WO2018176762A1 - 混合光刻***及混合光刻方法 - Google Patents

混合光刻***及混合光刻方法 Download PDF

Info

Publication number
WO2018176762A1
WO2018176762A1 PCT/CN2017/102859 CN2017102859W WO2018176762A1 WO 2018176762 A1 WO2018176762 A1 WO 2018176762A1 CN 2017102859 W CN2017102859 W CN 2017102859W WO 2018176762 A1 WO2018176762 A1 WO 2018176762A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithography
light
hybrid
controller
lithographic
Prior art date
Application number
PCT/CN2017/102859
Other languages
English (en)
French (fr)
Inventor
浦东林
陈林森
朱鹏飞
张瑾
朱鸣
魏国军
Original Assignee
苏州苏大维格光电科技股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格光电科技股份有限公司, 苏州大学 filed Critical 苏州苏大维格光电科技股份有限公司
Publication of WO2018176762A1 publication Critical patent/WO2018176762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect

Definitions

  • the invention relates to the technical field of micro-nano manufacturing, and relates to a graphic hybrid lithography system and a hybrid lithography method for micro-nano mold preparation.
  • Graphical lithography is a general-purpose front-end process in the field of micro-nano manufacturing. It is widely used in flat panel displays, integrated circuits, flexible circuits, and new materials.
  • Micro-nanostructures have different preparation requirements for different application fields, ranging from 4 inches to 100 inches, and microstructures ranging from 10 nanometers to tens of microns.
  • the current state of the art is that the nano-to-micron-scale structure uses electron beam plate making, the size of the image cannot be made large, and the structure of several micrometers to several tens of micrometers is laser beam plated, and the size can be made larger, but the structure below submicron cannot be realized. Large format plate requirements.
  • the field of micro-nano applications is extending from the field of semiconductors and flat-panel displays to the field of meta-materials (artificial microstructure materials), which requires large-scale plate-making of sub-micron structures.
  • the current graphical preparation methods cannot meet such requirements.
  • a hybrid lithography system comprising a light source, a beam shaper, a light field modulator, a mirror and a phase device, the beam shaper is for shaping the light emitted by the light source; the light field modulator is for displaying the lithographic image, and the shaped light is The pattern light is generated by the light field modulator; the mirror is used to reflect the pattern light to the surface of the photoresist to be exposed to realize direct writing lithography; and the phase device is used to form an interference exposure field on the surface of the lithography member to realize interference lithography.
  • the phase device is removably disposed between the mirror and the lithography member to effect switching between direct write lithography and interference lithography.
  • the hybrid lithography system further includes a computer and a controller for providing the lithographic image and the displacement data, and transmitting the lithographic image and the displacement data to the controller, wherein the controller
  • the lithographic image is uploaded to the light field modulator, and the motion of the stage is controlled by the displacement data.
  • the hybrid lithography system further includes a stage for carrying the lithography member, the stage can be moved in a horizontal plane, and the displacement data is read by the controller to realize the light.
  • the relative motion of the spot and the lithography is read by the controller to realize the light.
  • the hybrid lithography system further includes a photodetector for collecting light reflected from the surface of the lithographic component and transmitting the generated topographical data to the controller.
  • the appearance data adjusts the focal length between the phase device and the lithography member to achieve focusing on the surface of the lithography member.
  • the light field modulator is a spatial light modulator or a phase light modulator.
  • Another object of the present invention is to provide a hybrid lithography method having two functions of direct write lithography and interference lithography, which can perform hybrid lithography, improve lithography efficiency, and reduce lithography cost.
  • a hybrid lithography method comprising the steps of:
  • Direct writing lithography by reflecting the pattern light to the surface of the lithographic part to be exposed using a mirror;
  • the phase device is disposed between the mirror and the photolithography member, and the interference exposure field is formed on the surface of the photolithography member by the phase device, and the direct write photolithography is switched to the interference photolithography.
  • the process of generating the patterned light by the shaped light using the light field modulator comprises: providing a lithographic image by using a computer, and transmitting the lithographic image to the controller, and uploading the lithography by using the controller.
  • the image to light field modulator causes the light field modulator to display a lithographic image and to cause the shaped light to pass through the light field modulator to generate patterned light.
  • the step of reflecting the pattern light to the surface of the lithographic member to be exposed by the mirror to realize direct writing lithography further comprises: placing the lithography member on the stage, using the controller The stage is controlled to move in the horizontal direction based on the displacement data.
  • the step of reflecting the pattern light to the surface of the lithographic member to be exposed by the mirror to realize direct writing lithography further comprises: collecting the light reflected by the surface of the lithography apparatus by using the photodetector, and The generated topography data is sent to the controller, and the controller adjusts the focal length between the phase device and the lithography according to the topography data.
  • the beam shaper of the hybrid lithography system of the present invention is used to shape the light emitted by the light source; the light field modulator is used to generate the shaped light to form the pattern light; and the mirror is used to reflect the pattern light to the surface of the lithographic part to be exposed to achieve straight Write lithography; the phase device is used to form an interference exposure field on the surface of the lithography member to achieve interference lithography. Therefore, the hybrid lithography system of the present invention has two functions of direct writing lithography and interference lithography, and can perform hybrid lithography, which can perform micro-structure processing and nano-structure processing, thereby improving lithography efficiency. Reduced lithography costs while providing an effective means of developing new devices and new materials.
  • 1a is a schematic view showing the structure of a hybrid lithography system of the present invention when performing direct write lithography.
  • Fig. 1b is a schematic view showing the structure of the hybrid lithography system of the present invention when performing interference lithography.
  • FIG. 2 is a schematic flow chart of a hybrid lithography method of the present invention.
  • the hybrid lithography system 10 includes a light source 11, a beam shaper 12, a light field modulator 13, a mirror 14, a phase device 15, a computer 16, and a stage 17. , photodetector 18 and controller 19.
  • the light source 11 is used to provide a laser light required for photolithography.
  • the light source 11 of the hybrid lithography system 10 is a laser, but is not limited thereto.
  • the beam shaper 12 is used to shape the light emitted by the light source 11.
  • beam shaper 12 can shape the light into a flat top beam.
  • the light field modulator 13 is for generating patterned light from the shaped light.
  • the light field modulator 13 can display a lithographic image to generate patterned light when the shaped light passes through the light field modulator 13.
  • the light field modulator 13 is, for example, a spatial light modulator or a phase light modulator, but is not limited thereto.
  • the mirror 14 is used to reflect the pattern light to the surface of the photolithographic member 101 to be exposed to realize direct writing lithography.
  • the phase device 15 is removably disposed between the mirror 14 and the photolithography member 101, and the phase device 15 is used to form an interference exposure field on the surface of the photolithography member 101 to realize interference lithography.
  • the pattern light is reflected by the mirror 14 and passes through the phase device 15, and the phase device 15 divides the pattern light into a plurality of symmetrical divergent beams, and then the phase device 15 collimates the divergent beams into mutually parallel parallel beams, and the final phase
  • the device 15 focuses the respective parallel beams onto the surface of the photolithography element 101 to form an interference exposure field, which enables interference lithography of the photolithography element 101.
  • the hybrid lithography system 10 of the present invention can achieve switching between direct write lithography and interference lithography by removing or arranging the phase device 15; for example, when the lithography member 101 is required to be processed in a micro-structure, the phase-removable phase device can be removed. 15.
  • the pattern light is reflected by the mirror 14 to form a structured spot on the surface of the photolithography element 101.
  • the light and the photolithographic material act to realize direct writing lithography, as shown in FIG. 1a; for example, the photolithography element 101 needs to be performed.
  • a phase device 15 can be disposed between the mirror 14 and the photolithographic member 101.
  • the phase device 15 After being reflected by the mirror 14, the pattern light is first passed through the phase device 15, and the phase device 15 focuses the pattern light and is photolithographically
  • the surface of the member 101 forms an interference exposure field, at which time the light interacts with the lithographic material to effect interference lithography, as shown in Figure 1b.
  • the phase device 15 is composed of a plurality of optical elements, for example, the phase device 15 includes a grating or prism that disperses the pattern light into a dispersed beam, a collimating lens that collimates the scattered beam, a focusing lens that focuses the light, etc., but Not limited to this.
  • Computer 16 is used to provide lithographic images and displacement data.
  • the stage 17 is used to carry the photolithography member 101, and the stage 17 can be moved in two directions perpendicular to each other in a horizontal plane, thereby realizing the relative movement of the lithographic spot and the photolithography member 101, and drawing a pattern having a certain width. .
  • the photodetector 18 is for collecting light reflected from the surface of the photolithography element 101 and generating surface topographic data.
  • the controller 19 is used to control the coordinated operation of various components of the hybrid lithography system 10, such as data import, motion synchronization control, focus control, and the like. Specifically, the controller 19 receives the lithographic image sent by the computer 16, and the controller 19 can upload the lithographic image to the light field modulator 13, and the light field modulator 13 can display the lithographic image to pass the shaped light through the light field. The modulator 13 generates pattern light; the controller 19 is further configured to control the movement of the stage 17, in particular, according to the displacement data transmitted by the computer 16, to control the movement of the stage 17 in the horizontal plane to realize the lithography spot and the lithography apparatus 101.
  • the relative motion depicts a pattern having a certain format; the controller 19 is further configured to receive the topographical data generated by the photodetector 18, and adjust the focal length between the phase device and the lithography member 101 based on the topographical data. It is worth mentioning that the controller 19 can control the closing or opening of the light source 11 according to the period of the exposure map.
  • the hybrid lithography method of the present invention performs hybrid lithography using a hybrid lithography system 10, and the steps of the hybrid lithography method include:
  • the shaped light is generated by the light field modulator 13 to generate pattern light; specifically, the lithographic image is provided by the computer 16, and the lithographic image is sent to the controller 19, and the lithographic image is uploaded to the light field modulator by the controller 19. 13. causing the light field modulator 13 to display a lithographic image and causing the shaped light to pass through the light field modulator 13 to generate patterned light;
  • Direct writing lithography is realized by reflecting the pattern light to the surface of the lithographic member 101 to be exposed by the mirror 14; specifically, the lithography member 101 is placed on the stage 17, and the stage is controlled by the controller 19 based on the displacement data. 17 moves in the horizontal direction; at the same time, the photodetector 18 is used to collect the light reflected from the surface of the photolithography device 101, and the generated topography data is sent to the controller 19, and the controller 19 adjusts the phase device 15 and the photolithography according to the topography data.
  • the phase device 15 is disposed between the mirror 14 and the photolithography element 101, and is photolithographically processed by the phase device 15
  • the surface of the member 101 forms an interference exposure field, and the direct writing lithography is switched to interference lithography; specifically, when the micro-structure processing of the photolithography member 101 is required, the phase device 15 is removed, and the pattern light is reflected by the mirror 14. Then, a structured spot is formed on the surface of the photolithography member 101.
  • the light and the photolithographic material act to realize direct writing photolithography;
  • the phase device 15 is disposed on the mirror 14 Between the lithography member 101 and the lithography member 101, the pattern light is reflected by the mirror 14 and then passes through the phase device 15 first.
  • the phase device 15 focuses the pattern light and forms an interference exposure field on the surface of the lithography member 101.
  • the material acts to achieve interference lithography.
  • the beam shaper 12 of the hybrid lithography system 10 of the present invention is used to shape the light emitted by the light source 11; the light field modulator 13 is used to generate the shaped light into the patterned light; and the mirror 14 is used to reflect the pattern light to be exposed.
  • the surface of the lithography member 101 realizes direct write lithography; the phase device 15 is removably disposed between the mirror 14 and the lithography member 101, and the phase device 15 is used to form an interference exposure field on the surface of the lithography member 101 to achieve interference. Lithography.
  • the hybrid lithography system 10 of the present invention has two functions of direct writing lithography and interference lithography, and can perform hybrid lithography, which can perform micro-structure processing and nano-structure processing, thereby improving lithography efficiency. , reducing the cost of lithography, while providing an effective means for the development of new devices and new printing materials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种混合光刻***(10) 以及混合光刻方法,包括光源(11)、光束整形器(12)、光场调制器(13)、反射镜(14)、成像光学***和位相器件(15),光束整形器(12)用于整形光源(11)发出的光束;光场调制器(13)用于将整形后的光束生成图形光;成像光学***和反射镜(14)用于将光场传递至待曝光的光刻件(101)表面实现直写光刻;位相器件(15)用于在光刻件(101)的表面形成干涉曝光场实现干涉光刻。混合光刻***(10)具有直写光刻和干涉光刻两种功能,可进行混合光刻,提高了纳米光刻效率,推动微纳结构相关的器件和材料应用具有重要意义。

Description

混合光刻***及混合光刻方法
本申请要求了申请日为2017年03月31日,申请号为201710206374.2,发明名称为“混合光刻***及混合光刻方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微纳制造技术领域,涉及一种用于微纳模具制备的图形化混合光刻***及混合光刻方法。
背景技术
图形化光刻是微纳米制造领域的通用前端制程,目前在平板显示、集成电路、柔性电路、新材料等行业有着广泛的应用。
面向各个不同的应用领域,微纳米结构的制备需求各不相同,幅面从4英寸到100英寸,微结构从10纳米到数十微米。当前的技术现状是,纳米至亚微米尺度的结构采用电子束制版,幅面无法做大,几微米至数十微米尺度的结构采用激光束制版,幅面可以做大,但是不能实现亚微米以下结构的大幅面制版要求。
当前微纳米应用领域正从半导体、平板显示向超材料(人工微结构材料)领域延伸,需要亚微米以下结构大幅面制版,当前图形化制备手段无法满足此类需求。
发明内容
本发明的目的在于,提供了一种混合光刻***,具有直写光刻和干涉光刻两种功能,可进行混合光刻,提高了光刻效率,降低了光刻成本。
本发明解决其技术问题是采用以下的技术方案来实现的。
一种混合光刻***,包括光源、光束整形器、光场调制器、反射镜和位相器件,光束整形器用于整形光源发出的光线;光场调制器用于显示光刻图像,将整形后的光线经过光场调制器生成图形光;反射镜用于将图形光反射至待曝光的光刻件表面实现直写光刻;位相器件用于在光刻件的表面形成干涉曝光场实现干涉光刻。
在本发明的较佳实施例中,位相器件可移除的设置于反射镜与光刻件之间,实现直写光刻和干涉光刻的切换。
在本发明的较佳实施例中,上述混合光刻***还包括计算机和控制器,计算机用于提供光刻图像和位移数据,并将光刻图像和位移数据发送至控制器,所述控制器用于上传光刻图像至光场调制器,通过位移数据控制载物台的运动。
在本发明的较佳实施例中,上述混合光刻***还包括载物台,载物台用于承载光刻件,载物台可在水平面内移动,通过控制器读取位移数据,实现光刻光斑与光刻件的相对运动。在本发明的较佳实施例中,上述混合光刻***还包括光电探测器,光电探测器用于采集光刻件表面反射的光线,并将产生的形貌数据发送至控制器,控制器根据形貌数据调节位相器件与光刻件之间的焦距,从而实现在光刻件表面聚焦。
在本发明的较佳实施例中,上述光场调制器为空间光调制器或位相光调制器。本发明的另一目的在于,提供了一种混合光刻方法,具有直写光刻和干涉光刻两种功能,可进行混合光刻,提高了光刻效率,降低了光刻成本。
一种混合光刻方法,混合光刻方法包括以下步骤:
利用光束整形器对光源发出的光线进行整形;
利用光场调制器将整形后的光线生成图形光;
利用反射镜将图形光反射至待曝光的光刻件表面实现直写光刻;以及
将位相器件设置于反射镜与光刻件之间,利用位相器件在光刻件的表面形成干涉曝光场,将直写光刻切换为干涉光刻。
在本发明的较佳实施例中,利用光场调制器将整形后的光线生成图形光的过程包括:利用计算机提供光刻图像,并将光刻图像发送至控制器,利用控制器上传光刻图像至光场调制器,使光场调制器显示光刻图像,并使整形后的光线经过光场调制器时生成图形光。在本发明的较佳实施例中,利用反射镜将图形光反射至待曝光的光刻件表面实现直写光刻后的步骤还包括:将光刻件放置在载物台上,利用控制器根据位移数据控制载物台沿着水平方向移动。
在本发明的较佳实施例中,利用反射镜将图形光反射至待曝光的光刻件表面实现直写光刻后的步骤还包括:利用光电探测器采集光刻件表面反射的光线,并将产生的形貌数据发送至控制器,控制器根据形貌数据调节位相器件与光刻件之间的焦距。
本发明的混合光刻***的光束整形器用于整形光源发出的光线;光场调制器用于将整形后的光线生成图形光;反射镜用于将图形光反射至待曝光的光刻件表面实现直写光刻;位相器件用于在光刻件的表面形成干涉曝光场实现干涉光刻。因此,本发明的混合光刻***具有直写光刻和干涉光刻两种功能,可进行混合光刻,既可以进行微米结构的加工,又可以进行纳米结构的加工,提高了光刻效率,降低了光刻成本,同时为新器件和新型印材的研发提供了有效装置。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明。
附图说明
图1a是本发明的混合光刻***进行直写光刻时的结构示意图。
图1b是本发明的混合光刻***进行干涉光刻时的结构示意图。
图2是本发明的混合光刻方法的流程示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的混合光刻***及混合光刻方法的具体实施方式、结构、特征及其功效,详细说明如下:
有关本发明的前述及其它技术内容、特点及功效,在以下配合参考图式的较佳实施例的详细说明中将可清楚呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
图1a是本发明的混合光刻***进行直写光刻时的结构示意图。图1b是本发明的混合光刻***进行干涉光刻时的结构示意图。如图1a和图1b所示,在本实施例中,混合光刻***10包括光源11、光束整形器12、光场调制器13、反射镜14、位相器件15、计算机16、载物台17、光电探测器18和控制器19。
光源11用于提供光刻时需要的激光。在本实施例中,混合光刻***10的光源11为激光器,但并不以此为限。
光束整形器12用于整形光源11发出的光线。在本实施例中,光束整形器12可将光线整形为平顶光束。
光场调制器13用于将整形后的光线生成图形光。在本实施例中,光场调制器13可显示光刻图像,使整形后的光线经过光场调制器13时生成图形光。本发明 的光场调制器13例如为空间光调制器或位相光调制器,但并不以此为限。
反射镜14用于将图形光反射至待曝光的光刻件101表面实现直写光刻。
位相器件15可移除的设置于反射镜14与光刻件101之间,位相器件15用于在光刻件101的表面形成干涉曝光场实现干涉光刻。具体地,图形光被反射镜14反射后经过位相器件15,位相器件15将图形光分为多束对称的发散光束,接着位相器件15将各发散光束准直为相互平行的平行光束,最后位相器件15将各平行光束聚焦于光刻件101的表面形成干涉曝光场,实现对光刻件101的干涉光刻。本发明的混合光刻***10可通过移除或设置位相器件15实现直写光刻与干涉光刻之间的切换;例如需要对光刻件101进行微米结构的加工时,可移除位相器件15,图形光由反射镜14反射后在光刻件101的表面形成结构光斑,此时光线与光刻材料进行作用实现直写光刻,如图1a所示;例如需要对光刻件101进行纳米结构的加工时,可在反射镜14与光刻件101之间设置位相器件15,图形光由反射镜14反射后首先经过位相器件15,位相器件15对图形光进行聚焦,并在光刻件101的表面形成干涉曝光场,此时光线与光刻材料进行作用实现干涉光刻,如图1b所示。在本实施例中,位相器件15由多个光学元件组成,例如位相器件15包括将图形光分散成分散光束的光栅或棱镜、准直分散光束的准直透镜、聚焦光线的聚焦透镜等,但并不以此为限。
计算机16用于提供光刻图像和位移数据。
载物台17用于承载光刻件101,载物台17可在水平面内沿着相互垂直的两个方向移动,实现光刻光斑与光刻件101的相对运动,描绘出具有一定幅面的图形。
光电探测器18用于采集光刻件101表面反射的光线,并产生表示形貌数据。
控制器19用于控制混合光刻***10各个部件协调运行,例如数据的导入、运动同步控制、聚焦控制等。具体地,控制器19接收计算机16发送的光刻图像,控制器19可上传光刻图像至光场调制器13,此时光场调制器13可显示光刻图像,使整形后的光线经过光场调制器13时生成图形光;控制器19还用于控制载物台17运动,特别是根据计算机16发送的位移数据,控制载物台17在水平面内移动,实现光刻光斑与光刻件101的相对运动,描绘出具有一定幅面的图形;控制器19还用于接收光电探测器18产生的形貌数据,根据形貌数据调整相位器件与光刻件101之间的焦距。值得一提的是,控制器19可根据曝光图的周期控制光源11的关闭或开启。
图2是本发明的混合光刻方法的流程示意图。请参照图1和图2,本发明的混合光刻方法利用混合光刻***10进行混合光刻,混合光刻方法的步骤包括:
利用光束整形器12对光源11发出的光线进行整形;
利用光场调制器13将整形后的光线生成图形光;具体地,利用计算机16提供光刻图像,并将光刻图像发送至控制器19,利用控制器19上传光刻图像至光场调制器13,使光场调制器13显示光刻图像,并使整形后的光线经过光场调制器13时生成图形光;
利用反射镜14将图形光反射至待曝光的光刻件101表面实现直写光刻;具体地,将光刻件101放置在载物台17上,利用控制器19根据位移数据控制载物台17沿着水平方向移动;同时利用光电探测器18采集光刻件101表面反射的光线,并将产生的形貌数据发送至控制器19,控制器19根据形貌数据调节位相器件15与光刻件101之间的焦距;
将位相器件15设置于反射镜14与光刻件101之间,利用位相器件15在光刻 件101的表面形成干涉曝光场,将直写光刻切换为干涉光刻;具体地,当需要对光刻件101进行微米结构的加工时,移除位相器件15,图形光由反射镜14反射后在光刻件101的表面形成结构光斑,此时光线与光刻材料进行作用实现直写光刻;当需要对光刻件101进行纳米结构的加工时,将位相器件15设置于反射镜14与光刻件101之间,图形光由反射镜14反射后首先经过位相器件15,位相器件15对图形光进行聚焦,并在光刻件101的表面形成干涉曝光场,此时光线与光刻材料进行作用实现干涉光刻。
本发明的混合光刻***10的光束整形器12用于整形光源11发出的光线;光场调制器13用于将整形后的光线生成图形光;反射镜14用于将图形光反射至待曝光的光刻件101表面实现直写光刻;位相器件15可移除的设置于反射镜14与光刻件101之间,位相器件15用于在光刻件101的表面形成干涉曝光场实现干涉光刻。因此,本发明的混合光刻***10具有直写光刻和干涉光刻两种功能,可进行混合光刻,既可以进行微米结构的加工,又可以进行纳米结构的加工,提高了光刻效率,降低了光刻成本,同时为新器件和新型印材的研发提供了有效装置。
以上结合附图详细描述了本发明的优选实施方式,但是本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

  1. 一种混合光刻***,其特征在于,包括:
    光源(11);
    光束整形器(12),该光束整形器(12)用于整形该光源(11)发出的光线;
    光场调制器(13),该光场调制器(13)用于显示光刻图像,将整形后的光线经过光场调制器(13)生成图形光;
    反射镜(14),该反射镜(14)用于将图形光反射至待曝光的光刻件(101)表面实现直写光刻;以及
    位相器件(15),该位相器件(15)用于在光刻件(101)的表面形成干涉曝光场实现干涉光刻。
  2. 如权利要求1所述的混合光刻***,其特征在于,该位相器件(15)可移除的设置于该反射镜(14)与光刻件(101)之间,实现直写光刻和干涉光刻的切换。
  3. 如权利要求2所述的混合光刻***,其特征在于,该混合光刻***还包括计算机(16)和控制器(18),该计算机(16)用于提供光刻图像和位移数据,并将光刻图像和位移数据发送至该控制器(18),所述控制器(18)用于上传光刻图像至该光场调制器(13),通过位移数据控制载物台的运动。
  4. 如权利要求3所述的混合光刻***,其特征在于,该混合光刻***还包括载物台(17),该载物台(17)用于承载光刻件(101),该载物台(17)可在水平面内移动,通过该控制器(18)读取位移数据,实现光刻光斑与光刻件(101)的相对运动。
  5. 如权利要求3所述的混合光刻***,其特征在于,该混合光刻***还包括光电探测器(19),该光电探测器(19)用于采集光刻件(101)表面反射的光线,并将产生的形貌数据发送至该控制器(18),该控制器(18)根据形貌数据调节该位相器件(15)与光刻件(101)之间的距离,从而实现在光刻件(101)表面聚焦。
  6. 如权利要求1所述的混合光刻***,其特征在于,该光场调制器(13)为空间光调制器或位相光调制器。
  7. 一种混合光刻方法,其特征在于,该混合光刻方法包括以下步骤:
    利用光束整形器(12)对光源(11)发出的光线进行整形;
    利用光场调制器(13)将整形后的光线生成图形光;
    利用反射镜(14)将图形光反射至待曝光的光刻件(101)表面实现直写光刻;以及
    将位相器件(15)设置于该反射镜(14)与光刻件(101)之间,利用该位相器件在光(15)刻件(101)的表面形成干涉曝光场,将直写光刻切换为干涉光刻。
  8. 如权利要求7所述的混合光刻方法,其特征在于,利用光场调制器(13)将整形后的光线生成图形光的过程包括:
    利用计算机(16)提供光刻图像,并将光刻图像发送至控制器(18),利用该控制器(18)上传光刻图像至该光场调制器(13),使该光场调制器(13)显示光刻图像,并使整形后的光线经过该光场调制器(13)时生成图形光。
  9. 如权利要求8所述的混合光刻方法,其特征在于,利用反射镜(14)将图形光反射至待曝光的光刻件(101)表面实现直写光刻后的步骤还包括:
    将光刻件(101)放置在载物台(17)上,利用该控制器(18)根据位移数据控制该载物台(17)沿着水平方向移动。
  10. 如权利要求8所述的混合光刻方法,其特征在于,利用反射镜(14)将图形光反射至待曝光的光刻件(101)表面实现直写光刻后的步骤还包括:
    利用光电探测器(19)采集光刻件(101)表面反射的光线,并将产生的形貌数据发送至该控制器(18),该控制器(18)根据形貌数据调节该位相器件(15)与光刻件(101)之间的焦距。
PCT/CN2017/102859 2017-03-31 2017-09-22 混合光刻***及混合光刻方法 WO2018176762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710206374.2A CN106681106B (zh) 2017-03-31 2017-03-31 混合光刻***及混合光刻方法
CN201710206374.2 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018176762A1 true WO2018176762A1 (zh) 2018-10-04

Family

ID=58829350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102859 WO2018176762A1 (zh) 2017-03-31 2017-09-22 混合光刻***及混合光刻方法

Country Status (2)

Country Link
CN (1) CN106681106B (zh)
WO (1) WO2018176762A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681106B (zh) * 2017-03-31 2018-10-19 苏州苏大维格光电科技股份有限公司 混合光刻***及混合光刻方法
CN110856978B (zh) * 2018-08-17 2022-08-05 苏州苏大维格科技集团股份有限公司 3d打印***及3d打印方法
CN111844735A (zh) * 2019-04-25 2020-10-30 苏州苏大维格科技集团股份有限公司 激光直写和三维打印复合***及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898609A (zh) * 2003-10-24 2007-01-17 英特尔公司 用于图形化不同宽度的线的复合光学光刻方法
CN101681121A (zh) * 2007-12-14 2010-03-24 株式会社尼康 曝光装置、曝光方法以及器件制造方法
CN104246615A (zh) * 2012-03-30 2014-12-24 株式会社Orc制作所 无掩模曝光装置
CN104459875A (zh) * 2014-12-19 2015-03-25 中国科学院上海光学精密机械研究所 相位掩模板自动切换装置
US20150331330A1 (en) * 2011-11-18 2015-11-19 Periodic Structures, Inc. Apparatus and method of direct writing with photons beyond the diffraction limit
CN105445834A (zh) * 2015-10-26 2016-03-30 苏州大学 一种大尺寸衍射光栅的制作方法及曝光装置
CN106681106A (zh) * 2017-03-31 2017-05-17 苏州苏大维格光电科技股份有限公司 混合光刻***及混合光刻方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578289C (zh) * 2007-02-15 2010-01-06 苏州苏大维格光电科技股份有限公司 一种衍射变色激光打标方法与装置
CN101846890B (zh) * 2010-05-13 2012-08-22 苏州苏大维格光电科技股份有限公司 并行光刻直写***
CN103744271B (zh) * 2014-01-28 2015-10-28 苏州苏大维格光电科技股份有限公司 一种激光直写***与光刻方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898609A (zh) * 2003-10-24 2007-01-17 英特尔公司 用于图形化不同宽度的线的复合光学光刻方法
CN101681121A (zh) * 2007-12-14 2010-03-24 株式会社尼康 曝光装置、曝光方法以及器件制造方法
US20150331330A1 (en) * 2011-11-18 2015-11-19 Periodic Structures, Inc. Apparatus and method of direct writing with photons beyond the diffraction limit
CN104246615A (zh) * 2012-03-30 2014-12-24 株式会社Orc制作所 无掩模曝光装置
CN104459875A (zh) * 2014-12-19 2015-03-25 中国科学院上海光学精密机械研究所 相位掩模板自动切换装置
CN105445834A (zh) * 2015-10-26 2016-03-30 苏州大学 一种大尺寸衍射光栅的制作方法及曝光装置
CN106681106A (zh) * 2017-03-31 2017-05-17 苏州苏大维格光电科技股份有限公司 混合光刻***及混合光刻方法

Also Published As

Publication number Publication date
CN106681106A (zh) 2017-05-17
CN106681106B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
JP6450497B2 (ja) クロススケール構造の協同的な作業におけるマスクレスフォトリソグラフィーシステム
US10884343B2 (en) System and method for micro-nano machining by femtosecond laser two-photon polymerization
Dinh et al. Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array
US9268235B2 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
CN103279014B (zh) 纳米图形化衬底制备装置与方法
WO2018176762A1 (zh) 混合光刻***及混合光刻方法
CN111856892A (zh) 一种并行超分辨三维直写装置
JP2019106536A (ja) 空間的に不均一な照明を用いたインプリントシステム及びインプリンティングプロセス
JP7345769B2 (ja) 直接描画露光システム及び直接描画露光方法
CN102998914A (zh) 一种直写式光刻加工***及光刻方法
US11067816B1 (en) Scattering STED lithography
Liu et al. Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system
TWI413868B (zh) 製作週期性圖案的步進排列式干涉微影方法及其裝置
US10101665B2 (en) Illumination unit and device for lithographic exposure
Ai et al. Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns
Luan et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography
TW201826031A (zh) 多光子吸收微影加工系統
Liu et al. Imaging simulation of maskless lithography using a DMD
Erdmann et al. MEMS-based lithography for the fabrication of micro-optical components
US20220001601A1 (en) Systems, devices, and methods for kaleidoscopic 3d printing
WO2021093631A1 (zh) 三维微纳结构光刻***及其方法
CN111562725B (zh) 一种基于时空协同变换曝光提高光刻分辨率的方法
Erdmann et al. MOEMS-based lithography for the fabrication of micro-optical components
CN111352311B (zh) 一种双光子无掩膜曝光***
Cordeiro et al. Table-top deterministic and collective colloidal assembly using videoprojector lithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902779

Country of ref document: EP

Kind code of ref document: A1