WO2018173782A1 - Permanent magnet, dynamo-electric machine and vehicle - Google Patents

Permanent magnet, dynamo-electric machine and vehicle Download PDF

Info

Publication number
WO2018173782A1
WO2018173782A1 PCT/JP2018/009078 JP2018009078W WO2018173782A1 WO 2018173782 A1 WO2018173782 A1 WO 2018173782A1 JP 2018009078 W JP2018009078 W JP 2018009078W WO 2018173782 A1 WO2018173782 A1 WO 2018173782A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
phase
type
atomic
rotating electrical
Prior art date
Application number
PCT/JP2018/009078
Other languages
French (fr)
Japanese (ja)
Inventor
直幸 眞田
利英 高橋
桜田 新哉
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2018173782A1 publication Critical patent/WO2018173782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • Embodiment relates to a permanent magnet, a rotating electrical machine, and a vehicle.
  • rare earth magnets such as Sm—Co magnets and Nd—Fe—B magnets are known. Rare earth magnets are used in electric devices such as motors, speakers, and measuring instruments, and also in vehicles such as hybrid electric vehicles (HEV) and electric vehicles (EV).
  • HEV hybrid electric vehicles
  • EV electric vehicles
  • BH max maximum magnetic energy product
  • a magnet material for obtaining a higher performance permanent magnet for example, a combination of a rare earth element and a transition metal element such as Fe is promising.
  • Sm-Fe-N-based materials have high saturation magnetization comparable to Nd-Fe-B-based materials and large magnetic anisotropy exceeding that of Nd-Fe-B-based materials. Has been.
  • the Sm—Fe—N based magnet material has a drawback that it is thermally decomposed by heating at a temperature of about 550 ° C. or higher, applying a densification process by sintering to obtain a high density results in Sm
  • the —Fe—N magnet material is thermally decomposed, and the ⁇ -Fe phase is precipitated.
  • the problem to be solved by the embodiment is to suppress a decrease in the coercive force of the permanent magnet.
  • the permanent magnet of the embodiment has a composition formula: RM Z N X (where R is at least one element selected from the group consisting of rare earth elements, Zr, Nb, and Hf, and M is at least one selected from the group consisting of Fe and Co).
  • X is an atomic ratio satisfying 0.5 ⁇ X ⁇ 2.0
  • Z is an atomic ratio satisfying 4 ⁇ Z ⁇ 13).
  • the permanent magnet includes a first phase having at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type, and at least one crystal structure selected from MgCu 2 type and PuNi 3 type.
  • a second phase having: The volume ratio of the total amount of the second phase is 5% or less.
  • FIG. 1 is a diagram illustrating an example of an SEM (Scanning Electron Microscope) observation image of a cross section of a permanent magnet.
  • the structure shown in FIG. 1 has a main phase 1, a subphase 2, and an ⁇ -Fe phase 3.
  • the main phase 1 is the phase with the highest volume occupancy among the crystalline and amorphous phases in the permanent magnet.
  • the subphase 2 is a phase having a volume occupancy lower than that of the main phase 1.
  • the subphase 2 has a crystal phase different from the main phase 1 or an amorphous phase.
  • the ⁇ -Fe phase 3 is a different phase from the subphase 2. Note that the number of main phases 1, subphases 2, and ⁇ -Fe phases 3 is not limited to the numbers shown in FIG.
  • composition of the permanent magnet of the embodiment is represented by the following composition formula (1).
  • RM Z N X (1) (Wherein R is at least one element selected from the group consisting of rare earth elements, Zr, Nb, and Hf, M is at least one element selected from the group consisting of Fe and Co, and X is 0.5 ⁇ X ⁇ 2 .0, Z is an atomic ratio satisfying 4 ⁇ Z ⁇ 13)
  • R is at least one element selected from rare earth elements, zirconium (Zr), niobium (Nb), and hafnium (Hf).
  • rare earth elements include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm).
  • Y yttrium
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • R one type of element may be used, or a plurality of types of elements may be used.
  • R imparts a large magnetic anisotropy and a high coercive force to the magnet. It is preferable that 50 atomic% or more of R is Sm. It is desirable that 70 atom% or more of R is Sm.
  • Nitrogen (N) is present in the crystal lattice of main phase 1 and subphase 2.
  • the crystal lattice expands and the electronic structure changes. Thereby, the Curie temperature, magnetic anisotropy, and saturation magnetization of the permanent magnet are improved.
  • the atomic ratio of nitrogen is 0.5 or more and 2.0 or less when R is 1. That is, X is an atomic ratio that satisfies 0.5 ⁇ X ⁇ 2.0. X is more preferably an atomic ratio satisfying 1.0 ⁇ X ⁇ 1.5.
  • X is less than 0.5, the effect of containing nitrogen in the permanent magnet cannot be sufficiently obtained.
  • X exceeds 2.0 the saturation magnetization of the permanent magnet is lowered.
  • a part of N may be substituted with at least one element selected from hydrogen (H), boron (B), and carbon (C).
  • the substitution element one kind of element or a plurality of kinds of elements may be used.
  • the substitution element exhibits the same effect as nitrogen described above. However, excessive substitution of nitrogen causes a decrease in the magnetic anisotropy of the permanent magnet. Therefore, it is preferable that 50 atomic% or less of nitrogen is substituted with the above element.
  • M is at least one element selected from iron (Fe) and cobalt (Co).
  • Fe iron
  • Co cobalt
  • M one type of element may be used, or a plurality of types of elements may be used.
  • M is an element mainly responsible for the magnetization of the permanent magnet. By containing M in a relatively large amount, the saturation magnetization of the permanent magnet can be increased. However, when the M content is excessive, the ⁇ -Fe phase and the like are precipitated, and the coercive force is lowered.
  • M is Fe.
  • 70 atomic% or more of M is more preferably Fe.
  • Fe in M contributes particularly to the improvement of the magnetization of the permanent magnet.
  • the permanent magnet contains Co as a part of M, the Curie temperature of the permanent magnet is increased, and the thermal stability of the permanent magnet is improved. Moreover, the coercive force of the permanent magnet is also increased.
  • Part of M is titanium (Ti), vanadium (V), tantalum (Ta), molybdenum (Mo), tungsten (W), manganese (Mn), nickel (Ni), zinc (Zn), and germanium (Ge) It may be substituted with at least one element selected from.
  • a substitution element one type of element may be used or a plurality of types of elements may be used.
  • An element substituting for a part of M contributes to improvement of magnetic properties, for example, coercive force. However, if a part of M is replaced too much, the magnetization of the permanent magnet decreases. Therefore, it is preferable that 20 atomic% or less of M, and further 10 atomic% or less of M is substituted with the above element.
  • a part of M may be substituted with at least one element selected from the group consisting of chromium (Cr) and silicon (Si).
  • Cr and Si increase the thermal decomposition temperature of the RMN permanent magnet.
  • Cr or Si mainly replaces sites occupied by M in the main phase.
  • Cr can improve the thermal stability of the crystal by changing the number of d electrons in the crystal.
  • Si can increase the thermal stability of the crystal by reducing the size of the crystal lattice.
  • Cr and Si By including Cr and Si in the permanent magnet, thermal decomposition of the RMN permanent magnet in the sintering process can be suppressed, and precipitation of the ⁇ -Fe phase can be suppressed. It is preferable that 20 atom% or less of M, more preferably 10 atom% or less of M is substituted with the above element.
  • the main phase 1 has at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type (first phase).
  • the main phase 1 has an RMN phase such as Sm 2 (Fe, Cr, Si) 17 N 3 phase.
  • the subphase 2 has at least one crystal structure selected from cubic MgCu 2 type and hexagonal PuNi 3 type (second phase).
  • the subphase 2 has an RMN phase such as an Sm (Fe, Cr, Si) 2 N phase or an Sm (Fe, Cr, Si) 3 N phase.
  • the RMN phase having at least one crystal structure selected from MgCu 2 type and PuNi 3 type has at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type. Since the thermal stability is lower than that of the RMN phase, the amount of ⁇ -Fe phase 3 deposited by thermal decomposition increases when the secondary phase 2 is present in a large amount, and the coercive force of the permanent magnet is lowered. Therefore, it is preferable that the secondary phase 2 and the ⁇ -Fe phase 3 in the permanent magnet are small.
  • the volume ratio of the total amount of subphase 2 in the permanent magnet is preferably 5% or less.
  • the volume ratio of the total amount of ⁇ -Fe phase 3 in the permanent magnet is preferably 5% or less.
  • the analysis of the composition of the permanent magnet is performed by, for example, inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • a powder alloy powder in which the magnet is pulverized with a jet mill, a ball mill, or the like, and a powder having a particle size of 10 ⁇ m or more is 3% by volume or less is used. Samples are taken 10 times at random from the obtained powder, and the sample is analyzed. The average value obtained by subtracting the maximum value and the minimum value from the analyzed measured value is taken as the composition of the permanent magnet.
  • the main phase 1, the sub-phase 2, and the ⁇ -Fe phase 3 are, for example, SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy), TEM-EDX (Transmission Electro-Semi-ElectroDemi-Semi-ElectroD-Electrical-Semi-ElectroXe-M-D It can be specified by the method. According to TEM-EDX, an electron beam is focused on a main phase part, a grain boundary phase part, etc., and the constituent element ratio of each part can be quantified, and the crystal structure can be identified.
  • SEM-EDX Sccanning Electron Microscope-Energy Dispersive X-ray Spectroscopy
  • TEM-EDX Transmission Electro-Semi-ElectroDemi-Semi-ElectroD-Electrical-Semi-ElectroXe-M-D It can be specified by the method. According
  • An example of a method for identifying the main phase 1, the sub phase 2, and the ⁇ -Fe phase 3 using SEM-EDX will be described below.
  • An SEM image having an observation area of 50 ⁇ m ⁇ 50 ⁇ m is acquired.
  • the continuous region where the ratio of R element to the total of R and M is 10 atomic% or more and less than 20 atomic% is the main phase 1
  • the continuous area where the R element ratio is 20 atomic% or more is the subphase 2
  • the R element ratio is A continuous region of less than 10 atomic% and an Fe ratio of 90 atomic% or more is defined as ⁇ -Fe phase 3, respectively.
  • the area ratio between the main phase 1 and ⁇ -Fe phase 3 and the subphase 2 defined according to the above is calculated as the volume ratio as it is and is defined as the volume ratio of the subphase 2 in the permanent magnet.
  • a value obtained by directly calculating the area ratio of the main phase 1 / subphase 2 and the ⁇ -Fe phase 3 as a volume ratio is defined as the volume ratio of the ⁇ -Fe phase 3 in the permanent magnet.
  • the volume ratio of the subphase 2 and the volume ratio of the ⁇ -Fe phase 3 were calculated by the method described above in five observation fields, and the averaged values of the subphase 2 of the permanent magnet were calculated.
  • the volume ratio is defined as the volume ratio of ⁇ -Fe phase 3.
  • the permanent magnet of the embodiment can suppress the precipitation of the ⁇ -Fe phase 3 by reducing the subphase 2 having low thermal stability, and can improve the density of the permanent magnet without reducing the coercive force.
  • the permanent magnet of the embodiment has a density of 6.5 g / cm 3 or more.
  • the density of the permanent magnet is calculated by the Archimedes method by measuring the mass of the permanent magnet in the air and in water. At this time, each sample is calculated 10 times, and the average value excluding the maximum value and the minimum value among the obtained density of the permanent magnet is defined as the density of the permanent magnet.
  • an alloy powder containing a predetermined amount of element is prepared.
  • the alloy powder is represented by the composition formula (2).
  • the alloy powder may contain at least one element selected from the group consisting of hydrogen, boron, and carbon.
  • the atomic ratio Z indicating the ratio of the total content of M other than R is a number satisfying 4 ⁇ Z ⁇ 13.
  • the alloy powder is prepared by, for example, grinding an alloy ingot obtained by casting a molten metal by an arc melting method or a high frequency melting method, or an alloy ribbon produced by a molten metal quenching method.
  • Other preparation methods of the alloy powder include mechanical alloying method, mechanical grinding method, gas atomization method, reduction diffusion method and the like.
  • the pulverization of the alloy ingot or the alloy ribbon is preferably performed so that the particle size of the alloy powder is 45 ⁇ m or less.
  • the particle size of the alloy powder is 45 ⁇ m or less, nitrogen can sufficiently penetrate into the inside of the particles in the nitriding treatment described later, so that the entire particles can be uniformly nitrided.
  • the pulverization of the alloy ingot, the alloy ribbon, or the like is performed using, for example, a jet mill or a ball mill.
  • the alloy ingot, the alloy ribbon, and the like are preferably pulverized in an inert gas atmosphere or the like.
  • a homogenization heat treatment is applied to the alloy powder or the alloy before pulverization. If the melting temperature of SmFe 3 is 1010 ° C. in the Fe—Sm binary phase diagram, it is conceivable to perform the homogenization heat treatment at a heat treatment temperature of 1000 ° C. or higher. However, in the permanent magnet of the embodiment, there is a high possibility that the state diagram is slightly changed by replacing part of Fe with M. Therefore, there is a possibility that the optimum heat treatment temperature is below 1000 ° C.
  • heat treatment is performed at a temperature higher than 900 ° C. and lower than 1000 ° C. for 10 to 100 hours in a vacuum or an inert gas atmosphere such as argon gas.
  • the heat treatment temperature is 900 ° C. or lower, element diffusion does not occur sufficiently and the alloy cannot be homogenized.
  • the heat treatment temperature is 1000 ° C. or higher, a phase having at least one crystal structure selected from cubic MgCu 2 type and hexagonal PuNi 3 type is formed in the alloy, and as a result, the coercive force of the permanent magnet decreases.
  • FIGS. 2 to 4 are diagrams illustrating examples of X-ray diffraction patterns obtained by X-ray diffraction measurement of permanent magnets manufactured by the manufacturing method according to the embodiment.
  • the heat treatment temperature of the homogenization heat treatment is 900 ° C. and the heat treatment time is 65 hours
  • a peak indicating a phase having a PuNi 3 type crystal structure is generated as shown in FIG.
  • the heat treatment temperature is 1000 ° C. and the heat treatment time is 65 hours
  • a peak indicating a phase having an MgCu 2 type crystal structure also referred to as an MgCu 2 phase
  • the heat treatment temperature of the homogenization heat treatment is a heat treatment time at 950 ° C. for 65 hours to a peak indicating the subphases PuNi 3 phase or MgCu 2 phase etc. as shown in FIG. 3 without obtaining a homogeneous main phase.
  • FIGS. 5 to 7 are diagrams showing examples of X-ray diffraction patterns obtained by X-ray diffraction measurement of permanent magnets manufactured by the manufacturing method of the embodiment.
  • Homogenization annealing step at a heat treatment time is 16 hours at 950 ° C., for 32 hours, as shown in FIGS. 5 and 6, there is no peak indicating the subphases PuNi 3 phase or MgCu 2 equality, homogeneous main phase Can be obtained.
  • the heat treatment time is 4 hours at the heat treatment temperature of the homogenization heat treatment is 950 ° C., does not proceed homogenization sufficiently as shown in FIG. 7, a peak indicating the subphases PuNi 3 phase or MgCu 2 phase etc. Will occur.
  • the heat treatment time of the homogenization heat treatment is preferably 10 hours or more.
  • the alloy powder is subjected to nitriding treatment.
  • heat treatment is performed at a temperature of 300 to 900 ° C. for 0.1 to 100 hours in a nitrogen gas atmosphere of 0.1 to 100 atm.
  • a nitrogen gas atmosphere pressure of 0.5 to 10 atm and a temperature of 450 to 750 ° C. for 2 to 24 hours.
  • the atmosphere during the nitriding treatment of the alloy powder may be nitrogen compound gas such as ammonia instead of nitrogen gas.
  • the nitriding reaction can also be controlled by using a gas in which nitrogen gas or nitrogen compound gas and hydrogen are mixed.
  • the alloy powder before nitriding treatment may contain carbon or boron, or carbon or boron may be contained using a carbon compound gas or boron compound gas. May be.
  • the alloy powder (nitriding alloy powder) subjected to nitriding treatment and the alloy powder for mixing are mixed and filled in a mold placed in an electromagnet, and the crystal axis is formed by pressing while applying a magnetic field.
  • a green compact in which is oriented is manufactured.
  • the green compact is sintered.
  • a sintering method it is preferable to use a discharge plasma sintering method.
  • spark plasma sintering it is thought that the current easily flows selectively on the surface of the powder particles, and the permanent magnet is densified while suppressing the thermal load on the main RMN phase. Suitable for
  • Sintering is preferably performed in a vacuum atmosphere or an inert gas atmosphere such as argon gas.
  • a dense permanent magnet can be obtained by setting the sintering temperature to 400 to 700 ° C. during spark plasma sintering. If it is less than 400 degreeC, a permanent magnet with sufficient density cannot be obtained. If the temperature exceeds 700 ° C., thermal decomposition of the permanent magnet proceeds, and an ⁇ -Fe phase or the like is generated in the permanent magnet, so that the magnetic properties of the permanent magnet are significantly deteriorated.
  • a permanent magnet can be obtained by the above process.
  • the magnetic properties of the obtained permanent magnet can be measured with a vibrating sample magnetometer.
  • the residual magnetization can be measured as follows. An external magnetic field is applied up to +1600 kA / m in a direction parallel to the magnetization direction oriented before sintering, the magnetic field is returned to zero, and the value of magnetization measured at that time is defined as the residual magnetization of the permanent magnet.
  • the same measurement is performed for a nickel standard sample (a sample whose absolute value of magnetization is known) similar to the sample to be measured, and the absolute value of magnetization is calibrated.
  • the permanent magnet of the first embodiment can be used for a rotating electrical machine, for example, a motor or a generator.
  • These rotating electrical machines are composed of at least a stator (stator) and a rotor (rotor).
  • FIG. 8 is a diagram illustrating a configuration example of a permanent magnet motor that is a rotating electrical machine using the permanent magnet of the embodiment.
  • the permanent magnet motor 21 includes a stator (stator) 22 and a rotor (rotor) 23.
  • a rotor 23 is disposed in the stator 22.
  • the stator 22 rotates the rotor 23.
  • the rotor 23 includes an iron core 24 and the permanent magnet 25 of the embodiment. Based on the characteristics of the permanent magnet 25 and the like, the permanent magnet motor 21 can be improved in efficiency, size, cost, and the like.
  • the permanent magnet motor 21 is suitable for a motor for a vehicle such as a hybrid vehicle or an electric vehicle that requires high motor output and miniaturization of the motor.
  • FIG. 9 is a diagram showing a configuration example of a variable magnetic flux motor that is a rotating electrical machine.
  • the variable magnetic flux motor 31 includes a stator 32 and a rotor 33.
  • a rotor 33 is disposed in the stator 32.
  • the rotor 33 includes an iron core 34, a fixed magnet 35, and a variable magnet 36.
  • the permanent magnet of the embodiment is used for the fixed magnet 35 and the variable magnet 36. At least one of the fixed magnet 35 and the variable magnet 36 may be used for the rotor 33.
  • the magnetic flux density (magnetic flux amount) of the variable magnet 36 can be changed.
  • D in FIG. 9 indicates the magnetization direction (direction from S to N) of the variable magnet 36.
  • the magnetization direction of the variable magnet 36 is referred to as the D axis.
  • the direction indicated by the D axis is different for each variable magnet 36.
  • the direction orthogonal to the D axis is called the Q axis.
  • the magnetic flux density (magnetic flux amount) of the variable magnet 36 is not affected by the Q-axis current that generates a magnetic field in the Q-axis direction orthogonal to the magnetization direction (D-axis direction) of the variable magnet 36.
  • the magnetic flux density (magnetic flux amount) of the variable magnet 36 can be changed only by a D-axis current that generates a magnetic field in the D-axis direction.
  • the rotor 33 is provided with a magnetizing winding (not shown). By passing a current through the magnetized winding, the magnetic field directly acts on the variable magnet 36.
  • the variable magnetic flux motor 31 can output a large torque even with a small device.
  • the variable magnetic flux motor 31 is suitable for a motor for a vehicle such as a hybrid vehicle or an electric vehicle that requires high motor output and miniaturization of the motor.
  • FIG. 10 is a diagram showing a configuration example of the generator.
  • the generator 41 includes a stator 42 using the permanent magnet of the embodiment, a rotor 43, a turbine 44, a shaft 45, and a brush 46.
  • the rotor 43 is connected to the turbine 44 via the shaft 45.
  • the turbine 44 is rotated by fluid supplied from the outside. Instead of the turbine 44, the shaft 45 may be rotated by transmitting dynamic rotation such as regenerative energy of a vehicle such as an automobile.
  • the shaft 45 is connected to a commutator (not shown) arranged on the opposite side of the turbine 44 from the rotor 43.
  • the electromotive force generated by the rotation of the rotor 43 is boosted to the system voltage and transmitted as the output of the generator 41 via the phase separation bus and the main transformer.
  • the brush 46 discharges the charge of the rotor 43.
  • the generator 41 may be either a normal generator or a variable magnetic flux generator.
  • the rotor 43 is charged by the shaft 44 due to static electricity of the turbine 44 or power generation.
  • the rotating electric machine may be mounted on, for example, a railway vehicle (an example of a vehicle) used for rail traffic.
  • FIG. 11 is a diagram illustrating an example of a railway vehicle 100 that includes the rotating electrical machine 101.
  • the rotating electrical machine 101 the motors shown in FIGS. 8 and 9 and the generator shown in FIG. 10 can be used.
  • the rotating electrical machine 101 uses, for example, power supplied from an overhead wire or power supplied from a secondary battery mounted on the railway vehicle 100 to drive power. May be used as an electric motor (motor) that outputs power, or may be used as a generator (generator) that converts kinetic energy into electric power and supplies electric power to various loads in the railway vehicle 100.
  • the railway vehicle can be run with energy saving.
  • the rotating electric machine may be mounted on a vehicle (another example of a vehicle) such as a hybrid vehicle or an electric vehicle.
  • FIG. 12 is a diagram illustrating an example of an automobile 200 that includes the rotating electrical machine 201.
  • the rotating electrical machine 201 the motors shown in FIGS. 8 and 9 and the generator shown in FIG. 10 can be used.
  • the rotating electrical machine 201 may be used as an electric motor that outputs the driving force of the automobile 200, or a generator that converts kinetic energy during travel of the automobile 200 into electric power.
  • the rotating electrical machine may be mounted on, for example, industrial equipment (industrial motor), air conditioning equipment (air conditioner / water heater compressor motor), wind power generator, or elevator (winding machine).
  • Example 1 The raw materials were prepared at a predetermined ratio so as to have an alloy powder composition shown in Table 1 and a composition of Sm (Cr 0.08 Si 0.03 Fe 0.89 ) 8.3 .
  • An alloy ingot was prepared by arc melting the raw material blended in an argon gas atmosphere.
  • the alloy ingot was heat-treated at 950 ° C. for about 3 days in an argon gas atmosphere to perform a homogenization heat treatment. Thereafter, the alloy ingot was pulverized in a mortar to obtain an alloy powder.
  • the alloy powder was sieved with a sieve having an opening of 25 ⁇ m.
  • the alloy powder was heat-treated at 700 ° C. for 4 hours in a nitrogen gas atmosphere at about 1 atm to obtain a nitride alloy powder.
  • the obtained nitride alloy powder was filled in a mold while orientation-pressing in a magnetic field, and then the powder was subjected to discharge plasma sintering under conditions of a pressure of 1.0 GPa and a sintering temperature of 600 ° C. to obtain a permanent magnet.
  • the composition of the permanent magnet was the magnet composition shown in Table 1.
  • Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnet of Example 1.
  • the coercive force is shown as a relative value when the coercive force of the permanent magnet of Comparative Example 1 described later is 100.
  • the volume ratio of the secondary phase was 2% (see Table 2).
  • Examples 2 to 16 The raw materials were prepared at a predetermined ratio so that the alloy powder composition had the values shown in Table 1. Other than that, permanent magnets were produced in the same manner as in Example 1. The characteristics of the obtained permanent magnet were evaluated in the same manner as in Example 1. Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnets of Examples 2 to 16.
  • Example 1 A permanent magnet was produced in the same manner as in Example 1 except that the homogenization heat treatment temperature was 1000 ° C. The characteristics of the obtained permanent magnet were evaluated in the same manner as in Example 1. Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnet of Comparative Example 1.
  • the permanent magnets (Examples 1 to 16) having a low subphase volume ratio have a coercive force higher than that of Comparative Example 1 when the density is increased to the same level as in Comparative Example 1. It was. This is because the amount of the subphase having a lower thermal stability than the main phase is small, the amount of ⁇ -Fe phase generated by the thermal decomposition of the subphase is reduced, and the coercive force is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This permanent magnet is represented by composition formula RMZNX. This permanent magnet comprises: a first phase which has at least one crystal structure selected from among a Th2Ni17 type one, a Th2Zn17 type one and a TbCu7 type one; and a second phase which has at least one crystal structure selected from among an MgCu2 type one and a PuNi3 type one. The volume fraction of the total amount of the second phase is 5% or less.

Description

永久磁石、回転電機、及び車両Permanent magnet, rotating electric machine, and vehicle
 実施形態は、永久磁石、回転電機、及び車両に関する。 Embodiment relates to a permanent magnet, a rotating electrical machine, and a vehicle.
 高性能な永久磁石として、Sm-Co系磁石やNd-Fe-B系磁石等の希土類磁石が知られている。希土類磁石は、モータ、スピーカ、計測器等の電気機器、さらにハイブリッド自動車(Hybrid Electric Vehicle:HEV)や電気自動車(Electric Vehicle:EV)等の車両に用いられている。近年、各種電気機器に対して小型化の要求が高まっており、さらにHEVやEVで使用されるモータの需要が増加している。これらの要求に応えるために、最大磁気エネルギー積(BHmax)の向上を目指した永久磁石の開発が望まれている。 As high performance permanent magnets, rare earth magnets such as Sm—Co magnets and Nd—Fe—B magnets are known. Rare earth magnets are used in electric devices such as motors, speakers, and measuring instruments, and also in vehicles such as hybrid electric vehicles (HEV) and electric vehicles (EV). In recent years, there is an increasing demand for miniaturization of various electric devices, and the demand for motors used in HEVs and EVs is increasing. In order to meet these demands, it is desired to develop a permanent magnet that aims to improve the maximum magnetic energy product (BH max ).
 より高性能の永久磁石を得るための磁石材料としては、例えば希土類元素とFe等の遷移金属元素との組み合わせが有望である。Sm-Fe-N系材料は、Nd-Fe-B系材料に匹敵する高い飽和磁化と、Nd-Fe-B系材料を超える大きな磁気異方性を有するため、高性能磁石としての応用が期待されている。 As a magnet material for obtaining a higher performance permanent magnet, for example, a combination of a rare earth element and a transition metal element such as Fe is promising. Sm-Fe-N-based materials have high saturation magnetization comparable to Nd-Fe-B-based materials and large magnetic anisotropy exceeding that of Nd-Fe-B-based materials. Has been.
 Sm-Fe-N系磁石材料は約550℃以上の温度による加熱で熱分解してしまうという欠点を有しているため、高い密度を得るために焼結による高密度化プロセスを適用すると、Sm-Fe-N系磁石材料が熱分解され、α-Fe相が析出してしまう。 Since the Sm—Fe—N based magnet material has a drawback that it is thermally decomposed by heating at a temperature of about 550 ° C. or higher, applying a densification process by sintering to obtain a high density results in Sm The —Fe—N magnet material is thermally decomposed, and the α-Fe phase is precipitated.
特開2002-313614号公報JP 2002-313614 A
 実施形態が解決しようとする課題は、永久磁石の保磁力の低下を抑制することである。 The problem to be solved by the embodiment is to suppress a decrease in the coercive force of the permanent magnet.
 実施形態の永久磁石は、組成式:RM(Rは希土類元素、Zr、Nb、及びHfからなる群より選ばれる少なくとも一つの元素、MはFe及びCoからなる群より選ばれる少なくとも一つの元素、Xは0.5≦X≦2.0を満足する原子比、Zは4≦Z≦13を満足する原子比である)で表される。永久磁石はThNi17型、ThZn17型、及びTbCu型から選ばれる少なくとも一つの結晶構造を有する第1の相と、MgCu型及びPuNi型から選ばれる少なくとも一つの結晶構造を有する第2の相と、を具備する。第2の相の総量の体積比率は5%以下である。 The permanent magnet of the embodiment has a composition formula: RM Z N X (where R is at least one element selected from the group consisting of rare earth elements, Zr, Nb, and Hf, and M is at least one selected from the group consisting of Fe and Co). X is an atomic ratio satisfying 0.5 ≦ X ≦ 2.0, and Z is an atomic ratio satisfying 4 ≦ Z ≦ 13). The permanent magnet includes a first phase having at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type, and at least one crystal structure selected from MgCu 2 type and PuNi 3 type. And a second phase having: The volume ratio of the total amount of the second phase is 5% or less.
永久磁石の断面のSEM観察像の一例を示す図である。It is a figure which shows an example of the SEM observation image of the cross section of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. 永久磁石のX線回折パターンの一例を示す図である。It is a figure which shows an example of the X-ray diffraction pattern of a permanent magnet. モータの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a motor. 可変磁束モータの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a variable magnetic flux motor. 発電機の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a generator. 車両の構成例を示す模式図である。It is a mimetic diagram showing the example of composition of vehicles. 車両の構成例を示す模式図である。It is a mimetic diagram showing the example of composition of vehicles.
 以下図面を参照して、実施形態を説明する。同じ符号が付されているものは同様のものを示す。なお、図面は模式的又は概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。 Embodiments will be described below with reference to the drawings. The same reference numerals denote the same items. The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the ratio coefficient of the size between the parts, and the like are not necessarily the same as the actual ones. Further, even when the same part is represented, the dimensions and ratio coefficient may be represented differently depending on the drawing.
(第1の実施形態)
 実施形態の永久磁石の例について説明する。図1は、永久磁石の断面のSEM(Scanning Electron Microscope)観察像の一例を示す図である。図1に示す組織は、主相1と、副相2と、α-Fe相3と、を有する。主相1は永久磁石中の各結晶相及び非晶質相のうち、最も体積占有率が高い相である。副相2は、主相1よりも体積占有率が低い相である。副相2は、主相1とは異なる結晶相、又は非晶質相を有する。α-Fe相3は、副相2と異なる異相である。なお、主相1、副相2、及びα-Fe相3の数は、図1に示す数に限定されない。
(First embodiment)
An example of the permanent magnet of the embodiment will be described. FIG. 1 is a diagram illustrating an example of an SEM (Scanning Electron Microscope) observation image of a cross section of a permanent magnet. The structure shown in FIG. 1 has a main phase 1, a subphase 2, and an α-Fe phase 3. The main phase 1 is the phase with the highest volume occupancy among the crystalline and amorphous phases in the permanent magnet. The subphase 2 is a phase having a volume occupancy lower than that of the main phase 1. The subphase 2 has a crystal phase different from the main phase 1 or an amorphous phase. The α-Fe phase 3 is a different phase from the subphase 2. Note that the number of main phases 1, subphases 2, and α-Fe phases 3 is not limited to the numbers shown in FIG.
 実施形態の永久磁石の組成は下記組成式(1)で表される。
 RM・・・(1)
 (式中Rは希土類元素、Zr、Nb、及びHfからなる群より選ばれる少なくとも一つの元素、MはFe及びCoからなる群より選ばれる少なくとも一つの元素、Xは0.5≦X≦2.0を満足する原子比、Zは4≦Z≦13を満足する原子比である)
The composition of the permanent magnet of the embodiment is represented by the following composition formula (1).
RM Z N X (1)
(Wherein R is at least one element selected from the group consisting of rare earth elements, Zr, Nb, and Hf, M is at least one element selected from the group consisting of Fe and Co, and X is 0.5 ≦ X ≦ 2 .0, Z is an atomic ratio satisfying 4 ≦ Z ≦ 13)
 組成式(1)において、Rは希土類元素、ジルコニウム(Zr)、ニオブ(Nb)、及びハフニウム(Hf)から選ばれる少なくとも一つの元素である。希土類元素としては、例えば、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、及びサマリウム(Sm)等が挙げられる。Rとしては、1種の元素を用いてもよいし、複数種の元素を用いてもよい。Rは、磁石に大きな磁気異方性と高い保磁力を付与する。Rの50原子%以上がSmであることが好ましい。Rの70原子%以上がSmであることが望ましい。Rに希土類元素を用いることによって、永久磁石の性能、とりわけ保磁力を再現性よく高めることができる。 In the composition formula (1), R is at least one element selected from rare earth elements, zirconium (Zr), niobium (Nb), and hafnium (Hf). Examples of rare earth elements include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm). As R, one type of element may be used, or a plurality of types of elements may be used. R imparts a large magnetic anisotropy and a high coercive force to the magnet. It is preferable that 50 atomic% or more of R is Sm. It is desirable that 70 atom% or more of R is Sm. By using a rare earth element for R, the performance of the permanent magnet, particularly the coercive force, can be improved with good reproducibility.
 窒素(N)は、主相1及び副相2の結晶格子中に存在する。結晶格子中に窒素を含むと、結晶格子は拡大し、電子構造が変化する。これにより、永久磁石のキュリー温度、磁気異方性、及び飽和磁化が向上する。窒素の原子比はRが1のときに、0.5以上2.0以下である。つまりXは0.5≦X≦2.0を満足する原子比である。Xは1.0≦X≦1.5を満足する原子比であることがより好ましい。Xが0.5未満である場合、永久磁石に窒素を含有することによる効果を十分に得ることができない。Xが2.0を超えると、永久磁石の飽和磁化等が低下する。 Nitrogen (N) is present in the crystal lattice of main phase 1 and subphase 2. When nitrogen is contained in the crystal lattice, the crystal lattice expands and the electronic structure changes. Thereby, the Curie temperature, magnetic anisotropy, and saturation magnetization of the permanent magnet are improved. The atomic ratio of nitrogen is 0.5 or more and 2.0 or less when R is 1. That is, X is an atomic ratio that satisfies 0.5 ≦ X ≦ 2.0. X is more preferably an atomic ratio satisfying 1.0 ≦ X ≦ 1.5. When X is less than 0.5, the effect of containing nitrogen in the permanent magnet cannot be sufficiently obtained. When X exceeds 2.0, the saturation magnetization of the permanent magnet is lowered.
 Nの一部は、水素(H)、ホウ素(B)、及び炭素(C)から選ばれる少なくとも一つの元素で置換されてもよい。上記置換元素としては、1種の元素を用いてもよいし、複数種の元素を用いてもよい。上記置換元素は、上述した窒素と同様の効果を示す。ただし、窒素を過剰に置換すると、永久磁石の磁気異方性の低下等を招く。よって、窒素の50原子%以下が上記元素に置換されることが好ましい。 A part of N may be substituted with at least one element selected from hydrogen (H), boron (B), and carbon (C). As the substitution element, one kind of element or a plurality of kinds of elements may be used. The substitution element exhibits the same effect as nitrogen described above. However, excessive substitution of nitrogen causes a decrease in the magnetic anisotropy of the permanent magnet. Therefore, it is preferable that 50 atomic% or less of nitrogen is substituted with the above element.
 Mは、鉄(Fe)及びコバルト(Co)から選ばれる少なくとも一つの元素である。Mとしては、1種の元素を用いてもよいし、複数種の元素を用いてもよい。Mは、主として永久磁石の磁化を担う元素である。Mを比較的多量に含有することにより、永久磁石の飽和磁化を高めることができる。ただし、Mの含有量が過剰になると、α-Fe相等が析出して保磁力が低下する。 M is at least one element selected from iron (Fe) and cobalt (Co). As M, one type of element may be used, or a plurality of types of elements may be used. M is an element mainly responsible for the magnetization of the permanent magnet. By containing M in a relatively large amount, the saturation magnetization of the permanent magnet can be increased. However, when the M content is excessive, the α-Fe phase and the like are precipitated, and the coercive force is lowered.
 Mの50原子%以上はFeであることが好ましい。さらにMの70原子%以上はFeであることがより好ましい。MのうちのFeは、特に永久磁石の磁化の向上に寄与する。永久磁石がMの一部としてCoを含有することにより、永久磁石のキュリー温度が高くなり、永久磁石の熱安定性が向上する。また、永久磁石の保磁力も高くなる。 It is preferable that 50 atomic% or more of M is Fe. Further, 70 atomic% or more of M is more preferably Fe. Fe in M contributes particularly to the improvement of the magnetization of the permanent magnet. When the permanent magnet contains Co as a part of M, the Curie temperature of the permanent magnet is increased, and the thermal stability of the permanent magnet is improved. Moreover, the coercive force of the permanent magnet is also increased.
 Mの一部は、チタン(Ti)、バナジウム(V)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、ニッケル(Ni)、亜鉛(Zn)、及びゲルマニウム(Ge)から選ばれる少なくとも一つの元素で置換されてもよい。置換元素としては、1種の元素を用いてもよいし、複数種の元素を用いてもよい。Mの一部を置換する元素は、磁気特性、例えば、保磁力の向上に寄与する。ただし、Mの一部を置換しすぎると、永久磁石の磁化は低下する。従って、Mの20原子%以下、さらにはMの10原子%以下が上記元素で置換されることが好ましい。 Part of M is titanium (Ti), vanadium (V), tantalum (Ta), molybdenum (Mo), tungsten (W), manganese (Mn), nickel (Ni), zinc (Zn), and germanium (Ge) It may be substituted with at least one element selected from. As a substitution element, one type of element may be used or a plurality of types of elements may be used. An element substituting for a part of M contributes to improvement of magnetic properties, for example, coercive force. However, if a part of M is replaced too much, the magnetization of the permanent magnet decreases. Therefore, it is preferable that 20 atomic% or less of M, and further 10 atomic% or less of M is substituted with the above element.
 Mの一部は、クロム(Cr)及びケイ素(Si)からなる群より選ばれる少なくとも一つの元素で置換されてもよい。Cr、SiはR-M-N系永久磁石の熱分解温度を上昇させる。Cr又はSiは、主として主相中のMが占めるサイトを置換する。Crは結晶内のd電子の数を変化させることにより結晶の熱安定性を高めることができる。Siは結晶格子の大きさを縮小させることにより結晶の熱安定性を高めることができる。Cr及びSiを永久磁石中に含有させることにより、焼結工程におけるR-M-N系永久磁石の熱分解を抑制し、α-Fe相の析出を抑制することができる。Mの20原子%以下、さらにはMの10原子%以下が上記元素で置換されることが好ましい。 A part of M may be substituted with at least one element selected from the group consisting of chromium (Cr) and silicon (Si). Cr and Si increase the thermal decomposition temperature of the RMN permanent magnet. Cr or Si mainly replaces sites occupied by M in the main phase. Cr can improve the thermal stability of the crystal by changing the number of d electrons in the crystal. Si can increase the thermal stability of the crystal by reducing the size of the crystal lattice. By including Cr and Si in the permanent magnet, thermal decomposition of the RMN permanent magnet in the sintering process can be suppressed, and precipitation of the α-Fe phase can be suppressed. It is preferable that 20 atom% or less of M, more preferably 10 atom% or less of M is substituted with the above element.
 主相1は、ThNi17型、ThZn17型、及びTbCu型から選ばれる少なくとも一つの結晶構造を有する(第1の相)。主相1は、例えばSm(Fe,Cr,Si)17相等のR-M-N相を有する。 The main phase 1 has at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type (first phase). The main phase 1 has an RMN phase such as Sm 2 (Fe, Cr, Si) 17 N 3 phase.
 副相2は、立方晶MgCu型及び六方晶PuNi型から選ばれる少なくとも一つの結晶構造を有する(第2の相)。副相2は、例えばSm(Fe,Cr,Si)N相やSm(Fe,Cr,Si)N相等のR-M-N相を有する。MgCu型及びPuNi型から選ばれる少なくとも一つの結晶構造を有するR-M-N相は、ThNi17型、ThZn17型、及びTbCu型から選ばれる少なくとも一つの結晶構造を有するR-M-N相と比較して熱安定性が低いため、副相2が多量に存在すると熱分解によるα-Fe相3の析出量が増大し、永久磁石の保磁力を低下させる。よって、永久磁石中の副相2及びα-Fe相3は少ないことが好ましい。 The subphase 2 has at least one crystal structure selected from cubic MgCu 2 type and hexagonal PuNi 3 type (second phase). The subphase 2 has an RMN phase such as an Sm (Fe, Cr, Si) 2 N phase or an Sm (Fe, Cr, Si) 3 N phase. The RMN phase having at least one crystal structure selected from MgCu 2 type and PuNi 3 type has at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type. Since the thermal stability is lower than that of the RMN phase, the amount of α-Fe phase 3 deposited by thermal decomposition increases when the secondary phase 2 is present in a large amount, and the coercive force of the permanent magnet is lowered. Therefore, it is preferable that the secondary phase 2 and the α-Fe phase 3 in the permanent magnet are small.
 永久磁石中の副相2の総量の体積比率は5%以下であることが好ましい。副相2を少なくすることにより、副相2の熱分解によるα-Fe相3の生成量が低下し、保磁力等の磁石特性を向上させることができる。永久磁石中のα-Fe相3の総量の体積比率は、5%以下であることが好ましい。 The volume ratio of the total amount of subphase 2 in the permanent magnet is preferably 5% or less. By reducing the number of subphases 2, the amount of α-Fe phase 3 produced by thermal decomposition of the subphase 2 is reduced, and magnet characteristics such as coercivity can be improved. The volume ratio of the total amount of α-Fe phase 3 in the permanent magnet is preferably 5% or less.
 永久磁石の組成の分析は、例えば誘導結合発光プラズマ(Inductively Coupled Plasma:ICP)発光分光分析法で行われる。永久磁石の組成の分析には、磁石をジェットミルやボールミル等で粉砕し、粒径が10μm以上の粉末が体積%で全体の3%以下となる粉末(合金粉末)を用いる。得られた粉末からランダムに10回試料を採取し、その試料に対し分析を実施する。分析した測定値から最大値と最小値を除いた平均値を永久磁石の組成とする。 The analysis of the composition of the permanent magnet is performed by, for example, inductively coupled plasma (ICP) emission spectroscopy. For the analysis of the composition of the permanent magnet, a powder (alloy powder) in which the magnet is pulverized with a jet mill, a ball mill, or the like, and a powder having a particle size of 10 μm or more is 3% by volume or less is used. Samples are taken 10 times at random from the obtained powder, and the sample is analyzed. The average value obtained by subtracting the maximum value and the minimum value from the analyzed measured value is taken as the composition of the permanent magnet.
 主相1、副相2、及びα-Fe相3は、例えばSEM-EDX(Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy)、TEM-EDX(Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy)などの方法で特定することができる。TEM-EDXによれば、電子ビームを主相部分や粒界相部分などに絞って照射し、各部分の構成元素比を定量でき、また結晶構造を同定することができる。 The main phase 1, the sub-phase 2, and the α-Fe phase 3 are, for example, SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy), TEM-EDX (Transmission Electro-Semi-ElectroDemi-Semi-ElectroD-Electrical-Semi-ElectroXe-M-D It can be specified by the method. According to TEM-EDX, an electron beam is focused on a main phase part, a grain boundary phase part, etc., and the constituent element ratio of each part can be quantified, and the crystal structure can be identified.
 SEM-EDXを用いた主相1、副相2、及びα-Fe相3の同定方法例について以下に説明する。観察面積50μm×50μmのSEM像を取得する。SEM像内でR、Mの合計に対するR元素比率が10原子%以上20原子%未満の連続領域を主相1、R元素比率が20原子%以上の連続領域を副相2、R元素比率が10原子%未満であってFe比率が90原子%以上の連続領域をα-Fe相3とそれぞれ定義する。同じ観察視野内で上記に従って定義した主相1・α-Fe相3と副相2との面積比率を、そのまま体積比率として算出した値を、永久磁石中の副相2の体積比率と定義する。同様に、主相1・副相2とα-Fe相3との面積比率を、そのまま体積比率として算出した値を、永久磁石中のα-Fe相3の体積比率と定義する。一つの永久磁石につき、5つの観察視野で以上に述べた方法によって副相2の体積比率、α-Fe相3の体積比率をそれぞれ算出し、加算平均したものをその永久磁石の副相2の体積比率、α-Fe相3の体積比率と定義する。 An example of a method for identifying the main phase 1, the sub phase 2, and the α-Fe phase 3 using SEM-EDX will be described below. An SEM image having an observation area of 50 μm × 50 μm is acquired. In the SEM image, the continuous region where the ratio of R element to the total of R and M is 10 atomic% or more and less than 20 atomic% is the main phase 1, the continuous area where the R element ratio is 20 atomic% or more is the subphase 2, and the R element ratio is A continuous region of less than 10 atomic% and an Fe ratio of 90 atomic% or more is defined as α-Fe phase 3, respectively. Within the same observation field, the area ratio between the main phase 1 and α-Fe phase 3 and the subphase 2 defined according to the above is calculated as the volume ratio as it is and is defined as the volume ratio of the subphase 2 in the permanent magnet. . Similarly, a value obtained by directly calculating the area ratio of the main phase 1 / subphase 2 and the α-Fe phase 3 as a volume ratio is defined as the volume ratio of the α-Fe phase 3 in the permanent magnet. For each permanent magnet, the volume ratio of the subphase 2 and the volume ratio of the α-Fe phase 3 were calculated by the method described above in five observation fields, and the averaged values of the subphase 2 of the permanent magnet were calculated. The volume ratio is defined as the volume ratio of α-Fe phase 3.
 実施形態の永久磁石は、熱安定性の低い副相2を低減することによりα-Fe相3の析出を抑制し、保磁力を低下させることなく永久磁石の密度を向上させることができる。例えば、実施形態の永久磁石は、6.5g/cm以上の密度を有する。永久磁石の密度は、永久磁石の大気中及び水中での質量をそれぞれ測定し、アルキメデス法により算出される。このとき、一つの試料につきそれぞれ10回算出し、得られた永久磁石の密度のうち最大値と最小値を除いた平均の値を永久磁石の密度と定義する。 The permanent magnet of the embodiment can suppress the precipitation of the α-Fe phase 3 by reducing the subphase 2 having low thermal stability, and can improve the density of the permanent magnet without reducing the coercive force. For example, the permanent magnet of the embodiment has a density of 6.5 g / cm 3 or more. The density of the permanent magnet is calculated by the Archimedes method by measuring the mass of the permanent magnet in the air and in water. At this time, each sample is calculated 10 times, and the average value excluding the maximum value and the minimum value among the obtained density of the permanent magnet is defined as the density of the permanent magnet.
 次に、実施形態の永久磁石の製造方法例について説明する。まず、所定量の元素を含む合金粉末を作製する。合金粉末は、組成式(2)で表される。なお、合金粉末は水素、ホウ素、及び炭素からなる群より選ばれる少なくとも一つの元素を含んでいてもよい。
 RM・・・(2)
Next, the example of the manufacturing method of the permanent magnet of embodiment is demonstrated. First, an alloy powder containing a predetermined amount of element is prepared. The alloy powder is represented by the composition formula (2). The alloy powder may contain at least one element selected from the group consisting of hydrogen, boron, and carbon.
RM Z (2)
 組成式(2)において、Rに対するそれ以外のMの合計の含有量の比を示す原子比Zは、4≦Z≦13を満足する数である。 In the composition formula (2), the atomic ratio Z indicating the ratio of the total content of M other than R is a number satisfying 4 ≦ Z ≦ 13.
 合金粉末は、例えば、アーク溶解法や高周波溶解法による溶湯を鋳造して得られた合金インゴット、あるいは溶湯急冷法により作製した合金薄帯を粉砕することにより調製される。合金粉末の他の調製方法としては、メカニカルアロイング法やメカニカルグラインディング法、ガスアトマイズ法、還元拡散法等が挙げられる。 The alloy powder is prepared by, for example, grinding an alloy ingot obtained by casting a molten metal by an arc melting method or a high frequency melting method, or an alloy ribbon produced by a molten metal quenching method. Other preparation methods of the alloy powder include mechanical alloying method, mechanical grinding method, gas atomization method, reduction diffusion method and the like.
 合金インゴットや合金薄帯等の粉砕は、合金粉末の粒径が45μm以下となるように実施することが好ましい。合金粉末の粒径が45μm以下であると、後述する窒化処理において粒子内部まで窒素を十分に侵入させることができるため、粒子全体にわたって均質に窒化処理することができる。合金インゴットや合金薄帯等の粉砕は、例えば、ジェットミルやボールミルを用いて実施される。合金インゴットや合金薄帯等の粉砕は、合金粉末の酸化を防止するために、不活性ガス雰囲気中等で行うことが好ましい。 The pulverization of the alloy ingot or the alloy ribbon is preferably performed so that the particle size of the alloy powder is 45 μm or less. When the particle size of the alloy powder is 45 μm or less, nitrogen can sufficiently penetrate into the inside of the particles in the nitriding treatment described later, so that the entire particles can be uniformly nitrided. The pulverization of the alloy ingot, the alloy ribbon, or the like is performed using, for example, a jet mill or a ball mill. In order to prevent the alloy powder from being oxidized, the alloy ingot, the alloy ribbon, and the like are preferably pulverized in an inert gas atmosphere or the like.
 合金粉末又は粉砕前の合金に対して、均質化熱処理を施す。Fe-Sm二元系状態図においてSmFeの融解温度が1010℃であるとすると、例えば1000℃以上の熱処理温度で均質化熱処理を行うことが考えられる。しかしながら、実施形態の永久磁石ではFeの一部がMにより置換されることにより、状態図が若干変化している可能性が高い。よって、最適な熱処理温度が1000℃を下回る可能性がある。 A homogenization heat treatment is applied to the alloy powder or the alloy before pulverization. If the melting temperature of SmFe 3 is 1010 ° C. in the Fe—Sm binary phase diagram, it is conceivable to perform the homogenization heat treatment at a heat treatment temperature of 1000 ° C. or higher. However, in the permanent magnet of the embodiment, there is a high possibility that the state diagram is slightly changed by replacing part of Fe with M. Therefore, there is a possibility that the optimum heat treatment temperature is below 1000 ° C.
 実施形態における均質化処理では、真空中あるいはアルゴンガス等の不活性ガス雰囲気中で900℃よりも高く1000℃よりも低い温度で10~100時間熱処理する。熱処理温度が900℃以下の場合、元素の拡散が十分に起こらず、合金を均質化することができない。熱処理温度が1000℃以上の場合、合金中に立方晶MgCu型及び六方晶PuNi型から選ばれる少なくとも一つの結晶構造を有する相が形成され、結果として永久磁石の保磁力が低下してしまう。均質化処理では、930~970℃の温度で20~80時間熱処理を施すことがより好ましい。 In the homogenization treatment in the embodiment, heat treatment is performed at a temperature higher than 900 ° C. and lower than 1000 ° C. for 10 to 100 hours in a vacuum or an inert gas atmosphere such as argon gas. When the heat treatment temperature is 900 ° C. or lower, element diffusion does not occur sufficiently and the alloy cannot be homogenized. When the heat treatment temperature is 1000 ° C. or higher, a phase having at least one crystal structure selected from cubic MgCu 2 type and hexagonal PuNi 3 type is formed in the alloy, and as a result, the coercive force of the permanent magnet decreases. . In the homogenization treatment, it is more preferable to perform a heat treatment at a temperature of 930 to 970 ° C. for 20 to 80 hours.
 図2ないし図4は、実施形態の製造方法により製造される永久磁石のX線回折測定によるX線回折パターンの例を示す図である。均質化熱処理の熱処理温度が900℃で熱処理時間が65時間の場合、図2に示すようにPuNi型の結晶構造を有する相(PuNi相ともいう)を示すピークが発生し、均質化熱処理の熱処理温度が1000℃で熱処理時間が65時間の場合、図4に示すようにMgCu型結晶構造を有する相(MgCu相ともいう)を示すピークが発生する。均質化熱処理の熱処理温度が950℃で熱処理時間が65時間の場合、図3に示すようにPuNi相やMgCu相等の副相を示すピークが無く、均質な主相を得ることができる。 2 to 4 are diagrams illustrating examples of X-ray diffraction patterns obtained by X-ray diffraction measurement of permanent magnets manufactured by the manufacturing method according to the embodiment. When the heat treatment temperature of the homogenization heat treatment is 900 ° C. and the heat treatment time is 65 hours, a peak indicating a phase having a PuNi 3 type crystal structure (also referred to as PuNi 3 phase) is generated as shown in FIG. When the heat treatment temperature is 1000 ° C. and the heat treatment time is 65 hours, a peak indicating a phase having an MgCu 2 type crystal structure (also referred to as an MgCu 2 phase) is generated as shown in FIG. If the heat treatment temperature of the homogenization heat treatment is a heat treatment time at 950 ° C. for 65 hours to a peak indicating the subphases PuNi 3 phase or MgCu 2 phase etc. as shown in FIG. 3 without obtaining a homogeneous main phase.
 図5ないし図7は、実施形態の製造方法により製造される永久磁石のX線回折測定によるX線回折パターンの例を示す図である。均質化熱処理の熱処理温度が950℃で熱処理時間が16時間、32時間の場合、図5、6に示すように、PuNi相やMgCu相等の副相を示すピークが無く、均質な主相を得ることができる。これに対し、均質化熱処理の熱処理温度が950℃で熱処理時間が4時間の場合、図7に示すように均質化が十分に進行せず、PuNi相やMgCu相等の副相を示すピークが発生する。このことから均質化熱処理の熱処理時間は10時間以上とすることが好ましいことがわかる。 5 to 7 are diagrams showing examples of X-ray diffraction patterns obtained by X-ray diffraction measurement of permanent magnets manufactured by the manufacturing method of the embodiment. Homogenization annealing step at a heat treatment time is 16 hours at 950 ° C., for 32 hours, as shown in FIGS. 5 and 6, there is no peak indicating the subphases PuNi 3 phase or MgCu 2 equality, homogeneous main phase Can be obtained. In contrast, when the heat treatment time is 4 hours at the heat treatment temperature of the homogenization heat treatment is 950 ° C., does not proceed homogenization sufficiently as shown in FIG. 7, a peak indicating the subphases PuNi 3 phase or MgCu 2 phase etc. Will occur. This shows that the heat treatment time of the homogenization heat treatment is preferably 10 hours or more.
 次に、合金粉末に窒化処理を施す。窒化処理では、0.1~100気圧の窒素ガス雰囲気中で、300~900℃の温度で0.1~100時間熱処理する。主相のR-M-N相の均質性を高めるために、窒素ガス雰囲気の圧力は0.5~10気圧、温度は450~750℃、2~24時間で窒化処理することがより好ましい。合金粉末の窒化処理時の雰囲気は、窒素ガスに代えてアンモニア等の窒素化合物ガスを用いてもよい。窒素ガス又は窒素化合物ガスと水素とを混合したガスを用いることにより、窒化反応を制御することもできる。 Next, the alloy powder is subjected to nitriding treatment. In the nitriding treatment, heat treatment is performed at a temperature of 300 to 900 ° C. for 0.1 to 100 hours in a nitrogen gas atmosphere of 0.1 to 100 atm. In order to increase the homogeneity of the RMN phase of the main phase, it is more preferable to perform nitriding at a nitrogen gas atmosphere pressure of 0.5 to 10 atm and a temperature of 450 to 750 ° C. for 2 to 24 hours. The atmosphere during the nitriding treatment of the alloy powder may be nitrogen compound gas such as ammonia instead of nitrogen gas. The nitriding reaction can also be controlled by using a gas in which nitrogen gas or nitrogen compound gas and hydrogen are mixed.
 アンモニア等の窒素化合物ガスや、窒素ガスと水素ガスとの混合ガスを用いることにより、磁石材料中の窒素の一部を水素で置換することができる。窒素の一部を炭素やホウ素で置換する場合には、窒化処理前の合金粉末に炭素やホウ素を含有させてもよいし、炭素化合物ガスやホウ素化合物ガス等を用いて炭素やホウ素を含有させてもよい。 By using a nitrogen compound gas such as ammonia or a mixed gas of nitrogen gas and hydrogen gas, part of the nitrogen in the magnet material can be replaced with hydrogen. When a part of nitrogen is replaced with carbon or boron, the alloy powder before nitriding treatment may contain carbon or boron, or carbon or boron may be contained using a carbon compound gas or boron compound gas. May be.
 次に、電磁石の中に設置した金型内に窒化処理を施した合金粉末(窒化合金粉末)と混合用合金粉末を混合して充填し、磁場を印加しながら加圧成形することにより結晶軸を配向させた圧粉体を製造する。 Next, the alloy powder (nitriding alloy powder) subjected to nitriding treatment and the alloy powder for mixing are mixed and filled in a mold placed in an electromagnet, and the crystal axis is formed by pressing while applying a magnetic field. A green compact in which is oriented is manufactured.
 次に、圧粉体の焼結を行う。焼結方法としては、放電プラズマ焼結法を用いることが好ましい。放電プラズマ焼結では、粉末粒子の表面に選択的に電流が流れやすいと考えられており、主相のR-M-N相にかかる熱負荷を抑制しつつ、永久磁石を高密度化させるのに適している。 Next, the green compact is sintered. As a sintering method, it is preferable to use a discharge plasma sintering method. In spark plasma sintering, it is thought that the current easily flows selectively on the surface of the powder particles, and the permanent magnet is densified while suppressing the thermal load on the main RMN phase. Suitable for
 焼結は、真空雰囲気中やアルゴンガス等の不活性ガス雰囲気中で行うことが好ましい。放電プラズマ焼結時に、焼結温度を400~700℃とすることにより、緻密な永久磁石を得ることができる。400℃未満では、十分な密度の永久磁石を得ることができない。700℃を超えると永久磁石の熱分解が進行し、永久磁石中にα-Fe相等が生成されるため、永久磁石の磁気特性が著しく低下する。 Sintering is preferably performed in a vacuum atmosphere or an inert gas atmosphere such as argon gas. A dense permanent magnet can be obtained by setting the sintering temperature to 400 to 700 ° C. during spark plasma sintering. If it is less than 400 degreeC, a permanent magnet with sufficient density cannot be obtained. If the temperature exceeds 700 ° C., thermal decomposition of the permanent magnet proceeds, and an α-Fe phase or the like is generated in the permanent magnet, so that the magnetic properties of the permanent magnet are significantly deteriorated.
 上記工程により永久磁石を得ることができる。得られた永久磁石の磁気特性は振動試料型磁力計で測定することができる。残留磁化の測定は以下のように行うことができる。焼結前に配向させた磁化方向と平行な方向に外部磁場を+1600kA/mまで印加してから磁場をゼロに戻し、そのときに測定される磁化の値を永久磁石の残留磁化と定義する。永久磁石試料の測定とは別に、測定する試料と類似形状のニッケル標準試料(磁化の絶対値が既知の試料)についても同様の測定を行い、磁化の絶対値を較正する。 A permanent magnet can be obtained by the above process. The magnetic properties of the obtained permanent magnet can be measured with a vibrating sample magnetometer. The residual magnetization can be measured as follows. An external magnetic field is applied up to +1600 kA / m in a direction parallel to the magnetization direction oriented before sintering, the magnetic field is returned to zero, and the value of magnetization measured at that time is defined as the residual magnetization of the permanent magnet. In addition to the measurement of the permanent magnet sample, the same measurement is performed for a nickel standard sample (a sample whose absolute value of magnetization is known) similar to the sample to be measured, and the absolute value of magnetization is calibrated.
(第2の実施形態)
 第1の実施形態の永久磁石は、回転電機、例えばモータや発電機に用いることができる。これら回転電機は、少なくともステータ(固定子)とロータ(回転子)で構成される。
(Second Embodiment)
The permanent magnet of the first embodiment can be used for a rotating electrical machine, for example, a motor or a generator. These rotating electrical machines are composed of at least a stator (stator) and a rotor (rotor).
 図8は実施形態の永久磁石を用いた回転電機である永久磁石モータの構成例を示す図である。永久磁石モータ21は、ステータ(固定子)22、ロータ(回転子)23で構成される。ステータ22内にはロータ23が配置されている。ステータ22は、ロータ23を回転させる。ロータ23は鉄心24及び実施形態の永久磁石25で構成される。永久磁石25の特性等に基づいて、永久磁石モータ21の高効率化や小型化、低コスト化等を図ることができる。永久磁石モータ21は、モータの高出力とモータの小型化が求められるハイブリッド車や電気自動車等の車両用のモータに好適である。 FIG. 8 is a diagram illustrating a configuration example of a permanent magnet motor that is a rotating electrical machine using the permanent magnet of the embodiment. The permanent magnet motor 21 includes a stator (stator) 22 and a rotor (rotor) 23. A rotor 23 is disposed in the stator 22. The stator 22 rotates the rotor 23. The rotor 23 includes an iron core 24 and the permanent magnet 25 of the embodiment. Based on the characteristics of the permanent magnet 25 and the like, the permanent magnet motor 21 can be improved in efficiency, size, cost, and the like. The permanent magnet motor 21 is suitable for a motor for a vehicle such as a hybrid vehicle or an electric vehicle that requires high motor output and miniaturization of the motor.
 図9は回転電機である可変磁束モータの構成例を示す図である。可変磁束モータ31はステータ32、ロータ33で構成される。ステータ32内にはロータ33が配置されている。ロータ33は、鉄心34、固定磁石35、可変磁石36で構成される。固定磁石35及び可変磁石36は、実施形態の永久磁石が用いられる。固定磁石35及び可変磁石36のうち少なくとも1つをロータ33に用いればよい。 FIG. 9 is a diagram showing a configuration example of a variable magnetic flux motor that is a rotating electrical machine. The variable magnetic flux motor 31 includes a stator 32 and a rotor 33. A rotor 33 is disposed in the stator 32. The rotor 33 includes an iron core 34, a fixed magnet 35, and a variable magnet 36. The permanent magnet of the embodiment is used for the fixed magnet 35 and the variable magnet 36. At least one of the fixed magnet 35 and the variable magnet 36 may be used for the rotor 33.
 可変磁石36の磁束密度(磁束量)は変えることができる。図9中のDは可変磁石36の磁化方向(SからNに向かう方向)を示している。この可変磁石36の磁化方向をD軸という。D軸の示す方向は可変磁石36ごとに異なる。D軸と直交する方向をQ軸という。可変磁石36の磁束密度(磁束量)は、可変磁石36の磁化方向(D軸方向)と直交するQ軸方向に磁界を発生させるQ軸電流の影響を受けない。可変磁石36の磁束密度(磁束量)は、D軸方向に磁界を発生させるD軸電流によってのみ変化させることができる。 The magnetic flux density (magnetic flux amount) of the variable magnet 36 can be changed. D in FIG. 9 indicates the magnetization direction (direction from S to N) of the variable magnet 36. The magnetization direction of the variable magnet 36 is referred to as the D axis. The direction indicated by the D axis is different for each variable magnet 36. The direction orthogonal to the D axis is called the Q axis. The magnetic flux density (magnetic flux amount) of the variable magnet 36 is not affected by the Q-axis current that generates a magnetic field in the Q-axis direction orthogonal to the magnetization direction (D-axis direction) of the variable magnet 36. The magnetic flux density (magnetic flux amount) of the variable magnet 36 can be changed only by a D-axis current that generates a magnetic field in the D-axis direction.
 ロータ33には、図示しない磁化巻線が設けられている。磁化巻線に電流を流すことにより、その磁界が直接に可変磁石36に作用する構造となっている。可変磁束モータ31は、小型の装置でも大きなトルクを出力することが可能である。可変磁束モータ31は、モータの高出力とモータの小型化が求められるハイブリッド車や電気自動車等の車両用のモータに好適である。 The rotor 33 is provided with a magnetizing winding (not shown). By passing a current through the magnetized winding, the magnetic field directly acts on the variable magnet 36. The variable magnetic flux motor 31 can output a large torque even with a small device. The variable magnetic flux motor 31 is suitable for a motor for a vehicle such as a hybrid vehicle or an electric vehicle that requires high motor output and miniaturization of the motor.
 図10は発電機の構成例を示す図である。発電機41は、実施形態の永久磁石を用いたステータ42、ロータ43、タービン44、シャフト45、及びブラシ46で構成される。ロータ43は、シャフト45を介してタービン44と接続されている。タービン44は、外部から供給される流体により回転する。タービン44に代えて、自動車等の車両の回生エネルギー等の動的な回転を伝達することにより、シャフト45を回転させてもよい。シャフト45は、ロータ43に対してタービン44とは反対側に配置された図示しない整流子と接続されている。ロータ43の回転により発生した起電力が発電機41の出力として、相分離母線及び主変圧器を介して、系統電圧に昇圧されて送電される。ブラシ46は、ロータ43の帯電を放電させる。 FIG. 10 is a diagram showing a configuration example of the generator. The generator 41 includes a stator 42 using the permanent magnet of the embodiment, a rotor 43, a turbine 44, a shaft 45, and a brush 46. The rotor 43 is connected to the turbine 44 via the shaft 45. The turbine 44 is rotated by fluid supplied from the outside. Instead of the turbine 44, the shaft 45 may be rotated by transmitting dynamic rotation such as regenerative energy of a vehicle such as an automobile. The shaft 45 is connected to a commutator (not shown) arranged on the opposite side of the turbine 44 from the rotor 43. The electromotive force generated by the rotation of the rotor 43 is boosted to the system voltage and transmitted as the output of the generator 41 via the phase separation bus and the main transformer. The brush 46 discharges the charge of the rotor 43.
 発電機41は、通常の発電機及び可変磁束発電機のいずれであってもよい。ロータ43では、タービン44の静電気や発電に伴う軸電流による帯電が発生する。 The generator 41 may be either a normal generator or a variable magnetic flux generator. The rotor 43 is charged by the shaft 44 due to static electricity of the turbine 44 or power generation.
 上記回転電機は、例えば、鉄道交通に利用される鉄道車両(車両の一例)に搭載されてよい。図11は、回転電機101を具備する鉄道車両100の一例を示す図である。回転電機101としては、上記図8、9のモータ、図10の発電機等を用いることができる。回転電機101として上記回転電機が搭載された場合、回転電機101は、例えば、架線から供給される電力や、鉄道車両100に搭載された二次電池から供給される電力を利用することによって駆動力を出力する電動機(モータ)として利用されてもよいし、運動エネルギーを電力に変換して、鉄道車両100内の各種負荷に電力を供給する発電機(ジェネレータ)として利用されてもよい。実施形態の回転電機のような高効率な回転電機を利用することにより、省エネルギーで鉄道車両を走行させることができる。 The rotating electric machine may be mounted on, for example, a railway vehicle (an example of a vehicle) used for rail traffic. FIG. 11 is a diagram illustrating an example of a railway vehicle 100 that includes the rotating electrical machine 101. As the rotating electrical machine 101, the motors shown in FIGS. 8 and 9 and the generator shown in FIG. 10 can be used. When the rotating electrical machine 101 is mounted as the rotating electrical machine 101, the rotating electrical machine 101 uses, for example, power supplied from an overhead wire or power supplied from a secondary battery mounted on the railway vehicle 100 to drive power. May be used as an electric motor (motor) that outputs power, or may be used as a generator (generator) that converts kinetic energy into electric power and supplies electric power to various loads in the railway vehicle 100. By using a highly efficient rotating electrical machine such as the rotating electrical machine of the embodiment, the railway vehicle can be run with energy saving.
 上記回転電機は、ハイブリッド自動車や電気自動車などの自動車(車両の他の例)に搭載されてもよい。図12は、回転電機201を具備する自動車200の一例を示す図である。回転電機201としては、上記図8、9のモータ、図10の発電機等を用いることができる。回転電機201として上記回転電機が搭載された場合、回転電機201は、自動車200の駆動力を出力する電動機、又は自動車200の走行時の運動エネルギーを電力に変換する発電機としても利用されてよい。また、上記回転電機は、例えば産業機器(産業用モータ)、空調機器(エアコンディショナ・給湯器コンプレッサモータ)、風力発電機、又はエレベータ(巻上機)に搭載されてもよい。 The rotating electric machine may be mounted on a vehicle (another example of a vehicle) such as a hybrid vehicle or an electric vehicle. FIG. 12 is a diagram illustrating an example of an automobile 200 that includes the rotating electrical machine 201. As the rotating electrical machine 201, the motors shown in FIGS. 8 and 9 and the generator shown in FIG. 10 can be used. When the rotating electrical machine 201 is mounted as the rotating electrical machine 201, the rotating electrical machine 201 may be used as an electric motor that outputs the driving force of the automobile 200, or a generator that converts kinetic energy during travel of the automobile 200 into electric power. . The rotating electrical machine may be mounted on, for example, industrial equipment (industrial motor), air conditioning equipment (air conditioner / water heater compressor motor), wind power generator, or elevator (winding machine).
 (実施例1)
 原料を表1に示す合金粉末組成、Sm(Cr0.08Si0.03Fe0.898.3の組成となるように所定の比率で調合した。原料を調合したものをアルゴンガス雰囲気中でアーク溶解して合金インゴットを作製した。合金インゴットをアルゴンガス雰囲気中、950℃で約3日間熱処理することにより均質化熱処理を行った。その後、乳鉢で合金インゴットを粉砕し合金粉末を得た。合金粉末を目開き25μmのふるいでふるい分けした。合金粉末を約1気圧の窒素ガス雰囲気中、700℃で4時間熱処理することにより、窒化合金粉末を得た。得られた窒化合金粉末を磁場中で配向プレスしながら金型に充填した後、粉末に圧力1.0GPa、焼結温度600℃の条件で放電プラズマ焼結を施して永久磁石を得た。永久磁石の組成は表1に示す磁石組成となった。
Example 1
The raw materials were prepared at a predetermined ratio so as to have an alloy powder composition shown in Table 1 and a composition of Sm (Cr 0.08 Si 0.03 Fe 0.89 ) 8.3 . An alloy ingot was prepared by arc melting the raw material blended in an argon gas atmosphere. The alloy ingot was heat-treated at 950 ° C. for about 3 days in an argon gas atmosphere to perform a homogenization heat treatment. Thereafter, the alloy ingot was pulverized in a mortar to obtain an alloy powder. The alloy powder was sieved with a sieve having an opening of 25 μm. The alloy powder was heat-treated at 700 ° C. for 4 hours in a nitrogen gas atmosphere at about 1 atm to obtain a nitride alloy powder. The obtained nitride alloy powder was filled in a mold while orientation-pressing in a magnetic field, and then the powder was subjected to discharge plasma sintering under conditions of a pressure of 1.0 GPa and a sintering temperature of 600 ° C. to obtain a permanent magnet. The composition of the permanent magnet was the magnet composition shown in Table 1.
 表2に実施例1の永久磁石における、密度、保磁力、及び副相の体積比率の値を示す。保磁力は後に述べる比較例1の永久磁石の保磁力を100とした場合の相対値で示している。実施例1の永久磁石のSEM-EDX分析結果によれば、副相の体積比率は2%であった(表2参照)。 Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnet of Example 1. The coercive force is shown as a relative value when the coercive force of the permanent magnet of Comparative Example 1 described later is 100. According to the SEM-EDX analysis result of the permanent magnet of Example 1, the volume ratio of the secondary phase was 2% (see Table 2).
 (実施例2~16)
 合金粉末組成が表1に示す値となるように原料を所定の比率で調合した。その他は、実施例1の場合と同様の方法で永久磁石を作製した。得られた永久磁石の特性を実施例1の場合と同様に評価した。表2に実施例2~16の永久磁石における、密度、保磁力、副相の体積比率の値を示す。
(Examples 2 to 16)
The raw materials were prepared at a predetermined ratio so that the alloy powder composition had the values shown in Table 1. Other than that, permanent magnets were produced in the same manner as in Example 1. The characteristics of the obtained permanent magnet were evaluated in the same manner as in Example 1. Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnets of Examples 2 to 16.
 (比較例1)
 均質化熱処理温度を1000℃とした他は、実施例1の場合と同様の方法で永久磁石を作製した。得られた永久磁石の特性を実施例1の場合と同様に評価した。表2に比較例1の永久磁石における、密度、保磁力、副相の体積比率の値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(Comparative Example 1)
A permanent magnet was produced in the same manner as in Example 1 except that the homogenization heat treatment temperature was 1000 ° C. The characteristics of the obtained permanent magnet were evaluated in the same manner as in Example 1. Table 2 shows values of density, coercive force, and subphase volume ratio in the permanent magnet of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 副相の体積比率が低い永久磁石(実施例1~16)では、比較例1の場合と同程度の密度まで高密度化した場合に、比較例1よりも高い保磁力を有することが確認された。これは、主相よりも熱安定性が低い副相の量が少なく、副相の熱分解によるα-Fe相の生成量が低下し、保磁力が向上するためである。 It was confirmed that the permanent magnets (Examples 1 to 16) having a low subphase volume ratio have a coercive force higher than that of Comparative Example 1 when the density is increased to the same level as in Comparative Example 1. It was. This is because the amount of the subphase having a lower thermal stability than the main phase is small, the amount of α-Fe phase generated by the thermal decomposition of the subphase is reduced, and the coercive force is improved.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 In addition, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (12)

  1.  組成式:RM
    (Rは希土類元素、Zr、Nb、及びHfからなる群より選ばれる少なくとも一つの元素、MはFe及びCoからなる群より選ばれる少なくとも一つの元素、Xは0.5≦X≦2.0を満足する原子比、Zは4≦Z≦13を満足する原子比である)
     で表される永久磁石であって、
     ThNi17型、ThZn17型、及びTbCu型から選ばれる少なくとも一つの結晶構造を有する第1の相と、
     MgCu型及びPuNi型から選ばれる少なくとも一つの結晶構造を有する第2の相と、を具備し、
     前記第2の相の総量の体積比率は5%以下である、永久磁石。
    Composition formula: RM Z N X
    (R is at least one element selected from the group consisting of rare earth elements, Zr, Nb, and Hf, M is at least one element selected from the group consisting of Fe and Co, and X is 0.5 ≦ X ≦ 2.0. And Z is an atomic ratio satisfying 4 ≦ Z ≦ 13)
    A permanent magnet represented by
    A first phase having at least one crystal structure selected from Th 2 Ni 17 type, Th 2 Zn 17 type, and TbCu 7 type;
    A second phase having at least one crystal structure selected from MgCu 2 type and PuNi 3 type,
    The permanent magnet, wherein the volume ratio of the total amount of the second phase is 5% or less.
  2.  前記Rの50原子%以上はSmである、請求項1に記載の永久磁石。 The permanent magnet according to claim 1, wherein 50 atomic% or more of R is Sm.
  3.  前記Mの50原子%以上はFeである、請求項1又は請求項2に記載の永久磁石。 The permanent magnet according to claim 1, wherein 50 atomic% or more of M is Fe.
  4.  前記Mの20原子%以下は、Cr及びSiからなる群より選ばれる少なくとも一つの元素で置換されている、請求項1ないし請求項3のいずれか一項に記載の永久磁石。 The permanent magnet according to any one of claims 1 to 3, wherein 20 atomic% or less of M is substituted with at least one element selected from the group consisting of Cr and Si.
  5.  前記Mの20原子%以下は、Ti、V、Ta、Mo、W、Mn、Ni、Zn、及びGeから選ばれる少なくとも一つの元素で置換されている、請求項1ないし請求項3のいずれか一項に記載の永久磁石。 4. The element according to claim 1, wherein 20 atomic% or less of M is substituted with at least one element selected from Ti, V, Ta, Mo, W, Mn, Ni, Zn, and Ge. The permanent magnet according to one item.
  6.  前記Nの50原子%以下が、H、B、及びCから選ばれる少なくとも一つの元素で置換されている、請求項1ないし請求項5のいずれか一項に記載の永久磁石。 The permanent magnet according to any one of claims 1 to 5, wherein 50 atomic% or less of N is substituted with at least one element selected from H, B, and C.
  7.  前記永久磁石の密度は6.5g/cm以上である、請求項1ないし請求項6のいずれか一項に記載の永久磁石。 The permanent magnet according to any one of claims 1 to 6, wherein the density of the permanent magnet is 6.5 g / cm 3 or more.
  8.  前記永久磁石中のα-Fe相の総量の体積比率は5%以下である、請求項1ないし請求項7のいずれか一項に記載の永久磁石。 The permanent magnet according to any one of claims 1 to 7, wherein a volume ratio of a total amount of α-Fe phases in the permanent magnet is 5% or less.
  9.  ロータと、
     ステータと、を具備し、
     前記ロータ又は前記ステータは、請求項1ないし請求項8のいずれか一項に記載の永久磁石を有する、回転電機。
    The rotor,
    A stator,
    The said rotor or the said stator is a rotary electric machine which has the permanent magnet as described in any one of Claims 1 thru | or 8.
  10.  モータ又は発電機である請求項9に記載の回転電機。 The rotating electrical machine according to claim 9, which is a motor or a generator.
  11.  請求項9又は請求項10に記載の回転電機を具備する、車両。 A vehicle comprising the rotating electrical machine according to claim 9 or 10.
  12.  請求項9に記載の回転電機を具備し、
     前記回転電機の一端に設けられたシャフトに回転が伝達される、車両。
    The rotating electrical machine according to claim 9 is provided,
    A vehicle in which rotation is transmitted to a shaft provided at one end of the rotating electrical machine.
PCT/JP2018/009078 2017-03-22 2018-03-08 Permanent magnet, dynamo-electric machine and vehicle WO2018173782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056046 2017-03-22
JP2017056046A JP2020080335A (en) 2017-03-22 2017-03-22 Permanent magnet, rotating electric machine, and vehicle

Publications (1)

Publication Number Publication Date
WO2018173782A1 true WO2018173782A1 (en) 2018-09-27

Family

ID=59955333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009078 WO2018173782A1 (en) 2017-03-22 2018-03-08 Permanent magnet, dynamo-electric machine and vehicle

Country Status (3)

Country Link
JP (1) JP2020080335A (en)
CN (1) CN108630370A (en)
WO (1) WO2018173782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530653A (en) * 2019-09-17 2021-03-19 株式会社东芝 Magnet material, permanent magnet, rotating electrical machine, and vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273184B (en) * 2018-10-19 2020-08-04 广东省稀有金属研究所 Low-cost corrosion-resistant monocrystalline magnetic powder and preparation method and application thereof
CN109243745B (en) * 2018-10-19 2020-08-04 广东省稀有金属研究所 High-temperature-resistant corrosion-resistant monocrystalline magnetic powder and preparation method and application thereof
CN109273182B (en) * 2018-10-19 2020-06-16 广东省稀有金属研究所 Single crystal magnetic powder and preparation method and application thereof
CN109273183B (en) * 2018-10-19 2020-06-16 广东省稀有金属研究所 Corrosion-resistant monocrystalline magnetic powder and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272925A (en) * 2004-03-24 2005-10-06 Hitachi Metals Ltd R-t-n based magnetic powder and its manufacturing method
JP2014223652A (en) * 2013-05-16 2014-12-04 住友電気工業株式会社 Production method of rare earth-iron-based alloy material, rare earth-iron-based alloy material, production method of rare earth-iron-nitrogen-based alloy material, rare earth-iron-nitrogen-based alloy material and rare earth magnet
WO2016151619A1 (en) * 2015-03-23 2016-09-29 株式会社 東芝 Magnet material, permanent magnet, motor, and generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380750B2 (en) * 2014-04-15 2018-08-29 Tdk株式会社 Permanent magnet and variable magnetic flux motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272925A (en) * 2004-03-24 2005-10-06 Hitachi Metals Ltd R-t-n based magnetic powder and its manufacturing method
JP2014223652A (en) * 2013-05-16 2014-12-04 住友電気工業株式会社 Production method of rare earth-iron-based alloy material, rare earth-iron-based alloy material, production method of rare earth-iron-nitrogen-based alloy material, rare earth-iron-nitrogen-based alloy material and rare earth magnet
WO2016151619A1 (en) * 2015-03-23 2016-09-29 株式会社 東芝 Magnet material, permanent magnet, motor, and generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530653A (en) * 2019-09-17 2021-03-19 株式会社东芝 Magnet material, permanent magnet, rotating electrical machine, and vehicle

Also Published As

Publication number Publication date
JP2020080335A (en) 2020-05-28
CN108630370A (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP7002868B2 (en) Magnet materials, permanent magnets, rotary machines, and vehicles
WO2018173782A1 (en) Permanent magnet, dynamo-electric machine and vehicle
JP2013074235A (en) Permanent magnet, and motor and dynamo including the same
JP6776441B2 (en) Magnet materials, permanent magnets, rotary electric machines, and vehicles
JP6995542B2 (en) Magnet materials, permanent magnets, rotary machines, and vehicles
JP2018120942A (en) Permanent magnet, rotary electric machine, and vehicle
WO2018173783A1 (en) Permanent magnet, dynamo-electric machine and vehicle
CN108064407B (en) Permanent magnet, rotating electrical machine, and vehicle
US10480052B2 (en) Permanent magnet, and motor and generator using the same
JP6290507B2 (en) Magnet materials, permanent magnets, motors, and generators
US11289249B2 (en) Permanent magnet, rotary electrical machine, and vehicle
JP7150537B2 (en) Magnetic materials, permanent magnets, rotating electric machines, and vehicles
JP7278731B2 (en) Magnetic materials, permanent magnets, rotating electric machines, and vehicles
JP6596370B2 (en) Permanent magnet, rotating electric machine and vehicle
JP6613010B2 (en) Permanent magnet, rotating electric machine, and vehicle
KR101935164B1 (en) Magnet material, permanent magnet, rotating electric machine, and vehicle
CN111696741B (en) Magnet material, permanent magnet, rotating electrical machine, and vehicle
JP7234082B2 (en) Magnetic materials, permanent magnets, rotating electric machines, and vehicles
CN113053605B (en) Magnet material, permanent magnet, rotating electrical machine, and vehicle
JP2023176479A (en) Permanent magnet and rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP