WO2018172698A1 - Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil - Google Patents

Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil Download PDF

Info

Publication number
WO2018172698A1
WO2018172698A1 PCT/FR2018/050684 FR2018050684W WO2018172698A1 WO 2018172698 A1 WO2018172698 A1 WO 2018172698A1 FR 2018050684 W FR2018050684 W FR 2018050684W WO 2018172698 A1 WO2018172698 A1 WO 2018172698A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
carbon dioxide
enriched
capacity
Prior art date
Application number
PCT/FR2018/050684
Other languages
English (en)
Inventor
Axelle GAERTNER
Ludovic Granados
Bhadri PRASAD
Jorge Ernesto TOVAR RAMOS
Jean-Pierre Tranier
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2018172698A1 publication Critical patent/WO2018172698A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/84Separating high boiling, i.e. less volatile components, e.g. NOx, SOx, H2S
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a process and apparatus for the distillation of a mixture of carbon dioxide and a less volatile component.
  • a mixture comprising as main components of carbon dioxide and at least one component less volatile than carbon dioxide, for example a solvent can be produced by a chemical process. In this case, it is interesting to separate the less volatile component and the carbon dioxide.
  • a solvent is a substance, liquid or supercritical at its temperature of use, which has the property of dissolving, diluting or extracting other substances without modifying them chemically and without itself modifying itself.
  • the solvent may be for example acetone, water, dimethylacetamide (DMAc), dimethylsulfoxide (DMSO).
  • composition of the mixture may vary in less volatile component from about 1% to 30% mol. less volatile component or less volatile components, for example acetone, the remainder of the gaseous mixture being substantially CO2.
  • CO2 can be used as a solvent for acetone (and other equivalent molecules). There is an economic interest in recovering this CO2 to minimize the amount of "fresh" CO2 to consume.
  • the present invention proposes to operate the distillation column at between 20 and 25 bar abs, in order to save a machine for pressurizing the carbon dioxide.
  • CO2 recovery from CO2 / COIT1 is less volatile and allows recycling for reuse by reducing the use of fresh CO2.
  • a modification of the process makes it possible to increase the CO2 efficiency and to envisage the recycling of the solvent.
  • a way of maximizing the CO2 recovery efficiency is to start from a supercritical CO2 mixture.
  • less volatile component pressure greater than 73 bara
  • a cooler is used before supercritical CO2 is released. The temperature is chosen as cold as possible.
  • the system used consists of:
  • a separator pot for recovering the "pure” gaseous CO2 and a CO2 / solvent mixture in the liquid state.
  • the expanded flow rate is sent into a capacity, which is optionally a phase separator, to form a first liquid possibly enriched with a less volatile component and possibly a first gas enriched with carbon dioxide.
  • At least a portion of the optionally enriched liquid of less volatile component is sent to a distillation column.
  • a second carbon dioxide-enriched gas is withdrawn from the top of the column and a second liquid enriched with the less volatile component of the column vessel.
  • At least a portion of the condensed gas and / or at least a portion of the carbon dioxide enriched liquid is sent to a point upstream of the capacity or capacity.
  • At least a portion of the condensed gas and / or at least a portion of the liquid is recycled to a reactor from which the gas mixture originates. At least a portion of the second enriched liquid is recycled to a less volatile component to a reactor from which the gas mixture originates.
  • the second enriched liquid is separated into a less volatile component to form a less volatile component depleted gas and a less volatile component rich liquid product, the depleted gas is condensed and the condensed depleted gas is returned to the capacity.
  • At least a portion of the condensed gas and / or at least a portion of the liquid is returned upstream of the capacity, or even the reactor.
  • the liquid or condensed gas is pressurized in a pump upstream of the capacity.
  • At least a portion of the second liquid is heated to partially vaporize it, separated in a phase separator, the liquid is withdrawn as a product, the phase separator gas is condensed against the second liquid and the condensed gas is sent to the capacity.
  • the mixture contains at least 70 mol%. of carbon dioxide, or even at least 90 mol%. of carbon dioxide.
  • an apparatus for separating a gaseous mixture of carbon dioxide and a less volatile component less volatile than carbon dioxide comprising means for cooling the gaseous mixture to be separated, a valve for expanding the cooled gas mixture to form a relaxed flow, possibly two-phase, a capacity, which is optionally a phase separator, means for sending the expanded flow rate to the capacity, a first pipe for withdrawing the capacity of a first liquid optionally enriched with a less volatile component, optionally a line for withdrawing a first carbon dioxide-enriched gas from the capacity, a distillation column connected to the first line, a line for withdrawing a second gas enriched with carbon dioxide from the head of the the column, a line for withdrawing a second liquid enriched with a less volatile component of the column vessel, optionally a condenser for condensing at least a portion of the first gas and / or second gas enriched with carbon dioxide and / or means for withdrawing a carbon dioxide-enriched liquid from the top of the column and means
  • the gaseous mixture is produced in a reactor fed with carbon dioxide.
  • the means for sending at least a portion of the condensed gas into the condenser and / or at least a portion of the carbon dioxide enriched liquid at a point upstream of the capacity can be connected to the reactor.
  • Figure 1 illustrates a process for producing a gaseous mixture of carbon dioxide and solvent followed by a method of separating the mixture.
  • a solvent such as acetone, dimethylacetamide (DMAc) or dimethylsulfoxide (DMSO)
  • a way of maximizing the CO 2 recovery efficiency is to start from a supercritical CO 2 / less volatile component mixture, for example solvent (pressure> 73 bara) and to relax it at pressures lower than 30 bara and greater than 6 bara .
  • the invention is based on the use of a cooler before the supercritical CO2 is released (the temperature is chosen as cold as possible) and then a distillation, with recovery of the pure CO2 at the top of the column. .
  • the invention proposes a system consisting of:
  • a cooler 5 (with water for example) supply to bring the mixture 3 to the optimum temperature, below 0 ° C,
  • a separator pot 9 making it possible to recover the "pure" CO2 gas 13 and a less volatile CO 2 / component mixture, for example a solvent in the liquid state 1 1, a distillation column 15 incorporating a condenser 31 and a reboiler 19.
  • the production process the gaseous mixture is carried out in a reactor R supplied with liquid carbon dioxide 1 at a supercritical pressure as well as with other fluids such as the solvent.
  • This reactor R produces a mixture of solvent and gaseous carbon dioxide 3.
  • the composition of the mixture can vary between 30 mol%. of less volatile component (s) and 70 mol%. of carbon dioxide to 99.9 mol% of carbon dioxide dioxide and 0.1% of less volatile component (s), the reactor process being cyclic.
  • the mixture is cooled by heat exchange in the cooler 5, expanded in the valve 7 to produce a two-phase flow and separated in a phase separator 9.
  • the temperature of the phase separator varies according to the composition of the gaseous mixture 3.
  • the invention proposes to treat the flow 3 resulting from a batch process carried out in the reactor R. It is a question of separating the liquid and vapor phases of a mixture 3 (two or more compounds) by rapid expansion in the valve 7 and accumulate the liquid produced in the separator pot 9 to supply the column 15 downstream, continuously and stably to ensure continuous operation.
  • the method according to the invention consists in sizing a retention, constituted by the capacitance 9, sufficiently large to smooth the variations of the discontinuous process.
  • the recovery and accumulation of the liquid phase resulting from the expansion of the mixture makes it possible to feed the column installed downstream of the process, in a homogeneous and continuous manner.
  • This very flexible system makes it possible to tolerate a diet with large variations in flow rate and / or composition.
  • the methodology is based on a real case but can be applied to other flows and different composition ratios. The number of phases and the duration of each is not limiting.
  • the reactor process operates per phase with four phases per day.
  • the flow rate, the composition and therefore the liquid fraction vary depending on the phase.
  • the invention proposes to assign two roles to pot 9: phase separator and liquid retention.
  • the diameter of the pot 9 is defined according to the standard sizing criteria for a separator pot.
  • the height of the separator 9 is imposed by the "retention" liquid function.
  • the present invention substantially reduces (by approximately 50%) the diameter of the column 15 because the flow rate to be treated in the column is much lower than the flow rate that would be dimensioning without this invention. (with maximum liquid fraction).
  • the liquid 1 1 of the phase separator is sent to an intermediate point of the distillation column 15 which operates at about 22 bar abs.
  • the bottom liquid 17 of the column 15, enriched with less volatile solvent than the carbon dioxide, is withdrawn from the column and sent to a reboiler 19 heated by steam 21.
  • the steam produced is returned to the column and the even richer solvent liquid 23 is recovered as product.
  • the overhead gas 27 of the column is divided in two, a portion 29 being condensed in the condenser 31 and returned to the column as reflux 33.
  • the other portion 35 is mixed with the gas 13 of the phase separator to form a flow gas 37 enriched with carbon dioxide.
  • the head of the column is at -20 ° C and the tank is at 180 ° C, so only the head of the column needs to be isolated.
  • the flow 37 is condensed by a refrigerant group 41 which can also serve to cool the condenser 31.
  • the liquid formed by condensing the flow 37 is returned to the reactor R to reduce the amount of carbon dioxide 1 required.
  • the product at the top of the column is very high purity CO2, it can be mixed with CO2 from the expansion to obtain an overall purity higher than 99.8 mol%. in CO 2 .
  • the flow 25 connects the reboiler 19 with the reactor R inlet.
  • the overhead condenser unlike that of FIG. 1, receives all the overhead gas from the column 15, condenses it and returns a portion 33 as reflux.
  • the remainder of the condensed gas 32 is pumped by a pump 34 and divided, a portion 44 being returned to the capacity 9 through the valve 46 and the remainder 43 being recycled to the reactor R.
  • the objective of returning a liquid rich in CO2 Capacity 9 is to stabilize the feed composition of the column during transient phases where the production of the reactor R shows large fluctuations.
  • the diagram in Figure 3 consumes more energy but allows to have two temperature levels and decreases the temperature gradient of the column.
  • it comprises a heat exchanger, a heater 46, a phase separator 47 and a pump 53.
  • the tank liquid 23 of the reboiler 19 is heated in an exchanger, heated again in a heater 46 at the desired degree of vaporization and the two-phase flow formed is separated in the separator 47.
  • the less volatile component-rich liquid 49 serves as a product.
  • the gas 51 serves to heat the liquid 23 in the exchanger and is thus condensed.
  • a pump 53 pressurizes it and returns it to the capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Appareil de séparation d'un mélange gazeux de dioxyde de carbone et d'un composant moins volatil moins volatil que le dioxyde de carbone comprend des moyens (5) pour refroidir le mélange gazeux à séparer (3), une vanne (7) pour détendre le mélange gazeux refroidi pour former un débit détendu, une capacité (9), des moyens pour envoyer le débit détendu à la capacité, une première conduite pour soutirer de la capacité un premier liquide (1 1 ), une colonne de distillation (15) reliée à la première conduite, une conduite pour soutirer un deuxième gaz (27) enrichi en dioxyde de carbone de la tête de la colonne, une conduite pour soutirer un deuxième liquide (17) enrichi en composant moins volatil de la cuve de la colonne, un condenseur (31, 41 ) pour condenser au moins une partie du premier gaz et/ou du deuxième gaz enrichi en dioxyde de carbone et des moyens pour envoyer au moins une partie (43, 45) du gaz condensé dans le condenseur à un point en amont de la capacité.

Description

Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil La présente invention est relative à un procédé et à un appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil.
Un mélange comprenant comme composants principaux du dioxyde de carbone et au moins un composant moins volatil que le dioxyde de carbone, par exemple un solvant peut être produit par un procédé chimique. Dans ce cas, il est intéressant de séparer le composant moins volatil et le dioxyde de carbone.
Un solvant est une substance, liquide ou supercritique à sa température d'utilisation, qui a la propriété de dissoudre, de diluer ou d'extraire d'autres substances sans les modifier chimiquement et sans lui-même se modifier. Dans le cadre de la présente invention, le solvant considéré peut être par exemple l'acétone, de l'eau, le dimethylacetamide (DMAc), le dimethylsulfoxide (DMSO).
La composition du mélange peut varier en composant moins volatil d'environ 1 % à 30% mol. du composant moins volatil ou des composants moins volatils, par exemple l'acétone, le reste du mélange gazeux étant substantiellement du CO2.
Dans certains procédés chimiques, le CO2 peut être utilisé comme solvant de l'acétone (et autre molécule équivalente). Il y a un intérêt économique à récupérer ce CO2 pour minimiser les quantités de CO2 « frais » à consommer.
La séparation du solvant et du dioxyde de carbone devient moins facile si la pression augmente. Toutefois la présente invention propose d'opérer la colonne de distillation à entre 20 et 25 bars abs, afin d'économiser une machine pour pressuriser le dioxyde de carbone.
La récupération du CO2 du mélange CO2/COIT1 posant moins volatil permet son recyclage pour réutilisation en diminuant le recours à du CO2 frais. Une modification du procédé permet d'augmenter le rendement CO2 et d'envisager le recyclage du solvant.
Dans le cadre d'une séparation CO2/composant moins volatil, dans le cas où la pureté du CO2 attendue n'excède pas 97% mol., un moyen de maximiser le rendement de récupération du CO2 est de partir d'un mélange supercritique CO2/composant moins volatil (pression supérieure à 73 bara) et de le détendre à des pressions inférieures à 30 bara et supérieure à 6 bara. Pour maximiser la récupération de CO2, un refroidisseur est utilisé avant la détente du CO2 supercritique. La température est choisie la plus froide possible.
Le système utilisé est constitué de :
un refroidisseur (à eau par exemple) d'alimentation pour amener le mélange à la température optimale,
une vanne de détente,
un pot séparateur permettant de récupérer le CO2 gazeux « pur » et un mélange CO2/solvant à l'état liquide.
Cette installation, qui minimise le CAPEX, produit du CO2 gazeux à une pureté >97% mol. avec un rendement compris entre 60% et 90%. Le CO2 complémentaire ainsi que le solvant sont envoyés aux effluents.
Selon un objet de l'invention, il est prévu un procédé de séparation d'un mélange gazeux de dioxyde de carbone et d'un composant moins volatil que le dioxyde de carbone dans lequel :
i) On refroidit le mélange gazeux à séparer et on le détend pour former un débit détendu, éventuellement diphasique.
ii) On envoie le débit détendu dans une capacité, qui est éventuellement un séparateur de phase, pour former un premier liquide éventuellement enrichi en composant moins volatil et éventuellement un premier gaz enrichi en dioxyde de carbone.
iii) On envoie au moins une partie du liquide éventuellement enrichi en composant moins volatil à une colonne de distillation.
iv) On soutire un deuxième gaz enrichi en dioxyde de carbone de la tête de la colonne et un deuxième liquide enrichi en composant moins volatil de la cuve de la colonne.
v) On condense au moins une partie du premier gaz et/ou du deuxième gaz enrichi en dioxyde de carbone et/ou on soutire un liquide enrichi en dioxyde de carbone de la tête de la colonne, et
vi) On envoie au moins une partie du gaz condensé et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité ou à la capacité.
Selon d'autres aspects facultatifs de l'invention :
On recycle au moins une partie du gaz condensé et/ou au moins une partie du liquide à un réacteur d'où provient le mélange gazeux. On recycle au moins une partie du deuxième liquide enrichi en composant moins volatil vers un réacteur d'où provient le mélange gazeux.
On sépare le deuxième liquide enrichi en composant moins volatil pour former un gaz appauvri en composant moins volatil et un produit liquide riche en composant moins volatil, on condense le gaz appauvri et on renvoie le gaz appauvri condensé vers la capacité.
Aucun gaz n'est soutiré de la capacité.
On renvoie au moins une partie du gaz condensé et/ou au moins une partie du liquide en amont de la capacité, voire du réacteur.
- On pressurise le liquide ou le gaz condensé dans une pompe en amont de la capacité.
On réchauffe au moins une partie du deuxième liquide pour le vaporiser partiellement, on le séparer dans un séparateur de phases, on soutire le liquide comme produit, on condense le gaz du séparateur de phases contre le deuxième liquide et on envoie le gaz condensé à la capacité.
Le mélange contient au moins 70% mol. de dioxyde de carbone, voire au moins 90% mol. de dioxyde de carbone.
Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange gazeux de dioxyde de carbone et d'un composant moins volatil moins volatil que le dioxyde de carbone comprenant des moyens pour refroidir le mélange gazeux à séparer, une vanne pour détendre le mélange gazeux refroidi pour former un débit détendu, éventuellement diphasique, une capacité, qui est éventuellement un séparateur de phase, des moyens pour envoyer le débit détendu à la capacité, une première conduite pour soutirer de la capacité un premier liquide éventuellement enrichi en composant moins volatil, éventuellement une conduite pour soutirer un premier gaz enrichi en dioxyde de carbone de la capacité, une colonne de distillation reliée à la première conduite, une conduite pour soutirer un deuxième gaz enrichi en dioxyde de carbone de la tête de la colonne, une conduite pour soutirer un deuxième liquide enrichi en composant moins volatil de la cuve de la colonne, éventuellement un condenseur pour condenser au moins une partie du premier gaz et/ou du deuxième gaz enrichi en dioxyde de carbone et/ou des moyens pour soutirer un liquide enrichi en dioxyde de carbone de la tête de la colonne et des moyens pour envoyer au moins une partie du gaz condensé dans le condenseur et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité ou à la capacité.
Eventuellement, le mélange gazeux est produit dans un réacteur alimenté par du dioxyde de carbone.
Les moyens pour envoyer au moins une partie du gaz condensé dans le condenseur et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité peuvent être reliés au réacteur.
L'invention sera décrite en plus de détails en se référant aux figures qui illustrent schématiquement des procédés selon l'invention.
La Figure 1 illustre un procédé de production d'un mélange gazeux de dioxyde de carbone et de solvant suivi par un procédé de séparation du mélange.
Dans le cadre d'une séparation du mélange CO2/composant moins volatil, ici un solvant, tel que l'acétone le dimethylacetamide (DMAc) ou le dimethylsulfoxide (DMSO), dans le cas où la pureté du CO2 attendue est supérieure à 99%, un moyen de maximiser le rendement de récupération du CO2 est de partir d'un mélange supercritique CO2/composant moins volatil, par exemple solvant (pression >73 bara) et de le détendre à des pressions inférieures à 30 bara et supérieure à 6 bara.
Pour maximiser la récupération de CO2, l'invention repose sur l'utilisation d'un refroidisseur avant la détente du CO2 supercritique (la température est choisie la plus froide possible) puis d'une distillation, avec récupération du CO2 pur en tête de colonne.
L'invention propose un système constitué de :
un refroidisseur 5 (à eau par exemple) d'alimentation pour amener le mélange 3 à la température optimale, inférieure à 0°C,
une vanne de détente 7,
un pot séparateur 9 permettant de récupérer le CO2 gazeux « pur » 13 et un mélange CO2/ composant moins volatil, par exemple solvant à l'état liquide 1 1 , une colonne de distillation 15 intégrant condenseur 31 et rebouilleur 19. Le procédé de production du mélange gazeux s'effectue dans un réacteur R alimenté en dioxyde de carbone liquide 1 à une pression supercritique ainsi qu'en d'autres fluides tel que le solvant. Ce réacteur R produit un mélange de solvant et de dioxyde de carbone gazeux 3. La composition du mélange peut varier entre 30% mol. de composant(s) moins volatil(s) et 70% mol. de dioxyde de carbone à 99,9% mol. de dioxyde de dioxyde de carbone et 0,1 % de composant(s) moins volatil(s), le procédé du réacteur étant cyclique.
Le mélange est refroidi par échange thermique dans le refroidisseur 5, détendu dans la vanne 7 pour produire un débit diphasique et séparé dans un séparateur de phases 9. La température du séparateur de phases varie selon la composition du mélange gazeux 3.
Comme le rapport entre le solvant et le CO2 dans le débit 3 ainsi que la valeur du débit 3 varie avec le temps (procédé discontinu), pour certains procédés réalisés dans le réacteur R, il est nécessaire de stabiliser l'alimentation d'une colonne de distillation 15 dont l'alimentation est par essence très variable.
L'opération de la colonne de distillation 15 avec une grande variabilité de composition et de débit ne serait tout simplement pas possible sans stabiliser au préalable ces fluctuations dans une plage de fonctionnement plus réduite.
Plus généralement, l'invention propose de traiter le débit 3 issu d'un procédé discontinu réalisé dans le réacteur R. Il s'agit de séparer les phases liquide et vapeur d'un mélange 3 (deux composés ou plus) par détente rapide dans la vanne 7 et d'accumuler le liquide produit dans le pot séparateur 9 afin d'alimenter la colonne 15 en aval, de façon continue et stable pour lui assurer un fonctionnement continu.
Une solution alternative dans cette situation serait de maintenir un débit d'alimentation minimal dans la colonne 15, ce qui nécessite :
l'installation de lignes supplémentaires (tuyaux, vannes et instrumentation),
le dimensionnement de la colonne 15 pour la charge maximale. La stabilité de la composition n'est pas maintenue dans ce cas.
La méthode selon l'invention consiste à dimensionner une rétention, constituée par la capacité 9, suffisamment importante pour lisser les variations du procédé discontinu. En effet, la récupération et accumulation de la phase liquide issue de la détente du mélange permet d'alimenter la colonne installée en aval du procédé, de façon homogène et continue. Ce système très flexible permet de tolérer une alimentation avec des fortes variations dans le débit et/ou la composition. La méthodologie est basée sur un cas réel mais peut être appliquée à d'autres débits et des rapports de composition différents. Le nombre de phases ainsi que la durée de chacune n'est pas limitant.
Dans un cas typique, le procédé du réacteur fonctionne par phase avec quatre phases par jour. Le débit, la composition et donc la fraction liquide varient selon la phase.
Figure imgf000008_0001
En extrapolant les données du procédé simulées (simulation phase par phase + points complémentaires simulant les étapes transitoires - incrémentation par 15 min), il est possible de définir la phase liquide globale (volume et composition).
L'invention propose d'attribuer deux rôles au pot 9 : séparateur de phases et rétention liquide. Le diamètre du pot 9 est défini selon les critères de dimensionnement classique pour un pot séparateur. La hauteur du séparateur 9 est imposée par la fonction « rétention » liquide.
En plus d'assurer un fonctionnement continu, la présente invention permet de réduire notablement (d'approximativement 50%) le diamètre de la colonne 15 car le débit à traiter 1 1 dans la colonne est très inférieur au débit qui serait dimensionnant sans cette invention (avec fraction liquide maximale).
Le liquide 1 1 du séparateur de phases est envoyé à un point intermédiaire de la colonne de distillation 15 qui opère à environ 22 bars abs.
Le liquide de cuve 17 de la colonne 15, enrichi en solvant moins volatil que le dioxyde de carbone, est soutiré de la colonne et envoyé à un rebouilleur 19 chauffé par de la vapeur d'eau 21 . La vapeur produite est renvoyée à la colonne et le liquide encore plus riche en solvant 23 est récupéré comme produit.
Le gaz de tête 27 de la colonne est divisé en deux, une partie 29 étant condensée dans le condenseur 31 et renvoyée à la colonne comme reflux 33. L'autre partie 35 est mélangée avec le gaz 13 du séparateur de phase pour former un débit gazeux 37 enrichi en dioxyde de carbone.
Il est également possible de prendre le gaz 35 directement dans la colonne. La tête de la colonne est à -20°C et la cuve est à 180°C, donc seule la tête de colonne a besoin d'être isolée.
Le débit 37 est condensé par un groupe frigorigène 41 qui peut également servir à refroidir le condenseur 31 . Le liquide formé en condensant le débit 37 est renvoyé au réacteur R pour réduire la quantité de dioxyde de carbone 1 requise.
Le produit en tête de la colonne est du CO2 très haute pureté, il peut être mélangé au CO2 issu de la détente pour obtenir une pureté globale supérieure à 99,8% mol . en CO2.
En pied de colonne se retrouvent le composant moins volatil et du CO2 « perdu ». C'est le taux de récupération de CO2 souhaité qui définit le rebouillage (avec de la vapeur d'eau par exemple) nécessaire.
Plus le taux de récupération de CO2 est important, plus le produit (composant moins volatil par exemple solvant) en pied de colonne 15 est pur (dans l'hypothèse où il n'y a pas de tiers composé dans le mélange). Avec un rendement CO2 de l'ordre de 99%, la pureté du composant moins volatil par solvant soutiré est supérieure à 99% mol . Son recyclage en amont du procédé est possible, sans retraitement. Ainsi, le débit 25 relie le rebouilleur 19 avec l'entrée du réacteur R.
Dans la Figure 2, seul le procédé de séparation de dioxyde de carbone et de composant moins volatil est représenté. Le mélange 3 de solvant et de dioxyde de carbone est détendu dans une vanne 7 pour former un liquide et envoyé à une capacité tampon 9. Le liquide est réchauffé dans un réchauffeur 10 pour le rendre diphasique et ensuite il est séparé dans une colonne de distillation 15 ayant un rebouilleur de cuve 19 et un condenseur de tête 31 .
Le condenseur de tête, à la différence de celui de la Figure 1 reçoit tout le gaz de tête de la colonne 15, le condense et renvoie une partie 33 comme reflux. Le reste du gaz condensé 32 est pompé par une pompe 34 et divisé, une partie 44 étant renvoyé à la capacité 9 à travers la vanne 46 et le reste 43 étant recyclé dans le réacteur R. L'objectif de renvoyer un liquide riche en CO2 à la capacité 9 est de stabiliser la composition d'alimentation de la colonne pendant les phases transitoires où la production du réacteur R présente de grandes fluctuations.
Le schéma de la Figure 3 consomme plus d'énergie mais permet d'avoir deux niveaux de température et diminue le gradient de température de la colonne. En plus des éléments de la Figure 2 il comprend un échangeur de chaleur, un réchauffeur 46, un séparateur de phases 47 et une pompe 53. Le liquide de cuve 23 du rebouilleur 19 est chauffé dans un échangeur, chauffé de nouveau dans un réchauffeur 46 au degré de vaporisation souhaitée et le débit diphasique formé est séparé dans le séparateur 47. Le liquide 49 riche en composant moins volatil sert de produit. Le gaz 51 sert à réchauffer le liquide 23 dans l'échangeur et est ainsi condensé. Une pompe 53 le pressurise et le renvoie à la capacité.

Claims

Revendications
1 . Procédé de séparation d'un mélange gazeux de dioxyde de carbone et d'un composant moins volatil que le dioxyde de carbone dans lequel :
i) On refroidit le mélange gazeux (3) à séparer et on le détend pour former un débit détendu, éventuellement diphasique.
ii) On envoie le débit détendu dans une capacité (9), qui est éventuellement un séparateur de phase, pour former un premier liquide (1 1 ) éventuellement enrichi en composant moins volatil et éventuellement un premier gaz (13) enrichi en dioxyde de carbone.
iii) On envoie au moins une partie du liquide éventuellement enrichi en composant moins volatil à une colonne de distillation (15).
iv) On soutire un deuxième gaz (27) enrichi en dioxyde de carbone de la tête de la colonne et un deuxième liquide (17) enrichi en composant moins volatil de la cuve de la colonne.
v) On condense au moins une partie du premier gaz et/ou du deuxième gaz enrichi en dioxyde de carbone et/ou on soutire un liquide enrichi en dioxyde de carbone de la tête de la colonne, et
vi) On envoie au moins une partie du gaz condensé (43) et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité et/ou à la capacité.
2. Procédé selon la revendication 1 dans lequel on recycle au moins une partie du gaz condensé (43) et/ou au moins une partie du liquide à un réacteur (R) d'où provient le mélange gazeux.
3. Procédé selon la revendication 1 ou 2 dans lequel on recycle au moins une partie (25) du deuxième liquide enrichi en composant moins volatil vers un réacteur (R) d'où provient le mélange gazeux.
4. Procédé selon l'une des revendications précédentes dans lequel on sépare le deuxième liquide (17) enrichi en composant moins volatil pour former un gaz (51 ) appauvri en composant moins volatil et un produit liquide (49) riche en composant moins volatil, on condense le gaz appauvri et on renvoie le gaz appauvri condensé vers la capacité (9).
5. Procédé selon l'une des revendications précédentes dans lequel aucun gaz n'est soutiré de la capacité (9).
6. Procédé selon l'une des revendications précédentes dans lequel on renvoie au moins une partie du gaz condensé (45) et/ou au moins une partie du liquide en amont de la capacité (9), voire du réacteur.
7. Procédé selon la revendication 6 dans lequel on pressurise le liquide ou le gaz condensé dans une pompe (34) en amont de la capacité (9).
8. Procédé selon une revendication précédente dans lequel on réchauffe au moins une partie du deuxième liquide pour le vaporiser partiellement, on le séparer dans un séparateur de phases (47), on soutire le liquide comme produit (49), on condense le gaz (51 ) du séparateur de phases contre le deuxième liquide et on envoie le gaz condensé à la capacité.
9. Appareil de séparation d'un mélange gazeux de dioxyde de carbone et d'un composant moins volatil moins volatil que le dioxyde de carbone comprenant des moyens (5) pour refroidir le mélange gazeux à séparer (3), une vanne (7) pour détendre le mélange gazeux refroidi pour former un débit détendu, éventuellement diphasique, une capacité (9), qui est éventuellement un séparateur de phase, des moyens pour envoyer le débit détendu à la capacité, une première conduite pour soutirer de la capacité un premier liquide (1 1 ) éventuellement enrichi en composant moins volatil, éventuellement une conduite pour soutirer un premier gaz (13) enrichi en dioxyde de carbone de la capacité, une colonne de distillation (15) reliée à la première conduite, une conduite pour soutirer un deuxième gaz (27) enrichi en dioxyde de carbone de la tête de la colonne, une conduite pour soutirer un deuxième liquide (17) enrichi en composant moins volatil de la cuve de la colonne, un condenseur (31 , 41 ) pour condenser au moins une partie du premier gaz et/ou du deuxième gaz enrichi en dioxyde de carbone et/ou des moyens pour soutirer un liquide enrichi en dioxyde de carbone de la tête de la colonne et des moyens pour envoyer au moins une partie (43, 45) du gaz condensé dans le condenseur et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité ou à la capacité.
10. Appareil selon la revendication 9 dans lequel le mélange gazeux (3) est produit dans un réacteur (R) alimenté par du dioxyde de carbone et dans lequel les moyens pour envoyer au moins une partie du gaz condensé dans le condenseur (31 , 41 ) et/ou au moins une partie du liquide enrichi en dioxyde de carbone à un point en amont de la capacité sont reliés au réacteur.
PCT/FR2018/050684 2017-03-24 2018-03-21 Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil WO2018172698A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752463 2017-03-24
FR1752463A FR3064260B1 (fr) 2017-03-24 2017-03-24 Procede et appareil de distillation d'un melange de dioxyde de carbone et d'un composant moins volatil

Publications (1)

Publication Number Publication Date
WO2018172698A1 true WO2018172698A1 (fr) 2018-09-27

Family

ID=59153051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050684 WO2018172698A1 (fr) 2017-03-24 2018-03-21 Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil

Country Status (3)

Country Link
CN (2) CN208361896U (fr)
FR (1) FR3064260B1 (fr)
WO (1) WO2018172698A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282626A (zh) * 2019-06-14 2019-09-27 新沂市新维气体有限公司 高密封性的二氧化碳精馏提纯装置、控制***及方法
CN116271924A (zh) * 2023-05-19 2023-06-23 山西新微能源科技有限公司 一种二氧化碳分离提纯装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110296867A1 (en) * 2010-06-03 2011-12-08 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20120079852A1 (en) * 2009-07-30 2012-04-05 Paul Scott Northrop Systems and Methods for Removing Heavy Hydrocarbons and Acid Gases From a Hydrocarbon Gas Stream
WO2013135993A2 (fr) * 2012-03-13 2013-09-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'un mélange contenant du dioxyde de carbone par distillation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070431A (en) * 1999-02-02 2000-06-06 Praxair Technology, Inc. Distillation system for producing carbon dioxide
US7666251B2 (en) * 2006-04-03 2010-02-23 Praxair Technology, Inc. Carbon dioxide purification method
US10254042B2 (en) * 2013-10-25 2019-04-09 Air Products And Chemicals, Inc. Purification of carbon dioxide
US20150114034A1 (en) * 2013-10-25 2015-04-30 Air Products And Chemicals, Inc. Purification of Carbon Dioxide
US10267560B2 (en) * 2013-12-30 2019-04-23 Air Products And Chemicals, Inc. Process for recovering hydrocarbons from crude carbon dioxide fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079852A1 (en) * 2009-07-30 2012-04-05 Paul Scott Northrop Systems and Methods for Removing Heavy Hydrocarbons and Acid Gases From a Hydrocarbon Gas Stream
US20110296867A1 (en) * 2010-06-03 2011-12-08 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
WO2013135993A2 (fr) * 2012-03-13 2013-09-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'un mélange contenant du dioxyde de carbone par distillation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282626A (zh) * 2019-06-14 2019-09-27 新沂市新维气体有限公司 高密封性的二氧化碳精馏提纯装置、控制***及方法
CN116271924A (zh) * 2023-05-19 2023-06-23 山西新微能源科技有限公司 一种二氧化碳分离提纯装置
CN116271924B (zh) * 2023-05-19 2023-08-29 山西新微能源科技有限公司 一种二氧化碳分离提纯装置

Also Published As

Publication number Publication date
CN208361896U (zh) 2019-01-11
CN108622898B (zh) 2023-05-02
FR3064260A1 (fr) 2018-09-28
CN108622898A (zh) 2018-10-09
FR3064260B1 (fr) 2021-10-01

Similar Documents

Publication Publication Date Title
FR2814378A1 (fr) Procede de pretraitement d'un gaz naturel contenant des gaz acides
US5907924A (en) Method and device for treating natural gas containing water and condensible hydrocarbons
EP2452140A2 (fr) Procédé de production d'un courant riche en méthane et d'un courant riche en hydrocarbures en c2+, et installation associée
WO2018172698A1 (fr) Procédé et appareil de distillation d'un mélange de dioxyde de carbone et d'un composant moins volatil
FR2866896A1 (fr) Procede d'elimination du mercure dans une tour de distillation
WO2010109130A1 (fr) Procédé de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traité et une coupe d'hydrocarbures en c5 +, et installation associée
US9784498B2 (en) Method for separating a feed gas in a column
EA017512B1 (ru) Обработка потока сырой нефти и природного газа
TWI652257B (zh) 藉由分離技術處理二甲醚反應器之產物流的方法
FR3034509B1 (fr) Procede de traitement du gaz naturel pour minimiser la perte d'ethane
FR2793701A1 (fr) Procede de production d'oxygene gazeux
EP3252408B1 (fr) Procédé de purification de gaz naturel et de liquéfaction de dioxyde de carbone
EP3049741B1 (fr) Procédé et appareil de séparation cryogenique d'un mélange contenant au moins du monoxyde de carbone, de l'hydrogène et de l'azote
NO318918B1 (no) Fremgangsmate for fraksjonering av en naturgass - inneholdende flere separerbare bestanddeler
FR3090832A1 (fr) Procédé et appareil de séparation d’un courant d’alimentation comprenant au moins du CO2 ainsi qu’au moins un composé léger
FR3052159A1 (fr) Procede et installation pour la production combinee d'un melange d'hydrogene et d'azote ainsi que de monoxyde de carbone par distillation et lavage cryogeniques
US20200003490A1 (en) Mixing and Heat Integration of Melt Tray Liquids in a Cryogenic Distillation Tower
US10274252B2 (en) Purge to intermediate pressure in cryogenic distillation
FR3079288A1 (fr) Procede et appareil de separation d'un gaz de synthese par distillation cryogenique
WO2016156675A1 (fr) Procédé de déazotation du gaz naturel à haut débit
WO2013171421A2 (fr) Procédé et appareil de mise à l'air d'un fluide riche en co2.
FR3081047A1 (fr) Procede d’extraction d'azote d'un courant de gaz naturel
EP3542112A1 (fr) Procédé et installation de séparation cryogénique d'un mélange gazeux par lavage au méthane
FR3058509A3 (fr) Vaporiseur-condenseur a bain pour un procede de separation cryogenique d'un courant de gaz naturel
WO2009016625A2 (fr) Procédé et système pour la séparation d'un mélange contenant du dioxyde de carbone, un hydrocarbure et de l'hydrogène

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18715778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18715778

Country of ref document: EP

Kind code of ref document: A1