WO2018174555A1 - 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치 - Google Patents

차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018174555A1
WO2018174555A1 PCT/KR2018/003285 KR2018003285W WO2018174555A1 WO 2018174555 A1 WO2018174555 A1 WO 2018174555A1 KR 2018003285 W KR2018003285 W KR 2018003285W WO 2018174555 A1 WO2018174555 A1 WO 2018174555A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
uplink
channel
mapping
slot
Prior art date
Application number
PCT/KR2018/003285
Other languages
English (en)
French (fr)
Inventor
김형태
강지원
김기준
윤석현
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/496,398 priority Critical patent/US11109370B2/en
Publication of WO2018174555A1 publication Critical patent/WO2018174555A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting data in a next generation communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the corresponding time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a terminal in a wireless communication system which is an aspect of the present invention, a wireless communication module; And a plurality of code blocks, which are connected to the wireless communication module and map a plurality of code blocks to resource elements in a time block unit in a time slot using a time-priority scheme, and constitute an uplink demodulation reference signal and the plurality of code blocks.
  • the mapping pattern of the uplink demodulation reference signal is a slot front end exclusive allocation pattern
  • the one slot is the size of the time block.
  • the one slot includes a plurality of time blocks.
  • each of the plurality of time blocks includes one symbol to which the uplink demodulation reference signal is allocated.
  • the terminal may receive information on the number of the plurality of time blocks from the base station.
  • data may be more efficiently mapped and transmitted to a resource element (RE) in a next-generation communication system.
  • RE resource element
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 is a diagram for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • 5 is a diagram illustrating a structure of a downlink radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 9 is a flowchart illustrating a method of mapping a plurality of codeblocks to resource elements according to an embodiment of the present invention.
  • FIG. 10 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an orthogonal frequency division multiple access (OFDMA) scheme in downlink, and modulated in a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission Time Interval which is a unit time at which data is transmitted, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted on the PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating a downlink channel state, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • channel state information (CSI) reporting will be described.
  • CSI channel state information
  • each of the base station and the terminal may perform beamforming based on channel state information in order to obtain a multiplexing gain (multiplexing gain) of the MIMO antenna.
  • the base station instructs the terminal to feed back the channel state information (CSI) for the downlink signal by assigning a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) to the terminal.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CSI is largely classified into three types of information such as rank indicator (RI), precoding matrix index (PMI), and channel quality indication (CQI).
  • RI represents rank information of a channel, and means the number of streams that a UE can receive through the same frequency-time resource.
  • PMI precoding matrix index
  • CQI channel quality indication
  • PMI is a value reflecting spatial characteristics of a channel and represents a precoding matrix index of a base station preferred by a terminal based on a metric such as SINR.
  • CQI is a value representing the strength of the channel, which means the reception SINR that can be obtained when the base station uses PMI.
  • the base station may configure a plurality of CSI processes to the UE, and receive and report the CSI for each CSI process.
  • the CSI process is composed of a CSI-RS resource for signal quality specification from a base station and an interference measurement (CSI-IM) resource for interference measurement, that is, an IMR (interference measurement resource).
  • CSI-IM interference measurement resource
  • the wavelength is shortened, allowing the installation of multiple antenna elements in the same area.
  • the wavelength is 1 cm, and a total of 64 (8x8) antenna elements in a 2D (dimension) array form at 0.5 lambda intervals can be installed in a panel of 4 by 4 cm. Therefore, recent trends in the mmW field have attempted to increase the coverage or increase the throughput by increasing the beamforming gain using a plurality of antenna elements.
  • TXRU Transceiver Unit
  • independent beamforming is possible for each frequency resource.
  • TXRU Transceiver Unit
  • the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
  • a hybrid BF having B TXRUs, which is smaller than Q antenna elements, may be considered as an intermediate form between digital BF and analog BF.
  • the beam directions that can be simultaneously transmitted are limited to B or less.
  • FIG. 7 shows examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 7 (a) shows how a TXRU is connected to a sub-array.
  • the antenna element is connected to only one TXRU.
  • FIG. 7B shows how the TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1-to-1 or 1-to-multi.
  • Massive MTC Machine Type Communications
  • NewRAT New Radio Access
  • the fifth generation NewRAT considers a self-contained subframe structure as shown in FIG. 8. 8 is an example of a self-contained subframe structure.
  • the hatched region represents a downlink control region
  • the black portion represents an uplink control region.
  • An area without an indication may be used for downlink data transmission or may be used for uplink data transmission.
  • the feature of such a structure is that downlink transmission and uplink transmission are sequentially performed in one subframe, thereby transmitting downlink data and receiving uplink ACK / NACK in the subframe. As a result, when a data transmission error occurs, the time taken to retransmit data is reduced, thereby minimizing the latency of the final data transfer.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • OFDM symbols OFDM symbols; OS
  • GP guard period
  • subframe type configurable / configurable in a system operating based on NewRAT at least the following four subframe types may be considered.
  • data is first mapped to a spatial domain, that is, a layer, and then to a time domain, that is, an OFDM symbol, and then a frequency domain ( frequency domain), i.e., an OFDM subcarrier.
  • a spatial domain that is, a layer
  • a time domain that is, an OFDM symbol
  • a frequency domain frequency domain
  • the reason why the layer mapping order is determined as described above is because, firstly, mapping from a domain having a large change in channel quality is efficient for HARQ operation. That is, when multiple CBs (code blocks) are transmitted, if the channel quality is not similar for each CB (ie, heterogeneity is large), the probability of NACK is increased due to the CB having the lowest channel quality.
  • multiple CBs eg, CB 1 and CB 2
  • CW codeword
  • the two CBs undergo different frequency selective channels as they are finally mapped to the frequency domain, but the influence of frequency selectivity is small because the waveform of the LTE uplink is SC-OFDM. Therefore, since the two CBs experience similar channel quality, the probability of decoding failure of at least one CB is lowered, and consequently, the probability of NACK is lowered.
  • the uplink of the NR system supports two waveforms, SC-OFDM (or DFT-s-OFDM) and CP-OFDM, for rank 1 transmission. Therefore, in the SC-OFDM, as in the LTE system, it is preferable to perform RE mapping in the order of layer, time, and frequency, and in CP-OFDM, it is preferable to perform RE mapping in the order of layer, frequency, and time. In the CP-OFDM, since frequency selectivity is generally larger than fading variation in the time domain, it is preferable to perform data RE mapping in the above order.
  • the base station may inform the UE in which of the two mapping order to map to the uplink.
  • the SC-OFDM performs RE mapping in the order of layer, time, and frequency in the same manner as the uplink of the LTE system. Perform the mapping.
  • the method of mapping the data of the present invention to the RE may be variable based on the position where the DM-RS is mapped, that is, the DM-RS pattern.
  • the uplink DM-RS pattern preferably affects the RE mapping order.
  • the DM-RS may be transmitted only in the front OFDM symbol of the slot. This is called a slot loaded DM-RS only structure.
  • the first CB is transmitted at a position close to the DM-RS, but the later CB is transmitted at a position far from the DM-RS. Therefore, the CB transmitted later increases the likelihood of decoding failure due to incorrect channel estimation and consequently increases the likelihood of NACK.
  • the mapping of the layer, time, and frequency order is valid.
  • the DM-RS is transmitted in the front OFDM symbol of the slot and additionally the DM-RS is also transmitted in the OFDM symbol of the slot may be considered. That is, an additional DM-RS is added in the slot front end allocation structure. This is called a multiple symbol allocation structure.
  • this structure is suitable for an environment in which the time-varying characteristics of the channel are strong, or for a case where it is difficult to estimate the time-varying channel phase due to phase noise.
  • the mapping order may be preferable.
  • the probability that a specific CB is NACK may be increased. If the DM-RS is closely transmitted on the time axis, even if it is mapped in the order of layer, frequency, and time, this possibility is reduced, and thus, layer, frequency, and time order are preferable.
  • the DM-RS time bundling between slots is applied in the mini-slot, since several DM-RS OFDM symbols exist on the time axis, they may be mapped in order of layer, frequency, and time. That is, in the environment where the DM-RS pattern is closely spread on the time axis, even if the frequency is mapped before the time, the channel estimation performance between the CBs is similar, and thus, the DM-RS pattern may be mapped on the frequency axis first. On the other hand, in an environment where the DM-RS pattern is not spread over the time axis, it is preferable to map the time axis before the frequency axis.
  • time first mapping the time block is introduced by introducing the time block in the time block, and if all the RE in the time block, if the mapping to the next time block You can also perform time-first mapping again.
  • Time block 1 and time block 2 include a front DM-RS and a back DM-RS, respectively. More specifically, time block 1 is REs up to the symbol before the trailing DM-RS OFDM symbol begins and time block 2 begins at the symbol where the trailing DM-RS OFDM symbol begins.
  • mini slots and time blocks are not mapped in a 1: 1 manner.
  • the mini slot can constitute one time block.
  • N on how many symbols the time block is composed of may be indicated by the base station through RRC signaling or indicated using DCI. Alternatively, the UE may feed back a desired N value to the base station.
  • the mapping of the layer, frequency, and time order is appropriate, but the order between frequency and time may be changed according to the DM-RS pattern.
  • the DM-RS pattern is Front loaded DM-RS only as in Case 1, it is preferable to map in time priority in consideration of channel estimation performance.
  • the pattern is applied as slot bundling such as front loaded DM-RS + additional DM-RS or case 3 as in DM-RS case 2, it is preferable to map in a frequency-first manner according to the time variability of channel estimation performance.
  • the mapping of the layer, time, and frequency order is appropriate, but the order between frequency and time may be changed according to the DM-RS pattern.
  • the DM-RS pattern is Front loaded DM-RS only, it is preferable to map the time priority in consideration of the channel estimation performance. If the DM-RS pattern is Front loaded DM-RS + additional DM-RS or slot bundling, it is preferable to map frequency first according to the time variability of channel estimation performance.
  • frequency-priority mapping or time-priority mapping may be determined according to a resource unit in which an effective channel of the frequency domain changes. For example, when changing to RE level, which is a small resource unit, it is preferable to apply frequency priority mapping so that each CB experiences sufficient frequency selectivity. If it is changed to a PRG unit, which is a large resource unit, it is preferable to map the time priority so that each CB experiences fading in a sufficient time domain.
  • the size of the scheduled RB is greater than or equal to a certain value, it is advantageous to perform frequency priority mapping so that each CB experiences sufficient frequency selectivity. It is desirable to experience fading. It is also possible to combine and operate the proposal in consideration of both the resource unit in which the effective channel of the frequency domain changes and the number of scheduled RBs.
  • the RE mapping may be different according to whether the closed loop MIMO or the open loop MIMO. For example, if the effective channel is designed to change from open-loop MIMO to RE level, and the effective channel is changed to PRG in closed-loop MIMO, frequency-priority mapping is performed in open-loop MIMO and time-priority in closed-loop MIMO. Perform the mapping.
  • the open-loop MIMO technique for changing the effective channel in the frequency domain has been described. However, when the open-loop MIMO technique for changing the effective channel (symbol level or slot level) is applied in the time domain, the time is used instead of the frequency domain. Proposal techniques can be used for domains.
  • various RE mapping schemes are considered in DFT-S-OFDM uplink PDSCH transmission.
  • frequency-priority mapping can proceed sequentially without having to perform CB encoding and decoding at once as each CB is transmitted in a different OFDM symbol, resulting in a lower implementation complexity.
  • frequency diversity gain due to frequency hopping on the frequency axis is not obtained, and time axis diversity is also limited.
  • time-first mapping requires performing CB encoding and decoding at once as all CBs are transmitted in the same OFDM symbol, implementation complexity is high.
  • frequency diversity gain due to frequency hopping on the frequency axis can be obtained, and time axis diversity gain can be obtained as much as possible.
  • the base station may determine the optimal scheme according to the communication environment and indicate one mapping scheme to the UE through higher layer signaling.
  • the performance difference of the above schemes is not large. For example, with one CB, the performance is the same no matter which RE mapping you choose. Therefore, we can consider switching the RE mapping method according to the number of CBs. Since the number of CBs is determined according to the allocated number of RBs and MCS, frequency priority mapping may be used when the number of CBs is small, and time priority mapping may be used otherwise.
  • FIG. 9 is a flowchart illustrating a method of mapping a plurality of codeblocks to resource elements according to an embodiment of the present invention.
  • FIG. 9 illustrates a time first mapping, but when a time block is introduced to be a time priority mapping in a time block, and when all the REs are mapped in the time block, the process proceeds to the next time block and is again time-first mapped. Illustrates the case of performing.
  • a UE determines a size of a time block to which a time priority scheme is applied based on a mapping pattern of the uplink demodulation reference signal.
  • step 903 the UE maps a plurality of code blocks to resource elements in a time block unit within a slot using a time priority scheme.
  • step 905 an uplink demodulation reference signal and the plurality of code blocks are mapped.
  • the uplink data signal consisting of the transmission to the base station.
  • the one slot when the mapping pattern of the uplink demodulation reference signal is a multi-symbol allocation pattern, the one slot includes a plurality of time blocks. In particular, each of the plurality of time blocks includes one symbol to which the uplink demodulation reference signal is allocated. In addition, when the mapping pattern of the uplink demodulation reference signal is a slot front end allocation pattern, the one slot is determined as the size of the time block. Additionally, the terminal may receive information on the number of the plurality of time blocks from the base station.
  • FIG. 10 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication apparatus 1000 includes a processor 1010, a memory 1020, an RF module 1030, a display module 1040, and a user interface module 1050.
  • the communication device 1000 is illustrated for convenience of description and some modules may be omitted.
  • the communication apparatus 1000 may further include necessary modules.
  • some modules in the communication apparatus 1000 may be classified into more granular modules.
  • the processor 1010 is configured to perform an operation according to an embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1010 may refer to the contents described with reference to FIGS. 1 to 9.
  • the memory 1020 is connected to the processor 1010 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1030 is connected to the processor 1010 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1030 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1040 is connected to the processor 1010 and displays various information.
  • the display module 1040 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), or a ganic light emitting diode (OLED).
  • the user interface module 1050 is connected to the processor 1010 and may be configured with a combination of well-known user interfaces such as a keypad, a touch screen, and the like.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 복수의 코드블록들로 구성된 상향링크 데이터 신호를 송신하는 방법이 개시된다. 구체적으로, 상기 방법은, 하나의 슬롯 내에서, 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하는 단계; 및 상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신하는 단계를 포함하고, 상기 시간 우선 방식이 적용되는 시간 블록의 크기는 상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정되는 것을 특징으로 한다.

Description

차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 송신할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 송신 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 송신하여 해당 단말에게 데이터가 송신될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 송신하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 송신을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 복수의 코드블록들로 구성된 상향링크 데이터 신호를 송신하는 방법은, 하나의 슬롯 내에서, 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하는 단계; 및 상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신하는 단계를 포함하고, 상기 시간 우선 방식이 적용되는 시간 블록의 크기는 상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정되는 것을 특징으로 한다.
한편, 본 발명의 일 양상인 무선 통신 시스템에서의 단말은, 무선 통신 모듈; 및 상기 무선 통신 모듈과 연결되고, 하나의 슬롯 내에서 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하며, 상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신하는 프로세서를 포함하고, 상기 시간 우선 방식이 적용되는 시간 블록의 크기는, 상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정되는 것을 특징으로 한다.
구체적으로, 상기 상향링크 복조 참조 신호의 맵핑 패턴이 슬롯 전단 단독 할당 패턴인 경우, 상기 하나의 슬롯은 상기 시간 블록의 크기인 것을 특징으로 한다.
반면에, 상기 상향링크 복조 참조 신호의 맵핑 패턴이 다중 심볼 할당 패턴인 경우, 상기 하나의 슬롯은 복수의 시간 블록들을 포함하는 것을 특징으로 한다. 특히, 상기 복수의 시간 블록들 각각은 상기 상향링크 복조 참조 신호이 할당된 하나의 심볼을 포함한다. 이를 위하여, 상기 단말은 상기 기지국으로부터 상기 복수의 시간 블록들의 개수에 관한 정보를 수신할 수도 있다.
[유리한 효과]
본 발명의 실시예에 따르면 차세대 통신 시스템에서 데이터를 RE (resource element)에 보다 효율적으로 맵핑하여 송신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 8은 Self-contained 서브프레임 구조의 일 예이다.
도 9는 본 발명의 실시예에 따라 복수의 코드블록들을 자원 요소들에 맵핑하는 방법을 예시하는 순서도이다.
도 10은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA (orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선 링크 제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 송신되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 송신에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 송신되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 송신 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 송신된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 송신 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 송신되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 송신된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 송신 형식 정보(예, 송신 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 송신되는 데이터에 관한 정보가 특정 서브프레임을 통해 송신된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 송신되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하, 채널 상태 정보(channel state information, CSI) 보고에 관하여 설명한다. 현재 LTE 표준에서는 채널 상태 정보 없이 운용되는 개루프(open-loop) MIMO와 채널 상태 정보에 기반하여 운용되는 폐루프(closed-loop) MIMO 두 가지 송신 방식이 존재한다. 특히, 폐루프 MIMO 에서는 MIMO 안테나의 다중화 이득(다중화 gain)을 얻기 위해 기지국 및 단말 각각은 채널 상태 정보를 바탕으로 빔포밍을 수행할 수 있다. 기지국은 채널 상태 정보를 단말로부터 얻기 위해, 단말에게 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 할당하여 하향링크 신호에 대한채널 상태 정보(CSI)를 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix 인덱스), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다. 우선, RI는 상술한 바와 같이 채널의 랭크 정보를 나타내며, 단말이 동일 주파수-시간 자원을 통해 수신할 수 있는 스트림의 개수를 의미한다. 또한, RI는 채널의 롱텀 페이딩(long term fading)에 의해 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기로 기지국으로 피드백 된다.
두 번째로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 행렬 인덱스를 나타낸다. 마지막으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE-A 시스템에서 기지국은 다수의 CSI 프로세스를 UE에게 설정하고, 각 CSI 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS 자원과 간섭 측정을 위한 CSI-IM (interference measurement) 자원, 즉 IMR (interference measurement resource)로 구성된다.
Millimeter Wave (mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 엘리먼트의 설치가 가능하다. 구체적으로, 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2D (dimension) 배열 형태인 총 64(8x8)의 안테나 엘리먼트 설치가 가능하다. 그러므로 mmW 분야에서의 최근 동향에서는 다수개의 안테나 엘리먼트를 사용하여 BF (beamforming) 이득을 높여 커버리지를 증가시키거나, 쓰루풋 (throughput)의 증대를 시도하고 있다.
이 경우에 안테나 엘리먼트 별로 송신 파워 및 위상 조절이 가능하도록 TXRU (Transceiver Unit)을 구비한다면, 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 안테나 엘리먼트 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 엘리먼트를 맵핑하고 아날로그 위상 천이기 (analog phase shifter)로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍을 해줄 수 없는 단점을 갖는다.
디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 엘리먼트보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 엘리먼트의 연결 방식에 따라서 차이는 있지만, 동시에 송신할 수 있는 빔 방향은 B개 이하로 제한되게 된다.
도 7은 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 7의 (a)은 TXRU가 서브-어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 하나의 TXRU에만 연결된다. 이와 달리 도 7의 (b)는 TXRU가 모든 안테나 엘리먼트에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 모든 TXRU에 연결된다. 도 7에서 W는 아날로그 위상 천이기에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 맵핑은 1-to-1 또는 1-to-多 일 수 있다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology)에 비해 향상된 무선 광대역 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 메시브 (massive) MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도 (reliability) 및 레이턴시 (latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이러한 점을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 NewRAT 이라고 지칭한다.
TDD 시스템에서 데이터 송신 레이턴시를 최소화하기 위하여 5세대 NewRAT에서는 도 8과 같은 self-contained 서브프레임 구조를 고려하고 있다. 도 8은 Self-contained 서브프레임 구조의 일 예이다.
도 8에서 빗금 영역은 하향링크 제어 영역을 나타내고, 검정색 부분은 상향링크 제어 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터 송신을 위해 사용될 수도 있고, 상향링크 데이터 송신을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 하향링크 송신과 상향링크 송신이 순차적으로 진행되어, 서브프레임 내에서 하향링크 데이터를 보내고, 상향링크 ACK/NACK도 받을 수 있다. 결과적으로 데이터 송신 에러 발생시에 데이터 재송신까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 레이턴시를 최소화할 수 있다.
이러한 self-contained 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 간극 (time gap)이 필요하다. 이를 위하여 self-contained 서브프레임 구조에서 하향링크에서 상향링크로 전환되는 시점의 일부 OFDM 심볼 (OFDM 심볼; OS)이 GP (guard period)로 설정되게 된다.
NewRAT을 기반으로 동작하는 시스템에서 구성/설정 가능한 상기 self-contained 서브프레임 타입의 일례로, 적어도 다음과 같은 4가지 서브프레임 타입을 고려할 수 있다
- 하향링크 제어 구간 + 하향링크 데이터 구간 + GP + 상향링크 제어 구간
- 하향링크 제어 구간 + 하향링크 데이터 구간
- 하향링크 제어 구간 + GP + 상향링크 데이터 구간 + 상향링크 제어 구간
- 하향링크 제어 구간 + GP + 상향링크 데이터 구간
현재 LTE 표준에서의 상향링크에 따르면 데이터는 먼저 공간 도메인 (spatial domain), 즉 레이어 (layer)에 맵핑 되고 이후에 시간 도메인 (time domain), 즉 OFDM 심볼 (symbol)로 맵핑 되고 이후에 주파수 도메인 (frequency domain), 즉 OFDM 부반송파 (subcarrier)로 맵핑 된다.
상기와 같이 레이어 맵핑 순서가 결정된 이유는, 첫 번째로, 채널 품질의 변화가 큰 도메인부터 맵핑 이 되는 것이 HARQ 동작에 효율적이기 때문이다. 즉, 여러 CB (code blocks)이 전송될 때, 각 CB 별로 채널 품질이 유사하지 않은 경우 (즉, 이질성이 큰 경우) 채널 품질이 가장 낮은 CB로 인해 NACK의 가능성이 높아지기 때문이다. 예를 들어, LTE 상향링크에서는 동일 CW (codeword)에 해당하는 다중 CB (예를 들어, CB 1 및 CB 2)는 모두 동일 레이어를 겪게 되고, 시간 축으로 먼저 맵핑 되어 두 CB 모두 1 서브프레임 내에서 시간 도메인에서의 페이딩을 겪게 된다. 주파수 도메인으로 마지막에 맵핑 됨에 따라 두 CB가 겪는 주파수 선택적 채널 (frequency selective channel)을 다르지만, LTE 상향링크의 파형 (waveform)이 SC-OFDM이기 때문에 주파수 선택도의 영향이 작다. 따라서, 두 CB는 유사한 채널 품질을 겪기 때문에 적어도 하나의 CB가 디코딩 실패가 발생할 확률이 낮아지게 되고 결과적으로 NACK 의 가능성이 낮아진다.
NR 시스템의 상향링크에서는 랭크 1 전송 시에 SC-OFDM (또는 DFT-s-OFDM)과 CP-OFDM 두 가지 파형을 지원한다. 따라서 SC-OFDM 에서는 LTE 시스템과 마찬가지로 레이어, 시간, 주파수 순서로 RE 맵핑을 수행하는 것이 바람직하며, CP-OFDM에서는 레이어, 주파수, 시간 순서로 RE 맵핑을 수행하는 것이 바람직하다. CP-OFDM에서는 시간 도메인에서의 페이딩 변화 (variation) 보다 주파수 선택도가 일반적으로 크기 때문에 상기와 같은 순서로 데이터 RE 맵핑 하는 것이 바람직하다.
바람직하게는, 기지국은 상향링크에 대해 상기 두 가지 맵핑 순서 중 어떤 순서로 맵핑 할 것인지 UE에게 알려줄 수 있다. 또는 설정된 파형에 연계하여, SC-OFDM에서는 LTE 시스템의 상향링크와 마찬가지로 레이어, 시간, 주파수 순으로 RE 맵핑을 수행하고, CP-OFDM에서는 LTE 시스템의 하향링크와 마찬가지로 레이어, 주파수, 시간 순으로 RE 맵핑을 수행한다.
이하에서는 본 발명에서 제안하는, DM-RS 패턴 기반 RE 맵핑 기법을 설명한다. 특히, 본 발명의 데이터를 RE에 맵핑하는 방법은, DM-RS가 맵핑되는 위치, 즉 DM-RS 패턴에 기반하여 가변할 수 있다.
<Case 1 - Front loaded DM-RS only>
상향링크 DM-RS 패턴은 RE 맵핑 순서에 영향을 주는 것이 바람직하다. 현재 NR 시스템에서 DM-RS는 슬롯의 앞쪽 OFDM 심볼에서만 전송될 수 있다. 이를 슬롯 전단 단독 할당 (Front loaded DM-RS only) 구조라고 지칭한다. 이 경우 데이터가 레이어, 주파수, 시간 순서로 맵핑된다면, 먼저 전송되는 CB는 DM-RS에 가까운 위치에서 전송되지만 나중에 전송되는 CB는 DM-RS에 먼 위치에 전송된다. 따라서, 나중에 전송되는 CB는 채널 추정이 부정확하여 디코딩 실패가 발생할 가능성이 커지고 결과적으로 NACK의 가능성이 커진다. 따라서 이 경우에는 레이어, 시간, 주파수 순서의 맵핑이 유효하다.
<Case 2 - Front loaded DM-RS + additional DM-RS>
만약 슬롯의 앞쪽 OFDM 심볼에 DM-RS가 전송되고 추가적으로 슬롯의 뒤쪽 OFDM 심볼에도 DM-RS 가 전송되는 경우를 고려할 수 있다. 즉, 슬롯 전단 단독 할당 구조에서 추가적인 DM-RS가 부가된 것이다. 이를 다중 심볼 할당 구조로 지칭한다. 또한, 이러한 구조는, 채널의 시변성이 강한 환경에 적합하며, 또는 위상 노이즈 (phase noise)로 인해 채널 위상의 시변을 추정하기 힘든 경우에 적합하다.
이러한 경우라면, 레이어, 주파수, 시간 순서로 맵핑 되더라도 먼저 전송되는 CB와 나중에 전송되는 CB 모두 채널 추정 정확도가 높아져, 상기 맵핑 순서가 바람직할 수 있다. 하지만 여전히 DM-RS에 떨어져 있는 CB와 DM-RS에 가까이 있는 CB간의 채널 추정 성능이 다르기 때문에, 특정 CB가 NACK 날 확률이 커질 수 있다. 시간 축으로 DM-RS가 촘촘히 전송되는 경우라면 레이어, 주파수, 시간 순서로 맵핑 되더라도 이러한 가능성이 작아져 레이어, 주파수, 시간 순서가 바람직하다.
<Case 3 - 슬롯 번들링>
마찬가지로, 미니-슬롯에서 슬롯 간의 DM-RS 시간 번들링이 적용된 경우에도 시간 축으로 여러 DM-RS OFDM 심볼이 존재하기 때문에 레이어, 주파수, 시간 순서로 맵핑 될 수 있다. 즉, DM-RS 패턴이 시간 축으로 촘촘히 퍼져 있는 환경에서는 시간보다 주파수를 먼저 맵핑 하더라도 CB간의 채널 추정 성능은 유사하여 주파수 축으로 먼저 맵핑할 수 있다. 반면에, DM-RS 패턴이 시간 축으로 퍼져 있지 않은 환경에서는 주파수 축 보다 시간 축을 먼저 맵핑 하는 것이 바람직하다.
한편, 본 발명의 다른 방안으로서, 시간 우선 (time first) 맵핑을 하되, 시간 블록을 도입하여 시간 블록 내에서 시간 우선 맵핑이 되고, 시간 블록 내의 RE를 모두 맵핑 한 경우, 다음 시간 블록으로 넘어가서 다시 시간 우선 맵핑을 수행할 수도 있다.
예를 들어 상술한 케이스 1에서는 DM-RS 가 앞쪽 하나의 OFDM 심볼 또는 두 개 OFDM 심볼에 전송되므로 시간 블록을 전체 슬롯으로 설정하여 기존 시간 우선 맵핑과 동일하게 RE 맵핑 된다. 또한 상술한 케이스 2에서는 DM-RS 가 앞쪽 OFDM 심볼과 뒤쪽 OFDM 심볼에 전송되므로 시간 블록을 두 개 또는 두 개 이상)으로 나누어 시간 우선 맵핑한다. 시간 블록 1 및 시간 블록 2는 각각 앞쪽 DM-RS와 뒤쪽 DM-RS를 포함한다. 보다 구체적으로, 시간 블록 1은 뒤쪽 DM-RS OFDM 심볼이 시작되기 전 심볼까지의 RE들이며 시간 블록 2는 뒤쪽 DM-RS OFDM 심볼이 시작되는 심볼에서 시작된다.
또한, 케이스 3, 즉 슬롯 번들링에서는 동일 프리코더가 적용된 DM-RS가 시간 축으로 촘촘히 전송되므로 시간 블록은 작게 설정하는 것이 바람직하다. 예를 들어, 복수의 미니 슬롯 간의 슬롯 번들링이 적용된 경우 하나의 시간 블록을 하나의 미니 슬롯으로 설정할 수 있다. 그 결과 미니 슬롯 1 내지 미니 슬롯 4가 번들링되었다면 시간 블록 1 내지 시간 블록 4가 설정된다.
만약 미니 슬롯 간의 슬롯 번들링 적용 시 매 슬롯에 DM-RS가 존재하지 않고 DM-RS 밀도 감소를 위해 일부 슬롯만 DM-RS를 전송하였다면 미니 슬롯과 시간 블록은 1:1로 맵핑 되지 않고, 복수개의 미니 슬롯 이 하나의 시간 블록을 구성할 수 있다.
시간 블록이 몇 심볼로 구성되는 지에 대한 정보 N은 기지국이 RRC 시그널링으로 지정하거나, DCI 를 이용해 지시해줄 수 있다. 또는 UE가 희망하는 N값을 기지국으로 피드백 할 수 있다.
물론, 상술한 시간 우선 맵핑에서 시간 블록 도입한 것과 마찬가지로 주파수 우선 맵핑에서 주파수 블록으로 변형 적용할 수 있다.
위 실시예들을 조합하면, 상향링크 CP-OFDM에서는 레이어, 주파수, 시간 순서의 맵핑이 적합하지만, DM-RS 패턴에 따라서 주파수, 시간 간의 순서가 변경될 수 있다. 예를 들어, DM-RS 패턴이 케이스 1과 같이 Front loaded DM-RS only인 경우, 채널 추정 성능을 고려하여 시간 우선으로 맵핑 하는 것이 바람직하다. DM-RS 케이스 2와 같이 패턴이 Front loaded DM-RS + additional DM-RS 또는 케이스 3과 같이 슬롯 번들링인 적용된 경우라면 채널 추정 성능의 시변성에 따라 주파수 우선 방식으로 맵핑 하는 것이 바람직하다.
또한, 상향링크 SC-OFDM에서는 레이어, 시간, 주파수 순서의 맵핑 이 적합하지만 DM-RS 패턴에 따라서 주파수, 시간 간의 순서가 변경될 수 있다. 예를 들어 DM-RS 패턴이 Front loaded DM-RS only인 경우 채널 추정 성능을 고려하여 시간 우선으로 맵핑 하는 것이 바람직하다. DM-RS 패턴이 Front loaded DM-RS + additional DM-RS 또는 슬롯 번들링 인 경우라면 채널 추정 성능의 시변성에 따라 주파수 우선으로 맵핑 하는 것이 바람직하다.
추가적으로, 최근 표준화 논의에서는 개루프 MIMO 전송 시에 데이터가 전송되는 유효 채널 (effective channel)을 주파수 도메인 (RE/RB/PRG level 등)에서 변경시켜 다이버시티 이득을 획득하는 기법들이 논의 되고 있다. 이 때 주파수 도메인의 유효 채널이 변하는 자원 단위에 따라 주파수 우선 맵핑 혹은 시간 우선 맵핑을 결정할 수 있다. 예를 들어, 작은 자원 단위인 RE 레벨로 변하는 경우, 주파수 우선 맵핑을 적용하여 각 CB 들이 모두 충분한 주파수 선택도를 경험하도록 하는 것이 바람직하다. 만약 큰 자원 단위인 PRG 단위로 변하는 경우 시간 우선으로 맵핑하여 각 CB 들이 충분한 시간 도메인에서의 페이딩을 경험하도록 하는 것이 바람직하다. 또는 스케줄링된 RB의 크기가 일정 값 이상인 경우에는 주파수 우선 맵핑을 하여 각 CB 들이 모두 충분한 주파수 선택도를 경험하도록 하는 것이 유리하며, 그렇지 않은 경우에는 시간 우선 맵핑을 하여 각 CB 들이 충분한 시간 도메인에서의 페이딩을 경험하도록 하는 것이 바람직하다. 주파수 도메인의 유효 채널이 변하는 자원 단위와 스케줄링된 RB 개수 모두를 고려하여 상기 제안을 결합시켜 운용하는 것도 가능하다.
또는 폐루프 MIMO 인지 개루프 MIMO 인지에 따라 RE 맵핑을 다르게 할 수 있다. 예를 들어, 개루프 MIMO에서 RE 레벨로 유효 채널이 변하도록 디자인되었고, 폐루프 MIMO에서는 PRG 단위로 유효 채널이 변하도록 디자인되었다면, 개루프 MIMO에서는 주파수 우선 맵핑을 수행하고 폐루프 MIMO에서는 시간 우선 맵핑을 수행한다. 설명의 편의를 위하여 주파수 도메인에서 유효 채널을 변화시키는 개루프 MIMO 기법에 대해 기술하였으나, 시간 도메인에서 (심볼 레벨 또는 슬롯 레벨) 유효 채널을 변화시키는 개루프 MIMO 기법이 적용되는 경우에는 주파수 도메인 대신 시간 도메인에 대해 제안 기술을 이용할 수 있다.
추가적으로, DFT-S-OFDM 상향링크 PDSCH 전송에서 다양한 RE 맵핑 방식이 고려되고 있다. 예를 들어 주파수 우선 맵핑은 각 CB가 다른 OFDM 심볼에 전송됨에 따라 CB 인코딩 및 디코딩을 한꺼번에 수행할 필요 없이 순차적으로 진행할 수 있으며, 그 결과 구현 복잡도를 낮출 수 있다. 하지만 주파수 축으로 주파수 호핑으로 인한 주파수 다이버시티 이득를 얻지 못하며 시간 축 다이버시티도 제한된다. 반면 시간 우선 맵핑은 모든 CB가 동일 OFDM 심볼에 전송됨에 따라 CB 인코딩 및 디코딩을 한꺼번에 수행해야 하기에, 구현 복잡도가 높다. 하지만 주파수 축으로 주파수 호핑으로 인한 주파수 다이버시티 이득를 얻을 수 있으며 시간 축 다이버시티 이득도 최대한 얻을 수 있다. 기지국은 통신 환경에 따라 최적 기법을 판단하여 하나의 맵핑 기법을 상위 계층 시그널링을 통하여 UE에게 지시해줄 수 있다.
하나의 PDSCH를 구성하는 CB의 개수가 작은 경우 상기 방식들의 성능 차이는 크지 않다. 예를 들어, CB가 1개인 경우 어떤 RE 맵핑을 선택하든 성능이 동일하다. 따라서 CB 개수에 따라 RE 맵핑 방식을 전환하는 방식을 고려해 볼 수 있다. CB 개수는 할당된 RB 개수, MCS에 따라 결정되므로, CB 개수가 작은 경우에는 주파수 우선 맵핑을 이용하고 그렇지 않은 경우 시간 우선 맵핑을 이용할 수 있다.
도 9는 본 발명의 실시예에 따라 복수의 코드블록들을 자원 요소들에 맵핑하는 방법을 예시하는 순서도이다. 특히, 도 9는 시간 우선 (time first) 맵핑을 하되, 시간 블록을 도입하여 시간 블록 내에서 시간 우선 맵핑이 되고, 시간 블록 내의 RE를 모두 맵핑 한 경우, 다음 시간 블록으로 넘어가서 다시 시간 우선 맵핑을 수행하는 경우를 예시한다.
도 9를 참조하면, 단계 901에서 단말은 시간 우선 방식이 적용되는 시간 블록의 크기는 상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정한다.
다음으로, 단계 903에서 단말은 하나의 슬롯 내에서, 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하며, 단계 905에서 상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신한다.
구체적으로, 상기 상향링크 복조 참조 신호의 맵핑 패턴이 다중 심볼 할당 패턴인 경우, 상기 하나의 슬롯은 복수의 시간 블록들을 포함한다. 특히, 상기 복수의 시간 블록들 각각은 상기 상향링크 복조 참조 신호이 할당된 하나의 심볼을 포함한다. 또한, 상기 상향링크 복조 참조 신호의 맵핑 패턴이 슬롯 전단 단독 할당 패턴인 경우, 상기 하나의 슬롯은 상기 시간 블록의 크기로 결정된다. 추가적으로, 단말은 상기 기지국으로부터 상기 복수의 시간 블록들의 개수에 관한 정보를 수신할 수 있다.
도 10은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 10을 참조하면, 통신 장치(1000)는 프로세서(1010), 메모리(1020), RF 모듈(1030), 디스플레이 모듈(1040) 및 사용자 인터페이스 모듈(1050)을 포함한다.
통신 장치(1000)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1000)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1000)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1010)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1010)의 자세한 동작은 도 1 내지 도 9에 기재된 내용을 참조할 수 있다.
메모리(1020)는 프로세서(1010)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1030)은 프로세서(1010)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1030)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1040)은 프로세서(1010)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1040)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(또는ganic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1050)은 프로세서(1010)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 복수의 코드블록들로 구성된 상향링크 데이터 신호를 송신하는 방법에 있어서,
    하나의 슬롯 내에서, 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하는 단계; 및
    상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신하는 단계를 포함하고,
    상기 시간 우선 방식이 적용되는 시간 블록의 크기는,
    상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정되는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  2. 제 1 항에 있어서,
    상기 상향링크 복조 참조 신호의 맵핑 패턴이 슬롯 전단 단독 할당 패턴인 경우, 상기 하나의 슬롯은 상기 시간 블록의 크기인 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  3. 제 1 항에 있어서,
    상기 상향링크 복조 참조 신호의 맵핑 패턴이 다중 심볼 할당 패턴인 경우, 상기 하나의 슬롯은 복수의 시간 블록들을 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  4. 제 3 항에 있어서,
    상기 복수의 시간 블록들 각각은,
    상기 상향링크 복조 참조 신호이 할당된 하나의 심볼을 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  5. 제 3 항에 있어서,
    상기 기지국으로부터 상기 복수의 시간 블록들의 개수에 관한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는,
    상향링크 신호 송신 방법.
  6. 무선 통신 시스템에서의 단말로서,
    무선 통신 모듈; 및
    상기 무선 통신 모듈과 연결되고, 하나의 슬롯 내에서 복수의 코드블록들을 자원 요소들에 시간 우선 방식을 이용하여 시간 블록 단위로 맵핑하며, 상향링크 복조 참조 신호와 상기 복수의 코드블록들로 구성된 상향링크 데이터 신호를 기지국으로 송신하는 프로세서를 포함하고,
    상기 시간 우선 방식이 적용되는 시간 블록의 크기는,
    상기 상향링크 복조 참조 신호의 맵핑 패턴에 기반하여 결정되는 것을 특징으로 하는,
    단말.
  7. 제 6 항에 있어서,
    상기 상향링크 복조 참조 신호의 맵핑 패턴이 슬롯 전단 단독 할당 패턴인 경우, 상기 하나의 슬롯은 상기 시간 블록의 크기인 것을 특징으로 하는,
    단말.
  8. 제 6 항에 있어서,
    상기 상향링크 복조 참조 신호의 맵핑 패턴이 다중 심볼 할당 패턴인 경우, 상기 하나의 슬롯은 복수의 시간 블록들을 포함하는 것을 특징으로 하는,
    단말.
  9. 제 8 항에 있어서,
    상기 복수의 시간 블록들 각각은,
    상기 상향링크 복조 참조 신호이 할당된 하나의 심볼을 포함하는 것을 특징으로 하는,
    단말.
  10. 제 8 항에 있어서,
    상기 프로세서는,
    상기 기지국으로부터 상기 복수의 시간 블록들의 개수에 관한 정보를 수신하는 것을 특징으로 하는,
    단말.
PCT/KR2018/003285 2017-03-21 2018-03-21 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치 WO2018174555A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/496,398 US11109370B2 (en) 2017-03-21 2018-03-21 Method for transmitting data in next generation communication system, and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762474536P 2017-03-21 2017-03-21
US62/474,536 2017-03-21
US201762555654P 2017-09-08 2017-09-08
US62/555,654 2017-09-08

Publications (1)

Publication Number Publication Date
WO2018174555A1 true WO2018174555A1 (ko) 2018-09-27

Family

ID=63584624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003285 WO2018174555A1 (ko) 2017-03-21 2018-03-21 차세대 통신 시스템에서 데이터를 송신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11109370B2 (ko)
WO (1) WO2018174555A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230139174A1 (en) * 2021-11-01 2023-05-04 Qualcomm Incorporated Frequency first per layer code block mapping

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077702A1 (ja) * 2017-10-18 2019-04-25 株式会社Nttドコモ 通信装置
US11533155B2 (en) * 2019-06-07 2022-12-20 Qualcomm Incorporated Triggering demodulation reference signal bundling
US20220346005A1 (en) * 2021-04-23 2022-10-27 Qualcomm Incorporated Dynamic code block mapping for wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100017051A (ko) * 2008-08-05 2010-02-16 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
US20110274043A1 (en) * 2010-05-04 2011-11-10 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
US20130346827A1 (en) * 2007-10-04 2013-12-26 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716637B2 (ja) * 2011-11-04 2015-05-13 住友電気工業株式会社 半導体モジュール及び半導体モジュールの製造方法
US9844046B2 (en) * 2013-04-01 2017-12-12 Panasonic Intellectual Property Corporation Of America Terminal, base station, method of generating DMRS, and transmission method
US10075949B2 (en) * 2016-02-02 2018-09-11 Motorola Mobility Llc Method and apparatus for low latency transmissions
US10285174B2 (en) * 2016-01-11 2019-05-07 Qualcomm Incorporated Uplink data channel design for narrowband devices
WO2017134337A1 (en) * 2016-02-04 2017-08-10 Nokia Technologies Oy Method and apparatus for implementing control and reference signals for physical-uplink-shared-channel communication
JP2019149592A (ja) * 2016-07-15 2019-09-05 シャープ株式会社 送信装置、受信装置、通信方法、および、集積回路
CN109906572B (zh) * 2016-08-12 2022-02-08 瑞典爱立信有限公司 带有缩短传输时间间隔的pusch上的上行链路控制信令
US10405332B2 (en) * 2016-09-06 2019-09-03 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier
EP3534656B1 (en) * 2016-10-28 2022-06-22 Ntt Docomo, Inc. User terminal and wireless communication method
US20180131490A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Dynamic reference signal configuration for shortened transmission time interval wireless communications
CN108023849A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 一种信道状态信息的汇报方法和装置
US10492184B2 (en) * 2016-12-09 2019-11-26 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130346827A1 (en) * 2007-10-04 2013-12-26 Samsung Electronics Co., Ltd. Method and apparatus for interleaving data in a mobile communication system
KR20100017051A (ko) * 2008-08-05 2010-02-16 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
US20110274043A1 (en) * 2010-05-04 2011-11-10 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on sPUSCH design", R1-1702429, 3GPP TSG RAN WG MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051221289 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230139174A1 (en) * 2021-11-01 2023-05-04 Qualcomm Incorporated Frequency first per layer code block mapping

Also Published As

Publication number Publication date
US11109370B2 (en) 2021-08-31
US20210112538A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2018186671A1 (ko) 차세대 통신 시스템에서 방송 데이터를 위한 dm-rs 송신 방법 및 이를 위한 장치
WO2016159673A1 (ko) 무선 통신 시스템에서 비면허 대역을 통하여 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2013042883A1 (ko) 무선 통신 시스템에서 링크 품질을 측정하는 방법 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2011002173A9 (ko) 다중 안테나 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2018088795A1 (ko) 동기화 신호 전송 방법 및 이를 위한 장치
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2018174510A1 (ko) 차세대 통신 시스템에서 코드워드와 레이어를 맵핑하는 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2016006886A1 (ko) 무선 통신 시스템에서 비 면허 대역에서의 참조 신호 송신 방법 및 이를 위한 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770678

Country of ref document: EP

Kind code of ref document: A1