WO2018171697A1 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2018171697A1
WO2018171697A1 PCT/CN2018/080116 CN2018080116W WO2018171697A1 WO 2018171697 A1 WO2018171697 A1 WO 2018171697A1 CN 2018080116 W CN2018080116 W CN 2018080116W WO 2018171697 A1 WO2018171697 A1 WO 2018171697A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
indication information
information
rate matching
bit
Prior art date
Application number
PCT/CN2018/080116
Other languages
English (en)
French (fr)
Inventor
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710204289.2A external-priority patent/CN108632003B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18771691.5A priority Critical patent/EP3591867B1/en
Publication of WO2018171697A1 publication Critical patent/WO2018171697A1/zh
Priority to US16/580,884 priority patent/US11088778B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an information transmission method and apparatus.
  • a physical layer processing procedure of a physical downlink control channel (PDCCH) of a base station includes: performing channel coding, rate matching, scrambling, and modulation on original data bits by a base station. , cyclic shift, and resource mapping and other operations are sent out.
  • PDCCH physical downlink control channel
  • the present application provides an information transmission method and apparatus, which considers the influence of beam pair rate matching to improve the robustness of the control channel.
  • the present application provides a rate matching method, and an execution body of the method may be a transmitting end.
  • the method may include: performing rate matching on the first bit sequence according to the beam indication information to obtain a second bit sequence; wherein the first bit sequence is a bit sequence obtained by channel coding the original data bits.
  • the beam is considered in the process of performing the rate matching operation, so that the bit sequences obtained by matching the PDCCH rates transmitted on different beams may be different, that is, the versions of the PDCCH transmitted on different beams may be different. In this way, by performing soft combining on the UE side, the purpose of improving SNR and reducing the code rate can be achieved, thereby improving the robustness of the control channel.
  • the execution body of the method may be a network device (for example, a base station). If the second bit sequence is applied to the uplink transmission process, the execution body of the method may be a terminal device (such as a UE).
  • performing rate matching on the first bit sequence according to the beam indication information to obtain the second bit sequence may include: determining an initial bit of the second bit sequence according to the beam indication information. Then, the first bit sequence is rate matched according to the initial bit of the second bit sequence, and the second bit sequence is determined.
  • the optional implementation provides a manner of performing a rate matching operation according to the beam indication information, and the specific implementation is not limited thereto.
  • performing rate matching on the first bit sequence according to the beam indication information to obtain the second bit sequence may include: according to a formula Obtaining a second bit sequence; wherein e k represents the kth element in the second bit sequence, k is an integer, Representing the (j+k 0 ) mod K w elements in the first bit sequence, k is in one-to-one correspondence with j, k 0 represents a value associated with beam indication information, and K W represents the length of the first bit sequence.
  • a method for de-rate matching is provided, and an execution body of the method may be a receiving end.
  • the method may include performing de-rate matching on the second bit sequence according to beam indication information of the first beam.
  • the beam indication information of the first beam which may also be referred to as beam indication information of the first beam, is used to indicate the first beam.
  • the second bit sequence is a bit sequence obtained by performing rate matching on the first bit sequence according to beam indication information of the first beam
  • the first bit sequence is a bit sequence obtained by channel coding the original data bits.
  • the execution body of the method may be a terminal device (for example, a UE). If the second bit sequence is applied to the uplink transmission process, the execution body of the method may be a network device (such as a base station).
  • performing de-rate matching on the second bit sequence according to the beam indication information of the first beam may include: first, determining, according to beam indication information of the first beam, an initial of the second bit sequence Bit. Then, the second bit sequence is de-rate matched according to the initial bits of the second bit sequence.
  • the optional implementation provides a method for performing a rate-matching operation according to the beam indication information, and the specific implementation is not limited thereto. It can be understood that, in the case that information such as interference received in the process of transmitting information from the transmitting end to the receiving end is not considered, the bit sequence obtained by performing rate de-matching on the second bit sequence is subjected to channel decoding, and the original data can be obtained. Bit.
  • the application provides an information transmission method
  • the execution body of the method may be a network device (such as a base station) or a terminal device.
  • the method may include: first performing rate matching on the first bit sequence according to the beam indication information to obtain a second bit sequence; wherein the first bit sequence is a bit sequence obtained by channel coding the original data bits.
  • the second bit sequence is then mapped onto the time-frequency resource.
  • the second bit sequence mapped to the time-frequency resource is sent to the receiving end by the beam indicated by the beam indication information.
  • the transmitting end considers the beam in the process of performing the rate matching operation, and the explanation of the related content, the specific implementation manner of the related steps, and the beneficial effects can refer to the rate matching method provided by the foregoing first aspect.
  • the method may further include: sending, by using RRC signaling, MAC signaling, or DCI or uplink control information UCI, beam indication information to the receiving end.
  • the present application provides an information transmission method, and an execution body of the method may be a terminal device (such as a UE) or a network device (such as a base station).
  • the method can include first receiving a first signal transmitted by the first beam from the transmitting end. Then, the first signal is demodulated to obtain a second bit sequence. Finally, the second bit sequence is de-rate matched according to the beam indication information associated with the first beam.
  • the receiving end considers the beam in the process of performing the de-rate matching operation, and the explanation of the related content, the specific implementation manner of the related steps, and the beneficial effects can refer to the de-rate matching method provided by the second aspect.
  • the “first signal” in the present application and the “second signal” in the following refers to a time domain signal, and may specifically include but not limited to any one of the following signals: orthogonal frequency Orthogonal frequency division multiplexing (OFDM) signal, universal filtered multi-carrier (UFMC) signal, filter-band multi-carrier (FBMC) signal, generalized frequency division multiplexing (generalized frequency-division multiplexing, GFDM) signals, etc., in the specific embodiments of the present application, the OFDM signals are taken as an example for description. It can be understood that the first signal may specifically be one OFDM symbol in the OFDM signal.
  • OFDM orthogonal frequency Orthogonal frequency division multiplexing
  • UFMC universal filtered multi-carrier
  • FBMC filter-band multi-carrier
  • GFDM generalized frequency division multiplexing
  • the method may further include: receiving beam indication information by using RRC signaling, MAC signaling, or DCI or UCI.
  • the beam indication information may include beam information of each beam used when the transmitting end sends information to the receiving end.
  • the beam information of multiple beams may be carried in the same signaling or may be carried in different signaling.
  • the method may further include: receiving a second signal sent by the second beam from the transmitting end; demodulating the second signal to obtain a third bit sequence; and combining the beam according to the second beam Instructing information, performing de-rate matching on the third bit sequence; performing a bit-sequence obtained by de-rate matching the second bit sequence, and a bit sequence obtained by performing rate-matching on the third bit sequence, performing soft combining;
  • the bit sequence obtained after soft combining is subjected to channel decoding.
  • the first signal and the second signal may be the same signal or different signals.
  • the first signal and the second signal are the same OFDM symbol, or different OFDM symbols.
  • the first beam and the second beam are two different beams.
  • the possible implementation manner can be considered that the information obtained by monitoring on one beam cannot be correctly decoded to obtain the original data bits, and the information obtained by monitoring on other beams can be obtained, and the information obtained on different beams can be demodulated and solved. After the operations such as rate matching, soft combining and channel decoding are performed to obtain original data bits.
  • the present application provides a rate matching apparatus, which may be the transmitting end involved in the above first aspect, or may be a chip for performing the rate matching method provided by the above first aspect.
  • the apparatus may include: a rate matching unit, configured to perform rate matching on the first bit sequence according to the beam indication information to obtain a second bit sequence; wherein the first bit sequence is a bit sequence obtained by channel coding the original data bit .
  • the rate matching unit may be specifically configured to determine an initial bit of the second bit sequence according to the beam indication information. Then, the first bit sequence is rate matched according to the initial bit of the second bit sequence, and the second bit sequence is determined.
  • the rate matching unit may be specifically configured to: according to a formula Obtaining a second bit sequence; wherein e k represents the kth element in the second bit sequence, k is an integer, Representing the (j+k 0 ) mod K w elements in the first bit sequence, k is in one-to-one correspondence with j, k 0 represents a value associated with beam indication information, and K W represents the length of the first bit sequence.
  • the present application provides a de-rate matching device, which may be the receiving end involved in the above second aspect, or may be a chip for performing the method of de-rate matching provided by the above second aspect.
  • the apparatus may include: a de-rate matching unit, configured to perform rate de-matching on the second bit sequence according to the beam indication information of the first beam.
  • the de-rate matching unit may be specifically configured to: first, determine an initial bit of the second bit sequence according to the beam indication information of the first beam. Then, the second bit sequence is de-rate matched according to the initial bits of the second bit sequence.
  • the present application provides an information transmission apparatus, which may be a network device (such as a base station) or a terminal device (such as a UE).
  • the apparatus can include a rate matching unit, a mapping unit, and a transmitting unit.
  • the rate matching unit is configured to perform rate matching on the first bit sequence according to the beam indication information to obtain a second bit sequence.
  • the first bit sequence is a bit sequence obtained by channel coding the original data bits.
  • a mapping unit configured to map the second bit sequence onto the time-frequency resource.
  • a sending unit configured to send, by using a beam indicated by the beam indication information, a second bit sequence mapped to the time-frequency resource to the receiving end.
  • the sending unit may be further configured to: send the beam indication information to the terminal device by using RRC signaling, MAC signaling, or DCI or uplink control information UCI.
  • the present application provides an information transmission apparatus, which may be a terminal device (such as a UE) or a network device (such as a base station).
  • the apparatus may include: a receiving unit, a demodulating unit, and a de-rate matching unit.
  • the receiving unit is configured to receive the first signal sent by the first beam from the transmitting end.
  • a demodulating unit configured to demodulate the first signal to obtain a second bit sequence.
  • a rate matching unit configured to perform rate de-matching on the second bit sequence according to the beam indication information associated with the first beam.
  • the receiving unit may be further configured to receive beam indication information by using RRC signaling, MAC signaling, or DCI or UCI.
  • the receiving unit is further configured to receive, by the sending end, the second signal sent by the second beam.
  • the demodulation unit is further configured to demodulate the second signal to obtain a third bit sequence.
  • the solution rate matching unit may be further configured to perform rate de-matching on the third bit sequence according to the beam indication information associated with the second beam.
  • the apparatus can also include a soft combining unit and a channel decoding unit.
  • the soft combining unit is configured to perform a soft combining by using a bit sequence obtained by performing rate matching on the second bit sequence and a bit sequence obtained by performing rate matching on the third bit sequence.
  • a channel decoding unit is configured to perform channel decoding on the bit sequence obtained after soft combining.
  • the beam indication information may include at least one of the following information: the relative number of the beam, the logical number of the beam, the physical number of the beam, based on any of the possible implementations provided by any of the aspects or any of the aspects provided above.
  • the present application provides a rate matching apparatus, which can implement the functions performed in the example of the rate matching method provided by the foregoing first aspect, and the functions can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processor and a memory; optionally, the device may further include a communication interface.
  • the processor is configured to support the apparatus to perform the corresponding functions of the methods provided by the first aspect above.
  • the communication interface is used to support communication between the device and other network elements.
  • a memory is coupled to the processor that holds the program instructions and data necessary for the device.
  • the processor may be integral with the processor or may be relatively independent.
  • the communication interface may specifically be a transceiver.
  • the device can be a chip or a device.
  • the present application provides a device for de-rate matching, which may implement the functions performed in the example of the method for de-rate matching provided by the foregoing second aspect, and the functions may be implemented by hardware or by hardware. Perform the appropriate software implementation.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processor and a memory; optionally, the device may further include a communication interface.
  • the processor is configured to support the apparatus to perform the corresponding functions of the methods provided by the second aspect above.
  • the communication interface is used to support communication between the device and other network elements.
  • the memory is for coupling to a processor that holds the program instructions and data necessary for the device.
  • the processor may be integral with the processor or may be relatively independent.
  • the communication interface may specifically be a transceiver.
  • the device can be a chip or a device.
  • the present application provides an information transmission apparatus, which may implement the functions performed in the example of the information transmission method provided by the foregoing third aspect, and the functions may be implemented by hardware or may be performed by hardware.
  • Software Implementation The hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processor and a memory; optionally, the device may further include a communication interface.
  • the processor is configured to support the apparatus to perform the corresponding functions of the methods provided by the third aspect above.
  • the communication interface is used to support communication between the device and other network elements.
  • the memory is for coupling to a processor that holds the program instructions and data necessary for the device.
  • the processor may be integral with the processor or may be relatively independent.
  • the communication interface may specifically be a transceiver.
  • the device can be a chip or a device.
  • the present application provides an information transmission apparatus, which can implement the functions performed in the example of the information transmission method provided by the foregoing fourth aspect, and the functions can be implemented by hardware or by hardware.
  • Software Implementation The hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processor and a memory.
  • the device may also include a communication interface.
  • the processor is configured to support the apparatus to perform the corresponding functions of the methods provided by the fourth aspect above.
  • the communication interface is used to support communication between the device and other network elements.
  • the memory is for coupling to a processor that holds the program instructions and data necessary for the device.
  • the processor may be integral with the processor or may be relatively independent.
  • the communication interface may specifically be a transceiver.
  • the device can be a chip or a device.
  • the present application provides a computer storage medium for storing computer software instructions corresponding to the rate matching method provided by the above first aspect, comprising a program designed to execute the above ninth aspect.
  • the present application provides a computer storage medium for storing computer software instructions corresponding to the method for de-rate matching provided by the second aspect, which includes a program designed to execute the above tenth aspect.
  • the present application provides a computer storage medium for storing computer software instructions corresponding to the information transmission method provided by the third aspect, which comprises a program designed to execute the above eleventh aspect.
  • the present application provides a computer storage medium for storing computer software instructions corresponding to the information transmission method provided by the fourth aspect, which comprises a program designed to execute the above twelfth aspect.
  • the present application provides a computer program product, when run on a computer, causing the computer to perform any of the rate matching methods provided by the first aspect.
  • the present application provides a computer program product, when run on a computer, causing the computer to perform any of the methods of de-rate matching provided by the second aspect.
  • the present application provides a computer program product, which when executed on a computer, causes the computer to perform any of the information transmission methods provided by the third aspect.
  • the present application provides a computer program product, which when executed on a computer, causes the computer to perform any of the information transmission methods provided by the fourth aspect.
  • any of the devices or computer storage media or computer programs provided above are used to perform the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be referred to the corresponding methods provided above. The beneficial effects in this are not repeated here.
  • FIG. 1 is a schematic diagram of a process flow of a PDCCH by a base station in an LTE system provided by the prior art
  • FIG. 1a is a schematic diagram of a process of rate matching provided by the prior art
  • FIG. 2 is a schematic diagram of a process flow of a UE to a PDCCH in an LTE system according to the prior art
  • FIG. 3 is a schematic diagram of a system architecture applicable to the technical solution provided by the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a scenario to which the technical solution provided by the embodiment of the present application is applicable.
  • FIG. 7 is a schematic diagram of another scenario to which the technical solution provided by the embodiment of the present application is applicable.
  • FIG. 8 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a base station performing a scrambling operation according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of another base station performing a scrambling operation according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of beam indication information according to an embodiment of the present disclosure.
  • FIG. 11b is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 11c is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 11 e is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 11f is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 11g is a schematic diagram of another beam indication information according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart diagram of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a UE performing a descrambling operation according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another information transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another information transmission apparatus according to an embodiment of the present application.
  • a radio frame includes 10 subframes, each of which has a length of 1 millisecond (ms), and each subframe includes two slots, each slot being 0.5 ms.
  • the number of symbols included in each slot is related to the length of the cyclic prefix (CP) in the subframe. If the CP is a normal CP, each slot includes 7 symbols, and each subframe is composed of 14 symbols. For example, each subframe can be numbered by #0, #1, #2, #3,# 4, #5, #6, #7, #8, #9, #10, #11, #12, #13 symbol composition. If the CP is an extended CP, each slot includes 6 symbols, and each subframe is composed of 12 symbols.
  • each subframe can be numbered by #0, #1, #2, #3,# 4, #5, #6, #7, #8, #9, #10, #11 symbol composition.
  • symbol herein refers to an orthogonal frequency division multiplexing (OFDM) symbol.
  • a PDCCH is typically transmitted on the first or first two or first three OFDM symbols of a subframe, which may be referred to as control symbols.
  • control symbols For example, if the bandwidth of the LTE system is 1.4 megahertz (MHz), the PDCCH may be transmitted on the ⁇ 2, 3, 4 ⁇ OFDM symbols.
  • a resource element is a minimum time-frequency resource unit.
  • the RE may be uniquely identified by an index pair (k, l), where k is the subcarrier index and l is the symbol index.
  • Four consecutive REs (where the RE occupied by the reference signal are not counted) constitute one resource element group (REG).
  • the REG can be identified by an index pair (k', l').
  • the basic unit of the time-frequency resource carrying the control channel is a control channel element (CCE).
  • CCE contains 9 REGs.
  • the PDCCH can be transmitted using different aggregation levels (AL).
  • the aggregation level refers to how many CCEs the PDCCH carries.
  • the aggregation level can be 1, 2, 4, 8.
  • the aggregation level is 2, which means that the PDCCH is carried on two CCEs.
  • the time-frequency resource corresponding to the symbol in which the PDCCH is located may also carry the following information: a reference signal (RS), and a physical control frame format indication channel ( Physical control formation indication channel (PCFICH), physical HARQ indication channel (PHICH); wherein HARQ is an abbreviation of hybrid automatic repeat request.
  • RS reference signal
  • PCFICH Physical control formation indication channel
  • PHICH physical HARQ indication channel
  • the PCFICH carries control format indication (CFI) information, and the CFI information is used to notify the user equipment (UE) of the number of symbols occupied by the control channel.
  • CFI information can be used by the UE to calculate the total number of resources occupied by the control channel.
  • the CFI information can also be used by the UE to determine the starting position of the data channel in the time domain, i.e. from the first few symbols is the data channel.
  • the PCFICH is a broadcast channel. The base station will send the PCFICH on the first symbol of a subframe. The configuration of the PCFICH itself is notified by other signaling.
  • the PHICH can be used to perform HARQ feedback of UE uplink data.
  • PHICH is a multicast channel.
  • the base station can transmit the PHICH on the first OFDM symbol of one subframe.
  • the configuration of the PHICH itself is notified by a master information block (MIB) carried on a physical broadcast channel (PBCH).
  • MIB master information block
  • PBCH physical broadcast channel
  • the total number of REGs corresponding to the symbols occupied by the control channel is determined by the number of symbols and the bandwidth.
  • the total REG number is subtracted from the time-frequency resource occupied by the PCFICH and the PHICH, that is, the time-frequency resource that the PDCCH can use.
  • two search spaces are defined in the LTE system, which are a common search space and a UE-specific search space.
  • the aggregation level of the PDCCH may be 4, 8.
  • the PDCCH aggregation level may be 1, 2, 4, 8.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other type of beam.
  • the beamforming technique can be beamforming techniques or other technical means.
  • the beamforming technique may be specifically a digital beamforming technique, an analog beamforming technique, or a hybrid beamforming technique. Different beams can be considered as different resources.
  • the same information or different information can be transmitted through different beams. Alternatively, multiple beams having the same or similar communication characteristics can be considered as one beam.
  • One or more antenna ports may be included in one beam for transmitting data channels, control channels, sounding signals, and the like.
  • a transmit beam may refer to a distribution of signal strengths that are formed in different directions of space after the signal is transmitted through the antenna.
  • the receive beam may refer to a signal strength distribution of wireless signals received from the antenna in different directions in space. It can be understood that one or more antenna ports forming one beam can also be regarded as one antenna port set.
  • the beam pair is built on the concept of the beam.
  • a beam pair typically includes a transmit beam at the transmitting end and a receive beam at the receiving end.
  • the “beam” in the following refers to the transmit beam of the base station, and the present invention does not limit the receive beam of the UE.
  • first the terms “first”, “second”, etc. are used herein to distinguish different objects and are not intended to limit the order.
  • first symbol group and the second symbol group are merely for distinguishing different symbol groups, and their order is not limited.
  • FIG. 1 it is a schematic diagram of a process flow of a PDCCH by a base station in an LTE system, and specifically includes the following steps S101 to S113:
  • the base station determines original data bits.
  • the base station sends the PDCCH as an example in which the base station sends downlink control information (DCI) to the UE in the kth subframe.
  • DCI downlink control information
  • the original data bits are the DCI.
  • S102 The base station adds a CRC to the original data bit, where the length of the CRC may be defined by a protocol.
  • the bit sequence obtained by the base station after performing S102 can be expressed as: c 0 , c 1 , c 2 , c 3 , ..., c K-1 .
  • K represents the length of the bit sequence obtained after adding the CRC.
  • S103 The base station performs channel coding on the bit sequence obtained after adding the CRC.
  • Channel coding is one of the most important components of a communication system and provides error detection and error correction for the transmission of information bits.
  • the coding of the control channel may be a tail-biting convolutional coding (TBCC), and the encoding of the control channel in the 5G new radio (NR) may be a Polar code or the like. This application does not limit this.
  • the bit sequence output after the i-th channel coding is If the control channel in LTE uses a 1/3 bit rate TBCC code, the bit sequence output after channel coding is
  • S104 The base station performs rate matching on the bit sequence obtained after channel coding.
  • Rate matching refers to matching the number of bits that need to be transmitted (ie, the number of bits of the bit sequence obtained after channel coding) to the number of bits that the allocated resource can carry. Commonly used rate matching methods may include retransmission, truncation, puncturing, and the like.
  • FIG. 1a is an example based on an example in S103.
  • Figure 1a
  • K ⁇ is the interleaver parameter.
  • D is the input sequence length of the interleaver, Is the smallest integer that satisfies the inequality.
  • the output sequence of the interleaver sequentially outputs w k through the ring buffer,
  • the ring buffer is a logical concept.
  • E is determined by the aggregation level. If the aggregation levels are 1, 2, 4, and 8, respectively, the corresponding Es are: 72, 144, 288, 576.
  • S105 The base station performs CCE aggregation on the bit sequence obtained after the rate matching.
  • N REG represents the total number of REGs that the PDCCH can transmit, that is, the total number of REGs other than the REG occupied by the PHICH and the PCFICH.
  • one PDCCH can be aggregated and transmitted in ⁇ 1, 2, 4, 8 ⁇ CCEs. 72 bits of information can be mapped on each CCE.
  • the base station performs resource multiplexing on the bit sequence obtained by the CCE aggregation and the PDCCH sent by the base station to other UEs.
  • the multiplexing refers to transmitting multiple PDCCHs on the same resource.
  • bit sequence length of the i th PDCCH is And represent the bit sequence as Then, the bit sequence obtained after the base station performs resource multiplexing on the n PDCCH PDCCHs may be:
  • this sequence is defined in this application as b(i), and the total length of b(i) is
  • CCEn that is, the nth CCE
  • the mapped bit sequence may be: b(72*n), b(72*n+1), ..., b(72*n+71). If there is a CCE that is not occupied, add ⁇ NIL>.
  • S107 The base station scrambles the bit sequence obtained after resource multiplexing.
  • Scrambling refers to modulo-adding another sequence (ie, the sequence of bits to be scrambled) with one sequence (ie, a scrambling sequence) to randomize interference between neighboring cells.
  • S108 The base station modulates the bit sequence obtained after the scrambling.
  • the modulation of the PDCCH is generally performed by a quadrature phase shift keying (QPSK) modulation method, that is, two bits are modulated into one QPSK symbol, and the specific modulation method is not limited in this application. Obtained in S107 After modulation, a symbol sequence d(m) is obtained.
  • QPSK quadrature phase shift keying
  • S109 The base station performs layer mapping and precoding on the symbol sequence obtained after the modulation.
  • precoding is an optional step, and for the sake of simplicity of the description, the specific examples below are described on the basis of not considering this step.
  • This application does not limit the specific implementation of S109. Taking an antenna port as an example, the symbol sequence obtained by performing layer mapping and precoding on the symbol sequence d(m) is marked as y(m).
  • S110 The base station interleaves and cyclically shifts the symbol sequence obtained after precoding.
  • the interleaving and cyclic shifting operations are performed in units of quadruplets.
  • a quadruple group z(i) ⁇ y(4i), y(4i+1), y(4i+2), y(4i+3)>.
  • the quadruple sequence can be expressed as z(0), z(1), z(2), z(3).... Interleaving and cyclic shifting are performed on a quadruple sequence.
  • the information obtained by the element z(i) in the quadruplet sequence is marked as w(i)
  • the base station pairs the quadruplet sequence z(0), z( 1), z(2), z(3)...
  • the obtained information can be marked as w(0), w(1), w(2), w(3)...
  • the cyclic shift is related to the cell ID.
  • the information obtained by the base station after performing the cyclic shift operation on the element w(i) in the quadruplet sequence is marked as then:
  • the base station performs resource mapping on the symbol sequence obtained after the cyclic shift according to the mapping rule of the frequency domain after the time domain.
  • Resource mapping refers to mapping a sequence of symbols onto a time-frequency resource. Taking an antenna port as an example, resource mapping means Maps to the REG(k',l') corresponding to the port. In the LTE system, the mapping rule is a pre-time domain and a post-frequency domain. For example, taking the control channel to occupy 3 symbols as an example, the resource mapping may be specifically: the base station will Map to REG(0,0), will Map to REG(0,1), will Map to REG(0,2), will Map to REG(1,0)...
  • the base station performs inverse fast fourier transform (IFFT) on the information mapped to the time-frequency resource.
  • IFFT inverse fast fourier transform
  • the QPSK symbols on the subcarriers are modulated into OFDM waveforms by IFFT.
  • S113 The signal obtained by the base station after sending the IFFT to the UE, that is, the OFDM time domain signal.
  • FIG. 2 it is a schematic diagram of a process flow of a UE to a PDCCH in an LTE system, where the UE receives the PDCCH in the kth subframe (ie, subframe k), and the modulation mode is a QPSK modulation mode.
  • the method may include the following steps S201 to S209:
  • the UE listens to the control channel in the subframe k.
  • the signal monitored by the UE (that is, the signal received by the UE) is a wireless signal carried by the OFDM waveform, that is, an OFDM time domain signal.
  • the UE performs fast Fourier transform (FFT) on the monitored signal.
  • FFT fast Fourier transform
  • the OFDM symbol can be transformed into a QPSK symbol to obtain a symbol sequence.
  • S203 The UE performs deinterleaving and cyclic shift inverse operations on the symbol sequence obtained after the FFT.
  • the process of deinterleaving and cyclic shift inverse operation corresponds to S110, and can be considered as the inverse process of S110.
  • S204 The UE demodulates the symbol sequence obtained after the cyclic shift inverse operation.
  • the symbol sequence can be changed to a bit sequence.
  • the process of demodulation corresponds to S108 and can be considered as the inverse of S108.
  • S205 The UE performs descrambling on the bit sequence obtained after demodulation.
  • the process of descrambling corresponds to S107 and can be considered as the inverse of S107.
  • S206 The UE performs blind detection on the bit sequence obtained by the descrambling.
  • Blind detection refers to the location and aggregation level of the UE attempting to search all possible alternative PDCCHs in the space.
  • the specific implementation manner of the blind detection is not limited in this application.
  • the mth candidate PDCCH obtained by blind detection may be composed of the following CCEs:
  • L is the aggregation level and can be ⁇ 1, 2, 4, 8 ⁇ .
  • N CCE,k represents the number of CCEs used in the subframe k for outgoing control channels.
  • i 0,...,L-1.
  • m 0,...,M (L) -1.
  • M (L) indicates the number of candidate PDCCHs when the aggregation level is L, and LTE specifies a search space dedicated to the UE.
  • LTE specifies a search space dedicated to the UE.
  • n RNTI represents a UE ID and is used to identify a UE.
  • n CI is the carrier indication and is 0 in the case of a single carrier.
  • n s is a radio frame slot number.
  • S207 The UE performs rate de-matching on the candidate PDCCH obtained by the blind detection.
  • the process of the rate matching process corresponds to S104, and can be considered as the inverse process of S104.
  • S208 The UE performs channel decoding on the bit sequence obtained by the de-rate matching.
  • S209 The UE performs CRC check on the bit sequence obtained by channel decoding.
  • the UE determines whether the reception is correct by using the CRC check, that is, whether the candidate PDCCH obtained by blind detection in S206 is really the PDCCH sent to the UE. If unsuccessful, blind detection is performed to obtain the next candidate PDCCH until all candidate PDCCHs are traversed. If successful, the alternative PDCCH obtained by blind detection in S206 is the PDCCH transmitted to the UE.
  • multiple beams can be used to transmit the PDCCH to one UE.
  • Multiple beams may be used for communication between the UE and the base station simultaneously.
  • robustness can be understood as stability or robustness and the like.
  • LTE itself does not consider the beam-related information processing flow.
  • the same step is performed for each of the multiple beams of the base station, that is, , conditions that do not make full use of multiple beams.
  • the present application provides an information transmission method and apparatus.
  • the specificity is to improve the robustness of information transmission by considering the influence of beam pair rate matching.
  • the technical solution provided by the present application can be applied to the system architecture shown in FIG. 3.
  • the system architecture shown in FIG. 3 includes a network device 100 and one or more terminal devices 200 connected to the network device 100.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • Network device 100 can be a base station, a relay station, or an access point, and the like.
  • the base station may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a broadband code division.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device 100 may also be a network device in a future 5G network or a network device in a future evolved PLMN network; it may also be a wearable device or an in-vehicle device or the like.
  • the terminal device 200 may be a UE, an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy, or a UE device.
  • the access terminal may be a cellular phone, a cordless phone, a SIP (session initiation protocol) phone, a WLL (wireless local loop) station, a personal digital assistant (PDA), with wireless communication.
  • the network device 100 is a base station
  • the terminal device 200 is a UE as an example.
  • the base station may include an indoor baseband unit (BBU) and a remote radio unit (RRU), and the RRU and the antenna feeder system (ie, an antenna) are connected.
  • BBU indoor baseband unit
  • RRU remote radio unit
  • the BBU and the RRU may be as needed. Take it apart.
  • the mobile phone may include: a radio frequency (RF) circuit 110, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, an I/O subsystem 170, a processor 180, And components such as power supply 190.
  • RF radio frequency
  • FIG. 5 the structure of the mobile phone shown in FIG. 5 does not constitute a limitation on the mobile phone, and may include more or less components than those illustrated, or combine some components, or split some components, or Different parts are arranged.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 can include a display panel 141 and a touch panel 142.
  • the handset can include more or fewer components than shown.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, and details are not described herein.
  • the processor 180 is connected to the RF circuit 110, the memory 120, the audio circuit 160, the I/O subsystem 170, and the power supply 190, respectively.
  • the I/O subsystem 170 is connected to other input devices 130, display 140, and sensor 150, respectively.
  • the RF circuit 110 can be used for receiving and transmitting signals during and after receiving or transmitting information, and in particular, receiving downlink information of the base station and processing it to the processor 180.
  • the memory 120 can be used to store software programs as well as modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 120.
  • Other input devices 130 can be used to receive input numeric or character information, as well as to generate key signal inputs related to user settings and function controls of the handset.
  • the display screen 140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone, and can also accept user input.
  • Sensor 150 can be a light sensor, a motion sensor, or other sensor.
  • the audio circuit 160 can provide an audio interface between the user and the handset.
  • the I/O subsystem 170 is used to control external devices for input and output, and the external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 180 is the control center of the handset 200, which connects various portions of the entire handset using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling data stored in the memory 120, The various functions and processing data of the mobile phone 200 are executed to perform overall monitoring of the mobile phone.
  • a power source 190 (such as a battery) is used to power the various components described above.
  • the power source can be logically coupled to the processor 180 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the technical solution provided by the present application is particularly applicable to a 5G NR system.
  • the 5G NR in order to ensure the robustness of the control channel, multiple beams can be used to transmit the PDCCH to one UE.
  • the technical solution provided by the present application is particularly applicable to a scenario based on multiple beams. There are two typical scenarios for transmitting one PDCCH using multiple beams.
  • the information transmission method provided by the present application can be applied to the downlink and the uplink. When applied to the downlink, the transmitting end is a network device, and the receiving end is a terminal device, such as a UE. When applied to the uplink, the transmitting end is a terminal device, and the receiving end is a receiving end. Network equipment, such as a base station. The following main behavior examples are described below.
  • Scenario 1 A plurality of beams can be simultaneously used for communication between a UE and a base station. As shown in FIG. 6, the base station transmits a PDCCH to the UE using one control symbol (ie, control symbol 0), and simultaneously transmits the PDCCH using two beams (ie, beam 1 and beam 2).
  • Scenario 2 The UE communicates with the base station using one beam at the same time. As shown in FIG. 7, the base station transmits PDCCH to the UE by using two control symbols (ie, control symbol 0 and control symbol 1), and transmits one control symbol on each beam, that is, transmits control symbol 0 on beam 1. The control symbol 2 is transmitted on the beam 2.
  • FIG. 6 and FIG. 7 are only examples, which do not constitute a limitation of the scenario to which the technical solution provided by the present application is applicable.
  • a base station can transmit a PDCCH on three or more control symbols.
  • FIG. 8 is a schematic flowchart diagram of an information transmission method provided by an embodiment of the present application. It should be noted that FIG. 8 is an example in which a base station processes a PDCCH transmitted on one beam as an example. The method may include the following steps S301 to S312:
  • S304 The base station performs rate matching on the bit sequence obtained after channel coding according to the beam indication information.
  • S304 may include the following steps T1 to T2:
  • T1 The base station determines an initial bit of the second bit sequence according to the beam indication information.
  • the base station determines, according to the beam indication information, a position of the initial bit of the second bit sequence in the first bit sequence.
  • the first bit sequence may be a bit sequence obtained after channel coding, such as a bit sequence directly output after channel coding, or a bit sequence output after channel coding and other processing (eg, interleaving operation, etc.).
  • the second bit sequence is a bit sequence obtained after rate matching.
  • T2 The base station performs rate matching on the first bit sequence according to the initial bit of the second bit sequence, and determines the second bit sequence.
  • the method for acquiring other bits in the second bit sequence is not limited.
  • the base station may continuously acquire a preset number of bits from the initial bit, as The second bit sequence; or, a preset number of bits may be acquired in an odd or even manner from the initial bit, as a second bit sequence, etc., and other examples are not enumerated.
  • S304 may include the following step M1:
  • M1 base station according to formula Obtaining a second bit sequence; wherein e k represents the kth element in the second bit sequence, k is an integer, Representing the (j+k 0 ) mod K w elements in the first bit sequence, k is in one-to-one correspondence with j, k 0 represents a value associated with beam indication information, and K W represents the length of the first bit sequence.
  • step 3 the steps shown in FIG. 9 and FIG. 10 above may be considered as a specific implementation of the selector, that is, step 3) in step S104 above may be replaced. It is the above step M1.
  • the first bit sequence is the output sequence of the ring buffer.
  • E is determined by the aggregation level. If the aggregation levels are 1, 2, 4, and 8, respectively, the corresponding Es are: 72, 144, 288, 576.
  • k 0 is a beam-related value, for example,
  • the base station and the UE may pre-agreed the correlation between k 0 and the beam indication information. Specific examples thereof can be referred to below.
  • E may be a value associated with the beam.
  • E is related to beam quality.
  • RSRP reference signal receiving power
  • a method for correlating the beam quality and the aggregation level may be as follows: when the aggregation level is 1, 2, 4, and 8 as an example, when the base station uses multiple beams to transmit the PDCCH to the UE, the quality of any two beams is different by X1 or In the above, the aggregation levels of the PDCCHs sent on the two beams may be different by one; if the quality of any two beams is different by X2 or more, the aggregation levels of the PDCCHs transmitted on the two beams may be different by 2; any two beams If the quality is different by X3 or more, the aggregation levels of the PDCCHs transmitted on the two beams may differ by 3. Where X1 ⁇ X2 ⁇ X3.
  • the rate matching operation provided by the present application is related to beam indication information, each beam indication information is used to indicate one beam, and different beam indication information indicates different beams.
  • Each beam can be indicated by one or more beam indication information, and different beams can be indicated by different beam indication information.
  • the specific implementation manner of the beam indication information is not limited in this application. Several alternative methods are listed below:
  • the beam indication information is the relative number of the beams.
  • k 0 beam idx .
  • the base station sends a PDCCH to the UE by using two beams.
  • the beam indication information is the logical number of the beam.
  • Mode 3 The beam indication information is the physical number of the beam.
  • N is a predefined or configurable integer.
  • N is a predefined or configurable integer.
  • N is a predefined or configurable integer.
  • the beam indication information is a port number.
  • One beam can correspond to one or more port numbers. Therefore, the beam number corresponding to one beam can be used to indicate the beam.
  • the beam indication information is quasi colocation (QCL) information.
  • Quasi-co-location used to indicate that one or more identical or similar communication features exist between multiple resources.
  • multiple resources with a parity relationship the same or similar communication configuration may be adopted.
  • large-scale characteristics of the channel in which one port transmits one symbol can be inferred from the large-scale characteristics of the channel through which one symbol transmits one symbol.
  • large-scale characteristics may include: delay spread, average delay, Doppler spread, Doppler shift, average gain, terminal equipment receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna space Relevance and so on.
  • the resources of other signals transmitted on the beam transmitting the PDCCH can be used to indicate the beam.
  • the signal may be a reference signal, such as a CSI-RS.
  • the “resources” herein may include, but are not limited to, at least one of the following information: time-frequency resources, number of ports, periods, offsets, and the like.
  • the base station sends a PDCCH to the UE using a certain beam, the base station transmits the CSI-RS using this beam. This is because the general base station needs to first send a CSI-RS to the UE to perform channel measurement; then, the channel measurement result is used to send the PDCCH to the UE. Based on this, the base station can know which beam or beams to use to transmit the PDCCH by the base station, as long as the base station notifies the UE of the port number and/or the resource number used by the CSI-RS.
  • FIG. 11d it is a correspondence between CSI-RS resources and beams.
  • the CSI-RS resource number may be a resource ID, or a resource ID+port ID.
  • beam idx ⁇ 0, 1, ... ⁇ , where each number represents a CSI-RS resource
  • k 0 beam idx mod N
  • N is a predefined or configurable integer
  • the beam indication information is beam pair link (BPL) information.
  • the BPL information may be a BPL number or the like.
  • beam idx ⁇ 0, 1, ... ⁇ , where each number represents a BPL, as shown in Figure 11e.
  • k 0 beam idx .
  • the base station uses the beam pair 0 and the beam pair 1 to send the PDCCH to the UE.
  • the beam indication information is a UE group.
  • the UEs in one beam coverage form one UE group, each UE group may include one or multiple UEs, and one UE may belong to one or multiple UE groups.
  • the UE group 1 corresponding to the beam 1 includes the UE1, the UE group 2 corresponding to the beam 2 includes the UE1 and the UE2, and the UE group 3 corresponding to the beam 3 includes the UE2.
  • beam idx ⁇ 0, 1, ... ⁇ , where each number refers to a group of UEs
  • k 0 beam idx .
  • the beam indication information is a time domain symbol.
  • the time domain symbol refers to an OFDM symbol occupied when the beam is transmitted.
  • This method is applicable to a scenario in which a base station transmits a PDCCH to a same UE on different symbols using multiple beams, and transmits a PDCCH to the UE using only one beam per symbol. As shown in FIG. 11g, the base station transmits a PDCCH to the UE using one beam at symbol 0, and transmits a PDCCH to the UE using another beam at symbol 1.
  • the beam indication information may also be a combination of the at least two pieces of information, for example, in the foregoing manner 5 An example of this. Of course, it is not limited to the above information. This application is not listed one by one.
  • the base station considers the beam when performing the scrambling operation.
  • the bit sequence obtained after the rate matching corresponding to different beams is not limited in the present application. That is to say, the bit sequences obtained after the rate matching of different beams may be the same or different.
  • the beam of communication between the base station and the same UE may change with the movement of the UE.
  • the present application does not limit the change rule of the used beam. In this case, therefore, the beam indication information is not a fixed value.
  • the base station can notify the UE of the beam indication information by signaling.
  • the embodiment of the present application does not limit the execution order of the steps and other steps in FIG. 8. Alternatively, the step may be performed before S301.
  • the signaling used to send the beam indication information may be a newly designed signaling, or may reuse one signaling in the prior art.
  • the base station may use radio resource control (RRC) signaling, medium access control (MAC) signaling, or downlink control information (DCI) or uplink control information (uplink).
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • uplink uplink control information
  • Control information sends beam indication information to the UE.
  • the base station sends the beam indication information to the UE through RRC signaling or MAC signaling, which may be applicable to a scenario where the beam change is slow.
  • the base station sends the beam indication information to the UE through the DCI, which can be applied to a scenario in which the beam change is fast.
  • the base station performs resource mapping on the symbol sequence obtained after the cyclic shift according to the mapping rule of the time domain after the frequency domain.
  • the mapping rule may be a pre-frequency domain post-time domain, thus avoiding occupying one beam in one beam.
  • the UE in the beam direction cannot receive information transmitted on different beams due to the mapping rules in the frequency domain after the first time domain. It can be understood that if a beam occupies multiple symbols, the information transmitted by using the beam may be mapped according to the mapping rule of the time domain after the frequency domain, or may be mapped according to the mapping rule of the time domain after the frequency domain.
  • resource mapping refers to Maps to the REG(k',l') corresponding to the port. Among them, about For a description, refer to S111 above.
  • the base station may perform resource mapping on the symbol sequences corresponding to the two beams: Map to REG(0,0), will Map to REG(1,0), will Map to REG(2,0), will Map to REG(3,0)....
  • step S312 Reference may be made to step S112 in LTE, and details are not described herein again.
  • the base station sends an OFDM time domain signal to the UE by using a beam indicated by the beam indication information.
  • the above S301 to S313 are examples of the processing procedure of the PDCCH transmitted by the base station on one beam.
  • the base station may perform the above process multiple times. It should be understood that some of the above steps may be optional, or the order of execution may be adjusted, and is not performed in full accordance with the execution order of LTE. This embodiment of the present invention does not limit this.
  • the base station considers the beam in the process of performing the rate matching operation, so that the bit sequences obtained by matching the PDCCH rates transmitted on different beams may be different, that is, the versions of the PDCCH transmitted on different beams may be different.
  • the purpose of improving the signal-to-noise ratio (SNR) and reducing the code rate can be achieved, thereby improving the robustness of the control channel.
  • FIG. 12 is a schematic flowchart diagram of an information transmission method provided by an embodiment of the present application. It should be noted that FIG. 12 is an example in which the UE processes the PDCCH transmitted on one beam as an example. The method may include the following steps S401 to S409:
  • the UE monitors the PDCCH transmitted by the beam in the subframe k.
  • the signal monitored by the UE ie, the signal received by the UE
  • S402 to S406 the same as S202 to S206.
  • the UE performs rate de-matching on the candidate PDCCH obtained by the blind detection according to the beam indication information, where the beam indication information is used to indicate the beam in S401.
  • S407 includes the following steps N1 to N2:
  • N1 The UE determines an initial bit of the second bit sequence according to the beam indication information.
  • the second bit sequence herein may be regarded as a bit sequence obtained after performing rate de-matching on the candidate PDCCH.
  • N2 The UE performs rate de-matching on the second bit sequence according to the initial bit of the second bit sequence.
  • the specific implementation process of the steps N1 to N2 corresponds to the specific example of the S304, and the specific implementation process may refer to the above, and details are not described herein again.
  • the related description of the beam indication information can also refer to the above.
  • the method may further include: the UE receiving the beam indication information by using RRC signaling, MAC signaling, or DCI.
  • the UE specifically uses which signaling receiving beam indication information is related to which signaling the base station uses to transmit beam indication information. For example, if the base station transmits beam indication information using RRC signaling, the UE receives beam indication information using RRC signaling. Other examples are not listed one by one.
  • the UE may try to perform soft combining and then decoding the bit sequence obtained by demodulating and de-rate matching the received information of two or more beams.
  • the specific algorithm of soft combining differs according to the encoding method. For example, reference may be made to turbo coding and HARQ-IR soft combining in LTE. It can be understood that, in this case, the UE needs to store the version of the received information corresponding to the PDCCH that is decoded incorrectly (ie, the information of the bit sequence to be subjected to the de-rate matching) for soft combining.
  • the reason why the PDCCH is incorrectly decoded may be because the PDCCH is not for the UE, or is interfered by the transmission process, etc., which is not limited in this application.
  • the UE considers a beam in the process of performing a de-rate matching operation, and the process of the de-rate matching corresponds to the process of rate matching in the embodiment shown in FIG. 8. Therefore, the explanation of the related content is performed.
  • the beneficial effects that can be achieved reference may be made to the corresponding parts in the embodiment shown in FIG. 8, and details are not described herein again.
  • each network element such as a network device (such as a base station) or a terminal device (such as a UE).
  • a network device such as a base station
  • a terminal device such as a UE
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the network device or the terminal device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions:
  • FIG. 14 shows a schematic structural diagram of an information transmission device 140.
  • the information transmission device 140 may be the network device 100 (corresponding to the downlink) involved in the foregoing, such as a base station, or a terminal device (corresponding to an uplink), such as a UE, or a chip.
  • the information transmission device 140 may include a rate matching unit 1401, a mapping unit 1402, and a transmitting unit 1403.
  • the rate matching unit 1401 may be configured to perform S304 in FIG. 8, steps in FIG. 9, steps in FIG. 10, and/or other processes for supporting the techniques described herein.
  • Mapping unit 1402 can be used to perform S311 in FIG. 8, and/or other processes for supporting the techniques described herein.
  • Transmitting unit 1403 can be used to perform S311 in FIG. 8, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 15 shows a schematic structural diagram of an information transmission device 150.
  • the information transmission device 150 may be the terminal device 200 involved in the above, such as a UE, and may also be a network device, such as a base station, or may be a chip.
  • the information transmission device 150 may include a receiving unit 1501, a demodulating unit 1502, and a de-rate matching unit 1503. Wherein, the receiving unit 1501 can be used to execute S401 in FIG. 12, and/or other processes for supporting the techniques described herein.
  • Demodulation unit 1502 may be used to perform S406 in FIG. 12, and/or other processes for supporting the techniques described herein.
  • the information transmission device 150 further includes a channel decoding unit 1504 and a soft combining unit 1505.
  • the channel decoding unit 1504 can be configured to perform channel decoding on the bit sequence obtained after the de-rate matching.
  • the soft combining unit 1505 can soft combine the bit sequences obtained by demodulating and de-rate matching the received information of two or more beams, thereby improving the channel decoding accuracy.
  • the information transmission devices 140-150 are presented in the form of dividing each functional module into individual functional modules, or are presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality. .
  • ASIC application-specific integrated circuit
  • any of the information transmission devices 140-150 can be implemented by the structure shown in FIG.
  • the information transmission device 160 may include a memory 1601 and a processor 1602.
  • the information transmission device may further include a communication interface 1603.
  • the memory 1602 is configured to store the computer execution instructions.
  • the processor 1601 executes the computer execution instructions stored in the memory 1602 to enable the information transmission device 160 to execute the information transmission method provided by the embodiment of the present application.
  • the transmitting unit 1403 can correspond to the communication interface 1603 in FIG.
  • the rate matching unit 1401 and the mapping unit 1402 may be embedded in hardware or in a memory 2101 independent of the information transmission device 160.
  • receiving unit 1501 can correspond to communication interface 1604 in FIG.
  • the demodulation unit 1502, the de-rate matching unit 1503, the decoding unit 1504, and the soft combining unit 1505 may be embedded in hardware or in a memory 1601 independent of the information transmission device 160.
  • the information transmission device 160 may be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processing unit. (central processor unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), can also use programmable controller (programmable Logic device, PLD) or other integrated chip.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • PLD programmable Logic device
  • the embodiment of the present application further provides a storage medium, which may include a memory 1602.
  • the information transmission device provided by the embodiment of the present application can be used to perform the foregoing information transmission method. Therefore, the technical effects of the present invention can be referred to the foregoing method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the process or function described in the embodiments of the present application.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信息传输方法和装置,涉及通信技术领域,该技术方案考虑了波束对信息传输的影响,从而提高了控制信道的鲁棒性。该方法可以包括:根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,第一比特序列是对原始比特序列进行信道编码后得到的比特序列;将第二比特序列映射至时频资源上;通过波束指示信息所指示的波束,向接收端发送映射至时频资源上的第二比特序列。

Description

一种信息传输方法和装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息传输方法和装置。
背景技术
在长期演进(long term evolution,LTE)***中,基站对物理下行控制信道(physical downlink control channel,PDCCH)的物理层处理流程包括:基站对原始数据比特进行信道编码、速率匹配、加扰、调制、循环移位,以及资源映射等操作之后发送出去。该技术方案不再适合新空口(new radio,NR)的需求。
发明内容
本申请提供一种信息传输方法和装置,考虑了波束对速率匹配的影响,以提高控制信道的鲁棒性。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供了一种速率匹配方法,该方法的执行主体可以是发射端。该方法可以包括:根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,第一比特序列是对原始数据比特进行信道编码后得到的比特序列。该技术方案中,在执行速率匹配操作的过程中考虑了波束,这样,不同波束上发送的PDCCH速率匹配后得到的比特序列可以不同,也就是说,不同波束上传输的PDCCH的版本可以不同,这样,通过UE侧进行软合并,可以实现提高SNR和降低码率的目的,从而提高控制信道的鲁棒性。
可以理解的,若第二比特序列应用于下行传输过程中,则该方法的执行主体可以是网络设备(例如基站)。若第二比特序列应用于上行传输过程中,则该方法的执行主体可以是终端设备(如UE)。
在一种可选的实现方式中,根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列,可以包括:根据波束指示信息,确定第二比特序列的初始比特。然后,根据第二比特序列的初始比特,对第一比特序列进行速率匹配,确定第二比特序列。该可选的实现方式提供了一种根据波束指示信息,进行速率匹配操作的方式,具体实现时不限于此。
在一种可选的实现方式中,根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列,可以包括:根据公式
Figure PCTCN2018080116-appb-000001
得到第二比特序列;其中,e k表示第二比特序列中的第k个元素,k为整数,
Figure PCTCN2018080116-appb-000002
表示第一比特序列中的第(j+k 0)mod K w个元素,k与j一一对应,k 0表示与波束指示信息相关的一个值,K W表示第一比特序列的长度。
第二方面,提供一种解速率匹配的方法,该方法的执行主体可以是接收端。该方法可以包括:根据第一波束的波束指示信息,对第二比特序列进行解速率匹配。其中,第一波束的波束指示信息,也可以称为第一波束关联的波束指示信息,用于指示第一波束。第二比特序列是根据第一波束的波束指示信息对第一比特序列进行速率匹配后得到的比特序列,第一比特序列是对原始数据比特进行信道编码后得到的比特序列。该技术方案与第一方面提供的速率匹配方法对应,因此其能达到的有益效果可以参考上文,此处不再赘 述。
可以理解的,若第二比特序列应用于下行传输过程中,则该方法的执行主体可以是终端设备(例如UE)。若第二比特序列应用于上行传输过程中,则该方法的执行主体可以是网络设备(如基站)。
在一种可选的实现方式中,根据第一波束的波束指示信息,对第二比特序列进行解速率匹配,可以包括:首先,根据第一波束的波束指示信息,确定第二比特序列的初始比特。然后,根据第二比特序列的初始比特,对第二比特序列进行解速率匹配。该可选的实现方式提供了一种根据波束指示信息,进行解速率匹配操作的方式,具体实现时不限于此。可以理解的,在不考虑信息从发射端传输至接收端的过程中所受到的干扰等信息的情况下,对第二比特序列进行解速率匹配后得到的比特序列进行信道解码,即可得到原始数据比特。
第三方面,本申请提供一种信息传输方法,该方法的执行主体可以是网络设备(如基站),也可以是终端设备。该方法可以包括:首先,根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,第一比特序列是对原始数据比特进行信道编码后得到的比特序列。然后,将第二比特序列映射至时频资源上。最后,通过波束指示信息所指示的波束,向接收端发送映射至时频资源上的第二比特序列。该技术方案中,发送端在执行速率匹配操作的过程中考虑了波束,其相关内容的解释、相关步骤的具体实现方式,以及有益效果均可以参考上述第一方面提供的速率匹配方法。
在一种可选的实现方式中,该方法还可以包括:通过RRC信令、MAC信令或DCI或者上行控制信息UCI向该接收端发送波束指示信息。
第四方面,本申请提供了一种信息传输方法,该方法的执行主体可以是终端设备(如UE),也可以是网络设备(如基站)。该方法可以包括:首先,接收来自发送端的通过第一波束发送的第一信号。然后,对第一信号进行解调,获取第二比特序列。最后,根据第一波束关联的波束指示信息,对第二比特序列进行解速率匹配。该技术方案中,接收端在执行解速率匹配操作的过程中考虑了波束,其相关内容的解释、相关步骤的具体实现方式,以及有益效果均可以参考上述第二方面提供的解速率匹配方法。
在一种可能的实现方式中,本申请中的“第一信号”以及下文中的“第二信号”是指时域信号,具体可以包括但不限于以下信号中的任一种:正交频分多址(orthogonal frequency division multiplexing,OFDM)信号,通用滤波多载波(universal filtered multi-carrier,UFMC)信号,滤波器组多载波(filter-band multi-carrier,FBMC)信号,广义频分多工(generalized frequency-division multiplexing,GFDM)信号等,本申请具体实施方式中,均是以OFDM信号为例进行说明的。可以理解的,第一信号具体可以是OFDM信号中的一个OFDM符号。
在一种可能的实现方式中,该方法还可以包括:通过RRC信令、MAC信令或DCI或UCI接收波束指示信息。该波束指示信息,可以包括发射端向接收端发送信息时所使用的每个波束的波束信息。其中,多个波束的波束信息可以携带在同一条信令中,也可以携带在不同的信令中。
在一种可能的实现方式中,该方法还可以包括:接收来自发送端的通过第二波束发送的第二信号;对第二信号进行解调,获取第三比特序列;根据第二波束关联的波束指示信息,对第三比特序列进行解速率匹配;将对第二比特序列进行解速率匹配后得到的比特序列, 以及对第三比特序列进行解速率匹配后得到的比特序列,进行软合并;对软合并后得到的比特序列进行信道解码。
其中,第一信号和第二信号可以是同一个信号,也可以是不同的信号。例如,第一信号与第二信号是同一个OFDM符号,或者不同的OFDM符号。第一波束与第二波束为不同的两个波束。该可能的实现方式可以认为在对一个波束上监测得到的信息不能正确解码得到原始数据比特的基础上,可以尝试获得其他波束上监测得到的信息,并将不同波束上得到的信息经解调和解速率匹配等操作后进行软合并和信道解码,从而得到原始数据比特。
第五方面,本申请提供了一种速率匹配装置,该装置可以是上述第一方面中涉及的发射端,也可以是用于执行上述第一方面提供的速率匹配方法的一个芯片。该装置可以包括:速率匹配单元,用于根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,第一比特序列是对原始数据比特进行信道编码后得到的比特序列。
在一种可能的实现方式中,速率匹配单元具体可以用于:根据波束指示信息,确定第二比特序列的初始比特。然后,根据第二比特序列的初始比特,对第一比特序列进行速率匹配,确定第二比特序列。
在一种可能的实现方式中,速率匹配单元具体可以用于:根据公式
Figure PCTCN2018080116-appb-000003
得到第二比特序列;其中,e k表示第二比特序列中的第k个元素,k为整数,
Figure PCTCN2018080116-appb-000004
表示第一比特序列中的第(j+k 0)mod K w个元素,k与j一一对应,k 0表示与波束指示信息相关的一个值,K W表示第一比特序列的长度。
第六方面,本申请提供了一种解速率匹配装置,该装置可以是上述第二方面中涉及的接收端,也可以是用于执行上述第二方面提供的解速率匹配的方法的一个芯片。该装置可以包括:解速率匹配单元,用于根据第一波束的波束指示信息,对第二比特序列进行解速率匹配。
在一种可选的实现方式中,解速率匹配单元具体可以用于:首先,根据第一波束的波束指示信息,确定第二比特序列的初始比特。然后,根据第二比特序列的初始比特,对第二比特序列进行解速率匹配。
第七方面,本申请提供了一种信息传输装置,该装置可以是网络设备(如基站),也可以是终端设备(如UE)。该装置可以包括:速率匹配单元、映射单元和发送单元。其中,速率匹配单元用于根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,第一比特序列是对原始数据比特进行信道编码后得到的比特序列。映射单元,用于将第二比特序列映射至时频资源上。发送单元,用于通过波束指示信息所指示的波束,向接收端发送映射至时频资源上的第二比特序列。
在一种可选的实现方式中,发送单元还可以用于:通过RRC信令、MAC信令或DCI或上行控制信息UCI向该终端设备发送波束指示信息。
第八方面,本申请提供了一种信息传输装置,该装置可以是终端设备(如UE),也可以是网络设备(如基站)。该装置可以包括:接收单元、解调单元和解速率匹配单元。其中,接收单元,用于接收来自发送端的通过第一波束发送的第一信号。解调单元,用于对第一信号进行解调,获取第二比特序列。解速率匹配单元,用于根据第一波束关联 的波束指示信息,对第二比特序列进行解速率匹配。
在一种可能的实现方式中,接收单元还可以用于,通过RRC信令、MAC信令或DCI或UCI接收波束指示信息。
在一种可能的实现方式中,接收单元还可以用于,接收来自发送端的通过第二波束发送的第二信号。解调单元还可以用于,对第二信号进行解调,获取第三比特序列。解速率匹配单元还可以用于,根据第二波束关联的波束指示信息,对第三比特序列进行解速率匹配。该装置还可以包括:软合并单元和信道解码单元。其中,软合并单元,用于对第二比特序列进行解速率匹配后得到的比特序列,以及对第三比特序列进行解速率匹配后得到的比特序列,进行软合并。信道解码单元,用于对软合并后得到的比特序列进行信道解码。
基于上文提供的任一方面或任一方面提供的任一种可能的实现方式,波束指示信息可以包括以下信息中的至少一种:波束的相对编号,波束的逻辑编号,波束的物理编号,端口号、准共址QCL信息、波束对连接信息,终端设备组,波束对应的时域符号;其中,每个波束对应的终端设备为一个终端设备组。其中,关于offset与波束指示信息之间的相关方式可以参考具体实施方式,此处不再赘述。
第九方面,本申请提供了一种速率匹配装置,该装置可以实现上述第一方面提供的速率匹配方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器;可选地,该装置还可以包括通信接口。该处理器被配置为支持该装置执行上述第一方面提供的方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。所述处理器可以与所述处理器集成一体,也可以相对独立。该通信接口具体可以是收发器。
在一种可能的实现方式中,该装置可以是一种芯片或者一种设备。
第十方面,本申请提供了一种解速率匹配的装置,该装置可以实现上述第二方面提供的解速率匹配的方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器;可选地,该装置还可以包括通信接口。该处理器被配置为支持该装置执行上述第二方面提供的方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。所述处理器可以与所述处理器集成一体,也可以相对独立。该通信接口具体可以是收发器。
在一种可能的实现方式中,该装置可以是一种芯片或者一种设备。
第十一方面,本申请提供了一种信息传输装置,该装置可以实现上述第三方面提供的信息传输方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器;可选地,该装置还可以包括通信接口。该处理器被配置为支持该装置执行上述第三方面提供的方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。该存储器用于与处理器耦合,其保存该 装置必要的程序指令和数据。所述处理器可以与所述处理器集成一体,也可以相对独立。该通信接口具体可以是收发器。
在一种可能的实现方式中,该装置可以是一种芯片或者一种设备。
第十二方面,本申请提供了一种信息传输装置,该装置可以实现上述第四方面提供的信息传输方法示例中所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的实现方式中,该装置的结构中包括处理器、存储器。可选地,该装置还可以包括通信接口。该处理器被配置为支持该装置执行上述第四方面提供的方法中相应的功能。该通信接口用于支持该装置与其他网元之间的通信。该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。所述处理器可以与所述处理器集成一体,也可以相对独立。该通信接口具体可以是收发器。
在一种可能的实现方式中,该装置可以是一种芯片或者一种设备。
第十三方面,本申请提供了一种计算机存储介质,用于储存上述第一方面提供的速率匹配方法所对应的计算机软件指令,其包含用于执行上述第九方面所设计的程序。
第十四方面,本申请提供了一种计算机存储介质,用于储存上述第二方面提供的解速率匹配的方法所对应的计算机软件指令,其包含用于执行上述第十方面所设计的程序。
第十五方面,本申请提供了一种计算机存储介质,用于储存上述第三方面提供的信息传输方法所对应的计算机软件指令,其包含用于执行上述第十一方面所设计的程序。
第十六方面,本申请提供了一种计算机存储介质,用于储存上述第四方面提供的信息传输方法所对应的计算机软件指令,其包含用于执行上述第十二方面所设计的程序。
第十七方面,本申请提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面提供的任一种速率匹配方法。
第十八方面,本申请提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面提供的任一种解速率匹配的方法。
第十九方面,本申请提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行第三方面提供的任一种信息传输方法。
第二十方面,本申请提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行第四方面提供的任一种信息传输方法。
可以理解地,上述提供的任一种装置或计算机存储介质或计算机程序均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种LTE***中基站对PDCCH的处理流程的示意图;
图1a为现有技术提供的一种速率匹配的过程示意图;
图2为现有技术提供的一种LTE***中UE对PDCCH的处理流程的示意图;
图3为本申请实施例提供的技术方案所适用的一种***架构的示意图;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的一种终端设备的结构示意图;
图6为本申请实施例提供的技术方案所适用的一种场景的示意图;
图7为本申请实施例提供的技术方案所适用的另一种场景的示意图;
图8为本申请实施例提供的一种信息传输方法的流程示意图;
图9为本申请实施例提供的一种基站执行加扰操作的流程示意图;
图10为本申请实施例提供的另一种基站执行加扰操作的流程示意图;
图11a为本申请实施例提供的一种波束指示信息的示意图;
图11b为本申请实施例提供的另一种波束指示信息的示意图;
图11c为本申请实施例提供的另一种波束指示信息的示意图;
图11d为本申请实施例提供的另一种波束指示信息的示意图;
图11e为本申请实施例提供的另一种波束指示信息的示意图;
图11f为本申请实施例提供的另一种波束指示信息的示意图;
图11g为本申请实施例提供的另一种波束指示信息的示意图;
图12为本申请实施例提供的另一种信息传输方法的流程示意图;
图13为本申请实施例提供的一种UE执行解扰操作的流程示意图;
图14为本申请实施例提供的一种信息传输装置的结构示意图;
图15为本申请实施例提供的另一种信息传输装置的结构示意图;
图16为本申请实施例提供的另一种信息传输装置的结构示意图。
具体实施方式
首先,对本申请涉及的相关技术及相关术语进行简单介绍,以方便读者理解:
1)传输控制信道的时域资源
LTE***中,信道是以无线帧(radio frame)为单位进行传输的。一个无线帧包括10个子帧(subframe),每个子帧的长度为1毫秒(ms),每个子帧包括两个时隙(slot),每个slot为0.5ms。每个slot包括的符号的个数与子帧中循环前缀(cyclic prefix,CP)的长度相关。若CP为普通(normal)CP,则每个slot包括7个符号,每个子帧由14个符号组成,例如,每个子帧可以由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13的符号组成。若CP为长(extended)CP,则每个slot包括6个符号,每个子帧由12个符号组成,例如,每个子帧可以由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11的符号组成。这里的“符号”是指正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。
LTE***中,PDCCH通常在一个子帧的第一个或前两个或前三个OFDM符号上传输,这些OFDM符号可以被称为控制符号。例如,若LTE***的带宽为1.4兆赫兹(MHz),则可以在第{2,3,4}个OFDM符号上传输PDCCH。
2)传输控制信道的时频资源
LTE***中,资源单元(resource element,RE)是最小的时频资源单元。RE可以由索引对(k,l)唯一标识,其中,k为子载波索引,l为符号索引。4个连续的RE(其中,不计算参考信号所占用的RE)构成1个资源元素组(resource element group,REG)。REG可以由索引对(k’,l’)标识。
传输控制信道时,承载控制信道的时频资源的基本单位是控制信道元素(control channel element,CCE)。一个CCE包含9个REG。PDCCH可以采用不同的聚合级别(aggregation level,AL)进行传输。其中聚合级别是指PDCCH承载在多少个CCE。聚合级别可以为1,2,4,8, 例如聚合级别为2是指PDCCH承载在2个CCE上。
3)PDCCH可使用的时频资源
PDCCH所在的符号(其中,在LTE***中,该符号一般是指第一个符号)对应的时频资源上还可能承载以下信息:参考信号(reference signal,RS),物理控制帧格式指示信道(physical control formation indication channel,PCFICH),物理HARQ指示信道(physical HARQ indication channel,PHICH);其中,HARQ是自动混合重传请求(hybrid automatic repeat request)的英文缩写。
其中,PCFICH携带控制格式指示(control format indication,CFI)信息,CFI信息用于通知用户设备(user equipment,UE)控制信道所占的符号数。CFI信息可以被UE用来计算控制信道所占的总资源数。CFI信息也可以被UE用来确定数据信道在时域上的起始位置,即从第几个符号开始是数据信道。PCFICH是一个广播性质的信道。基站会在一个子帧的第一个符号上发送PCFICH。PCFICH本身的配置由其他信令通知。
其中,UE如果发送了上行数据,那么,该UE会期待基站对该上行数据是否被正确接收做出反馈。PHICH可以用来做UE上行数据的HARQ反馈。PHICH是一个组播性质的信道。基站可以在一个子帧的第一个OFDM符号上发送PHICH。PHICH本身的配置由承载在物理广播信道(physical broadcast channel,PBCH)的主消息块(master information block,MIB)通知。
控制信道所占的符号对应的总REG数由符号数和带宽决定。该总REG数减去被PCFICH和PHICH占用的时频资源,即PDCCH可使用的时频资源。
4)搜索空间
为了降低UE的复杂度,LTE***中定义了两种搜索空间,分别是公共搜索空间和UE专用搜索空间。在公共搜索空间中,PDCCH的聚合级别可为4,8。在UE专用搜索空间中,PDCCH聚合级别可为1,2,4,8。LTE中规定一个PDCCH只能由连续的n个CCE构成,并只能以第i个CCE作为起始位置,其中i mod n=0。
5)波束(beam)和波束对(beam pair link)
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形(beamforming)技术可以具体为数字波束成形技术、模拟波束成形技术、或混合波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束对建立在波束的概念上。一个波束对通常包括发送端的一个发送波束和接收端的一个接收波束。需要说明的是,下文中的“波束”均是指基站的发送波束,对于UE的接收波束,本申请对此不进行限定。
6)其他术语
本文中的术语“多个”是指两个或两个以上。
本文中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一符号组和第二符号组仅仅是为了区分不同的符号组,并不对其先后顺序进行限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
下面说明LTE***中,基站和UE对PDCCH的处理流程:
如图1所示,为LTE***中基站对PDCCH的处理流程的示意图,具体可以包括以下步骤S101~S113:
S101:基站确定原始数据比特。本实施例中以基站发送PDCCH为基站在第k个子帧向UE发送下行控制信息(downlink control information,DCI)为例。该情况下,原始数据比特是该DCI。
S102:基站为原始数据比特添加CRC,其中,CRC的长度可以是由协议定义的。
基站执行S102后得到的比特序列可以表示为:c 0,c 1,c 2,c 3,...,c K-1。其中,K表示添加CRC后得到的比特序列的长度。
S103:基站对添加CRC后得到的比特序列,进行信道编码。
信道编码是通信***中最重要的组成部分之一,可以为信息比特的传输提供检错和纠错能力。LTE中对控制信道的编码可以采用咬尾卷积码(tail-biting convolutional coding TBCC)等,5G新空口(new radio,NR)中对控制信道的编码可以采用Polar码等。本申请对此不进行限定。第i个信道编码后输出的比特序列为
Figure PCTCN2018080116-appb-000005
若LTE中控制信道采用1/3码率的TBCC码,则信道编码后输出的比特序列分别为
Figure PCTCN2018080116-appb-000006
S104:基站对信道编码后得到的比特序列,进行速率匹配。
速率匹配是指将需要传输的比特数目(即信道编码后得到的比特序列的比特数目)匹配成所分配的资源能够承载的比特数目。常用的速率匹配方法可以包括重发、截断、打孔等。
一种速率匹配的过程如图1a所示。其中,图1a是基于S103中的示例为例进行说明的。在图1a中:
1)比特序列
Figure PCTCN2018080116-appb-000007
经交织器执行交织操作后输出序列
Figure PCTCN2018080116-appb-000008
其中:
比特序列
Figure PCTCN2018080116-appb-000009
交织后得到
Figure PCTCN2018080116-appb-000010
其中,
Figure PCTCN2018080116-appb-000011
具体为:
Figure PCTCN2018080116-appb-000012
比特序列
Figure PCTCN2018080116-appb-000013
交织后得到
Figure PCTCN2018080116-appb-000014
其中,
Figure PCTCN2018080116-appb-000015
具体为:
Figure PCTCN2018080116-appb-000016
比特序列
Figure PCTCN2018080116-appb-000017
交织后得到
Figure PCTCN2018080116-appb-000018
其中,
Figure PCTCN2018080116-appb-000019
具体为:
Figure PCTCN2018080116-appb-000020
其中,K Π是交织器参数。
Figure PCTCN2018080116-appb-000021
其中,
Figure PCTCN2018080116-appb-000022
D是交织器的输入序列长度,
Figure PCTCN2018080116-appb-000023
是满足该不等式的最小整数。
关于交织的具体实现过程,此处不再赘述。
2)交织器的输出序列通过环形缓存器依次输出w k,
Figure PCTCN2018080116-appb-000024
环形缓存器是一个逻辑概念。
环形缓存器的输出长度为K w=3K Π,即:
Figure PCTCN2018080116-appb-000025
其中,k=0,…,K Π-1。
Figure PCTCN2018080116-appb-000026
其中,k=0,…,K Π-1。
Figure PCTCN2018080116-appb-000027
其中,k=0,…,K Π-1。
3)环形缓存器的输出序列经选择器,选择出输出长度为E的比特序列,其中,若将该比特序列中的元素标记为e k,则k=0,1,...E-1。
其中,
Figure PCTCN2018080116-appb-000028
E是由聚合级别确定的,若聚合级别分别为1,2,4,8时,对应的E分别为:72,144,288,576。
S105:基站对速率匹配后得到的比特序列,进行CCE聚合。
***中CCE总数为
Figure PCTCN2018080116-appb-000029
其中,
Figure PCTCN2018080116-appb-000030
表示向下取整。N REG表示PDCCH可传输的REG总数,即除PHICH和PCFICH占用的REG之外的REG总数。由上述描述可知,一个PDCCH可以在{1,2,4,8}个CCE聚合传输。每个CCE上可以映射72比特的信息。
S106:基站对CCE聚合后得到的比特序列与该基站向其他UE发送的PDCCH进行资源复用。其中,复用是指将多个PDCCH在相同的资源上传输。
例如,假设第i个PDCCH的比特序列长度为
Figure PCTCN2018080116-appb-000031
并将该比特序列表示为
Figure PCTCN2018080116-appb-000032
那么,基站对n PDCCH个PDCCH进行资源复用之后得到的比特序列可以为:
Figure PCTCN2018080116-appb-000033
为了表达的简洁,本申请中将这个序列定义为b(i),b(i)的总长度为
Figure PCTCN2018080116-appb-000034
示例的,CCEn,即第n个CCE,上映射的比特序列可以为:b(72*n),b(72*n+1),…,b(72*n+71)。如果有CCE没有被占用,对应添加<NIL>。
S107:基站对资源复用后得到的比特序列进行加扰。
加扰是指用一个序列(即加扰序列)对另一个序列(即待加扰比特序列)进行模二加操作,从而随机化相邻小区之间的干扰。
S108:基站对加扰后得到的比特序列进行调制。
LTE***中,对PDCCH的调制一般采用正交相移键控(quadrature phase shift keyin,QPSK)调制方式,即将2个比特调制成一个QPSK符号,本申请对具体的调制方式不进行限定。对S107中得到的
Figure PCTCN2018080116-appb-000035
进行调制后,得到符号序列d(m)。
S109:基站对调制后得到的符号序列进行层映射(layer mapping)和预编码(precoding)。
其中,预编码是可选的步骤,为了表示的简洁,下文中的具体示例中均是在不考虑这一步骤的基础上描述的。本申请对S109的具体实现方式不进行限定。以一个天线端口为例,将对符号序列d(m)执行层映射和预编码后得到的符号序列标记为y(m)。
S110:基站对预编码后得到的符号序列进行交织和循环移位。
在LTE***中,交织和循环移位操作是以四联组(quadruplet)为单位进行的。以一个天线端口为例,一个四联组z(i)=<y(4i),y(4i+1),y(4i+2),y(4i+3)>。四联组序列可以表示为z(0),z(1),z(2),z(3)……。交织和循环移位是以四联组序列为对象进行的。假设将基站对四联组序列进行交织操作后,该四联组序列中的元素z(i)得到的信息标记为w(i),那么,基站对四联组序列z(0),z(1),z(2),z(3)……执行交织操作之后,得到的信息可以被标记为w(0),w(1),w(2),w(3)……
循环移位与cell ID相关。基站对四联组序列中的元素w(i)执行循环移位操作后得到的信 息标记为
Figure PCTCN2018080116-appb-000036
则:
Figure PCTCN2018080116-appb-000037
其中,M quad表示四联组的数目,其与调制方式相关,若采用QPSK调制方式进行调制,则M quad表示QPSK符号数除以4,即:M quad=M symb/4。
S111:基站按照先时域后频域的映射规则,对循环移位后得到的符号序列进行资源映射。
资源映射是指将符号序列映射至时频资源上。以一个天线端口为例,资源映射是指将
Figure PCTCN2018080116-appb-000038
映射至该端口对应的REG(k’,l’)上。在LTE***中,映射规则是先时域后频域,例如,以控制信道占用3个符号为例,资源映射具体可以为:基站将
Figure PCTCN2018080116-appb-000039
映射至REG(0,0),将
Figure PCTCN2018080116-appb-000040
映射至REG(0,1),将
Figure PCTCN2018080116-appb-000041
映射至REG(0,2),将
Figure PCTCN2018080116-appb-000042
映射至REG(1,0)……
S112:基站对映射至时频资源的信息进行快速傅里叶反变换(inverse fast fourier transform,IFFT)。
通过IFFT将子载波上的QPSK符号调制成OFDM波形。
S113:基站向UE发送IFFT后得到的信号,即OFDM时域信号。
如图2所示,为LTE***中UE对PDCCH的处理流程的示意图,其中,以UE在第k个子帧(即子帧k)接收PDCCH,以及调制方式是QPSK调制方式为例。该方法可以包括以下步骤S201~S209:
S201:UE在子帧k监听控制信道。其中,UE监听到的信号(即UE接收到的信号)是以OFDM波形承载的无线信号,即OFDM时域信号。
S202:UE对监听到的信号,进行快速傅里叶变换(fast fourier transform,FFT)。
UE执行FFT之后,可以将OFDM符号变换成QPSK符号,得到符号序列。
S203:UE对FFT后得到的符号序列进行解交织和循环移位逆操作。其中,解交织和循环移位逆操作的过程与S110对应,可以认为是S110的反过程。
S204:UE对循环移位逆操作后得到的符号序列进行解调。
UE执行解调之后,可以将符号序列变为比特序列。解调的过程与S108对应,可以认为是S108的反过程。
S205:UE对解调后得到的比特序列进行解扰。
解扰的过程与S107对应,可以认为是S107的反过程。
S206:UE对解扰得到的比特序列,进行盲检。
盲检是指UE尝试搜索空间内所有可能的备选PDCCH的位置和聚合级别。本申请对盲检的具体实现方式不进行限定。例如,盲检得到的第m个备选PDCCH可以由以下CCE构成:
Figure PCTCN2018080116-appb-000043
其中,L表示聚合级别,可以为{1,2,4,8}。N CCE,k表示子帧k内的用于传出控制信道的CCE数。i=0,…,L-1。m=0,...,M (L)-1。M (L)表示聚合级别为L时备选PDCCH的数目,LTE规定对UE专用搜索空间,L={1,2,4,8}时,M (L)分别为{6,6,2,2},而对于公共搜索空间,L={4,8}时,M (L)分别为{4,2}。
对于公共搜索空间,m’=m,Y k=0。
对于UE专用搜索空间,m'=m+M (L)·n CI,Y k=(A·Y k-1)mod D,Y -1=n RNTI≠0,A=39827,D=65537,
Figure PCTCN2018080116-appb-000044
其中,n RNTI表示UE ID,用来标识 一个UE。n CI是载波指示,在单载波的情况下为0。n s是一个无线帧内slot号。
S207:UE对盲检得到的备选PDCCH进行解速率匹配。
解速率匹配的过程与S104对应,可以认为是S104的反过程。
S208:UE对解速率匹配得到的比特序列,进行信道解码。
S209:UE对信道解码得到的比特序列进行CRC校验。
UE通过CRC校验确定接收是否正确,即S206中盲检得到的备选PDCCH是否真的是发给该UE的PDCCH。如果不成功,则进行盲检得到下一个备选PDCCH,直到遍历所有备选PDCCH。如果成功,说明S206中盲检得到的备选PDCCH是发送给该UE的PDCCH。
根据5G NR的讨论,为了保证控制信道的鲁棒性(robustness),可以使用多个波束向一个UE传输PDCCH。UE和基站之间可能同时使用多个波束进行通信。其中,鲁棒性可以理解为稳定性或稳健性等。
但是,根据上文描述可知,上文提供的技术方案至少存在以下技术问题:
第一,LTE本身没有考虑与波束相关的信息处理流程。
第二,在基站使用多个波束向同一个UE发送PDCCH的场景下,如果仍然沿用上述的处理流程,针对基站的多个波束中的每个波束,均执行一次上述同样的步骤,也就是说,没有充分利用多个波束的条件。
基于此,本申请提供了一种信息传输方法和装置。其具体为通过考虑波束对速率匹配的影响,从而提高信息传输的鲁棒性。
下面将结合本申请中的附图,对本申请中的技术方案进行详细地描述。
本申请提供的技术方案可以应用于图3所示的***架构中。图3所示的***架构中包括一个网络设备100,以及与网络设备100连接的一个或多个终端设备200。
其中,网络设备100可以是能和终端设备200通信的设备。网络设备100可以是基站、中继站或接入点等。基站可以是全球移动通信***(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是未来5G网络中的网络设备或未来演进的PLMN网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端设备200可以是UE、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、SIP(会话启动协议,session initiation protocol)电话、WLL(无线本地环路,wireless local loop)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
需要说明的是,本文中均是以网络设备100是基站,终端设备200是UE为例进行说明。
以网络设备100为基站为例,对基站的通用硬件架构进行说明。如图4所示,基站可以包括室内基带处理单元(building baseband unit,BBU)和远端射频模块(remote radio unit,RRU),RRU和天馈***(即天线)连接,BBU和RRU可以根据需要拆开使用。
以终端设备200为手机为例,对手机的通用硬件架构进行说明。如图5所示,手机可以包括:射频(radio Frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子***170、处理器180、以及电源190等部件。本领域技术人员可以理解,图5所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user Interface,UI),显示屏140可以包括显示面板141和触摸面板142。且手机可以包括比图示更多或者更少的部件。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路110、存储器120、音频电路160、I/O子***170、以及电源190均连接。I/O子***170分别与其他输入设备130、显示屏140、传感器150均连接。其中,RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理。存储器120可用于存储软件程序以及模块。处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其他传感器。音频电路160可提供用户与手机之间的音频接口。I/O子***170用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器180是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机200的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理***与处理器180逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗等功能。
需要说明的是,本申请提供的技术方案尤其可以适用于5G NR***中。根据5G NR的讨论,为了保证控制信道的鲁棒性,可以使用多个波束向一个UE传输PDCCH。本申请提供的技术方案尤其适用于基于多个波束的场景中。使用多个波束发送一个PDCCH可以有以下两种典型的场景。本申请提供的信息传输方法可以应用于下行和上行,当应用于下行时,发送端为网络设备,接收端为终端设备,比如UE;当应用于上行时,发送端为终端设备,接收端为网络设备,比如基站。下文主要以下行为例,进行描述。
场景1:UE和基站之间能够同时使用多个波束进行通信。如图6所示,基站使用1个控制符号(即控制符号0)向UE传输PDCCH,并且,同时使用2个波束(即波束1和波束2)发送该PDCCH。
场景2:UE在同一时刻与基站使用一个波束进行通信。如图7所示,基站使用2个控制符号(即控制符号0和控制符号1)向UE传输PDCCH,并且,在每个波束上传输1个控制符号,即:在波束1上传输控制符号0,在波束2上传输控制符号2。
可以理解的,上述图6和图7仅为示例,其不构成对本申请提供的技术方案所适用的场景的限定。例如,基站可以在3个或3个以上的控制符号上传输PDCCH。
为了便于描述,以下以步骤的形式示出并详细描述了本申请实施例中基站和UE执行的信息传输方法。
如图8所示,为本申请实施例提供的一种信息传输方法的流程示意图。需要说明的是,图8中是以基站对一个波束上传输的PDCCH进行处理为例进行说明的。该方法可以包括如下步骤S301~S312:
应理解,以下S301~S312步骤中部分步骤为可选地,执行顺序可以调整,本发明不予限定。
S301~S303:可以参考现在LTE中S101~S103的步骤,这里不再赘述。
S304:基站根据波束指示信息,对信道编码后得到的比特序列,进行速率匹配。
作为一种示例,如图9所示,S304可以包括以下步骤T1~T2:
T1:基站根据波束指示信息,确定第二比特序列的初始比特。
具体的,基站根据波束指示信息,确定第二比特序列的初始比特在第一比特序列中的位置。其中,第一比特序列可以是信道编码后得到的比特序列,例如信道编码后直接输出的比特序列,或者是经信道编码及其他处理(例如交织操作等)操作后输出的比特序列。第二比特序列是速率匹配后得到的比特序列。
T2:基站根据第二比特序列的初始比特,对第一比特序列进行速率匹配,确定第二比特序列。
可以理解的,获取了第二比特序列的初始比特之后,本申请对第二比特序列中的其他比特的获取方式不进行限定,例如,基站可以从初始比特开始连续获取预设数量的比特,作为第二比特序列;或者,可以从初始比特开始按照奇数或偶数的方式获取预设数量的比特,作为第二比特序列,等等,其他示例不再一一列举。
作为一种示例,如图10所示,S304可以包括以下步骤M1:
M1:基站根据公式
Figure PCTCN2018080116-appb-000045
得到第二比特序列;其中,e k表示第二比特序列中的第k个元素,k为整数,
Figure PCTCN2018080116-appb-000046
表示第一比特序列中的第(j+k 0)mod K w个元素,k与j一一对应,k 0表示与波束指示信息相关的一个值,K W表示第一比特序列的长度。
作为一种示例,基于如图1a所示的速率匹配的实现架构,上述图9和图10所示的步骤可以认为是选择器的具体实现,即上文中步骤S104中的步骤3)可以被替换为上述步骤M1。该情况下,第一比特序列是环形缓存器的输出序列。
其中,k=0,1,...,E。k<E,
Figure PCTCN2018080116-appb-000047
E是由聚合级别确定的,若聚合级别分别为1,2,4,8时,对应的E分别为:72,144,288,576。
其中,k 0是一个与波束相关的值,例如,
Figure PCTCN2018080116-appb-000048
可以理解的,具体实现时,基站和UE可以预先约定k 0与波束指示信息之间的相关关系。其具体示例可以参考下文。
在一种可选的实施例中,E可以是与波束相关的一个值。例如:E与波束质量相关。
基站和UE之间可以维护多组可用波束对,每一个波束的质量可以由UE测得并反馈给基站。波束的质量可以由多种体现方式,比如参考信号接收强度(reference signal receiving power,RSRP)等。一种波束质量与聚合级别的相关方式可以体现为:以聚合级别为1,2,4,8四种为例,基站使用多个波束向UE发送PDCCH时,任意两个波束的质量相差X1或以上,则该两个波束上发送的PDCCH的聚合级别可以相差1;任意两个波束的质量相差X2或以上, 则该两个波束上发送的PDCCH的聚合级别可以相差2;任意两个波束的质量相差X3或以上,则该两个波束上发送的PDCCH的聚合级别可以相差3。其中,X1<X2<X3。
可以理解的,由S304可知,本申请提供的速率匹配操作与波束指示信息相关,每个波束指示信息用于指示一个波束,不同的波束指示信息指示不同的波束。每个波束可以采用一个或多个波束指示信息进行指示,不同的波束可以采用不同的波束指示信息进行指示。本申请对波束指示信息的具体实现方式不进行限定,下面列举几种可选的方式:
方式1:波束指示信息是波束的相对编号。
假设基站向UE发送PDCCH所使用的波束的相对编号是beam idx={0,1,...},其中,每个编号表示一个物理波束,如图11a所示,那么,k 0与波束的相对编号的一种可能的相关方式为:k 0=beam idx。例如,如图11a所示,基站共使用2个波束向UE发送PDCCH,这2个波束的相对编号分别可以为0和1,则可以使用k 0=0获取波束0对应的速率匹配后得到的比特序列,使用k 0=1获取波束1对应的速率匹配后得到的比特序列。k 0与波束的相对编号的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000049
N是一个预定义或者可配置的整数,例如N=4。
方式2:波束指示信息是波束的逻辑编号。
假设基站的发送波束的逻辑编号是beam idx={0,1,...},其中,每个编号表示一个物理波束,如图11b所示,那么,k 0与波束的逻辑编号的一种可能的相关方式为:k 0=beam idx。例如,如图11b所示,基站的发送波束的编号分别为0,1,2,3,若基站使用波束1和波束2向UE发送PDCCH,则可以使用k 0=1获取波束1对应的速率匹配后得到的比特序列,使用k 0=2获取波束2对应的速率匹配后得到的比特序列指示波束2。k 0与波束的逻辑编号的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000050
N是一个预定义或者可配置的整数,例如N=4。
方式3:波束指示信息是波束的物理编号。
假设基站的发送波束的物理编号是beam idx={0,1,...},其中,每个编号表示一个物理波束,那么,k 0与波束的物理编号的一种可能的相关方式为:k 0=beam idx mod N,其中,N是一个预定义或者可配置的整数。假设基站共使用8个波束服务整个小区,如图11c所示。基于图11c,若N=2,基站使用波束5和波束6向UE发送PDCCH,则可以使用k 0=1获取波束5对应的速率匹配后得到的比特序列,使用k 0=0获取波束6对应的速率匹配后得到的比特序列。k 0与波束的物理编号的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000051
N是一个预定义或者可配置的整数,例如N=4。
方式4:波束指示信息是端口号。
一个波束可以对应一个或多个端口号。因此,可以使用一个波束对应的端口号来指示该波束。可选的,可以将一个波束对应的端口号构成一个端口组,并为每个端口组分配一个逻辑编号(port group ID)。基于此,假设beam idx={0,1,...},其中,每个编 号表示一个端口组,那么,k 0与端口号的一种可能的相关方式为:k 0=beam idx mod N,其中,N是一个预定义或者可配置的整数。例如,若N=2,基站使用波束2和波束3向UE发送PDCCH,则可以使用k 0=0获取波束2对应的速率匹配后得到的比特序列,使用k 0=1获取波束3对应的速率匹配后得到的比特序列。k 0与端口号的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000052
N是一个预定义或者可配置的整数,例如N=4。
方式5:波束指示信息是准共址(quasi co located,QCL)信息。
准共址,用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。其中,大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性等。
基于此,可以使用在发送PDCCH的波束上发送的其他信号的资源来指示该波束。可选的,该信号可以是参考信号,例如CSI-RS。其中,这里的“资源”可以包括但不限于以下信息中的至少一种:时频资源、端口数目、周期、偏移等。
可以理解的,如果基站使用某个波束向UE发送PDCCH,那么,基站使用这个波束发送过CSI-RS。这是因为,一般基站需要先向UE发送CSI-RS,来进行信道测量;然后,再利用信道测量结果向UE发送PDCCH。基于此可知,基站只要向UE通知了CSI-RS使用的端口号和/或资源号,UE即可获知基站使用哪个或哪些波束发送PDCCH。
如图11d所示,是CSI-RS资源与波束之间的一种对应关系。
可选的,CSI-RS资源号可以是resource ID,或者,resource ID+port ID(端口ID)。该情况下,假设beam idx={0,1,...},其中,每个编号表示一个CSI-RS资源,那么,k 0与CSI-RS资源的一种可能的相关方式为:k 0=beam idx mod N,其中,N是一个预定义或者可配置的整数。k 0与CSI-RS资源的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000053
N是一个预定义或者可配置的整数,例如N=4。
例如,如图11d所示,若基站向UE发送CSI-RS时所使用的CSI-RS资源号为#0和#1,并且,使用发送CSI-RS的波束向该UE发送PDCCH,且N=2,则可以使用k 0=0获取CSI-RS资源编号为#0对应的波束的速率匹配后得到的比特序列,使用k 0=1获取CSI-RS资源编号为#1对应的波束的速率匹配后得到的比特序列。
方式6:波束指示信息是波束对连接(beam pair link,BPL)信息。
BPL信息可以是BPL编号等。假设beam idx={0,1,...},其中,每个编号表示一个BPL,如图11e所示。那么,k 0与BPL信息的一种可能的相关方式为:k 0=beam idx。例如,如图11e所示,基站使用波束对0和波束对1向UE发送PDCCH,那么,可以使用k 0=0获取波束0对应的速率匹配后得到的比特序列,使用k 0=1获取波束1对应的速率匹配后得到的比特序列。k 0与BPL信息的另一种可能的相关方式为
Figure PCTCN2018080116-appb-000054
N是一个预定义或者可配置的整数,例如N=4。
方式7:波束指示信息是UE组。其中,一个波束覆盖范围内的UE构成一个UE组,每个UE组可以包括一个或多个UE,一个UE可以属于一个或多个UE组。
如图11f所示,波束1对应的UE组1中包括UE1,波束2对应的UE组2中包括UE1和UE2,波束3对应的UE组3包括UE2。该情况下,假设beam idx={0,1,...},其中,每个编号指一个UE组,那么,k 0与UE组的一种可能的相关方式为:k 0=beam idx。例如,如图11f所示,基站可以使用k 0=1获取波束1对应的速率匹配后得到的比特序列,使用k 0=2获取波束2对应的速率匹配后得到的比特序列,使用k 0=3获取波束3对应的速率匹配后得到的比特序列。k0与UE组的另一种可能的相关方式为:
Figure PCTCN2018080116-appb-000055
N是一个预定义或者可配置的整数,例如N=4。
方式8:波束指示信息是时域符号。
该时域符号是指发送该波束时占用的OFDM符号。该方式适用于基站使用多个波束在不同的符号上向同一个UE发送PDCCH,且在每个符号只使用一个波束向UE传输PDCCH的场景中。如图11g所示,基站在符号0使用一个波束向UE发送PDCCH,并在符号1使用另一个波束向该UE发送PDCCH。
假设beam idx={0,1,...},其中,每个编号指一个符号时间。那么,k 0与时域符号的一种可能的相关方式为:
Figure PCTCN2018080116-appb-000056
其中,N是一个预定义或者可配置的整数,例如N=9。k 0与时域符号另一种可选的相关方式为:
Figure PCTCN2018080116-appb-000057
N是一个预定义或者可配置的整数,例如N=4。
可以理解的,上文列举的几种方式大部分是以波束指示信息是单一信息为例进行说明的,具体实现时,波束指示信息也可以是上述至少两个信息的组合,例如上述方式5中的一个示例。当然不限于上述几种信息。本申请不再一一列举。
需要说明的是,本申请提供的技术方案中,基站执行加扰操作时考虑了波束,但是,本申请中并不限定不同波束对应的速率匹配后得到的比特序列一定不同。也就是说,不同波束对应的速率匹配后得到的比特序列可以相同,也可以不相同。
可以理解的,基站与同一个UE之间通信的波束可以随着UE的移动而改变,本申请对所使用的波束的改变规则不进行限定。该情况下,因此,波束指示信息不是一个固定值。基于此,基站可以通过信令通知UE该波束指示信息。本申请实施例对该步骤的与图8中的其他步骤的执行顺序不进行限定,可选的,该步骤可以在S301之前执行。需要说明的是,用于发送波束指示信息的信令可以是新设计的一个信令,也可以复用现有技术中的一个信令。
可选的,基站可以通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(medium access control,MAC)信令或下行控制信息(downlink control information,DCI)或上行控制信息(uplink control information,UCI)向UE发送波束指示信息。示例的,基站通过RRC信令或MAC信令向UE发送波束指示信息,可以适用于波束改变较慢的场景。基站通过DCI向UE发送波束指示信息,可以适用于波束改变较快的场景中。
S305~S310:可以参考LTE中的S105~S110步骤,这里不再赘述。
S311:基站按照先频域后时域的映射规则,对循环移位后得到的符号序列进行资源映射。
本申请实施例提供的技术方案尤其适用于基于多个波束传输的场景中,在多个波束传输的场景中,映射规则可以是先频域后时域,这样,能够避免在一个波束占用了一个符号的场景中,因按照先时域后频域的映射规则,而导致的该波束方向上的UE无法收全不同波束上传输的信息的问题。可以理解的,如果一个波束占用了多个符号,则使用该波束传输的信息可以按照先时域后频域的映射规则进行映射,也可以按照先频域后时域的映射规则进行映射。
以一个天线端口为例,资源映射指将
Figure PCTCN2018080116-appb-000058
映射到该端口对应的REG(k’,l’)上。其中,关于
Figure PCTCN2018080116-appb-000059
的描述可以参考上文S111。
如果多个波束占用一个符号,如图6所示,那么,基站将这两个波束对应的符号序列进行资源映射均可以为:将将
Figure PCTCN2018080116-appb-000060
映射至REG(0,0),将
Figure PCTCN2018080116-appb-000061
映射至REG(1,0),将
Figure PCTCN2018080116-appb-000062
映射至REG(2,0),将
Figure PCTCN2018080116-appb-000063
映射至REG(3,0)……。
如果多个波束占用多个符号,如图7所示,那么,基站在符号0上,将
Figure PCTCN2018080116-appb-000064
映射至REG(0,0),将
Figure PCTCN2018080116-appb-000065
映射至REG(1,0),将
Figure PCTCN2018080116-appb-000066
映射至REG(2,0),将
Figure PCTCN2018080116-appb-000067
映射至REG(3,0)……。在符号1上,将
Figure PCTCN2018080116-appb-000068
映射至REG(0,1),将
Figure PCTCN2018080116-appb-000069
映射至REG(1,1),将
Figure PCTCN2018080116-appb-000070
映射至REG(2,1),将
Figure PCTCN2018080116-appb-000071
映射至REG(3,1)……。
S312:可以参考LTE中的S112步骤,这里不再赘述。
S313:基站通过波束指示信息所指示的波束,向UE发送OFDM时域信号。
上述S301~S313是基站在一个波束上发送的PDCCH的处理过程为例进行说明的,在多波束场景中,基站多次执行上述过程即可。应理解,上述步骤中部分步骤可以是可选地,或者执行顺序可以调整,并非完全按照LTE的执行顺序来执行。本发明实施例对此不予限定。
本实施例中,基站在执行速率匹配操作的过程中考虑了波束,这样,不同波束上发送的PDCCH速率匹配后得到的比特序列可以不同,也就是说,不同波束上传输的PDCCH的版本可以不同,这样,通过UE侧进行软合并,可以实现提高信噪比(signal noise ratio,SNR)和降低码率的目的,从而提高控制信道的鲁棒性。
如图12所示,为本申请实施例提供的一种信息传输方法的流程示意图。需要说明的是,图12中是以UE对一个波束上传输的PDCCH进行处理为例进行说明的。该方法可以包括如下步骤S401~S409:
S401:UE在子帧k监听通过波束发送的PDCCH。UE监听到的信号(即UE接收到的信号)是以OFDM波形承载的无线信号,即OFDM时域信号。
S402~S406:与S202~S206相同。
S407:UE根据波束指示信息对盲检得到的备选PDCCH进行解速率匹配;其中,该波束指示信息用于指示S401中的波束。
如图13所示,S407包括如下步骤N1~N2:
N1:UE根据波束指示信息,确定第二比特序列的初始比特。
其中,这里的第二比特序列可以认为是对备选PDCCH进行解速率匹配后得到的比特序列。
N2:UE根据第二比特序列的初始比特,对第二比特序列进行解速率匹配。
步骤N1~N2的具体实现过程与S304的具体示例对应,可以,其具体实现过程可以参考上文,此处不再赘述。另外,波束指示信息的相关描述也可以参考上文。
另外,该方法还可以包括:UE通过RRC信令、MAC信令或DCI接收波束指示信息。其中,UE具体通过哪种信令接收波束指示信息与基站使用哪种信令发送波束指示信息有关。例如,若基站使用RRC信令发送波束指示信息,则UE使用RRC信令接收波束指示信息。其他的示例不再一一列举。
S408~S409:可以参考LTE中的S208~S209步骤,这里不再赘述。
可以理解的,如果单一波束上监测得到的PDCCH解码不正确,则UE可以尝试对两个或两个以上的波束的接收信息经解调和解速率匹配后得到的比特序列进行软合并之后再解码。其中,软合并的具体算法根据编码方式的不同而不同。例如可以参照LTE中turbo编码和HARQ-IR软合并等。可以理解的,该情况下,UE需要存储解码不正确的PDCCH对应的接收信息的版本(即待执行解速率匹配的比特序列的信息)用于软合并。其中,PDCCH解码不正确的原因可能是由于该PDCCH并不是针对该UE的,或者因传输过程中受到干扰等,本申请对此不进行限定。
应理解,上述步骤中部分步骤可以是可选地,或者执行顺序可以调整,并非完全按照LTE的执行顺序来执行。本发明实施例对此不予限定。
本实施例中,UE在执行解速率匹配操作的过程中考虑了波束,该解速率匹配的过程与图8所示的实施例中的速率匹配的过程是对应的,因此,其相关内容的解释以及所能达到的有益效果可以参考图8所示的实施例中对应的部分,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备(如基站)或者终端设备(如UE)。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备或者终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
图14示出了一种信息传输装置140的结构示意图。该信息传输装置140可以是上文中涉及的网络设备100(对应下行),如基站,也可以是终端设备(对应上行),比如,UE,还可以是芯片。该信息传输装置140可以包括速率匹配单元1401、映射单元1402和发送单元1403。其中,速率匹配单元1401可以用于执行图8中的S304,图9中的各步骤,图10中的步骤,和/或用于支持本文所描述的技术的其它过程。映射单元1402可以用于执行图8中的S311,和/或用于支持本文所描述的技术的其它过程。发送单元1403可以用于执行图8中的S311, 和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15示出了一种信息传输装置150的结构示意图。该信息传输装置150可以是上文中涉及的终端设备200,如UE,还可以是网络设备,如基站,还可以是芯片。该信息传输装置150可以包括接收单元1501、解调单元1502、解速率匹配单元1503。其中,接收单元1501可以用于执行图12中的S401,和/或用于支持本文所描述的技术的其它过程。解调单元1502可以用于执行图12中的S406,和/或用于支持本文所描述的技术的其它过程。可选的,该信息传输装置150还以包括信道解码单元1504和软合并单元1505。其中,信道解码单元1504可以用于对解速率匹配后得到的比特序列进行信道解码。软合并单元1505可以对两个或两个以上的波束的接收信息经解调和解速率匹配后得到的比特序列进行软合并,从而能够提高信道解码正确率。
在本申请实施例中,信息传输装置140~150对应各个功能划分各个功能模块的形式来呈现,或者,该以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到将信息传输装置140~150中的任一种信息传输装置通过如图16所示的结构实现。
如图16所示,信息传输装置160可以包括:存储器1601、处理器1602。可选地,该信息传输装置还可以包括通信接口1603。其中,存储器1602用于存储计算机执行指令,当信息传输装置160运行时,处理器1601执行存储器1602存储的计算机执行指令,以使信息传输装置160执行本申请实施例提供的信息传输方法。具体的信息传输方法可参考上文及附图中的相关描述,此处不再赘述。
在一个示例中,发送单元1403可以对应图16中的通信接口1603。速率匹配单元1401和映射单元1402可以以硬件形式内嵌于或独立于信息传输装置160的存储器2101中。
在另一个示例中,接收单元1501可以对应图16中的通信接口1604。解调单元1502、解速率匹配单元1503、解码单元1504和软合并单元1505可以以硬件形式内嵌于或独立于信息传输装置160的存储器1601中。
可选的,信息传输装置160可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供一种存储介质,该存储介质可以包括存储器1602。
由于本申请实施例提供的信息传输装置可用于执行上述信息传输方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产 生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,所述第一比特序列是对原始比特序列进行信道编码后得到的比特序列;
    将所述第二比特序列映射至时频资源上;
    通过所述波束指示信息所指示的波束,向接收端发送映射至时频资源上的所述第二比特序列。
  2. 根据权利要求1所述的方法,其特征在于,所述根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列,包括:
    根据波束指示信息,确定第二比特序列的初始比特;
    根据所述第二比特序列的初始比特,对第一比特序列进行速率匹配,确定所述第二比特序列。
  3. 根据权利要求1所述的方法,其特征在于,所述根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列,包括:
    根据公式
    Figure PCTCN2018080116-appb-100001
    得到第二比特序列;其中,e k表示所述第二比特序列中的第k个元素,k为整数,
    Figure PCTCN2018080116-appb-100002
    表示所述第一比特序列中的第(j+k 0)mod K w个元素,k与j一一对应,所述k 0表示与所述波束指示信息相关的一个值,K W表示所述第一比特序列的长度。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述波束指示信息包括以下信息中的至少一种:波束的相对编号,波束的逻辑编号,波束的物理编号,端口号、准共址QCL信息、波束对连接信息,终端设备组,波束对应的时域符号;其中,每个波束对应的终端设备为一个终端设备组。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    通过无线资源控制RRC信令、媒体访问控制MAC信令或下行控制信息DCI或上行控制信息UCI向所述接收端发送所述波束指示信息,所述接收端为终端设备或基站。
  6. 一种信息传输方法,其特征在于,所述方法包括:
    接收来自发送端的通过第一波束发送的第一信号;
    对所述第一信号进行解调,获取第二比特序列;
    根据所述第一波束关联的波束指示信息,对所述第二比特序列进行解速率匹配。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一波束关联的波束指示信息,对所述第二比特序列进行解速率匹配,包括:
    根据所述第一波束关联的波束指示信息,确定所述第二比特序列的初始比特;
    根据所述第二比特序列的初始比特,对所述第二比特序列进行解速率匹配。
  8. 根据权利要求6或7所述的方法,其特征在于,所述波束指示信息包括以下信息中的至少一种:波束的相对编号,波束的逻辑编号,波束的物理编号,端口号、准共址QCL信息、波束对连接信息,终端设备组,波束对应的时域符号;其中,每个波束对应的终端设备为一个终端设备组。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述方法还包括:
    通过无线资源控制RRC信令、媒体访问控制MAC信令或下行控制信息DCI或者上行控制信息UCI接收所述波束指示信息。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自发送端的通过第二波束发送的第二信号;
    对所述第二信号进行解调,获取第三比特序列;
    根据所述第二波束关联的波束指示信息,对所述第三比特序列进行解速率匹配;
    将对所述第二比特序列进行解速率匹配后得到的比特序列,以及对所述第三比特序列进行解速率匹配后得到的比特序列,进行软合并;
    对软合并后得到的比特序列进行信道解码。
  11. 一种信息传输装置,其特征在于,所述装置包括:
    速率匹配单元,用于根据波束指示信息,对第一比特序列进行速率匹配,得到第二比特序列;其中,所述第一比特序列是对原始数据比特进行信道编码后得到的比特序列;
    映射单元,用于将所述第二比特序列映射至时频资源上;
    发送单元,用于通过所述波束指示信息所指示的波束,向接收端发送映射至时频资源上的所述第二比特序列。
  12. 根据权利要求11所述的装置,其特征在于,所述速率匹配单元具体用于:
    根据波束指示信息,确定第二比特序列的初始比特;
    根据所述第二比特序列的初始比特,对第一比特序列进行速率匹配,确定所述第二比特序列。
  13. 根据权利要求11所述的装置,其特征在于,所述速率匹配单元具体用于:
    根据公式
    Figure PCTCN2018080116-appb-100003
    得到第二比特序列;其中,e k表示所述第二比特序列中的第k个元素,k为整数,
    Figure PCTCN2018080116-appb-100004
    表示所述第一比特序列中的第(j+k 0)mod K w个元素,k与j一一对应,所述k 0表示与所述波束指示信息相关的一个值,K W表示所述第一比特序列的长度。
  14. 根据权利要求11至13任一项所述的装置,其特征在于,所述波束指示信息包括以下信息中的至少一种:波束的相对编号,波束的逻辑编号,波束的物理编号,端口号、准共址QCL信息、波束对连接信息,终端设备组,波束对应的时域符号;其中,每个波束对应的终端设备为一个终端设备组。
  15. 根据权利要求11至14任一项所述的装置,其特征在于,
    所述发送单元还用于,通过无线资源控制RRC信令、媒体访问控制MAC信令或下行控制信息DCI或上行控制信息UCI向所述接收端发送所述波束指示信息。
  16. 一种信息传输装置,其特征在于,所述装置包括:
    接收单元,用于接收接收来自发送端的通过第一波束发送的第一信号;
    解调单元,用于对所述第一信号进行解调,获取第二比特序列;
    解速率匹配单元,用于根据所述第一波束关联的波束指示信息,对所述第二比特序列进行解速率匹配。
  17. 根据权利要求16所述的装置,其特征在于,所述解速率匹配单元具体用于:
    根据所述第一波束关联的波束指示信息,确定所述第二比特序列的初始比特;
    根据所述第二比特序列的初始比特,对所述第二比特序列进行解速率匹配。
  18. 根据权利要求16或17所述的装置,其特征在于,所述波束指示信息包括以下信息中的至少一种:波束的相对编号,波束的逻辑编号,波束的物理编号,端口号、准共址QCL信息、波束对连接信息,终端设备组,波束对应的时域符号;其中,每个波束对应的终端设备为一个终端设备组。
  19. 根据权利要求16至18任一项所述的装置,其特征在于,
    所述接收单元还用于,通过无线资源控制RRC信令、媒体访问控制MAC信令或下行控制信息DCI接收所述波束指示信息。
  20. 根据权利要求16至19任一项所述的装置,其特征在于,
    所述接收单元还用于,接收来自发送端的通过第二波束发送的第二信号;
    所述解调单元还用于,对所述第二信号进行解调,获取第三比特序列;
    所述解速率匹配单元还用于,根据所述第二波束关联的波束指示信息,对所述第三比特序列进行解速率匹配;
    所述装置还包括:
    软合并单元,用于对所述第二比特序列进行解速率匹配后得到的比特序列,以及对所述第三比特序列进行解速率匹配后得到的比特序列,进行软合并;
    信道解码单元,用于对软合并后得到的比特序列进行信道解码。
  21. 一种信息传输装置,其特征在于,处理器和存储器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令以支持所述装置执行如权利要求1至5任一项所述的信息传输方法。
  22. 一种信息传输装置,其特征在于,处理器和存储器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令以支持所述装置执行如权利要求6至10任一项所述的信息传输方法。
PCT/CN2018/080116 2017-03-24 2018-03-23 一种信息传输方法和装置 WO2018171697A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18771691.5A EP3591867B1 (en) 2017-03-24 2018-03-23 Information transmission method and apparatus
US16/580,884 US11088778B2 (en) 2017-03-24 2019-09-24 Information transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710184780.3 2017-03-24
CN201710184780 2017-03-24
CN201710204289.2 2017-03-30
CN201710204289.2A CN108632003B (zh) 2017-03-24 2017-03-30 一种信息传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,884 Continuation US11088778B2 (en) 2017-03-24 2019-09-24 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018171697A1 true WO2018171697A1 (zh) 2018-09-27

Family

ID=63584073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080116 WO2018171697A1 (zh) 2017-03-24 2018-03-23 一种信息传输方法和装置

Country Status (1)

Country Link
WO (1) WO2018171697A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953881A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 一种信号处理装置及网络设备
WO2023003629A1 (en) * 2021-07-21 2023-01-26 Qualcomm Incorporated Multi-configuration pucch transmission linked to l1-report or other csi feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374340A (zh) * 2007-08-23 2009-02-25 中兴通讯股份有限公司 实现小区干扰协同的控制信道交织、解交织方法及其装置
WO2016089124A1 (en) * 2014-12-02 2016-06-09 Samsung Electronics Co., Ltd. Method and apparatus of downlink signaling for partially precoded csi-rs and csi feedback
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374340A (zh) * 2007-08-23 2009-02-25 中兴通讯股份有限公司 实现小区干扰协同的控制信道交织、解交织方法及其装置
WO2016089124A1 (en) * 2014-12-02 2016-06-09 Samsung Electronics Co., Ltd. Method and apparatus of downlink signaling for partially precoded csi-rs and csi feedback
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On QCL, Rate Matching and DCI Signalling for Aperiodic CSI-RS", 3GPP TSG RAN WG1 MEETING #87, R1-1611282, 4 November 2016 (2016-11-04), XP051189061 *
See also references of EP3591867A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953881A (zh) * 2019-11-26 2021-06-11 华为技术有限公司 一种信号处理装置及网络设备
CN112953881B (zh) * 2019-11-26 2022-09-02 华为技术有限公司 一种信号处理装置及网络设备
WO2023003629A1 (en) * 2021-07-21 2023-01-26 Qualcomm Incorporated Multi-configuration pucch transmission linked to l1-report or other csi feedback

Similar Documents

Publication Publication Date Title
US11088778B2 (en) Information transmission method and apparatus
US10674494B2 (en) Methods for transmitting and receiving physical downlink channel, base station and user equipment
US11122556B2 (en) Communication method and communication apparatus
ES2749176T3 (es) Obtención de elementos de canal de control de canales de control de enlace descendente físicos para planificación de portadoras cruzadas
JP2022046755A (ja) 複数アンテナシステムにおける非周期的測定基準信号送信のためのシステムおよび方法
CN113302869B (zh) 用于多传输点(trp)的物理下行链路共享信道(pdsch)资源映射
US20220216944A1 (en) METHOD FOR REPEATING A TRANSPORT BLOCK (TB) OVER MULTIPLE TRANSMISSION/RECEPTION POINTS (TRPs)
WO2014113971A1 (zh) 解调参考信号传输方法、用户设备和基站
WO2014032508A1 (zh) 下行数据的速率匹配方法及装置
CN108632841B (zh) 一种信息传输方法和装置
JPWO2018220772A1 (ja) 無線基地局及び無線通信方法
WO2017166224A1 (zh) 传输模式的信息的传输方法、网络设备、终端设备和***
WO2017128296A1 (zh) 一种参考信号的传输方法、装置和***
WO2019049346A1 (ja) ユーザ端末及び無線通信方法
WO2019052388A1 (zh) 数据传输的方法和设备
JPWO2018207296A1 (ja) ユーザ端末及び無線通信方法
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
US20220015085A1 (en) Communication method and apparatus
WO2018171697A1 (zh) 一种信息传输方法和装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2018028532A1 (zh) 一种控制信道传输方法、装置及***
TW202231113A (zh) 終端的操作方法、執行盲解碼的終端及通訊系統
WO2018171694A1 (zh) 一种信息传输方法和装置
EP4355006A1 (en) Channel state information transmission method and related communication apparatuses
CN114503466B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771691

Country of ref document: EP

Effective date: 20191002