WO2018171774A1 - 传输及传输配置方法、装置、基站、终端及存储介质 - Google Patents

传输及传输配置方法、装置、基站、终端及存储介质 Download PDF

Info

Publication number
WO2018171774A1
WO2018171774A1 PCT/CN2018/080363 CN2018080363W WO2018171774A1 WO 2018171774 A1 WO2018171774 A1 WO 2018171774A1 CN 2018080363 W CN2018080363 W CN 2018080363W WO 2018171774 A1 WO2018171774 A1 WO 2018171774A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
parameter
resource
granularity
precoding
Prior art date
Application number
PCT/CN2018/080363
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
李儒岳
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/497,319 priority Critical patent/US20210126759A1/en
Publication of WO2018171774A1 publication Critical patent/WO2018171774A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a transmission and transmission configuration method, apparatus, base station, terminal, and storage medium.
  • the transmission In the fourth generation (4 th Generation, 4G) long term evolution (Long Term Evolution, LTE), the transmission, the transmission of some aspects of the configuration is agreed for sending and receiving end, or the range of variation can be very small, not very flexible. Although this method has low complexity, its performance is relatively poor. These methods may be suitable in some of the mainstream 4G transmission scenarios, but for the fifth generation (5 th Generation, 5G) new wireless (New Radio, NR) system, which will restrict the way to improve performance. Moreover, the transmission scenarios of 5G NR are very numerous, and the transmission methods are also different, and various types of services have appeared. The flexibility of existing transmission configurations is far from being able to accommodate the needs of 5G NRs. E.g:
  • Precoding binding parameters are primarily used to define the granularity of resources that use the same or related precoding. In transmission, a better way is to use the same precoding for the reference Demodulation Reference Signal (DMRS) and the data. At this time, the data and the channel go through the same channel, and transparent transmission can be achieved. The beam weight or precoding is transparent to the terminal. On different time-frequency resources, since the channels are not identical, if the channel information is sufficiently accurate, theoretically, precoding with a small granularity can be used. For example, a physical resource block (PRB) adopts a precoding, which is different. The PRB uses different precoding.
  • PRB physical resource block
  • the precoding granularity is greater than one PRB, and is based on the physical resource block group ( According to the Physical Resource Block Group (PRBG) level, the number of PRBs included in one PRBG is shown in Table 1. Related to system bandwidth. If there is no feedback from the PMI, it is likely that the Time Division Duplexing (TDD) system with better reciprocity is able to obtain more accurate channel information at the Resource Block (RB) level. Therefore, RB is adopted. Level precoding, the granularity of precoding is one RB.
  • PRBG Physical Resource Block Group
  • the granularity configuration of the precoding is a well-defined value, which is not very flexible; the granularity of the precoding is determined only according to the bandwidth, and cannot be well adapted to various transmission situations; the granularity of the precoding is not in the time domain. Support dynamic changes;
  • resource aggregation is mainly used for the resource allocation size of uplink or downlink.
  • Channel-to-resource mapping parameters In the traditional technology, signal-to-resource mapping uses a simple method of first spatial domain, then frequency domain, and then time domain mapping. This technology has two major technical flaws in 5G NR;
  • the first problem is that because the amount of data transmitted in the NR is many times that of the existing 4G system, the Low Density Parity Check Code (LDPC) encoded Transport Block (TB) block. It is very large, and each code block (CB) only supports a maximum of 8192 bits, so it is divided into many CBs, and these CBs are independently coded. Since the acquisition of the diversity gain requires that the information in the same CB undergo multiple different transmissions, if the bandwidth is large, dozens of CBs may be supported. In the prior art, the mapping may cause a CB to only map to a certain CB. On some subcarriers of a symbol, the diversity gain cannot be fully obtained, which affects performance;
  • LDPC Low Density Parity Check Code
  • the second problem is that the Ultra Reliable & Low Latency Communication (URLLC) service that NR needs to support has very low transmission delay requirements, so the waiting time in the queue must also be short.
  • the URLLC service For the downlink service, when the URLLC service arrives at the base station, the URLLC service needs to be quickly scheduled to be sent out. Similarly, for uplink services, it is also necessary to quickly send out from the terminal.
  • eMBB Enhanced Mobile Broadband
  • URLLC service transmission frequency is relatively low, and due to the extremely high
  • the reliability requirement requires a large amount of frequency resources to be reserved in the case of a short scheduling interval.
  • the method of reserving resources will bring a great waste of resources, and is not a good solution for the NR network to support the URLLC service.
  • the base station is transmitting the eMBB downlink service
  • another way to support the URLLC service and the eMBB service multiplexing is to allow the URLLC service to punch the eMBB service that is already being transmitted, as shown in FIG. 1 .
  • the eMBB service is punctured by the URLLC service, in the case where the eMBB terminal does not know which part of the data it receives is covered by the URLLC data, the eMBB terminal directly decodes all the received data, and the performance is drastically lowered. If the data that is destroyed by URRLC is the same CB, it will cause the CB to be impossible to pass, and it needs to be retransmitted, which will affect the performance.
  • the embodiments of the present invention provide a transmission and transmission configuration method and apparatus, and a base station and a terminal, so as to at least solve the problem of poor flexibility of a transmission-related configuration in the related art.
  • a transmission method including: determining, by a transmitting end, a transmission parameter set corresponding to a transmission resource area, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter a precoding granularity parameter and a resource mapping parameter; the transmitting end transmits the corresponding transmission resource region according to the transmission parameter.
  • the method further includes: the sending end determines a transmission resource area, where the transmission resource includes at least one of: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource,
  • the transmission resource area is N, and N is greater than or equal to 1.
  • the method further includes: sending, by the sending end, the transmitted configuration signaling to the receiving end.
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured by one or more of the following methods: at least two types of downlink control information (Downlink Control Information, DCI) type, and at least two types of DCI overhead sizes.
  • DCI Downlink Control Information
  • At least two transmission technologies at least two types of pilot port groups, at least two types of channels/signals, at least two CB/Code Block Groups (CBGs), at least two TB/codeword streams (Code Word, CW), at least two service types, at least two waveforms, at least two beam types, at least two beam groups, at least two time domain symbol groups/slot groups/subframe groups, at least two antennas, At least two Modulation and Coding Scheme (MCS), at least two resource mapping methods, and Hybrid Automatic Repeat reQuest (HARQ) related parameters.
  • CBGs CB/Code Block Groups
  • CW Code Word
  • service types at least two waveforms
  • at least two beam types at least two beam groups
  • at least two time domain symbol groups/slot groups/subframe groups at least two antennas
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat reQuest
  • the time window parameter is allocated by: assigning the time window parameter to at least two channels/signals respectively; or configuring the time window parameter separately for at least two beam groups; or, at least two The time window parameters are respectively configured in the transmission resource areas.
  • the mapping configuration of the transmission parameter to the transmission resource region is respectively determined by at least one of the following manners: at least two layers, at least two Layer numbers, at least two CWs, at least two MCSs, At least two DMRS configurations, at least two phase noise pilot PTRS configurations, at least two basic parameters (Numerology) configurations, at least two Waveforms, at least two Slot types, and at least two transmission schemes At least two DCI types, at least two traffic types (Traffic type), at least two CB/CBG configurations, at least two transmission settings, at least two beam Numerology, at least two beam numbers, at least two Receive mode, at least two precoding binding granularity/resource aggregation granularity, at least two HARQ related parameters, and at least two multiple access modes/multiplexing modes.
  • the configuration manner of the precoding binding granularity includes: dynamically configuring a precoding binding granularity by using signaling of the DCI.
  • a transmission configuration method including: a receiving end determining a transmission resource region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource.
  • the receiving end determines a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG .
  • the method further includes: the receiving end transmitting in the transmission resource area according to the transmission parameter set.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information: downlink control information DCI type, transmission technology, pilot port group, channel/signal type, CB/CBG configuration. , service type, waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, MCS group, resource allocation granularity, pilot pattern, number of antennas/ports, HARQ related parameters, receiving method , multiple access mode, multiplexing mode, quasi-co-location QCL configuration.
  • DCI type downlink control information
  • transmission technology pilot port group
  • channel/signal type CB/CBG configuration
  • service type waveform
  • beam type beam group
  • time domain symbol group/slot group/subframe group antenna group
  • MCS group resource allocation granularity
  • pilot pattern number of antennas/ports
  • HARQ related parameters receiving method , multiple access mode, multiplexing mode, quasi-co-location QCL configuration.
  • the receiving end determines a precoding granularity parameter of the second channel/signal according to the precoding granularity parameter of the first channel/signal; the receiving end determines a precoding granularity parameter of the uplink data/DMRS according to the following information: The precoding granularity parameter of the reference signal SRS and the precoding granularity parameter of the uplink control; the receiving end determines the precoding granularity parameter of the uplink control/DMRS according to the following information: the precoding granularity parameter of the Sounding Reference Signal (SRS) a precoding granularity parameter of the uplink data; the receiving end determines a precoding granularity parameter of the downlink data/downlink control/DMRS according to a precoding granularity parameter of a channel state information-reference signal (CSI-RS) .
  • SRS Sounding Reference Signal
  • CSI-RS channel state information-reference signal
  • the receiving end determines a precoding granularity parameter of the uplink channel/signal according to the downlink channel/signal precoding granularity parameter; the receiving end determines a precoding granularity parameter of the SRS according to the precoding granularity parameter of the CSI-RS; The receiving end determines the precoding granularity parameter of the uplink (UL) DMRS according to the precoding granularity parameter of the CSI-RS.
  • the receiving end determines a precoding granularity parameter of the downlink channel/signal according to the uplink channel/signal precoding granularity parameter.
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, wherein the time window parameter is used to determine a resource aggregation granularity parameter/precoding binding granularity.
  • the determining the time window parameter includes: determining the time window parameter according to a type of the transmission channel/signal; or determining the time window parameter according to the beam group to which the transmission belongs; or determining according to the transmission resource region The time window parameter.
  • the information-to-resource mapping configuration is determined by the following methods: Layer/layer group, Layer number, MCS, DMRS pattern, PTRS pattern, Numerology, Waveform, Slot type, Transmission scheme, DCI type, Traffic type, CB/ CBG configuration, transmission setting configuration, beam, beam number, receiving mode, precoding binding granularity/resource aggregation granularity, HARQ related parameters, multiple access mode, multiplexing mode, A/N configuration, CW/TB configuration, QCL Configuration.
  • the candidate set of the information-to-resource mapping configuration includes at least one discrete CB/CBG mapping and one centralized CB/CBG mapping manner.
  • a transmission apparatus including: being applied to a transmitting end, comprising: a first determining module, configured to determine a transmission parameter set corresponding to a transmission resource area, wherein the transmission parameter set is The transmission parameter includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter; and a transmission module configured to transmit in the corresponding transmission resource region according to the transmission parameter.
  • the apparatus further includes: a module for determining a transmission resource region, where the transmission resource includes at least one of: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, a code resource, and the transmission resource.
  • the area is N, and N is greater than or equal to 1.
  • the apparatus further includes: a module that sends the transmitted configuration signaling to the receiving end.
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured by one or more of the following methods: at least two DCI types, at least two DCI overhead sizes, at least two transmission technologies, at least two a pilot port group, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two service types, at least two waveforms, at least two beam types, at least two beam groups, At least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two MCSs, at least two resource mapping modes, at least two receiving modes, and at least two HARQ related parameters.
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, wherein the time window parameter is used to determine a resource aggregation granularity parameter/precoding binding granularity.
  • the time window parameter is allocated by: assigning the time window parameter to at least two channels/signals respectively; or configuring the time window parameter separately for at least two beam groups; or, at least two The time window parameters are respectively configured in the transmission resource areas.
  • the information-to-resource mapping configuration is determined by at least one of the following manners: at least two Layers, at least two Layer numbers, at least two CWs, at least two MCSs, at least two DMRS configurations, and at least two PTRSs.
  • Configuration at least two Numerology configurations, at least two Waveforms, at least two Slot types, at least two Transmission schemes, at least two DCI types, at least two Traffic types, at least two CB/CBG configurations, and at least two Transmission settings
  • the configuration the at least two beams, the at least two beam numbers, the at least two receiving modes, the at least two precoding binding granularity/resource aggregation granularity, the at least two HARQ related parameters, and the at least two multiple access modes/multiplexing modes.
  • the transmission parameter further includes configuration information of the CB or the CBG
  • the terminal may determine the configuration of the CB and the CBG according to the following information: capability of the receiving node, configuration of the number of layers, DCI type, transmission technology, demodulation pilot Configuration, resource allocation granularity, multiple access mode, multiplexing mode, MCS configuration, multiplexing mode, QCL configuration.
  • a transmission apparatus including: applied to a receiving end, comprising: a second determining module, configured to determine a transmission resource area, where the transmission resource includes: a time domain resource, a frequency a third determining module, configured to determine a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation Granularity parameters, precoding granularity parameters, mapping parameters, CB/CBG.
  • the apparatus further includes: the module that performs transmission in the transmission resource area according to the transmission parameter set.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information: DCI type, transmission technology, pilot port group, channel/signal type, CB/CBG configuration, service type. , waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, modulation and policy coding MCS group, resource allocation granularity, pilot pattern, antenna/port number, HARQ related parameters, reception Mode, multiple access mode, multiplexing mode, QCL configuration.
  • the apparatus determines a precoding granularity parameter of the second channel/signal according to the precoding granularity parameter of the first channel/signal; the apparatus determines a precoding granularity parameter of the uplink data/DMRS according to the following information: Coding granularity parameter, uplink control precoding granularity parameter; the apparatus determines a precoding granularity parameter of the uplink control/DMRS according to the following information: a precoding granularity parameter of the sounding reference signal SRS, a precoding granularity parameter of the uplink data; the device The precoding granularity parameter of the downlink data/downlink control/DMRS is determined according to the precoding granularity parameter of the CSI-RS.
  • the apparatus determines a precoding granularity parameter of an uplink channel/signal according to a downlink channel/signal precoding granularity parameter; the apparatus determines a precoding granularity parameter of the SRS according to a precoding granularity parameter of the CSI-RS; Determining the precoding granularity parameter of the ULDMRS according to the precoding granularity parameter of the CSI-RS
  • the apparatus determines a precoding granularity parameter of the downlink channel/signal according to the uplink channel/signal precoding granularity parameter.
  • At least two channel/signal binding granularities have a multiple relationship
  • at least two pilot ports have a precoding binding granularity with a multiple relationship
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, wherein the time window parameter is used to determine a resource aggregation granularity parameter/precoding binding granularity.
  • the information-to-resource mapping configuration is determined by the following methods: Layer/layer group, Layer number, MCS, DMRS pattern, PTRS pattern, Numerology, Waveform, Slot type, Transmission scheme, DCI type, Traffic type, CB/ CBG configuration, transmission setting configuration, beam, beam number, receiving mode, precoding binding granularity/resource aggregation granularity, HARQ related parameters, multiple access mode, multiplexing mode, A/N configuration, CW/TB configuration, QCL Configuration.
  • the candidate set of the mapping configuration of the transmission resource region includes at least one discrete CB/CBG mapping and one centralized CB/CBG mapping manner.
  • a base station comprising: a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing an operation of: determining a transmission resource a transmission parameter set corresponding to the area, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter; and performing, according to the transmission parameter, in a corresponding transmission resource area transmission.
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured by one or more of the following methods: at least two DCI types, at least two DCI overhead sizes, at least two transmission technologies, at least two a pilot port group, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two service types, at least two waveforms, at least two beam types, at least two beam groups, At least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two MCSs, at least two resource mapping manners, at least two receiving modes, and at least two HARQ related parameters.
  • a terminal comprising: a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing an operation of: determining a transmission resource a region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information: DCI type, transmission technology, pilot port group, channel/signal type, CB/CBG configuration, service type. , waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, MCS group, resource allocation granularity, pilot pattern, number of antennas/ports, HARQ related parameters, receiving mode, multiple access Mode, multiplexing mode, QCL configuration.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the transmitting end determines a transmission parameter set corresponding to the transmission resource area, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the transmitting end performs transmission in a corresponding transmission resource region according to the transmission parameter.
  • the storage medium is further configured to store program code for performing the following steps:
  • the receiving end determines a transmission resource area, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • the receiving end determines a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG.
  • the embodiment of the present invention further provides a storage medium, where the computer executable instructions are stored in the storage medium, and the computer executable instructions are used to execute the foregoing transmission configuration method.
  • the transmitting end determines a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the transmission parameter is transmitted in the corresponding transmission resource area, so that the transmission end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.
  • FIG. 1 is a schematic diagram of a transmission method in the related art
  • FIG. 2 is a flow chart of a transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a transmission method according to an embodiment of the present invention.
  • FIG. 4 is a first schematic diagram of a transmission method according to an embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of a transmission method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a transmission apparatus according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a transmission configuration method according to an embodiment of the present invention.
  • FIG. 8 is a first schematic diagram of a type of resource mapping configuration according to an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of a type of resource mapping configuration according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a transmission configuration apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a transmission method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S204 The transmitting end performs transmission in the corresponding transmission resource area according to the transmission parameter.
  • the transmitting end determines the transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the transmission parameter is transmitted in the corresponding transmission resource area, so that the transmission end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.
  • the transmitting end sends the transmitted configuration signaling to the receiving end.
  • the resource aggregation granularity parameter/precoding binding parameter may be separately configured by one or more of the following manners:
  • At least two types of DCI at least two types of DCI overhead, at least two transmission technologies, at least two types of pilot ports, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two Service type, at least two waveforms, at least two beam types, at least two beam groups, at least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two MCSs, at least two Resource mapping mode, at least two receiving modes, and at least two HARQ related parameters.
  • PTRS configuration at least two Numerology configurations, at least two Waveforms, at least two Slot types, at least two Transmission schemes, at least two DCI types, at least two Traffic types, at least two CB/CBG configurations, at least two Transmissions Setting configuration, at least two beams, at least two beam numbers, at least two receiving modes, at least two precoding binding granularity/resource aggregation granularity, at least two HARQ related parameters, at least two multiple access methods/multiplexing methods .
  • the base station configures resource aggregation granularity parameters/precoding binding parameters for at least two DCI types, as shown in Table 2:
  • the resource aggregation granularity parameter/precoding binding parameters are respectively configured for at least two transmission technologies, as shown in Table 4:
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured for at least two pilot port groups, as shown in Table 5;
  • the CB identifies a plurality of independent coding blocks in the transport block, and the CBG identifies a group of coded blocks, as shown in Table 7.
  • the aggregate granularity parameter/precoding binding parameters may be different.
  • the resource aggregation granularity parameter/precoding binding parameter is configured for at least two TB/CWs respectively; TB indicates a transport block transmission block, and the CW identifier codeword stream codeword is generally considered as a concept, as shown in Table 9.
  • the resource aggregation granularity parameter/precoding binding parameter is configured separately for at least two service types; as shown in Table 10.
  • the resource aggregation granularity parameter/precoding binding parameters are respectively configured for at least two types of waveforms as shown in Table 11.
  • the resource aggregation granularity parameter/precoding binding parameter is separately configured for at least two types of beams; as shown in Table 12.
  • the resource aggregation granularity parameter/precoding binding parameters are respectively configured for at least two beam groups, as shown in Table 13.
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured for at least two resource mapping manners; as shown in Table 17;
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, as shown in FIG. 3, the time window is used to determine a resource aggregation granularity parameter/precoding binding granularity;
  • the time window can be determined in several ways: the determination of the start time:
  • Method 1 Specify the starting time position when configuring
  • Method 2 Start time according to the agreed event occurrence time
  • Method 3 Re-shift a value according to the agreed event occurrence time as the start time
  • the above event may preferably be defined as receiving configuration signaling
  • Method 3 Re-shift a value according to the agreed event occurrence time as the end time
  • the above event may preferably be defined as receiving end indication signaling
  • the above event may preferably be defined as receiving reconfiguration signaling
  • Transmission parameter configuration 1 is the default configuration. When transmission parameter configuration 2 is configured, transmission configuration 2 takes effect during its active time. When transmission parameter configuration 3 is configured, transmission configuration 3 takes effect during its active time. Transmission parameter configuration 1 takes effect during other times. There are also cases where the transmission parameter configuration 1 is combined with the transmission parameter configuration 2 for determining the final configuration when the transmission parameter configuration 2 is configured. When the transmission parameter configuration 3 is configured, the transmission parameter configuration 1 is combined with the transmission parameter configuration 3 for determining the final configuration.
  • the sender configures the time window parameters for a plurality of different channels/signals.
  • the sending end separately configures the time window parameter for a plurality of different frequency domain transmission resource areas
  • the sender may determine information to the resource mapping configuration for at least two Layers respectively; for example, layer 1 transmission and layer 2 transmission respectively configure mapping manner
  • the sender may separately determine information to the resource mapping configuration for at least two Layer numbers; for example, 2layer transmission and 4layer transmission respectively configure mapping manner
  • the sender may determine the information to the resource mapping configuration for the at least two types of MCS respectively; for example, the MCS1 transmission and the MCS2 transmission respectively configure the mapping manner.
  • the transmitting end may separately determine the information to the resource mapping configuration for the at least two DMRS configurations; for example, the DMRS pattern 1, and the data transmission or control information transmission corresponding to the DMRS pattern 2 respectively configure the mapping manner.
  • the number of DMRS ports is 2, and the data transmission or control information transmission corresponding to the number 4 of DMRS ports is respectively configured with a mapping manner.
  • the sender may determine information to the resource mapping configuration for at least two types of Numerology configurations; the numerology parameters include: CP length, subcarrier density, subcarrier spacing, symbol length, and FFT points.
  • the sender may determine information to the resource mapping configuration for each of the at least two Slot types;
  • the sender may separately determine information to the resource mapping configuration for at least two transmission schemes
  • the sender may determine information to the resource mapping configuration for each of the at least two DCI types
  • the sender may separately determine information to the resource mapping configuration for at least two types of traffic types
  • the transmitting end may separately determine information to the resource mapping configuration for at least two CB/CBG configurations
  • the transmitting end may separately determine information to the resource mapping configuration for at least two kinds of transmission setting configurations
  • the sender may determine information to the resource mapping configuration for each of the at least two beams;
  • the transmitting end may separately determine information to the resource mapping configuration for at least two receiving manners;
  • the sender may determine a resource aggregation granularity parameter/precoding binding parameter for at least a HARQ related parameter; (e.g. process number, new/old data state, redundancy version number;
  • the sender may determine the information to resource mapping configuration for each of the at least two multiple access modes/multiplexing modes.
  • the characteristics of the channel may be more differentiated than 4G.
  • different RF beamwidth configurations may occur, and the corresponding channel frequency selection sizes are also different. Determining the precoding binding granularity based only on the size of the bandwidth and whether there is PMI feedback does not seem to be a suitable method. Need to consider the enhancement of configuration flexibility. Potentially enhanced needs may come from the following aspects:
  • the transmit and receive beams used are not necessarily the same, the control channel may use wider beam transmission and reception, and the data channel may use narrower beams due to wide and narrow beams.
  • the number of effective multipaths in the range is different, so the corresponding frequency selection may be different. More flexible precoding binding granularity configuration can have better performance.
  • the transmit or receive beam used by the downlink data or control channel may change over time.
  • the width of the beam may vary. With beam training, the beam may become narrower and narrower. On the other hand, even if the beam width is the same, the beams from different directions are affected by the multipath delay and the TAE.
  • the base station can pre-configure different precoding binding granularities for different transmit/receive beams or BPLs (transceiver beam pairs).
  • the frequency selection of the channel corresponding to each transmission layer may be different. These two layers can be configured with different PRB sizes.
  • the base station configures different sizes of precoding binding granularity, meaning different diversity gains. In the case of a large number of allocated frequency domain resources, a larger number of precoding binding granularities may be used, but in the case of relatively small frequency domain resource allocation, in order to obtain sufficient diversity gain, a relatively small pre-configuration should be configured. Encoding binding granularity. The most appropriate precoding binding granularity may vary between different resource allocations.
  • the size of f.CQI/MCS can reflect the signal noise ratio (SNR) to a certain extent.
  • SNR signal noise ratio
  • the granularity guarantees the estimated performance of the DMRS, and for the case of high SNR, it is more important to improve the precoding transmission efficiency. In this case, a relatively small precoding binding granularity can be configured.
  • the base station can separately configure the precoding binding granularity for multiple transmission hypotheses, for example, configuring the corresponding precoding binding granularity for multiple transmitting beam/receiving beam/BPL allocations, and configuring corresponding correspondences for multiple transmission technologies respectively.
  • the precoding binding granularity is configured to respectively configure the corresponding precoding binding granularity for a plurality of resource allocation situations.
  • the terminal determines its corresponding precoding binding granularity according to the current transmission. In the case where the uplink and downlink beam correspondences exist, the precoding binding granularity of the uplink and downlink channels or channels can be jointly configured, and the precoding binding granularity of the channel or channel with the binding relationship is the same.
  • Manner 2 Dynamically configure the precoding binding granularity by DCI signaling to adapt to dynamic changes such as transmit and receive beams, allocated resources, and MCS.
  • a configuration method is shown in FIG. 5: the base station configures a precoding binding granularity value set through RRC, and the MAC user edge device (CE) selects a subset from the set and activates for a period of time.
  • the DCI selects the precoding binding granularity (value) from the subset.
  • the default subset selection mode needs to be agreed.
  • precoding binding granularity subset selection through MAC CE, it can also be considered to be implemented by DCI.
  • the aforementioned precoding binding can be either for the sender or for the receiver.
  • the precoding bundling time window of the transmit beam may be a subset of the receive beam precoding bound window.
  • the transmit beam can be characterized by a quasi-co-location relationship with other reference signals
  • the receive beam can be characterized by a correlation with the spatial characteristics of other reference signals.
  • the receive/transmit beam is a specific form of the receive/transmit mode.
  • the transmission parameter information may further include configuration information of the CB or the CBG, and the terminal may determine, according to the following information, the configuration of the CB and the CBG, including: the capability of the receiving node, the configuration of the number of layers, the DCI type, the transmission technology, the demodulation pilot configuration, and the resource.
  • Information such as granularity, multiple access mode, multiplexing mode, MCS configuration, multiplexing mode, and QCL configuration.
  • the device according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to execute the apparatus described in various embodiments of the present invention.
  • a transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a transmission apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes:
  • the first determining module 62 is configured to determine a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the transmission module 64 is configured to transmit in the corresponding transmission resource region according to the transmission parameter.
  • the transmitting end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.
  • the resource aggregation granularity parameter/precoding binding parameter is separately configured by one or more of the following manners:
  • At least two types of DCI At least two types of DCI, at least two types of DCI overhead, at least two transmission technologies, at least two types of pilot ports, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two Service type, at least two waveforms, at least two beam types, at least two beam groups, at least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two modulation and policy coding MCS At least two resource mapping modes, at least two receiving modes, and at least two hybrid automatic repeat request HARQ related parameters.
  • FIG. 7 is a flowchart of a transmission configuration method according to an embodiment of the present invention. As shown in FIG. 7, the flow includes the following steps:
  • Step S702 the receiving end determines a transmission resource region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • Step S704 the receiving end determines a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG.
  • the receiving end determines the transmission resource region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource; and the receiving end determines a transmission parameter set corresponding to the transmission resource region, where The transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter and a precoding granularity parameter, so that the receiving end can perform transmission parameter configuration more flexibly, and the flexibility of the transmission related configuration in the related art is poor.
  • the problem is the problem.
  • the transmitting end determines the transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the transmission parameter is transmitted in the corresponding transmission resource area, so that the transmission end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.
  • the receiving end transmits the transmission resource region according to the transmission parameter set.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information: DCI type, transmission technology, pilot port group, channel/signal type, CB/CBG configuration, service type. , waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, MCS group, resource allocation granularity, pilot pattern, number of antennas/ports, HARQ related parameters, receiving mode, multiple access Mode, multiplexing mode, quasi-co-location QCL configuration.
  • the receiving end determines a precoding granularity parameter of the uplink channel/signal according to the downlink channel/signal precoding granularity parameter; the receiving end determines a precoding granularity parameter of the SRS according to the precoding granularity parameter of the CSI-RS; the receiving end Determining the precoding granularity parameter of the ULDMRS according to the precoding granularity parameter of the CSI-RS
  • the receiving end determines a precoding granularity parameter of the downlink channel/signal according to the uplink channel/signal precoding granularity parameter.
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, wherein the time window parameter is used to determine a resource aggregation granularity parameter/precoding binding granularity.
  • the determining the time window parameter includes: determining the time window parameter according to the type of the transmission channel/signal; or determining the time window parameter according to the beam group to which the transmission belongs; or determining the time window parameter according to the transmission resource region.
  • the information-to-resource mapping configuration can be determined by the following methods: Layer/layer group, Layer number, MCS, DMRS pattern, PTRS pattern, Numerology, Waveform, Slot type, Transmission scheme, DCI type, Traffic type, CB/CBG configuration, Transmission setting, beam, beam number, receiving mode, precoding binding granularity/resource aggregation granularity, HARQ related parameters, multiple access mode, multiplexing mode, A/N configuration, CW/TB configuration, QCL configuration.
  • the candidate set of the mapping configuration of the foregoing transmission resource region includes at least one discrete CB/CBG mapping and one centralized CB/CBG mapping manner.
  • the receiving end determines the resource aggregation granularity parameter/precoding binding parameter according to one or more of the following information
  • DCI type transmission technology; pilot port group; channel/signal type;
  • CB/CBG configuration service type; waveform; beam type;
  • Beam group time domain symbol group/slot group/subframe group; antenna group;
  • MCS group resource allocation granularity; pilot pattern; number of antennas/ports;
  • the sender configures different resource aggregation granularity parameters/precoding binding parameters for different types of information.
  • the receiving end needs to combine the configuration signaling and the status of the type information with the configuration signaling to determine the current resource aggregation. Granular parameters / precoding binding parameters.
  • the source and the receiving end have different resource aggregation granularity parameters/precoding binding parameter values for different states of the above type information, and the current resource aggregation granularity parameter can be determined according to the current state of the type information. / precoding binding parameters.
  • the terminal determines a precoding granularity parameter of the uplink control/DMRS according to the precoding granularity parameter of the SRS;
  • the terminal determines a precoding granularity parameter of the downlink data/DMRS according to the precoding granularity parameter of the CSI-RS;
  • the terminal determines a precoding granularity parameter of the downlink control/DMRS according to the precoding granularity parameter of the CSI-RS;
  • the terminal determines a precoding granularity parameter of the uplink data/DMRS according to the precoding granularity parameter of the uplink control;
  • the binding granularity of multiple channels or signals has a multiple relationship
  • the precoding binding granularity of the plurality of pilot ports has a multiple relationship
  • the precoding binding granularity between the uplink and downlink transmissions is related, and the correlation preferably includes a functional relationship. Specifically, it can be a multiple relationship.
  • the terminal determines a precoding granularity parameter of the uplink channel/signal according to the downlink channel/signal precoding granularity parameter;
  • the resource aggregation granularity parameter/precoding granularity parameter includes at least one time window parameter, and the time window is used to determine a resource aggregation granularity parameter/precoding binding granularity;
  • the receiving end determines the time window parameter according to the type of the channel/signal transmitted.
  • the receiving end determines the time window parameter according to the beam group to which the transmission belongs;
  • the receiving end determines the time window parameter according to the transmission resource area
  • the optional embodiment 12 determines, by the receiving end, the information to the resource mapping configuration for the at least two receiving modes.
  • the receiving end respectively determines information to the resource mapping configuration for at least two precoding binding granularity/resource aggregation granularity;
  • the receiving end determines the resource aggregation granularity parameter/precoding binding parameter for the at least HARQ related parameter; (e.g. process number, new/old data status, redundancy version number;
  • the receiving end determines the resource mapping configuration according to one or more of the following information
  • the multiplexing mode determines the information to the resource mapping configuration
  • the main types of resource mapping configuration include discrete CB mapping and centralized CB mapping, as shown in Figure 8.
  • shaded grid above indicates a CB interlace, some corresponding transmission symbols after modulation, or some CBG for full interleaving and modulation corresponding to some transmission symbols.
  • Resource mapping configuration includes at least discrete CBG mapping and centralized CBG mapping.
  • the discrete method can also be discrete at both time and frequency, as shown in Figure 9.
  • centralized and distributed actually contain multiple specific mapping methods.
  • centralized transmission diversity gain is small, but interference coordination is easy to implement.
  • the distributed mode diversity gain is large, but it is not easy to perform interference coordination and only achieve interference randomization.
  • A/N For URLLC services, some symbols may be destroyed. If A/N is configured more, then centralized mapping can be used to avoid large impact by CB or CBG retransmission, if A/N The configuration is relatively small, and distributed mapping can be used to spread the impact caused by the RE to the different CBs, and the coding redundancy is used for error correction.
  • mapping methods have different speeds of processing, and distributed processing speeds are slower, especially in distributed mapping in the time domain, and centralized mapping processing is faster. Therefore, the mapping method can be determined according to the type of business.
  • the device according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to execute the apparatus described in various embodiments of the present invention.
  • a transmission configuration device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of a transmission configuration apparatus according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes:
  • the second determining module 102 is configured to determine a transmission resource region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • the third determining module 104 is configured to determine a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a mapping. Parameters, CB/CBG.
  • the receiving end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information:
  • DCI type transmission technology, pilot port group, channel/signal type, CB/CBG configuration, service type, waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, MCS group , resource allocation granularity, pilot pattern, number of antennas/ports, HARQ related parameters, receiving mode, multiple access mode, multiplexing mode, QCL configuration.
  • a base station including: a processor and a memory storing the processor executable instructions, when the instruction is executed by the processor, performing an operation of: determining a transmission parameter set corresponding to the transmission resource region
  • the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the resource aggregation granularity parameter/precoding binding parameter is respectively configured by one or more of the following manners: at least two DCI types, at least two DCI overhead sizes, and at least two transmissions.
  • Technology at least two types of pilot ports, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two service types, at least two waveforms, at least two beam types, at least two a beam group, at least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two MCSs, at least two resource mapping modes, at least two receiving modes, and at least two HARQ related parameters.
  • a terminal comprising: a processor and a memory storing the processor executable instructions, when the instruction is executed by the processor, performing an operation of: determining a transmission resource region, wherein the transmission The resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource; and determining a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity Parameters, precoding granularity parameters, mapping parameters, CB/CBG.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information: downlink control information DCI type, transmission technology, pilot port group, channel/signal type , CB/CBG configuration, service type, waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, modulation and policy coding MCS group, resource allocation granularity, pilot pattern, antenna/ Number of ports, HARQ related parameters, receiving mode, multiple access mode, multiplexing mode, QCL configuration.
  • DCI type downlink control information
  • transmission technology pilot port group
  • channel/signal type CB/CBG configuration
  • service type waveform
  • beam type beam group
  • time domain symbol group/slot group/subframe group antenna group
  • modulation and policy coding MCS group modulation and policy coding MCS group
  • resource allocation granularity pilot pattern
  • antenna/ Number of ports HARQ related parameters
  • the transmitting end determines a transmission parameter set corresponding to the transmission resource area, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a resource mapping parameter;
  • the receiving end determines a transmission resource area, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • the receiving end determines a transmission parameter set corresponding to the transmission resource area, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, and a precoding granularity parameter.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor executes the above steps S1, S2 according to the program code stored in the storage medium.
  • the processor executes the above steps S3, S4 according to the program code stored in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by the computing device, so that they may be stored in the storage device by the computing device, and in some cases may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the embodiment of the invention further provides a storage medium, where the computer-executable instructions are stored in the storage medium, and the computer executable instructions are used to execute:
  • the computer program when executed by the processor, further performs: determining a transmission resource region, wherein the transmission resource includes at least one of: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, a code resource, and the transmission
  • the resource area is N, and N is greater than or equal to 1.
  • the computer program When the computer program is executed by the processor, it also performs: transmitting the transmitted configuration signaling to the receiving end.
  • the method further performs: separately configuring the resource aggregation granularity parameter/precoding binding parameter by one or more of the following manners:
  • At least two types of DCI at least two types of DCI overhead, at least two transmission technologies, at least two types of pilot ports, at least two types of channels/signals, at least two CB/CBGs, at least two TB/CWs, at least two Service type, at least two waveforms, at least two beam types, at least two beam groups, at least two time domain symbol groups/slot groups/subframe groups, at least two antennas, at least two MCSs, at least two Resource mapping mode, at least two receiving modes, and at least two HARQ related parameters.
  • At least two Layers at least two Layer numbers, at least two CWs, at least two MCSs, at least two DMRS configurations, at least two PTRS configurations, at least two Numerologies, at least two Waveforms, at least two Slot types, at least Two transmission schemes, at least two types of DCI, at least two types of traffic, at least two CB/CBG configurations, at least two transmission settings, at least two beams, at least two beam numbers, at least two receiving modes, at least two Precoding binding granularity/resource aggregation granularity, at least two HARQ related parameters, and at least two multiple access methods/multiplexing modes.
  • the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource;
  • the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG.
  • the resource aggregation granularity parameter/precoding binding parameter is determined according to one or more of the following information:
  • DCI type transmission technology, pilot port group, channel/signal type, CB/CBG configuration, service type, waveform, beam type, beam group, time domain symbol group/slot group/subframe group, antenna group, MCS group , resource allocation granularity, pilot pattern, number of antennas/ports, HARQ related parameters, receiving mode, multiple access mode, multiplexing mode, QCL configuration.
  • a precoding granularity parameter of the uplink data/DMRS a precoding granularity parameter of the sounding reference signal SRS, and a precoding granularity parameter of the uplink control;
  • a precoding granularity parameter of the uplink control/DMRS a precoding granularity parameter of the sounding reference signal SRS, and a precoding granularity parameter of the uplink data
  • the precoding granularity parameter of the downlink data/downlink control/DMRS is determined according to the precoding granularity parameter of the CSI-RS.
  • the receiving end determines a precoding granularity parameter of the UL DMRS according to a precoding granularity parameter of the CSI-RS.
  • the computer program when executed by the processor, further performs: determining a precoding granularity parameter of the downlink channel/signal according to the uplink channel/signal precoding granularity parameter.
  • the computer program When the computer program is executed by the processor, it is further performed to: determine a precoding granularity parameter of the downlink channel/signal according to the uplink channel/signal precoding granularity parameter.
  • the computer program when executed by the processor, further performs: determining the time window parameter according to a type of the transmission channel/signal; or
  • the time window parameter is determined according to a transmission resource region.
  • the transmitting end determines a transmission parameter set corresponding to the transmission resource region, where the transmission parameter in the transmission parameter set includes at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, and a mapping parameter; The transmitting end transmits in the corresponding transmission resource area according to the transmission parameter.
  • the receiving end determines a transmission resource region, where the transmission resource includes: a time domain resource, a frequency domain resource, an antenna resource, a beam resource, and a code resource; and the receiving end determines a transmission parameter set corresponding to the transmission resource region, where The transmission parameters in the transmission parameter set include at least one of the following: a resource aggregation granularity parameter, a precoding granularity parameter, a mapping parameter, and a CB/CBG.
  • the transmitting end performs transmission in the corresponding transmission resource area according to the transmission parameter, so that the transmitting end can perform transmission parameter configuration more flexibly, and solves the problem that the transmission-related configuration in the related art is less flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种传输及传输配置方法、装置、基站、终端及存储介质。其中,该方法包括:发送端确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;该发送端根据该传输参数在对应的传输资源区域进行传输,使得发送端可以更灵活的进行传输参数配置。通过本发明,解决了相关技术中传输相关的配置的灵活性较差的问题,进而达到了可以进行更灵活的传输配置,更好的满足传输需求,提升***性能的效果。

Description

传输及传输配置方法、装置、基站、终端及存储介质
相关申请的交叉引用
本申请基于申请号为201710184903.3、申请日为2017年03月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种传输及传输配置方法、装置、基站、终端及存储介质。
背景技术
在***(4 thGeneration,4G)长期演进(Long Term Evolution,LTE)中,在传输时,一些传输方面的配置是收发端进行约定的,或者是可以变化的范围很小,并不是很灵活。这种方式虽然复杂度低,但性能比较差。这些方式可能适合4G中主流的一些传输场景,但是对于第五代(5 thGeneration,5G)新无线(New Radio,NR)***来说,这些方式会制约性能的提升。而且5G NR的传输场景非常多,传输方式也有了一些不同,业务也出现了各种类型。现有的传输配置灵活性远远不能适应5G NR的需求。例如:
预编码绑定参数:预编码绑定参数主要用于定义使用相同或相关预编码的资源的粒度。在传输时,一种较好的方式是将参考解调导频(Demodulation Reference Signal,DMRS)和数据使用相同的预编码,此时数据和信道历经相同的信道,可以做到透明的传输。波束权值或称为预编码对于终端来说是透明的。在不同的时频资源上,由于信道不是完全相同, 如果信道信息足够准确,那么理论上可以采用粒度很小的预编码,比如一个物理资源块(Physical Resource Block,PRB)采用一个预编码,不同的PRB采用不同的预编码。粒度越小,理论上预编码增益会越大,而且在开环传输时还可以获得更多的分集增益。但是,在传输时如果预编码粒度越小,会损害DMRS的信道估计性能。因为预编码不同的情况下,不同PRB上的DMRS不能联合进行估计,
在现有的LTE***中,有预编码矩阵指示(Precoding Matrix Indicator,PMI)反馈的情况下,由于开销原因反馈粒度不能太小,预编码粒度是大于一个PRB的,是基于物理资源块组(Physical Resource Block Group,PRBG)级别的,一个PRBG包含的PRB的个数表1所示。与***带宽有关系。如果没有PMI的反馈,此时很可能是互易性比较好的时分双工(Time Division Duplexing,TDD)***,能够获得比较准确的资源块(Resource Block,RB)级的信道信息,因此采用RB级的预编码,预编码的粒度为一个RB。
表1
Figure PCTCN2018080363-appb-000001
现有技术的问题:预编码的粒度配置是约定好的一些取值,不是很灵活;预编码的粒度仅仅根据带宽确定,不能很好的适应各种传输情况;预编码的粒度在时域不支持动态的变化;
与预编码绑定参数非常类似,资源聚合参数也存在相同的问题。这里 资源聚合主要是用于上行或下行的资源分配大小。
信道到资源的映射参数:传统技术中,信号到资源的映射采用先空域,再频域,再时域依次映射的简单方法。这种技术在5G NR中存在两个主要技术缺陷;
第一个问题是:由于NR中的传输的数据量是现有的4G***的很多倍,低密度奇偶校验码(Low Density Parity Check Code,LDPC)编码的传输块(Transport Block,TB)块很大,而每个编码块(Code Block,CB)只支持最大8192bit,因此会被分割成很多个CB,这些CB是独立编码的。由于分集增益的获取是需要同一个CB内的信息历经了多个不同的传输,如果带宽很大,可能会支持几十个CB,现有技术中依次映射可能会导致一个CB只会映射到某个符号的某一些子载波上,不能充分的获取分集增益,影响性能;
第二个问题是:由于NR需要支持的超高可靠性与超低时延业务(Ultra Reliable&Low Latency Communication,URLLC)业务有非常低的传输时延要求,因此在队列中的等待时间也必须短,对于下行业务,当URLLC业务到达基站时,需要将URLLC业务快速地调度出去。同样地,对于上行业务,也需要快速地从终端发送出去。对增强移动宽带(Enhance Mobile Broadband,eMBB)业务和URLLC业务采用频分复用的方式,预留足够的资源给URLLC业务是一种方式,但是由于URLLC业务发送频率比较低,且由于极高的可靠性要求,在调度间隔短的情况下需要预留大量的频率资源,因此,预留资源的方法将带来极大的资源浪费,对于NR网络支持URLLC业务不是一种很好的解决方法。当基站在进行eMBB下行业务发送时,另一种支持URLLC业务和eMBB业务复用比较高效的方式是允许URLLC业务打孔已经在发送的eMBB业务,如图1所示。由于eMBB业务被URLLC业务打孔,在eMBB终端不知道其接收的数据中哪些部分被 URLLC数据覆盖的情况下,eMBB终端直接对所有接收的数据进行译码,性能会急剧下降。而如果被URRLC打掉的数据都是同一个CB的话,会造成该CB不可能传对,需要重传,会影响性能。
针对相关技术中传输相关的配置的灵活性较差的问题,尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种传输及传输配置方法、装置及基站、终端,以至少解决相关技术中传输相关的配置的灵活性较差的问题。
根据本发明的一个实施例,提供了一种传输方法,包括:发送端确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;所述发送端根据所述传输参数在对应的传输资源区域进行传输。
上述方案中,所述方法还包括:所述发送端确定传输资源区域,其中,所述传输资源包括以下至少之一:时域资源、频域资源、天线资源、波束资源、码资源,所述传输资源区域为N个,N大于等于1。
上述方案中,所述方法还包括:所述发送端发送传输的配置信令至接收端。
上述方案中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:至少两种下行控制信息(Downlink Control Information,DCI)类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/编码块组(Code Block Group,CBG)、至少两个TB/码字流(Code Word,CW)、至少两种业务类型、至少两种波形(waveform)、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种调制与策略编码(Modulation and Coding Scheme,MCS)、至少两种资源映射方式、混合 自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)相关参数。
上述方案中,所述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
上述方案中,所述时间窗参数的分配方式包括:为至少两种信道/信号分别分配所述时间窗参数;或者,为至少两个波束组分别配置所述时间窗参数;或者,为至少两个传输资源区域分别配置所述时间窗参数。
上述方案中,通过以下方式至少之一分别确定传输参数到传输资源区域的映射配置:至少两个层(Layer)、至少两种层数(Layer number)、至少两个CW、至少两种MCS、至少两种DMRS配置、至少两种相位噪声导频PTRS配置、至少两种基础参数(Numerology)配置、至少两种Waveform、至少两种节点类型(Slot type)、至少两种传输机制(Transmission scheme)、至少两种DCI类型、至少两种通信类型(Traffic type)、至少两个CB/CBG配置、至少两种传输配置(Transmission setting)、至少两个波束Numerology、至少两种beam数目、至少两种接收方式、至少两种预编码绑定粒度/资源聚合粒度、至少两种HARQ相关参数、至少两种多址方式/复用方式。
上述方案中,所述预编码绑定粒度的配置方式包括:通过DCI的信令动态配置预编码绑定粒度。
根据本发明的另一个实施例,提供了一种传输配置方法,包括:接收端确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;所述接收端确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
上述方案中,所述方法还包括:所述接收端根据所述传输参数集合在所述传输资源区域内进行传输。
上述方案中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:下行控制信息DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、准共址QCL的配置。
上述方案中,所述接收端根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;所述接收端根据以下信息确定上行数据/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参、上行控制的预编码粒度参数;所述接收端根据以下信息确定上行控制/DMRS的预编码粒度参数:探测参考信号(Sounding Reference Signal,SRS)的预编码粒度参数、上行数据的预编码粒度参数;所述接收端根据信道状态信息测量导频(Channel State Information-Reference Signal,CSI-RS)的预编码粒度参数确定下行数据/下行控制/DMRS的预编码粒度参数。
上述方案中,所述接收端根据下行信道/信号预编码粒度参数确定上行信道/信号的预编码粒度参数;所述接收端根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;所述接收端根据CSI-RS的预编码粒度参数确定上行(UpLine,UL)DMRS的预编码粒度参数
上述方案中,所述接收端根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
上述方案中,至少存在两种信道/信号的绑定粒度存在倍数关系、至少存在两种导频端口(port)的预编码绑定粒度存在倍数关系。
上述方案中,所述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
上述方案中,所述时间窗参数的确定方式包括:根据传输信道/信号的类型确定所述时间窗参数;或者,根据传输所属的波束组确定所述时间窗参数;或者,根据传输资源区域确定所述时间窗参数。
上述方案中,通过以下方式分别确定信息到资源的映射配置:Layer/layer组、Layer number、MCS、DMRS pattern、PTRS pattern、Numerology、Waveform、Slot type、Transmission scheme、DCI类型、Traffic type、CB/CBG配置、Transmission setting配置、beam、beam数目、接收方式、预编码绑定粒度/资源聚合粒度、HARQ相关参数、多址方式、复用方式、A/N的配置、CW/TB的配置、QCL的配置。
上述方案中,所述信息到资源的映射配置的候选集合中至少包括一种离散式的CB/CBG映射和一种集中式的CB/CBG映射方式。
根据本发明的另一个实施例,提供了一种传输装置,包括:应用于发送端,包括:第一确定模块,配置为确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;传输模块,配置为根据所述传输参数在对应的传输资源区域进行传输。
上述方案中,所述装置还包括:确定传输资源区域的模块,其中,所述传输资源包括以下至少之一:时域资源、频域资源、天线资源、波束资源、码资源,所述传输资源区域为N个,N大于等于1。
上述方案中,所述装置还包括:发送传输的配置信令至接收端的模块。
上述方案中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、 至少两个天线、至少两种MCS、至少两种资源映射方式、至少两种接收方式、至少两种HARQ相关参数。
上述方案中,所述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
上述方案中,所述时间窗参数的分配方式包括:为至少两种信道/信号分别分配所述时间窗参数;或者,为至少两个波束组分别配置所述时间窗参数;或者,为至少两个传输资源区域分别配置所述时间窗参数。
上述方案中,通过以下方式至少之一分别确定信息到资源的映射配置:至少两个Layer、至少两种Layer number、至少两个CW、至少两种MCS、至少两种DMRS配置、至少两种PTRS配置、至少两种Numerology配置、至少两种Waveform、至少两种Slot type、至少两种Transmission scheme、至少两种DCI类型、至少两种Traffic type、至少两个CB/CBG配置、至少两种Transmission setting配置、至少两个beam、至少两种beam数目、至少两种接收方式、至少两种预编码绑定粒度/资源聚合粒度、至少两种HARQ相关参数、至少两种多址方式/复用方式。
上述方案中,所述传输参数还包括CB或CBG的配置信息,终端可以根据以下信息来确定CB和CBG的配置:接收节点的能力、层数目的配置、DCI类型、传输技术、解调导频配置,资源分配粒度,多址方式、复用方式、MCS配置、复用方式、QCL的配置。
根据本发明的另一个实施例,提供了一种传输装置,包括:应用于接收端,包括:第二确定模块,配置为确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;第三确定模块,配置为确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编 码粒度参数、映射参数、CB/CBG。
上述方案中,所述装置还包括:所述根据所述传输参数集合在所述传输资源区域内进行传输的模块。
上述方案中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、调制与策略编码MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、QCL的配置。
上述方案中,所述装置根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;所述装置根据以下信息确定上行数据/DMRS的预编码粒度参数:SRS的预编码粒度参、上行控制的预编码粒度参数;所述装置根据以下信息确定上行控制/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参数、上行数据的预编码粒度参数;所述装置根据CSI-RS的预编码粒度参数确定下行数据/下行控制/DMRS的预编码粒度参数。
上述方案中,所述装置根据下行信道/信号预编码粒度参数确定上行信道/信号的预编码粒度参数;所述装置根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;所述装置根据CSI-RS的预编码粒度参数确定ULDMRS的预编码粒度参数
上述方案中,所述装置根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
上述方案中,至少存在两种信道/信号的绑定粒度存在倍数关系、至少存在两种导频port的预编码绑定粒度存在倍数关系。
上述方案中,所述资源聚合粒度参数/预编码粒度参数中包含至少一个 时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
上述方案中,所述时间窗参数的确定方式包括:根据传输信道/信号的类型确定所述时间窗参数;或者,根据传输所属的波束组确定所述时间窗参数;或者,根据传输资源区域确定所述时间窗参数。
上述方案中,通过以下方式分别确定信息到资源的映射配置:Layer/layer组、Layer number、MCS、DMRS pattern、PTRS pattern、Numerology、Waveform、Slot type、Transmission scheme、DCI类型、Traffic type、CB/CBG配置、Transmission setting配置、beam、beam数目、接收方式、预编码绑定粒度/资源聚合粒度、HARQ相关参数、多址方式、复用方式、A/N的配置、CW/TB的配置、QCL的配置。
上述方案中,所述传输资源区域的映射配置的候选集合中至少包括一种离散式的CB/CBG映射和一种集中式的CB/CBG映射方式。
根据本发明的又一个实施例,还提供了一种基站,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;根据所述传输参数在对应的传输资源区域进行传输。
上述方案中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种MCS、至少两种资源映射方式、至少两种接收方式、至少两种HARQ相关参数。
根据本发明的又一个实施例,还提供了一种终端,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
上述方案中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、QCL的配置。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
发送端确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
所述发送端根据所述传输参数在对应的传输资源区域进行传输。
上述方案中,存储介质还设置为存储用于执行以下步骤的程序代码:
接收端确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
所述接收端确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
本发明实施例还提供一种存储介质,所述存储介质中存储有计算机 可执行指令,该计算机可执行指令用于执行上述的传输配置方法。
通过本发明,发送端确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;该发送端根据该传输参数在对应的传输资源区域进行传输,使得发送端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中传输方法示意图;
图2是根据本发明实施例的传输方法流程图;
图3是根据本发明实施例的传输方法示意图;
图4是根据本发明实施例的传输方法示意图一;
图5是根据本发明实施例的传输方法示意图二;
图6是根据本发明实施例的传输装置的结构框图;
图7是根据本发明实施例的传输配置方法流程图;
图8是根据本发明实施例资源映射配置主要的类型示意图一;
图9是根据本发明实施例的资源映射配置主要的类型示意图二;
图10是根据本发明实施例的传输配置装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第 一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种传输方法,图2是根据本发明实施例的传输方法流程图,如图2所示,该流程包括如下步骤:
步骤S202,发送端确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
步骤S204,该发送端根据该传输参数在对应的传输资源区域进行传输。
上述方案中,在本实施例中,上述发送端包括但并不限于:基站。
通过上述步骤,发送端确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;该发送端根据该传输参数在对应的传输资源区域进行传输,使得发送端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
在一个上述方案中实施方式中,上述还包括:该发送端确定传输资源区域,其中,该传输资源包括以下至少之一:时域资源、频域资源、天线资源、波束资源、码资源,该传输资源区域为N个,N大于等于1。
上述方案中,发送端发送传输的配置信令至接收端。
在本实施例中可以通过以下方式中的一种或多种分别配置该资源聚合粒度参数/预编码绑定参数:
至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两 种MCS、至少两种资源映射方式、至少两种接收方式、至少两种HARQ相关参数。
上述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,该时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。时间窗参数的分配方式包括:为至少两种信道/信号分别分配该时间窗参数;或者,为至少两个波束组分别配置该时间窗参数;或者,为至少两个传输资源区域分别配置该时间窗参数。
上述方案中,可以通过以下方式至少之一分别确定信息到资源的映射配置:至少两个Layer、至少两种Layer number、至少两个CW、至少两种MCS、至少两种DMRS配置、至少两种PTRS配置、至少两种Numerology配置、至少两种Waveform、至少两种Slot type、至少两种Transmission scheme、至少两种DCI类型、至少两种Traffic type、至少两个CB/CBG配置、至少两种Transmission setting配置、至少两个beam、至少两种beam数目、至少两种接收方式、至少两种预编码绑定粒度/资源聚合粒度、至少两种HARQ相关参数、至少两种多址方式/复用方式。
下面结合具体示例,对本实施例进行举例说明。
可选实施例1
基站针对至少两种DCI类型分别配置资源聚合粒度参数/预编码绑定参数,如表2所示:
表2
Figure PCTCN2018080363-appb-000002
针对至少两种DCI开销大小分别配置资源聚合粒度参数/预编码绑定参 数,如表3所示:
表3
Figure PCTCN2018080363-appb-000003
针对至少两种传输技术分别配置资源聚合粒度参数/预编码绑定参数如表4所示:
表4
Figure PCTCN2018080363-appb-000004
针对至少两个导频端口组分别配置资源聚合粒度参数/预编码绑定参数如表5所示;
表5
Figure PCTCN2018080363-appb-000005
针对至少两类信道/信号分别配置资源聚合粒度参数/预编码绑定参数,如表6所示:
表6
Figure PCTCN2018080363-appb-000006
Figure PCTCN2018080363-appb-000007
针对至少两个CB/CBG分别配置资源聚合粒度参数/预编码绑定参数;
CB标识传输块中的多个独立的编码块,CBG标识编码块构成的组,如表7所示。
表7
Figure PCTCN2018080363-appb-000008
也可以是,表8所示:
表8
Figure PCTCN2018080363-appb-000009
也就是说,如果当前的TB分割为CB/CBG的配置发生变化,其聚合 粒度参数/预编码绑定参数是可以不同的。
针对至少两个TB/CW分别配置资源聚合粒度参数/预编码绑定参数;TB表示传输块transmission block,CW标识码字流codeword,一般认为是一个概念,如表9所示。
表9
Figure PCTCN2018080363-appb-000010
针对至少两种业务类型分别配置资源聚合粒度参数/预编码绑定参数;如表10所示。
表10
Figure PCTCN2018080363-appb-000011
针对至少两种waveform分别配置资源聚合粒度参数/预编码绑定参数如表11所示。
表11
Figure PCTCN2018080363-appb-000012
针对至少两种波束类型分别配置资源聚合粒度参数/预编码绑定参数;如表12所示。
表12
Figure PCTCN2018080363-appb-000013
针对至少两个波束组分别配置资源聚合粒度参数/预编码绑定参数如表13所示。
表13
Figure PCTCN2018080363-appb-000014
针对至少两个时域符号组/时隙组/子帧组分别配置资源聚合粒度参数/预编码绑定参数,如表14所示;
如表14
Figure PCTCN2018080363-appb-000015
针对至少两个天线分别配置资源聚合粒度参数/预编码绑定参数;如表15所示;
表15
Figure PCTCN2018080363-appb-000016
Figure PCTCN2018080363-appb-000017
针对至少两种MCS分别配置资源聚合粒度参数/预编码绑定参数;如表16所示;
表16
Figure PCTCN2018080363-appb-000018
针对至少两种资源映射方式分别配置资源聚合粒度参数/预编码绑定参数;如表17所示;
表17
Figure PCTCN2018080363-appb-000019
针对至少两种接收方式分别确定资源聚合粒度参数/预编码绑定参数;如表18所示;
表18
Figure PCTCN2018080363-appb-000020
针对至少HARQ相关参数;(e.g.、新/旧数据状态、冗余版本号;)分别确定资源聚合粒度参数/预编码绑定参数;如表19~21所示;
表19
Figure PCTCN2018080363-appb-000021
表20
Figure PCTCN2018080363-appb-000022
表21
Figure PCTCN2018080363-appb-000023
可选实施例2:
资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,如图3所示,所述时间窗用于确定资源聚合粒度参数/预编码绑定粒度;
该时间窗可以有几种确定方式:起始时间的确定:
方式1:配置时指定起始时间位置
方式2:根据约定的事件发生时间作为起始时间
方式3:根据约定的事件发生时间再偏移一个值作为起始时间
上面的事件较佳的可以定义为收到配置信令;
也可以是受到配置信令后第一次进行传输;
结束时间的确定:
方式1:配置信令的结束时间位置
方式2:根据约定的事件发生时间作为结束时间
方式3:根据约定的事件发生时间再偏移一个值作为结束时间
上面的事件较佳的可以定义为收到结束指示信令;
上面的事件较佳的可以定义为收到重配信令;
有一种情况如图4所示:
传输参数配置1为默认配置,传输参数配置2被配置时,在其作用时间内,传输配置2生效。传输参数配置3被配置时,在其作用时间内,传输配置3生效。其他时间内传输参数配置1生效。也有一些情况是在传输参数配置2被配置时,传输参数配置1与传输参数配置2结合用于确定最终配置。在传输参数配置3被配置时,传输参数配置1与传输参数配置3结合用于确定最终配置。
发送端为多种不同的信道/信号分别配置该时间窗参数。
发送端为多个不同的波束组分别配置该时间窗参数;
发送端为多个不同的频域传输资源区域分别配置该时间窗参数;
可选实施例3:
发送端可以针对至少两个Layer分别确定信息到资源映射配置;比如layer1传输和layer2的传输分别配置映射方式
发送端可以针对至少两种Layer number分别确定信息到资源映射配置;比如2layer传输和4layer的传输分别配置映射方式
发送端可以针对至少两个CW分别确定信息到资源映射配置;比如CW1传输和CW2的传输分别配置映射方式
发送端可以针对至少两种MCS分别确定信息到资源映射配置;比如 MCS1传输和MCS2的传输分别配置映射方式
发送端可以针对至少两种DMRS配置分别确定信息到资源映射配置;比如DMRS pattern 1,和DMRS pattern 2对应的数据传输或控制信息传输分别配置映射方式。DMRS port数目2,DMRS port数目4对应的数据传输或控制信息传输分别配置映射方式。DMRS OCC=2,DMRS OCC=4对应的数据传输或控制信息传输分别配置映射方式。
发送端可以针对至少两种PTRS配置分别确定信息到资源映射配置;这里的配置包括位置、密度、端口数目、使能状态等参数。
发送端可以针对至少两种Numerology配置分别确定信息到资源映射配置;这里numerology参数包括:CP长度,子载波密度,子载波间隔,符号长度,FFT点数
发送端可以针对至少两种Waveform分别确定信息到资源映射配置;比如CP-OFDM、SC-FDMA可以分别确定资源映射配置。
发送端可以针对至少两种Slot type分别确定信息到资源映射配置;
发送端可以针对至少两种Transmission scheme分别确定信息到资源映射配置;
发送端可以针对至少两种DCI类型分别确定信息到资源映射配置;
发送端可以针对至少两种Traffic type分别确定信息到资源映射配置;
发送端可以针对至少两个CB/CBG配置分别确定信息到资源映射配置;
发送端可以针对至少两种Transmission setting配置分别确定信息到资源映射配置;
发送端可以针对至少两个beam分别确定信息到资源映射配置;
发送端可以针对至少两种beam数目分别确定信息到资源映射配置;
发送端可以针对至少两种接收方式分别确定信息到资源映射配置;
发送端可以针对至少两种预编码绑定粒度/资源聚合粒度分别确定信息到资源映射配置;
发送端可以针对至少HARQ相关参数;(e.g.进程号、新/旧数据状态、冗余版本号;)分别确定资源聚合粒度参数/预编码绑定参数;
发送端可以针对至少两种多址方式/复用方式分别确定信息到资源映射配置。
可选实施例4
在5G中,由于支持的工作频率范围跨度很大,应用场景也非常的多,因此信道的特征可能比4G差异化更大。另外对于多波束***,可能会出现不同的射频波束宽度配置,其对应的信道频选大小也是不同的。仅仅根据带宽大小及是否有PMI反馈来确定预编码绑定粒度看起来不再是一个合适的方法。需要考虑配置灵活性的增强。潜在的增强需求可能来自以下的一些方面:
a.对于控制信道和数据信道的闭环传输,其使用的收发波束并不一定相同,控制信道可能使用较宽的波束发送和接收,而数据信道可能使用较窄的波束,由于宽波束和窄波束范围内对应的有效多径数目是不同的,因此其对应的频选可能是不同的。更灵活预编码绑定粒度配置可以有更好的性能。
b.下行数据或控制信道使用的发送或接收波束可能随时间发生改变。一方面,波束的宽度可能会发生变化。通过波束训练,波束可能会变得越来越窄。另外一方面,即使波束宽度一样,来自不同方向的波束受到多径延迟及TAE的影响也是不同的,基站可以为不同发送/接收波束或BPL(收发波束对)预先配置不同的预编码绑定粒度
c.下行数据使用多个波束进行传输且对应不同的层时,每个传输层对应的信道其频选可能是不同的。这两个层可以分别配置不同的PRB size。
d.对于开环传输或者是半开环传输,基站配置不同大小的预编码绑定粒度,意味着不同的分集增益。在分配的频域资源比较多的情况下,可以采用更大的一些的预编码绑定粒度,但是在比较小的频域资源分配的情况,为了获得足够的分集增益,应该配置比较小的预编码绑定粒度。在不同的资源分配情况下,最合适的预编码绑定粒度可能会存在差异。
e.对于多点协作传输,如果动态的切换发送节点,那么经常会使得对应的信道特征也会发生明显的变化。准共位置关系的配置指示不同,预编码绑定粒度也可能发生改变。另外,动态节点切换DPS和联合传输JT也会有显著的频选差异。JT传输相当于增加了大量的多径,而且来自不同传输节点TP的多径的延迟也可能有明显的差异,因此频选会大很多。
f.CQI/MCS(信道质量/调制编码方式)大小能一定程度的反映了信噪比(Signal Noise Ratio,SNR)的大小.对于低SNR的情况,一般来说需要配置更大的预编码绑定粒度保障DMRS的估计性能,而对于高SNR的情况,提高预编码传输效率会更加重要一些,此时可以配置比较小的预编码绑定粒度。
可选实施例5
有两种方式实现灵活的预编码绑定粒度配置:
方式1:基站可以针对多种传输假设分别配置预编码绑定粒度,例如:为多个发送beam/接收beam/BPL分配配置其对应的预编码绑定粒度,为多种传输技术分别配置其对应的预编码绑定粒度,为多种带资源分配情况分别配置其对应的预编码绑定粒度等等。终端根据当前的传输确定其对应的预编码绑定粒度。上下行波束一致性(Beam correspondence)存在的情况下,上下行信道或信道的预编码绑定粒度可以进行联合配置,具有绑定关 系的信道或信道的预编码绑定粒度相同。
方式2:通过DCI的信令动态的配置预编码绑定粒度来适应收发波束、分配的资源、MCS等动态改变。
一种配置方法如图5所示:基站通过RRC配置一个预编码绑定粒度value集合,MAC用户边缘设备(Customer Edge,CE)从这个集合中选择一个子集并激活一段时间。DCI从该子集中选择预编码绑定粒度(value)。
如果仅有RRC信令和DCI信令的配置,没有有效MAC CE的指示size子集选择的情况,需要约定默认的子集选择方式。
如果仅有RRC信令和有效的MAC CE的配置,但没有DCI信令,则需要约定从MAC CE配置的size子集内选择默认value的方式,比如第一个value。
如果仅有RRC信令配置,没有有效的MAC CE配置和DCI指示的情况,需要约定从RRC配置的size集合中确定一个默认value的方式。
需要指出的是,除了通过MAC CE配置预编码绑定粒度子集选择,也可以考虑通过DCI来实现。
可选实施例6
前面提到的预编码绑定可以是针对发送方也可以是针对接收方的。
发送波束的预编码绑定时间窗(bundling time window)可以是接收波束预编码绑定window的子集。
另外需要指出的是,前面提到的收发波束,发送波束可以采用与其他参考信号的准共位置关系来表征,接收波束可以以与其他参考信号的空间特征的关联性关系来表征。收/发波束是收/发方式的一种具体形式。
可选实施例7
传输参数信息还可以包括CB或CBG的配置信息,终端可以根据以下信息来确定CB和CBG的配置包括:接收节点的能力,层数目的配置,DCI 类型、传输技术、解调导频配置,资源分配粒度,多址方式、复用方式、MCS配置、复用方式、QCL的配置等信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的装置可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的装置。
实施例2
在本实施例中还提供了一种传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的传输装置的结构框图,如图6所示,该装置包括:
1)第一确定模块62,配置为确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
2)传输模块64,配置为根据该传输参数在对应的传输资源区域进行传输。
通过上述装置,使得发送端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
在一个上述方案中实施方式中,通过以下方式中的一种或多种分别配置该资源聚合粒度参数/预编码绑定参数:
至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种调制与策略编码MCS、至少两种资源映射方式、至少两种接收方式、至少两种混合自动重传请求HARQ相关参数。
实施例3
在本实施例中提供了一种传输配置方法,图7是根据本发明实施例的传输配置方法流程图,如图7所示,该流程包括如下步骤:
步骤S702,接收端确定传输资源区域,其中,该传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
步骤S704,接收端确定该传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
通过上述步骤,接收端确定传输资源区域,其中,该传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;接收端确定该传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数,使得接收端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
通过上述步骤,发送端确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;该发送端根据该传输参数在对应的传输资 源区域进行传输,使得发送端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
在一个上述方案中实施方式中,上述接收端根据该传输参数集合在该传输资源区域内进行传输。
上述方案中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、准共址QCL的配置。
上述接收端根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;接收端根据以下信息确定上行数据/DMRS的预编码粒度参数:SRS的预编码粒度参、上行控制的预编码粒度参数;接收端根据以下信息确定上行控制/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参数、上行数据的预编码粒度参数;接收端根据信道状态信息测量导频CSI-RS的预编码粒度参数确定下行数据/下行控制/DMRS的预编码粒度参数。
上述方案中,上述接收端根据下行信道/信号预编码粒度参数确定上行信道/信号的预编码粒度参数;该接收端根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;该接收端根据CSI-RS的预编码粒度参数确定ULDMRS的预编码粒度参数
接收端根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
上述方案中,在本实施例中,至少存在两种信道/信号的绑定粒度存在倍数关系、至少存在两种导频port的预编码绑定粒度存在倍数关系。
上述该资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参 数,其中,该时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
其中,时间窗参数的确定方式包括:根据传输信道/信号的类型确定该时间窗参数;或者,根据传输所属的波束组确定该时间窗参数;或者,根据传输资源区域确定该时间窗参数。
可以通过以下方式分别确定信息到资源的映射配置:Layer/layer组、Layer number、MCS、DMRS pattern、PTRS pattern、Numerology、Waveform、Slot type、Transmission scheme、DCI类型、Traffic type、CB/CBG配置、Transmission setting配置、beam、beam数目、接收方式、预编码绑定粒度/资源聚合粒度、HARQ相关参数、多址方式、复用方式、A/N的配置、CW/TB的配置、QCL的配置。
上述传输资源区域的映射配置的候选集合中至少包括一种离散式的CB/CBG映射和一种集中式的CB/CBG映射方式。
下面结合具体示例,对本实施例进行举例说明。
可选实施例8
接收端根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数;
DCI类型;传输技术;导频端口组;信道/信号类型;
CB/CBG配置;业务类型;waveform;波束类型;
波束组;时域符号组/时隙组/子帧组;天线组;
MCS组;资源分配粒度;导频图样;天线/端口数目;
HARQ相关参数;接收方式;多址方式;复用方式;QCL配置
一种情况是发送端针对不同的上述类型信息配置了不同的资源聚合粒度参数/预编码绑定参数;此时接收端需要结合配置信令及上述类型信息的状态结合配置信令确定当前资源聚合粒度参数/预编码绑定参数。
另外一种情况是,发送端与接收端针对不同的上述类型信息的状态约 定不同的资源聚合粒度参数/预编码绑定参数取值,依据上述类型信息的当前状态即可判断当前资源聚合粒度参数/预编码绑定参数。
可选实施例9
不同的信道/信号之间的预编码绑定粒度具有关联性,这种关联性较佳的包括函数关系:具体的,可以是倍数关系。第一信道/信号的预编码粒度是第二信道/信号的预编码粒度的1/2/4倍,或者第二信道/信号的预编码粒度是第一信道/信号的预编码粒度的1/2/4倍.终端根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;
例如:终端根据SRS的预编码粒度参数确定上行数据/DMRS的预编码粒度参数;
终端根据SRS的预编码粒度参数确定上行控制/DMRS的预编码粒度参数;
终端根据CSI-RS的预编码粒度参数确定下行数据/DMRS的预编码粒度参数;
终端根据CSI-RS的预编码粒度参数确定下行控制/DMRS的预编码粒度参数;
终端根据上行控制的预编码粒度参数确定上行数据/DMRS的预编码粒度参数;
终端根据上行数据的预编码粒度参数确定上行控制/DMRS的预编码粒度参数;
较佳的,多种信道或信号的绑定粒度存在倍数关系;
较佳的,多个导频port的预编码绑定粒度存在倍数关系;
可选实施例10
上下行传输之间的预编码绑定粒度具有关联性,这种关联性较佳的包括函数关系。具体的,可以是倍数关系。终端根据下行信道/信号预编码粒 度参数确定上行信道/信号的预编码粒度参数;
终端根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;
终端根据CSI-RS的预编码粒度参数确定UL DMRS的预编码粒度参数;
这些类型的上下行传输信道/信号可以绑定在一起进行参数的确定
可选实施例11
资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,所述时间窗用于确定资源聚合粒度参数/预编码绑定粒度;
较佳的,接收端根据传输的信道/信号的类型确定该时间窗参数。
较佳的,接收端根据传输所属的波束组确定该时间窗参数;
较佳的,接收端根据传输资源区域确定该时间窗参数;
可选实施例12接收端针对至少两种接收方式分别确定信息到资源映射配置;
接收端针对至少两种预编码绑定粒度/资源聚合粒度分别确定信息到资源映射配置;
接收端针对至少HARQ相关参数;(e.g.进程号、新/旧数据状态、冗余版本号;)分别确定资源聚合粒度参数/预编码绑定参数;
可选实施例13
接收端根据以下信息中的一种或多种来确定资源映射配置;
根据Layer或layer组分别确定信息到资源映射配置;
根据Layer number分别确定信息到资源映射配置;
根据MCS分别确定信息到资源映射配置;
根据DMRS pattern分别确定信息到资源映射配置;
根据PTRS pattern分别确定信息到资源映射配置;
根据Numerology分别确定信息到资源映射配置;
根据Waveform分别确定信息到资源映射配置;
根据Slot type分别确定信息到资源映射配置;
根据Transmission scheme分别确定信息到资源映射配置;
根据DCI类型分别确定信息到资源映射配置;
根据Traffic type分别确定信息到资源映射配置;
根据CB/CBG配置分别确定信息到资源映射配置;
根据Transmission setting配置分别确定信息到资源映射配置;
根据beam分别确定信息到资源映射配置;
根据beam数目分别确定信息到资源映射配置;
根据接收方式分别确定信息到资源映射配置;
根据预编码绑定粒度/资源聚合粒度分别确定信息到资源映射配置;
根据HARQ相关参数确定信息到资源映射配置;
根据多址方式;复用方式确定信息到资源映射配置;
根据CW/TB的配置确定信息到资源映射配置;
根据QCL的配置确定信息到资源映射配置;
可选实施例14
资源映射配置主要的类型包括离散式的CB映射和集中式的CB映射两种方式,如图8所示。
上面同一类型的阴影格子表示一个CB交织、调制后对应的一些传输符号,或者是一个CBG进行充分交织、调制后对应的一些传输符号
资源映射配置至少包括离散式的CBG映射和集中式的CBG映射两种方式
离散方式除了在频域离散,还可以在时频均进行离散,如图9所示。
需要指出的是,集中式和分布式实际上都包含多种具体的映射方式。一般来说,集中式的传输分集增益小,但容易实现干扰协调。分布式的方 式分集增益大,但不容易进行干扰协调只能实现干扰随机化。
对于URLLC业务可能打掉一些符号上的数据,这种情况如果A/N配置得比较多,那么可以采用集中式的映射,通过CB或CBG的重传来避免造成大的影响,如果A/N配置得比较少,可以采用分布式的映射,将打掉RE造成的影响分散到不同的CB上,利用编码冗余进行纠错。
另外,不同的映射方式处理的速度有差异,分布式的方式处理速度会慢一些,尤其是在时域上分布式的映射,集中式的映射处理速度快一些。所以可以根据业务类型来确定映射方式。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的装置可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的装置。
实施例4
在本实施例中还提供了一种传输配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明实施例的传输配置装置的结构框图,如图10所示,该装置包括:
1)第二确定模块102,配置为确定传输资源区域,其中,所述传输资 源包括:时域资源、频域资源、天线资源、波束资源、码资源;
2)第三确定模块104,配置为确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
通过上述装置,使得接收端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。
在一个上述方案中实施方式中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:
DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、QCL的配置。
实施例5
在本实施例中还提供了一种基站,包括:处理器以及存储有该处理器可执行指令的存储器,当该指令被处理器执行时,执行如下操作:确定传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
根据该传输参数在对应的传输资源区域进行传输
在一个上述方案中实施方式中,通过以下方式中的一种或多种分别配置该资源聚合粒度参数/预编码绑定参数:至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种MCS、至少两种资源映射方式、至少两种接收方式、至少两种HARQ相关参数。
实施例6
在本实施例中还提供了一种终端,包括:处理器以及存储有该处理器可执行指令的存储器,当该指令被处理器执行时,执行如下操作:确定传输资源区域,其中,该传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;确定该传输资源区域对应的传输参数集合,其中,该传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
在一个上述方案中实施方式中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:下行控制信息DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、调制与策略编码MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、QCL的配置。
实施例7
本发明的实施例还提供了一种存储介质。上述方案中,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,发送端确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
S2,所述发送端根据所述传输参数在对应的传输资源区域进行传输。
上述方案中,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,接收端确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
S4,所述接收端确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、 预编码粒度参数。
上述方案中,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
上述方案中,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S1、S2。
上述方案中,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S3、S4。
上述方案中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,上述方案中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
本发明实施例还提供一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行:
确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数;
根据所述传输参数在对应的传输资源区域进行传输。
所述计算机程序被处理器运行时,还执行:确定传输资源区域,其中,所述传输资源包括以下至少之一:时域资源、频域资源、天线资源、波束资源、码资源,所述传输资源区域为N个,N大于等于1。
所述计算机程序被处理器运行时,还执行:发送传输的配置信令至接收端。
所述计算机程序被处理器运行时,还执行:通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:
至少两种DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个CB/CBG、至少两个TB/CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种MCS、至少两种资源映射方式、至少两种接收方式、至少两种HARQ相关参数。
所述计算机程序被处理器运行时,还执行:
通过以下方式至少之一分别确定信息到资源的映射配置:
至少两个Layer、至少两种Layer number、至少两个CW、至少两种MCS、至少两种DMRS配置、至少两种PTRS配置、至少两种Numerology、至少两种Waveform、至少两种Slot type、至少两种Transmission scheme、至少两种DCI类型、至少两种Traffic type、至少两个CB/CBG配置、至少两种Transmission setting、至少两个beam、至少两种beam数目、至少两种接收方式、至少两种预编码绑定粒度/资源聚合粒度、至少两种HARQ相关参数、至少两种多址方式/复用方式。
发明实施例还提供一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行:
确定传输资源区域,其中,所述传输资源包括:时域资源、频域资 源、天线资源、波束资源、码资源;
确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。
所述计算机程序被处理器运行时,还执行:根据所述传输参数集合在所述传输资源区域内进行传输。
所述计算机程序被处理器运行时,还执行:
根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:
DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、MCS组、资源分配粒度、导频图样、天线/端口数目、HARQ相关参数、接收方式、多址方式、复用方式、QCL的配置。
所述计算机程序被处理器运行时,还执行:
根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;
根据以下信息确定上行数据/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参、上行控制的预编码粒度参数;
根据以下信息确定上行控制/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参数、上行数据的预编码粒度参数;
根据CSI-RS的预编码粒度参数确定下行数据/下行控制/DMRS的预编码粒度参数。
所述计算机程序被处理器运行时,还执行:
根据下行信道/信号预编码粒度参数确定上行信道/信号的预编码粒度参数;
所述接收端根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;
所述接收端根据CSI-RS的预编码粒度参数确定UL DMRS的预编码粒度参数。
所述计算机程序被处理器运行时,还执行:根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
述计算机程序被处理器运行时,还执行:根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
所述计算机程序被处理器运行时,还执行:根据传输信道/信号的类型确定所述时间窗参数;或者,
根据传输所属的波束组确定所述时间窗参数;或者,
根据传输资源区域确定所述时间窗参数。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中,发送端确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数;所述发送端根据所述传输参数在对应的传输资源区域进行传输。接收端确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;所述接收端确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、CB/CBG。如此,发送端根据该传输参数在对应的传输资源区域进 行传输,使得发送端可以更灵活的进行传输参数配置,解决了相关技术中传输相关的配置的灵活性较差的问题。

Claims (30)

  1. 一种传输方法,包括:
    发送端确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数;
    所述发送端根据所述传输参数在对应的传输资源区域进行传输。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述发送端确定传输资源区域,其中,所述传输资源包括以下至少之一:时域资源、频域资源、天线资源、波束资源、码资源,所述传输资源区域为N个,N大于等于1。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述发送端发送传输的配置信令至接收端。
  4. 根据权利要求1所述的方法,其中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:
    至少两种下行控制信息DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个编码块/编码块组CB/CBG、至少两个传输块TB/码字流CW、至少两种业务类型、至少两种波形waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种调制与策略编码MCS、至少两种资源映射方式、至少两种接收方式、至少两种混合自动重传请求HARQ相关参数。
  5. 根据权利要求1所述的方法,其中,
    所述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
  6. 根据权利要求5所述的方法,其中,所述时间窗参数的分配方式 包括:
    为至少两种信道/信号分别分配所述时间窗参数;或者,
    为至少两个波束组分别配置所述时间窗参数;或者,
    为至少两个传输资源区域分别配置所述时间窗参数。
  7. 根据权利要求1所述的方法,其中,通过以下方式至少之一分别确定信息到资源的映射配置:
    至少两个层Layer、至少两种层数Layer number、至少两个码字流CW、至少两种调制与策略编码MCS、至少两种参考解调导频DMRS配置、至少两种相位噪声导频PTRS配置、至少两种基础参数Numerology配置、至少两种波型Waveform、至少两种节点类型Slot type、至少两种传输机制Transmission scheme、至少两种DCI类型、至少两种传输类型Traffic type、至少两个CB/CBG配置、至少两种传输配置Transmission setting、至少两个波束beam、至少两种beam数目、至少两种接收方式、至少两种预编码绑定粒度/资源聚合粒度、至少两种HARQ相关参数、至少两种多址方式/复用方式。
  8. 根据权利要求7所述的方法,其中,所述预编码绑定粒度的配置方式包括:
    通过DCI的信令动态配置预编码绑定粒度。
  9. 一种传输配置方法,包括:
    接收端确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
    所述接收端确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、编码块/编码块组CB/CBG。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    所述接收端根据所述传输参数集合在所述传输资源区域内进行传输。
  11. 根据权利要求9所述的方法,其中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:
    下行控制信息DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、调制与策略编码MCS组、资源分配粒度、导频图样、天线/端口数目、混合自动重传请求HARQ相关参数、接收方式、多址方式、复用方式、准共址QCL的配置。
  12. 根据权利要求9所述的方法,其中,
    所述接收端根据第一信道/信号的预编码粒度参数确定第二信道/信号的预编码粒度参数;
    所述接收端根据以下信息确定上行数据/参考解调导频DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参、上行控制的预编码粒度参数;
    所述接收端根据以下信息确定上行控制/DMRS的预编码粒度参数:探测参考信号SRS的预编码粒度参数、上行数据的预编码粒度参数;
    所述接收端根据信道状态信息测量导频CSI-RS的预编码粒度参数确定下行数据/下行控制/DMRS的预编码粒度参数。
  13. 根据权利要求9所述的方法,其中,
    所述接收端根据下行信道/信号预编码粒度参数确定上行信道/信号的预编码粒度参数;
    所述接收端根据CSI-RS的预编码粒度参数确定SRS的预编码粒度参数;
    所述接收端根据CSI-RS的预编码粒度参数确定UL DMRS的预编码 粒度参数。
  14. 根据权利要求9所述的方法,其中,
    所述接收端根据上行信道/信号预编码粒度参数确定下行信道/信号的预编码粒度参数。
  15. 根据权利要求13或14所述的方法,其中,
    至少存在两种信道/信号的绑定粒度存在倍数关系、至少存在两种导频port的预编码绑定粒度存在倍数关系。
  16. 根据权利要求9所述的方法,其中,
    所述资源聚合粒度参数/预编码粒度参数中包含至少一个时间窗参数,其中,所述时间窗参数用于确定资源聚合粒度参数/预编码绑定粒度。
  17. 根据权利要求16所述的方法,其中,所述时间窗参数的确定方式包括:
    根据传输信道/信号的类型确定所述时间窗参数;或者,
    根据传输所属的波束组确定所述时间窗参数;或者,
    根据传输资源区域确定所述时间窗参数。
  18. 根据权利要求9所述的方法,其中,通过以下方式分别确定信息到资源的映射配置:
    Layer/layer组、Layer number、MCS、DMRS pattern、PTRS pattern、Numerology、Waveform、Slot type、Transmission scheme、DCI类型、Traffic type、CB/CBG配置、Transmission setting配置、beam、beam数目、接收方式、预编码绑定粒度/资源聚合粒度、HARQ相关参数、多址方式、复用方式、A/N的配置、CW/TB的配置、QCL的配置。
  19. 根据权利要求18所述的方法,其中,
    所述信息到资源的映射配置的候选集合中至少包括一种离散式的CB/CBG映射和一种集中式的CB/CBG映射方式。
  20. 根据权利要求9所述的方法,其中,所述传输参数还包括CB或CBG的配置信息,终端可以根据以下信息来确定CB和CBG的配置:
    接收节点的能力、层数目的配置、下行控制信息DCI类型、传输技术、解调导频配置,资源分配粒度,多址方式、复用方式、MCS配置、复用方式、准共址QCL的配置。
  21. 一种传输装置,设置于发送端,包括:
    第一确定模块,配置为确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数;
    传输模块,配置为根据所述传输参数在对应的传输资源区域进行传输。
  22. 根据权利要求21所述的装置,其中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:
    至少两种下行控制信息DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个编码块/编码块组CB/CBG、至少两个传输块TB/码字流CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种调制与策略编码MCS、至少两种资源映射方式、至少两种接收方式、至少两种混合自动重传请求HARQ相关参数。
  23. 一种传输配置装置,设置于接收端,包括:
    第二确定模块,配置为确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
    第三确定模块,配置为确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒 度参数、预编码粒度参数、映射参数、编码块/编码块组CB/CBG。
  24. 根据权利要求23所述的装置,其中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:
    下行控制信息DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、调制与策略编码MCS组、资源分配粒度、导频图样、天线/端口数目、混合自动重传请求HARQ相关参数、接收方式、多址方式、复用方式、准共址QCL的配置。
  25. 一种基站,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:确定传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、资源映射参数;
    根据所述传输参数在对应的传输资源区域进行传输。
  26. 根据权利要求25所述的基站,其中,通过以下方式中的一种或多种分别配置所述资源聚合粒度参数/预编码绑定参数:
    至少两种下行控制信息DCI类型、至少两种DCI开销大小、至少两种传输技术、至少两种导频端口组、至少两类信道/信号、至少两个编码块/编码块组CB/CBG、至少两个传输块TB/码字流CW、至少两种业务类型、至少两种waveform、至少两种波束类型、至少两个波束组、至少两个时域符号组/时隙组/子帧组、至少两个天线、至少两种调制与策略编码MCS、至少两种资源映射方式、至少两种接收方式、至少两种混合自动重传请求HARQ相关参数。
  27. 一种终端,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被 处理器执行时,执行如下操作:确定传输资源区域,其中,所述传输资源包括:时域资源、频域资源、天线资源、波束资源、码资源;
    确定所述传输资源区域对应的传输参数集合,其中,所述传输参数集合中的传输参数包括以下至少之一:资源聚合粒度参数、预编码粒度参数、映射参数、编码块/编码块组CB/CBG。
  28. 根据权利要求27所述的终端,其中,根据以下信息中的一种或多种来确定资源聚合粒度参数/预编码绑定参数:
    下行控制信息DCI类型、传输技术、导频端口组、信道/信号类型、CB/CBG配置、业务类型、waveform、波束类型、波束组、时域符号组/时隙组/子帧组、天线组、调制与策略编码MCS组、资源分配粒度、导频图样、天线/端口数目、混合自动重传请求HARQ相关参数、接收方式、多址方式、复用方式、准共址QCL的配置。
  29. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至8任一项所述的传输配置方法。
  30. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求9至20任一项所述的传输配置方法。
PCT/CN2018/080363 2017-03-24 2018-03-23 传输及传输配置方法、装置、基站、终端及存储介质 WO2018171774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/497,319 US20210126759A1 (en) 2017-03-24 2018-03-23 Method and device for transmission and setting transmission, base station, terminal and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184903.3 2017-03-24
CN201710184903.3A CN108123778B (zh) 2017-03-24 2017-03-24 传输及传输配置方法、装置及基站、终端

Publications (1)

Publication Number Publication Date
WO2018171774A1 true WO2018171774A1 (zh) 2018-09-27

Family

ID=62228060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080363 WO2018171774A1 (zh) 2017-03-24 2018-03-23 传输及传输配置方法、装置、基站、终端及存储介质

Country Status (3)

Country Link
US (1) US20210126759A1 (zh)
CN (1) CN108123778B (zh)
WO (1) WO2018171774A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386723A1 (en) * 2017-01-17 2019-12-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068241A1 (zh) * 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 传输数据的方法、接收端设备和发送端设备
WO2018195887A1 (en) * 2017-04-28 2018-11-01 Panasonic Intellectual Property Corporation Of America Measurement apparatus and measurement method
CN111034290B (zh) * 2017-08-18 2023-08-04 松下电器(美国)知识产权公司 终端和通信方法
JP7361692B2 (ja) * 2018-07-10 2023-10-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、端末及び通信方法
CN110855330B (zh) 2018-08-20 2022-05-03 大唐移动通信设备有限公司 一种传输方法及装置
CN111147182B (zh) * 2018-11-02 2021-06-04 华为技术有限公司 通信方法及装置
CN117499644A (zh) * 2019-03-14 2024-02-02 北京字节跳动网络技术有限公司 环路整形信息的信令和语法
CN111757500B (zh) * 2019-03-28 2024-05-24 华为技术有限公司 通信方法和装置
CN112055417B (zh) * 2019-06-06 2022-08-26 华为技术有限公司 无线通信***、调度方法、无线通信方法及装置
EP3970276A4 (en) * 2019-07-22 2022-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FREQUENCY SELECTIVE PRECODING METHOD AND APPARATUS FOR UPLINK SHARED PHYSICAL CHANNEL TRANSMISSION
CN112399574B (zh) * 2019-08-15 2023-10-24 华为技术有限公司 一种无线通信的方法和装置以及通信设备
CN111835490B (zh) * 2019-08-23 2022-02-11 维沃移动通信有限公司 一种信道传输方法、设备及***
JP7378612B2 (ja) * 2019-11-04 2023-11-13 北京小米移動軟件有限公司 ダウンリンク制御情報dciの下り送信方法、装置、通信機器及び記憶媒体
WO2021093158A1 (en) * 2020-01-13 2021-05-20 Zte Corporation A method for adaptively configuring transmission of data flows
EP4208970A4 (en) * 2020-09-03 2024-05-22 Qualcomm Inc TWO-STEP REPORTING PROCEDURE FOR SETTING THE CONFIGURATION OF A DEMODULATION REFERENCE SIGNAL
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置
CN117676877A (zh) * 2022-08-11 2024-03-08 ***通信有限公司研究院 一种通信方法、装置、通信设备和计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103905141A (zh) * 2012-12-26 2014-07-02 中兴通讯股份有限公司 一种物理下行共享信道的信道估计方法、***及设备
CN104065602A (zh) * 2010-01-11 2014-09-24 三星电子株式会社 基站及操作其的方法、用户站及操作其的方法
WO2016182038A1 (ja) * 2015-05-14 2016-11-17 シャープ株式会社 端末装置および基地局装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238483B2 (en) * 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
CN101873697A (zh) * 2009-04-25 2010-10-27 中兴通讯股份有限公司 资源映射方法
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
WO2014077577A1 (ko) * 2012-11-13 2014-05-22 엘지전자 주식회사 데이터 전송 방법 및 장치와, 데이터 전송 방법 및 장치
CN104104472B (zh) * 2013-04-10 2019-05-21 中兴通讯股份有限公司 一种保证预编码后信道连续性的方法、基站和ue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065602A (zh) * 2010-01-11 2014-09-24 三星电子株式会社 基站及操作其的方法、用户站及操作其的方法
CN103905141A (zh) * 2012-12-26 2014-07-02 中兴通讯股份有限公司 一种物理下行共享信道的信道估计方法、***及设备
WO2016182038A1 (ja) * 2015-05-14 2016-11-17 シャープ株式会社 端末装置および基地局装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386723A1 (en) * 2017-01-17 2019-12-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus
US10771133B2 (en) * 2017-01-17 2020-09-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus

Also Published As

Publication number Publication date
US20210126759A1 (en) 2021-04-29
CN108123778B (zh) 2023-04-11
CN108123778A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2018171774A1 (zh) 传输及传输配置方法、装置、基站、终端及存储介质
CN109565338B (zh) 无线通信***中的基站和终端及其执行的方法
CN110166209B (zh) 下行控制信息传输方法
US20210067979A1 (en) Method and apparatus for multi-beam operations
JP6439950B2 (ja) 送信装置及び送信方法
US9723608B2 (en) Method and device for D2D communication
CN102577291B (zh) 在多载波无线通信***中收发调度信号的方法和装置
KR20210029281A (ko) 무선 통신 시스템에서 다중 빔 동작을 위한 방법 및 장치
KR20190117457A (ko) 무선 통신 시스템에서 sr을 운반하는 pucch를 송수신하는 방법 및 이를 위한 장치
KR20210002035A (ko) 무선 통신 시스템에서 하향 링크 및 상향 링크 다중 빔 동작을 위한 방법 및 장치
US8634432B2 (en) System and method for subcarrier allocation in a multicarrier wireless network
US11652581B2 (en) Apparatus and method for managing soft buffer in wireless communication system
CN111264036A (zh) 在无线通信***中发送/接收上行链路参考信号或信道的方法和设备
US11337188B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
CN101436892A (zh) 在无线网络中选择天线的方法
JP2011515048A (ja) 階層パイロット構造を備えた無線通信システムの送信機
WO2018059444A1 (zh) 上行控制信息传输/配置指示方法、装置、终端及基站
KR20230021111A (ko) 다중 컴포넌트 캐리어를 위한 다중 빔 동작
CN116076136A (zh) 用于物理层波束指示的方法和装置
KR20170085989A (ko) 간섭을 제어하기 위한 장치 및 방법
US11296824B2 (en) Device and method for supporting different services in wireless communication system
CN105659509A (zh) 在无线通信***中反馈信道质量指示符的方法及其设备
US20220287013A1 (en) Method and apparatus for beam indication with a dl-related dci format
US11330536B2 (en) Apparatus and method for controlling gain of received signal in wireless communication system
CN115039491A (zh) 用于由通信***中的终端收发数据的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771620

Country of ref document: EP

Kind code of ref document: A1