WO2018173801A1 - Fluorine-atom-containing polymer and use thereof - Google Patents

Fluorine-atom-containing polymer and use thereof Download PDF

Info

Publication number
WO2018173801A1
WO2018173801A1 PCT/JP2018/009208 JP2018009208W WO2018173801A1 WO 2018173801 A1 WO2018173801 A1 WO 2018173801A1 JP 2018009208 W JP2018009208 W JP 2018009208W WO 2018173801 A1 WO2018173801 A1 WO 2018173801A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
bis
charge transporting
diyl
Prior art date
Application number
PCT/JP2018/009208
Other languages
French (fr)
Japanese (ja)
Inventor
博史 太田
直樹 中家
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2019507543A priority Critical patent/JP7056644B2/en
Priority to CN201880002966.5A priority patent/CN109563243B/en
Priority to KR1020197000951A priority patent/KR102476004B1/en
Publication of WO2018173801A1 publication Critical patent/WO2018173801A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to a fluorine atom-containing polymer and use thereof.
  • an organic electroluminescence (EL) element a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
  • the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently. Therefore, at the present time when the area of the organic EL display is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventors are applicable to various wet processes and charge transport that provides a thin film capable of realizing excellent organic EL element characteristics when applied to a hole injection layer of an organic EL element.
  • Compounds having good solubility in organic materials and organic solvents used therefor have been developed (see, for example, Patent Documents 1 to 4).
  • Patent Documents 1 to 4 there is a constant demand for improvements in wet process materials for hole injection layers, and in particular, there is a need for wet process materials that provide thin films with excellent charge transport properties.
  • the present invention has been made in view of the above circumstances, and provides a charge transporting varnish that gives a charge transporting thin film excellent in charge transporting property, flatness and uniformity with good reproducibility, and a material for the charge transporting varnish.
  • the object is to provide a compound.
  • a predetermined fluorine atom-containing polymer has excellent solubility in an organic solvent, and charge transportability comprising the fluorine atom-containing polymer.
  • a thin film obtained from a charge transporting varnish containing a substance, a dopant, and an organic solvent is excellent in charge transporting property, flatness and uniformity, and further, by using the thin film as a hole injection layer, an organic EL having excellent luminance characteristics. The inventors found that an element can be obtained and completed the present invention.
  • a fluorine atom-containing polymer represented by the following formula (1) or (2).
  • a 1 to A 3 each independently represents a fluoroalkanediyl group having 1 to 6 carbon atoms
  • Ar 1 to Ar 3 each independently represent an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms, and may be substituted with a halogen atom, a nitro group, a cyano group, or Z 1
  • Each Ar 1 , each Ar 2 and each Ar 3 may be the same or different from each other, and may be substituted with a heteroaryl group of 2 to 20;
  • R 1 to R 10 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a carbon atom optionally substituted with Z 1
  • An alkynyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, or a carbon number optionally substituted with Z 2 Represents a 6 to 20 aryl group, a C2 to C20 heteroaryl group, a C6 to C20 aryloxy group or a C2 to C20 heteroaryloxy group, each having two or more R 1 to R 10 If so, each R 1 to R 10 may be the same or different from each other; Z 1 is a halogen atom, a nitro group or a cyano group, or an
  • Z 2 represents a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3.
  • Z 3 represents a halogen atom, a nitro group or a cyano group
  • p, q, t, u, w and x each independently represents an integer of 0 to 4
  • r, s, y and z each independently represents an integer of 0 to 4
  • k represents an integer of 1 or more.
  • A is a perfluoromethanediyl group, a perfluoroethane-1,2-diyl group, a perfluoropropane-1,3-diyl group, a perfluoropropane-2,2-diyl group, a perfluorobutane-1,4- 1.
  • a polymer compound according to 1 or 2 which is a diyl group, a perfluoropentane-1,5-diyl group or a perfluorohexane-1,6-diyl group. 4).
  • Ar 1 to Ar 3 are groups represented by the following formula (3).
  • R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 6 to 20 carbon atoms.
  • R 13 and R 14 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon atom optionally substituted with Z 1
  • a and b each independently represents an integer of 0 to 3. ) 6).
  • a charge transport material comprising a fluorine atom-containing polymer of any one of 1 to 7.
  • a charge transporting varnish comprising 9.8 charge transporting material, a dopant, and an organic solvent.
  • An electronic device comprising the charge transporting thin film of 10.10.
  • An organic EL device comprising the charge transporting thin film of 12.10.
  • the charge transporting varnish containing the fluorine atom-containing polymer of the present invention By using the charge transporting varnish containing the fluorine atom-containing polymer of the present invention, a charge transporting thin film excellent in charge transporting property, flatness and uniformity can be obtained.
  • the charge transporting thin film having such characteristics can be suitably used as a thin film for electronic devices including organic EL elements.
  • this thin film by applying this thin film to a hole injection layer of an organic EL element, an organic EL element with a low driving voltage can be obtained.
  • the charge transporting varnish of the present invention can produce a thin film with excellent charge transportability with good reproducibility even when using various wet processes that can be formed into a large area, such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
  • the charge transporting thin film of the present invention can be used as an antistatic film, an anode buffer layer of an organic thin film solar cell, or the like.
  • fluorine atom-containing polymer The fluorine atom-containing polymer of the present invention is represented by the following formula (1) or (2).
  • the nitrogen atom is preferably bonded to the meta position or the para position with respect to the bonding position of A 1 to A 3 in the benzene ring.
  • a 1 to A 3 represent a fluoroalkanediyl group having 1 to 6 carbon atoms.
  • the fluoroalkanediyl group is not particularly limited as long as part or all of the hydrogen atoms bonded to the carbon atoms of the alkanediyl group are substituted with fluorine atoms.
  • fluoroalkanediyl group examples include a monofluoromethanediyl group, a perfluoromethanediyl group, a 2,2,2-trifluoroethane-1,1-diyl group, a perfluoroethane-1,1-diyl group, Perfluoroethane-1,2-diyl group, 3-fluoropropane-1,2-diyl group, 3,3,3-trifluoropropane-1,1-diyl group, 1,1-difluoropropane-1,3 -Diyl group, perfluoropropane-1,1-diyl group, perfluoropropane-1,2-diyl group, perfluoropropane-1,3-diyl group, perfluoropropane-2,2-diyl group, 2- Methyl-2-fluoropropane-1,3-diyl group, 3,4,4-trifluor
  • fluoroalkanediyl group a perfluoroalkanediyl group having 1 to 6 carbon atoms (that is, all hydrogen atoms bonded to carbon atoms of the alkanediyl group are substituted with fluorine atoms) is preferable.
  • Methanediyl group perfluoroethane-1,2-diyl group, perfluoropropane-1,3-diyl group, perfluoropropane-2,2-diyl group, perfluorobutane-1,4-diyl group, perfluoro Pentane-1,5-diyl group, perfluorohexane-1,6-diyl group and the like are preferable.
  • Ar 1 to Ar 3 each independently represents an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms. These groups are a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1. Or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 . Further, each Ar 1 , each Ar 2 and Ar 3 may be the same or different from each other, but are preferably the same group from the viewpoint of ease of synthesis of the polymer.
  • Ar 1 to Ar 3 are preferably groups derived from fluorene, benzene, naphthalene, biphenyl or derivatives thereof.
  • a group represented by the following formula (3) is preferable.
  • R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a carbon number of 6 Represents an aryl group having ⁇ 20 or a heteroaryl group having 2 to 20 carbon atoms.
  • R 11 and R 12 are both alkyl groups from the viewpoint of solubility in the solvent used for the varnish.
  • the alkyl group those having 4 to 10 carbon atoms are particularly preferable.
  • R 13 and R 14 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon atom optionally substituted with Z 1 It represents an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 . When two or more R 13 and R 14 are present, each R 13 and R 14 may be the same as or different from each other.
  • a and b each independently represent an integer of 0 to 3, but from the viewpoint of improving the availability of the raw material compound, the solubility of the polymer of the present invention, the charge transportability, and the like. 0 to 2 are preferred, 0 or 1 is more preferred, and 0 is optimal. In particular, both a and b are preferably 0.
  • X 1 to X 4 each independently represent a crosslinkable group.
  • the crosslinkable group is preferably a polymerizable carbon-carbon double bond, or a group containing an oxirane ring or an oxetane ring. Specifically, those selected from groups represented by the following formula are preferred.
  • R a represents a hydrogen atom or a methyl group.
  • R b and R d each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group.
  • R c , R e and R f each independently represents an alkylene group having 1 to 8 carbon atoms which may contain an oxygen atom, a sulfur atom or a nitrogen atom.
  • R c , R e and R f are preferably an alkylene group having 1 to 8 carbon atoms which may contain an oxygen atom.
  • a broken line represents a bond.
  • Y 1 to Y 4 each independently represents a single bond or an arylene group having 6 to 20 carbon atoms.
  • the arylene group include 1,3-phenylene group, 1,4-phenylene group, 1,5-naphthylene group, 1,6-naphthylene group, 1,7-naphthylene group, 2,6-naphthylene group, 4, Examples include 4′-biphenylylene group.
  • Y 1 to Y 4 are preferably a single bond, a 1,3-phenylene group, or a 1,4-phenylene group.
  • Each Y 1 , each Y 2 , each Y 3 and each Y 4 may be the same or different from each other, but are preferably the same group from the viewpoint of ease of monomer synthesis.
  • R 1 to R 10 are each independently a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 ,
  • An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, or Z 2 Represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or a heteroaryloxy group having 2 to 20 carbon atoms, which may be substituted with When two or more R 1 to R 10 are present, each R 1 to R 10 may be the same as or different from each other.
  • Z 1 is a halogen atom, a nitro group or a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3.
  • Z 2 represents a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3.
  • Z 3 represents a halogen atom, a nitro group or a cyano group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Straight chain having 1 to 20 carbon atoms such as s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group Or a branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as a bicyclooctyl group, a bicyclononyl group, and a bicyclodecyl group.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyl group, n-1-propenyl group, n-2-propenyl group and 1-methylethenyl group.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1- Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4 -Pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n Examples include a -1-decynyl group, an n-1-pentadecynyl group, and
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
  • the alkoxy group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group.
  • the alkenyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyloxy group, n-1-propenyloxy group, n-2-propenyloxy group, -Methylethenyloxy group, n-1-butenyloxy group, n-2-butenyloxy group, n-3-butenyloxy group, 2-methyl-1-propenyloxy group, 2-methyl-2-propenyloxy group, 1- Ethylethenyloxy group, 1-methyl-1-propenyloxy group, 1-methyl-2-propenyloxy group, n-1-pentenyloxy group, n-1-decenyloxy group, n-1-eicocenyloxy group Etc.
  • the alkynyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyloxy group, n-1-propynyloxy group, n-2-propynyloxy group, n-1-butynyloxy group, n-2-butynyloxy group, n-3-butynyloxy group, 1-methyl-2-propynyloxy group, n-1-pentynyloxy group, n-2-pentynyloxy group, n -3-pentynyloxy group, n-4-pentynyloxy group, 1-methyl-n-butynyloxy group, 2-methyl-n-butynyloxy group, 3-methyl-n-butynyloxy group, 1,1-dimethyl- n-propynyloxy group, n-1-hexynyloxy group, n-1-decynyloxy group, n-1
  • aryloxy group having 6 to 20 carbon atoms include phenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthryloxy group, 2-anthryloxy group, 9-anthryloxy Group, 1-phenanthryloxy group, 2-phenanthryloxy group, 3-phenanthryloxy group, 4-phenanthryloxy group, 9-phenanthryloxy group and the like.
  • heteroaryloxy group having 2 to 20 carbon atoms include 2-thienyloxy group, 3-thienyloxy group, 2-furanyloxy group, 3-furanyloxy group, 2-oxazolyloxy group, 4-oxazolyl Ruoxy group, 5-oxazolyloxy group, 3-isoxazolyloxy group, 4-isoxazolyloxy group, 5-isoxazolyloxy group, 2-thiazolyloxy group, 4-thiazolyloxy group, 5 -Thiazolyloxy group, 3-isothiazolyloxy group, 4-isothiazolyloxy group, 5-isothiazolyloxy group, 2-imidazolyloxy group, 4-imidazolyloxy group, 2-pyridyloxy group, 3-pyridyloxy group Group, 4-pyridyloxy group and the like.
  • R 1 to R 10 are preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • p, q, t, u, w and x each independently represent an integer of 0 to 4
  • r, s, y and z each independently represent 0 to Represents an integer of 5, preferably 0 to 2, more preferably 0 or 1, from the viewpoint of improving the availability of the raw material compound, the solubility of the polymer of the present invention, the charge transporting property, and the like.
  • m and n represent the composition ratio of the left repeating unit (hereinafter referred to as repeating unit m) and the right repeating unit (hereinafter referred to as repeating unit n) in formula (1), respectively.
  • the fluorine atom-containing polymer represented by the formula (1) includes the repeating unit n as an essential unit, may include only the repeating unit n, or may include both the repeating units m and n.
  • m and n preferably satisfy 0.1 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 0.9. 0.5 ⁇ m ⁇ 0.99 and 0.01 ⁇ n ⁇ 0.5 are more preferable, and 0.8 ⁇ m ⁇ 0.99 and 0.01 ⁇ n ⁇ 0.2 are satisfied. Even more preferred.
  • k represents an integer of 1 or more. k is preferably 500 or less, more preferably 100 or less, and even more preferably 50 or less.
  • the lower limit of the weight average molecular weight (Mw) of the fluorine atom-containing polymer of the present invention is preferably 1,000, more preferably 3,000, and still more preferably 5 from the viewpoint of improving the charge transport property of the polymer.
  • the upper limit is preferably 500,000, more preferably 100,000, and even more preferably 50,000, from the viewpoint of improving the solubility of the polymer.
  • Mw is a measured value in terms of polystyrene by gel permeation chromatography (GPC).
  • a 1 , A 2 , Ar 1 , X 1 , X 2 , Y 1 , Y 2 , R 1 to R 6 , p, q, r, s, t and u are the same as described above.
  • X A and X B each independently represent a halogen atom or a pseudohalogen group.
  • X C each independently represents a group represented by the following formula (7) or (8). (Wherein A 11 and A 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • a 13 represents an alkanediyl group having 1 to 20 carbon atoms. Represents a group or an arylene group having 6 to 20 carbon atoms.)
  • halogen atom alkyl group and aryl group are the same as those described above.
  • pseudohalogen group examples include fluoroalkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group, and the like. It is done.
  • alkanediyl group having 1 to 20 carbon atoms represented by A 13 examples include an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, and 2,2-dimethylpropane-1,3- Diyl group, 2-ethyl-2-methylpropane-1,3-diyl group, 2,2-diethylpropane-1,3-diyl group, 2-methyl-2-propylpropane-1,3-diyl group, butane -1,3-diyl group, butane-2,3-diyl group, butane-1,4-diyl group, 2-methylbutane-2,3-diyl group, 2,3-dimethylbutane-2,3-diyl group Pentane-1,3-diyl group, pentane-1,5-diyl group, pentane-2,3-diyl group, pentane-2,4-d
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,8-naphthylene group, 1,2-anthrylene group, and 2,3- Examples include an anthrylene group, a 1,2-phenanthrylene group, a 3,4-phenanthrylene group, and a 9,10-phenanthrylene group.
  • the reaction of Scheme A can be performed without a solvent, but is usually performed using a solvent. Any solvent can be used as long as it does not inhibit the reaction. Examples thereof include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc ), Amides such as N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; benzene, toluene, xylene and the like And aromatic hydrocarbons. These solvent can be used individually by 1 type or in mixture of 2 or more types. Of these, 1,4-dioxane, toluene, xylene and the like are particularly preferable.
  • the catalyst used in the above reaction includes [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ).
  • the charging ratio of the aromatic compound represented by the formula (6) is 0.83 to 1 in terms of a molar ratio with respect to the total of the amine derivative represented by the formula (4) and the amine derivative represented by the formula (5). .2 is preferred.
  • what is necessary is just to set suitably the preparation ratio of the amine derivative represented by Formula (4), and the amine derivative represented by Formula (5) so that the composition ratio of the repeating units m and n may become the range mentioned above. .
  • the reaction temperature of the reaction is usually 40 to 200 ° C.
  • the reaction time is appropriately set depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the amine derivative represented by the formula (4) comprises an amine compound represented by the formula (9) and a halogenated compound represented by the formula (10) in the presence of a catalyst, as represented by Scheme B below.
  • An amine derivative represented by the formula (4-1) is subjected to a condensation reaction with the halogenated compound represented by the formula (11) and the halogenated compound represented by the formula (12).
  • a 1 , R 1 to R 4 , Y 1 , X A , p, q, r and s are the same as described above.
  • Y 1 ′ represents an aryl group having 6 to 20 carbon atoms.
  • Hal represents Represents a halogen atom or a pseudohalogen group.
  • the amine derivative represented by the formula (4) includes a halogenated compound represented by the formula (13), an amine compound represented by the formula (14), and the formula (15) as represented by the following scheme C.
  • the amine compound represented by formula (4-1) is subjected to a condensation reaction in the presence of a catalyst to synthesize the amine derivative represented by formula (4-1), and then the obtained amine derivative is reacted with a known halogenating agent. Can also be synthesized.
  • the charging ratio of the amine compound to the halogenated compound may be such that the total Hal group of the total halogenated compound is equal to or more than the equivalent of the total amount of NH groups of the total amine compound, but about 1 to 1.5 equivalent Is preferred.
  • the catalyst examples include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , Pd (dba) 2 , Pd 2 (dba) 3 , Examples thereof include palladium catalysts such as Pd (Pt-Bu 3 ) 2 and Pd (OAc) 2 . These catalysts may be used individually by 1 type, and may be used in combination of 2 or more type. These catalysts may be used together with a known appropriate ligand.
  • the amount of the catalyst used can be 0.0001 to 0.5 mol with respect to 1 mol of the halogenated compound, but is preferably about 0.001 to 0.1 mol.
  • the amount used can be 0.5 to 50 equivalents relative to the metal complex to be used, but 1 to 10 equivalents is preferred.
  • halogenating agent known ones can be used, and specific examples include N-bromosuccinimide.
  • the amount of the halogenating agent used is preferably about 4 to 6 mol with respect to 1 mol of the compound represented by the formula (4-1).
  • Each reaction shown in Schemes B and C may be performed in a solvent.
  • a solvent the kind will not be specifically limited if it does not have a bad influence on reaction.
  • specific examples of solvents that can be suitably used in the condensation reaction include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, Dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, t-butyl methyl ether) , Tetrahydrofuran (THF), dioxane, 1,2-dimethoxye
  • the solvent that can be suitably used in the reaction with the halogenating agent include those exemplified as the solvent that can be used in the condensation reaction, and halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dibenzene). Chlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc.).
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent to be used, and is particularly preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
  • the target amine derivative can be obtained by post-treatment according to a conventional method.
  • the amine derivative represented by the formula (5) is represented by the amine compound represented by the formula (16), the halogenated compound represented by the formula (17), and the formula (18) as represented by the following scheme D.
  • the resulting halogenated compound is reacted in the presence of a catalyst, and the resulting compound is further reacted with the halogenated compound represented by formula (10) to synthesize an amine derivative represented by formula (5-1).
  • the obtained amine derivative can be synthesized by reacting with a known halogenating agent.
  • Y 2 ′ represents an aryl group having 6 to 20 carbon atoms.
  • the charging ratio of the amine compound to the halogenated compound may be such that the total Hal group of the total halogenated compound is equal to or more than the equivalent of the total amount of NH groups of the total amine compound, but about 1 to 1.5 equivalent Is preferred.
  • the aromatic compound represented by the formula (6) can be synthesized by a conventionally known method.
  • a 1 , A 2 , Ar 1 , X 1 , X 2 , R 1 to R 6 , p, q, r, s, t and u are the same as above.
  • X D is independently Represents a halogen atom or a pseudohalogen group.
  • the amine derivative represented by the formula (4 ′) can be synthesized according to the methods shown in Schemes B and C. Further, the phenylamine derivative represented by the formula (5 ′) can be synthesized according to the method shown in Scheme D.
  • the compound represented by the formula (6 ′) can be synthesized by a conventionally known method.
  • the fluorine atom-containing polymer represented by the formula (2) is represented by, for example, an amine derivative represented by the formula (4 ′′) and a formula (6 ′′) as represented by the following scheme F.
  • a polymer obtained by condensation polymerization of an aromatic compound in the presence of a catalyst is reacted with a compound represented by formulas (9) and (10) to synthesize a terminal. it can.
  • R 7 to R 10 , A 3 , Ar 3 , X 3 , X 4 , Y 3 , Y 4 , X A , X C , w, x, y and z are the same as above)
  • the fluorine atom-containing polymer of the present invention can be suitably used as a charge transport material.
  • charge transportability is synonymous with conductivity and is synonymous with hole transportability.
  • the charge transporting substance may be a substance having a charge transporting property per se, or a substance having a charge transporting property when used together with a dopant.
  • the charge transporting varnish may be one that has charge transporting property itself, and the solid film obtained thereby may have charge transporting property.
  • the charge transporting varnish of the present invention comprises a charge transporting substance comprising the fluorine atom-containing polymer, a dopant, and an organic solvent.
  • the content of the charge transport material comprising the fluorine atom-containing polymer is preferably about 0.1 to 20% by mass in the varnish from the viewpoint of suppressing the precipitation of the charge transport material.
  • E represents a Group 13 element of the long-period periodic table
  • Ar 101 to Ar 104 are each independently an aryl group having 6 to 20 carbon atoms or a heteroaryl having 2 to 20 carbon atoms.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group May be substituted with an alkyl group.
  • the group 13 element is preferably a boron atom, an aluminum atom, or a gallium atom, and more preferably a boron atom.
  • Examples of the aryl group having 6 to 20 carbon atoms and the heteroaryl group having 2 to 20 carbon atoms are the same as those described above.
  • M + represents an onium ion.
  • the onium ions include iodonium ions, sulfonium ions, ammonium ions, phosphonium ions, and the like, and iodonium ions represented by the following formula (10) are particularly preferable.
  • R 101 and R 102 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, or an alkyl group having 6 to 20 carbon atoms.
  • the aryl group having 6 to 20 carbon atoms or the heteroaryl group having 2 to 20 carbon atoms may be substituted.
  • the content of the dopant is preferably 0.01 to 10, more preferably 0.05 to 5, and still more preferably 0.1 to 3 with respect to the charge transporting substance.
  • the charge transporting varnish of the present invention may contain a charge transporting material that does not contain a fluorine atom, if necessary.
  • a charge transporting substance include charge transporting oligomers such as aniline derivatives, thiophene derivatives, and pyrrole derivatives.
  • the molecular weight of the charge transporting oligomer is usually 200 to 5,000, but from the viewpoint of preparing a varnish that gives a thin film having a high charge transporting property, it is preferably 300 or more, more preferably 400 or more, and even more preferably 500 or more. From the viewpoint of preparing a uniform varnish that gives a thin film with high flatness, it is preferably 4,000 or less, more preferably 3,000 or less, and even more preferably 2,000 or less.
  • an aniline derivative is preferable in consideration of the balance between solubility in an organic solvent and charge transporting property of the obtained thin film.
  • aniline derivatives include oligoaniline derivatives described in JP-A No. 2002-151272, oligoaniline compounds described in WO 2004/105446, oligoaniline compounds described in WO 2008/032617, Examples include oligoaniline compounds described in 2008/032616 and aryldiamine compounds described in International Publication No. 2013/042623. Examples thereof include aniline derivatives described in International Publication No. 2016/006674.
  • the usage ratio of the charge transporting material comprising the fluorine atom-containing polymer of the present invention to the charge transporting material containing no fluorine atom is determined by the organic EL obtained.
  • the charge transporting material comprising the fluorine atom-containing polymer of the present invention is preferably 0.1 to 5 by mass ratio with respect to the charge transporting material containing no fluorine atom.
  • Organic solvent As the organic solvent used when preparing the charge transporting varnish, a highly soluble solvent that can dissolve the charge transporting substance and the dopant well can be used. Since the fluorine atom-containing polymer of the present invention has high solubility even in a low polarity solvent, it is possible to use a low polarity solvent as a high solubility solvent.
  • examples of the low polarity solvent include cyclohexanone, anisole, chloroform, chlorobenzene, toluene, xylene, tetralin, cyclohexylbenzene, 3-phenoxytoluene, methyl benzoate and the like.
  • examples of the polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like. These solvents can be used singly or in combination of two or more, and the amount used can be 5 to 100% by mass in the total solvent used in the varnish.
  • both the charge transporting substance and the dopant are completely dissolved in the solvent.
  • the varnish has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
  • At least one high-viscosity organic solvent can be contained.
  • Examples of the high viscosity organic solvent include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like, but are not limited thereto.
  • the content thereof is preferably within a range where no solid is precipitated, and is preferably 5 to 90% by mass in the total solvent used for the varnish as long as no solid is precipitated.
  • solvents are used in an amount of 1 to 90% by weight, preferably 1 to 90%, based on the total solvent used in the varnish. It is also possible to mix at a ratio of 50% by mass.
  • solvents examples include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether
  • solvents include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate. These solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
  • solid content means what remove
  • a charge transporting thin film can be formed on a base material by applying the charge transporting varnish of the present invention on the base material and baking it.
  • Examples of the varnish coating method include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish depending on the coating method.
  • the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and high charge transportability can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like. When used as, it is preferably about 140 to 250 ° C, more preferably about 150 to 230 ° C.
  • the varnish of the present invention is characterized in that it can be fired at a low temperature of less than 200 ° C. Even a thin film manufactured under such firing conditions has high flatness and high charge transportability.
  • two or more steps of temperature change may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate.
  • the heating may be performed using an appropriate device such as a hot plate or an oven.
  • the film thickness of the charge transporting thin film is not particularly limited, but can be about 5 to 200 nm when used in an organic EL device, and particularly 10 to 100 nm when used as a hole injecting and transporting layer. ⁇ 50 nm is more preferred, and 25 to 45 nm is even more preferred.
  • Examples of the method of changing the film thickness include a method of changing the solid content concentration in the varnish or changing the amount of the solution on the substrate at the time of application.
  • Organic EL device has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include (a) to (f) below, but are not limited thereto.
  • an electron blocking layer or the like can be provided between the light emitting layer and the anode
  • a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like
  • the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole. It may have a function as a block layer or the like.
  • A Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode
  • c anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transporting layer”, and a layer of the hole transporting material is provided between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”. In particular, for the hole injection layer and the hole injection transport layer, a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport layer and the light emitting layer is used.
  • Electrode “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer. It is. When only one layer of the electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and two layers of the electron transporting material are provided between the light emitting layer and the cathode. When provided as described above, the layer close to the cathode is an “electron injection layer”, and the other layers are “electron transport layers”.
  • the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
  • the electrode substrate to be used is preferably cleaned in advance by cleaning with a liquid such as a detergent, alcohol, or pure water.
  • a liquid such as a detergent, alcohol, or pure water.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the surface treatment may not be performed.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection layer is as follows.
  • the charge transporting varnish of the present invention is applied on the anode substrate and baked to form a hole injection layer on the electrode.
  • a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
  • the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
  • metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-s
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, lithium acetylacetonate (Li (acac)), lithium acetate, lithium benzoate, etc. .
  • cathode material examples include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer are formed by sequentially forming the hole transport layer and the light emitting layer, instead of performing the vacuum deposition operation.
  • An organic EL device having a charge transporting thin film formed of a transporting varnish can be produced.
  • the charge transporting varnish of the present invention is applied onto the anode substrate, a hole injection layer is prepared by the above-described method, a hole transport layer and a light emitting layer are sequentially formed thereon, and further a cathode material Is evaporated to obtain an organic EL element.
  • the same materials as described above can be used, and the same cleaning treatment and surface treatment can be performed.
  • a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant to these materials is dissolved or uniformly dispersed.
  • coating on a positive hole injection layer or a positive hole transport layer is mentioned.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). -PPV) and the like, polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz) and the like.
  • PDAF poly (9,9-dialkylfluorene)
  • MEH 2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene
  • PVT polythiophene derivatives
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the coating method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • the firing method a method of heating with an oven or a hot plate under an inert gas or in a vacuum can be mentioned.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection transport layer is as follows.
  • a hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer.
  • Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer include the same ones as described above.
  • Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
  • a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the layers as necessary.
  • a material for forming the electron blocking layer tris (phenylpyrazole) iridium and the like can be given.
  • the materials constituting the anode and the cathode and the layer formed between them differ depending on whether a device having a bottom emission structure or a top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. .
  • a transparent anode is used on the substrate side, and light is extracted from the substrate side
  • a reflective anode made of metal is used in the opposite direction to the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
  • ITO substrate As a substrate for evaluating electrical characteristics, a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t (hereinafter referred to as “indium tin oxide”) having a thickness of 150 nm patterned on its surface , Abbreviated as ITO substrate).
  • the ITO substrate was used after removing impurities on the surface using an O 2 plasma cleaning apparatus (150 W, 30 seconds).
  • Example 9 Production of organic EL device using charge transporting varnish A
  • the charge transporting varnish A prepared in Example 5 was applied to an ITO substrate using a spin coater, and then at 150 ° C in an air atmosphere. Baking for 10 minutes formed a uniform thin film of 50 nm on the ITO substrate. Subsequently, ⁇ -NPD was formed to a thickness of 30 nm at 0.2 nm / second on the ITO substrate on which the thin film was formed using a vapor deposition apparatus (vacuum degree: 1.0 ⁇ 10 ⁇ 5 Pa). Next, CBP and Ir (PPy) 3 were co-evaporated.
  • the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and the layers were laminated to 40 nm.
  • an organic EL device was obtained by sequentially laminating thin films of Alq 3 , lithium fluoride, and aluminum.
  • the deposition rate was 0.2 nm / second for Alq 3 and aluminum and 0.02 nm / second for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the characteristic was evaluated.
  • Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -85 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together. At this time, a water-absorbing agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • UV light wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2
  • Example 10 Preparation of organic EL device using charge transporting varnish B An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish B was used instead of charge transporting varnish A. did.
  • Example 11 Preparation of organic EL device using charge transporting varnish C An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish C was used instead of charge transporting varnish A. did.
  • Example 12 Preparation of organic EL device using charge transporting varnish D An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish D was used instead of charge transporting varnish A. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Provided is a fluorine-atom-containing polymer represented by formula (1) or (2). (In the formulae, A1 to A3 each independently represent a C1-6 fluoroalkanediyl; X1 to X4 each independently represent a crosslinking group; Ar1 to Ar3 each independently represent an optionally substituted C6-20 arylene or C2-20 heteroarylene; Y1 to Y4 each independently represent a single bond or a C6-20 arylene; and R1 to R10 each independently represent a halogeno, nitro, cyano, or an optionally substituted alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, aryl, heteroaryl, aryloxy, or heteroaryloxy.)

Description

フッ素原子含有重合体及びその利用Fluorine atom-containing polymer and use thereof
 本発明は、フッ素原子含有重合体及びその利用に関する。 The present invention relates to a fluorine atom-containing polymer and use thereof.
 有機エレクトロルミネッセンス(EL)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。 In an organic electroluminescence (EL) element, a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer. In particular, the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。 The method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently. Therefore, at the present time when the area of the organic EL display is being increased, a hole injection layer that can be formed by a wet process is desired.
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れた有機EL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1~4参照)。しかし、正孔注入層用のウェットプロセス材料に関しては常に改善が求められており、特に、電荷輸送性に優れた薄膜を与えるウェットプロセス材料が求められている。 In view of such circumstances, the present inventors are applicable to various wet processes and charge transport that provides a thin film capable of realizing excellent organic EL element characteristics when applied to a hole injection layer of an organic EL element. Compounds having good solubility in organic materials and organic solvents used therefor have been developed (see, for example, Patent Documents 1 to 4). However, there is a constant demand for improvements in wet process materials for hole injection layers, and in particular, there is a need for wet process materials that provide thin films with excellent charge transport properties.
国際公開第2008/032616号International Publication No. 2008/032616 国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2006/025342号International Publication No. 2006/025342 国際公開第2010/058777号International Publication No. 2010/058777
 本発明は、上記事情に鑑みてなされたものであり、電荷輸送性、平坦性及び均一性に優れる電荷輸送性薄膜を再現性よく与える電荷輸送性ワニス、及び該電荷輸送性ワニスの材料となる化合物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a charge transporting varnish that gives a charge transporting thin film excellent in charge transporting property, flatness and uniformity with good reproducibility, and a material for the charge transporting varnish. The object is to provide a compound.
 本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、所定のフッ素原子含有重合体が有機溶媒への溶解性に優れること、並びに当該フッ素原子含有重合体からなる電荷輸送性物質、ドーパント、及び有機溶媒を含む電荷輸送性ワニスから得られる薄膜が電荷輸送性、平坦性及び均一性に優れ、更に当該薄膜を正孔注入層として用いることで、優れた輝度特性の有機EL素子が得られることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have found that a predetermined fluorine atom-containing polymer has excellent solubility in an organic solvent, and charge transportability comprising the fluorine atom-containing polymer. A thin film obtained from a charge transporting varnish containing a substance, a dopant, and an organic solvent is excellent in charge transporting property, flatness and uniformity, and further, by using the thin film as a hole injection layer, an organic EL having excellent luminance characteristics The inventors found that an element can be obtained and completed the present invention.
 すなわち、本発明は、下記フッ素原子含有重合体及びその利用を提供する。
1.下記式(1)又は(2)で表されるフッ素原子含有重合体。
Figure JPOXMLDOC01-appb-C000003
(式中、A1~A3は、それぞれ独立に、炭素数1~6のフルオロアルカンジイル基を表し;
 Ar1~Ar3は、それぞれ独立に、炭素数6~20のアリーレン基又は炭素数2~20のヘテロアリーレン基を表し、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基で置換されていてもよく、また、各Ar1、各Ar2及び各Ar3は、互いに同一でも異なっていてもよく;
 X1~X4は、それぞれ独立に、架橋性基を表し;
 Y1~Y4は、それぞれ独立に、単結合、又は炭素数6~20のアリーレン基を表し、また、各Y1、各Y2、各Y3及び各Y4は、互いに同一でも異なっていてもよく;
 R1~R10は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し、R1~R10がそれぞれ2以上存在する場合は、各R1~R10は、互いに同一でも異なっていてもよく;
 Z1は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 Z2は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 Z3は、ハロゲン原子、ニトロ基又はシアノ基を表し;
 p、q、t、u、w及びxは、それぞれ独立に、0~4の整数を表し;
 r、s、y及びzは、それぞれ独立に、0~4の整数を表し;
 m及びnは、0≦m≦1、0<n≦1かつm+n=1を満たす正数を表し;
 kは、1以上の整数を表す。)
2.重量平均分子量が、1,000~1,000,000である1のフッ素原子含有重合体。
3.Aが、パーフルオロメタンジイル基、パーフルオロエタン-1,2-ジイル基、パーフルオロプロパン-1,3-ジイル基、パーフルオロプロパン-2,2-ジイル基、パーフルオロブタン-1,4-ジイル基、パーフルオロペンタン-1,5-ジイル基又はパーフルオロヘキサン-1,6-ジイル基である1又は2の高分子化合物。
4.Ar1~Ar3が、フルオレン、ベンゼン、ナフタレン、ビフェニル又はこれらの誘導体から誘導される基である1~3のいずれかのフッ素原子含有重合体。
5.Ar1~Ar3が、下記式(3)で表される基である4のフッ素原子含有重合体。
Figure JPOXMLDOC01-appb-C000004
(式中、R11及びR12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、又は炭素数2~20のヘテロアリール基を表し;
 R13及びR14は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 a及びbは、それぞれ独立に、0~3の整数を表す。)
6.R11及びR12が、ともにアルキル基である5のフッ素原子含有重合体。
7.前記架橋性基が、重合性炭素炭素二重結合、オキシラン環又はオキセタン環を含む基である1~6のいずれかのフッ素原子含有重合体。
8.1~7のいずれかのフッ素原子含有重合体からなる電荷輸送性物質。
9.8の電荷輸送性物質、ドーパント、及び有機溶媒を含む電荷輸送性ワニス。
10.9の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
11.10の電荷輸送性薄膜を備える電子デバイス。
12.10の電荷輸送性薄膜を備える有機EL素子。
That is, this invention provides the following fluorine atom containing polymer and its utilization.
1. A fluorine atom-containing polymer represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000003
(Wherein A 1 to A 3 each independently represents a fluoroalkanediyl group having 1 to 6 carbon atoms;
Ar 1 to Ar 3 each independently represent an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms, and may be substituted with a halogen atom, a nitro group, a cyano group, or Z 1 An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, or an aryl group or carbon having 6 to 20 carbon atoms which may be substituted with Z 2 Each Ar 1 , each Ar 2 and each Ar 3 may be the same or different from each other, and may be substituted with a heteroaryl group of 2 to 20;
X 1 to X 4 each independently represents a crosslinkable group;
Y 1 to Y 4 each independently represents a single bond or an arylene group having 6 to 20 carbon atoms, and each Y 1 , each Y 2 , each Y 3 and each Y 4 are the same or different from each other. May be;
R 1 to R 10 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a carbon atom optionally substituted with Z 1 An alkynyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, or a carbon number optionally substituted with Z 2 Represents a 6 to 20 aryl group, a C2 to C20 heteroaryl group, a C6 to C20 aryloxy group or a C2 to C20 heteroaryloxy group, each having two or more R 1 to R 10 If so, each R 1 to R 10 may be the same or different from each other;
Z 1 is a halogen atom, a nitro group or a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3. A alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms;
Z 2 represents a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3. Represents an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. ;
Z 3 represents a halogen atom, a nitro group or a cyano group;
p, q, t, u, w and x each independently represents an integer of 0 to 4;
r, s, y and z each independently represents an integer of 0 to 4;
m and n represent positive numbers satisfying 0 ≦ m ≦ 1, 0 <n ≦ 1, and m + n = 1;
k represents an integer of 1 or more. )
2. 1. A fluorine atom-containing polymer having a weight average molecular weight of 1,000 to 1,000,000.
3. A is a perfluoromethanediyl group, a perfluoroethane-1,2-diyl group, a perfluoropropane-1,3-diyl group, a perfluoropropane-2,2-diyl group, a perfluorobutane-1,4- 1. A polymer compound according to 1 or 2, which is a diyl group, a perfluoropentane-1,5-diyl group or a perfluorohexane-1,6-diyl group.
4). The fluorine atom-containing polymer of any one of 1 to 3, wherein Ar 1 to Ar 3 are groups derived from fluorene, benzene, naphthalene, biphenyl, or derivatives thereof.
5). 4. A fluorine atom-containing polymer, wherein Ar 1 to Ar 3 are groups represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Wherein R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 6 to 20 carbon atoms. Or an aryl group having 2 to 20 carbon atoms;
R 13 and R 14 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon atom optionally substituted with Z 1 Represents an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
a and b each independently represents an integer of 0 to 3. )
6). A fluorine atom-containing polymer of 5, wherein R 11 and R 12 are both alkyl groups.
7). The fluorine atom-containing polymer according to any one of 1 to 6, wherein the crosslinkable group is a group containing a polymerizable carbon-carbon double bond, an oxirane ring or an oxetane ring.
8. A charge transport material comprising a fluorine atom-containing polymer of any one of 1 to 7.
A charge transporting varnish comprising 9.8 charge transporting material, a dopant, and an organic solvent.
A charge transporting thin film produced using a charge transporting varnish of 10.9.
11. An electronic device comprising the charge transporting thin film of 10.10.
12. An organic EL device comprising the charge transporting thin film of 12.10.
 本発明のフッ素原子含有重合体を含む電荷輸送性ワニスを用いることで、電荷輸送性、平坦性及び均一性に優れる電荷輸送性薄膜が得られる。また、このような特性を有する電荷輸送性薄膜は、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。特に、この薄膜を有機EL素子の正孔注入層に適用することで、低駆動電圧の有機EL素子を得ることができる。更に、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。 By using the charge transporting varnish containing the fluorine atom-containing polymer of the present invention, a charge transporting thin film excellent in charge transporting property, flatness and uniformity can be obtained. In addition, the charge transporting thin film having such characteristics can be suitably used as a thin film for electronic devices including organic EL elements. In particular, by applying this thin film to a hole injection layer of an organic EL element, an organic EL element with a low driving voltage can be obtained. Furthermore, since the charge transporting varnish of the present invention can produce a thin film with excellent charge transportability with good reproducibility even when using various wet processes that can be formed into a large area, such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
 更に、本発明の電荷輸送性薄膜は、帯電防止膜、有機薄膜太陽電池の陽極バッファ層等としても使用できる。 Furthermore, the charge transporting thin film of the present invention can be used as an antistatic film, an anode buffer layer of an organic thin film solar cell, or the like.
[フッ素原子含有重合体]
 本発明のフッ素原子含有重合体は、下記式(1)又は(2)で表されるものである。
Figure JPOXMLDOC01-appb-C000005
[Fluorine atom-containing polymer]
The fluorine atom-containing polymer of the present invention is represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000005
 式(1)及び(2)中、窒素原子は、ベンゼン環におけるA1~A3の結合位置に対して、メタ位又はパラ位に結合していることが好ましい。 In the formulas (1) and (2), the nitrogen atom is preferably bonded to the meta position or the para position with respect to the bonding position of A 1 to A 3 in the benzene ring.
 式(1)及び(2)中、A1~A3は、炭素数1~6のフルオロアルカンジイル基を表す。フルオロアルカンジイル基は、アルカンジイル基の炭素原子に結合した水素原子の一部又は全部がフッ素原子で置換されたものであれば、特に限定されない。 In formulas (1) and (2), A 1 to A 3 represent a fluoroalkanediyl group having 1 to 6 carbon atoms. The fluoroalkanediyl group is not particularly limited as long as part or all of the hydrogen atoms bonded to the carbon atoms of the alkanediyl group are substituted with fluorine atoms.
 フルオロアルカンジイル基の具体例としては、モノフルオロメタンジイル基、パーフルオロメタンジイル基、2,2,2-トリフルオロエタン-1,1-ジイル基、パーフルオロエタン-1,1-ジイル基、パーフルオロエタン-1,2-ジイル基、3-フルオロプロパン-1,2-ジイル基、3,3,3-トリフルオロプロパン-1,1-ジイル基、1,1-ジフルオロプロパン-1,3-ジイル基、パーフルオロプロパン-1,1-ジイル基、パーフルオロプロパン-1,2-ジイル基、パーフルオロプロパン-1,3-ジイル基、パーフルオロプロパン-2,2-ジイル基、2-メチル-2-フルオロプロパン-1,3-ジイル基、3,4,4-トリフルオロブタン-1,2-ジイル基、4,4,4-トリフルオロブタン-1,3-ジイル基、2,2,3,3-テトラフルオロブタン-1,4-ジイル基、パーフルオロブタン-1,1-ジイル基、パーフルオロブタン-1,2-ジイル基、パーフルオロブタン-1,3-ジイル基、パーフルオロブタン-1,4-ジイル基、1-フルオロペンタン-1,1-ジイル基、4,5,5-トリフルオロペンタン-1,5-ジイル基、2,2,3,3,4,4-ヘキサフルオロペンタン-1,5-ジイル基、パーフルオロペンタン-1,1-ジイル基、パーフルオロペンタン-1,2-ジイル基、パーフルオロペンタン-1,3-ジイル基、パーフルオロペンタン-1,4-ジイル基、パーフルオロペンタン-1,5-ジイル基、2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル基、パーフルオロヘキサン-1,1-ジイル基、パーフルオロヘキサン-1,2-ジイル基、パーフルオロヘキサン-1,3-ジイル基、パーフルオロヘキサン-1,4-ジイル基、パーフルオロヘキサン-1,5-ジイル基、パーフルオロヘキサン-1,6-ジイル基等が挙げられる。 Specific examples of the fluoroalkanediyl group include a monofluoromethanediyl group, a perfluoromethanediyl group, a 2,2,2-trifluoroethane-1,1-diyl group, a perfluoroethane-1,1-diyl group, Perfluoroethane-1,2-diyl group, 3-fluoropropane-1,2-diyl group, 3,3,3-trifluoropropane-1,1-diyl group, 1,1-difluoropropane-1,3 -Diyl group, perfluoropropane-1,1-diyl group, perfluoropropane-1,2-diyl group, perfluoropropane-1,3-diyl group, perfluoropropane-2,2-diyl group, 2- Methyl-2-fluoropropane-1,3-diyl group, 3,4,4-trifluorobutane-1,2-diyl group, 4,4,4-trifluorobutane-1,3-diyl group, 2,3,3-Tetraf Fluorobutane-1,4-diyl group, perfluorobutane-1,1-diyl group, perfluorobutane-1,2-diyl group, perfluorobutane-1,3-diyl group, perfluorobutane-1,4- Diyl group, 1-fluoropentane-1,1-diyl group, 4,5,5-trifluoropentane-1,5-diyl group, 2,2,3,3,4,4-hexafluoropentane-1, 5-diyl group, perfluoropentane-1,1-diyl group, perfluoropentane-1,2-diyl group, perfluoropentane-1,3-diyl group, perfluoropentane-1,4-diyl group, perfluoropentane-1,4-diyl group Fluoropentane-1,5-diyl group, 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diyl group, perfluorohexane-1,1-diyl group, perfluoro Hexane-1,2-diyl group, perfluoro Hexane-1,3-diyl group, perfluorohexane-1,4-diyl group, perfluorohexane-1,5-diyl group, perfluoro-1,6-diyl group and the like.
 フルオロアルカンジイル基としては、炭素数1~6のパーフルオロアルカンジイル基(すなわち、アルカンジイル基の炭素原子に結合した水素原子の全部がフッ素原子で置換されたもの)が好ましく、特に、パーフルオロメタンジイル基、パーフルオロエタン-1,2-ジイル基、パーフルオロプロパン-1,3-ジイル基、パーフルオロプロパン-2,2-ジイル基、パーフルオロブタン-1,4-ジイル基、パーフルオロペンタン-1,5-ジイル基、パーフルオロヘキサン-1,6-ジイル基等が好ましい。 As the fluoroalkanediyl group, a perfluoroalkanediyl group having 1 to 6 carbon atoms (that is, all hydrogen atoms bonded to carbon atoms of the alkanediyl group are substituted with fluorine atoms) is preferable. Methanediyl group, perfluoroethane-1,2-diyl group, perfluoropropane-1,3-diyl group, perfluoropropane-2,2-diyl group, perfluorobutane-1,4-diyl group, perfluoro Pentane-1,5-diyl group, perfluorohexane-1,6-diyl group and the like are preferable.
 式(1)及び(2)中、Ar1~Ar3は、それぞれ独立に、炭素数6~20のアリーレン基又は炭素数2~20のヘテロアリーレン基を表す。これらの基は、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基で置換されていてもよい。また、各Ar1、各Ar2及びAr3は、互いに同一でも異なっていてもよいが、重合体の合成のしやすさの観点から、同じ基であることが好ましい。 In the formulas (1) and (2), Ar 1 to Ar 3 each independently represents an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms. These groups are a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1. Or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 . Further, each Ar 1 , each Ar 2 and Ar 3 may be the same or different from each other, but are preferably the same group from the viewpoint of ease of synthesis of the polymer.
 Ar1~Ar3としては、フルオレン、ベンゼン、ナフタレン、ビフェニル又はこれらの誘導体に由来する基が好ましい。特に、Ar1~Ar3としては、下記式(3)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000006
Ar 1 to Ar 3 are preferably groups derived from fluorene, benzene, naphthalene, biphenyl or derivatives thereof. In particular, as Ar 1 to Ar 3 , a group represented by the following formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000006
 式(3)中、R11及びR12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、又は炭素数2~20のヘテロアリール基を表す。これらのうち、ワニスに用いられる溶媒に対する溶解性の観点から、R11及びR12が、ともにアルキル基であることが好ましい。前記アルキル基としては、特に、炭素数4~10であるものが好ましい。 In formula (3), R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a carbon number of 6 Represents an aryl group having ˜20 or a heteroaryl group having 2 to 20 carbon atoms. Of these, it is preferable that R 11 and R 12 are both alkyl groups from the viewpoint of solubility in the solvent used for the varnish. As the alkyl group, those having 4 to 10 carbon atoms are particularly preferable.
 R13及びR14は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。また、R13及びR14がそれぞれ2以上存在する場合は、各R13及びR14は、互いに同一でも異なっていてもよい。 R 13 and R 14 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon atom optionally substituted with Z 1 It represents an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 . When two or more R 13 and R 14 are present, each R 13 and R 14 may be the same as or different from each other.
 式(3)中、a及びbは、それぞれ独立に、0~3の整数を表すが、原料化合物の入手容易性、本発明の重合体の溶解性、電荷輸送性等を向上させる観点から、0~2が好ましく、0又は1がより好ましく、0が最適である。特に、a及びbが、ともに0であることが好ましい。 In formula (3), a and b each independently represent an integer of 0 to 3, but from the viewpoint of improving the availability of the raw material compound, the solubility of the polymer of the present invention, the charge transportability, and the like. 0 to 2 are preferred, 0 or 1 is more preferred, and 0 is optimal. In particular, both a and b are preferably 0.
 式(1)及び(2)中、X1~X4は、それぞれ独立に、架橋性基を表す。前記架橋性基としては、重合性炭素炭素二重結合、又はオキシラン環若しくはオキセタン環を含む基が好ましい。具体的には、下記式で表される基から選ばれるものが好ましい。
Figure JPOXMLDOC01-appb-C000007
In the formulas (1) and (2), X 1 to X 4 each independently represent a crosslinkable group. The crosslinkable group is preferably a polymerizable carbon-carbon double bond, or a group containing an oxirane ring or an oxetane ring. Specifically, those selected from groups represented by the following formula are preferred.
Figure JPOXMLDOC01-appb-C000007
 式中、Raは、水素原子又はメチル基を表す。Rb及びRdは、それぞれ独立に、水素原子、又は炭素数1~6のアルキル基を表すが、メチル基、エチル基が好ましい。Rc、Re及びRfは、それぞれ独立に、酸素原子、硫黄原子又は窒素原子を含んでいてもよい炭素数1~8のアルキレン基を表す。Rc、Re及びRfとしては、酸素原子を含んでいてもよい炭素数1~8のアルキレン基が好ましい。破線は、結合手を表す。 In the formula, R a represents a hydrogen atom or a methyl group. R b and R d each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group. R c , R e and R f each independently represents an alkylene group having 1 to 8 carbon atoms which may contain an oxygen atom, a sulfur atom or a nitrogen atom. R c , R e and R f are preferably an alkylene group having 1 to 8 carbon atoms which may contain an oxygen atom. A broken line represents a bond.
 式(1)及び(2)中、Y1~Y4は、それぞれ独立に、単結合、又は炭素数6~20のアリーレン基を表す。前記アリーレン基としては、1,3-フェニレン基、1,4-フェニレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,7-ナフチレン基、2,6-ナフチレン基、4,4'-ビフェニリレン基等が挙げられる。これらのうち、Y1~Y4としては、単結合、1,3-フェニレン基、1,4-フェニレン基が好ましい。また、各Y1、各Y2、各Y3及び各Y4は、互いに同一でも異なっていてもよいが、モノマーの合成しやすさの観点から、同じ基であることが好ましい。 In formulas (1) and (2), Y 1 to Y 4 each independently represents a single bond or an arylene group having 6 to 20 carbon atoms. Examples of the arylene group include 1,3-phenylene group, 1,4-phenylene group, 1,5-naphthylene group, 1,6-naphthylene group, 1,7-naphthylene group, 2,6-naphthylene group, 4, Examples include 4′-biphenylylene group. Of these, Y 1 to Y 4 are preferably a single bond, a 1,3-phenylene group, or a 1,4-phenylene group. Each Y 1 , each Y 2 , each Y 3 and each Y 4 may be the same or different from each other, but are preferably the same group from the viewpoint of ease of monomer synthesis.
 式(1)及び(2)中、R1~R10は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表す。また、R1~R10がそれぞれ2以上存在する場合は、各R1~R10は、互いに同一でも異なっていてもよい。 In formulas (1) and (2), R 1 to R 10 are each independently a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, or Z 2 Represents an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or a heteroaryloxy group having 2 to 20 carbon atoms, which may be substituted with When two or more R 1 to R 10 are present, each R 1 to R 10 may be the same as or different from each other.
 Z1は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。 Z 1 is a halogen atom, a nitro group or a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3. Group, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms.
 Z2は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。 Z 2 represents a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3. Represents an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. .
 Z3は、ハロゲン原子、ニトロ基又はシアノ基を表す。 Z 3 represents a halogen atom, a nitro group or a cyano group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Straight chain having 1 to 20 carbon atoms such as s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group Or a branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as a bicyclooctyl group, a bicyclononyl group, and a bicyclodecyl group.
 炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。 The alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyl group, n-1-propenyl group, n-2-propenyl group and 1-methylethenyl group. N-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1 -Propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl group, n-1-decenyl group, n-1-eicocenyl group and the like.
 炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。 The alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1- Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4 -Pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, n Examples include a -1-decynyl group, an n-1-pentadecynyl group, and an n-1-eicosinyl group.
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 Specific examples of the heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
 炭素数1~20のアルコキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~20の直鎖状又は分岐状アルコキシ基;シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基、ビシクロブチルオキシ基、ビシクロペンチルオキシ基、ビシクロヘキシルオキシ基、ビシクロヘプチルオキシ基、ビシクロオクチルオキシ基、ビシクロノニルオキシ基、ビシクロデシルオキシ基等の炭素数3~20の環状アルコキシ基が挙げられる。 The alkoxy group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group. Group, s-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. To 20 linear or branched alkoxy groups; cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group, cyclodecyloxy group, Bicyclobutyloxy group, bicyclopentyloxy group, bicyclohexyloxy group, bicyclohept Aryloxy group, bicyclooctyl group, vicinal chrono oxy group, and cyclic alkoxy groups having 3 to 20 carbon atoms such as bicyclo-decyl group.
 炭素数2~20のアルケニルオキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニルオキシ基、n-1-プロペニルオキシ基、n-2-プロペニルオキシ基、1-メチルエテニルオキシ基、n-1-ブテニルオキシ基、n-2-ブテニルオキシ基、n-3-ブテニルオキシ基、2-メチル-1-プロペニルオキシ基、2-メチル-2-プロペニルオキシ基、1-エチルエテニルオキシ基、1-メチル-1-プロペニルオキシ基、1-メチル-2-プロペニルオキシ基、n-1-ペンテニルオキシ基、n-1-デセニルオキシ基、n-1-エイコセニルオキシ基等が挙げられる。 The alkenyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyloxy group, n-1-propenyloxy group, n-2-propenyloxy group, -Methylethenyloxy group, n-1-butenyloxy group, n-2-butenyloxy group, n-3-butenyloxy group, 2-methyl-1-propenyloxy group, 2-methyl-2-propenyloxy group, 1- Ethylethenyloxy group, 1-methyl-1-propenyloxy group, 1-methyl-2-propenyloxy group, n-1-pentenyloxy group, n-1-decenyloxy group, n-1-eicocenyloxy group Etc.
 炭素数2~20のアルキニルオキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニルオキシ基、n-1-プロピニルオキシ基、n-2-プロピニルオキシ基、n-1-ブチニルオキシ基、n-2-ブチニルオキシ基、n-3-ブチニルオキシ基、1-メチル-2-プロピニルオキシ基、n-1-ペンチニルオキシ基、n-2-ペンチニルオキシ基、n-3-ペンチニルオキシ基、n-4-ペンチニルオキシ基、1-メチル-n-ブチニルオキシ基、2-メチル-n-ブチニルオキシ基、3-メチル-n-ブチニルオキシ基、1,1-ジメチル-n-プロピニルオキシ基、n-1-ヘキシニルオキシ基、n-1-デシニルオキシ基、n-1-ペンタデシニルオキシ基、n-1-エイコシニルオキシ基等が挙げられる。 The alkynyloxy group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyloxy group, n-1-propynyloxy group, n-2-propynyloxy group, n-1-butynyloxy group, n-2-butynyloxy group, n-3-butynyloxy group, 1-methyl-2-propynyloxy group, n-1-pentynyloxy group, n-2-pentynyloxy group, n -3-pentynyloxy group, n-4-pentynyloxy group, 1-methyl-n-butynyloxy group, 2-methyl-n-butynyloxy group, 3-methyl-n-butynyloxy group, 1,1-dimethyl- n-propynyloxy group, n-1-hexynyloxy group, n-1-decynyloxy group, n-1-pentadecynyloxy group, n-1-eicosinyloxy group, etc. The
 炭素数6~20のアリールオキシ基の具体例としては、フェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントリルオキシ基、2-アントリルオキシ基、9-アントリルオキシ基、1-フェナントリルオキシ基、2-フェナントリルオキシ基、3-フェナントリルオキシ基、4-フェナントリルオキシ基、9-フェナントリルオキシ基等が挙げられる。 Specific examples of the aryloxy group having 6 to 20 carbon atoms include phenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthryloxy group, 2-anthryloxy group, 9-anthryloxy Group, 1-phenanthryloxy group, 2-phenanthryloxy group, 3-phenanthryloxy group, 4-phenanthryloxy group, 9-phenanthryloxy group and the like.
 炭素数2~20のヘテロアリールオキシ基の具体例としては、2-チエニルオキシ基、3-チエニルオキシ基、2-フラニルオキシ基、3-フラニルオキシ基、2-オキサゾリルオキシ基、4-オキサゾリルオキシ基、5-オキサゾリルオキシ基、3-イソオキサゾリルオキシ基、4-イソオキサゾリルオキシ基、5-イソオキサゾリルオキシ基、2-チアゾリルオキシ基、4-チアゾリルオキシ基、5-チアゾリルオキシ基、3-イソチアゾリルオキシ基、4-イソチアゾリルオキシ基、5-イソチアゾリルオキシ基、2-イミダゾリルオキシ基、4-イミダゾリルオキシ基、2-ピリジルオキシ基、3-ピリジルオキシ基、4-ピリジルオキシ基等が挙げられる。 Specific examples of the heteroaryloxy group having 2 to 20 carbon atoms include 2-thienyloxy group, 3-thienyloxy group, 2-furanyloxy group, 3-furanyloxy group, 2-oxazolyloxy group, 4-oxazolyl Ruoxy group, 5-oxazolyloxy group, 3-isoxazolyloxy group, 4-isoxazolyloxy group, 5-isoxazolyloxy group, 2-thiazolyloxy group, 4-thiazolyloxy group, 5 -Thiazolyloxy group, 3-isothiazolyloxy group, 4-isothiazolyloxy group, 5-isothiazolyloxy group, 2-imidazolyloxy group, 4-imidazolyloxy group, 2-pyridyloxy group, 3-pyridyloxy group Group, 4-pyridyloxy group and the like.
 R1~R10としては、炭素数1~6のアルキル基が好ましく、メチル基、エチル基がより好ましい。 R 1 to R 10 are preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
 式(1)及び(2)中、p、q、t、u、w及びxは、それぞれ独立に、0~4の整数を表し、r、s、y及びzは、それぞれ独立に、0~5の整数を表すが、原料化合物の入手容易性、本発明の重合体の溶解性、電荷輸送性等を向上させる観点から、0~2が好ましく、0又は1がより好ましい。 In the formulas (1) and (2), p, q, t, u, w and x each independently represent an integer of 0 to 4, and r, s, y and z each independently represent 0 to Represents an integer of 5, preferably 0 to 2, more preferably 0 or 1, from the viewpoint of improving the availability of the raw material compound, the solubility of the polymer of the present invention, the charge transporting property, and the like.
 式(1)中、m及びnは、それぞれ式(1)中の左の繰り返し単位(以下、繰り返し単位mという。)及び右の繰り返し単位(以下、繰り返し単位nという。)の組成比を表し、0≦m≦1、0<n≦1かつm+n=1を満たす正数を表す。式(1)で表されるフッ素原子含有重合体は、繰り返し単位nを必須単位として含み、繰り返し単位nのみを含むものでもよく、繰り返し単位m及びnの両方を含んでもよい。式(1)で表されるフッ素原子含有重合体が繰り返し単位m及びnの両方を含む場合、m及びnは、0.1≦m<1、0<n≦0.9を満たすことが好ましく、0.5≦m≦0.99、0.01≦n≦0.5を満たすことがより好ましく、0.8≦m≦0.99、0.01≦n≦0.2を満たすことがより一層好ましい。 In formula (1), m and n represent the composition ratio of the left repeating unit (hereinafter referred to as repeating unit m) and the right repeating unit (hereinafter referred to as repeating unit n) in formula (1), respectively. , 0 ≦ m ≦ 1, 0 <n ≦ 1, and m + n = 1. The fluorine atom-containing polymer represented by the formula (1) includes the repeating unit n as an essential unit, may include only the repeating unit n, or may include both the repeating units m and n. When the fluorine atom-containing polymer represented by the formula (1) includes both the repeating units m and n, m and n preferably satisfy 0.1 ≦ m <1, 0 <n ≦ 0.9. 0.5 ≦ m ≦ 0.99 and 0.01 ≦ n ≦ 0.5 are more preferable, and 0.8 ≦ m ≦ 0.99 and 0.01 ≦ n ≦ 0.2 are satisfied. Even more preferred.
 式(2)中、kは、1以上の整数を表す。kは、500以下が好ましく、100以下がより好ましく、50以下がより一層好ましい。 In the formula (2), k represents an integer of 1 or more. k is preferably 500 or less, more preferably 100 or less, and even more preferably 50 or less.
 本発明のフッ素原子含有重合体の重量平均分子量(Mw)の下限は、当該重合体の電荷輸送性を向上させる観点から、好ましくは1,000、より好ましくは3,000、より一層好ましくは5,000であり、その上限は、当該重合体の溶解性を向上させる観点から、好ましくは500,000、より好ましくは100,000、より一層好ましくは50,000である。なお、本発明においてMwは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。 The lower limit of the weight average molecular weight (Mw) of the fluorine atom-containing polymer of the present invention is preferably 1,000, more preferably 3,000, and still more preferably 5 from the viewpoint of improving the charge transport property of the polymer. The upper limit is preferably 500,000, more preferably 100,000, and even more preferably 50,000, from the viewpoint of improving the solubility of the polymer. In the present invention, Mw is a measured value in terms of polystyrene by gel permeation chromatography (GPC).
[フッ素原子含有重合体の合成方法]
 式(1)で表されるフッ素原子含有重合体の合成方法としては、Y1及びY2がアリーレン基である場合は、カップリング反応を利用した縮合重合が好適である。前記カップリング反応としては、特に限定されない。例えば、鈴木・宮浦カップリング反応によって合成する場合は、下記スキームAで表されるように、式(4)で表されるアミン誘導体、式(5)で表されるアミン誘導体、及び式(6)で表される芳香族化合物を、触媒の存在下で反応させる方法が挙げられる。
[Synthesis Method of Fluorine Atom-Containing Polymer]
As a method for synthesizing the fluorine atom-containing polymer represented by the formula (1), when Y 1 and Y 2 are an arylene group, condensation polymerization using a coupling reaction is suitable. The coupling reaction is not particularly limited. For example, when synthesized by a Suzuki-Miyaura coupling reaction, as represented by the following scheme A, an amine derivative represented by formula (4), an amine derivative represented by formula (5), and formula (6) And a method of reacting the aromatic compound represented by (4) in the presence of a catalyst.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、A1、A2、Ar1、X1、X2、Y1、Y2、R1~R6、p、q、r、s、t及びuは、前記と同じ。XA及びXBは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表す。XCは、それぞれ独立に、下記式(7)又は(8)で表される基を表す。
Figure JPOXMLDOC01-appb-C000009
(式中、A11及びA12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。A13は、炭素数1~20のアルカンジイル基又は炭素数6~20のアリーレン基を表す。)
In the formula, A 1 , A 2 , Ar 1 , X 1 , X 2 , Y 1 , Y 2 , R 1 to R 6 , p, q, r, s, t and u are the same as described above. X A and X B each independently represent a halogen atom or a pseudohalogen group. X C each independently represents a group represented by the following formula (7) or (8).
Figure JPOXMLDOC01-appb-C000009
(Wherein A 11 and A 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms. A 13 represents an alkanediyl group having 1 to 20 carbon atoms. Represents a group or an arylene group having 6 to 20 carbon atoms.)
 ハロゲン原子、アルキル基及びアリール基の具体例としては、前述したものと同じものが挙げられる。 Specific examples of the halogen atom, alkyl group and aryl group are the same as those described above.
 擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等のフルオロアルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。 Examples of the pseudohalogen group include fluoroalkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group, and the like. It is done.
 A13で表される炭素数1~20のアルカンジイル基としては、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、2-エチル-2-メチルプロパン-1,3-ジイル基、2,2-ジエチルプロパン-1,3-ジイル基、2-メチル-2-プロピルプロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-2,3-ジイル基、ブタン-1,4-ジイル基、2-メチルブタン-2,3-ジイル基、2,3-ジメチルブタン-2,3-ジイル基、ペンタン-1,3-ジイル基、ペンタン-1,5-ジイル基、ペンタン-2,3-ジイル基、ペンタン-2,4-ジイル基、2-メチルペンタン-2,3-ジイル基、3-メチルペンタン-2,3-ジイル基、4-メチルペンタン-2,3-ジイル基、2,3-ジメチルペンタン-2,3-ジイル基、3-メチルペンタン-2,4-ジイル基、3-エチルペンタン-2,4-ジイル基、3,3-ジメチルペンタン-2,4-ジイル基、3,3-ジメチルペンタン-2,4-ジイル基、2,4-ジメチルペンタン-2,4-ジイル基、ヘキサン-1,6-ジイル基、ヘキサン-1,2-ジイル基、ヘキサン-1,3-ジイル基、ヘキサン-2,3-ジイル基、ヘキサン-2,4-ジイル基、ヘキサン-2,5-ジイル基、2-メチルヘキサン-2,3-ジイル基、4-メチルヘキサン-2,3-ジイル基、3-メチルヘキサン-2,4-ジイル基、2,3-ジメチルヘキサン-2,4-ジイル基、2,4-ジメチルヘキサン-2,4-ジイル基、2,5-ジメチルヘキサン-2,4-ジイル基、2-メチルヘキサン-2,5-ジイル基、3-メチルヘキサン-2,5-ジイル基、2,5-ジメチルヘキサン-2,5-ジイル基等が挙げられる。 Examples of the alkanediyl group having 1 to 20 carbon atoms represented by A 13 include an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, and 2,2-dimethylpropane-1,3- Diyl group, 2-ethyl-2-methylpropane-1,3-diyl group, 2,2-diethylpropane-1,3-diyl group, 2-methyl-2-propylpropane-1,3-diyl group, butane -1,3-diyl group, butane-2,3-diyl group, butane-1,4-diyl group, 2-methylbutane-2,3-diyl group, 2,3-dimethylbutane-2,3-diyl group Pentane-1,3-diyl group, pentane-1,5-diyl group, pentane-2,3-diyl group, pentane-2,4-diyl group, 2-methylpentane-2,3-diyl group, 3 -Methylpentane-2,3-diyl group, 4-methylpentane-2,3-diyl group 2,3-dimethylpentane-2,3-diyl group, 3-methylpentane-2,4-diyl group, 3-ethylpentane-2,4-diyl group, 3,3-dimethylpentane-2,4-diyl Group, 3,3-dimethylpentane-2,4-diyl group, 2,4-dimethylpentane-2,4-diyl group, hexane-1,6-diyl group, hexane-1,2-diyl group, hexane- 1,3-diyl group, hexane-2,3-diyl group, hexane-2,4-diyl group, hexane-2,5-diyl group, 2-methylhexane-2,3-diyl group, 4-methylhexane -2,3-diyl group, 3-methylhexane-2,4-diyl group, 2,3-dimethylhexane-2,4-diyl group, 2,4-dimethylhexane-2,4-diyl group, 2, 5-dimethylhexane-2,4-diyl group, 2-methylhexane-2,5-diyl Group, 3-methylhexane-2,5-diyl group, 2,5-dimethylhexane-2,5-diyl group and the like.
 炭素数6~20のアリーレン基としては、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、1,8-ナフチレン基、1,2-アントリレン基、2,3-アントリレン基、1,2-フェナントリレン基、3,4-フェナントリレン基、9,10-フェナントリレン基等が挙げられる。 Examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,8-naphthylene group, 1,2-anthrylene group, and 2,3- Examples include an anthrylene group, a 1,2-phenanthrylene group, a 3,4-phenanthrylene group, and a 9,10-phenanthrylene group.
 スキームAの反応は無溶媒でも行えるが、通常、溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができ、例えば、テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド;メチルイソブチルケトン、シクロヘキサノン等のケトン;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。これらの溶媒は、1種単独で又は2種以上を混合して用いることができる。これらのうち、特に、1,4-ジオキサン、トルエン、キシレン等が好ましい。 The reaction of Scheme A can be performed without a solvent, but is usually performed using a solvent. Any solvent can be used as long as it does not inhibit the reaction. Examples thereof include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc ), Amides such as N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; benzene, toluene, xylene and the like And aromatic hydrocarbons. These solvent can be used individually by 1 type or in mixture of 2 or more types. Of these, 1,4-dioxane, toluene, xylene and the like are particularly preferable.
 前記反応において用いる触媒としては、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリt-ブチルホスフィン)パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(II)(Pd(OAc)2)等のパラジウム触媒等が挙げられる。 The catalyst used in the above reaction includes [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)), tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ). Bis (triphenylphosphine) dichloropalladium (Pd (PPh 3 ) 2 Cl 2 ), bis (benzylideneacetone) palladium (Pd (dba) 2 ), tris (benzylideneacetone) dipalladium (Pd 2 (dba) 3 ), Examples thereof include palladium catalysts such as bis (tri-t-butylphosphine) palladium (Pd (Pt-Bu 3 ) 2 ) and palladium (II) acetate (Pd (OAc) 2 ).
 式(6)で表される芳香族化合物の仕込み比は、式(4)で表されるアミン誘導体及び式(5)で表されるアミン誘導体の合計に対し、モル比で0.83~1.2が好適である。なお、式(4)で表されるアミン誘導体と式(5)で表されるアミン誘導体との仕込み比は、繰り返し単位m及びnの組成比が前述した範囲となるよう、適宜設定すればよい。 The charging ratio of the aromatic compound represented by the formula (6) is 0.83 to 1 in terms of a molar ratio with respect to the total of the amine derivative represented by the formula (4) and the amine derivative represented by the formula (5). .2 is preferred. In addition, what is necessary is just to set suitably the preparation ratio of the amine derivative represented by Formula (4), and the amine derivative represented by Formula (5) so that the composition ratio of the repeating units m and n may become the range mentioned above. .
 前記反応の反応温度は、通常、40~200℃である。反応時間は反応温度によって適宜設定されるが、通常、30分間から50時間程度である。 The reaction temperature of the reaction is usually 40 to 200 ° C. The reaction time is appropriately set depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
 式(4)で表されるアミン誘導体は、下記スキームBで表されるように、式(9)で表されるアミン化合物と式(10)で表されるハロゲン化化合物とを触媒存在下で縮合反応させ、得られた化合物を更に式(11)で表されるハロゲン化化合物及び式(12)で表されるハロゲン化化合物と縮合反応させ、式(4-1)で表されるアミン誘導体を合成した後、得られたアミン誘導体を公知のハロゲン化剤と反応させることによって合成することができる。 The amine derivative represented by the formula (4) comprises an amine compound represented by the formula (9) and a halogenated compound represented by the formula (10) in the presence of a catalyst, as represented by Scheme B below. An amine derivative represented by the formula (4-1) is subjected to a condensation reaction with the halogenated compound represented by the formula (11) and the halogenated compound represented by the formula (12). Can be synthesized by reacting the resulting amine derivative with a known halogenating agent.
Figure JPOXMLDOC01-appb-C000010
(式中、A1、R1~R4、Y1、XA、p、q、r及びsは、前記と同じ。Y1'は、炭素数6~20のアリール基を表す。Halは、ハロゲン原子又は擬ハロゲン基を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, A 1 , R 1 to R 4 , Y 1 , X A , p, q, r and s are the same as described above. Y 1 ′ represents an aryl group having 6 to 20 carbon atoms. Hal represents Represents a halogen atom or a pseudohalogen group.)
 また、式(4)で表されるアミン誘導体は、下記スキームCで表されるように、式(13)で表されるハロゲン化化合物と式(14)で表されるアミン化合物と式(15)で表されるアミン化合物とを、触媒存在下で縮合反応させ、式(4-1)で表されるアミン誘導体を合成した後、得られたアミン誘導体を公知のハロゲン化剤と反応させることによっても合成することができる。 In addition, the amine derivative represented by the formula (4) includes a halogenated compound represented by the formula (13), an amine compound represented by the formula (14), and the formula (15) as represented by the following scheme C. And the amine compound represented by formula (4-1) is subjected to a condensation reaction in the presence of a catalyst to synthesize the amine derivative represented by formula (4-1), and then the obtained amine derivative is reacted with a known halogenating agent. Can also be synthesized.
Figure JPOXMLDOC01-appb-C000011
(式中、A1、R1~R4、Y1、Y1'、XA、p、q、r及びsは、前記と同じ。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, A 1 , R 1 to R 4 , Y 1 , Y 1 ′, X A , p, q, r and s are the same as described above.)
 アミン化合物とハロゲン化化合物との仕込み比は、全アミン化合物の全NH基の物質量に対して、全ハロゲン化化合物の全Hal基を当量以上とすればよいが、1~1.5当量程度が好適である。 The charging ratio of the amine compound to the halogenated compound may be such that the total Hal group of the total halogenated compound is equal to or more than the equivalent of the total amount of NH groups of the total amine compound, but about 1 to 1.5 equivalent Is preferred.
 触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh3)4、Pd(PPh3)2Cl2、Pd(dba)2、Pd2(dba)3、Pd(P-t-Bu3)2、Pd(OAc)2等のパラジウム触媒等が挙げられる。これらの触媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。 Examples of the catalyst include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , Pd (dba) 2 , Pd 2 (dba) 3 , Examples thereof include palladium catalysts such as Pd (Pt-Bu 3 ) 2 and Pd (OAc) 2 . These catalysts may be used individually by 1 type, and may be used in combination of 2 or more type. These catalysts may be used together with a known appropriate ligand.
 触媒の使用量は、ハロゲン化化合物1molに対し、0.0001~0.5molとすることができるが、0.001~0.1mol程度が好適である。また、配位子を用いる場合、その使用量は、使用する金属錯体に対して0.5~50当量とすることができるが、1~10当量が好適である。 The amount of the catalyst used can be 0.0001 to 0.5 mol with respect to 1 mol of the halogenated compound, but is preferably about 0.001 to 0.1 mol. When a ligand is used, the amount used can be 0.5 to 50 equivalents relative to the metal complex to be used, but 1 to 10 equivalents is preferred.
 ハロゲン化剤としては、公知のものを使用することができ、具体的には、N-ブロモスクシンイミド等が挙げられる。 As the halogenating agent, known ones can be used, and specific examples include N-bromosuccinimide.
 ハロゲン化剤の使用量は、式(4-1)で表される化合物1molに対し、4~6mol程度が好適である。 The amount of the halogenating agent used is preferably about 4 to 6 mol with respect to 1 mol of the compound represented by the formula (4-1).
 スキームB及びCに示される各反応は、溶媒中で行ってもよい。溶媒を使用する場合、その種類は反応に悪影響を及ぼさないものであれば特に限定されない。このうち、縮合反応において好適に使用可能な溶媒の具体例としては、脂肪族炭化水素(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、アミド(N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等)、ラクタム及びラクトン(N-メチルピロリドン、γ-ブチロラクトン等)、尿素誘導体(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド(ジメチルスルホキシド、スルホラン等)、ニトリル(アセトニトリル、プロピオニトリル、ブチロニトリル等)等が挙げられる。また、ハロゲン化剤との反応において好適に使用可能な溶媒の具体例としては、縮合反応において使用可能な溶媒として例示したもののほかに、ハロゲン化芳香族炭化水素(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)等が挙げられる。なお、溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 Each reaction shown in Schemes B and C may be performed in a solvent. When using a solvent, the kind will not be specifically limited if it does not have a bad influence on reaction. Among these, specific examples of solvents that can be suitably used in the condensation reaction include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, Dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, t-butyl methyl ether) , Tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), amides (N, N-dimethylformamide (DMF), N, N-dimethylacetamide, etc.), lactams and lactones ( N-methylpyrrolidone, γ-butyrolactone, etc.), urea Conductor (N, N-dimethyl imidazolidinone, tetramethyl urea, etc.), sulfoxides (dimethyl sulfoxide, sulfolane), nitriles (acetonitrile, propionitrile, butyronitrile, etc.) and the like. Specific examples of the solvent that can be suitably used in the reaction with the halogenating agent include those exemplified as the solvent that can be used in the condensation reaction, and halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dibenzene). Chlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc.). In addition, a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。 The reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent to be used, and is particularly preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
 反応終了後は、常法に従って後処理をし、目的とするアミン誘導体を得ることができる。 After completion of the reaction, the target amine derivative can be obtained by post-treatment according to a conventional method.
 式(5)で表されるアミン誘導体は、下記スキームDで表されるように、式(16)で表されるアミン化合物と式(17)で表されるハロゲン化化合物と式(18)で表されるハロゲン化化合物とを触媒存在下で反応させ、得られた化合物を更に式(10)で表されるハロゲン化化合物と反応させ、式(5-1)で表されるアミン誘導体を合成した後、得られたアミン誘導体を公知のハロゲン化剤と反応させることによって合成することができる。 The amine derivative represented by the formula (5) is represented by the amine compound represented by the formula (16), the halogenated compound represented by the formula (17), and the formula (18) as represented by the following scheme D. The resulting halogenated compound is reacted in the presence of a catalyst, and the resulting compound is further reacted with the halogenated compound represented by formula (10) to synthesize an amine derivative represented by formula (5-1). Then, the obtained amine derivative can be synthesized by reacting with a known halogenating agent.
Figure JPOXMLDOC01-appb-C000012
(式中、A2、R5、R6、X1、X2、Y2、XA、Hal、t及びuは、前記と同じ。Y2'は、炭素数6~20のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, A 2 , R 5 , R 6 , X 1 , X 2 , Y 2 , X A , Hal, t and u are the same as described above. Y 2 ′ represents an aryl group having 6 to 20 carbon atoms. To express.)
 アミン化合物とハロゲン化化合物との仕込み比は、全アミン化合物の全NH基の物質量に対して、全ハロゲン化化合物の全Hal基を当量以上とすればよいが、1~1.5当量程度が好適である。 The charging ratio of the amine compound to the halogenated compound may be such that the total Hal group of the total halogenated compound is equal to or more than the equivalent of the total amount of NH groups of the total amine compound, but about 1 to 1.5 equivalent Is preferred.
 スキームDで表される反応において、使用可能な触媒、溶媒及びハロゲン化剤、これらの使用量、並びに反応条件は、スキームB及びCの説明において述べたものと同様である。 In the reaction represented by Scheme D, usable catalysts, solvents and halogenating agents, the amounts used, and reaction conditions are the same as those described in the description of Schemes B and C.
 式(6)で表される芳香族化合物は、従来公知の方法で合成することができる。 The aromatic compound represented by the formula (6) can be synthesized by a conventionally known method.
 式(1)で表されるフッ素原子含有重合体において、Y1及びY2が単結合である場合は、例えば、下記スキームEで表されるように、式(4')で表されるアミン誘導体、式(5')で表されるアミン誘導体、及び式(6')で表される芳香族化合物を、触媒の存在下で反応させる方法が挙げられる。 In the fluorine atom-containing polymer represented by the formula (1), when Y 1 and Y 2 are single bonds, for example, as represented by the following scheme E, an amine represented by the formula (4 ′) Examples thereof include a method in which a derivative, an amine derivative represented by the formula (5 ′), and an aromatic compound represented by the formula (6 ′) are reacted in the presence of a catalyst.
Figure JPOXMLDOC01-appb-C000013
(式中、A1、A2、Ar1、X1、X2、R1~R6、p、q、r、s、t及びuは、前記と同じ。XDは、それぞれ独立に、ハロゲン原子又は擬ハロゲン基を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, A 1 , A 2 , Ar 1 , X 1 , X 2 , R 1 to R 6 , p, q, r, s, t and u are the same as above. X D is independently Represents a halogen atom or a pseudohalogen group.)
 式(4')で表されるアミン誘導体は、スキームB及びCに示した方法に準じて合成することができる。また、式(5')で表されるフェニルアミン誘導体は、スキームDに示した方法に準じて合成することができる。式(6')で表される化合物は、従来公知の方法で合成することができる。 The amine derivative represented by the formula (4 ′) can be synthesized according to the methods shown in Schemes B and C. Further, the phenylamine derivative represented by the formula (5 ′) can be synthesized according to the method shown in Scheme D. The compound represented by the formula (6 ′) can be synthesized by a conventionally known method.
 スキームEで表される反応において、使用可能な触媒、溶媒及びハロゲン化剤、これらの使用量、並びに反応条件は、スキームAの説明において述べたものと同様である。 In the reaction represented by Scheme E, usable catalysts, solvents and halogenating agents, the amounts used, and reaction conditions are the same as those described in the description of Scheme A.
 式(2)で表されるフッ素原子含有重合体は、例えば、下記スキームFで表されるように、式(4'')で表されるアミン誘導体、及び式(6'')で表される芳香族化合物を、触媒の存在下で縮合重合させて得られた重合体を、式(9)及び(10)で表される化合物と反応させて末端を封止することで合成することができる。
Figure JPOXMLDOC01-appb-C000014
(式中、R7~R10、A3、Ar3、X3、X4、Y3、Y4、XA、XC、w、x、y及びzは、前記と同じ。)
The fluorine atom-containing polymer represented by the formula (2) is represented by, for example, an amine derivative represented by the formula (4 ″) and a formula (6 ″) as represented by the following scheme F. A polymer obtained by condensation polymerization of an aromatic compound in the presence of a catalyst is reacted with a compound represented by formulas (9) and (10) to synthesize a terminal. it can.
Figure JPOXMLDOC01-appb-C000014
(Wherein R 7 to R 10 , A 3 , Ar 3 , X 3 , X 4 , Y 3 , Y 4 , X A , X C , w, x, y and z are the same as above)
 スキームFに示される反応において、縮合重合や、式(9)及び(10)で表される化合物との反応は、スキームAに示される反応で説明したものと同様の条件によって進行することができる。 In the reaction shown in Scheme F, the condensation polymerization and the reaction with the compounds represented by formulas (9) and (10) can proceed under the same conditions as those described in the reaction shown in Scheme A. .
[電荷輸送性物質]
 本発明のフッ素原子含有重合体は、電荷輸送性物質として好適に使用できる。本発明において、電荷輸送性とは、導電性と同義であり、正孔輸送性と同義である。電荷輸送性物質とは、それ自体に電荷輸送性があるものでもよく、ドーパントと共に用いた際に電荷輸送性があるものでもよい。電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
[Charge transport material]
The fluorine atom-containing polymer of the present invention can be suitably used as a charge transport material. In the present invention, charge transportability is synonymous with conductivity and is synonymous with hole transportability. The charge transporting substance may be a substance having a charge transporting property per se, or a substance having a charge transporting property when used together with a dopant. The charge transporting varnish may be one that has charge transporting property itself, and the solid film obtained thereby may have charge transporting property.
[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、前記フッ素原子含有重合体からなる電荷輸送性物質、ドーパント、及び有機溶媒を含むものである。
[Charge transport varnish]
The charge transporting varnish of the present invention comprises a charge transporting substance comprising the fluorine atom-containing polymer, a dopant, and an organic solvent.
 前記フッ素原子含有重合体からなる電荷輸送性物質の含有量は、電荷輸送性物質の析出を抑制する観点から、ワニス中0.1~20質量%程度が好ましい。 The content of the charge transport material comprising the fluorine atom-containing polymer is preferably about 0.1 to 20% by mass in the varnish from the viewpoint of suppressing the precipitation of the charge transport material.
[ドーパント]
 前記ドーパントは、後述する有機溶媒に溶解するものであれば特に限定されないが、下記式(9)で表されるイオン化合物が好適である。
Figure JPOXMLDOC01-appb-C000015
[Dopant]
Although the said dopant will not be specifically limited if it melt | dissolves in the organic solvent mentioned later, The ionic compound represented by following formula (9) is suitable.
Figure JPOXMLDOC01-appb-C000015
 式(9)中、Eは、長周期型周期表の第13族元素を表し、Ar101~Ar104は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基を表し、フッ素原子、塩素原子、臭素原子等のハロゲン原子、シアノ基、ニトロ基、アセチル基等の炭素数2~12のアシル基、又はトリフルオロメチル基等の炭素数1~10のハロゲン化アルキル基で置換されていてもよい。 In formula (9), E represents a Group 13 element of the long-period periodic table, and Ar 101 to Ar 104 are each independently an aryl group having 6 to 20 carbon atoms or a heteroaryl having 2 to 20 carbon atoms. A halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group May be substituted with an alkyl group.
 前記第13族元素としては、ホウ素原子、アルミニウム原子、ガリウム原子が好ましく、ホウ素原子がより好ましい。炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基としては、前述したものと同様のものが挙げられる。 The group 13 element is preferably a boron atom, an aluminum atom, or a gallium atom, and more preferably a boron atom. Examples of the aryl group having 6 to 20 carbon atoms and the heteroaryl group having 2 to 20 carbon atoms are the same as those described above.
 式(9)中、M+は、オニウムイオンを表す。前記オニウムイオンとしては、ヨードニウムイオン、スルホニウムイオン、アンモニウムイオン、ホスホニウムイオン等が挙げられるが、特に、下記式(10)で表されるヨードニウムイオンが好ましい。
Figure JPOXMLDOC01-appb-C000016
In formula (9), M + represents an onium ion. Examples of the onium ions include iodonium ions, sulfonium ions, ammonium ions, phosphonium ions, and the like, and iodonium ions represented by the following formula (10) are particularly preferable.
Figure JPOXMLDOC01-appb-C000016
 式(10)中、R101及びR102は、それぞれ独立に、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基を表し、ハロゲン原子、シアノ基、ニトロ基、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基で置換されていてもよい。 In the formula (10), R 101 and R 102 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, or an alkyl group having 6 to 20 carbon atoms. Represents an aryl group or a heteroaryl group having 2 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an alkynyl group having 2 to 12 carbon atoms The aryl group having 6 to 20 carbon atoms or the heteroaryl group having 2 to 20 carbon atoms may be substituted.
 式(9)で表されるイオン化合物としては、市販品を使用し得る。 Commercial products can be used as the ionic compound represented by the formula (9).
 前記ドーパントの含有量は、素子特性を考慮すると、電荷輸送性物質に対し、質量比で0.01~10が好ましく、0.05~5がより好ましく、0.1~3がより一層好ましい。 In consideration of device characteristics, the content of the dopant is preferably 0.01 to 10, more preferably 0.05 to 5, and still more preferably 0.1 to 3 with respect to the charge transporting substance.
[フッ素原子を含有しない電荷輸送性物質]
 本発明の電荷輸送性ワニスは、必要に応じてフッ素原子を含有しない電荷輸送性物質を含んでもよい。このような電荷輸送性物質としては、アニリン誘導体、チオフェン誘導体、ピロール誘導体等の電荷輸送性オリゴマーが例として挙げられる。電荷輸送性オリゴマーの分子量は、通常200~5,000であるが、電荷輸送性の高い薄膜を与えるワニスを調製する観点から、好ましくは300以上、より好ましくは400以上、より一層好ましくは500以上であり、平坦性の高い薄膜を与える均一なワニスを調製する観点から、好ましくは4,000以下であり、より好ましくは3,000以下であり、より一層好ましくは2,000以下である。
[Charge-transporting substances that do not contain fluorine atoms]
The charge transporting varnish of the present invention may contain a charge transporting material that does not contain a fluorine atom, if necessary. Examples of such a charge transporting substance include charge transporting oligomers such as aniline derivatives, thiophene derivatives, and pyrrole derivatives. The molecular weight of the charge transporting oligomer is usually 200 to 5,000, but from the viewpoint of preparing a varnish that gives a thin film having a high charge transporting property, it is preferably 300 or more, more preferably 400 or more, and even more preferably 500 or more. From the viewpoint of preparing a uniform varnish that gives a thin film with high flatness, it is preferably 4,000 or less, more preferably 3,000 or less, and even more preferably 2,000 or less.
 前記電荷輸送性オリゴマーのうち、有機溶媒への溶解性と得られる薄膜の電荷輸送性のバランスを考慮すると、アニリン誘導体が好ましい。アニリン誘導体としては、特開2002-151272号公報に記載のオリゴアニリン誘導体、国際公開第2004/105446号に記載のオリゴアニリン化合物、国際公開第2008/032617号に記載のオリゴアニリン化合物、国際公開第2008/032616号に記載のオリゴアニリン化合物、国際公開第2013/042623号に記載のアリールジアミン化合物等が挙げられる。国際公開第2016/006674号に記載のアニリン誘導体等が挙げられる。 Of the charge transporting oligomers, an aniline derivative is preferable in consideration of the balance between solubility in an organic solvent and charge transporting property of the obtained thin film. Examples of aniline derivatives include oligoaniline derivatives described in JP-A No. 2002-151272, oligoaniline compounds described in WO 2004/105446, oligoaniline compounds described in WO 2008/032617, Examples include oligoaniline compounds described in 2008/032616 and aryldiamine compounds described in International Publication No. 2013/042623. Examples thereof include aniline derivatives described in International Publication No. 2016/006674.
 また、フッ素原子を含有しない電荷輸送性物質を使用する場合、本発明のフッ素原子含有重合体からなる電荷輸送性物質とフッ素原子を含有しない電荷輸送性物質との使用比率は、得られる有機EL素子の輝度特性をより高めることを考慮すると、フッ素原子を含有しない電荷輸送性物質に対し、質量比で、本発明のフッ素原子含有重合体からなる電荷輸送性物質を好ましくは0.1~5程度、より好ましくは0.5~3程度、より一層好ましくは0.5~1程度である。 In addition, when a charge transporting material containing no fluorine atom is used, the usage ratio of the charge transporting material comprising the fluorine atom-containing polymer of the present invention to the charge transporting material containing no fluorine atom is determined by the organic EL obtained. In consideration of further improving the luminance characteristics of the device, the charge transporting material comprising the fluorine atom-containing polymer of the present invention is preferably 0.1 to 5 by mass ratio with respect to the charge transporting material containing no fluorine atom. About 0.5, more preferably about 0.5 to 3, and still more preferably about 0.5 to 1.
[有機溶媒]
 電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質及びドーパントを良好に溶解し得る高溶解性溶媒を用いることができる。本発明のフッ素原子含有重合体は、低極性溶媒に対しても溶解性が高いため、低極性溶媒を高溶解性溶媒として使用することが可能である。
[Organic solvent]
As the organic solvent used when preparing the charge transporting varnish, a highly soluble solvent that can dissolve the charge transporting substance and the dopant well can be used. Since the fluorine atom-containing polymer of the present invention has high solubility even in a low polarity solvent, it is possible to use a low polarity solvent as a high solubility solvent.
 高溶解性溶媒のうち低極性溶媒としては、例えば、シクロヘキサノン、アニソール、クロロホルム、クロロベンゼン、トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、3-フェノキシトルエン、安息香酸メチル等が挙げられる。また、極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。これらの溶媒は、1種単独で又は2種以上を混合して用いることができ、その使用量は、ワニスに使用する全溶媒中5~100質量%とすることができる。 Among the highly soluble solvents, examples of the low polarity solvent include cyclohexanone, anisole, chloroform, chlorobenzene, toluene, xylene, tetralin, cyclohexylbenzene, 3-phenoxytoluene, methyl benzoate and the like. Examples of the polar solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like. These solvents can be used singly or in combination of two or more, and the amount used can be 5 to 100% by mass in the total solvent used in the varnish.
 なお、電荷輸送性物質及びドーパントは、いずれも前記溶媒に完全に溶解していることが好ましい。 Note that it is preferable that both the charge transporting substance and the dopant are completely dissolved in the solvent.
 また、本発明においては、ワニスに、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧(大気圧)で沸点50~300℃、特に150~250℃の高粘度有機溶媒を少なくとも1種含有させることができる。このような溶媒を加えることで、ワニスの粘度の調整が容易になり、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じたワニス調製が可能となる。 In the present invention, the varnish has a viscosity of 10 to 200 mPa · s, particularly 35 to 150 mPa · s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure). At least one high-viscosity organic solvent can be contained. By adding such a solvent, it becomes easy to adjust the viscosity of the varnish, and it becomes possible to prepare a varnish according to the coating method to be used, which gives a highly flat thin film with good reproducibility.
 高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されない。 Examples of the high viscosity organic solvent include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like, but are not limited thereto.
 高粘度有機溶媒を使用する場合、その含有量は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、ワニスに使用する全溶媒中5~90質量%が好ましい。 When a high-viscosity organic solvent is used, the content thereof is preferably within a range where no solid is precipitated, and is preferably 5 to 90% by mass in the total solvent used for the varnish as long as no solid is precipitated.
 更に、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、ワニスに使用する全溶媒中1~90質量%、好ましくは1~50質量%の割合で混合することもできる。 Further, for the purpose of improving the wettability to the substrate, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc., other solvents are used in an amount of 1 to 90% by weight, preferably 1 to 90%, based on the total solvent used in the varnish. It is also possible to mix at a ratio of 50% by mass.
 このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上を混合して用いることができる。 Examples of such solvents include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether Examples include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, γ-butyrolactone, ethyl lactate, and n-hexyl acetate. These solvent can be used individually by 1 type or in mixture of 2 or more types.
 本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるが、通常、25℃で1~50mPa・sである。また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度及び表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。なお、固形分とは、ワニスの成分のうち、有機溶媒を除いたものをいう。 The viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa · s at 25 ° C. The solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass. In addition, solid content means what remove | excluding the organic solvent among the components of a varnish.
[電荷輸送性薄膜]
 本発明の電荷輸送性ワニスを基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成させることができる。
[Charge transport thin film]
A charge transporting thin film can be formed on a base material by applying the charge transporting varnish of the present invention on the base material and baking it.
 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。 Examples of the varnish coating method include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish depending on the coating method.
 また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されず、大気雰囲気だけでなく窒素等の不活性ガスや真空中でも、均一な成膜面及び高い電荷輸送性を有する薄膜を得ることができる。 When the varnish of the present invention is used, the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and high charge transportability can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度等を勘案して、概ね100~260℃の範囲内で適宜設定されるが、有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、150~230℃程度がより好ましい。 The firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like. When used as, it is preferably about 140 to 250 ° C, more preferably about 150 to 230 ° C.
 特に、本発明のワニスは、200℃未満の低温で焼成可能であることに特徴がある。そのような焼成条件下で作製した薄膜でも、高平坦性及び高電荷輸送性を有する。 Particularly, the varnish of the present invention is characterized in that it can be fired at a low temperature of less than 200 ° C. Even a thin film manufactured under such firing conditions has high flatness and high charge transportability.
 なお、焼成の際、より高い均一成膜性を発現させたり基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。加熱は、例えば、ホットプレートやオーブン等適当な機器を用いて行えばよい。 In firing, two or more steps of temperature change may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate. The heating may be performed using an appropriate device such as a hot plate or an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で用いる場合、5~200nm程度とすることができ、特に正孔注入輸送層として用いる場合は、10~100nmが好ましく、20~50nmがより好ましく、25~45nmがより一層好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法が挙げられる。 The film thickness of the charge transporting thin film is not particularly limited, but can be about 5 to 200 nm when used in an organic EL device, and particularly 10 to 100 nm when used as a hole injecting and transporting layer. ˜50 nm is more preferred, and 25 to 45 nm is even more preferred. Examples of the method of changing the film thickness include a method of changing the solid content concentration in the varnish or changing the amount of the solution on the substrate at the time of application.
[有機EL素子]
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、前述の本発明の電荷輸送性薄膜を有するものである。
[Organic EL device]
The organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
 有機EL素子の代表的な構成としては、下記(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
Typical configurations of the organic EL element include (a) to (f) below, but are not limited thereto. In the following configuration, if necessary, an electron blocking layer or the like can be provided between the light emitting layer and the anode, and a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode. In addition, the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole. It may have a function as a block layer or the like.
(A) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入層及び正孔注入輸送層は、陽極からの正孔受容性だけでなく、それぞれ正孔輸送層及び発光層への正孔注入性にも優れる薄膜が用いられる。 “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transporting layer”, and a layer of the hole transporting material is provided between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”. In particular, for the hole injection layer and the hole injection transport layer, a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport layer and the light emitting layer is used.
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。 “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer. It is. When only one layer of the electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and two layers of the electron transporting material are provided between the light emitting layer and the cathode. When provided as described above, the layer close to the cathode is an “electron injection layer”, and the other layers are “electron transport layers”.
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料とを含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。 The “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed. At this time, the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function. In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や作製方法としては、下記のようなものが挙げられるが、これらに限定されない。 Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄をあらかじめ行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし、陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。 The electrode substrate to be used is preferably cleaned in advance by cleaning with a liquid such as a detergent, alcohol, or pure water. For example, the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable. However, when the anode material is mainly composed of an organic material, the surface treatment may not be performed.
 本発明の電荷輸送性ワニスから得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。 An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection layer is as follows.
 前述の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。この正孔注入層の上に、正孔輸送層、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔輸送層、発光層、電子輸送層及び電子注入層は、用いる材料の特性等に応じて、蒸着法又は塗布法(ウェットプロセス)のいずれかで形成すればよい。 By the above-mentioned method, the charge transporting varnish of the present invention is applied on the anode substrate and baked to form a hole injection layer on the electrode. On the hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order. The hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。 Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
 なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されない。 Other metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium. , Indium, scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, hafnium, thallium, tungsten, rhenium, osmium, iridium, platinum, gold, titanium Lead, bismuth, and alloys thereof, but are not limited thereto.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-2,2'-ジメチルベンジジン、2,2',7,7'-テトラキス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、9,9-ビス[4-(N,N-ビス-ビフェニル-4-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N,N-ビス-ナフタレン-2-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N-ナフタレン-1-イル-N-フェニルアミノ)-フェニル]-9H-フルオレン、2,2',7,7'-テトラキス[N-ナフタレニル(フェニル)-アミノ]-9,9-スピロビフルオレン、N,N'-ビス(フェナントレン-9-イル)-N,N'-ビス(フェニル)-ベンジジン、2,2'-ビス[N,N-ビス(ビフェニル-4-イル)アミノ]-9,9-スピロビフルオレン、2,2'-ビス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、ジ-[4-(N,N-ジ(p-トリル)アミノ)-フェニル]シクロヘキサン、2,2',7,7'-テトラ(N,N-ジ(p-トリル)アミノ)-9,9-スピロビフルオレン、N,N,N',N'-テトラ-ナフタレン-2-イル-ベンジジン、N,N,N',N'-テトラ-(3-メチルフェニル)-3,3'-ジメチルベンジジン、N,N'-ジ(ナフタレニル)-N,N'-ジ(ナフタレン-2-イル)-ベンジジン、N,N,N',N'-テトラ(ナフタレニル)-ベンジジン、N,N'-ジ(ナフタレン-2-イル)-N,N'-ジフェニルベンジジン-1,4-ジアミン、N1,N4-ジフェニル-N1,N4-ジ(m-トリル)ベンゼン-1,4-ジアミン、N2,N2,N6,N6-テトラフェニルナフタレン-2,6-ジアミン、トリス(4-(キノリン-8-イル)フェニル)アミン、2,2'-ビス(3-(N,N-ジ(p-トリル)アミノ)フェニル)ビフェニル、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等の正孔輸送性低分子材料等が挙げられる。 Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine (α-NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9, 9-dimethyl-fluorene, N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-dimethyl-fluorene N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-diphenyl-fluorene, N, N′-bis (naphthalen-1-yl) -N, N ′ -Bis (phenyl) -9,9-diphenyl-fluorene, N, N'-bis (naphthalen-1-yl) -N, N'-bis (phenyl) -2,2'-dimethylbenzidine, 2,2 ' , 7,7'-Tetrakis (N, N-diphenylamino) -9,9-spirobifluorene, 9,9-bis [4- (N, N-bis-biphenyl-4-yl-amino) phenyl]- 9H-fluorene, 9,9-bis [4- (N, N-bis-naphthalen-2-yl-amino) phenyl] -9H-fluorene, 9,9-bis [4- (N-naphthalen-1-yl) -N-phenylamino) -phenyl] -9H-fluorene, 2,2 ', 7,7'-tetrakis [N-naphthalenyl (phenyl) -amino] -9,9 Spirobifluorene, N, N'-bis (phenanthren-9-yl) -N, N'-bis (phenyl) -benzidine, 2,2'-bis [N, N-bis (biphenyl-4-yl) amino ] -9,9-spirobifluorene, 2,2′-bis (N, N-diphenylamino) -9,9-spirobifluorene, di- [4- (N, N-di (p-tolyl) amino] ) -Phenyl] cyclohexane, 2,2 ′, 7,7′-tetra (N, N-di (p-tolyl) amino) -9,9-spirobifluorene, N, N, N ′, N′-tetra -Naphthalen-2-yl-benzidine, N, N, N ', N'-tetra- (3-methylphenyl) -3,3'-dimethylbenzidine, N, N'-di (naphthalenyl) -N, N' -Di (naphthalen-2-yl) -benzidine, N, N, N ', N'-tetra (naphthalenyl) -benzidine, N, N'-di (naphthalen-2-yl) -N, N'-diphenyl Benzidine-1,4-diamine, N 1 , N 4 -diphenyl-N 1 , N 4 -di (m-tolyl) benzene-1,4-diamine, N 2 , N 2 , N 6 , N 6 -tetraphenyl Naphthalene-2,6-diamine, tris (4- (quinolin-8-yl) phenyl) amine, 2,2′-bis (3- (N, N-di (p-tolyl) amino) phenyl) biphenyl, 4 , 4 ′, 4 ″ -Tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris [1-naphthyl (phenyl) amino] triphenylamine Triarylamines such as (1-TNATA), 5,5 ″ -bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2 ′: 5 ′, 2 ″ -terthiophene And hole transporting low molecular weight materials such as oligothiophenes such as (BMA-3T).
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)-4-(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4'-ビス(2,2-ジフェニルビニル)ビフェニル、9,10-ジ(ナフタレン-2-イル)アントラセン、2-t-ブチル-9,10-ジ(ナフタレン-2-イル)アントラセン、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2,2'-ジピレニル-9,9-スピロビフルオレン、1,3,5-トリス(ピレン-1-イル)ベンゼン、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン、2,2'-ビ(9,10-ジフェニルアントラセン)、2,7-ジピレニル-9,9-スピロビフルオレン、1,4-ジ(ピレン-1-イル)ベンゼン、1,3-ジ(ピレン-1-イル)ベンゼン、6,13-ジ(ビフェニル-4-イル)ペンタセン、3,9-ジ(ナフタレン-2-イル)ペリレン、3,10-ジ(ナフタレン-2-イル)ペリレン、トリス[4-(ピレニル)-フェニル]アミン、10,10'-ジ(ビフェニル-4-イル)-9,9'-ビアントラセン、N,N'-ジ(ナフタレン-1-イル)-N,N'-ジフェニル-[1,1':4',1'':4'',1'''-クォーターフェニル]-4,4'''-ジアミン、4,4'-ジ[10-(ナフタレン-1-イル)アントラセン-9-イル]ビフェニル、ジベンゾ{[f,f']-4,4',7,7'-テトラフェニル}ジインデノ[1,2,3-cd:1',2',3'-lm]ペリレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジメチル-9H-フルオレン-2-イル)ピレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジヘキシル-9H-フルオレン-2-イル)ピレン、1,3-ビス(カルバゾール-9-イル)ベンゼン、1,3,5-トリス(カルバゾール-9-イル)ベンゼン、4,4',4''-トリス(カルバゾール-9-イル)トリフェニルアミン、4,4'-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4'-ビス(カルバゾール-9-イル)-2,2'-ジメチルビフェニル、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン、2,2',7,7'-テトラキス(カルバゾール-9-イル)-9,9-スピロビフルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-ジ(p-トリル)フルオレン、9,9-ビス[4-(カルバゾール-9-イル)-フェニル]フルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-スピロビフルオレン、1,4-ビス(トリフェニルシリル)ベンゼン、1,3-ビス(トリフェニルシリル)ベンゼン、ビス(4-N,N-ジエチルアミノ-2-メチルフェニル)-4-メチルフェニルメタン、2,7-ビス(カルバゾール-9-イル)-9,9-ジオクチルフルオレン、4,4''-ジ(トリフェニルシリル)-p-ターフェニル、4,4'-ジ(トリフェニルシリル)ビフェニル、9-(4-t-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール、2,6-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、トリフェニル(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン、9,9-ジメチル-N,N-ジフェニル-7-(4-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェニル)-9H-フルオレン-2-アミン、3,5-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、9,9-スピロビフルオレン-2-イル-ジフェニル-ホスフィンオキサイド、9,9'-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)、3-(2,7-ビス(ジフェニルホスホリル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール、4,4,8,8,12,12-ヘキサ(p-トリル)-4H-8H-12H-12C-アザジベンゾ[cd,mn]ピレン、4,7-ジ(9H-カルバゾール-9-イル)-1,10-フェナントロリン、2,2'-ビス(4-(カルバゾール-9-イル)フェニル)ビフェニル、2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]チオフェン、ビス(2-メチルフェニル)ジフェニルシラン、ビス[3,5-ジ(9H-カルバゾール-9-イル)フェニル]ジフェニルシラン、3,6-ビス(カルバゾール-9-イル)-9-(2-エチル-ヘキシル)-9H-カルバゾール、3-(ジフェニルホスホリル)-9-(4-(ジフェニルホスホリル)フェニル)-9H-カルバゾール、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニルカルバゾール等が挙げられる。これらの材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。 Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spirobifluorene, 2,7 -Bis (9,9-spirobifluoren-2-yl) -9,9 Spirobifluorene, 2- [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4-methylphenyl) fluorene, 2,2'-dipyrenyl-9,9- Spirobifluorene, 1,3,5-tris (pyren-1-yl) benzene, 9,9-bis [4- (pyrenyl) phenyl] -9H-fluorene, 2,2'-bi (9,10-diphenyl) Anthracene), 2,7-dipyrenyl-9,9-spirobifluorene, 1,4-di (pyren-1-yl) benzene, 1,3-di (pyren-1-yl) benzene, 6,13-di (Biphenyl-4-yl) pentacene, 3,9-di (naphthalen-2-yl) perylene, 3,10-di (naphthalen-2-yl) perylene, tris [4- (pyrenyl) -phenyl] amine, 10 , 10′-Di (biphenyl-4-yl) -9,9′-bianthracene, N, N′-di (naphthalene) 1-yl) -N, N′-diphenyl- [1,1 ′: 4 ′, 1 ″: 4 ″, 1 ′ ″-quarterphenyl] -4,4 ′ ″-diamine, 4,4 '-Di [10- (naphthalen-1-yl) anthracen-9-yl] biphenyl, dibenzo {[f, f']-4,4 ', 7,7'-tetraphenyl} diindeno [1,2,3 -Cd: 1 ', 2', 3'-lm] perylene, 1- (7- (9,9'-bianthracen-10-yl) -9,9-dimethyl-9H-fluoren-2-yl) pyrene 1- (7- (9,9′-bianthracen-10-yl) -9,9-dihexyl-9H-fluoren-2-yl) pyrene, 1,3-bis (carbazol-9-yl) benzene, 1,3,5-tris (carbazol-9-yl) benzene, 4,4 ′, 4 ″ -tris (carbazol-9-yl) triphenylamine, 4,4′-bis (carbazol-9-yl) Biphenyl (CBP) 4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl, 2,7-bis (carbazol-9-yl) -9,9-dimethylfluorene, 2,2 ′, 7,7 '-Tetrakis (carbazol-9-yl) -9,9-spirobifluorene, 2,7-bis (carbazol-9-yl) -9,9-di (p-tolyl) fluorene, 9,9-bis [ 4- (carbazol-9-yl) -phenyl] fluorene, 2,7-bis (carbazol-9-yl) -9,9-spirobifluorene, 1,4-bis (triphenylsilyl) benzene, 1,3 -Bis (triphenylsilyl) benzene, bis (4-N, N-diethylamino-2-methylphenyl) -4-methylphenylmethane, 2,7-bis (carbazol-9-yl) -9,9-dioctylfluorene 4,4 ''-di (triphenylsilyl) -p-terphenyl 4,4'-di (triphenylsilyl) biphenyl, 9- (4-tert-butylphenyl) -3,6-bis (triphenylsilyl) -9H-carbazole, 9- (4-tert-butylphenyl)- 3,6-ditrityl-9H-carbazole, 9- (4-tert-butylphenyl) -3,6-bis (9- (4-methoxyphenyl) -9H-fluoren-9-yl) -9H-carbazole, 2 , 6-bis (3- (9H-carbazol-9-yl) phenyl) pyridine, triphenyl (4- (9-phenyl-9H-fluoren-9-yl) phenyl) silane, 9,9-dimethyl-N, N-diphenyl-7- (4- (1-phenyl-1H-benzo [d] imidazol-2-yl) phenyl) -9H-fluoren-2-amine, 3,5-bis (3- (9H-carbazole- 9-yl) phenyl) pyridine, 9,9-spirobifluo Len-2-yl-diphenyl-phosphine oxide, 9,9 '-(5- (triphenylsilyl) -1,3-phenylene) bis (9H-carbazole), 3- (2,7-bis (diphenylphosphoryl) -9-phenyl-9H-fluoren-9-yl) -9-phenyl-9H-carbazole, 4,4,8,8,12,12-hexa (p-tolyl) -4H-8H-12H-12C-azadibenzo [cd, mn] pyrene, 4,7-di (9H-carbazol-9-yl) -1,10-phenanthroline, 2,2′-bis (4- (carbazol-9-yl) phenyl) biphenyl, 2, 8-bis (diphenylphosphoryl) dibenzo [b, d] thiophene, bis (2-methylphenyl) diphenylsilane, bis [3,5-di (9H-carbazol-9-yl) phenyl] diphenylsilane, 3,6- Bis (carbazole-9-a ) -9- (2-ethyl-hexyl) -9H-carbazole, 3- (diphenylphosphoryl) -9- (4- (diphenylphosphoryl) phenyl) -9H-carbazole, 3,6-bis [(3,5 -Diphenyl) phenyl] -9-phenylcarbazole and the like. You may form a light emitting layer by co-evaporating these materials and a luminescent dopant.
 発光性ドーパントとしては、3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン、2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N'-ジメチル-キナクリドン、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10-ビス[N,N-ジ(p-トリル)アミノ]アントラセン、9,10-ビス[フェニル(m-トリル)アミノ]アントラセン、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10,N10-テトラ(p-トリル)-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10,N10,N10-テトラフェニル-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10-ジフェニル-N10,N10-ジナフタレニル-9,9'-ビアントラセン-10,10'-ジアミン、4,4'-ビス(9-エチル-3-カルバゾビニレン)-1,1'-ビフェニル、ペリレン、2,5,8,11-テトラ-t-ブチルペリレン、1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン、4,4'-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル、4-(ジ-p-トリルアミノ)-4'-[(ジ-p-トリルアミノ)スチリル]スチルベン、ビス[3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)]イリジウム(III)、4,4'-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4-ジフルオロフェニルピリジナト)テトラキス(1-ピラゾリル)ボレートイリジウム(III)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-トリス(9,9-ジメチルフルオレニレン)、2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン、N-(4-((E)-2-(6((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン、fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、2,7-ビス[4-(ジフェニルアミノ)スチリル]-9,9-スピロビフルオレン、6-メチル-2-(4-(9-(4-(6-メチルベンゾ[d]チアゾール-2-イル)フェニル)アントラセン-10-イル)フェニル)ベンゾ[d]チアゾール、1,4-ジ[4-(N,N-ジフェニル)アミノ]スチリルベンゼン、1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン、(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン、ビス(2,4-ジフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾール)((2,4-ジフルオロベンジル)ジフェニルホスフィネート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(ベンジルジフェニルホスフィネート)イリジウム(III)、ビス(1-(2,4-ジフルオロベンジル)-3-メチルベンズイミダゾリウム)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(4',6'-ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3,5-ビス(トリフルオロメチル)-2-(2'-ピリジル)ピロレート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、(Z)-6-メシチル-N-(6-メシチルキノリン-2(1H)-イリデン)キノリン-2-アミン-BF2、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン、4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン、4-(ジシアノメチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1-フェニルイソキノリン)イリジウム(III)、ビス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4'-ジ-t-ブチル-(2,2')-ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロホスフェート)、トリス(2-フェニルキノリン)イリジウム(III)、ビス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8-ジ-t-ブチル-5,11-ビス(4-t-ブチルフェニル)-6,12-ジフェニルテトラセン、ビス(2-フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20-テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジン)-ピラゾレート)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルホスフィン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2-フェニル-4-メチルキノリン]イリジウム(III)、ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)、ビス(2-(9,9-ジエチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)、ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジナト-N,C2)アセチルアセトネート、(E)-2-(2-t-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピローロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル、ビス(3-トリフルオロメチル-5-(1-イソキノリル)ピラゾレート)(メチルジフェニルホスフィン)ルテニウム、ビス[(4-n-ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2-メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4-n-ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。 As the luminescent dopant, 3- (2-benzothiazolyl) -7- (diethylamino) coumarin, 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10- (2-Benzothiazolyl) quinolidino [9,9a, 1gh] coumarin, quinacridone, N, N′-dimethyl-quinacridone, tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ), bis (2-phenyl) Pyridine) (acetylacetonate) iridium (III) (Ir (ppy) 2 (acac)), tris [2- (p-tolyl) pyridine] iridium (III) (Ir (mppy) 3 ), 9,10-bis [N, N-di (p-tolyl) amino] anthracene, 9,10-bis [phenyl (m-tolyl) amino] anthracene, bis [2- (2-hydroxyphenyl) benzothiazolato] zinc (II), N 10 , N 10 , N 10 , N 10 -Tetra (p-tolyl) -9,9′-bian Tracene-10,10′-diamine, N 10 , N 10 , N 10 , N 10 -tetraphenyl-9,9′-bianthracene-10,10′-diamine, N 10 , N 10 -diphenyl-N 10 , N 10 -Dinaphthalenyl-9,9′-bianthracene-10,10′-diamine, 4,4′-bis (9-ethyl-3-carbazovinylene) -1,1′-biphenyl, perylene, 2,5,8 , 11-Tetra-t-butylperylene, 1,4-bis [2- (3-N-ethylcarbazolyl) vinyl] benzene, 4,4′-bis [4- (di-p-tolylamino) styryl] Biphenyl, 4- (di-p-tolylamino) -4 '-[(di-p-tolylamino) styryl] stilbene, bis [3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) Iridium (III), 4,4′-bis [4- (diphenylamino) styryl] biphenyl, (2,4-difluorophenylpyridinato) tetrakis (1-pyrazolyl) borateiridium (III), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -tris ( 9,9-dimethylfluorenylene), 2,7-bis {2- [phenyl (m-tolyl) amino] -9,9-dimethyl-fluoren-7-yl} -9,9-dimethyl-fluorene, N -(4-((E) -2- (6 ((E) -4- (diphenylamino) styryl) naphthalen-2-yl) vinyl) phenyl) -N-phenylbenzenamine, fac-iridium (III) tris (1-phenyl-3-methylbenzimidazoline-2-ylidene-C, C 2 ), mer-iridium (III) tris (1-phenyl-3-methylbenzimidazoline-2-ylidene-C, C 2 ), 2 , 7-Bis [4- (diphenylamino) styryl] -9,9-spirobi Fluorene, 6-methyl-2- (4- (9- (4- (6-methylbenzo [d] thiazol-2-yl) phenyl) anthracen-10-yl) phenyl) benzo [d] thiazole, 1,4- Di [4- (N, N-diphenyl) amino] styrylbenzene, 1,4-bis (4- (9H-carbazol-9-yl) styryl) benzene, (E) -6- (4- (diphenylamino) Styryl) -N, N-diphenylnaphthalen-2-amine, bis (2,4-difluorophenylpyridinato) (5- (pyridin-2-yl) -1H-tetrazolate) iridium (III), bis (3- Trifluoromethyl-5- (2-pyridyl) pyrazole) ((2,4-difluorobenzyl) diphenylphosphinate) iridium (III), bis (3-trifluoromethyl-5- (2-pyridyl) pyrazolate) (benzyl Diphenylphosphinate) Lidium (III), bis (1- (2,4-difluorobenzyl) -3-methylbenzimidazolium) (3- (trifluoromethyl) -5- (2-pyridyl) -1,2,4-triazolate) Iridium (III), bis (3-trifluoromethyl-5- (2-pyridyl) pyrazolate) (4 ′, 6′-difluorophenylpyridinate) iridium (III), bis (4 ′, 6′-difluorophenyl) Pyridinato) (3,5-bis (trifluoromethyl) -2- (2'-pyridyl) pyrrolate) iridium (III), bis (4 ', 6'-difluorophenylpyridinato) (3- (tri Fluoromethyl) -5- (2-pyridyl) -1,2,4-triazolate) iridium (III), (Z) -6-mesityl-N- (6-mesitylquinoline-2 (1H) -ylidene) quinoline 2-amine -BF 2, (E) -2- ( 2- (4- ( dimethylamino) styryl) -6- Til-4H-pyran-4-ylidene) malononitrile, 4- (dicyanomethylene) -2-methyl-6-julolidyl-9-enyl-4H-pyran, 4- (dicyanomethylene) -2-methyl-6- (1 , 1,7,7-Tetramethyljulolidyl-9-enyl) -4H-pyran, 4- (dicyanomethylene) -2-t-butyl-6- (1,1,7,7-tetramethyljulolidine -4-yl-vinyl) -4H-pyran, tris (dibenzoylmethane) phenanthroline europium (III), 5,6,11,12-tetraphenylnaphthacene, bis (2-benzo [b] thiophen-2-yl -Pyridine) (acetylacetonate) iridium (III), tris (1-phenylisoquinoline) iridium (III), bis (1-phenylisoquinoline) (acetylacetonate) iridium (III), bis [1- (9,9 -The Til-9H-fluoren-2-yl) -isoquinoline] (acetylacetonate) iridium (III), bis [2- (9,9-dimethyl-9H-fluoren-2-yl) quinoline] (acetylacetonate) iridium (III), tris [4,4′-di-t-butyl- (2,2 ′)-bipyridine] ruthenium (III) .bis (hexafluorophosphate), tris (2-phenylquinoline) iridium (III), Bis (2-phenylquinoline) (acetylacetonate) iridium (III), 2,8-di-t-butyl-5,11-bis (4-t-butylphenyl) -6,12-diphenyltetracene, bis ( 2-phenylbenzothiazoto) (acetylacetonate) iridium (III), 5,10,15,20-tetraphenyltetrabenzoporphyrin platinum, osmium (II) bis (3-trifluoromethyl-5- (2- Pyridine ) -Pyrazolate) dimethylphenylphosphine, osmium (II) bis (3- (trifluoromethyl) -5- (4-tert-butylpyridyl) -1,2,4-triazolate) diphenylmethylphosphine, osmium (II) bis (3- (trifluoromethyl) -5- (2-pyridyl) -1,2,4-triazole) dimethylphenylphosphine, osmium (II) bis (3- (trifluoromethyl) -5- (4-t- Butylpyridyl) -1,2,4-triazolate) dimethylphenylphosphine, bis [2- (4-n-hexylphenyl) quinoline] (acetylacetonate) iridium (III), tris [2- (4-n-hexyl) Phenyl) quinoline] iridium (III), tris [2-phenyl-4-methylquinoline] iridium (III), bis (2-phenylquinoline) (2- (3-methylphenyl) pyridinate) irid (III), bis (2- (9,9-diethyl-fluoren-2-yl) -1-phenyl-1H-benzo [d] imidazolato) (acetylacetonate) iridium (III), bis (2-phenyl) Pyridine) (3- (pyridin-2-yl) -2H-chromen-2-onate) iridium (III), bis (2-phenylquinoline) (2,2,6,6-tetramethylheptane-3,5- Diate) iridium (III), bis (phenylisoquinoline) (2,2,6,6-tetramethylheptane-3,5-dionate) iridium (III), iridium (III) bis (4-phenylthieno [3,2 -C] pyridinato-N, C 2 ) acetylacetonate, (E) -2- (2-tert-butyl-6- (2- (2,6,6-trimethyl-2,4,5,6-tetrahydro) -1H-pyrrolo [3,2,1-ij] quinolin-8-yl) vinyl) -4H-pyran-4-ylide ) Malononitrile, bis (3-trifluoromethyl-5- (1-isoquinolyl) pyrazolate) (methyldiphenylphosphine) ruthenium, bis [(4-n-hexylphenyl) isoquinoline] (acetylacetonate) iridium (III), platinum (II) octaethylporphine, bis (2-methyldibenzo [f, h] quinoxaline) (acetylacetonate) iridium (III), tris [(4-n-hexylphenyl) xoquinoline] iridium (III), etc. .
 電子輸送層を形成する材料としては、8-ヒドロキシキノリノレート-リチウム、2,2',2''-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾール)、2-(4-ビフェニル)5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム、1,3-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、6,6'-ビス[5-(ビフェニル-4-イル)-1,3,4-オキサジアゾ-2-イル]-2,2'-ビピリジン、3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール、4-(ナフタレン-1-イル)-3,5-ジフェニル-4H-1,2,4-トリアゾール、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、2,7-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン、1,3-ビス[2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、1-メチル-2-(4-(ナフタレン-2-イル)フェニル)-1H-イミダゾ[4,5f][1,10]フェナントロリン、2-(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、フェニル-ジピレニルホスフィンオキサイド、3,3',5,5'-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル、1,3,5-トリス[(3-ピリジル)-フェン-3-イル]ベンゼン、4,4'-ビス(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル、1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン、3,5-ジ(ピレン-1-イル)ピリジン等が挙げられる。 As a material for forming the electron transport layer, 8-hydroxyquinolinolate-lithium, 2,2 ′, 2 ″-(1,3,5-benztolyl) -tris (1-phenyl-1-H-benz Imidazole), 2- (4-biphenyl) 5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 4 , 7-Diphenyl-1,10-phenanthroline, bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum, 1,3-bis [2- (2,2′-bipyridin-6-yl] ) -1,3,4-oxadiazo-5-yl] benzene, 6,6′-bis [5- (biphenyl-4-yl) -1,3,4-oxadiazo-2-yl] -2,2 ′ -Bipyridine, 3- (4-biphenyl) -4-phenyl-5-t-butylphenyl-1,2, 4-triazole, 4- (naphthalen-1-yl) -3,5-diphenyl-4H-1,2,4-triazole, 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1 , 10-phenanthroline, 2,7-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] -9,9-dimethylfluorene, 1,3- Bis [2- (4-t-butylphenyl) -1,3,4-oxadiazo-5-yl] benzene, tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane, 1-methyl-2- (4- (naphthalen-2-yl) phenyl) -1H-imidazo [4,5f] [1,10] phenanthroline, 2- (naphthalen-2-yl) -4,7-diphenyl- 1,10-phenanthroline, phenyl-dipyrenylphosphine oxide, 3,3 ′, 5,5′-tetra [( -Pyridyl) -phen-3-yl] biphenyl, 1,3,5-tris [(3-pyridyl) -phen-3-yl] benzene, 4,4'-bis (4,6-diphenyl-1,3 , 5-Triazin-2-yl) biphenyl, 1,3-bis [3,5-di (pyridin-3-yl) phenyl] benzene, bis (10-hydroxybenzo [h] quinolinato) beryllium, diphenylbis (4 -(Pyridin-3-yl) phenyl) silane, 3,5-di (pyren-1-yl) pyridine and the like.
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al2O3)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、リチウムアセチルアセトネート(Li(acac))、酢酸リチウム、安息香酸リチウム等が挙げられる。 Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, lithium acetylacetonate (Li (acac)), lithium acetate, lithium benzoate, etc. .
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。 Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
 また、本発明の電荷輸送性ワニスから得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法のその他の例は、以下のとおりである。 Further, another example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection layer is as follows.
 前述した有機EL素子作製方法において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行うかわりに、正孔輸送層、発光層を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して前記の方法により正孔注入層を作製し、その上に正孔輸送層、発光層を順次形成し、更に陰極材料を蒸着して有機EL素子とする。 In the above-described organic EL device manufacturing method, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer are formed by sequentially forming the hole transport layer and the light emitting layer, instead of performing the vacuum deposition operation. An organic EL device having a charge transporting thin film formed of a transporting varnish can be produced. Specifically, the charge transporting varnish of the present invention is applied onto the anode substrate, a hole injection layer is prepared by the above-described method, a hole transport layer and a light emitting layer are sequentially formed thereon, and further a cathode material Is evaporated to obtain an organic EL element.
 使用する陰極及び陽極材料としては、前述のものと同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。 As the cathode and anode materials used, the same materials as described above can be used, and the same cleaning treatment and surface treatment can be performed.
 正孔輸送層及び発光層の形成方法としては、正孔輸送性高分子材料若しくは発光性高分子材料、又はこれらにドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、それぞれ正孔注入層又は正孔輸送層の上に塗布した後、焼成することで成膜する方法が挙げられる。 As a method for forming the hole transport layer and the light emitting layer, a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant to these materials is dissolved or uniformly dispersed. The method of forming into a film by baking after apply | coating on a positive hole injection layer or a positive hole transport layer is mentioned.
 正孔輸送性高分子材料としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 As the hole transporting polymer material, poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N′-bis {p-butylphenyl} -1,4-diamino Phenylene)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N′-bis {p-butylphenyl} -1,1′-biphenylene-4,4- Diamine)], poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1, 4-diaminophenylene)], poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9, 9-Didioctylfluorenyl-2,7-diyl) -co- (4,4 ′-(N- (p-butylphenyl)) diphenylamine)] and the like.
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). -PPV) and the like, polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz) and the like.
 溶媒としては、トルエン、キシレン、クロロホルム等が挙げられる。溶解又は均一分散法としては、攪拌、加熱攪拌、超音波分散等の方法が挙げられる。 Examples of the solvent include toluene, xylene, chloroform and the like. Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
 塗布方法としては、特に限定されず、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。 The coating method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating. The application is preferably performed under an inert gas such as nitrogen or argon.
 焼成方法としては、不活性ガス下又は真空中、オーブン又はホットプレートで加熱する方法が挙げられる。 As the firing method, a method of heating with an oven or a hot plate under an inert gas or in a vacuum can be mentioned.
 本発明の電荷輸送性ワニスから得られる薄膜が正孔注入輸送層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。 An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection transport layer is as follows.
 陽極基板上に正孔注入輸送層を形成し、この正孔注入輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層及び電子注入層の形成方法及び具体例としては、前述したものと同様のものが挙げられる。 A hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer. Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer include the same ones as described above.
 陽極材料、発光層、発光性ドーパント、電子輸送層及び電子ブロック層を形成する材料、陰極材料としては、前述したものと同様のものが挙げられる。 Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
 なお、電極及び前記各層の間の任意の間に、必要に応じてホールブロック層、電子ブロック層等を設けてもよい。例えば、電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。 It should be noted that a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the layers as necessary. For example, as a material for forming the electron blocking layer, tris (phenylpyrazole) iridium and the like can be given.
 陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料を選択する。 The materials constituting the anode and the cathode and the layer formed between them differ depending on whether a device having a bottom emission structure or a top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. .
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。 Usually, in a bottom emission structure element, a transparent anode is used on the substrate side, and light is extracted from the substrate side, whereas in a top emission structure element, a reflective anode made of metal is used in the opposite direction to the substrate. Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等と共に封止してもよい。 The organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
 以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は以下に限定されない。なお、使用した装置は以下のとおりである。
(1)1H-NMR:Bruker社製、Ascend 500
(2)LC/MS:ウォーターズ社製、ZQ 2000
(3)基板洗浄:長州産業(株)製、基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製、スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製、微細形状測定機サーフコーダET-4000
(6)重量平均分子量(Mw)及び数平均分子量(Mn)測定:(株)島津製作所製(カラム:SHODEX GPC KF-803l+GPC KF-804L、カラム温度:40℃、検出器:UV検出器(254nm)及びRI検出器、溶離液:THF、カラム流速:1.0mL/min.)
(7)有機EL素子の作製:長州産業(株)製、多機能蒸着装置システムC-E2L1G1-N
(8)有機EL素子の輝度等の測定:(株)イーエッチシー製、多チャンネルIVL測定装置
(9)有機EL素子の寿命測定:(株)イーエッチシー製、有機EL輝度寿命評価システムPEL-105S
Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following. In addition, the apparatus used is as follows.
(1) 1H-NMR: manufactured by Bruker, Ascend 500
(2) LC / MS: Waters, ZQ 2000
(3) Substrate cleaning: manufactured by Choshu Sangyo Co., Ltd.
(4) Varnish application: Mikasa Co., Ltd., spin coater MS-A100
(5) Film thickness measurement: Kosaka Laboratory Co., Ltd., micro shape measuring machine Surfcorder ET-4000
(6) Weight average molecular weight (Mw) and number average molecular weight (Mn) measurement: manufactured by Shimadzu Corporation (column: SHODEX GPC KF-803l + GPC KF-804L, column temperature: 40 ° C., detector: UV detector (254 nm ) And RI detector, eluent: THF, column flow rate: 1.0 mL / min.)
(7) Manufacture of organic EL devices: Choshu Sangyo Co., Ltd., multifunctional vapor deposition system C-E2L1G1-N
(8) Measurement of brightness of organic EL element: Multi-channel IVL measuring device manufactured by EACH Co., Ltd. (9) Lifetime measurement of organic EL element: Organic EL luminance life evaluation system PEL, manufactured by EECH Co., Ltd. -105S
[1]モノマーの合成
[合成例1]モノマー1の合成
[合成例1-1]中間体1-1の合成
Figure JPOXMLDOC01-appb-C000017
[1] Synthesis of Monomer [Synthesis Example 1] Synthesis of Monomer 1 [Synthesis Example 1-1] Synthesis of Intermediate 1-1
Figure JPOXMLDOC01-appb-C000017
 2,2-ビス(3-アミノ-4-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(7.25g、20mmol)及びヨードベンゼン(8.16g、40mmol)のキシレン懸濁液(145mL)に、Pd(PPh3)4(1.16g、1mmol)及びt-BuONa(5.77g、60mmol)を加え、窒素置換後、4時間加熱還流した。反応終了後、室温まで放冷し、水(70mL)を加え、酢酸エチルにより抽出した。有機層を硫酸ナトリウムにより乾燥後、セライトろ過した。ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製し、中間体1-1を褐色液体(収量8.66g、収率84%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (500MHz, CDCl3): δ 2.25(s, 6H), 5.39(brs, 2H), 6.82-6.87(m, 6H), 6.98(d, J=8.5Hz, 2H), 7.17-7.19(m, 6H), 7.25-7.36(m, 4H).
LC/MS (ESI+) m/z; 515[M+1]+, 513[M-1]-
2,2-bis (3-amino-4-methylphenyl) -1,1,1,3,3,3-hexafluoropropane (7.25 g, 20 mmol) and iodobenzene (8.16 g, 40 mmol) in xylene To the suspension (145 mL) were added Pd (PPh 3 ) 4 (1.16 g, 1 mmol) and t-BuONa (5.77 g, 60 mmol), and the mixture was heated to reflux for 4 hours after purging with nitrogen. After completion of the reaction, the mixture was allowed to cool to room temperature, water (70 mL) was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over sodium sulfate and filtered through celite. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to obtain Intermediate 1-1 as a brown liquid (yield 8.66 g, 84%). It was. The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (500 MHz, CDCl 3 ): δ 2.25 (s, 6H), 5.39 (brs, 2H), 6.82-6.87 (m, 6H), 6.98 (d, J = 8.5Hz, 2H), 7.17-7.19 (m, 6H), 7.25-7.36 (m, 4H).
LC / MS (ESI + ) m / z; 515 [M + 1] + , 513 [M-1] -
[合成例1-2]中間体1-2の合成
Figure JPOXMLDOC01-appb-C000018
[Synthesis Example 1-2] Synthesis of Intermediate 1-2
Figure JPOXMLDOC01-appb-C000018
 中間体1-1(7.60g、14.8mmol)及び4-ヨードトルエン(7.09g、32.5mmol)のトルエン懸濁液(150mL)に、Pd(dba)2(340mg、0.6mmol)、[(t-Bu)3PH]BF4(344mg、1.18mmol)及びt-BuONa(4.27g、44.4mmol)を加え、80℃で3時間反応させた。反応終了後、室温まで放冷し、水(75mL)を加えて有機層を洗浄した。有機層を硫酸ナトリウムにより乾燥後、セライトろ過した。ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:トルエン)で精製し、中間体1-2を含む留分を濃縮した。そこへメタノールを加え、析出した固体をろ取し、メタノール洗浄することにより、中間体1-2を白色固体(収量6.04g、収率59%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 1.98(s, 6H), 2.26(s, 6H), 6.78-6.89(m,10H), 6.98(d, J=8.0Hz,4H), 7.06-7.08(m, 4H), 7.12-7.16(m, 6H).
LC/MS (ESI+) m/z; 695[M+1]+
To a toluene suspension (150 mL) of Intermediate 1-1 (7.60 g, 14.8 mmol) and 4-iodotoluene (7.09 g, 32.5 mmol) was added Pd (dba) 2 (340 mg, 0.6 mmol). , [(T-Bu) 3 PH] BF 4 (344 mg, 1.18 mmol) and t-BuONa (4.27 g, 44.4 mmol) were added and reacted at 80 ° C. for 3 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, and water (75 mL) was added to wash the organic layer. The organic layer was dried over sodium sulfate and filtered through celite. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography (eluent: toluene), and the fraction containing intermediate 1-2 was concentrated. Methanol was added thereto, and the precipitated solid was collected by filtration and washed with methanol to obtain Intermediate 1-2 as a white solid (yield 6.04 g, yield 59%). The measurement results of 1 H-NMR and LC / MS are shown below. The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300 MHz, CDCl 3 ): δ 1.98 (s, 6H), 2.26 (s, 6H), 6.78-6.89 (m, 10H), 6.98 (d, J = 8.0Hz, 4H), 7.06-7.08 (m, 4H), 7.12-7.16 (m, 6H).
LC / MS (ESI + ) m / z; 695 [M + 1] +
[合成例1-3]モノマー1の合成
Figure JPOXMLDOC01-appb-C000019
[Synthesis Example 1-3] Synthesis of Monomer 1
Figure JPOXMLDOC01-appb-C000019
 中間体1-2(6.01g、8.7mmol)にDMF(45mL)、THF(20mL)を加え、溶液とした後に0℃に冷却し、N-ブロモスクシンイミド(3.00g、16.9mmol)を加えた。その後、室温にて1時間攪拌し、0℃に冷却後、水(60mL)を滴下した。析出した固体をろ取し、水、メタノールの順で洗浄することにより、モノマー1を白色固体(収量7.25g、収率98%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 1.99(s, 6H), 2.27(s, 6H), 6.65-6.67(m, 4H), 6.78(d, J= 8.5Hz,4H), 6.98-7.02(m, 6H), 7.10(d, J= 8.5Hz, 2H), 7.16(d, J=8.0Hz, 2H), 7.21-7.23(m, 4H).
LC/MS (ESI+) m/z; 853[M+1]+
DMF (45 mL) and THF (20 mL) were added to Intermediate 1-2 (6.01 g, 8.7 mmol) to form a solution, which was then cooled to 0 ° C., and N-bromosuccinimide (3.00 g, 16.9 mmol) Was added. Then, it stirred at room temperature for 1 hour, water (60 mL) was dripped after cooling to 0 degreeC. The precipitated solid was collected by filtration and washed with water and methanol in this order to obtain monomer 1 as a white solid (yield 7.25 g, yield 98%). The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 1.99 (s, 6H), 2.27 (s, 6H), 6.65-6.67 (m, 4H), 6.78 (d, J = 8.5Hz, 4H), 6.98-7.02 (m, 6H), 7.10 (d, J = 8.5Hz, 2H), 7.16 (d, J = 8.0Hz, 2H), 7.21-7.23 (m, 4H).
LC / MS (ESI + ) m / z; 853 [M + 1] +
[合成例2]モノマー2の合成
[合成例2-1]中間体2-1の合成
Figure JPOXMLDOC01-appb-C000020
[Synthesis Example 2] Synthesis of Monomer 2 [Synthesis Example 2-1] Synthesis of Intermediate 2-1
Figure JPOXMLDOC01-appb-C000020
 3-エチル-3-ヒドロキシメチルオキセタン(2.32g、20mmol)及び4-ブロモベンジルブロミド(5.00g、20mmol)のジメチルホルムアミド溶液(45mL)を0℃に冷却し、そこへ水素化ナトリウム(0.96g、24mmol)を加えた。室温にて2時間攪拌し、0℃に冷却後、水(90mL)を滴下し、酢酸エチルにより抽出した。有機層を硫酸ナトリウムにより乾燥後、ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製することにより、中間体2-1を無色液体(収量5.32g、収率93%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 0.87(t, J= 7.5Hz,3 H), 1.76(q, J= 7.5Hz, 2H), 3.57(s, 2H), 4.39(d, J= 3.0Hz, 2H), 4.45(d, J=3.0Hz, 2H), 4.51(s, 2H), 7.21(d, J=8.5Hz, 2H), 7.47(d, J=8.5Hz, 2H).
LC/MS (ESI+) m/z; 287[M+1]+
A solution of 3-ethyl-3-hydroxymethyloxetane (2.32 g, 20 mmol) and 4-bromobenzyl bromide (5.00 g, 20 mmol) in dimethylformamide (45 mL) was cooled to 0 ° C. and sodium hydride (0 .96 g, 24 mmol) was added. The mixture was stirred at room temperature for 2 hours, cooled to 0 ° C., water (90 mL) was added dropwise, and the mixture was extracted with ethyl acetate. The organic layer was dried over sodium sulfate, and the filtrate was concentrated. The resulting crude product was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to give intermediate 2-1 as a colorless liquid (yield). 5.32 g, 93% yield). The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 0.87 (t, J = 7.5Hz, 3 H), 1.76 (q, J = 7.5Hz, 2H), 3.57 (s, 2H), 4.39 (d, J = 3.0Hz, 2H), 4.45 (d, J = 3.0Hz, 2H), 4.51 (s, 2H), 7.21 (d, J = 8.5Hz, 2H), 7.47 (d, J = 8.5Hz, 2H).
LC / MS (ESI + ) m / z; 287 [M + 1] +
[合成例2-2]モノマー2の合成
Figure JPOXMLDOC01-appb-C000021
[Synthesis Example 2-2] Synthesis of Monomer 2
Figure JPOXMLDOC01-appb-C000021
 2,2-ビス(3-アミノ-4-メチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(1.09g、3mmol)及び中間体2-1(1.71g、6mmol)のトルエン懸濁液(22mL)に、Pd(dba)2(34.5mg、0.06mmol)及びt-BuONa(0.69g、7.2mmol)を加え、80℃で3時間反応させた。反応終了後、室温まで放冷し、水(20mL)を加え、酢酸エチルにより抽出した。有機層を硫酸ナトリウムにより乾燥後、セライトろ過した。ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製することにより、モノマー2を褐色液体(収量1.99g、収率86%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 0.84(t, J=7.5Hz, 6H), 1.75(q, J=7.5Hz, 4H), 2.24(s, 6H), 3.54(s, 4H), 4.37(d, J= 6.0Hz, 4H), 4.44-4.45(m, 8H), 5.50(brs, 2H), 6.81(d, J=8.0Hz, 4H), 6.98(d, J=8.0Hz, 2H), 7.14-7.18(m, 6H), 7.24-7.26(m, 2H).
LC/MS (ESI+) m/z; 793[M+Na]+ 
2,2-bis (3-amino-4-methylphenyl) -1,1,1,3,3,3-hexafluoropropane (1.09 g, 3 mmol) and intermediate 2-1 (1.71 g, 6 mmol) Pd (dba) 2 (34.5 mg, 0.06 mmol) and t-BuONa (0.69 g, 7.2 mmol) were added to a toluene suspension (22 mL) and reacted at 80 ° C. for 3 hours. After completion of the reaction, the mixture was allowed to cool to room temperature, water (20 mL) was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over sodium sulfate and filtered through celite. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to obtain monomer 2 as a brown liquid (yield 1.99 g, yield 86%). . The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 0.84 (t, J = 7.5Hz, 6H), 1.75 (q, J = 7.5Hz, 4H), 2.24 (s, 6H), 3.54 (s, 4H), 4.37 (d, J = 6.0Hz, 4H), 4.44-4.45 (m, 8H), 5.50 (brs, 2H), 6.81 (d, J = 8.0Hz, 4H), 6.98 (d, J = 8.0Hz, 2H ), 7.14-7.18 (m, 6H), 7.24-7.26 (m, 2H).
LC / MS (ESI + ) m / z; 793 [M + Na] +
[合成例3]モノマー3の合成
[合成例3-1]中間体3-1の合成
Figure JPOXMLDOC01-appb-C000022
[Synthesis Example 3] Synthesis of Monomer 3 [Synthesis Example 3-1] Synthesis of Intermediate 3-1
Figure JPOXMLDOC01-appb-C000022
 モノマー2(1.99g、2.6mmol)及びヨードベンゼン(1.16g、5.7mmol)のトルエン懸濁液(40mL)に、Pd(dba)2(148mg、0.26mmol)、[(t-Bu)3PH]BF4(150mg、0.52mmol)及びt-BuONa(0.74g、7.8mmol)を加え、窒素置換後、1時間加熱還流した。反応終了後、室温まで放冷し、水(40mL)を加え、酢酸エチルにより抽出した。有機層を硫酸ナトリウムにより乾燥後、セライトろ過した。ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製することにより、中間体3-1を褐色液体(収量2.18g、収率91%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 0.85(t, J=7.5Hz, 6H), 1.76(q, J= 7.5Hz, 4H), 1.99(s, 6H), 3.56(s, 4H), 4.38(d, J=5.5Hz, 4H), 4.44-4.46(m, 8H), 6.84-6.92(m, 10H), 7.10-7.18(m, 14H).
LC/MS (ESI+) m/z; 940[M+NH4+
To a suspension of monomer 2 (1.99 g, 2.6 mmol) and iodobenzene (1.16 g, 5.7 mmol) in toluene (40 mL) was added Pd (dba) 2 (148 mg, 0.26 mmol), [(t- Bu) 3 PH] BF 4 (150 mg, 0.52 mmol) and t-BuONa (0.74 g, 7.8 mmol) were added, and the mixture was purged with nitrogen and heated to reflux for 1 hour. After completion of the reaction, the mixture was allowed to cool to room temperature, water (40 mL) was added, and the mixture was extracted with ethyl acetate. The organic layer was dried over sodium sulfate and filtered through celite. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to obtain intermediate 3-1 as a brown liquid (yield 2.18 g, yield 91%). Got as. The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 0.85 (t, J = 7.5Hz, 6H), 1.76 (q, J = 7.5Hz, 4H), 1.99 (s, 6H), 3.56 (s, 4H), 4.38 (d, J = 5.5Hz, 4H), 4.44-4.46 (m, 8H), 6.84-6.92 (m, 10H), 7.10-7.18 (m, 14H).
LC / MS (ESI + ) m / z; 940 [M + NH 4 ] +
[合成例3-2]モノマー3の合成
Figure JPOXMLDOC01-appb-C000023
[Synthesis Example 3-2] Synthesis of Monomer 3
Figure JPOXMLDOC01-appb-C000023
 中間体3-1(2.18g、2.4mmol)にDMF(22mL)を加え、溶液とした後に0℃に冷却し、N-ブロモスクシンイミド(0.84g、4.8mmol)を加えた。その後、室温にて1時間攪拌し、水(40mL)を滴下した。析出した固体をろ取し、シリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製することにより、モノマー3を淡黄色固体(収量2.37g、収率93%)として得た。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 0.85(t, J=7.5Hz, 6H), 1.76(q, J=7.5Hz, 4H), 1.99(s, 6H), 3.57(s, 4H), 4.38(d, J=6.0Hz, 4H), 4.44-4.47(m, 8H), 6.72(d, J=8.5Hz, 4H), 6.85(d, J=8.5Hz, 4H), 7.05(s, 2H), 7.11-7.19(m, 8H), 7.24-7.26(m, 4H).
LC/MS (ESI+) m/z; 1098[M+NH4]+
DMF (22 mL) was added to Intermediate 3-1 (2.18 g, 2.4 mmol) to form a solution, cooled to 0 ° C., and N-bromosuccinimide (0.84 g, 4.8 mmol) was added. Then, it stirred at room temperature for 1 hour and water (40 mL) was dripped. The precipitated solid was collected by filtration and purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to obtain monomer 3 as a pale yellow solid (yield 2.37 g, yield 93%). The measurement results of 1 H-NMR and LC / MS are shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 0.85 (t, J = 7.5Hz, 6H), 1.76 (q, J = 7.5Hz, 4H), 1.99 (s, 6H), 3.57 (s, 4H), 4.38 (d, J = 6.0Hz, 4H), 4.44-4.47 (m, 8H), 6.72 (d, J = 8.5Hz, 4H), 6.85 (d, J = 8.5Hz, 4H), 7.05 (s, 2H ), 7.11-7.19 (m, 8H), 7.24-7.26 (m, 4H).
LC / MS (ESI + ) m / z; 1098 [M + NH 4 ] +
[合成例4]モノマー4の合成
Figure JPOXMLDOC01-appb-C000024
[Synthesis Example 4] Synthesis of Monomer 4
Figure JPOXMLDOC01-appb-C000024
 2,7-ジブロモ-9,9-ジオクチル-9H-フルオレン(4.80g、8.8mmol)及びビス(ピナコラート)ジボロン(5.33g、21mmol)の1,4-ジオキサン溶液(48mL)に、酢酸カリウム(3.45g、35mmol)及びPdCl2(dppf)のジクロロメタン付加体(287mg、0.35mmol)を加え、窒素置換後、100℃で3時間加熱した。反応終了後、セライトろ過し、ろ液を濃縮し得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル)で精製して、モノマー4を白色固体(2.64g、47%収率)として得た。1H-NMRの測定結果を以下に示す。
1H-NMR (300MHz, CDCl3): δ 0.49-0.60(m, 4H), 0.79-0.82(m, 6H), 1.01-1.22(m, 20H), 1.39(s, 24H), 1.97-2.01(m, 4H), 7.71-7.82(m, 6H).
To a 1,4-dioxane solution (48 mL) of 2,7-dibromo-9,9-dioctyl-9H-fluorene (4.80 g, 8.8 mmol) and bis (pinacolato) diboron (5.33 g, 21 mmol) in acetic acid. Potassium (3.45 g, 35 mmol) and a dichloromethane adduct of PdCl 2 (dppf) (287 mg, 0.35 mmol) were added, and after substitution with nitrogen, the mixture was heated at 100 ° C. for 3 hours. After completion of the reaction, the mixture was filtered through Celite, and the filtrate was concentrated. The resulting crude product was purified by silica gel column chromatography (eluent: hexane / ethyl acetate) to give monomer 4 as a white solid (2.64 g, 47%). Yield). The measurement result of 1 H-NMR is shown below.
1 H-NMR (300MHz, CDCl 3 ): δ 0.49-0.60 (m, 4H), 0.79-0.82 (m, 6H), 1.01-1.22 (m, 20H), 1.39 (s, 24H), 1.97-2.01 ( m, 4H), 7.71-7.82 (m, 6H).
[2]ポリマーの合成
[実施例1]ポリマー1の合成
Figure JPOXMLDOC01-appb-C000025
[2] Polymer synthesis [Example 1] Polymer 1 synthesis
Figure JPOXMLDOC01-appb-C000025
 モノマー1(1.38g、1.62mmol)、モノマー3(0.19g、0.18mmol)及びモノマー4(0.96g、1.5mmol)のトルエン溶液(32mL)に、メチルトリ-n-オクチルアンモニウムクロリド(182mg、0.45mmol)、Pd(PPh3)4(21mg、18μmol)及び2mol/L炭酸ナトリウム水溶液(3.6mL、7.2mmol)を加え、16時間加熱還流した。反応液にフェニルボロン酸(219mg、1.8mmol)を加え、更に4時間加熱還流した。反応終了後、1mol/L塩酸で有機層を洗浄し、硫酸ナトリウムで乾燥した。セライトろ過後、有機層を体積が1/4になるまで濃縮し、メタノール(320mL)に滴下した。室温で1時間攪拌した後、析出した固体をろ取した。この固体をTHF(20mL)に溶解させ、メタノール(320mL)に滴下し、室温で1時間攪拌後、析出した固体をろ取することによりポリマー1を淡黄色固体(1.47g)として得た。GPCによるMw及びMnの測定結果を以下に示す。
  Mw=6,400
  Mn=3,900
  Mw/Mn=1.64
To a toluene solution (32 mL) of monomer 1 (1.38 g, 1.62 mmol), monomer 3 (0.19 g, 0.18 mmol) and monomer 4 (0.96 g, 1.5 mmol), methyl tri-n-octylammonium chloride was added. (182 mg, 0.45 mmol), Pd (PPh 3 ) 4 (21 mg, 18 μmol) and a 2 mol / L aqueous sodium carbonate solution (3.6 mL, 7.2 mmol) were added, and the mixture was heated to reflux for 16 hours. Phenylboronic acid (219 mg, 1.8 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 4 hours. After completion of the reaction, the organic layer was washed with 1 mol / L hydrochloric acid and dried over sodium sulfate. After Celite filtration, the organic layer was concentrated until the volume was reduced to ¼ and added dropwise to methanol (320 mL). After stirring at room temperature for 1 hour, the precipitated solid was collected by filtration. This solid was dissolved in THF (20 mL), dropped into methanol (320 mL), stirred at room temperature for 1 hour, and the precipitated solid was collected by filtration to obtain polymer 1 as a pale yellow solid (1.47 g). The measurement results of Mw and Mn by GPC are shown below.
Mw = 6,400
Mn = 3,900
Mw / Mn = 1.64
[実施例2]ポリマー2の合成
Figure JPOXMLDOC01-appb-C000026
[Example 2] Synthesis of polymer 2
Figure JPOXMLDOC01-appb-C000026
 モノマー3(1.62g、1.5mmol)及びモノマー4(0.8g、1.25mmol)のトルエン溶液(32mL)に、メチルトリ-n-オクチルアンモニウムクロリド(152mg、0.38mmol)、Pd(PPh3)4(87mg、75μmol)及び2mol/L炭酸ナトリウム水溶液(3mL、6mmol)を加え、24時間加熱還流した。反応液にフェニルボロン酸(183mg、1.5mmol)を加え、更に4時間加熱還流した。反応終了後、1mol/L塩酸で有機層を洗浄し、硫酸ナトリウムで乾燥した。セライトろ過後、有機層を体積が1/4になるまで濃縮し、メタノール(320mL)に滴下した。室温で1時間攪拌した後、析出した固体をろ取した。この固体をTHF(10mL)に溶解させ、メタノール(320mL)に滴下し、室温で1時間攪拌後、析出した固体をろ取することによりポリマー2を無色固体(1.02g)として得た。GPCによるMw及びMnの測定結果を以下に示す。
  Mw=7,800
  Mn=4,900
  Mw/Mn=1.59
To a toluene solution (32 mL) of monomer 3 (1.62 g, 1.5 mmol) and monomer 4 (0.8 g, 1.25 mmol), methyltri-n-octylammonium chloride (152 mg, 0.38 mmol), Pd (PPh 3 ) 4 (87 mg, 75 μmol) and 2 mol / L aqueous sodium carbonate solution (3 mL, 6 mmol) were added, and the mixture was heated to reflux for 24 hours. Phenylboronic acid (183 mg, 1.5 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 4 hours. After completion of the reaction, the organic layer was washed with 1 mol / L hydrochloric acid and dried over sodium sulfate. After Celite filtration, the organic layer was concentrated until the volume was reduced to ¼ and added dropwise to methanol (320 mL). After stirring at room temperature for 1 hour, the precipitated solid was collected by filtration. This solid was dissolved in THF (10 mL), added dropwise to methanol (320 mL), stirred at room temperature for 1 hour, and the precipitated solid was collected by filtration to obtain polymer 2 as a colorless solid (1.02 g). The measurement results of Mw and Mn by GPC are shown below.
Mw = 7,800
Mn = 4,900
Mw / Mn = 1.59
[実施例3]ポリマー3の合成
Figure JPOXMLDOC01-appb-C000027
[Example 3] Synthesis of polymer 3
Figure JPOXMLDOC01-appb-C000027
 モノマー2(1.54g、2mmol)及び2,7-ジブロモ-9,9-ジオクチル-9H-フルオレン(1.11g、2.02mmol)のトルエン溶液(30mL)に、Pd(dba)2(115mg、0.2mmol)、[(t-Bu)3PH]BF4(116mg、0.4mmol)及びt-BuONa(0.58g、6mmol)を加え、3時間加熱還流した。反応液にジフェニルアミン(338mg、2mmol)を加え、更に3時間加熱還流した。反応終了後、1mol/L塩酸で有機層を洗浄し、硫酸ナトリウムで乾燥した。セライトろ過後、有機層を体積が1/4になるまで濃縮し、メタノール(200mL)に滴下した。室温で1時間攪拌した後、析出した固体をろ取した。この固体をトルエン(10mL)に溶解させ、メタノール(100mL)に滴下し、室温で1時間攪拌後、析出した固体をろ取することによりポリマー3を黄色固体(0.44g)として得た。GPCによるMw及びMnの測定結果を以下に示す。
  Mw=5,700
  Mn=4,400
  Mw/Mn=1.30
To a toluene solution (30 mL) of monomer 2 (1.54 g, 2 mmol) and 2,7-dibromo-9,9-dioctyl-9H-fluorene (1.11 g, 2.02 mmol), Pd (dba) 2 (115 mg, 0.2 mmol), [(t-Bu) 3 PH] BF 4 (116 mg, 0.4 mmol) and t-BuONa (0.58 g, 6 mmol) were added, and the mixture was heated to reflux for 3 hours. Diphenylamine (338 mg, 2 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 3 hours. After completion of the reaction, the organic layer was washed with 1 mol / L hydrochloric acid and dried over sodium sulfate. After filtration through celite, the organic layer was concentrated until the volume was reduced to ¼ and added dropwise to methanol (200 mL). After stirring at room temperature for 1 hour, the precipitated solid was collected by filtration. This solid was dissolved in toluene (10 mL), dropped into methanol (100 mL), stirred at room temperature for 1 hour, and the precipitated solid was collected by filtration to obtain polymer 3 as a yellow solid (0.44 g). The measurement results of Mw and Mn by GPC are shown below.
Mw = 5,700
Mn = 4,400
Mw / Mn = 1.30
[実施例4]ポリマー4の合成
Figure JPOXMLDOC01-appb-C000028
Example 4 Synthesis of Polymer 4
Figure JPOXMLDOC01-appb-C000028
 モノマー1(1.36g、1.6mmol)及びモノマー4(1.29g、2.0mmol)のトルエン溶液(27mL)に、メチルトリ-n-オクチルアンモニウムクロリド(162mg、0.4mmol)、Pd(PPh3)4(92mg、80μmol)及び2mol/L炭酸ナトリウム水溶液(3.2mL、6.4mmol)を加え、21時間加熱還流した。反応液に、中間体2-1(0.46g、1.6mmol)を加え、更に4時間加熱還流した。反応終了後、反応終了後、1mol/L塩酸で有機層を洗浄し、硫酸ナトリウムで乾燥した。セライトろ過後、有機層を体積が1/4になるまで濃縮し、メタノール(270mL)に滴下した。室温で1時間攪拌した後、析出した固体をろ取した。この固体をTHF(20mL)に溶解させ、メタノール(270mL)に滴下し、室温で1時間攪拌後、析出した固体をろ取することによりポリマー4を白色固体(1.46g)として得た。GPCによるMw及びMnの測定結果を以下に示す。
  Mw=6,400
  Mn=4,100
  Mw/Mn=1.55
To a toluene solution (27 mL) of monomer 1 (1.36 g, 1.6 mmol) and monomer 4 (1.29 g, 2.0 mmol), methyltri-n-octylammonium chloride (162 mg, 0.4 mmol), Pd (PPh 3 ) 4 (92 mg, 80 μmol) and 2 mol / L sodium carbonate aqueous solution (3.2 mL, 6.4 mmol) were added, and the mixture was heated to reflux for 21 hours. Intermediate 2-1 (0.46 g, 1.6 mmol) was added to the reaction solution, and the mixture was further heated to reflux for 4 hours. After completion of the reaction, after completion of the reaction, the organic layer was washed with 1 mol / L hydrochloric acid and dried over sodium sulfate. After Celite filtration, the organic layer was concentrated until the volume was reduced to ¼ and added dropwise to methanol (270 mL). After stirring at room temperature for 1 hour, the precipitated solid was collected by filtration. This solid was dissolved in THF (20 mL), dropped into methanol (270 mL), stirred at room temperature for 1 hour, and the precipitated solid was collected by filtration to obtain polymer 4 as a white solid (1.46 g). The measurement results of Mw and Mn by GPC are shown below.
Mw = 6,400
Mn = 4,100
Mw / Mn = 1.55
[3]電荷輸送性ワニスの調製
[実施例5]電荷輸送性ワニスAの調製
 ポリマー1(0.129mg)及びドーパントとして下記式で表されるP-1(東京化成(株)製)(0.026mg)を、シクロヘキサノン(4.0g)及びアニソール(1.0g)の混合溶媒に加え、400rpmで、50℃、5分間加熱攪拌した。得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、電荷輸送性ワニスAを得た。
Figure JPOXMLDOC01-appb-C000029
[3] Preparation of charge transporting varnish [Example 5] Preparation of charge transporting varnish A Polymer 1 (0.129 mg) and P-1 represented by the following formula as a dopant (manufactured by Tokyo Chemical Industry Co., Ltd.) (0 0.026 mg) was added to a mixed solvent of cyclohexanone (4.0 g) and anisole (1.0 g), and the mixture was heated and stirred at 400 rpm at 50 ° C. for 5 minutes. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge transporting varnish A.
Figure JPOXMLDOC01-appb-C000029
[実施例6]電荷輸送性ワニスBの調製
 ポリマー1をポリマー2(0.129mg)にかえた以外は、実施例5と同様の方法で電荷輸送性ワニスBを得た。
[Example 6] Preparation of charge transporting varnish B A charge transporting varnish B was obtained in the same manner as in Example 5 except that the polymer 1 was replaced with the polymer 2 (0.129 mg).
[実施例7]電荷輸送性ワニスCの調製
 ポリマー1をポリマー3(0.129mg)にかえた以外は、実施例5と同様の方法で電荷輸送性ワニスBを得た。
[Example 7] Preparation of charge transporting varnish C Charge transporting varnish B was obtained in the same manner as in Example 5 except that polymer 1 was changed to polymer 3 (0.129 mg).
[実施例8]電荷輸送性ワニスDの調製
 ポリマー1をポリマー4(0.129mg)にかえた以外は、実施例5と同様の方法で電荷輸送性ワニスBを得た。
[Example 8] Preparation of charge transporting varnish D Charge transporting varnish B was obtained in the same manner as in Example 5 except that polymer 1 was replaced with polymer 4 (0.129 mg).
[4]有機EL素子の作製及びその特性評価
 電気特性を評価する際の基板には、インジウム錫酸化物が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板(以下、ITO基板と略す。)を用いた。ITO基板は、O2プラズマ洗浄装置(150W、30秒間)を用いて、表面上の不純物を除去してから使用した。
[4] Fabrication of organic EL element and evaluation of its characteristics As a substrate for evaluating electrical characteristics, a glass substrate of 25 mm × 25 mm × 0.7 t (hereinafter referred to as “indium tin oxide”) having a thickness of 150 nm patterned on its surface , Abbreviated as ITO substrate). The ITO substrate was used after removing impurities on the surface using an O 2 plasma cleaning apparatus (150 W, 30 seconds).
[実施例9]電荷輸送性ワニスAを用いた有機EL素子の作製
 実施例5で調製した電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、150℃で10分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、CBPとIr(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウム及びアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製、HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
[Example 9] Production of organic EL device using charge transporting varnish A The charge transporting varnish A prepared in Example 5 was applied to an ITO substrate using a spin coater, and then at 150 ° C in an air atmosphere. Baking for 10 minutes formed a uniform thin film of 50 nm on the ITO substrate.
Subsequently, α-NPD was formed to a thickness of 30 nm at 0.2 nm / second on the ITO substrate on which the thin film was formed using a vapor deposition apparatus (vacuum degree: 1.0 × 10 −5 Pa). Next, CBP and Ir (PPy) 3 were co-evaporated. In the co-evaporation, the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and the layers were laminated to 40 nm. Subsequently, an organic EL device was obtained by sequentially laminating thin films of Alq 3 , lithium fluoride, and aluminum. At this time, the deposition rate was 0.2 nm / second for Alq 3 and aluminum and 0.02 nm / second for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
In addition, in order to prevent the characteristic deterioration by the influence of oxygen in the air, water, etc., after sealing the organic EL element with the sealing substrate, the characteristic was evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -85 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together. At this time, a water-absorbing agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
[実施例10]電荷輸送性ワニスBを用いた有機EL素子の作製
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例9と同様の方法で有機EL素子を作製した。
[Example 10] Preparation of organic EL device using charge transporting varnish B An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish B was used instead of charge transporting varnish A. did.
[実施例11]電荷輸送性ワニスCを用いた有機EL素子の作製
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスCを用いた以外は、実施例9と同様の方法で有機EL素子を作製した。
[Example 11] Preparation of organic EL device using charge transporting varnish C An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish C was used instead of charge transporting varnish A. did.
[実施例12]電荷輸送性ワニスDを用いた有機EL素子の作製
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスDを用いた以外は、実施例9と同様の方法で有機EL素子を作製した。
[Example 12] Preparation of organic EL device using charge transporting varnish D An organic EL device was prepared in the same manner as in Example 9 except that charge transporting varnish D was used instead of charge transporting varnish A. did.
 実施例9~12で作製した有機EL素子について、輝度5,000cd/m2における、電圧、電流密度、電流効率、発光効率及び外部量子効率(EQE)、並びに半減期(初期輝度5,000cd/m2)を測定した。結果を表1に示す。 For the organic EL devices produced in Examples 9 to 12, the voltage, current density, current efficiency, light emission efficiency, external quantum efficiency (EQE), and half-life (initial luminance 5,000 cd / m 2) at a luminance of 5,000 cd / m 2 . m 2 ) was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030

Claims (12)

  1.  下記式(1)又は(2)で表されるフッ素原子含有重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、A1~A3は、それぞれ独立に、炭素数1~6のフルオロアルカンジイル基を表し;
     Ar1~Ar3は、それぞれ独立に、炭素数6~20のアリーレン基又は炭素数2~20のヘテロアリーレン基を表し、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基で置換されていてもよく、また、各Ar1、各Ar2及び各Ar3は、互いに同一でも異なっていてもよく;
     X1~X4は、それぞれ独立に、架橋性基を表し;
     Y1~Y4は、それぞれ独立に、単結合、又は炭素数6~20のアリーレン基を表し、また、各Y1、各Y2、各Y3及び各Y4は、互いに同一でも異なっていてもよく;
     R1~R10は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基若しくは炭素数2~20のアルキニルオキシ基、又はZ2で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数6~20のアリールオキシ基若しくは炭素数2~20のヘテロアリールオキシ基を表し、R1~R10がそれぞれ2以上存在する場合は、各R1~R10は、互いに同一でも異なっていてもよく;
     Z1は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基、炭素数2~20のヘテロアリール基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     Z2は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数1~20のアルコキシ基、炭素数2~20のアルケニルオキシ基、炭素数2~20のアルキニルオキシ基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     Z3は、ハロゲン原子、ニトロ基又はシアノ基を表し;
     p、q、t、u、w及びxは、それぞれ独立に、0~4の整数を表し;
     r、s、y及びzは、それぞれ独立に、0~4の整数を表し;
     m及びnは、0≦m≦1、0<n≦1かつm+n=1を満たす正数を表し;
     kは、1以上の整数を表す。)
    A fluorine atom-containing polymer represented by the following formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein A 1 to A 3 each independently represents a fluoroalkanediyl group having 1 to 6 carbon atoms;
    Ar 1 to Ar 3 each independently represent an arylene group having 6 to 20 carbon atoms or a heteroarylene group having 2 to 20 carbon atoms, and may be substituted with a halogen atom, a nitro group, a cyano group, or Z 1 An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, or an aryl group or carbon having 6 to 20 carbon atoms which may be substituted with Z 2 Each Ar 1 , each Ar 2 and each Ar 3 may be the same or different from each other, and may be substituted with a heteroaryl group of 2 to 20;
    X 1 to X 4 each independently represents a crosslinkable group;
    Y 1 to Y 4 each independently represents a single bond or an arylene group having 6 to 20 carbon atoms, and each Y 1 , each Y 2 , each Y 3 and each Y 4 are the same or different from each other. May be;
    R 1 to R 10 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a carbon atom optionally substituted with Z 1 An alkynyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, or a carbon number optionally substituted with Z 2 Represents a 6 to 20 aryl group, a C2 to C20 heteroaryl group, a C6 to C20 aryloxy group or a C2 to C20 heteroaryloxy group, each having two or more R 1 to R 10 If so, each R 1 to R 10 may be the same or different from each other;
    Z 1 is a halogen atom, a nitro group or a cyano group, or an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms, which may be substituted with Z 3. A alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms;
    Z 2 represents a halogen atom, a nitro group or a cyano group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms which may be substituted with Z 3. Represents an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an alkynyloxy group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. ;
    Z 3 represents a halogen atom, a nitro group or a cyano group;
    p, q, t, u, w and x each independently represents an integer of 0 to 4;
    r, s, y and z each independently represents an integer of 0 to 4;
    m and n represent positive numbers satisfying 0 ≦ m ≦ 1, 0 <n ≦ 1, and m + n = 1;
    k represents an integer of 1 or more. )
  2.  重量平均分子量が、1,000~1,000,000である請求項1記載のフッ素原子含有重合体。 2. The fluorine atom-containing polymer according to claim 1, having a weight average molecular weight of 1,000 to 1,000,000.
  3.  Aが、パーフルオロメタンジイル基、パーフルオロエタン-1,2-ジイル基、パーフルオロプロパン-1,3-ジイル基、パーフルオロプロパン-2,2-ジイル基、パーフルオロブタン-1,4-ジイル基、パーフルオロペンタン-1,5-ジイル基又はパーフルオロヘキサン-1,6-ジイル基である請求項1又は2記載の高分子化合物。 A is a perfluoromethanediyl group, a perfluoroethane-1,2-diyl group, a perfluoropropane-1,3-diyl group, a perfluoropropane-2,2-diyl group, a perfluorobutane-1,4- The polymer compound according to claim 1 or 2, which is a diyl group, a perfluoropentane-1,5-diyl group or a perfluorohexane-1,6-diyl group.
  4.  Ar1~Ar3が、フルオレン、ベンゼン、ナフタレン、ビフェニル又はこれらの誘導体から誘導される基である請求項1~3のいずれか1項記載のフッ素原子含有重合体。 4. The fluorine atom-containing polymer according to claim 1, wherein Ar 1 to Ar 3 are groups derived from fluorene, benzene, naphthalene, biphenyl or a derivative thereof.
  5.  Ar1~Ar3が、下記式(3)で表される基である請求項4記載のフッ素原子含有重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R11及びR12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、又は炭素数2~20のヘテロアリール基を表し;
     R13及びR14は、それぞれ独立に、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはZ1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基、又はZ2で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     a及びbは、それぞれ独立に、0~3の整数を表す。)
    The fluorine atom-containing polymer according to claim 4, wherein Ar 1 to Ar 3 are a group represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 6 to 20 carbon atoms. Or an aryl group having 2 to 20 carbon atoms;
    R 13 and R 14 are each independently a halogen atom, a nitro group or a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon atom optionally substituted with Z 1 Represents an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 2 ;
    a and b each independently represents an integer of 0 to 3. )
  6.  R11及びR12が、ともにアルキル基である請求項5記載のフッ素原子含有重合体。 6. The fluorine atom-containing polymer according to claim 5, wherein R 11 and R 12 are both alkyl groups.
  7.  前記架橋性基が、重合性炭素炭素二重結合、オキシラン環又はオキセタン環を含む基である請求項1~6のいずれか1項記載のフッ素原子含有重合体。 The fluorine atom-containing polymer according to any one of claims 1 to 6, wherein the crosslinkable group is a group containing a polymerizable carbon-carbon double bond, an oxirane ring or an oxetane ring.
  8.  請求項1~7のいずれか1項記載のフッ素原子含有重合体からなる電荷輸送性物質。 A charge transport material comprising the fluorine atom-containing polymer according to any one of claims 1 to 7.
  9.  請求項8記載の電荷輸送性物質、ドーパント、及び有機溶媒を含む電荷輸送性ワニス。 A charge transporting varnish comprising the charge transporting substance according to claim 8, a dopant, and an organic solvent.
  10.  請求項9記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。 A charge transporting thin film produced using the charge transporting varnish according to claim 9.
  11.  請求項10記載の電荷輸送性薄膜を備える電子デバイス。 An electronic device comprising the charge transporting thin film according to claim 10.
  12.  請求項10記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the charge transporting thin film according to claim 10.
PCT/JP2018/009208 2017-03-24 2018-03-09 Fluorine-atom-containing polymer and use thereof WO2018173801A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019507543A JP7056644B2 (en) 2017-03-24 2018-03-09 Fluorine atom-containing polymer and its utilization
CN201880002966.5A CN109563243B (en) 2017-03-24 2018-03-09 Fluorine atom-containing polymer and use thereof
KR1020197000951A KR102476004B1 (en) 2017-03-24 2018-03-09 Fluorine atom-containing polymer and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059250 2017-03-24
JP2017-059250 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173801A1 true WO2018173801A1 (en) 2018-09-27

Family

ID=63584367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009208 WO2018173801A1 (en) 2017-03-24 2018-03-09 Fluorine-atom-containing polymer and use thereof

Country Status (5)

Country Link
JP (1) JP7056644B2 (en)
KR (1) KR102476004B1 (en)
CN (1) CN109563243B (en)
TW (1) TWI780131B (en)
WO (1) WO2018173801A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
WO2008120470A1 (en) * 2007-03-29 2008-10-09 Mitsui Chemicals, Inc. Sulfo group-containing polymer compound and intermediate thereof, and organic electroluminescent device containing the compound
JP2013155294A (en) * 2012-01-30 2013-08-15 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescence element and use of the same
JP2013191867A (en) * 2003-09-04 2013-09-26 Merck Patent Gmbh Electronic devices comprising organic conductor and semiconductor and intermediate buffer layer made of crosslinked polymer
WO2016006674A1 (en) * 2014-07-10 2016-01-14 日産化学工業株式会社 Fluorine-atom-containing polymer and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862747B2 (en) 2004-08-31 2011-01-04 Nissan Chemical Industries, Ltd. Arylsulfonic acid compound and use thereof as electron-acceptor material
JP5262717B2 (en) 2006-09-13 2013-08-14 日産化学工業株式会社 Charge transport varnish
US8298444B2 (en) 2007-04-12 2012-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound
WO2010058777A1 (en) 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191867A (en) * 2003-09-04 2013-09-26 Merck Patent Gmbh Electronic devices comprising organic conductor and semiconductor and intermediate buffer layer made of crosslinked polymer
JP2007531762A (en) * 2004-03-31 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Triarylamine compounds used as charge transport materials
WO2008120470A1 (en) * 2007-03-29 2008-10-09 Mitsui Chemicals, Inc. Sulfo group-containing polymer compound and intermediate thereof, and organic electroluminescent device containing the compound
JP2013155294A (en) * 2012-01-30 2013-08-15 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescence element and use of the same
WO2016006674A1 (en) * 2014-07-10 2016-01-14 日産化学工業株式会社 Fluorine-atom-containing polymer and use thereof

Also Published As

Publication number Publication date
KR20190125282A (en) 2019-11-06
TWI780131B (en) 2022-10-11
JPWO2018173801A1 (en) 2020-01-23
KR102476004B1 (en) 2022-12-09
JP7056644B2 (en) 2022-04-19
CN109563243A (en) 2019-04-02
TW201900717A (en) 2019-01-01
CN109563243B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
KR102392403B1 (en) Sulfonic acid ester compounds and their use
JP6414213B2 (en) Varnish for forming hole injection layer of organic electroluminescence device
JP6601397B2 (en) Fluorine atom-containing polymer and use thereof
JP6658728B2 (en) Fluorine atom-containing polymer and use thereof
JP7310609B2 (en) charge transport varnish
JP2019135774A (en) Charge-transporting varnish for hole injection layer formation
JP6760455B2 (en) Aniline derivative and its manufacturing method
JP6763425B2 (en) Arylamine derivatives and their uses
JP6011723B2 (en) Triphenylamine derivatives and uses thereof
EP3118190A1 (en) Aniline derivative and use thereof
JP6418234B2 (en) Fluorene derivatives and uses thereof
JP6402724B2 (en) Arylsulfonic acid compounds and uses thereof
JP6061034B2 (en) Aniline derivative, charge transporting varnish, and organic electroluminescence device
JP7056644B2 (en) Fluorine atom-containing polymer and its utilization
JP2015092559A (en) Electric charge transportation type varnish, electric charge transportation type thin film and organic electroluminescent element
JP6601405B2 (en) Charge transport varnish
JP2015092561A (en) Electric charge transportation type varnish, electric charge transportation type thin film and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507543

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197000951

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771499

Country of ref document: EP

Kind code of ref document: A1