sheet 15 that is coupled to the first heat sink sub-sheet 14.
  • the angle b between the second heat sink sub-sheet 15 and the plane 111 where the body 11 is located is greater than 0 degrees and less than 180 degrees.
  • the first heat dissipation sub-sheet 14 and the second heat dissipation sub-sheet 15 respectively protrude toward the two sides 119 of the plane 111 where the body 11 is located.
  • the arrangement of the second heat dissipating sub-sheets 15 can further increase the effective heat dissipating area of each of the fins 13 while ensuring that the heat radiated by the heat dissipating portion 12 has a large heat dissipating speed along the two sides 119 of the plane 111 of the body 11 .
  • the angle a and the angle b can be set according to specific conditions.
  • the value of the angle a may be the same as or different from the value of the angle b.
  • the purpose of setting the angle a to be greater than 90 degrees is to promote rapid heat dissipation of the heat sink 13 and prevent the heat dissipation of the body 11 from being timely. The temperature is too high.
  • the value of the angle b can be set within a wide range of angles, which does not affect the heat dissipation of the heat sink 13.
  • connecting the second heat dissipating sub-sheet 15 on the edge side of the first heat dissipating sub-sheet 14 can improve the edge strength of the heat sink 13 and ensure that the heat sink 13 has strong mechanical strength.
  • the second heat radiation sub-sheet 15 extends along the longitudinal direction of the heat dissipation monolith 10 (shown in the Y-axis direction of FIG. 15) and the width direction (shown in the X-axis direction of FIG. 15).
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat dissipating sub-sheets 15 are oppositely disposed, wherein an angle b1 between the second heat dissipating sub-sheet 15 and the plane 111 of the body 11 is 90 degrees, and the other second heat dissipating sub-sheet 15 and the plane 111 of the body 11 are The angle b2 between the two is 60 degrees.
  • the two sides 119 of the heat dissipation monolith 10 have a large heat dissipation area, and since the value of the angle b2 is small, the second heat dissipation sub-sheet 15 on the side has a certain package for the body 11.
  • the wrapping action facilitates air flow between the second heat sink sub-sheet 15 and the body 11 to form a heat convection effect.
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat dissipating sub-sheets 15 are oppositely disposed, and the angle b3 between each of the second heat dissipating sub-sheets 15 and the plane 111 of the body 11 is 60 degrees.
  • the two sides 119 of the heat dissipation single piece 10 have a large heat dissipation area, and since the value of the angle b3 is small, the heat sink 13 as a whole has a certain wrapping effect on the body 11 to facilitate the air in the heat sink 13 and the body 11 Flow between to form a heat convection effect.
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat dissipating sub-sheets 15 are oppositely disposed.
  • the angle b4 between the second heat dissipating sub-sheet 15 and the plane 111 of the body 11 is 60 degrees, and the other second heat dissipating sub-sheet 15 and the plane 111 of the body 11 are The angle b5 between the two is 135 degrees.
  • the two sides 119 of the heat dissipation single piece 10 have a large heat dissipation area, and since the value of the angle b4 is small, the second heat dissipation sub-sheet 15 on the side has a certain wrapping effect on the body 11 to facilitate air in the The second heat dissipation fin 15 on the side flows between the body 11 to form a heat convection effect.
  • the value of the angle b5 is large, the area of the second heat-dissipating fins 15 on the corresponding side protruding toward the two sides 119 of the plane 111 of the body 11 is large, which facilitates the rapid dissipation of heat. This effectively combines the radiant and convection heat dissipation methods.
  • the manner in which the second heat dissipation sub-sheet 15 is disposed may be set according to specific conditions, and is not limited to the examples listed in FIGS. 18 to 20 described above.
  • the angle b between the second heat dissipating sub-sheet 15 and the plane 111 of the body 11 is greater than or equal to 90 degrees and less than 180 degrees.
  • the angle b between the second heat dissipating sub-sheet 15 and the body 11 is relatively large, such that the area of the second heat dissipating sub-sheet 15 protruding toward the two sides 119 with respect to the body 11 is large, and the second heat dissipating sub-sheet 15 A large heat conduction space can be formed between the body 11 and the body 11 so that the heat radiated from the body 11 can be led out along the first heat dissipation sub-sheet 14 and the second heat dissipation sub-sheet 15 in time.
  • the second heat dissipating sub-sheet 15 has a certain guiding effect on the heat radiated from the heat dissipating portion 12, so that the heat radiated from the heat dissipating portion 12 can be led out from the first heat dissipating sub-sheet 14 to the second heat dissipating sub-sheet 15, thereby increasing heat.
  • the angle b between the second heat sink sub-sheet 15 and the body 11 may be 90 degrees, 100 degrees, 110 degrees, 120 degrees, 130 degrees, 140 degrees, 150 degrees, 160 degrees, 170 degrees, or 175. degree. It should be noted that the angle b between the second heat dissipation sub-sheet 15 and the body 11 is not limited to the values listed in the above examples.
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat sink sub-sheets 15 are disposed in parallel.
  • the angle b6 between each of the second heat dissipating sub-sheets 15 and the plane 111 of the body 11 is 90 degrees.
  • the two sides 119 of the heat dissipation single piece 10 have The heat dissipation area of the second heat dissipation fins 15 and the body 11 is moderate, so that the heat sink 13 has a better covering effect on the body 11 and facilitates air in the heat sink 13 and the body 11 . Flowing between them to form a heat convection effect, the heat dissipation speed of the heat sink 13 is large, and the temperature of the entire heat sink 13 is effectively lowered.
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat dissipating sub-sheets 15 are oppositely disposed, wherein an angle b7 between the second heat dissipating sub-sheet 15 and the plane 111 of the body 11 is 90 degrees, and the other second heat dissipating sub-sheet 15 and the plane 111 of the body 11 are The angle b8 between the two is 135 degrees.
  • the two sides 119 of the heat dissipating single chip 10 have a large heat dissipating area, and since the angle between the one of the second heat dissipating sub-sheets 15 and the body 11 is relatively large, so that it faces the two sides of the plane 111 of the body 11 119
  • the convex area is large, which facilitates the rapid dissipation of heat, effectively reducing the temperature of the entire heat sink 13.
  • each of the heat sinks 13 includes a second heat sink sub-sheet 15, that is, the heat sink portion 12 includes two second heat sink sub-sheets 15.
  • the two second heat dissipating sub-sheets 15 are oppositely disposed, and the angle b9 between each of the second heat dissipating sub-sheets 15 and the plane 111 of the body 11 is 135 degrees.
  • the two sides 119 of the heat dissipation monolith 10 have a large heat dissipation area, and since the angle between each of the second heat dissipation sub-sheets 15 and the body 11 is large, each of the second heat dissipation sub-sheets 15 is directed to the body 11.
  • the areas on both sides 119 of the plane 111 are convex, which increases the radiation area of the heat radiated from the heat dissipation monolith 10.
  • the manner in which the second heat radiation sub-sheet 15 is disposed may be set according to specific conditions, and is not limited to the examples listed in FIGS. 21 to 23 described above.
  • the second heat dissipation sub-sheet 15 is disposed at a non-uniform width along the length direction of the heat dissipation monolith 10 (as shown in the Y-axis direction of FIG. 15).
  • the arrangable space of the heat sink 13 is improved, so that the heat dissipation mode of the heat dissipation single piece 10 can be controlled by changing the width of the second heat dissipation sub-sheet 15 along the length direction of the heat dissipation single piece 10 to improve the heat dissipation single piece. 10 heat dissipation efficiency.
  • the overall strength of the edge of the heat dissipation single piece 10 be improved, but also correspondingly according to the mechanical strength requirement of the corresponding portion of the heat dissipation single piece 10, so as to further improve the mechanical strength of the corresponding portion of the heat dissipation single piece 10 in a targeted manner. the goal of.
  • the width of the second heat dissipation sub-sheet 15 can be made wider at some portions corresponding to the heat dissipation single piece 10, and narrower at other portions of the heat dissipation single piece 10, thereby achieving the corresponding heat dissipation single piece 10.
  • the heat radiated from some portions can form a convection effect along the length direction of the heat dissipation monolith 10 to achieve heat dissipation effect of some portions corresponding to the heat dissipation single sheet 10, and the heat radiated from the heat dissipation single sheet 10 can be radiated in the heat dissipation single piece.
  • the other parts corresponding to 10 are dissipated at a relatively fast speed, thereby achieving control of the heat dissipation mode of the heat dissipation single piece 10.
  • the body 11 is formed with a heat transfer oil pack 16.
  • Second heat sink sub-sheet 15 and heat transfer oil pack 16 The width of the corresponding portion (shown in the X-axis direction of FIG. 15) is larger than the width of the other portion of the second heat-dissipating fin 15.
  • a large heat conduction space can be formed between the second heat dissipation sub-sheet 15 and the heat transfer oil package 16, so that the heat radiated from the heat transfer oil package 16 is not easily lost directly from the second heat dissipation sub-sheet 15 to a certain extent.
  • the heat dissipated at the heat transfer oil pack 16 is caused to flow along the heat transfer space with the air, thereby forming a convection effect in the longitudinal direction of the heat dissipation monolith 10.
  • the width of other portions of the second heat dissipating sub-sheet 15 is narrow, the heat formed by the heat dissipating unit 10 can be radiated therefrom at a relatively fast speed. This effectively achieves a combination of radiant and convective heat dissipation.
  • the thermally conductive oil pocket 16 is formed with a heating chamber (not shown).
  • the heating chamber is used to provide a heating tube (not shown) for heating.
  • the orthographic projection of the portion of the second heat-dissipating fin 15 corresponding to the heat-conducting oil bag 16 on the heating pipe covers the heating pipe.
  • the second heat dissipating sub-sheet 15 can make the heat generated by the heating tube not easily lost directly from the second heat dissipating sub-sheet 15, so that most of the heat generated at the heating pipe can be uniformly derived from the heat sink 13 or can be second.
  • the heat convection air is formed in the heat conduction space formed between the heat sink sub-sheet 15 and the heat transfer oil pack 16, so that the heat generated at the heat pipe is more uniform to the surrounding heat radiation.
  • the second heat dissipation sub-sheet 15 includes a first flange 151 and a second flange 152 that are connected.
  • the width d1 of the first flange 151 is greater than the width d2 of the second flange 152 (shown in the X-axis direction of FIGS. 1 and 15).
  • the first flange 151 is disposed corresponding to the heat transfer oil pack 16, and the length h1 of the first flange 151 is greater than or equal to the length h2 of the heat transfer oil pack 16 (as shown in the Y-axis direction of FIGS. 1 and 15).
  • the first flange 151 and the second flange 152 can increase the mechanical strength of the second heat sink sub-sheet 15.
  • the length h1 of the first flange 151 is greater than the length h2 of the heat transfer oil pack 16.
  • the heat transfer oil pack 16 is located between the opposite ends of the first flange 151 in the longitudinal direction (shown in the Y-axis direction of FIGS. 1 and 15).
  • the first flange 151 extends to both sides of the heat-conducting oil bag 16, so that not only the edge strength of both sides of the heat-conducting oil bag 16 is improved, but also a long heat conduction can be formed between the first flange 151 and the heat-conducting oil bag 16.
  • Space such that the heat transfer oil bag 16 can form a convection along the heat conduction space and a longer distance flowing in the heat conduction space, thereby enhancing the convection effect, and making the heat at the heat transfer oil pack 16 not directly from the two sides of the first flange 151 The end is scattered and lost.
  • the number of thermally conductive oil packets 16 is two. Two heat transfer oil packs 16 are spaced apart. The number of first flanges 151 is two. The second flange 152 connects the two first flanges 151.
  • the two first flanges 151 correspond to the two heat transfer oil packs 16, respectively, and the heat sink 13 forms a width at both ends.
  • the structure is narrow, so that the heat generated at the heat transfer oil pack 16 is not easily lost, and a strong convection effect can be formed in the longitudinal direction of the heat dissipation single piece 10, and part of the heat can be convected along the length of the heat dissipation single piece 10. Moreover, it can be dispersed along the length direction of the heat dissipation monolith 10 at a relatively high speed, so that a large space area can be covered.
  • the narrower portion of the fins 13 facilitates air replenishment to enhance the effect of air flow between the fins 13 and the body 11.
  • the number of heat transfer oil packs 16a is two.
  • the two heat transfer oil packs 16a are spaced apart.
  • the first flange 151a corresponds to one of the heat transfer oil packs 16a.
  • the second flange 152a corresponds to the other heat transfer oil pack 16a.
  • the heat dissipation efficiency of the heat transfer oil pack 16a corresponding to the first flange 151a can be specifically increased.
  • a heat pipe (not shown) for heating is disposed in the heat transfer oil pack 16a corresponding to the first flange 151a, and the heat transfer oil pack 16a corresponding to the first flange 151a is located on the lower side.
  • a heat pipe for heating is not provided in the heat transfer oil pack 16a corresponding to the second flange 152a, which is only used for heat conduction. This facilitates the heat generated by the heating pipe to be emitted upward, thereby increasing the efficiency of the heat generated by the heating pipe and reducing the heat loss. At the same time, this also reduces the setting of the heating tube while ensuring heat dissipation efficiency.
  • two first flanges 151 of two adjacent heat dissipation monoliths 10 are spaced apart from each other.
  • the two second flanges 152 of the adjacent two heat dissipation monoliths 10 are spaced apart from each other.
  • the width d3 of the first space formed between the two first flanges 151 of the adjacent two heat dissipation fins 10 is smaller than the difference between the two second flanges 152 of the adjacent two heat dissipation fins 10
  • the width of the two spaces is d4.
  • the opposite two fins 13 are formed with a narrow width at both ends, so that the electrothermal oil 100 can draw more cold air from the side for heating, and in two heat dissipation sheets. A strong thermal convection effect is formed between the sheets 10.
  • each of the bodies 11 is formed with a heat transfer oil pack 16.
  • Each of the heat sinks 13 includes a first heat dissipation sub-sheet 14 , a second heat dissipation sub-sheet 15 , and a third heat dissipation sub-sheet 17 .
  • the first heat dissipation sub-sheet 14, the third heat dissipation sub-sheet 17, and the second heat dissipation sub-sheet 15 are sequentially connected.
  • the second heat sink sub-sheet 15 includes a first flange 151 and a second flange 152 that are joined.
  • the width d1 of the first flange 151 is greater than the width d2 of the second flange 152 (shown in the X-axis direction of FIGS. 1 and 15).
  • the first flange 151 is disposed corresponding to the heat transfer oil pack 16, and the length h1 of the first flange 151 is greater than or equal to the length h2 of the heat transfer oil pack 16 (as shown in the Y-axis direction of FIGS. 1 and 15).
  • the number of heat transfer oil packs 16 is two. Two heat transfer oil packs 16 are spaced apart.
  • the body 11 includes a connection portion (not shown) that connects the two heat transfer oil packs 16.
  • the connection is located between the two heat transfer oil packs 16.
  • the connecting portion is formed with a heat conducting passage (not shown) that communicates the two heat transfer oil packs 16.
  • a heat pipe (not shown) is disposed in the heat transfer oil pack 16.
  • the number of first flanges 151 is two.
  • the second flange 152 connects the two first flanges 151. In this manner, the heated air can flow upward to the heat transfer oil pack 16 on the upper side, so that the heat generated at the heat pipe is more uniform to the surrounding heat radiation.
  • the width d3 of the first interval and the width d4 of the second interval may be set according to specific conditions.
  • the plurality of heat dissipation monoliths 10 may be formed by group welding, and the width d3 of the first space formed between the two first flanges 151 is small and arranged to satisfy the spraying on the heat dissipation monolith 10 The process requirements of the powder and the strength of the edge of the heat-dissipating monolith 10 can be improved.
  • the width d4 of the second space formed between the two second flanges 152 is large and is arranged to prevent the child's fist from directly contacting the higher temperature portion of the body 11 therethrough, and to improve the heat dissipation of the single piece 10.
  • the strength of the edges At the same time, the cold air on both sides of the heat dissipation monolith 10 can enter more heat at the body 11 through the first interval and the second interval.
  • the heat sink 13 includes a third heat sink sub-sheet 17.
  • the third heat dissipation sub-sheet 17 is connected to the first heat dissipation sub-sheet 14 and the second heat dissipation sub-sheet 15 .
  • the third heat sink sub-sheet 17 is parallel to the plane 111 where the body 11 is located.
  • the third heat dissipating sub-sheet 17 further increases the area of the fins 13 protruding toward the two sides 119 of the plane 111 where the body 11 is located, so that the space generated by the heat generated by the electric oil heater 100 can be made larger.
  • the third heat dissipation sub-sheet 17 extends in the width direction of the heat dissipation monolith 10 (shown in the X-axis direction of FIG. 1).
  • the heat dissipation area of the third heat dissipation sub-sheet 17 is large.
  • the heat sink 13 includes a first heat sink sub-sheet 14, a second heat sink sub-sheet 15, and a third heat sink sub-sheet 17.
  • the first heat dissipation sub-sheet 14, the third heat dissipation sub-sheet 17, and the second heat dissipation sub-sheet 15 are sequentially connected.
  • the first heat dissipation sub-sheet 14, the third heat dissipation sub-sheet 17, and the second heat dissipation sub-sheet 15 are each in a sheet shape.
  • the electric heating oil according to an embodiment of the present invention includes the heat dissipation assembly 100 according to any of the above embodiments.
  • the air flow passage 20 is formed between the two heat radiating portions 12 that are opposed to each other.
  • the air flow passage 20 has a chimney effect, so that the heat radiated between the adjacent two heat radiating monoliths 10 can form a heat convection effect in the air flow passage 20 under the guiding action of the air flow passage 20, thereby enabling heat in the air flow passage.
  • the inside 20 flows upward at a relatively fast speed, thereby improving the heat dissipation efficiency of the electric heating oil having the heat dissipation assembly 100.
  • the electric oil heater may include a plurality of heat dissipation components 100.
  • the arrangement between the plurality of heat dissipating components 100 can be set according to specific conditions.
  • the first feature may be "on” or “below” the second feature unless otherwise specifically defined and defined. Direct contact with the first and second features may also include that the first and second features are not in direct contact but are contacted by additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热组件(100)及电热油汀,散热组件(100)包括连接的多个散热单片(10),每个散热单片(10)包括本体(11)及与本体(11)连接的散热部(12),散热部(12)包括两个散热片(13),两个散热片(13)分别连接在本体(11)的相背的两端(118)边缘,每个散热片(13)相对于本体(11)所在平面(111)向本体(11)所在平面(111)的两侧(119)中的至少一侧凸出,相邻的两个散热单片(10)的两个散热部(12)间隔设置且相邻的两个散热单片(10)的两个散热部(12)之间形成有具有烟囱效应的气流通道(20)。

Description

散热组件及电热油汀
优先权信息
本申请请求2017年03月28日向中国国家知识产权局提交的、专利申请号为2017101948024、2017年03月28日向中国国家知识产权局提交的、专利申请号为2017203170840的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及家用电器领域,尤其是涉及一种散热组件及电热油汀。
背景技术
在相关技术中,电热油汀的散热单片之间难以形成有效的空气对流,使得热量从散热单片之间散出的速度较慢,导致电热油汀的散热效率较低。
发明内容
本发明旨在至少解决相关技术中存在的技术问题之一。为此,本发明需要提供一种散热组件及电热油汀。
本发明实施方式的散热组件用于电热油汀,所述散热组件包括连接的多个散热单片,每个所述散热单片包括本体及与所述本体连接的散热部,所述散热部包括两个散热片,所述两个散热片分别连接在所述本体的相背的两端边缘,每个所述散热片相对于所述本体所在平面向所述本体所在平面的两侧中的至少一侧凸出,相邻的两个所述散热单片的两个散热部间隔设置且相邻的两个所述散热单片的两个散热部之间形成有具有烟囱效应的气流通道。
在本发明实施方式的散热组件中,由于在间隔相对的两个散热部之间形成有气流通道,气流通道具有烟囱效应,这样在气流通道的导向作用下,相邻的两个散热单片之间散出的热量可在气流通道内形成热对流效果,从而可使得热量在气流通道内以较快的速度向上流动,从而提高了具有散热组件的电热油汀的散热效率。
在一个实施方式中,相邻的两个所述散热单片的两个所述散热片间隔相对设置,每个所述散热片向同一方向凸出。
在一个实施方式中,每个所述散热片相对于所述本体所在平面向所述本体所在平面的两侧凸出,并且每个所述散热片均向所述散热单片的宽度方向凸出。
在一个实施方式中,所述多个散热单片包括第一散热单片、与所述第一散热单片相邻的第二散热单片及与所述第一散热单片相邻的第三散热单片,所述第二散热单片连接 所述第一散热单片及所述第三散热单片,所述第一散热单片的第一散热部与所述第二散热单片的第二散热部之间形成有第一气流通道,所述第二散热单片的第二散热部与所述第三散热单片的第三散热部之间形成有第二气流通道,所述第一散热单片的两个第一散热片分别与所述第二散热单片的两个第二散热片间隔相对设置,所述两个第二散热片分别与所述第三散热单片的两个第三散热片间隔相对设置,所述第一散热片向远离所述两个第二散热片中对应的所述第二散热片的方向凸出,所述第二散热片向所述两个第三散热片中对应的所述第三散热片凸出。
在一个实施方式中,所述多个散热单片包括与第三散热单片相邻的第四散热单片,所述第三散热单片连接所述第四散热单片及所述第二散热单片,所述第三散热部与所述第四散热单片的第四散热部之间形成有第三气流通道,所述第四散热单片的两个第四散热片分别与所述两个第三散热片间隔相对设置,所述第四散热片向远离所述两个第三散热片中对应的第三散热片的方向凸出,所述第三散热片向所述两个第二散热片中对应的所述第二散热片凸出。
在一个实施方式中,所述第三散热片向远离所述两个第二散热片中对应的所述第二散热片的方向凸出。
在一个实施方式中,所述本体形成有导热油包,所述散热单片包括对流孔,所述对流孔靠近所述导热油包设置,所述对流孔连通所述气流通道。
在一个实施方式中,所述对流孔包括第一对流孔及第二对流孔,所述第一对流孔与所述第二对流孔间隔设置,所述第一对流孔及所述第二对流孔分别位于所述导热油包相背的两侧。
在一个实施方式中,所述第一对流孔的数目为多个,所述第二对流孔的数目为多个,多个所述第一对流孔呈直线状间隔分布,多个所述第二对流孔呈直线状间隔分布。
在一个实施方式中,所述散热片包括自所述本体的一端边缘延伸的第一散热子片,所述第一散热子片与所述本体所在平面之间的夹角大于90度并小于180度。
在一个实施方式中,所述散热片包括与所述第一散热子片连接的第二散热子片,所述第二散热子片与所述本体所在平面之间的夹角大于0度并小于180度,所述第一散热子片和所述第二散热子片分别向所述本体所在平面的两侧凸出。
在一个实施方式中,所述第二散热子片与所述本体所在平面之间的夹角大于或等于90度并小于180度。
在一个实施方式中,所述第二散热子片沿所述散热单片的长度方向不等宽设置。
在一个实施方式中,所述本体形成有导热油包,所述第二散热子片与所述导热油包相对应的部位的宽度大于所述第二散热子片的其它部位的宽度。
在一个实施方式中,所述第二散热子片包括连接的第一折边和第二折边,所述第一折边的宽度大于所述第二折边的宽度,所述第一折边与所述导热油包对应设置,且所述第一折边的长度大于或等于所述导热油包的长度。
在一个实施方式中,所述导热油包形成有加热腔室,所述加热腔室用于设置用于加热的加热管,所述第二散热子片与所述导热油包相对应的部位在所述加热管上的正投影覆盖所述加热管。
在一个实施方式中,相邻的两个所述散热单片的两个所述第一折边间隔相对设置,相邻的两个所述散热单片的两个所述第二折边间隔相对设置,相邻的两个所述散热单片的两个所述第一折边之间形成的第一间隔的宽度小于相邻的两个所述散热单片的两个所述第二折边之间形成的第二间隔的宽度。
在一个实施方式中,所述导热油包的数量为两个,两个所述导热油包间隔设置,所述第一折边的数量为两个,所述第二折边连接两个所述第一折边。
在一个实施方式中,所述散热片包括第三散热子片,所述第三散热子片连接所述第一散热子片及所述第二散热子片,所述第三散热子片平行于所述本体所在平面。
本发明实施方式的电热油汀包括上述任一实施方式所述的散热组件。
在本发明实施方式的电热油汀中,由于在间隔相对的两个散热部之间形成有气流通道,气流通道具有烟囱效应,这样在气流通道的导向作用下,相邻的两个散热单片之间散出的热量可在气流通道内形成热对流效果,从而可使得热量在气流通道内以较快的速度向上流动,从而提高了具有散热组件的电热油汀的散热效率。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的散热组件的平面示意图。
图2是本发明实施方式的散热组件的另一平面示意图。
图3是本发明实施方式的散热组件的又一平面示意图。
图4是本发明实施方式的散热组件的再一平面示意图。
图5是本发明实施方式的散热组件的又另一平面示意图。
图6是本发明实施方式的散热组件的又再一平面示意图。
图7是本发明实施方式的散热组件的散热单片的结构示意图。
图8是本发明实施方式的散热组件的散热单片的另一结构示意图。
图9是本发明实施方式的散热组件的散热单片的又一结构示意图。
图10是本发明实施方式的散热组件的散热单片的再一结构示意图。
图11是本发明实施方式的散热组件的散热单片的又另一结构示意图。
图12是本发明实施方式的散热组件的散热单片的又再一结构示意图。
图13是本发明实施方式的散热组件的散热单片的另又一结构示意图。
图14是本发明实施方式的散热组件的散热单片的再又一结构示意图。
图15是本发明实施方式的散热组件的散热单片的另再一结构示意图。
图16是本发明实施方式的散热组件的散热单片的再另一结构示意图。
图17是本发明实施方式的散热组件的散热单片的平面示意图。
图18是本发明实施方式的散热组件的散热单片的另一平面示意图。
图19是本发明实施方式的散热组件的散热单片的又一平面示意图。
图20是本发明实施方式的散热组件的散热单片的再一平面示意图。
图21是本发明实施方式的散热组件的散热单片的又另一平面示意图。
图22是本发明实施方式的散热组件的散热单片的又再一平面示意图。
图23是本发明实施方式的散热组件的散热单片的再又一平面示意图。
主要元件符号说明:
散热组件100;
散热单片10、第一散热单片10a、第二散热单片10b、第三散热单片10c、第四散热单片10d、本体11、平面111、对流孔112、第一对流孔113、第一对流孔113e、第二对流孔114、第二对流孔114e、两端118、两侧119、散热部12、第一散热部12a、第二散热部12b、第三散热部12c、第四散热部12d、散热片13、第一散热片13a、第二散热片13b、第三散热片13c、第四散热片13d、第一散热子片14、第二散热子片15、第一折边151、第一折边151a、第二折边152、第二折边152a、导热油包16、导热油包16a、第三散热子片17;
气流通道20、第一气流通道21、第二气流通道22、第三气流通道23。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参 考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请一并参阅图1~图3,本发明实施方式的散热组件100用于电热油汀。散热组件100包括连接的多个散热单片10。
每个散热单片10包括本体11及与本体11连接的散热部12。散热部12包括两个散热片13。两个散热片13分别连接在本体11的相背的两端118边缘。每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119中的至少一侧凸出。相邻的两个散热单片10的两个散热部12间隔设置且相邻的两个散热单片10的两个散热部12之间形成有具有烟囱效应的气流通道20。
在本发明实施方式的散热组件100中,由于在间隔相对的两个散热部12之间形成有气流通道20。气流通道20具有烟囱效应,这样在气流通道20的导向作用下,相邻的两个散热单片10之间散出的热量可在气流通道20内形成热对流效果,从而可使得热量
在气流通道20内以较快的速度向上流动,从而提高了具有散热组件100的电热油汀的散热效率。
同时,烟囱效应的气流通道20能够增强相邻的两个散热单片10之间的热对流效果,从而使得两个散热单片10之间的部分热量可通过热对流的形式散发到空气中,从而可提高外界空间的整体温度。
再有,较强的热对流效果可提高散热组件100整体的散热速度,并可有效降低散热 组件100整体的温度,从而提高了散热组件100的安全性及使用寿命。
需要说明的是,“每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119的至少一侧凸出”指的是每个散热片13相对于本体11分布的位置,也就是说在平面111代表本体11时,每个散热片13相对于平面111所需要满足的设置状态。而且,正是由于每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119的至少一侧凸出,才使得由散热部12辐射出的热量能够在散热片13的导向作用下覆盖较大的空间面积,从而增强散热单片10的横向散热及纵向散热。
在一个例子中,平面111为本体11的基准面。散热单片10可以以平面111作为焊接的基准面进行加工。每个散热片13沿散热单片10的长度方向(如图1的Y轴方向所示)及宽度方向(如图1的X轴方向所示)延伸。如此,散热片13的散热面积较大。
在一些例子中,本体11由导热材料构成,散热片13由导热材料构成。本体11与散热片13焊接。
同时,需要说明的是,气流通道20为连通外界大气。相邻的两个散热单片10的两个散热部12能够对本体11形成半包裹的结构。相邻的两个散热单片10的两个散热部12之间的间隙的宽度可根据具体情况进行设置。例如在一个例子中,为了防止儿童的拳头直接接触到本体11的温度较高的部位,可对应地将两个散热部12之间的间隙的宽度设置成不大于儿童的拳头对应的宽度。
请参阅图4~图6,每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119凸出。如此,由于散热片13b分布在本体11所在平面111的两侧119,这样增加了散热单片10对应的两侧119的散热面积,这样散热单片10向外散热更加均匀。
在图4所示的示例中,每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119凸出,并且两个散热片13的凸出方向基本一致。如此,提高了散热单片10整体的散热均匀程度。
在图5所示的示例中,每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119凸出,并且两个散热片13的凸出方向相反。如此,散热单片10散出的热量整体覆盖的空间面积较大。
在图6所示的示例中,每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119凸出,并且每个散热片13向本体11所在平面111的两侧119凸出的程度基本一致。如此,散热单片10向两侧119散出的热量基本相同,这样散热较为均衡。
请参阅图7~图9,每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119的一侧凸出。
在图7所示的示例中,两个散热片13中的一个散热片13向本体11的左侧凸出,另一个散热片13向本体11的右侧凸出。这样两个散热片13整体覆盖的空间面积较大。
需要指出的是,“左侧”及“右侧”指的是在散热单片10处于正常使用状态时所处的位置状态,例如如图7所示的位置状态。
在图8所示的示例中,两个散热片13均向本体11所在平面111的左侧凸出。如此,增加了散热单片10左侧的散热面积。
需要指出的是,“左侧”指的是在散热单片10处于正常使用状态时所处的位置状态,例如如图8所示的位置状态。
在图9所示的示例中,两个散热片13均向本体11所在平面111的右侧凸出。
需要指出的是,“右侧”指的是在散热单片10处于正常使用状态时所处的位置状态,例如如图9所示的位置状态。
请参阅图10,在一个实施方式中,相邻的两个散热单片10的两个散热片13间隔相对设置。每个散热片13向同一方向凸出。
如此,由于每个散热片13向同一方向凸出,这样容易使得每个气流通道20保持较为一致的散热速度,从而使得散热组件100产生的热量对周围的热辐射更加均匀。
具体地,相邻的两个散热单片10的两个本体11相对间隔设置。每个散热片13的尺寸大小基本一致。每个散热片13相对于本体11所在平面111向本体11所在平面111的两侧119凸出,并且每个散热片13均向散热单片10的宽度方向凸出(如图10的X轴方向所示)。任意两两相邻的两个散热片13之间的间隔的宽度d5的值相同。如此,由于每个散热片13均向宽度方向凸出,这样增大了散热组件100宽度方向的凸出面积,提高了散热组件100的散热效率。同时,散热组件100整体分布较为规整。
请结合图11及图12,在一个实施方式中,多个散热单片10包括第一散热单片10a、与第一散热单片10a相邻的第二散热单片10b及与第一散热单片10a相邻的第三散热单片10c。第二散热单片10b连接第一散热单片10a及第三散热单片10c。第一散热单片10a的第一散热部12a与第二散热单片10b的第二散热部12b之间形成有第一气流通道21。第二散热单片10b的第二散热部12b与第三散热单片10c的第三散热部12c之间形成有第二气流通道22。第一散热单片10a的两个第一散热片13a分别与第二散热单片10b的两个第二散热片13b间隔相对设置。两个第二散热片13b分别与第三散热单片10c的两个第三散热片13c间隔相对设置。第一散热片13a向远离两个第二散热片13b中对 应的第二散热片13b的方向凸出。第二散热片13b向两个第三散热片13c中对应的第三散热片13c凸出。
如此,第一散热片13a与第二散热片13b之间形成的空间相对较大,也就是说具有烟囱效应的第一气流通道21的导热空间的体积大于具有烟囱效应的第二气流通道22的导热空间的体积。第一气流通道21相当于一个较大的烟囱,其能够带走更多的热量,并且能够使得第一散热单片10a及第二散热单片10b以较快的速度得到降温。第二气流通道22相当于一个较小的烟囱,其至少可起到辅助散热的功能,并能够保证第三散热片13c的散热效果。这样大小烟囱组合的方式能够从整体上提高散热组件100的散热速度,从而可有效地降低散热组件100整体的温度,保证散热组件100使用的安全性及使用寿命。
需要说明的是,“第一散热片13a向远离两个第二散热片13b中对应的第二散热片13b的方向凸出”及“第二散热片13b向两个第三散热片13c中对应的第三散热片13c凸出”中的“对应的”指的是位于散热组件100的同一侧的两个相邻的散热片相互对应。同时可以理解,多个散热单片10并不仅仅包括上述的三个散热片,并且散热组件100中的其他的散热片的设置方式可根据具体情况进行设置。
请结合图11,在一个实施方式中,多个散热单片10包括与第三散热单片10c相邻的第四散热单片10d。第三散热单片10c连接第四散热单片10d及第二散热单片10b。第三散热部12c与第四散热单片10d的第四散热部12d之间形成有第三气流通道23。第四散热单片10d的两个第四散热片13d分别与两个第三散热片13c间隔相对设置。第四散热片13d向远离两个第三散热片13c中对应的第三散热片13c的方向凸出。第三散热片13c向两个第二散热片13b中对应的第二散热片13b凸出。
如此,第三散热片13c与第四散热片13d之间形成的空间相对较大,也就是说具有烟囱效应的第三气流通道23的导热空间的体积大于具有烟囱效应的第二气流通道22的导热空间的体积。第三气流通道23相当于一个较大的烟囱,其能够带走更多的热量,并且能够使得第三散热片13c及第四散热片13d以较快的速度得到降温。这样散热组件100形成了大小烟囱间隔组合的方式,从而能够进一步保证散热组件100整体散热的均匀性。
需要说明的是,“第四散热片13d向远离两个第三散热片13c中对应的第三散热片13c的方向凸出”及“第三散热片13c向两个第二散热片13b中对应的第二散热片13b凸出”中的“对应的”指的是位于散热组件100的同一侧的两个相邻的散热片相互对应。
请结合图12,在一个实施方式中,第三散热片13c向远离两个第二散热片13b中对 应的第二散热片13b的方向凸出。
如此,第三散热片13c向远离第二散热片13b的方向凸出的面积较大,这样扩大了第二气流通道22的导热空间,从而可降低第三散热单片10c及第二散热单片10b的整体温度。
请结合图1、图13及图14,在一个实施方式中,本体11形成有导热油包16。散热单片10包括对流孔112。对流孔112靠近导热油包16设置。对流孔112连通气流通道20。
如此,由于散热单片10包括靠近导热油包16设置的对流孔112,,并且对流孔112连通气流通道20。这样在相邻的气流通道20之间可通过对流孔112形成有效地空气对流,从而可提高散热组件100的散热速度,进而提高电热油汀的散热效率。
需要说明的是,对流孔112的开设位置可根据具体情况设置,其中对流孔112靠近导热油包16设置的目的是使得由导热油包16产生的热量能够通过对流孔112在相邻的气流通道20之间形成有效的对流,以提高散热组件100的散热速度。同时,导热油包16产生的热量通过对流孔112后是能够在各个气流通道20之间形成多个局部的气流循环的。当然,导热油包16产生的热量也能够以热辐射的形式向外传递。
再有,对流孔112与导热油包16之间的设置距离并没有具体的限制,导热油包16产生的热量能够通过对流孔112在相邻的气流通道20之间形成有效的对流即可。可以理解,若对流孔112与导热油包16之间的设置距离较近,则导热油包16产生的热量可以较快的速度传递至对流孔112。若对流孔112与导热油包16之间的设置距离相对较远,则导热油包16产生的热量传递至对流孔112的速度较慢,并且热量在传递过程中可能存在部分的损失。
但是,对流孔112与导热油包16之间的设置距离并非越近越好。过于近的设置距离可能会增加对流孔112的设置难度,并可能增加散热单片10的成型难度,也可能会影响散热单片10以热辐射的形式向外传递热量的效率。较佳地,对流孔112与导热油包16之间的设置距离适中,这样对流孔112的设置难度不大,而且导热油包16产生的热量既能够通过对流孔112后在各个气流通道20之间形成多个局部的气流循环的,也能够以热辐射的形式有效地向外传递。
请结合图13,在一个实施方式中,散热片13开设有对流孔112。对流孔112包括第一对流孔113及第二对流孔114。第一对流孔113与第二对流孔114间隔设置。两个散热片13中的一个散热片13开设有第一对流孔113。两个散热片13中的另一个散热片13开设有第二对流孔114。
如此,第一对流孔113及第二对流孔114增强了本体11的相背的两端的空气对流效果,并可使得散热组件100的散热更加均衡。
可以理解,在一些例子中,对流孔112可仅包括第一对流孔113,或者对流孔112可仅包括第二对流孔114。
请结合图14,在一个实施方式中,本体11开设有对流孔112。对流孔112包括第一对流孔113e及第二对流孔114e。第一对流孔113e与第二对流孔114e间隔设置。第一对流孔113e及第二对流孔114e分别位于导热油包16相背的两侧。
如此,导热油包16相背的两侧均可形成较强的空气对流,这样可使得导热油包16的散热更加均衡。
可以理解,在一些例子中,对流孔112可仅包括第一对流孔113e,或者对流孔112可仅包括第二对流孔114e。
在一个实施方式中,第一对流孔113e的数目为多个。第二对流孔114e的数目为多个。多个第一对流孔113e呈直线状间隔分布。多个第二对流孔114e呈直线状间隔分布。
如此,导热油包16产生的热量通过第一对流孔113e及第二对流孔114e在气流通道20内形成的热对流的覆盖的面积较大,这样可避免本体11的局部温度过高。同时,对流孔间隔设置的方式提高了散热单片10的强度。
在图14所示的示例中,导热油包16的数目为两个。两个导热油包16间隔设置,其中一个导热油包16设置在本体11的下侧,另一个导热油包16设置在本体11的上侧。第一对流孔113e的数目为多个。多个第一对流孔113e呈直线状分布在导热油包16的右侧。第二对流孔114e的数目为多个。多个第二对流孔114e呈直线状分布在导热油包16的左侧。如此,每个导热油包16处形成的热量均可从右侧两侧均匀散出,然后可在空气流的带动下由下至上地覆盖整个散热单片10。
需要指出的是,“左侧”、“右侧”及“由下至上”均指的是散热单片10在正常使用状态下的位置状态,例如如图14所示的位置状态。
请一并参阅图15~图17,在一个实施方式中,散热片13包括自本体11的一端边缘延伸的第一散热子片14。第一散热子片14与本体11所在平面111之间的夹角a大于90度并小于180度。
如此,第一散热子片14与本体11之间的夹角a较大,这样使得第一散热子片14相对于本体11凸出的面积较大,第一散热子片14与本体11之间能够形成较大的导热空间,从而能够使得本体11辐射出的热量得到及时地导出。同时第一散热子片14对散热部12辐射出的热量具有一定的导向作用,能够使得散热部12辐射出的热量顺着第一 散热子片14导出,从而覆盖较大的空间面积。
在一些例子中,第一散热子片14与本体11所在平面111之间的夹角a可以为95度、100度、110度、120度、130度、140度、150度、160度、170度或175度。需要说明的是,第一散热子片14与本体11之间的夹角a并不限于上述例子中所列举的值。
在图17所示的示例中,每个散热片13均包括一个第一散热子片14,即散热部12包括两个第一散热子片14。两个第一散热子片14相对设置。每个第一散热子片14与本体11所在平面111之间的夹角a均为120度。如此,第一散热子片14与本体11之间的夹角较大,散热片13向本体11所在平面111的两侧119凸出的面积较大,散热单片10的两侧119具有较大的散热面积,散热片13的散热速度较大。
需要说明的是,第一散热子片14的设置方式可根据具体情况进行设置,并不仅限于上述图17所列举的示例。在一个例子中,第一散热子片14沿散热单片10的长度方向(如图15的Y轴方向所示)及宽度方向(如图15的X轴方向所示)延伸。如此,第一散热子片14的散热面积较大。
在一个实施方式中,散热片13包括与第一散热子片14连接的第二散热子片15。第二散热子片15与本体11所在平面111之间的夹角b大于0度并小于180度。第一散热子片14和第二散热子片15分别向本体11所在平面111的两侧119凸出。如此,第二散热子片15的设置能够进一步增加每个散热片13的有效散热面积,同时保证由散热部12辐射出的热量沿本体11所在平面111的两侧119方向具有较大的散热速度。
需要说明的是,夹角a与夹角b可根据具体情况进行设置。夹角a的值与夹角b的值可相同,也可不同,其中夹角a的值设置成大于90度的目的是为了促进散热片13的快速散热,并防止本体11处因散热不及时而温度过高。当然在夹角a的值设置成大于90度时,夹角b的值可在较宽的角度范围内进行设置,这样并不影响散热片13的散热。同时,在第一散热子片14的边缘侧连接第二散热子片15可提高散热片13的边缘强度,保证散热片13具有较强的机械强度。
在一个例子中,第二散热子片15沿散热单片10的长度方向(如图15的Y轴方向所示)及宽度方向(如图15的X轴方向所示)延伸。
在图18所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对设置,其中一个第二散热子片15与本体11所在平面111之间的夹角b1为90度,另一个第二散热子片15与本体11所在平面111之间的夹角b2为60度。如此,散热单片10的两侧119具有较大的散热面积,并且由于夹角b2的值较小,这样该侧的第二散热子片15对本体11具有一定的包 裹作用,利于空气在第二散热子片15与本体11之间流动以形成热对流效果。
在图19所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对设置,每个第二散热子片15与本体11所在平面111之间的夹角b3均为60度。如此,散热单片10的两侧119具有较大的散热面积,并且由于夹角b3的值较小,这样散热片13整体对本体11具有一定的包裹作用,利于空气在散热片13与本体11之间流动以形成热对流效果。
在图20所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对设置,其中一个第二散热子片15与本体11所在平面111之间的夹角b4为60度,另一个第二散热子片15与本体11所在平面111之间的夹角b5为135度。如此,散热单片10的两侧119具有较大的散热面积,并且由于夹角b4的值较小,这样该侧的第二散热子片15对本体11具有一定的包裹作用,利于空气在该侧的第二散热子片15与本体11之间流动以形成热对流效果。同时由于夹角b5的值较大,使得对应侧的第二散热子片15向本体11所在平面111的两侧119凸出的面积较大,这样利于热量的快速散出。这样有效结合了辐射式及对流式的散热方式。
需要说明的是,第二散热子片15的设置方式可根据具体情况进行设置,并不仅限于上述图18~图20所列举的示例。
在一个实施方式中,第二散热子片15与本体11所在平面111之间的夹角b大于或等于90度并小于180度。
如此,第二散热子片15与本体11之间的夹角b较大,这样使得第二散热子片15相对于本体11向两侧119凸出的面积较大,同时第二散热子片15与本体11之间能够形成较大的导热空间,从而能够使得本体11辐射出的热量能够顺着第一散热子片14及第二散热子片15得到及时地导出。同时第二散热子片15对散热部12辐射出的热量具有一定的导向作用,能够使得散热部12辐射出的热量由第一散热子片14至第二散热子片15而导出,从而增加热量覆盖的空间面积。
在一些例子中,第二散热子片15与本体11之间的夹角b可以为90度、100度、110度、120度、130度、140度、150度、160度、170度或175度。需要说明的是,第二散热子片15与本体11之间的夹角b并不限于上述例子中所列举的值。
在图21所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对平行设置。每个第二散热子片15与本体11所在平面111之间的夹角b6均为90度。如此,散热单片10的两侧119具有 较大的散热面积,同时由于第二散热子片15与本体11之间的夹角均适中,这样散热片13整体对本体11具有较佳的覆盖作用,并且利于空气在散热片13与本体11之间流动以形成热对流效果,散热片13的散热速度较大,有效降低了散热片13整体的温度。
在图22所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对设置,其中一个第二散热子片15与本体11所在平面111之间的夹角b7为90度,另一个第二散热子片15与本体11所在平面111之间的夹角b8为135度。如此,散热单片10的两侧119具有较大的散热面积,并且由于其中一个第二散热子片15与本体11之间的夹角较大,使得其向本体11所在平面111的两侧119凸出的面积较大,这样利于热量的快速散出,有效降低了散热片13整体的温度。
在图23所示的示例中,每个散热片13均包括一个第二散热子片15,即散热部12包括两个第二散热子片15。两个第二散热子片15相对设置,每个第二散热子片15与本体11所在平面111之间的夹角b9均为135度。如此,散热单片10的两侧119具有较大的散热面积,并且由于每个第二散热子片15与本体11之间的夹角较大,使得每个第二散热子片15向本体11所在平面111的两侧119凸出的面积均较大,这样增加了散热单片10散出的热量的辐射面积。
需要说明的是,第二散热子片15的设置方式可根据具体情况进行设置,并不仅限于上述图21~图23所列举的示例。
在一个实施方式中,第二散热子片15沿散热单片10的长度方向(如图15的Y轴方向所示)不等宽设置。
如此,提高了散热片13的可设置空间,这样可通过变化第二散热子片15沿散热单片10的长度方向的宽度来实现对散热单片10的散热方式进行控制,以提高散热单片10的散热效率。同时,这样不仅可提高散热单片10边缘的整体强度,还可根据散热单片10对应部位的机械强度需要而进行对应设置,以达到有针对性地进一步提高散热单片10对应部位的机械强度的目的。
例如在一个例子中,可通过使得第二散热子片15的宽度在散热单片10对应的一些部位较宽,在散热单片10的另一些部位较窄,从而达到使得散热单片10对应的一些部位的辐射出的热量可沿散热单片10的长度方向形成对流效果,以实现增强散热单片10对应的一些部位的散热效果,并使得散热单片10辐射出的热量能够在散热单片10对应的另一些部位以较快的速度散出,从而达到对散热单片10的散热方式的控制。
在一个实施方式中,本体11形成有导热油包16。第二散热子片15与导热油包16 相对应的部位的宽度(如图15的X轴方向所示)大于第二散热子片15的其它部位的宽度。
如此,第二散热子片15与导热油包16之间可形成较大的导热空间,这样可在一定程度上使得导热油包16处散出的热量不容易直接从第二散热子片15损失,并可使得导热油包16处散出的热量随着空气沿着导热空间流动,从而在散热单片10的长度方向形成对流效果。同时,由于第二散热子片15的其它部位的宽度较窄,这样散热单片10形成的热量可以较快的速度由该处辐射出。这样有效地实现了辐射式和对流式相结合的散热方式。
在一个实施方式中,导热油包16形成有加热腔室(图未示出)。加热腔室用于设置用于加热的加热管(图未示出)。第二散热子片15与导热油包16相对应的部位在加热管上的正投影覆盖加热管。
如此,第二散热子片15可使得加热管产生的热量不容易直接从第二散热子片15损失,从而使得加热管处产生的大部分热量可均匀地由散热片13导出或可在第二散热子片15与导热油包16之间形成的导热空间内形成热对流空气,从而使得加热管处产生的热量对周围的热辐射更加均匀。
请结合图1及图15,在一个实施方式中,第二散热子片15包括连接的第一折边151和第二折边152。第一折边151的宽度d1大于第二折边152的宽度d2(如图1及图15的X轴方向所示)。第一折边151与导热油包16对应设置,且第一折边151的长度h1大于或等于导热油包16的长度h2(如图1及图15的Y轴方向所示)。
如此,由于较宽的第一折边151的长度h1不小于导热油包16的长度h2,使得导热油包16散发的热量不易从第一折边151损失,提高了电热油汀100的加热效率。同时,第一折边151及第二折边152可提高第二散热子片15的机械强度。
在一个实施方式中,第一折边151的长度h1大于导热油包16的长度h2。导热油包16位于第一折边151长度方向上(如图1及图15的Y轴方向所示)相对的两端之间。
如此,第一折边151延伸到了导热油包16的两侧,这样不仅提高了导热油包16两侧的边缘强度,而且第一折边151与导热油包16之间可形成较长的导热空间,这样导热油包16可沿导热空间形成对流并在导热空间内流动的距离较长,从而增强了对流效果,并使得导热油包16处的热量不容易直接从第一折边151的两端散出而损失。
在一个实施方式中,导热油包16的数量为两个。两个导热油包16间隔设置。第一折边151的数量为两个。第二折边152连接两个第一折边151。
如此,两个第一折边151分别与两个导热油包16对应,散热片13形成了两端宽中 间窄的结构,这样导热油包16处产生的热量不容易损失,并且可在散热单片10的长度方向形成较强的对流效果,并可使得部分热量因沿散热单片10的长度方向对流而能够以较快的速度沿沿散热单片10的长度方向散出,从而可覆盖较大的空间面积。同时,散热片13中间较窄的部分利于空气补充进入,以增强散热片13与本体11之间空气流动的效果。
请结合图16,在一个实施方式中,导热油包16a的数量为两个。两个导热油包16a间隔设置。第一折边151a与其中一个导热油包16a对应。第二折边152a与另一个导热油包16a对应。
如此,在保证每个导热油包16a的散热效率的情况下,可针对性地提高与第一折边151a对应的导热油包16a的散热效率。
例如,在一个例子中,与第一折边151a对应的导热油包16a内设置有用于加热的加热管(图未示出),并且与第一折边151a对应的导热油包16a位于下侧。同时,与第二折边152a对应的导热油包16a内没有设置用于加热的加热管,其仅用于进行导热。这样利于加热管产生的热量向上散发,从而提高了加热管产生的热量向上散发的效率,并减少了热量损失。同时,这样在保证散热效率的情况下还可减少加热管的设置。
请结合图1,在一个实施方式中,相邻的两个散热单片10的两个第一折边151间隔相对设置。相邻的两个散热单片10的两个第二折边152间隔相对设置。相邻的两个散热单片10的两个第一折边151之间形成的第一间隔的宽度d3小于相邻的两个散热单片10的两个第二折边152之间形成的第二间隔的宽度d4。
如此,由于第二间隔较宽,相对的两个散热片13均形成了两端宽中间窄的结构,这样电热油汀100可从侧面吸入更多的冷空气进行加热,并在两个散热单片10之间形成较强的热对流效果。
具体地,在本发明实施方式中,每个本体11形成有导热油包16。每个散热片13包括第一散热子片14、第二散热子片15及第三散热子片17。第一散热子片14、第三散热子片17及第二散热子片15依次连接。第二散热子片15包括连接的第一折边151和第二折边152。第一折边151的宽度d1大于第二折边152的宽度d2(如图1及图15的X轴方向所示)。第一折边151与导热油包16对应设置,且第一折边151的长度h1大于或等于导热油包16的长度h2(如图1及图15的Y轴方向所示)。导热油包16的数量为两个。两个导热油包16间隔设置。
本体11包括连接两个导热油包16的连接部(图未示出)。连接部位于两个导热油包16之间。连接部形成有连通两个导热油包16的导热通道(图未示出)。位于下侧的 导热油包16内设置有加热管(图未示出)。位于上侧的导热油包16内没有设置加热管。第一折边151的数量为两个。第二折边152连接两个第一折边151。如此,加热的空气能够向上流动至位于上侧的导热油包16,从而使得加热管处产生的热量对周围的热辐射更加均匀。
需要说明的是,第一间隔的宽度d3及第二间隔的宽度d4可根据具体情况进行设置。例如在一个例子中,多个散热单片10可通过组焊而成,两个第一折边151之间形成的第一间隔的宽度d3较小并设置成满足在散热单片10上进行喷粉的工艺要求,并能够提高散热单片10的边缘的强度。两个第二折边152之间形成的第二间隔的宽度d4较大并设置成能够防止儿童的拳头通过该处直接接触到本体11的温度较高的部位,并能提高散热单片10的边缘的强度。同时,散热单片10两侧的冷空气能够通过第一间隔及第二间隔进入而带走本体11处更多的热量。
需要指出的是,“位于下侧”及“位于上侧”指的是电热油汀100在正常使用状态下时的位置状态,例如如图1所示的位置状态。
在一个实施方式中,散热片13包括第三散热子片17。第三散热子片17连接第一散热子片14及第二散热子片15。第三散热子片17平行于本体11所在平面111。
如此,第三散热子片17进一步增大了散热片13向本体11所在平面111的两侧119凸出的面积,从而使得电热油汀100产生的热量能够辐射的空间面积更大。
在一个例子中,第三散热子片17沿散热单片10的宽度方向(如图1的X轴方向所示)延伸。如此,第三散热子片17的散热面积较大。
在本发明示例中,散热片13包括第一散热子片14、第二散热子片15及第三散热子片17。第一散热子片14、第三散热子片17及第二散热子片15依次连接。第一散热子片14、第三散热子片17及第二散热子片15均呈片状。
本发明实施方式的电热油汀包括上述任一实施方式所述的散热组件100。
在本发明实施方式的电热油汀中,由于在间隔相对的两个散热部12之间形成有气流通道20。气流通道20具有烟囱效应,这样在气流通道20的导向作用下,相邻的两个散热单片10之间散出的热量可在气流通道20内形成热对流效果,从而可使得热量在气流通道20内以较快的速度向上流动,从而提高了具有散热组件100的电热油汀的散热效率。
需要说明的是,电热油汀可包括多个散热组件100。多个散热组件100之间的设置方式可根据具体情况进行设置。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可 以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种散热组件,用于电热油汀,其特征在于,所述散热组件包括连接的多个散热单片,每个所述散热单片包括本体及与所述本体连接的散热部,所述散热部包括两个散热片,所述两个散热片分别连接在所述本体的相背的两端边缘,每个所述散热片相对于所述本体所在平面向所述本体所在平面的两侧中的至少一侧凸出;
    相邻的两个所述散热单片的两个散热部间隔设置且相邻的两个所述散热单片的两个散热部之间形成有具有烟囱效应的气流通道。
  2. 如权利要求1所述的散热组件,其特征在于,相邻的两个所述散热单片的两个所述散热片间隔相对设置,每个所述散热片向同一方向凸出。
  3. 如权利要求1所述的散热组件,其特征在于,每个所述散热片相对于所述本体所在平面向所述本体所在平面的两侧凸出,并且每个所述散热片均向所述散热单片的宽度方向凸出。
  4. 如权利要求1所述的散热组件,其特征在于,所述多个散热单片包括第一散热单片、与所述第一散热单片相邻的第二散热单片及与所述第一散热单片相邻的第三散热单片,所述第二散热单片连接所述第一散热单片及所述第三散热单片,所述第一散热单片的第一散热部与所述第二散热单片的第二散热部之间形成有第一气流通道,所述第二散热单片的第二散热部与所述第三散热单片的第三散热部之间形成有第二气流通道;
    所述第一散热单片的两个第一散热片分别与所述第二散热单片的两个第二散热片间隔相对设置,所述两个第二散热片分别与所述第三散热单片的两个第三散热片间隔相对设置,所述第一散热片向远离所述两个第二散热片中对应的所述第二散热片的方向凸出,所述第二散热片向所述两个第三散热片中对应的所述第三散热片凸出。
  5. 如权利要求4所述的散热组件,其特征在于,所述多个散热单片包括与第三散热单片相邻的第四散热单片,所述第三散热单片连接所述第四散热单片及所述第二散热单片,所述第三散热部与所述第四散热单片的第四散热部之间形成有第三气流通道;
    所述第四散热单片的两个第四散热片分别与所述两个第三散热片间隔相对设置,所述第四散热片向远离所述两个第三散热片中对应的第三散热片的方向凸出,所述第三散热片向所述两个第二散热片中对应的所述第二散热片凸出。
  6. 如权利要求4所述的散热组件,其特征在于,所述第三散热片向远离所述两个第二散热片中对应的所述第二散热片的方向凸出。
  7. 如权利要求1所述的散热组件,其特征在于,所述本体形成有导热油包,所述散热单片包括对流孔,所述对流孔靠近所述导热油包设置,所述对流孔连通所述气流通道。
  8. 如权利要求7所述的散热组件,其特征在于,所述对流孔包括第一对流孔及第二 对流孔,所述第一对流孔与所述第二对流孔间隔设置,所述第一对流孔及所述第二对流孔分别位于所述导热油包相背的两侧。
  9. 如权利要求8所述的散热组件,其特征在于,所述第一对流孔的数目为多个,所述第二对流孔的数目为多个,多个所述第一对流孔呈直线状间隔分布,多个所述第二对流孔呈直线状间隔分布。
  10. 如权利要求1所述的散热组件,其特征在于,所述散热片包括自所述本体的一端边缘延伸的第一散热子片,所述第一散热子片与所述本体所在平面之间的夹角大于90度并小于180度。
  11. 如权利要求10所述的散热组件,其特征在于,所述散热片包括与所述第一散热子片连接的第二散热子片,所述第二散热子片与所述本体所在平面之间的夹角大于0度并小于180度,所述第一散热子片和所述第二散热子片分别向所述本体所在平面的两侧凸出。
  12. 如权利要求11所述的散热组件,其特征在于,所述第二散热子片与所述本体所在平面之间的夹角大于或等于90度并小于180度。
  13. 如权利要求11所述的散热组件,其特征在于,所述第二散热子片沿所述散热单片的长度方向不等宽设置。
  14. 如权利要求13所述的散热组件,其特征在于,所述本体形成有导热油包,所述第二散热子片与所述导热油包相对应的部位的宽度大于所述第二散热子片的其它部位的宽度。
  15. 如权利要求14所述的散热组件,其特征在于,所述第二散热子片包括连接的第一折边和第二折边,所述第一折边的宽度大于所述第二折边的宽度,所述第一折边与所述导热油包对应设置,且所述第一折边的长度大于或等于所述导热油包的长度。
  16. 如权利要求14所述的散热组件,其特征在于,所述导热油包形成有加热腔室,所述加热腔室设置有加热管,所述第二散热子片与所述导热油包相对应的部位在所述加热管上的正投影覆盖所述加热管。
  17. 如权利要求15所述的散热组件,其特征在于,相邻的两个所述散热单片的两个所述第一折边间隔相对设置,相邻的两个所述散热单片的两个所述第二折边间隔相对设置,相邻的两个所述散热单片的两个所述第一折边之间形成的第一间隔的宽度小于相邻的两个所述散热单片的两个所述第二折边之间形成的第二间隔的宽度。
  18. 如权利要求15所述的散热组件,其特征在于,所述导热油包的数量为两个,两个所述导热油包间隔设置,所述第一折边的数量为两个,所述第二折边连接两个所述第一折边。
  19. 如权利要求11所述的散热组件,其特征在于,所述散热片包括第三散热子片,所述第三散热子片连接所述第一散热子片及所述第二散热子片,所述第三散热子片平行于所述本体所在平面。
  20. 一种电热油汀,其特征在于,包括权利要求1-19任一项所述的散热组件。
PCT/CN2017/104262 2017-03-28 2017-09-29 散热组件及电热油汀 WO2018176775A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2017203170840 2017-03-28
CN201710194802.4A CN106907760B (zh) 2017-03-28 2017-03-28 散热组件及电热油汀
CN2017101948024 2017-03-28
CN201720317084.0U CN206683043U (zh) 2017-03-28 2017-03-28 散热组件及电热油汀

Publications (1)

Publication Number Publication Date
WO2018176775A1 true WO2018176775A1 (zh) 2018-10-04

Family

ID=63674099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104262 WO2018176775A1 (zh) 2017-03-28 2017-09-29 散热组件及电热油汀

Country Status (1)

Country Link
WO (1) WO2018176775A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867981A (en) * 1972-09-29 1975-02-25 Robbins & Myers Heat exchange structure
NL1024423C1 (nl) * 2003-10-01 2004-09-27 Betherma B V Lamel voor toepassing in convectoren, convector en convectorkanaal.
CN202253517U (zh) * 2011-10-18 2012-05-30 山东开元电子有限公司 装配式led灯散热器
CN102644966A (zh) * 2012-04-16 2012-08-22 宁波先锋电器制造有限公司 一种油汀散热片及使用该散热片的电热油汀
CN203550018U (zh) * 2013-08-22 2014-04-16 广东美的环境电器制造有限公司 电热油汀取暖器及其散热片
CN103822291A (zh) * 2014-03-07 2014-05-28 宁波先锋电器制造有限公司 带有散热通道的电热油汀
CN203785071U (zh) * 2014-05-02 2014-08-20 佛山市顺德区富迪威电器有限公司 高效电热油汀
CN204373045U (zh) * 2014-12-31 2015-06-03 宁波先锋电器制造有限公司 散热通道间隔设置的电热油汀
CN105783562A (zh) * 2016-05-13 2016-07-20 高建新 一种散热器
CN106907760A (zh) * 2017-03-28 2017-06-30 广东美的环境电器制造有限公司 散热组件及电热油汀

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867981A (en) * 1972-09-29 1975-02-25 Robbins & Myers Heat exchange structure
NL1024423C1 (nl) * 2003-10-01 2004-09-27 Betherma B V Lamel voor toepassing in convectoren, convector en convectorkanaal.
CN202253517U (zh) * 2011-10-18 2012-05-30 山东开元电子有限公司 装配式led灯散热器
CN102644966A (zh) * 2012-04-16 2012-08-22 宁波先锋电器制造有限公司 一种油汀散热片及使用该散热片的电热油汀
CN203550018U (zh) * 2013-08-22 2014-04-16 广东美的环境电器制造有限公司 电热油汀取暖器及其散热片
CN103822291A (zh) * 2014-03-07 2014-05-28 宁波先锋电器制造有限公司 带有散热通道的电热油汀
CN203785071U (zh) * 2014-05-02 2014-08-20 佛山市顺德区富迪威电器有限公司 高效电热油汀
CN204373045U (zh) * 2014-12-31 2015-06-03 宁波先锋电器制造有限公司 散热通道间隔设置的电热油汀
CN105783562A (zh) * 2016-05-13 2016-07-20 高建新 一种散热器
CN106907760A (zh) * 2017-03-28 2017-06-30 广东美的环境电器制造有限公司 散热组件及电热油汀

Similar Documents

Publication Publication Date Title
JP5024600B2 (ja) 発熱体冷却構造及びその構造を備えた駆動装置
CN106907760B (zh) 散热组件及电热油汀
WO2021043047A1 (zh) 一种复合齿散热器及通讯基站
WO2018176830A1 (zh) 散热组件及电热油汀
JP2015511550A (ja) 車両用ヒータ
WO2018076544A1 (zh) 油汀取暖器
CN103874395A (zh) 散热器及采用该散热器的变频器
WO2018176832A1 (zh) 散热单片及电热油汀
WO2021258697A1 (zh) 一种油汀体及具有其的油汀
JP2019531451A (ja) オイルヒータ
WO2018176775A1 (zh) 散热组件及电热油汀
CN206683043U (zh) 散热组件及电热油汀
WO2016177040A1 (zh) 一种散热片
TW201618657A (zh) 散熱模組
WO2018176831A1 (zh) 散热单片及电热油汀
CN106793717B (zh) 一种散热结构及虚拟现实产品
WO2022016936A1 (zh) 电热油汀
KR101432623B1 (ko) 차량 공조장치용 히터
EP3240376B1 (en) Cabinet
CN209435686U (zh) 遥控器整体散热结构
WO2018176774A1 (zh) 散热单片及电热油汀
JP2005011928A (ja) 液冷循環システム
WO2020010805A1 (zh) 一种散热片及取暖器
TWI615090B (zh) 散熱裝置
CN207279717U (zh) 电磁炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902606

Country of ref document: EP

Kind code of ref document: A1