WO2018173591A1 - Motor drive device, electric assist device, and electric vehicle - Google Patents

Motor drive device, electric assist device, and electric vehicle Download PDF

Info

Publication number
WO2018173591A1
WO2018173591A1 PCT/JP2018/005905 JP2018005905W WO2018173591A1 WO 2018173591 A1 WO2018173591 A1 WO 2018173591A1 JP 2018005905 W JP2018005905 W JP 2018005905W WO 2018173591 A1 WO2018173591 A1 WO 2018173591A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
motor drive
switching element
drive device
control unit
Prior art date
Application number
PCT/JP2018/005905
Other languages
French (fr)
Japanese (ja)
Inventor
片岡 耕太郎
野村 勝
秀明 中岡
池谷 直泰
岩田 浩
伊藤 寛
柴田 晃秀
足立 浩一郎
鈴木 貴光
哲三 永久
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018173591A1 publication Critical patent/WO2018173591A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive device that drives a motor, an electric assist device that includes the motor drive device, and an electric vehicle.
  • the present invention provides a motor drive device capable of interrupting a regenerative current more easily and accurately.
  • a motor drive device is a motor drive device that controls a motor driven by a power source, and includes a motor drive circuit, a switching element, and a control unit.
  • the motor drive circuit drives the motor.
  • the switching element switches electrical connection between the power source and the motor drive circuit.
  • a control part detects the rotation speed of a motor, and when the rotation speed of a motor is more than 1st value, it turns off a switching element.
  • An electric assist device includes the motor driving device, a power source, a motor, and a control unit including the control unit.
  • An electric vehicle according to an exemplary embodiment of the present application includes the electric assist device.
  • the motor drive device is effective for interrupting the regenerative current more easily and accurately.
  • FIG. 1 schematically shows the overall configuration of an electrically assisted bicycle.
  • FIG. 2 is a schematic configuration diagram of the electric assist device.
  • FIG. 3 is a schematic configuration diagram of the motor drive device according to the first embodiment.
  • FIG. 4 is a flowchart showing the operation of the motor driving apparatus according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a motor drive device according to the second embodiment.
  • FIG. 6 is a schematic configuration diagram of a motor drive device according to the third embodiment.
  • FIG. 7 is a schematic configuration diagram of a motor drive device according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating an appearance of an electrically assisted bicycle 1 (an example of an electrically powered vehicle) according to the present embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of an electric assist kit 3 (an example of an electric assist device) mounted on the electric assist bicycle 1.
  • the electrically assisted bicycle 1 has a function of detecting the pedaling force and the rotational speed of the user with a sensor and reducing the pedaling force by driving the motor 13.
  • the electrically assisted bicycle 1 has a configuration included in a normal bicycle such as a wheel, a vehicle body, a pedal, and a chain, but the description of these configurations is omitted.
  • the electrically assisted bicycle 1 includes an electric assist kit 3 (FIG. 2) including a control unit 30 including a motor driving device 10, 210, 310, or 410, a battery 20, and a motor 13.
  • a control unit 30 including a motor driving device 10, 210, 310, or 410, a battery 20, and a motor 13.
  • the battery 20 (an example of a power supply) is configured to be able to store electricity by charging from the outside and charging from the motor 13.
  • the battery 20 is configured to supply power to the control unit 30. Further, the battery 20 supplies electric power for driving the motor 13 and applying a driving force to the bicycle via the control unit 30 and the motor driving device 10, 210, 310, or 410. *
  • the control unit 30 (an example of a control unit) includes a microcontroller (microcomputer) that includes a CPU, other control circuits, and a memory.
  • the control unit 30 is disposed at an arbitrary position on the bicycle body, for example, in the vicinity of a torque sensor (not shown).
  • the control unit 30 generates a control signal for the motor 13 and controls the rotation of the motor 13. For example, a driving force can be applied to the front wheels by applying a driving force to the motor 13 in the same direction as the rotation direction of the front wheels in accordance with a control signal from the control unit 30.
  • a load is applied to the rotation of the front wheels, thereby applying a braking force (braking force) to the front wheels.
  • the motor 13 (an example of a motor) is arrange
  • the motor 13 is, for example, a three-phase brushless DC motor.
  • the motor 13 may be a brushed DC motor. *
  • the motor driving device 10, 210, 310, or 410 (an example of a motor driving device) is included in the control unit 30. As will be described later, when it is determined that the motor drive device 10, 210, 310, or 410 rotates at a rotational speed (rotational speed) that exceeds the voltage of the battery 20, the regenerative current from the motor 13 It has the structure which interrupts
  • rotational speed rotational speed
  • FIG. 3 schematically shows the configuration of the motor drive device 10 according to the first embodiment.
  • the motor driving device 10 detects the number of rotations of the motor 13 by the hall sensor 15.
  • the hall sensor 15 (an example of a rotational position sensor of the motor) is a semiconductor element that detects a change in the magnetic field of the motor 13 and outputs an output corresponding to the strength thereof. The number of rotations of 13 is detected.
  • the motor drive device 10 includes an inverter circuit 113 connected to the motor 13 and a switching element SW that switches electrical connection between the battery 20 and the inverter circuit 113.
  • the motor drive device 10 also includes a switching control unit 110 that switches on / off of the switching element SW, a memory 111, and a control power generation circuit 115 that is connected to the battery 20 with respect to the switching element SW.
  • the motor drive device 10 further includes a smoothing capacitor C (an example of a capacitor) connected in parallel to the battery 20 with respect to the switching element SW, and a control power generation circuit 115. *
  • the inverter circuit 113 (an example of a motor drive circuit) is a bridge circuit including six transistors Tr1 to Tr6.
  • the inverter circuit 113 is connected to the motor 13 via motor drive lines MDW1 to MDW3.
  • the inverter circuit 113 generates a three-phase alternating current by turning on and off the switches Tr1 to Tr6 by the switching control unit 110, and rotates the motor 13.
  • the transistors Tr1 to Tr6 are, for example, IGBTs (insulated gate bipolar transistors). Transistors Tr1 to Tr6 are also connected in parallel with freewheeling diodes.
  • the transistors Tr1 to Tr6 may be MOSFETs (field effect transistors) or other transistors. *
  • the switching element SW (an example of a switching element) is a transistor such as an IGBT, and is turned on / off by the switching control unit 110 at a predetermined timing described later. Note that the switching element SW may be a MOSFET or other transistor. *
  • the switching control unit 110 (an example of a control unit) is configured by the above-described microcontroller (microcomputer), and includes a CPU and other control circuits that execute predetermined arithmetic processing.
  • the switching control unit 110 obtains digital information obtained by converting the output voltage amplified by the amplifier or the like from the Hall sensor 15 by an AD converter (not shown).
  • the switching control unit 110 detects the rotational position of the motor 13 output from the hall sensor 15, and switches the transistors Tr1 to Tr6 on and off in response to the detection.
  • the switching control unit 110 also detects the rotational speed of the motor from the output from the hall sensor 15 and switches the switching element SW on and off at a predetermined timing according to the detection. *
  • the switching control unit 110 detects the rotational position of the motor 13 by converting the signal from the hall sensor 15 into a high / low signal by a comparator (not shown) and then inputting the signal to the switching control unit 110.
  • the memory 111 is composed of a semiconductor memory or the like.
  • the switching control unit 110 stores threshold values R1, R2, and R3 that serve as references for switching on and off the switching element SW.
  • the relationship between the threshold values R1, R2, and R3 is R1> R3> R2.
  • Each threshold corresponds to the number of rotations of the motor that exceeds the voltage of the battery 20.
  • a memory IC such as an EEPROM may be used.
  • the switching control unit 110 includes a microcomputer as described above, a memory area of the microcomputer may be used. *
  • the control power generation circuit 115 is connected to the battery 20 side with respect to the switching element SW, and generates and supplies power for the switching control unit 110. *
  • FIG. 4 is a flowchart showing the operation of the motor drive device 10 according to the first embodiment.
  • the switching controller 110 Based on the output from the hall sensor 15, the switching controller 110 reads the rotation speed of the motor 13 (hereinafter referred to as the motor rotation speed). *
  • the threshold value R2 (an example of the second value) is read from the memory 111 by the switching control unit 110, and is compared with the motor rotation speed read in step S102. If the motor rotation speed is equal to or greater than R2, the process proceeds to step S104, and if it is less than R2, the process proceeds to step S107. *
  • R1 (an example of a first value) larger than the threshold value R2 is read from the memory 111 by the switching control unit 110, and compared with the motor rotation speed read in step S102. If the motor rotation speed is equal to or greater than R1, the process proceeds to step S105, and if it is less than R1, the process proceeds to step S107.
  • step S104 the process returns to step S104, and if the motor rotational speed is equal to or greater than R1, the process proceeds to step S105, and if the motor rotational speed is less than R1, the process proceeds to step S107.
  • the threshold value R3 (an example of a third value) that is larger than the threshold value R2 and smaller than R1 is read from the memory 111 by the switching control unit 110, and is compared with the motor rotation speed read in step S109. If the motor speed exceeds R3, the process proceeds to step S111. If the motor speed is equal to or less than R3, the process returns to step S108. *
  • a threshold value R3 (a value between R1 and R2) on condition that the state of the switching element SW is turned off.
  • the switching control unit 110 detects the rotational speed of the motor 13 and maintains the switching element SW off when the rotational speed of the motor 13 is at least the threshold value R1.
  • the threshold value R1 can be set to a rotational speed of the motor corresponding to the voltage of the battery 20 or a rotational speed smaller than that. Thereby, when the motor 13 is rotating at a rotational speed exceeding the voltage of the battery 20, the switching element SW is turned off to prevent an excessive regenerative current from flowing to the battery 20 side.
  • the smoothing capacitor C is disposed on the battery 20 side with respect to the switching element SW.
  • the smoothing capacitor C can serve both as a smoothing function for the control power generation circuit 115 and a smoothing function for the power source of the inverter circuit 113.
  • the smoothing capacitor C may be a capacitor having a withstand voltage that can withstand use with the battery 20 voltage, and a low-cost circuit can be configured.
  • the switching control has hysteresis by properly using three threshold values (R1> R3> R2) according to the state of the switching element SW. For this reason, when the motor rotation speed is in the vicinity of the switching boundary, frequent switching of the switching element SW can be prevented, and switching of the switching element SW can be performed stably.
  • another smoothing capacitor may be provided on the inverter circuit 113 side with respect to the switching element SW.
  • the hall sensor 15 may also serve as a hall sensor provided in the motor 13 in order to detect the rotational position of the rotor for coil energization switching.
  • FIG. 5 schematically shows a configuration of a motor drive device 210 according to the second embodiment.
  • constituent elements having the same configurations or functions as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the motor drive device 210 includes a voltage measurement unit 17 (an example of a voltage measurement unit) that measures the voltages of the motor drive lines MDW1 to MDW3 that connect the motor 13 and the inverter circuit 113 without using a hall sensor. It differs from Embodiment 1 in the point provided. *
  • the voltage measuring unit 17 measures a voltage when the inverter circuit 113 is stopped.
  • the time when the inverter circuit 113 is stopped is when the switching element SW is turned off before the inverter operation is started or when the switching element SW is turned on, for example, in a non-energized section in the 120 energization method.
  • the non-energized section of the motor drive line MDW1 is a section in which Tr1 and Tr4 are OFF).
  • the voltage measured by the voltage measuring unit 17 is converted into digital information by an AD converter (not shown), for example. *
  • the switching control unit 110 calculates the motor rotation speed from the converted voltage value. For example, the switching control unit 110 can read the motor rotation number from the increase or decrease of the voltage value. In this case, the timing at which the acquired voltage value increases or decreases with respect to the predetermined voltage value is counted, and the motor rotation speed can be determined from the frequency of the timing.
  • the detection of the voltage increase / decrease timing may be performed using a comparator.
  • the comparator inputs the voltage value detected by the voltage measuring unit 17 and a predetermined voltage value as a reference, and outputs a comparison result (for example, whether there is an increase or decrease).
  • the switching control unit 110 determines the motor speed based on this output.
  • the predetermined voltage serving as the reference for example, a virtual midpoint voltage in which MDW1, MDW2, and MDW3 are connected by resistors and a filter is appropriately provided can be used.
  • the switching control unit 110 detects the motor rotation speed based on the output from the voltage measurement unit 17. Based on the detected motor rotation speed, the processes of steps S102 to S104, S106, and S109 to S110 in FIG. 4 are executed. When the switching element SW is in the on state, the motor rotation speed is read from the voltage value measured at the timing of the non-energized section of the inverter circuit 113 in step S109 in FIG.
  • the switching control unit 110 detects the motor rotation speed based on the increase / decrease in the voltage measured by the voltage measurement unit 17. To do. For this reason, since it is not necessary to provide a hall sensor for detecting the motor rotation number for controlling the switching element SW, the number of parts can be reduced.
  • FIG. 6 schematically shows a configuration of a motor drive device 310 according to the third embodiment.
  • constituent elements having the same configurations and functions as those of the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the motor drive device 310 has the above first and second embodiments in that a smoothing capacitor C (an example of a capacitor) and a control power generation circuit 115 are provided on the inverter circuit 113 side with respect to the switching element SW. And different. Further, a diode D (an example of a diode) is connected in parallel with the switching element SW in a direction from the battery 20 toward the inverter circuit 113. *
  • the motor drive device 310 can transmit power from the battery 20 to the control power generation circuit 115 regardless of the on / off state of the switching element SW. Therefore, the control unit 30 including the switching control unit 110 can be operated even when the switching element SW is in an off state such as an initial state of the motor driving device 310.
  • the control unit 30 can be operated using the generated power of the motor 13, so that the power can be used effectively. Further, when the motor rotation speed decreases with the switching element SW turned off, the electric power from the battery 20 flows through the diode D, so that the control power is not interrupted even if the switching element SW is not immediately turned on. . *
  • the motor driving device 310 is provided with the voltage measuring unit 17, but instead, the motor rotation number is detected using the Hall sensor 15 as in the first embodiment (FIG. 3). It may be. *
  • FIG. 7 schematically shows a configuration of a motor drive device 410 according to the fourth embodiment.
  • constituent elements having the same configurations and functions as those of the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the motor drive device 410 differs from the first to third embodiments in that a battery voltage measurement unit 19 (an example of a power supply voltage measurement unit) that measures the voltage of the battery 20 is provided.
  • the switching control unit 110 changes the values of the motor rotation speed threshold values R1, R2, and R3 that determine whether the switching element SW is turned on or off according to the battery voltage.
  • the threshold values R1, R2, and R3 are set higher as the battery voltage is higher. This is because the higher the battery voltage, the greater the motor speed at which the regenerative current is generated.
  • the switching control unit 110 can change the values of the motor speed threshold values R1, R2, and R3 according to the battery voltage. When the battery voltage is higher than a predetermined voltage, the values of the threshold values R1, R2, and R3 Raise. *
  • the switching element SW when performing regenerative brake control in which the switching element SW needs to be in an on state, the switching element SW can be maintained in an on state up to a high motor speed. For this reason, the motor drive device 410 can widen an operation margin and can further improve convenience.
  • the motor driving device 410 is provided with the voltage measuring unit 17, but instead, the motor rotation number is detected using the Hall sensor 15 as in the first embodiment (FIG. 3). It may be.
  • smoothing capacitor C and control power generation circuit 115 may be provided on inverter circuit 113 side with respect to switching element SW. In this case, a diode D is connected in parallel to the switching element SW in a direction from the battery 20 toward the inverter circuit 113.
  • the electrically assisted bicycle 1 is taken as an example of the electrically powered vehicle, but is not limited to this.
  • the motor drive devices 10, 210, 310, 410 may be applied to other electric vehicles such as an electric bicycle and an electric wheelchair.
  • the present disclosure includes a control method executed by the motor drive device 10, 210, 310, 410, a computer program executed by the control method, and a computer-readable recording medium storing such a program.
  • Electric assist bicycle 3 Electric assist kit 10: Motor drive device 13: Motor 15: Hall sensor 17: Voltage measurement unit 19: Battery voltage measuring unit 20: Battery 30: Control unit 110: Switching control unit 111: Memory 113: Inverter circuit 115: Control power generation circuit 210: Motor drive device 310: Motor drive device 410: Motor driving device C: Smoothing capacitor D: Diode MDW1: Motor drive line MDW2: Motor drive line MDW3: Motor drive line SW: Switching element Tr1 to Tr6: Transistors

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

[Problem] To provide a motor drive device effective for more simply and accurately interrupting regenerative current. [Solution] A motor drive device 10 for controlling a motor 13 driven by a battery 20 is provided with an inverter circuit 113, a switching element SW, and a switching control unit 110. The inverter circuit 113 drives the motor 13. The switching element SW switches an electrical connection between the battery 20 and the inverter circuit 113. The switching control unit 110 detects the rotational speed of the motor 13 and turns off the switching element SW when the motor rotational speed exceeds a threshold value R1.

Description

モータ駆動装置、電動アシスト装置、および電動車両Motor drive device, electric assist device, and electric vehicle
本発明は、モータを駆動する駆動装置、同モータ駆動装置を備える電動アシスト装置および電動車両に関する。 The present invention relates to a drive device that drives a motor, an electric assist device that includes the motor drive device, and an electric vehicle.
従来、駆動回路と電源との間にスイッチング素子を接続し、電動モータから電源へ回生電流が流れる状態を検出したとき、同スイッチング素子を遮断するモータ駆動装置が知られている(例えば、特許文献1参照)。この従来例においては、電動モータの駆動電圧(Vb-Vc)を検出することにより、スイッチング素子のオン・オフを制御している。 2. Description of the Related Art Conventionally, there has been known a motor driving device that connects a switching element between a driving circuit and a power source and shuts off the switching element when a state in which a regenerative current flows from the electric motor to the power source is detected (for example, Patent Documents). 1). In this conventional example, on / off of the switching element is controlled by detecting the drive voltage (Vb−Vc) of the electric motor.
特開2002-321631号公報Japanese Patent Laid-Open No. 2002-321631
しかし、上記特許文献1においては、モータ回転中はTraとTrd、または、TrbとTrcがオン状態であり、モータ駆動線は、電源線ないしGND線と導通状態にある。スイッチング素子Treがオンにされた状態では、駆動電圧|Vb-Vc|と電源電圧Vaとの差が微小であることから、実際にはその検出は困難である。このため、正確に回生電流を検出できず、その結果回生電流を遮断することができなくなるおそれがある。  However, in Patent Document 1, Tra and Trd or Trb and Trc are in an on state while the motor is rotating, and the motor drive line is in conduction with the power supply line or the GND line. In the state in which the switching element Tre is turned on, since the difference between the drive voltage | Vb−Vc | and the power supply voltage Va is very small, the detection is actually difficult. For this reason, the regenerative current cannot be accurately detected, and as a result, the regenerative current may not be cut off. *
本発明は、より簡易かつ正確に回生電流を遮断することが可能なモータ駆動装置を提供する。 The present invention provides a motor drive device capable of interrupting a regenerative current more easily and accurately.
本願の例示的な一実施形態のモータ駆動装置は、電源により駆動されるモータを制御するモータ駆動装置であって、モータ駆動回路と、スイッチング素子と、制御部と、を備える。モータ駆動回路はモータを駆動する。スイッチング素子は、電源とモータ駆動回路との電気的な接続を切り替える。制御部は、モータの回転数を検出し、モータの回転数が第1の値以上である場合、スイッチング素子をオフにする。  A motor drive device according to an exemplary embodiment of the present application is a motor drive device that controls a motor driven by a power source, and includes a motor drive circuit, a switching element, and a control unit. The motor drive circuit drives the motor. The switching element switches electrical connection between the power source and the motor drive circuit. A control part detects the rotation speed of a motor, and when the rotation speed of a motor is more than 1st value, it turns off a switching element. *
本願の例示的な一実施形態の電動アシスト装置は、上記モータ駆動装置と、電源と、モータと、上記制御部を含むコントロールユニットと、を備える。 本願の例示的な一実施形態の電動車両は、上記電動アシスト装置を備える。 An electric assist device according to an exemplary embodiment of the present application includes the motor driving device, a power source, a motor, and a control unit including the control unit. An electric vehicle according to an exemplary embodiment of the present application includes the electric assist device.
本願の例示的な実施形態に係るモータ駆動装置は、より簡易かつ正確に回生電流を遮断するのに有効である。 The motor drive device according to the exemplary embodiment of the present application is effective for interrupting the regenerative current more easily and accurately.
図1は、電動アシスト自転車の全体構成を概略的に示す。FIG. 1 schematically shows the overall configuration of an electrically assisted bicycle. 図2は、電動アシスト装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the electric assist device. 図3は、実施の形態1に係るモータ駆動装置の概略構成図である。FIG. 3 is a schematic configuration diagram of the motor drive device according to the first embodiment. 図4は、実施の形態1に係るモータ駆動装置の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the motor driving apparatus according to the first embodiment. 図5は、実施の形態2に係るモータ駆動装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a motor drive device according to the second embodiment. 図6は、実施の形態3に係るモータ駆動装置の概略構成図である。FIG. 6 is a schematic configuration diagram of a motor drive device according to the third embodiment. 図7は、実施の形態4に係るモータ駆動装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a motor drive device according to the fourth embodiment.
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。  Embodiments of the present invention will be described below with reference to the drawings. Note that the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. *
(全体構成)

 図1は、本実施形態の電動アシスト自転車1(電動車両の一例)の外観を示す図である。図2は、電動アシスト自転車1に搭載される電動アシストキット3(電動アシスト装置の一例)の概略構成を示す図である。電動アシスト自転車1は、ユーザのペダルを踏む力や回転数などをセンサで検出し、モータ13の駆動によりペダルを踏む力を低減させる機能を有する。電動アシスト自転車1は、これらの特徴的な構成以外にも、車輪、車体、ペダル、およびチェーンなど通常の自転車が備える構成を備えているが、これらの構成については説明を省略する。 
(overall structure)

FIG. 1 is a diagram illustrating an appearance of an electrically assisted bicycle 1 (an example of an electrically powered vehicle) according to the present embodiment. FIG. 2 is a diagram illustrating a schematic configuration of an electric assist kit 3 (an example of an electric assist device) mounted on the electric assist bicycle 1. The electrically assisted bicycle 1 has a function of detecting the pedaling force and the rotational speed of the user with a sensor and reducing the pedaling force by driving the motor 13. In addition to these characteristic configurations, the electrically assisted bicycle 1 has a configuration included in a normal bicycle such as a wheel, a vehicle body, a pedal, and a chain, but the description of these configurations is omitted.
図1および図2に示すように、電動アシスト自転車1は、モータ駆動装置10,210,310,または410を含むコントロールユニット30、バッテリ20、およびモータ13を含む電動アシストキット3(図2)を備える。  As shown in FIGS. 1 and 2, the electrically assisted bicycle 1 includes an electric assist kit 3 (FIG. 2) including a control unit 30 including a motor driving device 10, 210, 310, or 410, a battery 20, and a motor 13. Prepare. *
バッテリ20(電源の一例)は、外部からの充電及びモータ13からの充電により蓄電可能に構成される。バッテリ20は、コントロールユニット30に対して電力を供給するよう構成される。また、バッテリ20は、コントロールユニット30およびモータ駆動装置10,210,310,または410を介して、モータ13を駆動させて自転車に駆動力を与えるための電力を供給する。  The battery 20 (an example of a power supply) is configured to be able to store electricity by charging from the outside and charging from the motor 13. The battery 20 is configured to supply power to the control unit 30. Further, the battery 20 supplies electric power for driving the motor 13 and applying a driving force to the bicycle via the control unit 30 and the motor driving device 10, 210, 310, or 410. *
コントロールユニット30(コントロールユニットの一例)は、CPUやその他の制御回路、およびメモリなどにより構成されるマイクロコントローラ(マイコン)が内蔵されている。コントロールユニット30は、例えばトルクセンサ(図示省略)の近傍など、自転車の車体の任意の場所に配置される。コントロールユニット30は、モータ13の制御信号を生成し、モータ13の回転を制御する。例えば、コントロールユニット30からの制御信号に応じて前輪の回転方向と同じ方向にモータ13に駆動力を与えることで、前輪に対して駆動力を与えることができる。また、コントロールユニット30からの制御信号に応じて前輪の回転方向と逆方向の駆動力をモータ13に与えることで、前輪の回転に対する負荷を与え、これにより前輪に制動力(ブレーキ力)を与えることができる。  The control unit 30 (an example of a control unit) includes a microcontroller (microcomputer) that includes a CPU, other control circuits, and a memory. The control unit 30 is disposed at an arbitrary position on the bicycle body, for example, in the vicinity of a torque sensor (not shown). The control unit 30 generates a control signal for the motor 13 and controls the rotation of the motor 13. For example, a driving force can be applied to the front wheels by applying a driving force to the motor 13 in the same direction as the rotation direction of the front wheels in accordance with a control signal from the control unit 30. Further, by applying a driving force in the direction opposite to the rotation direction of the front wheels to the motor 13 in accordance with a control signal from the control unit 30, a load is applied to the rotation of the front wheels, thereby applying a braking force (braking force) to the front wheels. be able to. *
モータ13(モータの一例)は、例えば図1に示されるように自転車の前輪(又は後輪)の中心部分に配置される。モータ13は、例えば三相ブラシレスDCモータである。モータ13はブラシ付きDCモータであってもよい。  The motor 13 (an example of a motor) is arrange | positioned at the center part of the front wheel (or rear wheel) of a bicycle, for example, as shown in FIG. The motor 13 is, for example, a three-phase brushless DC motor. The motor 13 may be a brushed DC motor. *
モータ駆動装置10,210,310,または410(モータ駆動装置の例)は、コントロールユニット30に含まれる。後述するように、モータ駆動装置10,210,310,または410は、モータ13がバッテリ20の電圧を超えるような回転数(回転速度)で回転すると判断される場合に、モータ13からの回生電流を遮断する構成を有する。これにより、モータ13からバッテリ20側への過剰な回生電流が流れることを防ぐ。以下、実施の形態1~4について、説明する。  The motor driving device 10, 210, 310, or 410 (an example of a motor driving device) is included in the control unit 30. As will be described later, when it is determined that the motor drive device 10, 210, 310, or 410 rotates at a rotational speed (rotational speed) that exceeds the voltage of the battery 20, the regenerative current from the motor 13 It has the structure which interrupts | blocks. This prevents an excessive regenerative current from flowing from the motor 13 to the battery 20 side. Hereinafter, Embodiments 1 to 4 will be described. *
(実施の形態1)

 [1-1.構成]

 図3は、実施の形態1に係るモータ駆動装置10の構成を概略的に示す。モータ駆動装置10は、ホールセンサ15によりモータ13の回転数を検知する。 
(Embodiment 1)

[1-1. Constitution]

FIG. 3 schematically shows the configuration of the motor drive device 10 according to the first embodiment. The motor driving device 10 detects the number of rotations of the motor 13 by the hall sensor 15.
ホールセンサ15(モータの回転位置センサの一例)は、モータ13の磁界の変化を検出しその強さに応じた出力を行う半導体素子であり、モータ13の磁石の極数とその磁束検知からモータ13の回転数を検出する。  The hall sensor 15 (an example of a rotational position sensor of the motor) is a semiconductor element that detects a change in the magnetic field of the motor 13 and outputs an output corresponding to the strength thereof. The number of rotations of 13 is detected. *
モータ駆動装置10は、モータ13と接続されるインバータ回路113と、バッテリ20とインバータ回路113との電気的な接続を切り換えるスイッチング素子SWとを有する。モータ駆動装置10はまた、スイッチング素子SWのオン・オフを切り替えるスイッチング制御部110と、メモリ111と、スイッチング素子SWに対してバッテリ20側に接続された制御電力生成回路115と、を有する。モータ駆動装置10さらに、スイッチング素子SWに対してバッテリ20側に並列に接続された平滑コンデンサC(コンデンサの一例)と、制御電力生成回路115と、を備える。  The motor drive device 10 includes an inverter circuit 113 connected to the motor 13 and a switching element SW that switches electrical connection between the battery 20 and the inverter circuit 113. The motor drive device 10 also includes a switching control unit 110 that switches on / off of the switching element SW, a memory 111, and a control power generation circuit 115 that is connected to the battery 20 with respect to the switching element SW. The motor drive device 10 further includes a smoothing capacitor C (an example of a capacitor) connected in parallel to the battery 20 with respect to the switching element SW, and a control power generation circuit 115. *
インバータ回路113(モータ駆動回路の一例)は、6つのトランジスタTr1~Tr6を備えるブリッジ回路である。インバータ回路113は、モータ駆動線MDW1~MDW3を介してモータ13に接続されている。インバータ回路113は、スイッチング制御部110によりTr1~Tr6のスイッチのオン・オフすることにより、三相交流電流を生成し、モータ13を回転させる。  The inverter circuit 113 (an example of a motor drive circuit) is a bridge circuit including six transistors Tr1 to Tr6. The inverter circuit 113 is connected to the motor 13 via motor drive lines MDW1 to MDW3. The inverter circuit 113 generates a three-phase alternating current by turning on and off the switches Tr1 to Tr6 by the switching control unit 110, and rotates the motor 13. *
トランジスタTr1~Tr6は、例えば、IGBT(絶縁ゲートバイポーラトランジスタ)である。トランジスタTr1~Tr6はまた、還流ダイオードがそれぞれ並列に接続される。なお、トランジスタTr1~Tr6は、MOSFET(電界効果トランジスタ)やその他のトランジスタであってもよい。  The transistors Tr1 to Tr6 are, for example, IGBTs (insulated gate bipolar transistors). Transistors Tr1 to Tr6 are also connected in parallel with freewheeling diodes. The transistors Tr1 to Tr6 may be MOSFETs (field effect transistors) or other transistors. *
スイッチング素子SW(スイッチング素子の一例)は、IGBTなどのトランジスタであり、スイッチング制御部110により、後述する所定のタイミングでオン・オフされる。なお、スイッチング素子SWは、MOSFETやその他のトランジスタであってもよい。  The switching element SW (an example of a switching element) is a transistor such as an IGBT, and is turned on / off by the switching control unit 110 at a predetermined timing described later. Note that the switching element SW may be a MOSFET or other transistor. *
スイッチング制御部110(制御部の一例)は、上述したマイクロコントローラ(マイコン)により構成され、所定の演算処理を実行するCPUやその他の制御回路を含む。スイッチング制御部110は、ホールセンサ15から増幅器などにより増幅された出力電圧をADコンバータ(図示省略)により変換されたデジタル情報を得る。スイッチング制御部110は、ホールセンサ15により出力されるモータ13の回転位置を検知し、同検知に応じてトランジスタTr1~Tr6のオン・オフを切り替える。スイッチング制御部110はまた、後述するように、ホールセンサ15からの出力からモータの回転数を検知し、同検知に応じた所定のタイミングでスイッチング素子SWのオン・オフを切り替える。  The switching control unit 110 (an example of a control unit) is configured by the above-described microcontroller (microcomputer), and includes a CPU and other control circuits that execute predetermined arithmetic processing. The switching control unit 110 obtains digital information obtained by converting the output voltage amplified by the amplifier or the like from the Hall sensor 15 by an AD converter (not shown). The switching control unit 110 detects the rotational position of the motor 13 output from the hall sensor 15, and switches the transistors Tr1 to Tr6 on and off in response to the detection. As will be described later, the switching control unit 110 also detects the rotational speed of the motor from the output from the hall sensor 15 and switches the switching element SW on and off at a predetermined timing according to the detection. *
なお上記において、スイッチング制御部110がモータ13の回転位置を検出する方法としては、ホールセンサ15の信号をコンパレータ(図示省略)によりHigh/Low信号に変換した後、スイッチング制御部110へ入力する方法をとることもできる。また、磁界を検出してHigh/Low信号を出力するホールICを、ホールセンサ15の代わりに用いることもできる。  In the above description, the switching control unit 110 detects the rotational position of the motor 13 by converting the signal from the hall sensor 15 into a high / low signal by a comparator (not shown) and then inputting the signal to the switching control unit 110. You can also take A Hall IC that detects a magnetic field and outputs a High / Low signal can also be used instead of the Hall sensor 15. *
メモリ111は、半導体メモリなどにより構成される。後述するように、スイッチング制御部110は、スイッチング素子SWのオン・オフの切り替えの基準となる閾値R1,R2,R3を記憶する。閾値R1,R2,R3の関係は、R1>R3>R2とする。各閾値は、バッテリ20の電圧を超えるようなモータの回転数に相当する。上記メモリ111としては、EEPROMなどのメモリICを用いてもよいし、上述のようにスイッチング制御部110にマイコンを含む場合はマイコンのメモリ領域を用いてもよい。  The memory 111 is composed of a semiconductor memory or the like. As will be described later, the switching control unit 110 stores threshold values R1, R2, and R3 that serve as references for switching on and off the switching element SW. The relationship between the threshold values R1, R2, and R3 is R1> R3> R2. Each threshold corresponds to the number of rotations of the motor that exceeds the voltage of the battery 20. As the memory 111, a memory IC such as an EEPROM may be used. When the switching control unit 110 includes a microcomputer as described above, a memory area of the microcomputer may be used. *
制御電力生成回路115は、スイッチング素子SWに対してバッテリ20側に接続され、スイッチング制御部110用の電力を生成し供給する。  The control power generation circuit 115 is connected to the battery 20 side with respect to the switching element SW, and generates and supplies power for the switching control unit 110. *
[1-2.動作]

 図4は、実施の形態1に係るモータ駆動装置10の動作を示すフローチャートである。 
[1-2. Operation]

FIG. 4 is a flowchart showing the operation of the motor drive device 10 according to the first embodiment.
S101:電動アシスト自転車1の電源(図示省略)がONにされる。このとき、モータ駆動装置10におけるスイッチング素子SWはオフの状態にある。  S101: The power supply (not shown) of the electrically assisted bicycle 1 is turned on. At this time, the switching element SW in the motor drive device 10 is in an off state. *
S102:スイッチング制御部110により、ホールセンサ15からの出力に基づきモータ13の回転数(以下、モータ回転数と称する)が読み取られる。  S102: Based on the output from the hall sensor 15, the switching controller 110 reads the rotation speed of the motor 13 (hereinafter referred to as the motor rotation speed). *
S103:スイッチング制御部110により、メモリ111より閾値R2(第2の値の一例)が読み出され、ステップS102で読み取られたモータ回転数と比較される。モータ回転数がR2以上であればステップS104に進み、R2未満であればステップS107に進む。  S103: The threshold value R2 (an example of the second value) is read from the memory 111 by the switching control unit 110, and is compared with the motor rotation speed read in step S102. If the motor rotation speed is equal to or greater than R2, the process proceeds to step S104, and if it is less than R2, the process proceeds to step S107. *
ここでは、スイッチング素子SWの状態をオフからオンにする条件として、モータ回転数が最も小さい閾値であるR2以上であるかどうかを判定する。  Here, as a condition for switching the state of the switching element SW from OFF to ON, it is determined whether or not the motor rotation speed is equal to or greater than R2, which is the smallest threshold value. *
S104:スイッチング制御部110により、メモリ111から、閾値R2よりも大きいR1(第1の値の一例)が読み出され、ステップS102で読み取られたモータ回転数と比較される。モータ回転数がR1以上であればステップS105に進み、R1未満であればステップS107に進む。  S104: R1 (an example of a first value) larger than the threshold value R2 is read from the memory 111 by the switching control unit 110, and compared with the motor rotation speed read in step S102. If the motor rotation speed is equal to or greater than R1, the process proceeds to step S105, and if it is less than R1, the process proceeds to step S107. *
ここでは、スイッチング素子SWのオフの状態を維持すべき条件して、モータ回転数が閾値R2よりも大きいR1以上であるかどうかを判定する。  Here, as a condition for maintaining the switching element SW in the OFF state, it is determined whether or not the motor rotation speed is equal to or greater than R1 that is greater than the threshold value R2. *
S105:電源がOFFされない限り、処理を続行する。  S105: The process is continued unless the power is turned off. *
S106:スイッチング制御部110により、ホールセンサ15からの出力に基づきモータ回転数が読み取られる。  S106: The motor speed is read by the switching controller 110 based on the output from the hall sensor 15. *
その後、ステップS104に戻り、モータ回転数がR1以上であればステップS105に進み、モータ回転数がR1未満であればステップS107に進む。  Thereafter, the process returns to step S104, and if the motor rotational speed is equal to or greater than R1, the process proceeds to step S105, and if the motor rotational speed is less than R1, the process proceeds to step S107. *
S107:電動アシスト自転車1の電源がオンされた直後にモータ回転数がR2未満である場合(ステップS103のYes)、あるいはスイッチング素子SWのオフ状態が継続した後にモータ回転数がR1未満である場合(ステップS104のNo)を条件に、スイッチング素子SWをオンにする。  S107: When the motor rotational speed is less than R2 immediately after the power supply of the electrically assisted bicycle 1 is turned on (Yes in step S103), or when the motor rotational speed is less than R1 after the switching element SW is continuously turned off. On the condition of (No in step S104), the switching element SW is turned on. *
S108:電源がOFFされない限り、処理を続行する。  S108: The process is continued unless the power is turned off. *
S109:スイッチング制御部110により、ホールセンサ15からの出力に基づきモータ回転数が読み取られる。  S 109: The motor speed is read by the switching control unit 110 based on the output from the hall sensor 15. *
S110:スイッチング制御部110により、メモリ111から、閾値R2よりも大きくR1よりも小さい閾値R3(第3の値の一例)が読み出され、ステップS109で読み取られたモータ回転数と比較される。モータ回転数がR3を越える場合はステップS111に進み、モータ回転数がR3以下であればステップS108に戻る。  S110: The threshold value R3 (an example of a third value) that is larger than the threshold value R2 and smaller than R1 is read from the memory 111 by the switching control unit 110, and is compared with the motor rotation speed read in step S109. If the motor speed exceeds R3, the process proceeds to step S111. If the motor speed is equal to or less than R3, the process returns to step S108. *
ここでは、スイッチング素子SWの状態をオンからオフにする条件して、モータ回転数が閾値R3(R1とR2の間の値)を超えるかどうかを判定する。  Here, it is determined whether or not the motor rotation speed exceeds a threshold value R3 (a value between R1 and R2) on condition that the state of the switching element SW is turned off. *
S111:スイッチング制御部110により、スイッチング素子SWをオフにし、ステップS103に戻る。  S111: The switching control unit 110 turns off the switching element SW, and the process returns to step S103. *
[1-3.特徴など]

 実施の形態1に係るモータ駆動装置10においては、スイッチング制御部110は、モータ13の回転数を検出し、モータ13の回転数が少なくとも閾値R1以上である場合、スイッチング素子SWをオフに維持する。閾値R1は、バッテリ20の電圧に相当するモータの回転数、またはそれよりも小さい回転数とすることができる。これにより、モータ13がバッテリ20の電圧を超えるような回転速度で回転している場合、スイッチング素子SWをオフにすることにより、過剰な回生電流がバッテリ20側に流れることを防ぐ。 
[1-3. Features]

In the motor drive device 10 according to the first embodiment, the switching control unit 110 detects the rotational speed of the motor 13 and maintains the switching element SW off when the rotational speed of the motor 13 is at least the threshold value R1. . The threshold value R1 can be set to a rotational speed of the motor corresponding to the voltage of the battery 20 or a rotational speed smaller than that. Thereby, when the motor 13 is rotating at a rotational speed exceeding the voltage of the battery 20, the switching element SW is turned off to prevent an excessive regenerative current from flowing to the battery 20 side.
実施の形態1に係るモータ駆動装置10においては、平滑コンデンサCは、スイッチング素子SWに対しバッテリ20側に配置されている。このため、平滑コンデンサCは、制御電力生成回路115用の平滑機能とインバータ回路113の電源用の平滑機能を兼ねることができる。これより、モータ駆動装置10の部品の削減と回路面積の削減を可能とする。またスイッチング素子SWがオフ状態では平滑コンデンサCにモータ13の逆起電力が印加されない。よって、平滑コンデンサCは、バッテリ20電圧での使用に耐えうる程度の耐圧のコンデンサを用いればよく、低コストの回路を構成できる。  In the motor drive device 10 according to the first embodiment, the smoothing capacitor C is disposed on the battery 20 side with respect to the switching element SW. For this reason, the smoothing capacitor C can serve both as a smoothing function for the control power generation circuit 115 and a smoothing function for the power source of the inverter circuit 113. As a result, it is possible to reduce the number of components and the circuit area of the motor drive device 10. Further, when the switching element SW is in the OFF state, the counter electromotive force of the motor 13 is not applied to the smoothing capacitor C. Therefore, the smoothing capacitor C may be a capacitor having a withstand voltage that can withstand use with the battery 20 voltage, and a low-cost circuit can be configured. *
実施の形態1に係るモータ駆動装置10においては、スイッチング素子SWの状態に応じて3つの閾値(R1>R3>R2)を使い分けてスイッチング制御にヒステリシスを持たせている。このため、モータ回転数がスイッチングの境界近辺となった場合スイッチング素子SWのオン・オフの切り替えが頻発することを防ぎ、スイッチング素子SWの切り替えを安定的に行うことができる。  In the motor drive device 10 according to the first embodiment, the switching control has hysteresis by properly using three threshold values (R1> R3> R2) according to the state of the switching element SW. For this reason, when the motor rotation speed is in the vicinity of the switching boundary, frequent switching of the switching element SW can be prevented, and switching of the switching element SW can be performed stably. *
[1-4.変形例]

 (1)

 上記実施の形態1においては、スイッチング素子SWの切り替えるため3つの異なるモータ回転数の閾値を使用しているがこれに限定されない。閾値が一つであるR1=R3=R2(第1の値の一例)としてもよいし、閾値を二つとするR1=R3またはR2=R3(第2の値の一例)としてもよい。 
[1-4. Modified example]

(1)

In the first embodiment, three different motor rotation speed thresholds are used to switch the switching element SW, but the present invention is not limited to this. One threshold may be R1 = R3 = R2 (an example of a first value), or two thresholds may be R1 = R3 or R2 = R3 (an example of a second value).
(2)

 上記実施の形態1において、もう一つの平滑コンデンサをスイッチング素子SWに対してインバータ回路113側に設けてもよい。 
(2)

In the first embodiment, another smoothing capacitor may be provided on the inverter circuit 113 side with respect to the switching element SW.
(3)

 上記実施の形態1において、ホールセンサ15は、コイル通電切り替えのためにロータの回転位置を検出するためにモータ13に設けられるホールセンサを兼ねていてもよい。 
(3)

In the first embodiment, the hall sensor 15 may also serve as a hall sensor provided in the motor 13 in order to detect the rotational position of the rotor for coil energization switching.
(実施の形態2)

 [2-1.構成]

 図5は、実施の形態2に係るモータ駆動装置210の構成を概略的に示す。以下、実施の形態1と同様の構成または機能を有する構成要素については、同じ符号を付し、その説明は省略する。 
(Embodiment 2)

[2-1. Constitution]

FIG. 5 schematically shows a configuration of a motor drive device 210 according to the second embodiment. Hereinafter, constituent elements having the same configurations or functions as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
実施の形態2に係るモータ駆動装置210は、ホールセンサを用いず、モータ13とインバータ回路113を接続するモータ駆動線MDW1~3の電圧を測定する電圧測定部17(電圧測定部の一例)を備える点で、実施の形態1とは異なる。  The motor drive device 210 according to the second embodiment includes a voltage measurement unit 17 (an example of a voltage measurement unit) that measures the voltages of the motor drive lines MDW1 to MDW3 that connect the motor 13 and the inverter circuit 113 without using a hall sensor. It differs from Embodiment 1 in the point provided. *
電圧測定部17は、例えば、インバータ回路113の停止中の電圧を測定する。インバータ回路113が停止しているときとは、インバータ動作開始前にスイッチング素子SWがオフの状態であるときや、スイッチング素子SWがオンでのときであって例えば120通電方式における非通電区間にあるときである(例えばモータ駆動線MDW1の非通電区間は、Tr1、Tr4がOFFの区間)。電圧測定部17により測定された電圧は、例えばADコンバータ(図示省略)でデジタル情報に変換される。  For example, the voltage measuring unit 17 measures a voltage when the inverter circuit 113 is stopped. The time when the inverter circuit 113 is stopped is when the switching element SW is turned off before the inverter operation is started or when the switching element SW is turned on, for example, in a non-energized section in the 120 energization method. (For example, the non-energized section of the motor drive line MDW1 is a section in which Tr1 and Tr4 are OFF). The voltage measured by the voltage measuring unit 17 is converted into digital information by an AD converter (not shown), for example. *
スイッチング制御部110は、変換された電圧値からモータ回転数を演算する。例えば、スイッチング制御部110は、電圧値の増減からモータ回転数を読み取ることができる。この場合、所定の電圧値に対し取得した電圧値が増加または減少するタイミングをカウントし、そのタイミングの頻度からモータ回転数を判定できる。  The switching control unit 110 calculates the motor rotation speed from the converted voltage value. For example, the switching control unit 110 can read the motor rotation number from the increase or decrease of the voltage value. In this case, the timing at which the acquired voltage value increases or decreases with respect to the predetermined voltage value is counted, and the motor rotation speed can be determined from the frequency of the timing. *
なお、電圧の増減のタイミングの検出は、コンパレータを用いて行ってもよい。この場合、例えば、コンパレータは、電圧測定部17により検出された電圧値と基準となる所定の電圧値とを入力し、比較した結果(例えば、増加又は減少の有無)を出力する。スイッチング制御部110はこの出力に基づきモータ回転数を判定する。上記の基準となる所定電圧としては、例えばMDW1、MDW2及びMDW3を抵抗で結線し適宜フィルタを設けた仮想中点電圧を用いることができる。  Note that the detection of the voltage increase / decrease timing may be performed using a comparator. In this case, for example, the comparator inputs the voltage value detected by the voltage measuring unit 17 and a predetermined voltage value as a reference, and outputs a comparison result (for example, whether there is an increase or decrease). The switching control unit 110 determines the motor speed based on this output. As the predetermined voltage serving as the reference, for example, a virtual midpoint voltage in which MDW1, MDW2, and MDW3 are connected by resistors and a filter is appropriately provided can be used. *
[2-2.動作]

 スイッチング制御部110は、電圧測定部17からの出力に基づきモータ回転数を検知する。検知されたモータ回転数に基づき図4のステップS102~S104、S106、S109~S110の処理が実行される。また、スイッチング素子SWがオンの状態である場合は、図4のステップS109において、インバータ回路113の非通電区間のタイミングで測定した電圧値からモータ回転数を読み取る。 
[2-2. Operation]

The switching control unit 110 detects the motor rotation speed based on the output from the voltage measurement unit 17. Based on the detected motor rotation speed, the processes of steps S102 to S104, S106, and S109 to S110 in FIG. 4 are executed. When the switching element SW is in the on state, the motor rotation speed is read from the voltage value measured at the timing of the non-energized section of the inverter circuit 113 in step S109 in FIG.
その他の動作については、図4に示す実施の形態1に係るモータ駆動装置10と同様である。  Other operations are the same as those of the motor drive device 10 according to the first embodiment shown in FIG. *
[2-3.特徴など]

 実施の形態2に係るモータ駆動装置210においては、実施の形態1の特徴に加えてあるいは代えて、スイッチング制御部110は、電圧測定部17により測定された電圧の増減より、モータ回転数を検知する。このため、スイッチング素子SWの制御のためモータ回転数を検知するためのホールセンサを設ける必要がないため、部品点数を削減することができる。 
[2-3. Features]

In the motor drive device 210 according to the second embodiment, in addition to or instead of the characteristics of the first embodiment, the switching control unit 110 detects the motor rotation speed based on the increase / decrease in the voltage measured by the voltage measurement unit 17. To do. For this reason, since it is not necessary to provide a hall sensor for detecting the motor rotation number for controlling the switching element SW, the number of parts can be reduced.
(実施の形態3)

 図6は、実施の形態3に係るモータ駆動装置310の構成を概略的に示す。以下、実施の形態1または2と同様の構成および機能を有する構成要素については、同じ符号を付し、その説明は省略する。 
(Embodiment 3)

FIG. 6 schematically shows a configuration of a motor drive device 310 according to the third embodiment. Hereinafter, constituent elements having the same configurations and functions as those of the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted.
実施の形態3に係るモータ駆動装置310は、スイッチング素子SWに対し、平滑コンデンサC(コンデンサの一例)および制御電力生成回路115をインバータ回路113側に設置する点において、上記実施の形態1および2と異なる。さらに、スイッチング素子SWに並列に、バッテリ20からインバータ回路113へ向かう方向にダイオードD(ダイオードの一例)を接続する。  The motor drive device 310 according to the third embodiment has the above first and second embodiments in that a smoothing capacitor C (an example of a capacitor) and a control power generation circuit 115 are provided on the inverter circuit 113 side with respect to the switching element SW. And different. Further, a diode D (an example of a diode) is connected in parallel with the switching element SW in a direction from the battery 20 toward the inverter circuit 113. *
この構成により、本実施の形態3にかかるモータ駆動装置310は、スイッチング素子SWのオン/オフ状態に関わらず、バッテリ20から制御電力生成回路115へと電力を送ることができる。このため、モータ駆動装置310の初期状態などスイッチング素子SWがオフ状態にあっても、スイッチング制御部110を含むコントロールユニット30を動作させることができる。  With this configuration, the motor drive device 310 according to the third exemplary embodiment can transmit power from the battery 20 to the control power generation circuit 115 regardless of the on / off state of the switching element SW. Therefore, the control unit 30 including the switching control unit 110 can be operated even when the switching element SW is in an off state such as an initial state of the motor driving device 310. *
また、モータ回転数が上昇し、スイッチング素子SWがオフとなった状態では、モータ13の発電電力を用いてコントロールユニット30を動作させることができるので、電力を有効に使うことができる。さらに、スイッチング素子SWがオフ状態でモータ回転数が低下した際は、ダイオードDを介してバッテリ20からの電力が流れ込むため、スイッチング素子SWを即座にオンさせなくても制御電力が途切れるおそれがない。  Further, in a state where the motor rotation speed is increased and the switching element SW is turned off, the control unit 30 can be operated using the generated power of the motor 13, so that the power can be used effectively. Further, when the motor rotation speed decreases with the switching element SW turned off, the electric power from the battery 20 flows through the diode D, so that the control power is not interrupted even if the switching element SW is not immediately turned on. . *
なお、図6に示す例では、モータ駆動装置310は電圧測定部17を設けているが、代わりに実施の形態1(図3)と同様にホールセンサ15を用いてモータ回転数を検知するようにしてもよい。  In the example shown in FIG. 6, the motor driving device 310 is provided with the voltage measuring unit 17, but instead, the motor rotation number is detected using the Hall sensor 15 as in the first embodiment (FIG. 3). It may be. *
(実施の形態4)

 図7は、実施の形態4に係るモータ駆動装置410の構成を概略的に示す。以下、実施の形態1ないし3と同様の構成および機能を有する構成要素については、同じ符号を付し、その説明は省略する。 
(Embodiment 4)

FIG. 7 schematically shows a configuration of a motor drive device 410 according to the fourth embodiment. Hereinafter, constituent elements having the same configurations and functions as those of the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted.
実施の形態4に係るモータ駆動装置410は、バッテリ20の電圧を測定するバッテリ電圧測定部19(電源電圧測定部の一例)を設けている点で、上記実施の形態1ないし3と異なる。スイッチング制御部110は、このバッテリ電圧に応じて、スイッチング素子SWのオン/オフを決定するモータ回転数の閾値R1,R2,R3の値を変更する。  The motor drive device 410 according to the fourth embodiment differs from the first to third embodiments in that a battery voltage measurement unit 19 (an example of a power supply voltage measurement unit) that measures the voltage of the battery 20 is provided. The switching control unit 110 changes the values of the motor rotation speed threshold values R1, R2, and R3 that determine whether the switching element SW is turned on or off according to the battery voltage. *
具体的には、バッテリ電圧が高いほど閾値R1,R2,R3を高く設定する。これは、バッテリ電圧が高いほど、回生電流が発生するモータ回転数が大きくなるためである。スイッチング制御部110は、バッテリ電圧に応じてモータ回転数の閾値R1,R2,R3の値を変更可能であり、バッテリ電圧が所定の電圧に比して高いときには、閾値R1,R2,R3の値を上げる。  Specifically, the threshold values R1, R2, and R3 are set higher as the battery voltage is higher. This is because the higher the battery voltage, the greater the motor speed at which the regenerative current is generated. The switching control unit 110 can change the values of the motor speed threshold values R1, R2, and R3 according to the battery voltage. When the battery voltage is higher than a predetermined voltage, the values of the threshold values R1, R2, and R3 Raise. *
この構成および動作により、スイッチング素子SWがオン状態を必要とする回生ブレーキ制御を行う場合などにおいては、高いモータ回転数までスイッチング素子SWをオン状態に維持できる。このため、モータ駆動装置410は、動作マージンを広げることができ、さらに利便性を向上させることができる。  With this configuration and operation, when performing regenerative brake control in which the switching element SW needs to be in an on state, the switching element SW can be maintained in an on state up to a high motor speed. For this reason, the motor drive device 410 can widen an operation margin and can further improve convenience. *
なお、図7に示す例では、モータ駆動装置410は電圧測定部17を設けているが、代わりに実施の形態1(図3)と同様にホールセンサ15を用いてモータ回転数を検知するようにしてもよい。また、実施の形態3(図6)と同様に、スイッチング素子SWに対し、平滑コンデンサCおよび制御電力生成回路115をインバータ回路113側に設置してもよい。この場合、スイッチング素子SWに並列に、バッテリ20からインバータ回路113へ向かう方向にダイオードDを接続する。  In the example shown in FIG. 7, the motor driving device 410 is provided with the voltage measuring unit 17, but instead, the motor rotation number is detected using the Hall sensor 15 as in the first embodiment (FIG. 3). It may be. Similarly to the third embodiment (FIG. 6), smoothing capacitor C and control power generation circuit 115 may be provided on inverter circuit 113 side with respect to switching element SW. In this case, a diode D is connected in parallel to the switching element SW in a direction from the battery 20 toward the inverter circuit 113. *
(その他実施形態)

 以上のように、本出願において開示する技術の例示として、上記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行うことは可能である。そこで、以下、他の実施の形態を例示する。 
(Other embodiments)

As described above, the embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can be changed, replaced, added, omitted, and the like as appropriate. Therefore, other embodiments will be exemplified below.
[1]

 上記実施の形態1ないし4においては、電動車両として電動アシスト自転車1を例にしていたが、これに限定されない。モータ駆動装置10,210,310,410は、電動自転車、電動車いすなどその他の電動車両に適用してもよい。 
[1]

In the first to fourth embodiments, the electrically assisted bicycle 1 is taken as an example of the electrically powered vehicle, but is not limited to this. The motor drive devices 10, 210, 310, 410 may be applied to other electric vehicles such as an electric bicycle and an electric wheelchair.
[2]

 上記実施の形態1ないし4における処理の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、並行して実行したり、実行順序を入れ替えることができる。また、一部の処理を省略することも可能である。 
[2]

The execution order of the processes in the first to fourth embodiments is not necessarily limited to the description of the above-described embodiments, and the processes are executed in parallel or the execution order is changed without departing from the gist of the invention. Can do. It is also possible to omit some processes.
[3]

 本開示は、モータ駆動装置10、210,310,410により実行される制御方法や、同制御方法により実行されるコンピュータプログラム、かかるプログラムを記録したコンピュータ読み取り可能な記録媒体を含む。
[3]

The present disclosure includes a control method executed by the motor drive device 10, 210, 310, 410, a computer program executed by the control method, and a computer-readable recording medium storing such a program.
1    :電動アシスト自転車

3    :電動アシストキット

10   :モータ駆動装置

13   :モータ

15   :ホールセンサ

17   :電圧測定部

19   :バッテリ電圧測定部

20   :バッテリ

30   :コントロールユニット

110  :スイッチング制御部

111  :メモリ

113  :インバータ回路

115  :制御電力生成回路

210  :モータ駆動装置

310  :モータ駆動装置

410  :モータ駆動装置

C    :平滑コンデンサ

D    :ダイオード

MDW1 :モータ駆動線

MDW2 :モータ駆動線

MDW3 :モータ駆動線

SW   :スイッチング素子

Tr1~Tr6:トランジスタ
1: Electric assist bicycle

3: Electric assist kit

10: Motor drive device

13: Motor

15: Hall sensor

17: Voltage measurement unit

19: Battery voltage measuring unit

20: Battery

30: Control unit

110: Switching control unit

111: Memory

113: Inverter circuit

115: Control power generation circuit

210: Motor drive device

310: Motor drive device

410: Motor driving device

C: Smoothing capacitor

D: Diode

MDW1: Motor drive line

MDW2: Motor drive line

MDW3: Motor drive line

SW: Switching element

Tr1 to Tr6: Transistors

Claims (12)

  1. 電源により駆動されるモータを制御するモータ駆動装置において、

     前記モータを駆動するモータ駆動回路と、

     前記電源と前記モータ駆動回路との電気的な接続を切り替えるスイッチング素子と、

     前記モータの回転数を検出し、前記モータの回転数が第1の値以上である場合、前記スイッチング素子をオフにする制御部と、

    を有する、モータ駆動装置。
    In a motor drive device that controls a motor driven by a power supply,

    A motor drive circuit for driving the motor;

    A switching element that switches electrical connection between the power source and the motor drive circuit;

    A controller that detects the number of revolutions of the motor and turns off the switching element when the number of revolutions of the motor is equal to or greater than a first value;

    A motor driving device.
  2. 前記第1の値は、前記電源の電圧に相当する前記モータの回転数以下である、

    請求項1に記載のモータ駆動装置。
    The first value is equal to or less than the number of rotations of the motor corresponding to the voltage of the power source.

    The motor drive device according to claim 1.
  3. 前記モータの回転位置センサを備え、

     前記制御部は、前記回転位置センサの出力に基づき、前記モータの回転数を検出する、

    請求項1または2に記載のモータ駆動装置。
    A rotational position sensor of the motor;

    The control unit detects the number of rotations of the motor based on the output of the rotational position sensor.

    The motor drive device according to claim 1 or 2.
  4. 前記モータの駆動線の電圧を測定する電圧測定部を備え、

     前記制御部は、前記電圧測定部により測定された電圧に基づき、前記モータの回転数を検出する、

    請求項1または2に記載のモータ駆動装置。
    A voltage measuring unit for measuring the voltage of the drive line of the motor;

    The control unit detects the number of rotations of the motor based on the voltage measured by the voltage measurement unit;

    The motor drive device according to claim 1 or 2.
  5. 前記スイッチング素子に対し前記電源側に接続されたコンデンサを備える、請求項1から4のいずれかに記載のモータ駆動装置。 The motor drive device according to claim 1, further comprising a capacitor connected to the power supply side with respect to the switching element.
  6. 前記スイッチング素子に対し前記モータ駆動回路側に接続されたコンデンサと、

     前記スイッチング素子に並列し、前記電源から前記モータ駆動回路に向かう方向に接続されたダイオードと、

    を備える、請求項1から4のいずれかに記載のモータ駆動装置。
    A capacitor connected to the motor drive circuit side with respect to the switching element;

    A diode connected in parallel to the switching element and connected in a direction from the power source toward the motor drive circuit;

    The motor drive device in any one of Claim 1 to 4 provided with these.
  7. 前記制御部は、前記モータの回転数が第2の値未満である場合、前記スイッチング素子をオンにし、

     前記第2の値は前記第1の値未満である、

    請求項1から6のいずれかに記載のモータ駆動装置。
    The controller turns on the switching element when the rotational speed of the motor is less than a second value;

    The second value is less than the first value;

    The motor drive device in any one of Claim 1 to 6.
  8. 前記制御部は、前記スイッチング素子がオンであるとき前記モータの回転数が第3の値を上回った場合、前記スイッチング素子をオフにし、

     前記第3の値は前記第2の値以上である、

    請求項7に記載のモータ駆動装置。
    The control unit turns off the switching element when the rotational speed of the motor exceeds a third value when the switching element is on,

    The third value is greater than or equal to the second value;

    The motor drive device according to claim 7.
  9. 前記電源の電圧を測定する電源電圧測定部を備え、

     前記制御部は、前記電源電圧測定部により測定された電圧に応じて、前記第1の値を変更する、

    請求項1から8のいずれかに記載のモータ駆動装置。
    A power supply voltage measuring unit for measuring the voltage of the power supply;

    The control unit changes the first value according to the voltage measured by the power supply voltage measurement unit.

    The motor drive device according to claim 1.
  10. 前記制御部は、前記電源電圧が高いほど前記第1の値を大きくする、

    請求項9に記載のモータ駆動装置。
    The control unit increases the first value as the power supply voltage is higher.

    The motor drive device according to claim 9.
  11. 請求項1から10に記載のモータ駆動装置と、

     前記電源と、

     前記モータと、

     前記制御部を含むコントロールユニットと、

    を備える、電動車両の動力を補助する電動アシスト装置。
    A motor driving device according to claim 1;

    The power source;

    The motor;

    A control unit including the control unit;

    An electric assist device that assists the power of the electric vehicle.
  12. 請求項11に記載の電動アシスト装置を備える、電動車両。 An electric vehicle comprising the electric assist device according to claim 11.
PCT/JP2018/005905 2017-03-22 2018-02-20 Motor drive device, electric assist device, and electric vehicle WO2018173591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-055956 2017-03-22
JP2017055956 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173591A1 true WO2018173591A1 (en) 2018-09-27

Family

ID=63585218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005905 WO2018173591A1 (en) 2017-03-22 2018-02-20 Motor drive device, electric assist device, and electric vehicle

Country Status (1)

Country Link
WO (1) WO2018173591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276679A (en) * 2020-01-31 2021-08-20 李尔公司 Method and system for generating an active short circuit condition in an electric motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500199A (en) * 1983-10-17 1986-01-30 サンドストランド・コ−ポレ−ション Pulse width modulation inverter for unbalanced variable power factor loads
WO2013001909A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Battery charger and power supply apparatus
JP2013192407A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Power conversion device
WO2016076429A1 (en) * 2014-11-14 2016-05-19 アイシン・エィ・ダブリュ株式会社 Inverter control device and control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500199A (en) * 1983-10-17 1986-01-30 サンドストランド・コ−ポレ−ション Pulse width modulation inverter for unbalanced variable power factor loads
WO2013001909A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Battery charger and power supply apparatus
JP2013192407A (en) * 2012-03-14 2013-09-26 Fuji Electric Co Ltd Power conversion device
WO2016076429A1 (en) * 2014-11-14 2016-05-19 アイシン・エィ・ダブリュ株式会社 Inverter control device and control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276679A (en) * 2020-01-31 2021-08-20 李尔公司 Method and system for generating an active short circuit condition in an electric motor

Similar Documents

Publication Publication Date Title
US8421388B2 (en) Multi-phase rotary machine control apparatus and electric power steering system using the same
CN105553210B (en) Brushless motor and electric machinery control device
US8248010B2 (en) Motor driving device, electric power steering device using the same and method for detecting failure in the same
US9018880B2 (en) Control apparatus for multi-phase rotary machine and electric power steering system using the same
JP5641335B2 (en) Power converter
CN110460254B (en) Control circuit for power converter
US20150214882A1 (en) Power conversion device and electric power steering device using the same
JP4177387B2 (en) Motor control device
JP5945741B2 (en) Electric power steering device
US10343712B2 (en) Electric power steering system
JP6967750B2 (en) Motor control device and control method of motor control device
US20210155282A1 (en) Steering control device
JP2006304462A (en) Motor drive system and control method for permanent magnet motor
WO2018173591A1 (en) Motor drive device, electric assist device, and electric vehicle
US20190363658A1 (en) Motor controlling method, motor controlling system, and electronic power steering system
JP4674521B2 (en) Motor control device
JP6308519B2 (en) Motor drive device and motor control method
US20200007062A1 (en) Motor controlling method, motor controlling system, and electronic power steering system
US20200001915A1 (en) Motor controlling method, motor controlling system, and electronic power steering system
JP3830176B2 (en) Electric vehicle control equipment
US9227658B2 (en) Rotary electric machine control apparatus having abnormality detection function
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
JP2001128482A (en) Method and device for detecting abnormality of dc commutatorless motor
JP7466778B2 (en) MOTOR CONTROL DEVICE, ELECTRIC POWER STEERING DEVICE, AND MOTOR CONTROL METHOD
CN112544036A (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP