WO2018174447A1 - Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate - Google Patents

Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate Download PDF

Info

Publication number
WO2018174447A1
WO2018174447A1 PCT/KR2018/002780 KR2018002780W WO2018174447A1 WO 2018174447 A1 WO2018174447 A1 WO 2018174447A1 KR 2018002780 W KR2018002780 W KR 2018002780W WO 2018174447 A1 WO2018174447 A1 WO 2018174447A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin composition
resin
weight
Prior art date
Application number
PCT/KR2018/002780
Other languages
French (fr)
Korean (ko)
Inventor
심창보
심희용
민현성
김영찬
송승현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180018019A external-priority patent/KR102057255B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18772360.6A priority Critical patent/EP3480245B1/en
Priority to US16/333,082 priority patent/US11091630B2/en
Priority to JP2019506370A priority patent/JP6852249B2/en
Priority to CN201880003409.5A priority patent/CN109661421B/en
Publication of WO2018174447A1 publication Critical patent/WO2018174447A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/12Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/028Paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a resin composition for a semiconductor package having high compatibility between internal components, low thermal expansion characteristics and excellent mechanical properties, and a prepreg and a metal foil laminate using the same. More specifically, a thermosetting resin composition for a semiconductor package capable of manufacturing a prepreg and a metal foil laminate having excellent physical properties even after a reflow process of a printed circuit board (PCB) and a prepreg using the same It is about.
  • PCB printed circuit board
  • Copper clad laminates used in conventional printed circuit boards are prepregs when the substrate of glass fiber (Gl ass Fabr ic) is impregnated with the varnish of the thermosetting resin composition and then semi-cured, which is then copper foil. It is prepared by heating and pressing together. The prepreg is used again to construct a circuit pattern on the copper foil laminate and to build up thereon.
  • the present invention is to provide a resin composition for a semiconductor package having a high miscibility between the internal components, low thermal expansion characteristics and excellent mechanical properties.
  • the present invention is to provide a prepreg and a metal foil laminate using the resin composition for a semiconductor package.
  • Sulfonated carbonyl groups Halogen group.
  • An amine curing agent including at least one functional group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an alkylene group having 1 to 20 carbon atoms; Thermosetting resins; The thermosetting resin comprising an inorganic layer filler containing a first inorganic filler having an average particle diameter of 0.1 M to 100 and a second inorganic filler having an average particle diameter of 1 im to 90 im, and based on 100 parts by weight of the amine curing agent.
  • the content is 400 parts by weight or less, the alkyl group of 1 to 20 carbon atoms, the alkyl group of 1 to 20 carbon atoms, the aryl group of 6 to 20 carbon atoms, and the alkylene group of 1 to 20 carbon atoms contained in the amine curing agent are each independently a nitro group.
  • a resin composition for a semiconductor package which is substituted with at least one functional group selected from the group consisting of a cyano group and a halogen group.
  • This specification also provides the prepreg obtained by impregnating the said resin composition for semiconductor packages in a fiber base material.
  • a metal foil laminate comprising the prepreg: and a metal foil comprising the prepreg integrated with the prepreg; to provide. .
  • a resin composition for a semiconductor package and a prepreg and a metal foil laminate using the same according to a specific embodiment of the present invention will be described in detail.
  • An amine curing agent including at least one functional group selected from the group consisting of a heteroaryl group having 2 to 30 carbon atoms and an alkylene group having 1 to 20 carbon atoms; Thermosetting resins; An inorganic ' filler containing a first inorganic filler having an average particle diameter of 0.1 ⁇ ⁇ to 100 and a second inorganic filler having an average particle diameter of 1 rim to 90 ⁇ , wherein the filler is added to 100 parts by weight of the amine curing agent.
  • the thermosetting resin content is 400 parts by weight or less.
  • the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms and the alkylene group having 1 to 20 carbon atoms included in the amine curing agent are each independently composed of a nitro group, a cyano group and a halogen group
  • a resin composition for a semiconductor package substituted with one or more functional groups selected from the group.
  • the resin composition for a semiconductor package of the said embodiment is a sulfone group.
  • Carbonyl group Halogen group, substituted C1-C20 alkyl group.
  • Strong electron withdrawing groups such as one or more functional groups selected from the group consisting of a substituted aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms and an alkylene group having 1 to 20 carbon atoms.
  • thermosetting resin content 400 parts by weight or less based on 100 parts by weight of the amine curing agent. It prevents the change of physical properties of the thermosetting resin due to the filler added in a high content, and induces the thermosetting resin to be uniformly curable to a sufficient level without the influence of the filler, the final product Reliability can be improved and mechanical properties such as toughness can also be increased.
  • thermosetting resin content in an amount of 400 parts by weight or less with respect to 100 parts by weight of the amine curing agent, when the amine curing agent is added in a relatively excessive amount, the limit of fluidity and formability decreases due to excessive curing of the thermosetting resin. there was.
  • excess amounts of certain ' amine hardeners with reduced reaction properties including electron drawer groups (EWG) as described above. Due to reduced reactivity of the curing agent. Rapid increase in the curing rate of the thermosetting resin can be suppressed, and high flowability can be exhibited even during long-term storage in the resin composition for a semiconductor package or the prepreg state obtained therefrom, thereby having excellent fluidity. Also.
  • fillers can be filled to a high content inside the prepreg.
  • a low thermal expansion coefficient can be realized and the fluidity of the filler is improved to improve the separation of the thermosetting resin and the filler during the lamination process.
  • the resin composition for a semiconductor package of the embodiment is a sulfone group ⁇ carbonyl group.
  • Halogen group An alkyl group having 1 to 20 carbon atoms may include an amine curing agent including at least one functional group selected from the group consisting of an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, and an alkylene group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms and the alkylene group having 1 to 20 carbon atoms contained in the amine curing agent are each independently a nitro group.
  • At least one functional group selected from the group consisting of a cyano group and a halogen group may be substituted.
  • the sulfone group contained in the said amine hardener Carbonyl group. Halogen group. Substituted C1-C20 alkyl group. Substituted aryl group having 6 to 20 carbon atoms. At least one functional group selected from the group consisting of substituted heteroaryl groups having 2 to 30 carbon atoms and substituted alkylene groups having 1 to 20 carbon atoms is a strong electron withdrawing group (EWG).
  • EWG electron withdrawing group
  • the electron withdrawal functional group The included amine curing agent can reduce the reaction properties compared to the amine curing agent containing no electron withdrawing functional group, thereby easily controlling the curing reaction of the resin composition.
  • a high content of inorganic filler can be introduced into the prepreg to lower the coefficient of thermal expansion of the prepreg, and at the same time improve the fluidity of the prepreg to improve circuit pattern fillability. Can be.
  • the amine curing agent may include one or more compounds selected from the group consisting of the following Chemical Formulas 1 to 3.
  • A is sulfone.
  • the alkylene group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group and a halogen group Substituted with the above functional groups,
  • ⁇ to Y s are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms
  • R 3 , R 3 ', R4 and R 4' are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms.
  • An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and m is an integer of 1 to 10.
  • An aryl group having 6 to 15 carbon atoms and a heteroaryl group having 2 to 20 carbon atoms are each independently substituted with one or more functional groups selected from the group consisting of nitro, cyano and halogen groups,
  • Zi to Z 4 are each independently a nitro group.
  • the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently substituted with at least one functional group selected from the group consisting of a nitro group, a cyano group and a halogen group.
  • the alkyl group Monovalent functional groups derived from alkane, for example. Straight, branched or cyclic, methyl, ethyl, propyl. Isobutyl, sec-butyl, tert-butyl pentyl, nuclear chamber and the like.
  • the alkylene group With divalent functional groups derived from alkane. For example, a methylene group as a straight chain, branched or cyclic. Ethylene group, propylene group, isobutylene group. sec-butylene group, ter t-butylene group. Pentyl . Rengi. It may be a nuclear silane group.
  • One or more hydrogen atoms contained in the alkylene group may be substituted with the same substituents as in the case of the alkyl group, respectively.
  • the aryl group Monovalent functional groups derived from arene, for example, may be monocyclic or polycyclic. Specifically, the monocyclic aryl group may be a phenyl group, biphenyl group, terphenyl group, stilbenyl group and the like, but is not limited thereto. Polycyclic aryl groups include naphthyl, anthryl and phenanthryl groups. Pyrenyl group. Perylyl group. It may be a crysenyl group or a fluorenyl group, but is not limited thereto. At least one hydrogen atom of such an aryl group may be each substituted with the same substituent as in the alkyl group.
  • the heteroaryl group is a hetero ring group including 0, N or S as a hetero atom, and the number of carbon atoms is not particularly limited, but may be 2 to 30 carbon atoms.
  • heterocyclic groups include thiophene groups. Furan group, pyrrole group, imidazole group ⁇ thiazole group, oxazole group, oxadiazole group. Triazole. Pyridyl groups. Bipyridyl groups. Triazines. Acridyl and pyridazine groups. Quinolinyl group. Isoquinoline group, indole group. Carbazole group, benzoxazole group.
  • Benzoimidazole group benzothiazole group, benzocarbazole group, benzothiophene group.
  • Dibenzothiophene group Benzofuranyl group and dibenzofuran group. It is not limited only to these. At least one hydrogen atom of such a heteroaryl group may be each substituted with the same substituent as in the alkyl group.
  • substituted means that another functional group is bonded to the hydrogen atom in the compound.
  • the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position at which the substituent is substituted, and is substituted at least two. Two or more substituents may be the same or different from each other.
  • Chemical Formula 1 may include a compound represented by Chemical Formula 1-1 below:
  • Formula 1-1 examples include 4,4'-diaminocliphenyl sulfone (In Formula 1-1, A is a sulfone group, Xi to X 8 , R L IV , R 2 and R 2 'are each independently a hydrogen atom, n is 1). bisC4-aminophenynmethanone (In Formula 1-1, A is a carbonyl group. X 2, R u 2 and R 2 ′ each independently represent a hydrogen atom, and n is 1).
  • Xi to, Ri, R 1 ', R 2 and R 2 ' are each independently a hydrogen atom.
  • N is 1).
  • Formula 2 may include a compound represented by Formula 2-1.
  • Chemical Formula 2-1 include 2,2 ′, 3.3 ′, 5.5 ′, 6,6′-oc taf 1 uor ob i heny 1-4, 4′-di am i ne
  • Y 8 is a halogen, a fluorine group
  • R 4 and R 4 ′ each independently represent a hydrogen atom
  • m is 1.
  • 2, 2'-bis (tr if liioromethyl) biphenyl-4.4'-diamine (Y 2 and ⁇ 7 are respectively Trifluoromethyl group, YL Y 3 . Y 4 . Y 5 . 6 Y, Ys is a hydrogen atom,.
  • R 4 ′ are each independently a hydrogen atom.
  • m is 1).
  • Formula 3 may include a compound represented by Formula 3′1.
  • Chemical Formula 3-1 examples include 2.3.5.6-tetrafluorobenzene-l, 4-diamine (I, Z to Z 4 in Chemical Formula 3-1 is a fluorine group , R 5.
  • R 6 and ' are each independently a hydrogen atom). Etc.).
  • thermosetting resin to 400 parts by weight or less, or 150 parts by weight to 400 parts by weight based on 0 parts by weight of the amine curing agent K) 0. Or 180 parts by weight to 300 parts by weight, or 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight.
  • the thermosetting resin the mixture content is also 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight based on 100 parts by weight of the amine curing agent mixture. Parts by weight, or 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight.
  • thermosetting resin content based on 100 parts by weight of the amine curing agent
  • thermosetting resin When the amount is excessively increased to more than 400 parts by weight, it is difficult to uniformly harden the thermosetting resin to a more sufficient level due to the effect of the filler. The reliability of the final product can be reduced. Mechanical properties such as toughness also have the disadvantage that they can be reduced.
  • the resin composition for a semiconductor package is calculated by the following equation
  • the equivalent ratio is at least 1.4, or 1.4 to 2.5, or 1.45 to 2.5. Or 1.45 to 2. 1. or 1.45 to 1.8, or 1.49 to 1.75.
  • Equation 1 the total active hydrogen equivalent contained in the amine curing agent, the total weight (unit: g ) of the amine curing agent divided by the unit equivalent of the active hydrogen of the amine curing agent (g / eci) Means.
  • the value obtained by dividing the weight (unit: g) by the unit equivalent of active hydrogen ( g / eq) for each compound is obtained, and the sum thereof is contained in the amine curing agent of Equation 1 above.
  • the total equivalent active hydrogen equivalent can be obtained.
  • the active hydrogen contained in the amine curing agent is. It means a hydrogen atom contained in the amino group (-NH 2 ) present in the amine curing agent, the active hydrogen can form a cured structure through reaction with the curable functional group of the thermosetting resin.
  • the total curable functional group equivalent contained in the thermosetting resin means a value obtained by dividing the total weight (unit: g) of the thermosetting resin by the unit equivalent (g / eq) of the curable functional group of the thermosetting resin. do .
  • thermosetting resin When the thermosetting resin is two or more kinds of mixtures, the value obtained by dividing the weight (unit: g) by the compound equivalent (g / eq) of the curable functional group for each compound is obtained. By the sum of these values, the total curable functional group equivalents contained in the thermosetting resin of Equation 1 can be obtained.
  • the curable functional group contained in the thermosetting resin means a functional group that forms a cured structure through reaction with active hydrogen of the amine curing agent, and the type of the curable functional group may also vary according to the type of the thermosetting resin.
  • the curable functional group contained in the epoxy resin may be an epoxy group
  • the curable functional group contained in the bismaleimide resin may be an epoxy group
  • the functional group can be a maleimide group.
  • the resin composition for a semiconductor package is calculated by the formula If the equivalent ratio satisfies 1.4 or more, it means that the curable functional groups contained in all the thermosetting resins contain a sufficient level of amine curing agent to cause curing reaction. Therefore, when the equivalent ratio calculated by Equation 1 in the resin composition for semiconductor package is reduced to less than 1.4. Changes in the properties of thermosetting resins caused by fillers in high content occur, and it is difficult for the thermosetting resins to be uniformly cured to a more granular level under the influence of fillers, which may reduce the reliability of the final product and reduce mechanical properties. There are drawbacks to this.
  • the resin composition for a semiconductor package of the embodiment may include a thermosetting resin.
  • the thermosetting resin may include at least one resin selected from the group consisting of an epoxy resin, a bismaleimide resin, a cyanate ester resin, and a bismaleimide-triazine resin. .
  • epoxy resin those used in a resin composition for a semiconductor package can be used without limitation, and the kinds thereof are not limited, and are bisphenol A type epoxy resins and phenol novolac epoxy resins.
  • the epoxy resin is a bisphenol-type epoxy resin represented by the formula (5).
  • At least one selected from the group consisting of a biphenyl type epoxy resin represented by the following formula (11), and a dicyclopentadiene type epoxy resin represented by the following formula (12) may be used.
  • n is 0 or an integer from 1 to 50.
  • the epoxy resin of the formula (5) according to the type of R.
  • bisphenol S type It may be an epoxy resin.
  • R is H or C3 ⁇ 4.
  • n is 0 or an integer from 1 to 50.
  • the novolak-type epoxy resin of Formula 6 may be a phenol novolak-type epoxy resin or cresol novolak-type epoxy resin, respectively, depending on the type of R.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • the resin composition for a semiconductor package includes an epoxy resin
  • a curing agent of an epoxy resin may be used together for curing.
  • the bismaleimide resin can be used without limitation, which is usually used in the resin composition for semiconductor packages, the type is not limited.
  • the bismaleimide resin is a diphenylmethane bismaleimide resin represented by the following formula (13), a phenylene type bismaleimide resin represented by the following formula (14) bisphenol A diphenyl represented by the following formula (15) Ether bismaleimide resins.
  • Ri and 3 ⁇ 4 are each independently. H. CH 3 or C 2 3 ⁇ 4.
  • n is 0 or an integer from 1 to 50.
  • the cyanate ester resin can be used without limitation, which is usually used in the resin composition for semiconductor packages, the type is not limited.
  • the cyanate ester resin is a novolac cyanate resin represented by the following formula (17), a dicyclopentadiene type cyanate resin represented by the following formula (18), and a bisphenol type cyanate resin represented by the following formula (19). And some triazineized prepolymers thereof, and these may be used alone or in combination of two or more thereof.
  • n is 0 or an integer from 1 to 50.
  • n is 0 or an integer from 1 to 50.
  • the cyanate resin of the formula (19) is bisphenol A type cyanate resin, respectively, depending on the type of R.
  • the mall bismaleimide-triazine resin can be used without limitation what is normally used in the resin composition for semiconductor packages. The kind is not limited.
  • the resin composition for a semiconductor package of the embodiment may include an inorganic filler.
  • the inorganic layer thickener can be used without limitation that is usually used in the resin composition for semiconductor packages, specific examples are silica, aluminum trihydroxide, magnesium hydroxide. Molybdenum oxide. Zinc molybdate, zinc borate, zinc stannate, alumina, clay. kaoline. Talc. Calcined kaolin. Calcined talc. Mica, short glass fiber, fine glass powder and hollow glass, and may be one or more selected from the group consisting of these.
  • the resin composition for a semiconductor package of the embodiment has an average particle diameter of 0.1 mi to 100 /. first inorganic filler, which is ⁇ ; And a second inorganic filler having an average particle diameter of 1 nm to 90 nm. 1 to 50 parts by weight, or 5 parts by weight of the second inorganic filler content having an average particle diameter of 1 niu to 90 nm with respect to 100 parts by weight of the first inorganic filler having an average particle diameter of 0.01 to 100 / ztu To 50 parts by weight, or 20 parts by weight to 50 parts by weight.
  • the packing density may be increased by increasing the packing density by using the small size of the nano particle size and the large size of the micro particle size. Liquidity Can be increased.
  • the first inorganic layer filler or the second inorganic filler may use silica surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance and dispersibility.
  • a method of dry or wet treatment of silica particles using a silane coupling agent as a surface treatment agent may be used.
  • the silica may be surface-treated by a wet method using 0.01 to 1 part by weight of the silane coupling agent based on 100 parts by weight of the silica particles.
  • the silane coupling agent is 3-aminopropyltriethoxysilane
  • Aminosilane coupling agents such as N-phenyl—3-aminopropyltrimethoxysilane and N— 2— (aminoethyl) -3-aminopropyltrimethoxysilane; epoxy such as 3—glycidoxypropyltrimethoxysilane Silane coupling agents, vinyl silane coupling agents such as 3-methacryloxypropyl trimethoxysilane, cationic silane coupling agents such as N-2- (N-vinylbenzylaminoethyl) -3-aminopropyltrimethoxysilane hydrochloride And phenyl silane coupling agents, and the silane coupling agent may be used alone or in combination of at least two silane coupling agents as necessary.
  • the silane compound may include an aromatic amino silane or a (meth) acrylsilane, and as the first inorganic filler having an average particle diameter of 0.01 kPa to 100, silica treated with aromatic amino silane may be used.
  • silica treated with (meth) acryl silane may be used.
  • the aromatic amino silane-treated silica include SC2050MTO (Actaantechs).
  • Specific examples of the (meth) acrylsilane-treated silica may include AC4130Y (N i ssan chemi ca l). The (meth) acryl was used to mean both acryl or methacryl.
  • the inorganic filler may be dispersed in the resin composition for the semiconductor package.
  • Dispersion of the inorganic filler in the resin composition for a semiconductor package means that the inorganic filler and the resin composition for the semiconductor package are other.
  • a component a thermosetting resin or an amine curing agent, etc. means a state in which each component is not separated and mixed. In other words.
  • the inorganic filler and the thermosetting resin may be evenly mixed to form a dispersed phase without forming a separate phase such as an inorganic filler separate phase composed of two or more inorganic fillers or a resin separated phase composed of a thermosetting resin. Accordingly, even when the inorganic filler is filled with a high content, the prepreg has an appropriate level of flowability and a low coefficient of thermal expansion. And high mechanical properties can be achieved.
  • the inorganic filler content is 200 parts by weight or more based on 100 parts by weight of the amine curing agent and the thermosetting resin. Or 200 parts by weight to 500 parts by weight, or 250 parts by weight to 400 parts by weight. If the content of the filler is less than about 200 parts by weight, the coefficient of thermal expansion increases and thus reflows (ref low) . The whip phenomenon is deepened during the process, and the rigidity of the printed circuit board is reduced.
  • the resin composition for a semiconductor package of the embodiment can be used as a solution by adding a solvent as necessary.
  • the solvent is not particularly limited as long as it exhibits good solubility in the resin component.
  • Alcohol system Ether type, ketone type.
  • Amide type aromatic hydrocarbon type.
  • Ester system. Nitrile-based or the like can be used. These can also use the mixed solvent used individually or in combination of 2 or more types.
  • the content of the solvent is not particularly limited as long as the resin composition may be impregnated into the glass fiber during prepreg manufacture.
  • the resin composition of the present invention may further include various high-molecular compounds such as thermosetting resins, thermoplastic resins, and oligomers and elastomers thereof, and other flame retardant compounds or additives, so long as the properties of the resin composition are not impaired. .
  • additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, and pigments. dyes. Thickeners, lubricants, antifoams. Dispersant. Leveling agents, polishes, etc. It is also possible to use them in combination to meet the purpose.
  • the resin composition for a semiconductor package of the embodiment has a coefficient of thermal expansion (CTE) 15 ppm / 0 C or less or 5 p P m / ° C. to 15 ppm / ° C.
  • CTE coefficient of thermal expansion
  • the coefficient of thermal expansion is removed by etching the copper foil layer in the state of the copper foil laminated plate obtained from the resin composition for semiconductor package, to prepare a test piece in the MD direction, using TMA (TA Ins t rument s. Q400) 30 It means the measured value in the range of 50 ° C to 150 ° C after measuring at the temperature increase rate of 10 ° C / min, from ° C to 260 ° C.
  • the resin composition for a semiconductor package has a low coefficient of thermal expansion as described above, warpage of the semiconductor package caused by a difference in thermal expansion coefficient between the chip and the printed circuit board during a metal laminate or a build-up process is generated. Since it can be minimized, the metal laminate including the prepreg may be usefully used for building up a printed circuit board for a semiconductor package.
  • the resin composition for a semiconductor package of the embodiment may have a resin flowability measured by IPC-TM-650 (2.3.17) of 1OT to 25%, or 15% to 25%. Specifically.
  • the resin flowability can be measured according to IPC-TM-650 (2.3.17) using carbapress in a prepreg state obtained from the resin composition for semiconductor package.
  • the resin composition for a semiconductor package has the above-mentioned level of resin flowability.
  • the metal laminated plate including the prepreg can be usefully used as a build-up of a printed circuit board for a semiconductor package because the metal laminate can be made or the flow can be secured during the build-up process. .
  • the resin flowability of the resin composition for the semiconductor package is excessively reduced, as the fine pattern fillability decreases in the metal lamination and buildup process, the generation of lamination voids (Voi d) and the number and efficiency of processes may be reduced. Also.
  • the resin flowability of the resin composition for the semiconductor package is excessively increased, the thickness irregularity of the printed circuit board may occur due to the excessive flow of the resin during the lamination process, or may be thinner than the designed thickness, thereby reducing the rigidity.
  • the resin composition for a semiconductor package of the embodiment has a minimum viscosity at 140 ° C or more, or 145 ° C to 165 ° C, the minimum viscosity is 100 Pa.s to 500 Pa.s. Or 150 Pa.s to 400 Pa-s, or 200 Pa-s to 350 Pa.s, or 250 Pa.s to 320 Pa-s.
  • the viscosity can be measured using a Modular Rheometer (Model MCR 302) of Anton Paar in the prepreg state obtained from the resin composition for semiconductor package.
  • the laminate may be usefully used for building up a printed circuit board for a semiconductor package.
  • the resin composition for a semiconductor package of the embodiment is IPC-TM—650
  • Tensile elongation measured by (2.4.18.3) is not less than 2.0%. Or 2.0% to 5.0%, or 2.0% to 3.0%, or 2.5% to 3.0%.
  • the tensile elongation is laminated in 10 sheets in the prepreg state obtained from the resin composition for semiconductor package to match the MD and TD direction of the glass fiber, press for 100 minutes under the conditions of 220 "C and 35 kg / cuf After that, the tensile elongation in the MD direction can be measured using a Universa Test Test Machine (Inst ron 3365) equipment according to IPC-TM-650 (2.4.18.3).
  • a prepreg prepared by impregnating the resin composition for a semiconductor package on a fiber substrate may be provided.
  • the prepreg means that the resin composition for semiconductor package is impregnated into the fiber base material in a semi-cured state.
  • a glass fiber base material is not limited, A glass fiber base material.
  • Polyester resin fibers Aromatic polyester resin fibers.
  • Polyester resin fiber such as a wholly aromatic polyester resin fiber.
  • Fluoroplastic fiber and so on Synthetic fiber bases composed of woven or nonwoven fabrics as the main ingredient, kraft paper, cotton substrates such as cotton linter paper and linter and kraft paper pulp, etc. may be used.
  • a glass fiber substrate is used. The glass fiber substrate can improve the strength of the prepreg, lower the absorption rate, and reduce the coefficient of thermal expansion.
  • the glass substrate used in the present invention may be selected from glass substrates used for various printed circuit board materials. Examples thereof include, but are not limited to, glass fibers such as E glass, D glass, S glass, T glass, NE glass and L glass. If necessary, the glass-based material may be selected according to the intended use or performance. Glass substrate forms are typically woven. Non-woven, roving, chopped strand mat or sur facing mat. The thickness of the glass substrate is not particularly limited, and about 0.01 to 0.3 mm may be used. Of the above substances. Glass fiber materials are more preferred in terms of strength and water absorption properties.
  • the method for producing the prepreg in the present invention is not particularly limited. It may be prepared by a method well known in the art.
  • the prepreg manufacturing method may be an impregnation method, a coating method using a variety of coaters, spray injection method and the like.
  • the prepreg after preparing the varnish, may be prepared by impregnating the fiber substrate with the varnish.
  • the solvent for the resin varnish is not particularly limited as long as it can be mixed with the resin component and has good solubility. Specific examples thereof include ketones such as acetone, methyl ethyl keron, methyl isobutyl ketone and cyclonucleanone. Aromatic ' hydrocarbons such as benzene, toluel and xylene. And amides such as dimethylformamide and dimethylacetamide. Methyl Cellosolve. Aliphatic alcohols such as butyl cellosolve.
  • the solvent used is 80% by weight or more It is preferable to volatilize. For this reason, there is no restriction in manufacturing method or drying conditions, and the temperature at the time of drying is about 80 ° C to 200 ° C. The time is not particularly limited by the balance with the varnish gelling time.
  • the impregnation amount of the varnish is preferably such that the resin solid content of the varnish is about 30 to 80% by weight relative to the total amount of the resin solid content of the varnish and the substrate.
  • the prepreg of the other embodiment has a coefficient of thermal expansion (CTE) of 15 ppm / ° C or less. Or 5 ppm / t to 15 p irc.
  • CTE coefficient of thermal expansion
  • Information on the thermal expansion coefficient includes the above-described information in the resin composition for a semiconductor package of the embodiment.
  • the prepreg of the other embodiment has a resin flowability of 10% to 25% as measured by IPOTM-650 (2.3.17). Or 15% to 25%.
  • the content of the resin flowability includes the above-mentioned content in the resin composition for a semiconductor package of the embodiment.
  • the prepreg of the other embodiment has a minimum viscosity at 140 ° C or more, or 145 V to 165 ° C, the minimum viscosity is 100 Pa-s to 500 Pa ⁇ s, or 150 Pa ⁇ s to 400 Pa ⁇ s, or 200 Pa.s to 350 PaPa s. Or 250 Pa-s to 320 Pa-s.
  • the content of the viscosity includes the above-described content in the resin composition for a semiconductor package of the embodiment.
  • the prepreg of the other embodiment has a tensile elongation of 2.0% or more, or 2.0% to 5.0%, or 2.0% to 3.0%, or 2.5% to 3.0, as measured by IPC-TM-650 ⁇ (2.4.18.3). May be%. Details of the tensile elongation include those described above in the resin composition for a semiconductor package of the embodiment. Further, according to another embodiment of the invention, the prepreg; And a metal foil containing plate integrated with the prepreg by heating and pressurizing.
  • the metal foil is copper foil; Aluminum foil; Nickel, nickel-phosphorus, nickel-tin alloys, nickel-iron alloys, lead or lead-tin alloys as interlayers, and on both sides Composite foil having a three-layer structure including copper layers of different thicknesses; Or the composite foil of the two-layered structure which combined aluminum and copper foil.
  • Copper foil or aluminum foil is used for the metal foil used for this invention, although what has a thickness of about 2-200 can be used, It is preferable that the thickness is about 2-35 /.
  • copper foil is used as said metal foil.
  • nickel as the metal foil. Nickel-phosphorus, nickel-tin alloys, nickel-iron alloys, lead. Or a lead-tin alloy or the like, and a three-layered composite foil or a two-layered composite foil in which a copper layer of 0.5 to 15 / and a copper layer of 10 to 300 are provided on both surfaces thereof. You can also use
  • the metal laminate including the prepreg thus prepared can be used for the manufacture of double-sided or multilayer printed circuit boards after laminating in one or more sheets.
  • the present invention can manufacture a double-sided or multi-layer printed circuit board by circuit processing the metal foil stacked plate, the circuit processing can be applied to a method performed in a general double-sided or multi-layer printed circuit board manufacturing process.
  • a resin composition for a semiconductor package having low thermal expansion characteristics and excellent mechanical properties, and a prepreg and a metal foil laminate using the same may be provided.
  • each component was added to methyl ethyl ketone according to a solid content of 65%, mixed, and then stirred at room temperature at 400 rpm for one day to prepare the resin compositions for semiconductor packages of Examples 1 to 5 and Comparative Examples 1 to 4 (resin Varnish) was prepared.
  • the specific compositions of the resin compositions prepared in Examples 1 to 5 are as described in Table 1 below
  • the specific compositions of the resin compositions prepared in Comparative Examples 1 to 4 are as described in Table 2 below.
  • TFB 2,2 -bis (tr i f 1 nor ome hy 1) benzidine; 2,2'— Bis (trif kioromethyl) -4.4 '-bi henyl diamine
  • Amine curing agent equivalent ratio to thermosetting resin (total active hydrogen equivalent of DDS + total active hydrogen equivalent of TFB + total active hydrogen equivalent of DDM + total active hydrogen equivalent of DDE) I ⁇ (total epoxy equivalent of XD-1000 + NC-3000H) Total epoxy equivalent of + total epoxy equivalent of HP-6000) + (total maleimide equivalent of BMI-2300) ⁇
  • Equation 1 the total active hydrogen equivalent weight of the DDS is obtained by dividing the total weight (g) of the DDS by the unit equivalent weight of the active hydrogen of the DDS (62 g / eq),
  • the total active hydrogen equivalent of TFB is the total weight of TFB (g) divided by the unit equivalent of TFB (80 g / eci),
  • the total active hydrogen equivalent of DDM is the total weight of DDM divided by the unit equivalent of active hydrogen of DDM (49.5 g / eq),
  • the total active hydrogen equivalent of DDE is the total weight of DDE (g) divided by the unit equivalent of active hydrogen of DDE (50 g / eq),
  • the total epoxy equivalent of the XD-1000 is the total weight (g) of the XD-1000 divided by the epoxy unit equivalent (253 g / eq) of XE ) -1000,
  • the total epoxy equivalent of NC-3000H is the total weight (g) of NC—3000H divided by the epoxy unit equivalent of NC-3000H (290 g / eq),
  • the total epoxy equivalent of HP-6000 is the total weight of HP-6000 divided by the epoxy equivalent of HP-6000 (250 g / eq).
  • the total maleimide equivalent of BMI-2300 is the total weight (g) of BMI-2300 divided by the male equivalent of BMI-2300 (179 g / eq).
  • Table 2 The total maleimide equivalent of BMI-2300 is the total weight (g) of BMI-2300 divided by the male equivalent of BMI-2300 (179 g / eq).
  • TFB 2.2 " -bis (tr if luoromethyl) benzidine; 2.2'- B is (trif 1 uor ome thyl) -4,4'-bi pheny 1 di am i ne
  • AC4130Y Slurry type nano silica treated with methacrylsilane. Average particle size 50nni (Nissan chemical company)
  • test piece After etching and removing the copper foil layer of the copper foil laminated board obtained by the said Example and comparative example. After etching and removing the copper foil layer of the copper foil crushing plate obtained by the said Example and the comparative example, the test piece was produced to MD direction. Using TMA (TA Instruments, Q400). After measuring at 30 ° C to 260 ° C, heating rate 10 ° C / niin conditions. The measured values ranging from 50 ° C. to 150 ° C. were recorded as thermal expansion coefficients.
  • TMA TA Instruments, Q400
  • the resin composition for a semiconductor package of the embodiment, and the prepreg and copper foil-filled plate obtained therefrom have a low coefficient of thermal expansion of 9.1 to 10.5 P pm / ° C., having low thermal expansion characteristics, and a minimum viscosity of 157 to 164 ° C. Measured from 256 to 315 Pa.s. 15 to 23% can have a high resin flow properties, it can ensure excellent miscibility. Also. Tensile elongation measurement results showed that it has high toughness of 2.6 to 2.9% and can realize excellent mechanical properties.
  • the amine having an electron draw (EWG) the resin composition for semiconductor packages of Comparative Examples 1 to 3 containing no curing agent and the prepreg and copper foil laminate obtained therefrom have a minimum viscosity of 120 to 125 810 to 987 Pa ⁇ s in the range of ° C is significantly higher than that of the embodiment, showing a very low resin flow of 3 to 4. 7%, and the poor compatibility of the resin and inorganic fillers such as separation occurs You can check it.
  • the resin composition for a semiconductor package of Comparative Example 4, wherein the amine curing agent equivalent ratio is 0.63 based on the thermosetting resin equivalent, and the prepreg and copper foil laminated plates obtained therefrom are 625 parts by weight based on 100 parts by weight of the amine curing agent.
  • thermosetting resin 400 parts by weight or less with respect to 100 parts by weight of the amine curing agent having an electron draw (El ect ron Wi thdrawing Group. EWG). While the equivalent ratio which is a thermosetting resin equivalent reference amine curing agent equivalent ratio satisfies 1.4 or more. Excellent low thermal expansion properties when two inorganic additives are used in combination. liquidity. It was confirmed that mechanical properties and miscibility can be secured.

Abstract

The present invention relates to a resin composition which is for a semiconductor package and has high miscibility between internal components, low thermal expansion properties, and excellent mechanical properties, a prepreg using same, and a metal foil laminated plate.

Description

【발명의 명칭】  [Name of invention]
반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판 【기술분야】  Resin composition for semiconductor package and prepreg and metal foil laminate using the same
관련 출원 (들)과의 상호 인용 Cross Citation with Related Application (s)
본 출원은 2017년 3월 22일자 한국 특허 출원 제 10-2017-0036105호 및 2018년 2월 13일자 한국 특허 출원 제 10— 2018— 0018019호에 기초한 우선 권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용 은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0036105 dated March 22, 2017 and Korean Patent Application No. 10—2018— 0018019 dated February 13, 2018, and the Korean Patent Application All content disclosed in these documents is included as part of this specification.
본 발명은 내부 성분간 높은 흔화성, 저열팽창 특성 및 우수한 기계적 물성을 갖는 반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판에 관한 것이다. 보다 구체적으로, 인쇄 회로 기판 (Pr inted Ci rcui t Board , PCB)의 리플로우 공정을 거쳐도 우수한 물성을 나타내는 프리프레그와 금속박 적층판을 제조할 수 있는 반도체 패키지용 열경화성 수지 조성물과 이를 이용한 프리프레그에 관한 것이다. 【발명의 배경이 되는 기술】  The present invention relates to a resin composition for a semiconductor package having high compatibility between internal components, low thermal expansion characteristics and excellent mechanical properties, and a prepreg and a metal foil laminate using the same. More specifically, a thermosetting resin composition for a semiconductor package capable of manufacturing a prepreg and a metal foil laminate having excellent physical properties even after a reflow process of a printed circuit board (PCB) and a prepreg using the same It is about. [Technique to become background of invention]
종래의 인쇄회로기판에 사용되는 동박적층판 (copper c l ad l aminate)은 유리 섬유 (Gl ass Fabr i c)의 기재를 상기 열경화성 수지 조성물의 바니시에 함침한 후 반경화시키면 프리프레그가 되고, 이를 다시 동박과 함께 가열 가압하여 제조한다. 이러한 동박 적층판에 회로 패턴을 구성하고 이 위에 빌드업 (bui ld-up)을 하는 용도로 프리프레그가 다시 사용되게 된다.  Copper clad laminates used in conventional printed circuit boards are prepregs when the substrate of glass fiber (Gl ass Fabr ic) is impregnated with the varnish of the thermosetting resin composition and then semi-cured, which is then copper foil. It is prepared by heating and pressing together. The prepreg is used again to construct a circuit pattern on the copper foil laminate and to build up thereon.
최근 전자 기기, 통신기기, 개인용 컴퓨터, 스마트폰 등의 고성능화, 박형화, 경량화가 가속되면서 반도체 패키지 또한 박형화가 요구됨에 따라. 동시에 반도체 패키지용 인쇄회로기판도 박형화의 필요성이 커지고 있다. 그러나, 박형화 과정에서 인쇄회로기판의 강성이 감소하는 문제가 발생함과 동시에. 칩과 인쇄회로기판간 열팽창률 차이로 인해 반도체 패키지의 휨 (Warpage) 문제가 발생하고 있다. 이러한 휨 현상은 PCB 리플로우 (PCB ref low) 공정상 고온을 반복하면서 인쇄회로기판이 원복이 되지 않는 현상으로 더 심화된다. Recently, as high-performance, thinner, and lighter-weighted electronic devices, communication devices, personal computers, and smart phones are accelerated, semiconductor packages are also required to be thinner. At the same time, the need for thinner printed circuit boards for semiconductor packages is increasing. However, at the same time, the rigidity of the printed circuit board is reduced during the thinning process. Due to the difference in thermal expansion between chips and printed circuit boards, warpage problems of semiconductor packages are occurring. This warpage phenomenon causes the printed circuit board to recover while repeating high temperature in the PCB ref low process. It is further aggravated by the phenomenon.
이에. 휨 현상을 개선하기 위해 기판의 열팽창률을 낮추는 기술에 대한 연구가 진행되고 있으며. 예를 들어 프리프레그에 필러를 고함량으로 충진하는 기술이 제안되고 있으나. 단순히 프리프레그에 필러를 고함량으로 충진하기만 하는 경우 프리프레그의 유동성이 감소하는 한계가 있었다. 따라서, 필러와 수지간 높은 흔화성이 확보되면서도 낮은 열팽창률 및 우수한 기계적 물성을 구현할 수 있는 프리프레그 및 금속박. 적충판의 개발이 요구되고 있다.  Therefore. In order to improve the warpage phenomenon, research on the technology of lowering the thermal expansion coefficient of the substrate is being conducted. For example, a technique for filling a high content of filler in a prepreg has been proposed. When simply filling the prepreg with a high content of filler, the fluidity of the prepreg was limited. Therefore, the prepreg and the metal foil which can realize a low thermal expansion coefficient and excellent mechanical properties while securing a high miscibility between the filler and the resin. The development of red pits is required.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 내부 성분간 높은 혼화성, 저열팽창 특성 및 우수한 기계적 물성을 갖는 반도체 패키지용 수지 조성물을 제공하기 위한 것이다. 또한, 본 발명은 상기 반도체 패키지용 수지 조성물을 이용한 프리프레그 및 금속박 적층판을 제공하기 위한 것이다.  The present invention is to provide a resin composition for a semiconductor package having a high miscibility between the internal components, low thermal expansion characteristics and excellent mechanical properties. In addition, the present invention is to provide a prepreg and a metal foil laminate using the resin composition for a semiconductor package.
【과제의 해결 수단】  [Measures of problem]
본 명세서에서는. 술폰기ᅳ 카보닐기. 할로겐기 . 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기ᅳ 및 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 포함한 아민 경화제; 열경화성 수지; 평균 입경이 0. 1 1M 내지 100 인 제 1 무기 충진제 및 평균 입경이 1 imᅵ 내지 90 imᅵ인 제 2 무기 충진제를 함유한 무기 층진제를 포함하고 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량이 400 중량부 이하이고, 상기 아민 경화제에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환된, 반도체 패키지용 수지 조성물이 제공된다.  In this specification. Sulfonated carbonyl groups. Halogen group. An amine curing agent including at least one functional group selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an alkylene group having 1 to 20 carbon atoms; Thermosetting resins; The thermosetting resin comprising an inorganic layer filler containing a first inorganic filler having an average particle diameter of 0.1 M to 100 and a second inorganic filler having an average particle diameter of 1 im to 90 im, and based on 100 parts by weight of the amine curing agent. The content is 400 parts by weight or less, the alkyl group of 1 to 20 carbon atoms, the alkyl group of 1 to 20 carbon atoms, the aryl group of 6 to 20 carbon atoms, and the alkylene group of 1 to 20 carbon atoms contained in the amine curing agent are each independently a nitro group There is provided a resin composition for a semiconductor package, which is substituted with at least one functional group selected from the group consisting of a cyano group and a halogen group.
본 명세서에서는 또한, 상기 반도체 패키지용 수지 조성물을 섬유 기재에 함침시켜 얻어진 프리프레그를 제공한다.  This specification also provides the prepreg obtained by impregnating the said resin composition for semiconductor packages in a fiber base material.
본 명세서에서는 또한, 상기 프리프레그: 및 가열 및 가압에 의해 상기 프리프레그와 일체화된 포함하는 금속박;을 포함하는 금속박 적층판을 제공한다. . In the present specification, a metal foil laminate comprising the prepreg: and a metal foil comprising the prepreg integrated with the prepreg; to provide. .
이하 발명의 구체적인 구현예에 따른 반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판에 대하여 보다 상세하게 설명하기로 한다 . 발명의 일 구현예에 따르면, 술폰기 , 카보닐기. 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기. 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 포함한 아민 경화제; 열경화성 수지; 평균 입경이 0. 1 β\\\ 내지 100 인 제 1 무기 충진제 및 평균 입경이 1 rim 내지 90 ηηι인 제 2 무기 충진제를 함유한 무기' 충진제를 포함하고, 상기 아민 경화제 100 증량부에 대하여 상기 열경화성 수지 함량이 400 중량부 이하이고. 상기 아민 경화제에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환된, 반도체 패키지용 수지 조성물이 제공될 수 있다. Hereinafter, a resin composition for a semiconductor package and a prepreg and a metal foil laminate using the same according to a specific embodiment of the present invention will be described in detail. According to one embodiment of the invention, a sulfone group, a carbonyl group. Halogen group, C1-C20 alkyl group, C6-C20 aryl group. An amine curing agent including at least one functional group selected from the group consisting of a heteroaryl group having 2 to 30 carbon atoms and an alkylene group having 1 to 20 carbon atoms; Thermosetting resins; An inorganic ' filler containing a first inorganic filler having an average particle diameter of 0.1 β \\\ to 100 and a second inorganic filler having an average particle diameter of 1 rim to 90 ηηι, wherein the filler is added to 100 parts by weight of the amine curing agent. The thermosetting resin content is 400 parts by weight or less. The alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms and the alkylene group having 1 to 20 carbon atoms included in the amine curing agent are each independently composed of a nitro group, a cyano group and a halogen group There may be provided a resin composition for a semiconductor package, substituted with one or more functional groups selected from the group.
본 발명자들은 상기 일 구현예의 반도체 패키지용 수지 조성물을 사용하면, 술폰기. 카보닐기. 할로겐기, 치환된 탄소수 1 내지 20의 알킬기. 치환된 탄소수 6 내지 20의 아릴기, 치환된 탄소수 2 내지 30의 헤테로아릴기 및 치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기와 같이 강력한 전자 끌개 작용기 (Electron Wi thdrawing Group , EWG)를 포함한 아민 경화제를 통해, 아민 경화제의 반응성을 줄여 수지 조성물의 경화 반응을 용이하게 제어할 수 '있음을 확인하였다. When the present inventors use the resin composition for a semiconductor package of the said embodiment, it is a sulfone group. Carbonyl group. Halogen group, substituted C1-C20 alkyl group. Strong electron withdrawing groups such as one or more functional groups selected from the group consisting of a substituted aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms and an alkylene group having 1 to 20 carbon atoms. , through the amine curing agent containing the EWG), it was confirmed that by reducing the reactivity of the amine curing agent can easily control the setting reaction of the resin composition.
특히 . 상기 일 구현예의 반도체 패키지용 수지 조성물에서는 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함시킴으로서. 고함량으로 투입된 필러에 의한 열경화성 수지의 물성 변화를 방지하고, 필러의 영향없이 열경화성 수지가 보다 충분한 수준으로 균일하게 경화가능하도록 유도하여 , 최종 제조되는 제품의 신뢰성이 향상될 수 있고, 인성 (Toughness )와 같은 기계적 물성 또한 증가시킬 수 있는 장점이 있다. Especially . In the resin composition for a semiconductor package of the embodiment by including the thermosetting resin content 400 parts by weight or less based on 100 parts by weight of the amine curing agent. It prevents the change of physical properties of the thermosetting resin due to the filler added in a high content, and induces the thermosetting resin to be uniformly curable to a sufficient level without the influence of the filler, the final product Reliability can be improved and mechanical properties such as toughness can also be increased.
종래에는 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 400 중량부 이하로 포함시키는 것과 같이, 아민 경화제를 상대적으로 과량으로 첨가시 열경화성 수지의 과도한 경화로 인해 유동성 및 성형성이 감소하는 한계가 있었다. 그러나, 상술한 바와 같이 전자 끌개 작용기 (Electron Wi thdrawing Group , EWG)를 포함하여 반웅성이 감소한 특정' 아민 경화제를 과량으로 첨가하더라도. 경화제의 반응성 감소로 인해 . 열경화성 수지의 경화속도가 급격히 상승하는 것을 억제할 수 있어, 반도체 패키지용 수지 조성물이나 이로부터 얻어지는 프리프레그 상태에서의 장기간 보관시에도 높은 흐름성을 나타내어 우수한 유동성을 가질 수 있다. 또한. 2종의 필러를 흔합하여 첨가함에 따라 프리프레그 내부에 필러를 고함량으로 충진할 수 있어. 낮은 열팽창계수를 구현할 수 있음과 동시에 필러의 유동성이 개선되어 적층 공정 시, 열경화성 수지와 필러가 분리되는 현상이 개선되는 즉. 수지와 필러와의 흔화성이 개선되는 것을 실험을 통하여 확인하고 발명을 완성하였다. Conventionally, as including the thermosetting resin content in an amount of 400 parts by weight or less with respect to 100 parts by weight of the amine curing agent, when the amine curing agent is added in a relatively excessive amount, the limit of fluidity and formability decreases due to excessive curing of the thermosetting resin. there was. However, even when excess amounts of certain ' amine hardeners with reduced reaction properties are added, including electron drawer groups (EWG) as described above. Due to reduced reactivity of the curing agent. Rapid increase in the curing rate of the thermosetting resin can be suppressed, and high flowability can be exhibited even during long-term storage in the resin composition for a semiconductor package or the prepreg state obtained therefrom, thereby having excellent fluidity. Also. By adding two types of fillers, fillers can be filled to a high content inside the prepreg. A low thermal expansion coefficient can be realized and the fluidity of the filler is improved to improve the separation of the thermosetting resin and the filler during the lamination process. The experiment confirmed that the compatibility between the resin and the filler was improved, and completed the invention.
구체적으로 , 상기 일 구현예의 반도체 패키지용 수지 조성물은 술폰기ᅳ 카보닐기. 할로겐기. 탄소수 1 내지 20의 알킬기ᅳ 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 포함한 아민 경화제를 포함할 수 있다. 이때, 상기 아민 경화제에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기. 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환될 수 았다.  Specifically, the resin composition for a semiconductor package of the embodiment is a sulfone group ᅳ carbonyl group. Halogen group. An alkyl group having 1 to 20 carbon atoms may include an amine curing agent including at least one functional group selected from the group consisting of an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, and an alkylene group having 1 to 20 carbon atoms. At this time, the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, the heteroaryl group having 2 to 30 carbon atoms and the alkylene group having 1 to 20 carbon atoms contained in the amine curing agent are each independently a nitro group. At least one functional group selected from the group consisting of a cyano group and a halogen group may be substituted.
상기 아민 경화제에 포함된 술폰기. 카보닐기. 할로겐기. 치환된 탄소수 1 내지 20의 알킬기. 치환된 탄소수 6 내지 20의 아릴기. 치환된 탄소수 2 내지 30의 헤테로아릴기 및 치환된 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기는 강력한 전자 끌개 작용기 (Electron Wi thdrawing Group . EWG)로서 . 상기 전자 끌개 작용기를 포함한 아민 경화제는 전자 끌개 작용기를 포함지 않은 아민 경화제에 비해 반웅성이 감소하여 이로부터 수지 조성물의 경화 반웅을 용이하게 제어할 수 있다. The sulfone group contained in the said amine hardener. Carbonyl group. Halogen group. Substituted C1-C20 alkyl group. Substituted aryl group having 6 to 20 carbon atoms. At least one functional group selected from the group consisting of substituted heteroaryl groups having 2 to 30 carbon atoms and substituted alkylene groups having 1 to 20 carbon atoms is a strong electron withdrawing group (EWG). The electron withdrawal functional group The included amine curing agent can reduce the reaction properties compared to the amine curing agent containing no electron withdrawing functional group, thereby easily controlling the curing reaction of the resin composition.
따라서 , 상기 아민 경화제에 의해 조성물의 경화반응 정도를 조절하면서 고함량의 무기 충진제를 프리프레그 내에 도입하여 프리프레그의 열팽창계수를 낮출 수 있으며, 동시에 프리프레그의 유동성을 향상시켜 회로 패턴 채움성이 향상될 수 있다.  Therefore, by controlling the degree of curing reaction of the composition by the amine curing agent, a high content of inorganic filler can be introduced into the prepreg to lower the coefficient of thermal expansion of the prepreg, and at the same time improve the fluidity of the prepreg to improve circuit pattern fillability. Can be.
구체적으로, 상기 아민 경화제는 하기 화학식 1 내지 3으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함할 수 있다.  Specifically, the amine curing agent may include one or more compounds selected from the group consisting of the following Chemical Formulas 1 to 3.
[화학식 1]  [Formula 1]
Figure imgf000006_0001
상기 화학식 1에서. A는 술폰기. 카보닐기. 또는 탄소수 1 내지 10의 알킬렌기이며, 내지 는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기. 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, , I , R2 및 '는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, n은 1 내지 10의 정수이고.
Figure imgf000006_0001
In Formula 1 above. A is sulfone. Carbonyl group. Or an alkylene group having 1 to 10 carbon atoms, and are each independently a nitro group, a cyano group, a hydrogen atom, or a halogen group. An alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms , wherein I , R 2 and 'are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and n is an integer of 1 to 10.
상기 탄소수 1 내지 10의 알킬렌기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환되며,  The alkylene group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently selected from the group consisting of a nitro group, a cyano group and a halogen group Substituted with the above functional groups,
[화학식 2]
Figure imgf000007_0001
[Formula 2]
Figure imgf000007_0001
상기 화학식 2에서. ΥΊ 내지 Ys는 각각 독립적으로 니트로기, 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기는 이고, R3, R3 ' , R4 및 R4 '는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며 , m은 1 내지 10의 정수이고. 상기 탄소수 1 내지 6의 알킬기 . 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환되며, In Formula 2 above. ΥΊ to Y s are each independently a nitro group, a cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, R 3 , R 3 ', R4 and R 4' are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms. An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and m is an integer of 1 to 10. The alkyl group having 1 to 6 carbon atoms. An aryl group having 6 to 15 carbon atoms and a heteroaryl group having 2 to 20 carbon atoms are each independently substituted with one or more functional groups selected from the group consisting of nitro, cyano and halogen groups,
[화학식 3]  [Formula 3]
Figure imgf000007_0002
상기 화학식 3에서. Zi 내지 Z4는 각각 독립적으로 니트로기. 시아노기, 수소원자, 할로겐기, 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, R5, R5 ' , R6 및 R6 '는 각각 독립적으로 수소원자, 할로겐기. 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기. 또는 탄소수 2 내지 20의 헤테로아릴기이며 . 상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환된다.
Figure imgf000007_0002
In Chemical Formula 3 above. Zi to Z 4 are each independently a nitro group. A cyano group, a hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and R 5 , R 5 ', R 6 and R 6 ' are each Independently a hydrogen atom, a halogen group. Alkyl group of 1 to 6 carbon atoms, aryl group of 6 to 15 carbon atoms. Or a heteroaryl group having 2 to 20 carbon atoms. The alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently substituted with at least one functional group selected from the group consisting of a nitro group, a cyano group and a halogen group.
상기 알킬기는. 알케인 (alkane)으로부터 유래한 1가의 작용기로, 예를 들어 . 직쇄형 , 분지형 또는 고리형으로서, 메틸 , 에틸 , 프로필 . 이소부틸, sec-부틸, tert-부틸 펜틸, 핵실 등이 될 수 있다. 상기 알킬렌기는. 알케인 (a lkane)으로부터 유래한 2가의 작용기로. 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기. 에틸렌기, 프로필렌기, 이소부틸렌기. sec-부틸렌기, ter t-부틸렌기. 펜틸.렌기. 핵실렌기 등.이 될 수 있다. 상기 알킬렌기에 포함되어 있는 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다. 상기 아릴기는. 아렌 (arene)으로부터 유래한 1가의 작용기로, 예를 들어, 단환식 또는 다환식일 수 있다. 구체적으로, 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 스틸베닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 다환식 아릴기로는 나프틸기, 안트릴기, 페난트릴기. 파이레닐기. 페릴레닐기. 크라이세닐기, 플루오레닐기 둥이 될 수 있으나, 이에 한정되는 것은 아니다. 이러한 아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다. The alkyl group. Monovalent functional groups derived from alkane, for example. Straight, branched or cyclic, methyl, ethyl, propyl. Isobutyl, sec-butyl, tert-butyl pentyl, nuclear chamber and the like. The alkylene group. With divalent functional groups derived from alkane. For example, a methylene group as a straight chain, branched or cyclic. Ethylene group, propylene group, isobutylene group. sec-butylene group, ter t-butylene group. Pentyl . Rengi. It may be a nuclear silane group. One or more hydrogen atoms contained in the alkylene group may be substituted with the same substituents as in the case of the alkyl group, respectively. The aryl group. Monovalent functional groups derived from arene, for example, may be monocyclic or polycyclic. Specifically, the monocyclic aryl group may be a phenyl group, biphenyl group, terphenyl group, stilbenyl group and the like, but is not limited thereto. Polycyclic aryl groups include naphthyl, anthryl and phenanthryl groups. Pyrenyl group. Perylyl group. It may be a crysenyl group or a fluorenyl group, but is not limited thereto. At least one hydrogen atom of such an aryl group may be each substituted with the same substituent as in the alkyl group.
상기 헤테로아릴기는 이종원자로 0, N 또는 S를 포함하는 해테로 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 30일 수 있다. 헤테로 고리기의 예로는 티오펜기. 퓨란기, 피롤기, 이미다졸기ᅳ 티아졸기, 옥사졸기 , 옥사디아졸기 . 트리아졸기 . 피리딜기 . 비피리딜기 . 트리아진기. 아크리딜기 , 피리다진기 . 퀴놀리닐기 . 이소퀴놀린기, 인돌기 . 카바졸기 , 벤조옥사졸기. 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기. 디벤조티오펜기. 벤조퓨라닐기 및 디벤조퓨란기 등이 있으나. 이들에만 한정되는 것은 아니다. 이러한 헤테로아릴기 중 하나 이상의 수소 원자는 각각 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다. The heteroaryl group is a hetero ring group including 0, N or S as a hetero atom, and the number of carbon atoms is not particularly limited, but may be 2 to 30 carbon atoms. Examples of heterocyclic groups include thiophene groups. Furan group, pyrrole group, imidazole group 티아 thiazole group, oxazole group, oxadiazole group. Triazole. Pyridyl groups. Bipyridyl groups. Triazines. Acridyl and pyridazine groups. Quinolinyl group. Isoquinoline group, indole group. Carbazole group, benzoxazole group. Benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group. Dibenzothiophene group. Benzofuranyl group and dibenzofuran group. It is not limited only to these. At least one hydrogen atom of such a heteroaryl group may be each substituted with the same substituent as in the alkyl group.
상기 "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며. 치환되는 위치는 수소 원자가 치환되는 위치 즉 , 치환기가 치환 가능한 위치라면 한정되지 않으며 , 2 이상 치환되는 경우. 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.  The term "substituted" means that another functional group is bonded to the hydrogen atom in the compound. The position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position at which the substituent is substituted, and is substituted at least two. Two or more substituents may be the same or different from each other.
보다 구체적으로, 상기 화학식 1은 하기 화학식 1-1로 표시되는 화합물을 포함할 수 있다ᅳ  More specifically, Chemical Formula 1 may include a compound represented by Chemical Formula 1-1 below:
[화학식 1-1] X3 X4 ^7 ^8 [Formula 1-1] X3 X 4 ^ 7 ^ 8
상기 화학식 1-1에서. A. X! 내지 t, I , R2 및 R2'. n에 대한 내용은 상기 화학식 1에서 상술한 내용을 포함한다. In Chemical Formula 1-1. A. X! To t , I , R 2 and R 2 ′. The content of n includes the above-mentioned information in Chemical Formula 1.
상기 화학식 1—1의 구체적인 예로는 4,4'-diaminocliphenyl sulfone (화학식 1-1에서 A는 술폰기 , Xi 내지 X8, RL IV, R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다ᅳ). bisC4- aminophenynmethanone (화학식 1-1에서 A는 카보닐기. , X2, Ru 2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다 .). 4,4'- ( er f 1 uoropropane-2 , 2-d i y 1 ) d i an i line (화학식 1一 1에서 A는 perf 1 uoropropane-2, 2-d iyl , Xl 내지 ¾, R IV. R2 및 R2'는 각각 독립적으로 수소원자이며, n은 1 이다.) , 4,4'-(2,2,2-trif luoroethane- l.l-diyl)dianiline (화학식 1-1에서 A는 2 , 2 , 2-t r i f luoroethane-1.1-diyl . Xi 내지 , Ri, R1 ' , R2 및 R2'는 각각 독립적으로 수소원자이며. n은 1 이다. ) 등을 들 수 있다. Specific examples of Formula 1-1 include 4,4'-diaminocliphenyl sulfone (In Formula 1-1, A is a sulfone group, Xi to X 8 , R L IV , R 2 and R 2 'are each independently a hydrogen atom, n is 1). bisC4-aminophenynmethanone (In Formula 1-1, A is a carbonyl group. X 2, R u 2 and R 2 ′ each independently represent a hydrogen atom, and n is 1). 4,4'- (er f 1 uoropropane-2, 2-diy 1) di an i line (wherein A is perf 1 uoropropane-2, 2-d iyl, X l to ¾ , R IV.R 2 and R 2 'are each independently a hydrogen atom, n is 1), 4,4'-(2,2,2-trif luoroethane-ll-diyl) dianiline (A in Formula 1-1 is 2, 2, 2-trif luoroethane-1.1-diyl. Xi to, Ri, R 1 ', R 2 and R 2 ' are each independently a hydrogen atom. N is 1).
또한. 상기 화학식 2는 하기 화학식 2-1로 표시되는 화합물을 포함할 수 있다.  Also. Formula 2 may include a compound represented by Formula 2-1.
[화학식 2-1]  [Formula 2-1]
Figure imgf000009_0001
Figure imgf000009_0001
상기 화학식 2-1에서. 내지 Y8, R3, R3 *. R4 및 R4' , m에 대한 내용은 상기 화학식 2에서 상술한 내용을 포함한다. In Chemical Formula 2-1. To Y 8 , R 3, R 3 * . The contents of R4 and R 4 ′, m include those described above in Chemical Formula 2.
상기 화학식 2-1의 구체적인 예로는 2,2',3.3' ,5.5' ,6, 6'- oc t a f 1 uor ob i heny 1 -4 , 4 ' -d i am i ne (화학식 2—1에서 ^ 내지 Y8은 할로겐으로 플루오르기 . , R4 및 R4'는 각각 독립적으로 수소원자이며, m은 1 이다 ·). 2, 2'-bis(tr if liioromethyl )biphenyl-4.4'-diamine (Y2 및 Υ7은 각각 트리플루오로메틸기이며, YL Y3. Y4. Y5. Y6, Ys은 수소원자, . 및 R4'는 각각 독립적으로 수소원자이며. m은 1 이다.) 등을 들 수 있다ᅳ Specific examples of Chemical Formula 2-1 include 2,2 ′, 3.3 ′, 5.5 ′, 6,6′-oc taf 1 uor ob i heny 1-4, 4′-di am i ne (Formula 2—1 ^ Y 8 is a halogen, a fluorine group , R 4 and R 4 ′ each independently represent a hydrogen atom, and m is 1. 2, 2'-bis (tr if liioromethyl) biphenyl-4.4'-diamine (Y 2 and Υ 7 are respectively Trifluoromethyl group, YL Y 3 . Y 4 . Y 5 . 6 Y, Ys is a hydrogen atom,. And R 4 ′ are each independently a hydrogen atom. m is 1).
또한ᅳ 상기 화학식 3는 하기 화학식 3ᅳ1로 표시되는 화합물을 포함할 수 있다.  In addition, Formula 3 may include a compound represented by Formula 3′1.
[화학식 3—1]  [Formula 3—1]
Figure imgf000010_0001
상기 화학식 3-1에서 , Ιχ 내지 Z4, R5. R5', R6 및 '에 대한 내용은 상기 화학식 3에서 상술한 내용을 포함한다.
Figure imgf000010_0001
In Chemical Formula 3-1, Ιχ to Z 4 , R 5 . Information on R 5 ', R 6 and' includes the details described in the formula (3).
상기 화학식 3—1의 구체적인 예로는 2.3.5.6-tetrafluorobenzene-l,4- diamine (화학식 3-1에서 I、 내지 Z4는 할로겐으로 플루오르기, R5. R6 및 '는 각각 독립적으로 수소원자이다.)등을 들 수 있다. Specific examples of Chemical Formula 3-1 include 2.3.5.6-tetrafluorobenzene-l, 4-diamine (I, Z to Z 4 in Chemical Formula 3-1 is a fluorine group , R 5. R 6 and 'are each independently a hydrogen atom). Etc.).
상기 아민 경화제 K)0 중량부에 대하여 상기 열경화성 수지 함량을 400 증량부 이하, 또는 150 중량부 내지 400 중량부. 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량.부, 또는 190 중량부 내지 290 중량부일 수 있다. 상기 아민 경화제 또는 열경화성 수지가 2종 이상의 혼합물인 경우, 아민 경화제 흔합물 100 중량부에 대하여 열경화성 수지 , 흔합물 함량 또한 400 증량부 이하, 또는 150 중량부 내지 400 중량부, 또는 180 중량부 내지 300 중량부, 또는 180 중량부 내지 290 중량부, 또는 190 중량부 내지 290 중량부일 수 있다.  The amount of the thermosetting resin to 400 parts by weight or less, or 150 parts by weight to 400 parts by weight based on 0 parts by weight of the amine curing agent K) 0. Or 180 parts by weight to 300 parts by weight, or 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight. When the amine curing agent or the thermosetting resin is a mixture of two or more kinds, the thermosetting resin, the mixture content is also 400 parts by weight or less, or 150 parts by weight to 400 parts by weight, or 180 parts by weight to 300 parts by weight based on 100 parts by weight of the amine curing agent mixture. Parts by weight, or 180 parts by weight to 290 parts by weight, or 190 parts by weight to 290 parts by weight.
상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량을 The thermosetting resin content based on 100 parts by weight of the amine curing agent
400 중량부 초과로 지나치게 증가할 경우, 고함량으로 투입된 필러에 의한 열경화성 수지의 물성 변화가 발생하고, 필러의 영향으로 열경화성 수지가 보다 충분한 수준까지 균일하게 경화되기 어려워 . 최종 제조되는 제품의 신뢰성이 감소할 수 있고 . 인성 (Toughness)와 같은 기계적 물성 또한 감소될 수 있는 단점이 있다. When the amount is excessively increased to more than 400 parts by weight, it is difficult to uniformly harden the thermosetting resin to a more sufficient level due to the effect of the filler. The reliability of the final product can be reduced. Mechanical properties such as toughness also have the disadvantage that they can be reduced.
이때, 상기 반도체 패키지용 수지 조성물은 하기 수학식 1로 계산되는 당량비가 1.4 이상, 또는 1.4 내지 2.5 , 또는 1.45 내지 2.5. 또는 1.45 내지 2. 1. 또는 1.45 내지 1.8 , 또는 1.49 내지 1.75일 수 있다. At this time, the resin composition for a semiconductor package is calculated by the following equation The equivalent ratio is at least 1.4, or 1.4 to 2.5, or 1.45 to 2.5. Or 1.45 to 2. 1. or 1.45 to 1.8, or 1.49 to 1.75.
[수학식 1]  [Equation 1]
당량비 = 상기 아민 경화제에 함유된 총 활성수소 당량 / 상기 열경화성 수지에 함유된 총 경화성 작용기 당량  Equivalent ratio = total active hydrogen equivalents contained in the amine curing agent / total curable functional group equivalents contained in the thermosetting resin
보다 구체적으로, 상기 수학식 1에서, 상기 아민 경화제에 함유된 총 활성수소 당량은, 상기 아민 경화제의 총 중량 (단위 : g)을 상기 아민 경화제의 활성수소 단위당량 (g/eci)로 나눈 값을 의미한다. More specifically, in Equation 1, the total active hydrogen equivalent contained in the amine curing agent, the total weight (unit: g ) of the amine curing agent divided by the unit equivalent of the active hydrogen of the amine curing agent (g / eci) Means.
상기 아민 경화제가 2종 이상의 흔합물인 경우, 각각의 화합물 별로 중량 (단위: g)을 활성수소 단위당량 (g/eq)로 나눈 값을 구하고, 이를 합한 값으로 상기 수학식 1의 아민 경화제에 함유된 총 활성수소 당량을 구할 수 있다. When the amine curing agent is a mixture of two or more kinds, the value obtained by dividing the weight (unit: g) by the unit equivalent of active hydrogen ( g / eq) for each compound is obtained, and the sum thereof is contained in the amine curing agent of Equation 1 above. The total equivalent active hydrogen equivalent can be obtained.
상기 아민 경화제에 함유된 활성수소는. 아민 경화제에 존재하는 아미노기 ( -NH2 )에 포함된 수소원자를 의미하며, 상기 활성수소가 열.경화성 수지의 경화성 작용기와의 반웅을 통해 경화구조를 형성할 수 있다. The active hydrogen contained in the amine curing agent is. It means a hydrogen atom contained in the amino group (-NH 2 ) present in the amine curing agent, the active hydrogen can form a cured structure through reaction with the curable functional group of the thermosetting resin.
또한, 상기 수학식 1에서, 상기 열경화성 수지에 함유된 총 경화성 작용기 당량은, 상기 열경화성 수지의 총 중량 (단위: g)을 상기 열경화성 수지의 경화성 작용기 단위당량 (g/eq)로 나눈 값을 의미한다 .  In addition, in Equation 1, the total curable functional group equivalent contained in the thermosetting resin means a value obtained by dividing the total weight (unit: g) of the thermosetting resin by the unit equivalent (g / eq) of the curable functional group of the thermosetting resin. do .
상기 열경화성 수지가 2종 이상의 흔합물인 경우, 각각의 화합물 별로 중량 (단위: g)을 경화성 작용기 단위당량 (g/eq)로 나눈 값을 구하고. 이를 합한 값으로 상기 수학식 1의 열경화성 수지에 함유된 총 경화성 작용기 당량을 구할 수 있다.  When the thermosetting resin is two or more kinds of mixtures, the value obtained by dividing the weight (unit: g) by the compound equivalent (g / eq) of the curable functional group for each compound is obtained. By the sum of these values, the total curable functional group equivalents contained in the thermosetting resin of Equation 1 can be obtained.
상기 열경화성 수지에 함유된 경화성 작용기는, 상기 아민 경화제의 활성수소와의 반웅을 통해 경화구조를 형성하는 작용기를 의미하며, 상기 열경화성 수지 종류에 따라 경화성 작용기의 종류 또한 달라질 수 있다. 예를 들어, 상기 열경화성 수지로 에폭시 수지를 사용할 경우, 상기 에폭시 수지에 함유된 경화성 작용기는 에폭시기가 될 수 있고, 상기 열경화성 수지로 비스말레이미드수지를 사용할 경우, 상기 비스말레이미드 수지에 함유된 경화성 작용기는 말레이미드기가 될 수 있다.  The curable functional group contained in the thermosetting resin means a functional group that forms a cured structure through reaction with active hydrogen of the amine curing agent, and the type of the curable functional group may also vary according to the type of the thermosetting resin. For example, when using an epoxy resin as the thermosetting resin, the curable functional group contained in the epoxy resin may be an epoxy group, when using a bismaleimide resin as the thermosetting resin, curable contained in the bismaleimide resin The functional group can be a maleimide group.
즉, 상기 반도체 패키지용 수지 조성물이 상기 수학식 1로 계산되는 당량비가 1.4 이상을 만족한다는 것은, 모든 열경화성 수지에 함유된 경화성 작용기가 경화반웅을 일으킬 수 있을 정도로 충분한 수준의 아민 경화제가 함유되어있음을 의미한다. 따라서, 상기 반도체 패키지용 수지 조성물에서 상기 수학식 1로 계산되는 당량비가 1.4 미만으로 감소하는 경우. 고함량으로 투입된 필러에 의한 열경화성 수지의 물성 변화가 발생하고, 필러의 영향으로 열경화성 수지가 보다 층분한 수준까지 균일하게 경화되기 어려워, 최종 제조되는 제품의 신뢰성이 감소할 수 있고ᅳ 기계적 물성 또한 감소할 수 있는 단점이 있다. That is, the resin composition for a semiconductor package is calculated by the formula If the equivalent ratio satisfies 1.4 or more, it means that the curable functional groups contained in all the thermosetting resins contain a sufficient level of amine curing agent to cause curing reaction. Therefore, when the equivalent ratio calculated by Equation 1 in the resin composition for semiconductor package is reduced to less than 1.4. Changes in the properties of thermosetting resins caused by fillers in high content occur, and it is difficult for the thermosetting resins to be uniformly cured to a more granular level under the influence of fillers, which may reduce the reliability of the final product and reduce mechanical properties. There are drawbacks to this.
또한 상기 일 구현예의 반도체 패키지용 수지 조성물은 열경화성 수지를 포함할 수 있다.  In addition, the resin composition for a semiconductor package of the embodiment may include a thermosetting resin.
상기 열경화성 수지는 에폭시 수지, 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드-트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함할 수 있다. .  The thermosetting resin may include at least one resin selected from the group consisting of an epoxy resin, a bismaleimide resin, a cyanate ester resin, and a bismaleimide-triazine resin. .
이 때. 상기 에폭시 수지로는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않으며, 비스페놀 A 형 에폭시 수지, 페놀 노볼락 에폭시 수지. 페닐 아랄킬계 에폭시 수지, 테트라페닐 에탄 에폭시 수지, 나프탈렌계 에폭시 수지, 바이페닐계 에폭시 수지. 디시클로펜타디엔 에폭시 수지ᅳ 및 디시클로펜타디엔계 에폭시 수지와 나프탈렌계 에폭시 수지의 혼합물로 이루어진 군에서 선택된 1종 이상일 수 있다.  At this time. As the epoxy resin, those used in a resin composition for a semiconductor package can be used without limitation, and the kinds thereof are not limited, and are bisphenol A type epoxy resins and phenol novolac epoxy resins. Phenyl aralkyl type epoxy resin, tetraphenyl ethane epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin. It may be at least one selected from the group consisting of dicyclopentadiene epoxy resin and a mixture of dicyclopentadiene epoxy resin and naphthalene epoxy resin.
구체적으로 , 상기 에폭시 수지는 하기 화학식 5로 표시되는 비스페놀형 에폭시 수지 . 하기 화학식 6로 표시되는 노볼락형 에폭시 수지 . 하기 화학식 7로 표시되는 페닐 아랄킬계 에폭시 수지, 하기 화학식 8로 표시되는 테트라페닐에탄형 에폭시 수지, 하기 화학식 9과 10으로 표시되는 나프탈렌형 에폭시 수지. 하기 화학식 11로 표시되는 바이페닐형 에폭시 수지, 및 하기 화학식 12로 표시되는 디시클로펜타디엔형 에폭시 수지로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.  Specifically, the epoxy resin is a bisphenol-type epoxy resin represented by the formula (5). The novolak-type epoxy resin represented by following formula (6). A phenyl aralkyl epoxy resin represented by the following formula (7), a tetraphenylethane type epoxy resin represented by the following formula (8), and a naphthalene type epoxy resin represented by the following formulas (9) and (10). At least one selected from the group consisting of a biphenyl type epoxy resin represented by the following formula (11), and a dicyclopentadiene type epoxy resin represented by the following formula (12) may be used.
- [화학식 5]
Figure imgf000013_0001
-[Formula 5]
Figure imgf000013_0001
상기 화학식 5에서.
Figure imgf000013_0002
이고
In the formula (5).
Figure imgf000013_0002
ego
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
보다 구체적으로, 상기 화학식 5의 에폭시 수지는 R의 종류에 따라. 각각 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지ᅳ 비스페놀 M형 에폭시 수지. 또는 비스페놀 S형. 에폭시 수지일 수 있다.  More specifically, the epoxy resin of the formula (5) according to the type of R. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol M type epoxy resin, respectively. Or bisphenol S type. It may be an epoxy resin.
[화학 6]  [Chemistry 6]
Figure imgf000013_0003
Figure imgf000013_0003
상기 화학식 6에서.  In Chemical Formula 6 above.
R은 H 또는 C¾이고.  R is H or C¾.
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
보다 구체적으로, 상기 화학식 6의 노볼락형 에폭시 수지는 R의 종류에 따라, 각각 페놀 노볼락형 에폭시 수지 또는 크레졸 노볼락형 에폭시 수지일 수 있다.  More specifically, the novolak-type epoxy resin of Formula 6 may be a phenol novolak-type epoxy resin or cresol novolak-type epoxy resin, respectively, depending on the type of R.
[화학식 7]  [Formula 7]
Figure imgf000013_0004
Figure imgf000013_0004
[화학식 8] [Formula 8]
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0003
상기 화학식 11에서,
Figure imgf000014_0003
In Chemical Formula 11,
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
[화학식 12]  [Formula 12]
Figure imgf000014_0004
Figure imgf000014_0004
상기 화학식 12에서. n은 0 또는 1 내지 50의 정수이다.  In Chemical Formula 12. n is 0 or an integer from 1 to 50.
그리고, 상기 반도체 패키지용 수지 조성물이 에폭시 수지를 포함하는 경우에는 경화를 위하여 에폭시 수지의 경화제를 함께 사용할 수 있다.  In addition, when the resin composition for a semiconductor package includes an epoxy resin, a curing agent of an epoxy resin may be used together for curing.
상기 에폭시 수지의 경화제로는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다. 예를 들어. 페놀 노볼락 형, 아민 형, 사이올 ( thi o l ) 형. 산무수물화 형 물질 등을 들 수 있고, 이들을 단독 또는 2종 이상 흔합하여 사용할 수 있다. As a hardening | curing agent of the said epoxy resin, what is normally used for the resin composition for semiconductor packages can be used without a restriction | limiting, The kind is not limited. E.g. Phenolic novolac type, amine type, thiol type. Acid anhydride A substance etc. can be mentioned and these can be used individually or in mixture of 2 or more types.
그리고. 상기 비스말레이미드 수지는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다.  And. The bismaleimide resin can be used without limitation, which is usually used in the resin composition for semiconductor packages, the type is not limited.
바람직한 일례를 들면, 상기 비스말레이미드 수지는 하기 화학식 13으로 표시되는 디페닐메탄형 비스말레이미드 수지, 하기 화학식 14로 표시되는 페닐렌형 비스말레이미드 수지ᅳ 하기 화학식 15로 표시되는 비스페놀 A형 디페닐 에테르 비스말레이미드 수지. 및 하기 화학식 16으로 표시되는 디페닐메탄형 비스말레이미드 및 페닐메탄형 말레이미드 수지의 올리고머로 구성된 비스말레이미드 수지로 이루어진' 군에서 선택된 .1종 이상일 수 있다. As a preferred example, the bismaleimide resin is a diphenylmethane bismaleimide resin represented by the following formula (13), a phenylene type bismaleimide resin represented by the following formula (14) bisphenol A diphenyl represented by the following formula (15) Ether bismaleimide resins. And to D. represented by formula (16) diphenylmethane bismaleimide type and diphenylmethane type consisting of an oligomer of maleimide resin, bismaleimide resin, selected from the group consisting of. It may be one or more.
Figure imgf000015_0001
Figure imgf000015_0001
상기 화학식 13에서,  In Chemical Formula 13,
Ri 및 ¾는 각각 독립적으로. H . CH3 또는 C2¾이다. Ri and ¾ are each independently. H. CH 3 or C 2 ¾.
[화학식 14]  [Formula 14]
Figure imgf000015_0002
Figure imgf000015_0002
[화학식 16]
Figure imgf000016_0001
[Formula 16]
Figure imgf000016_0001
상기 화학식 16에서.  In Chemical Formula 16.
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
또한, 상기 시아네이트 에스터 수지는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 그 종류가 한정되지는 않는다.  In addition, the cyanate ester resin can be used without limitation, which is usually used in the resin composition for semiconductor packages, the type is not limited.
바람직한 일례를 들면, 상기 시아네이트 에스터 수지는 하기 화학식 17로 표시되는 노볼락형 시아네이트 수지, 하기 화학식 18로 표시되는 디시클로펜타디엔형 시아네이트 수지, 하기 화학식 19로 표시되는 비스페놀형 시아네이트 수지 및 이들의 일부 트리아진화된 프리폴리머를 들 수 있고, 이들은 단독 혹은 2종 이상 혼합하여 사용할 수 있다.  As a preferred example, the cyanate ester resin is a novolac cyanate resin represented by the following formula (17), a dicyclopentadiene type cyanate resin represented by the following formula (18), and a bisphenol type cyanate resin represented by the following formula (19). And some triazineized prepolymers thereof, and these may be used alone or in combination of two or more thereof.
[화학식 17]  [Formula 17]
Figure imgf000016_0002
Figure imgf000016_0002
상기 화학식 17에서,  In Chemical Formula 17,
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
[화학식 18] [Formula 18]
Figure imgf000016_0003
Figure imgf000016_0003
상기 화학식 18에서ᅳ  In Formula 18
n은 0 또는 1 내지 50의 정수이다.  n is 0 or an integer from 1 to 50.
[화학식 19]
Figure imgf000017_0001
[Formula 19]
Figure imgf000017_0001
상기 화학식 19에서.  In Chemical Formula 19.
R은
Figure imgf000017_0002
다. 보다 구체적으로. 상기 화학식 19의 시아네이트 수지는 R의 종류에 따라, 각각 비스페놀 A형 시아네이트 수지 . 비스페놀 E형 시아네이트 수지 . 비스페놀 F형 시아네이트 수지 , 또는 비스페놀 M형 시아네이트 수지일 수 있다.
R is
Figure imgf000017_0002
All. More specifically. The cyanate resin of the formula (19) is bisphenol A type cyanate resin, respectively, depending on the type of R. Bisphenol E Cyanate Resin. Bisphenol F type cyanate resin, or bisphenol M type cyanate resin.
그리고, 상가 비스말레이미드-트리아진 수지는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며 . 그 종류가 한정되지는 않는다.  In addition, the mall bismaleimide-triazine resin can be used without limitation what is normally used in the resin composition for semiconductor packages. The kind is not limited.
또한, 상기 일 구현예의 반도체 패키지용 수지 조성물은 무기 충진제를 포함할 수 있다. 상기 무기 층진제는 통상 반도체 패키지용 수지 조성물에 사용되는 것을 제한 없이 사용 할 수 있으며, 구체적인 예로는 실리카, 알루미늄 트리하이드록사이드, 마그네슘 하이드록사이드. 몰리브데늄 옥사이드. 징크 몰리브데이트, 징크 보레이트, 징크 스타네이트, 알루미나, 클레이. 카올린. 탈크. 소성 카올린. 소성 탈크. 마이카, 유리 단섬유, 글라스 미세 파우더 및 중공 글라스를 들 수 있으며 이들로 이루어진 군에서 선택된 1종 이상일 수 있다.  In addition, the resin composition for a semiconductor package of the embodiment may include an inorganic filler. The inorganic layer thickener can be used without limitation that is usually used in the resin composition for semiconductor packages, specific examples are silica, aluminum trihydroxide, magnesium hydroxide. Molybdenum oxide. Zinc molybdate, zinc borate, zinc stannate, alumina, clay. kaoline. Talc. Calcined kaolin. Calcined talc. Mica, short glass fiber, fine glass powder and hollow glass, and may be one or more selected from the group consisting of these.
구체적으로, 상기 일 구현예의 반도체 패키지용 수지 조성물은 평균 입경이 0. 1 mi 내지 100 /. ΐιι인 제 1 무기 충진제; 및 평균 입경이 1 nm 내지 90 nm.인 제 2 무기 충진제를 포함할 수 있다. 상기 평균 입경이 0. 1 내지 100 /ztu인 제 1 무기 충진제 100 중량부에 대하여 상기 평균 입경이 1 niu 내지 90 nm인 제 2.무기 충진제 함량이 1 중량부 내지 50 중량부, 또는 5 중량부 내지 50 중량부, 또는 20 중량부 내지 50 중량부일 수 있다. 상기와 같이 제 1무기충진제와 제 2무기충진제를 흔합 사용시, 나노 입경의 작은 사이즈와 마이크로 입경의 큰 사이즈를 함께 사용하여 팩킹 밀도 (packing dens i ty)를 높여 충진를을 높일 수 있으며, 무기 충진제의 유동성을 증가시킬 수 있다. Specifically, the resin composition for a semiconductor package of the embodiment has an average particle diameter of 0.1 mi to 100 /. first inorganic filler, which is ΐιι; And a second inorganic filler having an average particle diameter of 1 nm to 90 nm. 1 to 50 parts by weight, or 5 parts by weight of the second inorganic filler content having an average particle diameter of 1 niu to 90 nm with respect to 100 parts by weight of the first inorganic filler having an average particle diameter of 0.01 to 100 / ztu To 50 parts by weight, or 20 parts by weight to 50 parts by weight. As described above, when the first inorganic filler and the second inorganic filler are used in combination, the packing density may be increased by increasing the packing density by using the small size of the nano particle size and the large size of the micro particle size. Liquidity Can be increased.
본 발명의 바람직한 구현예에 따라, 상기 제 1무기 층진제 또는 제 2무기 충진제는 내습성ᅳ 분산성을 향상시키는 관점에서 실란 커플링제로 표면처리된 실리카를 사용할 수 있다.  According to a preferred embodiment of the present invention, the first inorganic layer filler or the second inorganic filler may use silica surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance and dispersibility.
상기 무기 충진제를 표면 처리하는 방법은, 실란 커플링제를 표면 처리제로 이용하여 실리카 입자를 건식 또는 습식으로 처리하는 방법이 사용될 수 있다. 예를 들어. 실리카 입자 100 중량부를 기준으로 0.01 내지 1 중량부의 실란 커플링제를 사용하여 습식방법으로 실리카를 표면처리하여 사용할 수 있다.  As the method for surface treatment of the inorganic filler, a method of dry or wet treatment of silica particles using a silane coupling agent as a surface treatment agent may be used. E.g. The silica may be surface-treated by a wet method using 0.01 to 1 part by weight of the silane coupling agent based on 100 parts by weight of the silica particles.
구체적으로, 상기 실란커플링제로는 3-아미노프로필트리에톡시실란, Specifically, the silane coupling agent is 3-aminopropyltriethoxysilane,
N-페닐— 3-아미노프로필트리메톡시실란 및 N— 2— (아미노에틸 )-3- 아미노프로필트리메특시실란과 같은 아미노실란 커플링제, 3— 글리시독시프로필트리메톡시실란과 같은 에폭시 실란커플링제, 3- 메타크릴옥시프로필 트리메톡시실란과 같은 비닐 실란커플링제, N-2-(N- 비닐벤질아미노에틸 )-3-아미노프로필트리메톡시실란 하이드로클로라이드와 같은 양이온 실란커플링제 및 페닐 실란커플링제를 들 수 있으며, 실란 커플.링제는 단독으로 사용될 수 있으며, 또는 필요에 따라 적어도 두 개의 실란 커플링제를 조합하여 사용할 수 있다. Aminosilane coupling agents such as N-phenyl—3-aminopropyltrimethoxysilane and N— 2— (aminoethyl) -3-aminopropyltrimethoxysilane; epoxy such as 3—glycidoxypropyltrimethoxysilane Silane coupling agents, vinyl silane coupling agents such as 3-methacryloxypropyl trimethoxysilane, cationic silane coupling agents such as N-2- (N-vinylbenzylaminoethyl) -3-aminopropyltrimethoxysilane hydrochloride And phenyl silane coupling agents, and the silane coupling agent may be used alone or in combination of at least two silane coupling agents as necessary.
보다 구체적으로, 상기 실란 화합물은 방향족 아미노 실란 또는 (메트)아크릴실란을 포함할 수 있으며, 상기 평균 입경이 0. 1 卿 내지 100 인 제 1 무기 충진제로는 방향족 아미노 실란이 처리된 실리카를 사용할 수 있고, 상기 평균 입경이 1 nm 내지 90 ηηι인 제 2 무기 충진제로는 (메트)아크릴 실란이 처리된 실리카를 사용할 수 있다. 상기 방향족 아미노 실란이 처리된 실리카의 구체적인 예로는 SC2050MTO(Actaantechs사)를 들 수 있고. 상기 (메트)아크릴실란이 처리된 실리카의 구체적인 예로는 AC4130Y (N i ssan chemi ca l사)를 들 수 있다. 상기 (메트)아크릴은 아크릴 또는 메타크릴을 모두 포함하는 의미로 사용되었다.  More specifically, the silane compound may include an aromatic amino silane or a (meth) acrylsilane, and as the first inorganic filler having an average particle diameter of 0.01 kPa to 100, silica treated with aromatic amino silane may be used. In addition, as the second inorganic filler having an average particle diameter of 1 nm to 90 ηηι, silica treated with (meth) acryl silane may be used. Specific examples of the aromatic amino silane-treated silica include SC2050MTO (Actaantechs). Specific examples of the (meth) acrylsilane-treated silica may include AC4130Y (N i ssan chemi ca l). The (meth) acryl was used to mean both acryl or methacryl.
상기 무기 충진제는 상기 반도체 패키지용 수지 조성물에 분산될 수 있다. 상기 무기 충진제가 반도체 패키지용 수지 조성물에 분산되었다는 것은 상기 무기 충진제와 반도체 패키지용 수지 조성물에 포함된 기타 성분 (열경화성 수지 또는 아민 경화제 등)이 각각 분리되지 않고 혼화된 상태를 의미한다. 즉. 상기 일 구현예의 반도체 패키지용 수지 조성물은The inorganic filler may be dispersed in the resin composition for the semiconductor package. Dispersion of the inorganic filler in the resin composition for a semiconductor package means that the inorganic filler and the resin composition for the semiconductor package are other. A component (a thermosetting resin or an amine curing agent, etc.) means a state in which each component is not separated and mixed. In other words. The resin composition for a semiconductor package of the embodiment
2이상의 무기 충진제로 이루어진 무기 충진제 분리상이나 열경화성 수지로 이루어진 수지 분리상과 같은 분리상을 형성하지 않고 , 무기 충진제와 열경화성 수지가 골고루 흔합되어 분산상을 형성할 수 있다. 이에 따라, 상기 무기 충진제가 고함량으로 충진된 상태에서도 프리프레그가 적정 수준의 흐름성과 낮은 열팽창계수. 그리고 높은 기계적 물성을 구현할 수 있다. The inorganic filler and the thermosetting resin may be evenly mixed to form a dispersed phase without forming a separate phase such as an inorganic filler separate phase composed of two or more inorganic fillers or a resin separated phase composed of a thermosetting resin. Accordingly, even when the inorganic filler is filled with a high content, the prepreg has an appropriate level of flowability and a low coefficient of thermal expansion. And high mechanical properties can be achieved.
한편 , 상기 아민 경화제 및 열경화성 수지 100 중량부쎄 대하여 상기 무기 충진제 함량이 200 중량부 이상. 또는 200 중량부 내지 500 중량부, 또는 250 중량부 내지 400 중량부일 수 있다. 상기 충진제의 함량이 약 200 중량부 미만이면 열팽창계수가 증가하여 리플로우 ( ref l ow) .공정시 휩 현상이 심화되며, 인쇄회로기판의 강성이 감소하는 문제가 있다. Meanwhile, the inorganic filler content is 200 parts by weight or more based on 100 parts by weight of the amine curing agent and the thermosetting resin. Or 200 parts by weight to 500 parts by weight, or 250 parts by weight to 400 parts by weight. If the content of the filler is less than about 200 parts by weight, the coefficient of thermal expansion increases and thus reflows (ref low) . The whip phenomenon is deepened during the process, and the rigidity of the printed circuit board is reduced.
그리고. 상기 일 구현예의 반도체 패키지용 수지 조성물은 필요에 따라 용제를 첨가하여 용액으로 사용할 수 . 있다. 상기 용제로는 수지 성분에 대해 양호한 용해성을 나타내는 것이면 그 종류가 특별히 한정되지 않으며 . 알코을계. 에테르계, 케톤계 . 아미드계 , 방향족 탄화수소계. 에스테르계 . 니트릴계 등을 사용할 수 있고 . 이들은 단독 또는 2종 이상 병용한 흔합 용제를 이용할 수도 있다. 또한 상기 용매의 함량은 프리프레그 제조시 유리섬유에 수지 조성물을 함침할 수 있는 정도면 특별히 한정되지 않는다.  And. The resin composition for a semiconductor package of the embodiment can be used as a solution by adding a solvent as necessary. have. The solvent is not particularly limited as long as it exhibits good solubility in the resin component. Alcohol system. Ether type, ketone type. Amide type, aromatic hydrocarbon type. Ester system. Nitrile-based or the like can be used. These can also use the mixed solvent used individually or in combination of 2 or more types. In addition, the content of the solvent is not particularly limited as long as the resin composition may be impregnated into the glass fiber during prepreg manufacture.
또한 본 발명의 수지 조성물은, 수지 조성물 고유의 특성을 손상시키지 않는 한, 기타 열경화성 수지, 열가소성 수지 및 이들의 올리고머 및 앨라스토머와 같은 다양한 고분자 화합물, 기타 난연성 화합물 또는 첨가제를 더 포함할 수도 있다. 이들은 통상적으로 사용되는 것으로부터 선택되는 것이라면 특별히 한정하지 않는다.예를 들어 첨가제로는 자외선흡수제, 산화방지제, 광중합개시제, 형광증백제, 광증감제, 안료. 염료. 증점제, 활제, 소포제. 분산제. 레벨링제, 광택제 등이 있고. 목적에 부합되도록 흔합하여 사용하는 것도 가능하다.  In addition, the resin composition of the present invention may further include various high-molecular compounds such as thermosetting resins, thermoplastic resins, and oligomers and elastomers thereof, and other flame retardant compounds or additives, so long as the properties of the resin composition are not impaired. . These are not particularly limited as long as they are selected from those commonly used. For example, additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, and pigments. dyes. Thickeners, lubricants, antifoams. Dispersant. Leveling agents, polishes, etc. It is also possible to use them in combination to meet the purpose.
상기 일 구현예의 반도체 패키지용 수지 조성물은 열팽창계수 (CTE)가 15 ppm/ 0C 이하ᅳ 또는 5 pPm/ °C 내지 15 ppm/ °C일 수 있다. 구체적으로, 상기 열팽창계수는 상기 반도체 패키지용 수지 조성물로부터 얻어진 동박적층판 상태에서 동박층을 에칭하여 제거한 후, MD방향으로 시험편을 제작하여, TMA(TA Ins t rument s . Q400 )를 이용하여, 30 °C에서 260 °C까지, 승온 속도 10 °C /min 조건으로 측정한 후, 50 °C 에서 150 °C 범위의 측정값을 의미한다 . The resin composition for a semiconductor package of the embodiment has a coefficient of thermal expansion (CTE) 15 ppm / 0 C or less or 5 p P m / ° C. to 15 ppm / ° C. Specifically, the coefficient of thermal expansion is removed by etching the copper foil layer in the state of the copper foil laminated plate obtained from the resin composition for semiconductor package, to prepare a test piece in the MD direction, using TMA (TA Ins t rument s. Q400) 30 It means the measured value in the range of 50 ° C to 150 ° C after measuring at the temperature increase rate of 10 ° C / min, from ° C to 260 ° C.
상기 반도체 패키지용 수지 조성물이 상술한 수준의 낮은 열팽창계수를 가짐에 따라, 금속적층판을 만들거나 빌드업 과정에서 칩과 인쇄회로기판간 열팽창률 차이로 인해 발생하는 반도체 패키지의 휨 (Warpage ) 발생을 최소화할 수 있어, 상기 프리프레그를 포함하는 금속 적층판은 반도체 패키지용 인쇄회로기판의 빌드업 용도로 유용하게 사용될 수 있다.  As the resin composition for a semiconductor package has a low coefficient of thermal expansion as described above, warpage of the semiconductor package caused by a difference in thermal expansion coefficient between the chip and the printed circuit board during a metal laminate or a build-up process is generated. Since it can be minimized, the metal laminate including the prepreg may be usefully used for building up a printed circuit board for a semiconductor package.
상기 일 구현예의 반도체 패키지용 수지 조성물은 IPC-TM-650 (2.3. 17)에 의해 측정한 수지 흐름성이 1OT 내지 25% , 또는 15% 내지 25%일 수 있다. 구체적으로. 상기 수지 흐름성은 상기 반도체 패키지용 수지 조성물로부터 얻어진 프리프레그 상태에서 카바프레스를 이용하여 IPC-TM- 650 (2.3. 17)에 따라 측정할 수 있다. 상기 반도체 패키지용 수지 조성물이 상술한 수준의 수지 흐름성을 가짐에 따라. 금속적층판을 만들거나 빌드업 과정에서 흐름성을 확보할 수 있어 미세 패턴을 용이하게 채울 수 있어, 상기 프리프레그를 포함하는 금속 적층판은 반도체 패키지용 인쇄회로기판의 빌드업 용도로 유용하게 사용될 수 있다.  The resin composition for a semiconductor package of the embodiment may have a resin flowability measured by IPC-TM-650 (2.3.17) of 1OT to 25%, or 15% to 25%. Specifically. The resin flowability can be measured according to IPC-TM-650 (2.3.17) using carbapress in a prepreg state obtained from the resin composition for semiconductor package. As the resin composition for a semiconductor package has the above-mentioned level of resin flowability. The metal laminated plate including the prepreg can be usefully used as a build-up of a printed circuit board for a semiconductor package because the metal laminate can be made or the flow can be secured during the build-up process. .
상기 반도체 패키지용 수지 조성물의 수지 흐름성이 지나치게 감소하게 되면, 금속 적층 및 빌드업 공정에서 미세 패턴 채움성이 감소함에 따라 적층 보이드 (Voi d ) 발생 및 공정 수 및 효율성이 감소할 수 있다. 또한. 상기 반도체 패키지용 수지 조성물의 수지 흐름성이 지나치게 증가하게 되면, 적층 공정 시, 수지 흐름의 과다로 인해 인쇄회로기판의 두께 불균일 문제가 발생하거나, 설계된 두께보다 얇아져 강성이 감소할 수 있다.  When the resin flowability of the resin composition for the semiconductor package is excessively reduced, as the fine pattern fillability decreases in the metal lamination and buildup process, the generation of lamination voids (Voi d) and the number and efficiency of processes may be reduced. Also. When the resin flowability of the resin composition for the semiconductor package is excessively increased, the thickness irregularity of the printed circuit board may occur due to the excessive flow of the resin during the lamination process, or may be thinner than the designed thickness, thereby reducing the rigidity.
또한, 상기 일 구현예의 반도체 패키지용 수지 조성물은 140 °C 이상, 또는 145 °C 내지 165 °C에서 최소점도를 가지며, 상기 최소점도가 100 Pa · s 내지 500 Pa · s . 또는 150 Pa · s 내지 400 Pa - s , 또는 200 Pa - s 내지 350 Pa · s , 또는 250 Pa · s 내지 320 Pa - s 일 수 있다. 구체적으로, 상기 점도는 상기 반도체 패키지용 수지 조성물로부터 얻어진 프리프레그 상태에서 Anton Paar사의 Modu l ar compact Rheometer (모델 MCR 302 )를 이용하여 측정할 수 있다. 상기 반도체 패키지용 수지 조성물이 상술한 수준의 점도를 나타냄에 따라, 금속적충판을 만들거나 빌드업 과정에서 흐름성을 확보할 수 있어 미세 패턴을 용이하게 채울 수 있어, 상기 프리프레그를 포함하는 금속 적층판은 반도체 패키지용 인쇄회로기판의 빌드업 용도로 유용하게 사용될 수 있다. In addition, the resin composition for a semiconductor package of the embodiment has a minimum viscosity at 140 ° C or more, or 145 ° C to 165 ° C, the minimum viscosity is 100 Pa.s to 500 Pa.s. Or 150 Pa.s to 400 Pa-s, or 200 Pa-s to 350 Pa.s, or 250 Pa.s to 320 Pa-s. Specifically, the viscosity can be measured using a Modular Rheometer (Model MCR 302) of Anton Paar in the prepreg state obtained from the resin composition for semiconductor package. As the resin composition for the semiconductor package exhibits the above-described viscosity, it is possible to secure the flowability during the formation of the metal lamination or the build-up process, so that the fine pattern can be easily filled, and the metal including the prepreg. The laminate may be usefully used for building up a printed circuit board for a semiconductor package.
또한, 상기 일 구현예의 반도체 패키지용 수지 조성물은 IPC-TM— 650 In addition, the resin composition for a semiconductor package of the embodiment is IPC-TM—650
(2.4. 18.3)에 의해 측정한 인장신율이 2.0 % 이상. 또는 2.0 % 내지 5.0% , 또는 2.0 % 내지 3.0% , 또는 2.5 % 내지 3. 0%일 수 있다. 구체적으로, 상기 인장신율은 상기 반도체 패키지용 수지 조성물로부터 얻어진 프리프레그 상태에서, 유리섬유의 MD 및 TD방향이 일치하도록 10매를 적층하여, 220 "C 및 35 kg/cuf의 조건으로 100분간 프레스 한 후, IPC-TM-650 ( 2.4. 18.3 )에 따라, Universa l Test i ng Machine( Inst ron 3365)장비를 이용하여 MD방향의 인장신율을 측정할 수 있다. 상기 반도체 패키지용 수지 조성물이 상술한 수준의 인장신율을 나타냄에 따라, 금속적층판을 만들거나 빌드업 과정에서 기계적 물성을 확보할 수 있어 우수한 내구성을 통해 반도체 패키지용 인쇄회로기판의 빌드업 용도로 유용하게 사용될 수 있다. 한편. 발명의 다른 구현예에 따르면, 상기 반도체 패키지용 수지 조성물을 섬유 기재에 함침시켜 제조된 프리프레그가 제공될 수 있다. Tensile elongation measured by (2.4.18.3) is not less than 2.0%. Or 2.0% to 5.0%, or 2.0% to 3.0%, or 2.5% to 3.0%. Specifically, the tensile elongation is laminated in 10 sheets in the prepreg state obtained from the resin composition for semiconductor package to match the MD and TD direction of the glass fiber, press for 100 minutes under the conditions of 220 "C and 35 kg / cuf After that, the tensile elongation in the MD direction can be measured using a Universa Test Test Machine (Inst ron 3365) equipment according to IPC-TM-650 (2.4.18.3). As it exhibits a level of tensile elongation, mechanical properties can be secured during the manufacture of a metal laminate or during a buildup process, and thus it can be usefully used for buildup of printed circuit boards for semiconductor packages through excellent durability. According to another embodiment of the present invention, a prepreg prepared by impregnating the resin composition for a semiconductor package on a fiber substrate may be provided.
상기 프리프레그는 상기 반도체 패키지용 수지 조성물이 반경화 상태로 섬유 기재에 함침되어 있는 것을 의미한다.  The prepreg means that the resin composition for semiconductor package is impregnated into the fiber base material in a semi-cured state.
상기 섬유 기재는 그 종류가 특별히 한정되지는 않으나, 유리 섬유 기재. 폴리아미드 수지 섬유, 방향족 폴리아미드 수지 섬유 등의 폴리아미드계 '수지 섬유. 폴리에스테르 수지 섬유. 방향족 폴리에스테르 수지 섬유. 전 방향족 폴리에스테르 수지 섬유 등의 폴리에스테르계 수지 섬유. 폴리이미드 수지 섬유, 폴리벤족사졸 섬유. 불소 수지 섬유 등을 주성분으로 하는 직포 또는 부직포로 구성되는 합성 섬유 기재, 크래프트지, 코튼 린터지ᅳ 린터와 크래프트 펄프의 흔초지 등을 주성분으로 하는 종이 기재 등이 사용될 수 있으며. 바람직하게 유리 섬유 기재를 사용한다. 상기 유리 섬유 기재는 프리프레그의 강도가 향상되고 흡수율을 내릴 수 있으며, 또 열팽창 계수를 작게 할 수 있다. Although the kind in particular of the said fiber base material is not limited, A glass fiber base material. A polyamide resin in a polyamide based, resin filaments of the fibers, and aromatic polyamide resin fibers. Polyester resin fibers. Aromatic polyester resin fibers. Polyester resin fiber, such as a wholly aromatic polyester resin fiber. Polyimide resin fibers, polybenzoxazole fibers. Fluoroplastic fiber and so on Synthetic fiber bases composed of woven or nonwoven fabrics as the main ingredient, kraft paper, cotton substrates such as cotton linter paper and linter and kraft paper pulp, etc. may be used. Preferably a glass fiber substrate is used. The glass fiber substrate can improve the strength of the prepreg, lower the absorption rate, and reduce the coefficient of thermal expansion.
본 발명에서 사용되는 유리기재는 다양한 인쇄회로기판 물질용으로 사용되는 유리기재로부터 선택될 수 있다. 이들의 예로서는, E 글라스, D 글라스, S 글라스, T 글라스, NE 글라스 및 L 글라스와 같은 유리 섬유를 포함하나 이에 한정되는 것은 아니다. 필요에 따라서 의도된 용도 또는 성능에 따라, 상기 유리기재 물질을 선택할 수 있다. 유리기재 형태는 전형적으로 직포. 부직포, 로빙 (roving) , 잘개 다진 스트랜드 매트 ( chopped strand mat ) 또는 서페이싱 매트 ( sur fac ing mat )이다. 상기 유리기재 기재의 두께는 특별히 한정되지 않지만, 약 0. 01 내지 0.3mm 등을 사용할 수 있다. 상기 물질 중. 유리 섬유 물질이 강도 및 수분 흡수 특성 면에서 더욱 바람직하다.  The glass substrate used in the present invention may be selected from glass substrates used for various printed circuit board materials. Examples thereof include, but are not limited to, glass fibers such as E glass, D glass, S glass, T glass, NE glass and L glass. If necessary, the glass-based material may be selected according to the intended use or performance. Glass substrate forms are typically woven. Non-woven, roving, chopped strand mat or sur facing mat. The thickness of the glass substrate is not particularly limited, and about 0.01 to 0.3 mm may be used. Of the above substances. Glass fiber materials are more preferred in terms of strength and water absorption properties.
또한 본 발명에서 상기 프리프레그를 제조하는 방법은 특별히 한정되지 않으며. 이 분야에 잘 알려진 방법에 의해 제조될 수 있다. 예를 들면 . 상기 프리프레그의 제조방법은 함침법, 각종 코터를 이용하는 코팅법, 스프레이 분사법 등을 이용할 수 있다.  In addition, the method for producing the prepreg in the present invention is not particularly limited. It may be prepared by a method well known in the art. For example . The prepreg manufacturing method may be an impregnation method, a coating method using a variety of coaters, spray injection method and the like.
상기 함침법의 경우 바니시를 제조한 후, 상기 섬유 기재를 바니시에 함침하는 방법으로 프리프레그를 제조할 수 있다.  In the case of the impregnation method, after preparing the varnish, the prepreg may be prepared by impregnating the fiber substrate with the varnish.
즉, 상기 프리프레그의 제조 조건 등은 특별히 제한하는 것은 아니지만, 상기 반도체 패키지용 수지 조성물에 용제를 첨가한 바니시 상태로 사용하는 것이 바람직하다. 상기 수지 바니시용 용제는 상기 수지 성분과 혼합 가능하고 양호한 용해성을 갖는 것이라면 특별히 한정하지 않는다. 이들의 구체적인 예로는, 아세톤, 메틸 에틸 케론, 메틸이소부틸 케톤 및 시클로핵사논과 같은 케톤. 벤젠, 를루엘 및 자일렌과 같은 방향족 '하이드로카본. 및 디메틸포름아미드 및 디메틸아세트아미드와 같은 아미드. 메틸셀로솔브 . 부틸셀로솔브 같은 알리파틱 알코올 등이 있다 . That is, although the manufacturing conditions of the said prepreg etc. are not specifically limited, It is preferable to use in the varnish state which added the solvent to the said resin composition for semiconductor packages. The solvent for the resin varnish is not particularly limited as long as it can be mixed with the resin component and has good solubility. Specific examples thereof include ketones such as acetone, methyl ethyl keron, methyl isobutyl ketone and cyclonucleanone. Aromatic ' hydrocarbons such as benzene, toluel and xylene. And amides such as dimethylformamide and dimethylacetamide. Methyl Cellosolve. Aliphatic alcohols such as butyl cellosolve.
또한, 상기 프리프레그로 제조시, 사용된 용제가 80 중량 % 이상 휘발하는 것이 바람직하다. 이 때문에 , 제조 방법이나 건조 조건 등도 제한은 없고, 건조시의 온도는 약 80 °C 내지 200 °C . 시간은 바니시의 겔화 시간과의 균형으로 특별히 제한은 없다. 또한, 바니시의 함침량은 바니시의 수지 고형분과 기재의 총량에 대하여 바니시의 수지 고형분이 약 30 내지 80 중량 %가 되도록 하는 것이 바람직하다. In addition, in the preparation of the prepreg, the solvent used is 80% by weight or more It is preferable to volatilize. For this reason, there is no restriction in manufacturing method or drying conditions, and the temperature at the time of drying is about 80 ° C to 200 ° C. The time is not particularly limited by the balance with the varnish gelling time. In addition, the impregnation amount of the varnish is preferably such that the resin solid content of the varnish is about 30 to 80% by weight relative to the total amount of the resin solid content of the varnish and the substrate.
상기 다른 구현예의 프리프레그는 열팽창계수 (CTE)가 15 ppm/°C 이하. 또는 5 ppm/t 내지 15 p irc일 수 있다. 상기 열팽창계수에 대한 내용은 상기 일 구현예의 반도체 패키지용 수지 조성물에서 상술한 내용을 포함한다.  The prepreg of the other embodiment has a coefficient of thermal expansion (CTE) of 15 ppm / ° C or less. Or 5 ppm / t to 15 p irc. Information on the thermal expansion coefficient includes the above-described information in the resin composition for a semiconductor package of the embodiment.
상기 다른 구현예의 프리프레그는 IPOTM-650 (2.3.17)에 의해 측정한 수지 흐름성이 10% 내지 25%. 또는 15% 내지 25%일 수 있다. 상기 수지 흐름성에 대한 내용은 상기 일 구현예의 반도체 패키지용 수지 조성물에서 상술한 내용을 포함한다.  The prepreg of the other embodiment has a resin flowability of 10% to 25% as measured by IPOTM-650 (2.3.17). Or 15% to 25%. The content of the resin flowability includes the above-mentioned content in the resin composition for a semiconductor package of the embodiment.
또한, 상기 다른 구현예의 프리프레그는 140 °C 이상, 또는 145 V 내지 165 °C에서 최소점도를 가지며, 상기 최소점도가 100 Pa - s 내지 500 Pa · s, 또는 150 Pa · s 내지 400 Pa · s, 또는 200 Pa · s 내지 350 Paᅳ s. 또는 250 Pa - s 내지 320 Pa - s 일 수 있다. 상기 점도에 대한 내용은 상기 일 구현예의 반도체 패키지용 수지 조성물에서 상술한 내용을 포함한다.  In addition, the prepreg of the other embodiment has a minimum viscosity at 140 ° C or more, or 145 V to 165 ° C, the minimum viscosity is 100 Pa-s to 500 Pa · s, or 150 Pa · s to 400 Pa · s, or 200 Pa.s to 350 PaPa s. Or 250 Pa-s to 320 Pa-s. The content of the viscosity includes the above-described content in the resin composition for a semiconductor package of the embodiment.
또한, 상기 다른 구현예의 프리프레그는 IPC— TM— 650· (2.4.18.3)에 의해 측정한 인장신율이 2.0 % 이상, 또는 2.0 % 내지 5.0%, 또는 2.0 % 내지 3.0%, 또는 2.5 % 내지 3.0%일 수 있다. 상기 인장신율에 대한 내용은 상기 일 구현예의 반도체 패키지용 수지 조성물에서 상술한 내용을 포함한다. 또한, 발명의 또 다른 구현예에 따르면, 상기 프리프레그; 및 가열 및 가압에 의해 상기 프리프레그와 일체화된 포함하는 금속박;을 포함하는 금속박 적충판이 제공될 수 있다.  In addition, the prepreg of the other embodiment has a tensile elongation of 2.0% or more, or 2.0% to 5.0%, or 2.0% to 3.0%, or 2.5% to 3.0, as measured by IPC-TM-650 · (2.4.18.3). May be%. Details of the tensile elongation include those described above in the resin composition for a semiconductor package of the embodiment. Further, according to another embodiment of the invention, the prepreg; And a metal foil containing plate integrated with the prepreg by heating and pressurizing.
상기 금속박은 동박; 알루미늄박; 니켈, 니켈—인, 니켈 -주석 합금, 니켈-철 합금, 납 또는 납 -주석 합금을 중간층으로 하고, 이 양면에 서로 다른 두께의 구리층을 포함하는 3층 구조의 복합박; 또는 알루미늄과 동박을 복합한 2층 구조의 복합박을 포함한다. The metal foil is copper foil; Aluminum foil; Nickel, nickel-phosphorus, nickel-tin alloys, nickel-iron alloys, lead or lead-tin alloys as interlayers, and on both sides Composite foil having a three-layer structure including copper layers of different thicknesses; Or the composite foil of the two-layered structure which combined aluminum and copper foil.
바람직한 일 구현예에 따르면. 본 발명에 이용되늠 금속박은 동박이나 알루미늄박이 이용되고, 약 2 내지 200 의 두께를 갖는 것을 사용할 수 있지만, 그 두께가 약 2 내지 35 / 인 것이 바람직하다. 바람직하게, 상기 금속박으로는 동박을 사용한다. 또한, 본 발명에 따르면 금속박으로서 니켈. 니켈 -인, 니켈 -주석 합금, 니켈-철 합금, 납. 또는 납- 주석 합금 등을 중간층으로 하고, 이의 양면에 0.5 내지 15 / 의 구리층과 10 내지 300 의 구리층을 설치한, 3충 구조의 복합박 또는 알루미늄과 동박을 복합한 2층 구조 복합박을 사용할 수도 있다.  According to one preferred embodiment. Copper foil or aluminum foil is used for the metal foil used for this invention, Although what has a thickness of about 2-200 can be used, It is preferable that the thickness is about 2-35 /. Preferably, copper foil is used as said metal foil. In addition, according to the present invention, nickel as the metal foil. Nickel-phosphorus, nickel-tin alloys, nickel-iron alloys, lead. Or a lead-tin alloy or the like, and a three-layered composite foil or a two-layered composite foil in which a copper layer of 0.5 to 15 / and a copper layer of 10 to 300 are provided on both surfaces thereof. You can also use
이렇게 제조된 프리프레그를 포함하는 금속 적층판은 1매 이상으로 적층한 후, 양면 또는 다층 인쇄 회로 기판의 제조에 사용할 수 있다. 본 발명은 상기 금속박 적충판을 회로 가공하여 양면 또는 다층 인쇄회로기판을 제조할 수 있으며, 상기 회로 가공은 일반적인 양면 또는 다층 인쇄 회로 기판 제조 공정에서 행해지는 방법을 적용할 수 있다.  The metal laminate including the prepreg thus prepared can be used for the manufacture of double-sided or multilayer printed circuit boards after laminating in one or more sheets. The present invention can manufacture a double-sided or multi-layer printed circuit board by circuit processing the metal foil stacked plate, the circuit processing can be applied to a method performed in a general double-sided or multi-layer printed circuit board manufacturing process.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 내부 성분간 높은 흔화성. 저열팽창 특성 및 우수한 기계적 물성을 갖는 반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판이 제공될 수 있다.  According to the invention, high miscibility between internal components. A resin composition for a semiconductor package having low thermal expansion characteristics and excellent mechanical properties, and a prepreg and a metal foil laminate using the same may be provided.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다ᅳ 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐. 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. <실시예 및 비교예: 반도체 패키지용 수지 조성물, 프리프레그 및 동박 적층판 >  The invention is explained in more detail in the following examples, provided that the following examples merely illustrate the invention. The content of the present invention is not limited by the following examples. <Examples and Comparative Examples: Resin Composition for Semiconductor Package, Prepreg, and Copper Foil Laminates>
( 1) 반도체 패키지용 수지 조성물의 제조  (1) Preparation of Resin Composition for Semiconductor Package
하기 표 1 및 표 2의 조성에 따라. 각 성분을 메틸에틸케톤에 고형분 65%에 맞추어 투입하여 흔합한 후, 400 rpm 속도로 하루동안 상온 교반하여 실시예 1 내지 5 , 비교예 1 내지 4의 반도체 패키지용 수지 조성물 (수지 바니시)를 제조하였다. 구체적으로 상기 실시예 1 내지 5에서 제조된 수지 조성물의 구체적인 조성은 하기 표 1에 기재된 바와 같고, 상기 비교예 1 내지 4에서 제조된 수지 조성물의 구체적인 조성은 하기 표 2에 기재된 바와 같다. According to the composition of Table 1 and Table 2 below. Each component was added to methyl ethyl ketone according to a solid content of 65%, mixed, and then stirred at room temperature at 400 rpm for one day to prepare the resin compositions for semiconductor packages of Examples 1 to 5 and Comparative Examples 1 to 4 (resin Varnish) was prepared. Specifically, the specific compositions of the resin compositions prepared in Examples 1 to 5 are as described in Table 1 below, and the specific compositions of the resin compositions prepared in Comparative Examples 1 to 4 are as described in Table 2 below.
(2) 프리프레그 및 동박 적층판의 제조  (2) Preparation of prepreg and copper foil laminate
상기 제조된 반도체 패키지용 수지 조성물 (수지 바니시)을 두께 15/ m의 유리 섬유 (Ni t tobo사 제조, T-gl ass #1017)에 함침시킨 후, 170 °C의 온도에서 2~5분간 열풍 건조하여 25/ i의 프리프레그를 제조하였다. 상기에서 제조된 프리프레그 2매를 적층한 후, 그 양면에 동박 (두께 12/ini . Mi tsui사 제조)을 위치시켜 적층하고, 220 °C 및 35 kg/ cuf의 조건으로 100분간 경화시켜 동박 적층판을 제조하였다. After impregnating the resin composition (resin varnish) for the semiconductor package prepared in 15 / m glass fiber (manufactured by Ni t tobo, T-gl ass # 1017), hot air for 2 to 5 minutes at a temperature of 170 ° C. Drying gave 25 / i prepreg. After the two prepregs prepared above were laminated, copper foil (thickness 12 / ini. Mi tsui Co., Ltd.) was placed and laminated on both sides thereof, and the copper foil was cured for 100 minutes under conditions of 220 ° C. and 35 kg / cuf. Laminates were prepared.
【표 1】 Table 1
반도체 패키지용 수지 조성물의 조성  Composition of Resin Composition for Semiconductor Package
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
* DDS: 4, 4'一 di ami nodi phenyl sulfone  * DDS: 4, 4 '一 di ami nodi phenyl sulfone
* TFB: 2,2 -bis( tr i f 1 nor ome hy 1 ) benzidine; 2,2'— Bis(trif kioromethyl )-4.4' -bi henyl diamine  * TFB: 2,2 -bis (tr i f 1 nor ome hy 1) benzidine; 2,2'— Bis (trif kioromethyl) -4.4 '-bi henyl diamine
* DDM: 4 , 4 ' -cl i am i nocl i heny 1 methane  * DDM: 4, 4 '-cl i am i nocl i heny 1 methane
* DDE: 4ᅳ 4'ᅳ cli am inodi phenyl ether  * DDE: 4 ᅳ 4 'ᅳ cli am inodi phenyl ether
* XD-1000: 에폭시 수지 (Nippon kayaku >) * NC-3000H : 에폭시 수지 (Nippon kayaku사) * XD-1000: Epoxy Resin (Nippon kayaku>) * NC-3000H: Epoxy resin (Nippon kayaku)
' * HP— 6000 : 나프탈렌계 에폭시 수지 (DIC사)  HP * 6000: Naphthalene epoxy resin (DIC Corporation)
* BMI-2300 : 비스말레이미드 수지 (DAIWA사)  * BMI-2300: Bismaleimide Resin (DAIWA)
* SC2050MTO : 페닐아미노실란 처리된 슬러리'타입의 마이크로 실리카, 평균입경 0. 5/im (Admantechs사) * SC2050MTO: Phenylaminosilane-treated slurry ' type micro silica, average particle size 0.5 / im (Admantechs)
* AC4130Y : 메타크릴실란 처리된 슬러리 타입의 나노 실리카, 평균입경 50nm (Ni ssan chemi ca l 사)  * AC4130Y: Slurry type nano silica with methacrylsilane treatment, average particle size 50nm (Ni ssan chemi ca l)
* 당량비 : 하기 수학식 1을 통해 계산됨  * Equivalence Ratio : calculated by Equation 1 below
[수학식 1]  [Equation 1]
열경화성 수지 대비 아민 경화제 당량비 = (DDS 의 총 활성수소 당량 + TFB의 총 활성수소 당량 + DDM의 총 활성수소 당량 + DDE의 총 활성수소 당량) I { (XD-1000의 총 에폭시 당량 + NC-3000H의 총 에폭시 당량 + HP- 6000의 총 에폭시 당량) + (BMI-2300의 총 말레이미드 당량) }  Amine curing agent equivalent ratio to thermosetting resin = (total active hydrogen equivalent of DDS + total active hydrogen equivalent of TFB + total active hydrogen equivalent of DDM + total active hydrogen equivalent of DDE) I {(total epoxy equivalent of XD-1000 + NC-3000H) Total epoxy equivalent of + total epoxy equivalent of HP-6000) + (total maleimide equivalent of BMI-2300)}
상기 수학식 1에세 DDS의 총 활성수소 당량은 DDS의 총 중량 (g)을 DDS의 활성수소 단위당량 (62g/eq)으로 나눈 값이고,  In Equation 1, the total active hydrogen equivalent weight of the DDS is obtained by dividing the total weight (g) of the DDS by the unit equivalent weight of the active hydrogen of the DDS (62 g / eq),
TFB의 총 활성수소 당량은 TFB의 총 중량 (g)을 TFB의 활성수소 단위당량 (80g/eci)으로 나눈 값이고,  The total active hydrogen equivalent of TFB is the total weight of TFB (g) divided by the unit equivalent of TFB (80 g / eci),
DDM의 총 활성수소 당량은 DDM의 총 중량 (g)을 DDM의 활성수소 단위당량 (49. 5g/eq)으로 나눈 값이고,  The total active hydrogen equivalent of DDM is the total weight of DDM divided by the unit equivalent of active hydrogen of DDM (49.5 g / eq),
DDE의 총 활성수소 당량은 DDE의 총 중량 (g)을 DDE의 활성수소 단위당량 ( 50g/eq)으로 나눈 값이고,  The total active hydrogen equivalent of DDE is the total weight of DDE (g) divided by the unit equivalent of active hydrogen of DDE (50 g / eq),
XD-1000의 총 에폭시 당량은 XD-1000의 총 중량 (g)을 XE)-1000의 에폭시 단위당량 ( 253g/eq)으로 나눈 값이고, The total epoxy equivalent of the XD-1000 is the total weight (g) of the XD-1000 divided by the epoxy unit equivalent (253 g / eq) of XE ) -1000,
NC-3000H의 총 에폭시 당량은 NC— 3000H의 총 중량 (g)을 NC-3000H의 에폭시 단위당량 ( 290g/eq)으로 나눈 값이고,  The total epoxy equivalent of NC-3000H is the total weight (g) of NC—3000H divided by the epoxy unit equivalent of NC-3000H (290 g / eq),
HP-6000의 총 에폭시 당량은 HP-6000의 총 중량 (g)을 HP-6000의 에폭시 단위당량 ( 250g/eq)으로 나눈 값이고,  The total epoxy equivalent of HP-6000 is the total weight of HP-6000 divided by the epoxy equivalent of HP-6000 (250 g / eq).
BMI-2300의 총 말레이미드 당량은 BMI— 2300의 총 중량 (g)을 BMI- 2300의 말레이미드 단위당량 ( 179g/eq)으로 나눈 값이다. 【표 2】 The total maleimide equivalent of BMI-2300 is the total weight (g) of BMI-2300 divided by the male equivalent of BMI-2300 (179 g / eq). Table 2
비교예 반도체 패키지용 수지 조성물의 조성
Figure imgf000028_0001
Comparative Example Composition of Resin Composition for Semiconductor Package
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
* DDS: 4,4'ᅳ di ami nodi phenyl sul fone  * DDS: 4,4 'ᅳ di ami nodi phenyl sul fone
* TFB: 2.2"-bis(tr i f luoromethyl ) benzidine; 2.2'- B i s ( t r i f 1 uor ome thyl)-4,4'-bi pheny 1 d i am i ne * TFB: 2.2 " -bis (tr if luoromethyl) benzidine; 2.2'- B is (trif 1 uor ome thyl) -4,4'-bi pheny 1 di am i ne
* DDM: 4,4'ᅳ cli ami nodi phenyl methane  * DDM: 4,4 'ᅳ cli ami nodi phenyl methane
* DDE: 4.4 ' -d i am i nod i heny 1 ether  * DDE: 4.4 '-d i am i nod i heny 1 ether
* XD-1000: 에폭시 수지 (Nippon kayaku사)  * XD-1000: epoxy resin (Nippon kayaku)
* NC-3000H: 에폭시 수지 (Nippon kayaku사)  * NC-3000H: epoxy resin (Nippon kayaku)
* HP-6000: 에폭시 수지 (DIC사)  * HP-6000: Epoxy Resin (DIC Corporation)
* BMI-2300: 비스말레이미드계 수지 (DAI WA사)  * BMI-2300: Bismaleimide Resin (DAI WA Co., Ltd.)
* SC2050MTO: 페닐아미노실란 처리된 슬러리 타입의 마이크로 실리카, 평균입경 0.5/ i (Admantechs사)  * SC2050MTO: Slurry type micro silica with phenylaminosilane treatment, average particle size 0.5 / i (Admantechs)
* AC4130Y: 메타크릴실란 처리된 슬러리 타입의 나노 실리카. 평균입경 50nni(Nissan chemical 사)  AC4130Y: Slurry type nano silica treated with methacrylsilane. Average particle size 50nni (Nissan chemical company)
* 당량비 : 상기 표 1과 동일한 수학식 1을 통해 계산됨  * Equivalence Ratio: Calculated through Equation 1 identical to Table 1 above
<실험예: 실시예 및 비교예에서 얻어진 반도체 패키지용 수지 조성물, 프리프레그 및 동박 적층판의 물성 측정 > <Experimental Example: Measurement of the physical properties of the resin composition, prepreg and copper foil laminate plate for semiconductor packages obtained in Examples and Comparative Examples>
상기 실시예 및 비교예에서 얻어진 반도체 패키지용 수지 조성물, 프리프레그 및 동박 적층판의 물성을 하기 방법으로 측정하였으며, 그 결과를 표 3에 나타내었다. 1. 열팽창계수 (CTE) The physical properties of the resin composition for semiconductor package, the prepreg and the copper foil laminate obtained in the above Examples and Comparative Examples were measured by the following method, and the results are shown in Table 3. 1.Coefficient of Thermal Expansion (CTE)
상기 실시예 및 비교예에서 얻어진 동박 적층판의 동박층을 에칭하여 제거한 후. 상기 실시예 및 비교예에서 얻어진 동박 적충판의 동박층을 에칭하여 제거한 후ᅳ MD방향으로 시험편을 제작하여 . TMA(TA Instruments, Q400)를 이용하여. 30 °C에서 260 °C까지, 승온 속도 10 °C/niin 조건으로 측정한 후. 50 °C 에서 150 °C 범위의 측정값을 열팽창계수로 기록하였다. After etching and removing the copper foil layer of the copper foil laminated board obtained by the said Example and comparative example. After etching and removing the copper foil layer of the copper foil crushing plate obtained by the said Example and the comparative example, the test piece was produced to MD direction. Using TMA (TA Instruments, Q400). After measuring at 30 ° C to 260 ° C, heating rate 10 ° C / niin conditions. The measured values ranging from 50 ° C. to 150 ° C. were recorded as thermal expansion coefficients.
2. 수지 흐름성 (Resin flow, RF) 2. Resin flow (RF)
(1) 초기 수지 흐름성  (1) initial resin flowability
IPC-TM-650 (2.3.17)에 따라ᅳ 상기 실시예 및 비교예에서 얻어진 프리프레그 상태에서 카바프레스 (Carver사, #3893.4NE0000)를 이용하여 RF를 측정하였다.  According to IPC-TM-650 (2.3.17), RF was measured using Carbapress (Carver, # 3893.4NE0000) in the prepreg state obtained in the above Examples and Comparative Examples.
(2) 1달 후 수지 흐름성  (2) resin flowability after 1 month
IPC-TM-650 (2.3.17)에 따라. 상기 실시예 및 비교예에서 얻어진 프리프레그를 상은에서 1달간 보관한 후의 상태에서 카바프레스 (Carver사. #3893.4NE0000)를 이용하여 RF를 측정하였다.  According to IPC-TM-650 (2.3.17). RF was measured using Carbapress (Carver. # 3893.4NE0000) in the state after storing the prepreg obtained by the said Example and the comparative example for 1 month in silver.
3. 흔화성 3. Miscibility
상기 실시예 및 비교예에서 얻어진 동박 적층판에서 한 쪽면의 동박층을 에칭하여 제거한 후ᅳ 광학 현미경을 이용하여 프리프레그면을 관찰하여 수지와 무기충진제간의 분리 발생여부를 확인하고, 다음 기준 하에 혼화성을 평가하였다. Check the Examples and Comparative Examples separation between on one side the copper foil layer was removed by etching eu optical microscope using a by observing the prepreg surface resin and an inorganic filler in the copper-clad laminate obtained in the occurrence and miscible under the following criteria: Was evaluated.
O: 수지와 무기 충진제간 분리 미발생  O: No separation between resin and inorganic filler
X: 수지와 무기 충진제간 분리 발생  X : Separation between resin and inorganic filler
4. 점도 4. Viscosity
상기 실시예 및 비교예에서 얻어진 프리프레그에 대하여, 레오미터 (Anton Paar사, Modular c에 ipact Rheometer MCR 302)를 이용하여 , 50 °C에서 200 °C까지. 승온 속도 5 °C/min. Normal Force 5N. Frequency 10Hz. amplitude 0.5% 조건으로 측정하여 점도를 평가하였고. 최소점도 및 최소점도를 나타내는 온도를 기록하였다. For the prepreg obtained in the above examples and comparative examples, using a rheometer (Anton Paar, Modular c ipact Rheometer MCR 302), from 50 ° C to 200 ° C. Temperature rise rate 5 ° C / min. Normal Force 5N. Frequency 10 Hz. Viscosity was evaluated by measuring at 0.5% amplitude. The minimum viscosity and the temperature representing the minimum viscosity were recorded.
5. 인장신율 (Tensile Elongation)측정 5. Tensile Elongation Measurement
상기 실시예 및 비교예에서 얻어진 프리프레그를 유리섬유의 MD 및 TD방향이 일치하도록 10매를 적층하여. 220 °C 및 35 kg/ciif의 조건으로 100분간 프레스 한 후. IPC-TM-650 (2.4.18.3)에 따라, Universal Testing MachineClnstron 3365)장비를 이용하여 MD방향의 인장신율을 측정하였다. 10 sheets of the prepregs obtained in the above Examples and Comparative Examples were laminated so that the MD and TD directions of the glass fibers coincide with each other. After 100 min press at 220 ° C and 35 kg / ciif. In accordance with IPC-TM-650 (2.4.18.3), tensile elongation in the MD direction was measured using a Universal Testing Machine Clnstron 3365) instrument.
【표 3】 [Table 3]
실험예 결과  Experimental Results
Figure imgf000031_0001
비교예 9.6 16 O 310 163 1.7
Figure imgf000031_0001
Comparative Example 9.6 16 O 310 163 1.7
4  4
상기 표 3에 나타난 바와 같이. 실시예의 반도체 패키지용 수지 조성물 및 이로부터 얻어진 프리프레그, 동박 적충판은 9. 1 내지 10.5 Ppm/ °C로 열팽창계수가 낮아 저열팽창 특성을 가지면서, 최소점도가 157 내지 164 °C 범위에서 256 내지 315 Pa · s로 측정되어. 15 내지 23%로 높은 수지흐름성을 가질 수 있으며, 우수한 혼화성을 확보할 수 있다. 또한. 인장신율 측정결과 2.6 내지 2.9%의 높은 인성 (Toughness)을 가져 우수한 기계적 물성을 구현할 수 있음을 확인할 수 있었다ᅳ As shown in Table 3 above. The resin composition for a semiconductor package of the embodiment, and the prepreg and copper foil-filled plate obtained therefrom have a low coefficient of thermal expansion of 9.1 to 10.5 P pm / ° C., having low thermal expansion characteristics, and a minimum viscosity of 157 to 164 ° C. Measured from 256 to 315 Pa.s. 15 to 23% can have a high resin flow properties, it can ensure excellent miscibility. Also. Tensile elongation measurement results showed that it has high toughness of 2.6 to 2.9% and can realize excellent mechanical properties.
한편, 전자끌기 (E lect ron Wi thdrawing GroLip , EWG)를 갖는 아민 : 경화제가 함유되지 않은 비교예 1 내지 3의 반도체 패키지용 수지 조성물 및 이로부터 얻어진 프리프레그, 동박 적층판은 최소점도가 120 내지 125 °C 범위에서 810 내지 987 Pa · s로 실시예에 비해 현저히 높아, 3 내지 4. 7%의 매우 낮은 수지흐름성을 나타내며, 수지와 무기 충진제간 분리가 발생하는등 흔화성이 현저히 불량함을 확인할 수 있다. On the other hand, the amine having an electron draw (EWG) : the resin composition for semiconductor packages of Comparative Examples 1 to 3 containing no curing agent and the prepreg and copper foil laminate obtained therefrom have a minimum viscosity of 120 to 125 810 to 987 Pa · s in the range of ° C is significantly higher than that of the embodiment, showing a very low resin flow of 3 to 4. 7%, and the poor compatibility of the resin and inorganic fillers such as separation occurs You can check it.
그리고. 아민 경화제 100 중량부 대비 625 중량부의 열경화성 수지가 포함되어, 열경화성 수지 당량 기준 아민 경화제 당량비율이 0.63인 비교예 4의 반도체 패키지용 수지 조성물 및 이로부터 얻어진 프리프레그, 동박 적층판은 인장신율이 1.7%로 실시예 대비 감소하여 . 인성 (Toughness)에 한계가 있음을 확인할 수 있다.  And. The resin composition for a semiconductor package of Comparative Example 4, wherein the amine curing agent equivalent ratio is 0.63 based on the thermosetting resin equivalent, and the prepreg and copper foil laminated plates obtained therefrom are 625 parts by weight based on 100 parts by weight of the amine curing agent. By decreasing compared to the embodiment as. It can be seen that there is a limit in toughness.
이에 따라. 실시예와 같이 전자끌기 (El ect ron Wi thdrawing Group . EWG)를 갖는 아민 경화제 100 중량부 대비 400 중량부 이하의 열경화성 수지를 포함하고. 열경화성 수지 당량 기준 아민 경화제 당량비율인 당량비가 1.4 이상을 만족하면서. 2종의 무기 첨가제를 흔합하여 사용한 경우, 우수한 저열팽창 특성. 유동성. 기계적 물성 및 혼화성을 확보할 수 있음을 확인하였다.  Accordingly. Including the thermosetting resin of 400 parts by weight or less with respect to 100 parts by weight of the amine curing agent having an electron draw (El ect ron Wi thdrawing Group. EWG). While the equivalent ratio which is a thermosetting resin equivalent reference amine curing agent equivalent ratio satisfies 1.4 or more. Excellent low thermal expansion properties when two inorganic additives are used in combination. liquidity. It was confirmed that mechanical properties and miscibility can be secured.

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
술폰기 . 카보닐기. 할로겐기ᅳ 탄소수 1 내지 20의 알킬기. 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기로 이루어진 군에서 선택된 1종 이상의 작용기를 포함한 아민 경화제;  Sulfone. Carbonyl group. Halogen group and C1-C20 alkyl group. An amine curing agent including at least one functional group selected from the group consisting of an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 30 carbon atoms, and an alkylene group having 1 to 20 carbon atoms;
열경화성 수지;  Thermosetting resins;
평균 입경이 0. 1 ^πι 내지 100 인 제 1 무기 충진제 및 평균 입경이 1 nm 내지 90 nm인 제 2 무기 층진제를 함유한 무기 충진제를 포함하고, 상기 아민 경화제 100 중량부에 대하여 상기 열경화성 수지 함량이 400 중량부 이하이고,  An inorganic filler containing a first inorganic filler having an average particle diameter of 0.1 ^ πι to 100 and a second inorganic layering agent having an average particle diameter of 1 nm to 90 nm, wherein the thermosetting resin is used based on 100 parts by weight of the amine curing agent. The content is 400 parts by weight or less,
상기 아민 경화제에 포함된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기. 탄소수 2 내지 30의 헤테로아릴기 및 탄소수 1 내지 20의 알킬렌기는 각각 독립적으로 니트로기 , 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환된. 반도체 패키지용 수지 조성물.  An alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms contained in the amine curing agent. A heteroaryl group having 2 to 30 carbon atoms and an alkylene group having 1 to 20 carbon atoms are each independently substituted with at least one functional group selected from the group consisting of a nitro group, a cyano group and a halogen group. Resin composition for semiconductor packages.
【청구항 2】 [Claim 2]
제 1항에 있어서 .  The method of claim 1.
하기 수학식 1로 .계산되는 당량비가 1.4 이상인, 반도체 패키지용 수지 조성물:  The resin composition for a semiconductor package whose equivalence ratio computed by following formula (1) is 1.4 or more:
[수학식 1]  [Equation 1]
당량비 = 상기 아민 경화제에 함유된 총 활성수소 당량 / 상기 열경화성 수지에 함유된 총 경화성 작용기 당량.  Equivalence ratio = total active hydrogen equivalents contained in said amine curing agent / total curable functional group equivalents contained in said thermosetting resin.
【청구항 3】 [Claim 3]
제 1항에 있어서.  The method of claim 1.
상기 아민 경화제는 하기 화학식 1 내지 3으로 이루어진 군에서 선택된 1종 이상의 화합물을 포함하는, 반도체 패키지용 수지 조성물:  The amine curing agent comprises at least one compound selected from the group consisting of Formulas 1 to 3, a resin composition for a semiconductor package:
[화학식 1] [Formula 1]
Figure imgf000034_0001
Figure imgf000034_0001
상기 화학식 1에서. In Formula 1 above.
A는 술폰기., 카보닐기, 또는 탄소수 1 내지 10의 알킬렌기이며 , A sulfone . , A carbonyl group, or an alkylene group having 1 to 10 carbon atoms,
Xi 내지 ¾는 각각 독립적으로 니트로기, 시아노기, 수소원자. 할로겐기, 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 해테로아릴기이고.  Xi to ¾ are each independently a nitro group, a cyano group, and a hydrogen atom. Halogen group, C1-C6 alkyl group. An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
Ri, Ri ' , R2 및 '는 각각 독립적으로 수소원자, 할로겐기 . 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기. 또는 탄소수 2 내지 20의 헤테로아릴기이며, Ri, Ri ', R 2 and' are each independently a hydrogen atom, a halogen group. An alkyl group having 1 to 6 carbon atoms. Aryl group of 6 to 15 carbon atoms. Or a heteroaryl group having 2 to 20 carbon atoms,
n은 1 내지 10의 정수이고,  n is an integer of 1 to 10,
상기 탄소수 1 내지 10의 알킬렌기, 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기. 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기, 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환되며.  The alkyl group having 1 to 10 carbon atoms, the alkyl group having 1 to 6 carbon atoms. Aryl group of 6 to 15 carbon atoms. And heteroaryl groups having 2 to 20 carbon atoms are each independently substituted with one or more functional groups selected from the group consisting of nitro groups, cyano groups, and halogen groups.
Figure imgf000034_0002
Figure imgf000034_0002
상기 화학식 2에서,  In Chemical Formula 2,
Yi 내지 Y8는 각각 독립적으로 니트로기. 시아노기. 수소원자, 할로겐기 , 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기. 또는 탄소수 2 내지 20의 해테로아릴기이고. ' Yi to Y 8 are each independently a nitro group. Cyanogi. A hydrogen atom, a halogen group, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 15 carbon atoms. Or a heteroaryl group having 2 to 20 carbon atoms. '
, R3 ' . R4 및 I 는 각각 독립적으로 수소원자, 할로겐기. 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기. 또는 탄소수 2 내지 20의 헤테로아릴기이며, ill은 1 내지 10의 정수이고. , R 3 '. R4 and I each independently represent a hydrogen atom and a halogen group. Alkyl group of 1 to 6 carbon atoms, aryl group of 6 to 15 carbon atoms. Or a heteroaryl group having 2 to 20 carbon atoms, ill is an integer from 1 to 10.
상기 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기. 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환되며.  The alkyl group having 1 to 6 carbon atoms. The aryl group having 6 to 15 carbon atoms and the heteroaryl group having 2 to 20 carbon atoms are each independently a nitro group. It is substituted with at least one functional group selected from the group consisting of a cyano group and a halogen group.
[화학식 3]  [Formula 3]
Figure imgf000035_0001
상기 화학식 3에서.
Figure imgf000035_0001
In Chemical Formula 3 above.
Zi 내지 Z4는 각각 독립적으로 니트로기, 시아노기. 수소원자. 할로겐기. 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이고, Zi to Z 4 are each independently a nitro group and a cyano group. Hydrogen atom. Halogen group. An alkyl group having 1 to 6 carbon atoms. An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms,
R5, R5 ' , R6 및 '는 각각 독립적으로 수소원자. 할로겐기, 탄소수 1 내지 6의 알킬기. 탄소수 6 내지 15의 아릴기, 또는 탄소수 2 내지 20의 헤테로아릴기이며, R 5 , R 5 ′, R 6 and ′ each independently represent a hydrogen atom. Halogen group, C1-C6 alkyl group. An aryl group having 6 to 15 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms,
상기 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 15의 아릴기, 및 탄소수 2 내지 20의 헤테로아릴기는 각각 독립적으로 니트로기 ᅳ 시아노기 및 할로겐기로 이루어진 군에서 선택된 1종 이상의 작용기로 치환된다.  The alkyl group having 1 to 6 carbon atoms, the aryl group having 6 to 15 carbon atoms, and the heteroaryl group having 2 to 20 carbon atoms are each independently substituted with at least one functional group selected from the group consisting of nitro group ᅳ cyano group and halogen group.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 아민 경화제 및 열경화성 수지 100 중량부에 대하여 상기 무기 충진제 함량이 200 중량부 이상인, 반도체 패키지용 수지 조성물.  The said inorganic filler content is 200 weight part or more with respect to 100 weight part of said amine hardeners and a thermosetting resin, The resin composition for semiconductor packages.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 아민 경화제 및 열경화성 수지 100 중량부에 대하여 상기 무기 충진제 함량이 200 중량부 내지 500 중량부인, 반도체 패키지용 수지 조성물. Resin for semiconductor package, the inorganic filler content is 200 parts by weight to 500 parts by weight with respect to 100 parts by weight of the amine curing agent and the thermosetting resin. Composition.
【청구항 6】 [Claim 6]
제 1항에 있어서, . ' 상기 평균 입경이 0. 1 μη 내지 100 卿인 제 1 무기 충진제 100 중량부에 대하여 상기 평균 입경이 1 nm 내지 90 nm인 제 2 무기 충진제 함량이 1 중량부 내지 50 중량부인. 반도체 패키지용 수지 조성물. The method of claim 1 wherein. ' The second inorganic filler content of 1 nm to 90 nm is 1 part by weight to 50 parts by weight relative to 100 parts by weight of the first inorganic filler having an average particle diameter of 0.1 μηη to 100 mm 3. Resin composition for semiconductor packages.
【청구항 7】 ' 7. The '
제 1항에 있어서,  The method of claim 1,
상기 평균 입경이 0 . 1 ffli 내지 100 인 제 1 무기 충진제 또는 평균 입경이 1· nm 내지 90 nm인 제 2 무기 충진제 표면에 실란 화합물이 결합한. 반도체 패키지용 수지 조성물.  The average particle diameter is 0. The silane compound is bonded to the surface of the first inorganic filler having 1 ffli to 100 or the second inorganic filler having an average particle diameter of 1 · nm to 90 nm. Resin composition for semiconductor packages.
【청구항 8】 [Claim 8]
저 17항에 있어서, - 상기 실란 화합물은 아미노 실란 커플링제, 에폭시 실란 커플링제, 비닐 실란 커플링제, 양이온 실란 커플링제 및 페닐 실란 커플링제로 이루어진 군에서 선택된 1종 이상의 실란 커플링제를 포함하는. 반도체 패키지용 수지 조성물.  The silane compound according to claim 17, wherein the silane compound comprises at least one silane coupling agent selected from the group consisting of an amino silane coupling agent, an epoxy silane coupling agent, a vinyl silane coupling agent, a cationic silane coupling agent and a phenyl silane coupling agent. Resin composition for semiconductor packages.
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 열경화성 수지는 에폭시 수지, 비스말레이미드 수지, 시아네이트 에스터 수지 및 비스말레이미드―트리아진 수지로 이루어진 군으로부터 선택되는 1종 이상의 수지를 포함하는, 반도체 패키지용 수지 조성물.  The thermosetting resin comprises at least one resin selected from the group consisting of epoxy resins, bismaleimide resins, cyanate ester resins and bismaleimide-triazine resins.
【청구항. 10】 Claims. 10】
제 1항에 있어서 상기 무기 충진제는 상기 반도체 패키지용 수지 조성물에 분산된. 반도체 패키지용 수지 조성물. The method of claim 1 The inorganic filler is dispersed in the resin composition for a semiconductor package. Resin composition for semiconductor packages.
【청구항 11】 [Claim 11]
제 1항에 있어서,  The method of claim 1,
상기 반도체 패키지용 수지 조성물은 140 °C 이상에서 최소점도를 가지며, 상기 최소점도가 100 Pa - s 내지 500 Pa · s 인 반도체 패키지용 수지 조성물. The resin composition for a semiconductor package has a minimum viscosity at 140 ° C or more, the minimum viscosity is 100 Pa-s to 500 Pa · s resin composition for a semiconductor package.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 반도체 패키지용 수지 조성물은 IPOTM-650 (2.4. 18.3)에. 의해 측정한 인장신율이 2.0 % 이상인, 반도체 패키지용 수지 조성물.  The resin composition for semiconductor packages is described in IPOTM-650 (2.4.18.3). The resin composition for semiconductor packages whose tensile elongation measured by is 2.0% or more.
【청구항 13】 [Claim 13]
제 1항에 따른 반도체 패키지용 수지 조성물을 섬유 기재에 함침시켜 얻어진 프리프레그.  A prepreg obtained by impregnating a fiber substrate with the resin composition for semiconductor packages according to claim 1.
【청구항 14】 [Claim 14]
제 13항에 따른 프리프레그; 및 가열 및 가압에 의해 상기 프리프레그와 일체화된 포함하는 금속박;을 포함하는 금속박 적층판.  A prepreg according to claim 13; And a metal foil comprising integrally with the prepreg by heating and pressurizing.
PCT/KR2018/002780 2017-03-22 2018-03-08 Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate WO2018174447A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18772360.6A EP3480245B1 (en) 2017-03-22 2018-03-08 Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate
US16/333,082 US11091630B2 (en) 2017-03-22 2018-03-08 Resin composition for semiconductor package, prepreg, and metal clad laminate using the same
JP2019506370A JP6852249B2 (en) 2017-03-22 2018-03-08 Resin composition for semiconductor packaging and prepreg and metal leaf laminate using this
CN201880003409.5A CN109661421B (en) 2017-03-22 2018-03-08 Resin composition for semiconductor encapsulation, prepreg using same, and metal clad laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0036105 2017-03-22
KR20170036105 2017-03-22
KR1020180018019A KR102057255B1 (en) 2017-03-22 2018-02-13 Resin composition for semiconductor package, prepreg and metal clad laminate using the same
KR10-2018-0018019 2018-02-13

Publications (1)

Publication Number Publication Date
WO2018174447A1 true WO2018174447A1 (en) 2018-09-27

Family

ID=63585837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002780 WO2018174447A1 (en) 2017-03-22 2018-03-08 Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate

Country Status (1)

Country Link
WO (1) WO2018174447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505282A (en) * 2018-10-18 2022-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Dielectric copolymer material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121358A (en) * 2000-10-12 2002-04-23 Sumitomo Bakelite Co Ltd Resin composition for thermosetting liquid sealing, assembling technique of semiconductor element and semiconductor device
JP2012087250A (en) * 2010-10-21 2012-05-10 Panasonic Corp Heat-conductive resin composition, resin sheet, prepreg, metal laminated plate, and print wiring board
KR20140087015A (en) * 2011-11-02 2014-07-08 히타치가세이가부시끼가이샤 Resin composition, and resin sheet, prepreg, laminate, metal substrate, printed circuit board and power semiconductor device using same
KR20140090991A (en) * 2011-11-07 2014-07-18 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, and prepreg and laminated sheet each produced using same
WO2016017751A1 (en) * 2014-08-01 2016-02-04 日本化薬株式会社 Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121358A (en) * 2000-10-12 2002-04-23 Sumitomo Bakelite Co Ltd Resin composition for thermosetting liquid sealing, assembling technique of semiconductor element and semiconductor device
JP2012087250A (en) * 2010-10-21 2012-05-10 Panasonic Corp Heat-conductive resin composition, resin sheet, prepreg, metal laminated plate, and print wiring board
KR20140087015A (en) * 2011-11-02 2014-07-08 히타치가세이가부시끼가이샤 Resin composition, and resin sheet, prepreg, laminate, metal substrate, printed circuit board and power semiconductor device using same
KR20140090991A (en) * 2011-11-07 2014-07-18 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, and prepreg and laminated sheet each produced using same
WO2016017751A1 (en) * 2014-08-01 2016-02-04 日本化薬株式会社 Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505282A (en) * 2018-10-18 2022-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Dielectric copolymer material

Similar Documents

Publication Publication Date Title
EP3480245B1 (en) Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate
CN111372997B (en) Thermosetting resin composite material for clad laminate and clad laminate using same
KR102049024B1 (en) Resin composition for semiconductor package, prepreg and metal clad laminate using the same
WO2018174447A1 (en) Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate
JP7052185B2 (en) Thermosetting resin composition for metal leaf film coating, resin coating using it, metal leaf film and metal leaf laminated board
KR20210097269A (en) Resin composition for semiconductor package, prepreg and metal clad laminate using the same
KR102246974B1 (en) Resin composition for semiconductor package, prepreg and metal clad laminate using the same
KR102245724B1 (en) Thermosetting resin composite for metal clad laminate and metal clad laminate using the same
WO2018174446A1 (en) Resin composition for semiconductor package, prepreg using same, and metal foil laminated plate
WO2019199033A1 (en) Thermosetting resin composite for metal clad laminate and metal clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506370

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018772360

Country of ref document: EP

Effective date: 20190201

NENP Non-entry into the national phase

Ref country code: DE