WO2018171669A1 - 一种波束的测量上报方法、终端侧设备及网络侧设备 - Google Patents

一种波束的测量上报方法、终端侧设备及网络侧设备 Download PDF

Info

Publication number
WO2018171669A1
WO2018171669A1 PCT/CN2018/080014 CN2018080014W WO2018171669A1 WO 2018171669 A1 WO2018171669 A1 WO 2018171669A1 CN 2018080014 W CN2018080014 W CN 2018080014W WO 2018171669 A1 WO2018171669 A1 WO 2018171669A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement result
preset
beams
preset number
Prior art date
Application number
PCT/CN2018/080014
Other languages
English (en)
French (fr)
Inventor
陈力
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18770666.8A priority Critical patent/EP3606130B1/en
Priority to US16/490,355 priority patent/US10707926B2/en
Priority to ES18770666T priority patent/ES2911210T3/es
Publication of WO2018171669A1 publication Critical patent/WO2018171669A1/zh
Priority to US16/887,234 priority patent/US10812153B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • the embodiments of the present disclosure relate to the field of communications, and in particular, to a method for measuring and reporting a beam, a terminal device, and a network device.
  • the embodiments of the present disclosure provide a method for measuring and reporting a beam, a terminal device, and a network device to solve the technical problem of multi-beam measurement reporting.
  • an embodiment of the present disclosure provides a method for measuring and reporting a beam, which is applied to a terminal device, and includes:
  • an embodiment of the present disclosure provides a terminal side device, including:
  • a first acquiring module configured to acquire measurement configuration information of the network side device
  • a determining module configured to determine, according to the measurement configuration information, a first preset number of transmit beams in a plurality of transmit beams, where the first preset number of transmit beams are preset in a connected terminal device a transmit beam measured by a reference signal;
  • a second acquiring module configured to acquire a measurement result of the preset reference signal on the first preset number of transmit beams
  • the measurement reporting module is configured to perform measurement reporting according to the measurement result of the first preset number of transmission beams.
  • an embodiment of the present disclosure provides a method for measuring and reporting a beam, which is applied to a network side device, and includes:
  • the measurement configuration information is used by: the terminal side device determines, according to the measurement configuration information, a first preset number of transmit beams in the multiple transmit beams, and acquires the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • an embodiment of the present disclosure provides a network side device, including:
  • a first sending module configured to send measurement configuration information to the terminal side device
  • the measurement configuration information is used by: the terminal side device determines, according to the measurement configuration information, a first preset number of transmit beams in the multiple transmit beams, and acquires the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • an embodiment of the present disclosure provides a terminal side device, including: a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is processed
  • the step of implementing the measurement reporting method of a beam according to the first aspect is implemented when the device is executed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing a method according to the first aspect The steps in the measurement reporting method of the beam.
  • an embodiment of the present disclosure provides a network side device, including: a processor, a memory, and a computer program stored on the memory and operable on the processor, where the computer program is processed
  • the step in the method of measuring and reporting a beam as described in the second aspect is implemented when the device is executed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implementing one of the second aspect The steps in the measurement reporting method of the beam.
  • the terminal side device acquires measurement configuration information of the network side device, and then determines a first preset number of transmission beams among the plurality of transmission beams according to the measurement configuration information, where the first preset number of transmissions is sent.
  • the beam is a transmit beam that needs to perform preset reference signal measurement on the terminal device in the connected state; and the measurement result of the preset reference signal on the first preset number of transmit beams is acquired; and then the first preset number of transmit beams are obtained according to the first preset number of transmit beams
  • the measurement results are reported. This achieves measurement reporting in a multi-beam scenario and improves network performance. The technical problem of multi-beam measurement reporting is effectively solved.
  • FIG. 1 is a flowchart of a method for measuring and reporting a beam according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a sub-step of a method for measuring and reporting a beam according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another sub-step of a method for measuring and reporting a beam according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another sub-step of a method for measuring and reporting a beam according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of another sub-step of a method for measuring and reporting a beam according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a flow chart of a method for measuring and reporting a beam applied to a network side device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • a method for measuring and reporting a beam is provided, which is applied to a terminal device, and includes:
  • Step 101 Obtain measurement configuration information of the network side device.
  • support is provided for determining the number of beams to be measured among the plurality of transmission beams.
  • Step 102 Determine, according to the measurement configuration information, a first preset number of transmit beams in the multiple transmit beams, where the first preset number of transmit beams are in a connected state, and the preset reference signal measurement needs to be performed. Transmit beam.
  • the first preset number N1 can be determined for the terminal in the Radio Resource Control (RRC) connected state accurately and quickly among the plurality of transmission beams (for convenience of description,
  • the first preset number is represented by N1) a transmit beam that needs to perform preset reference signal measurement, thereby providing support for beam measurement in a multi-beam scenario.
  • Step 103 Acquire measurement results of preset reference signals on the first preset number of transmit beams.
  • the measurement results of the preset reference signals on the N1 transmit beams are obtained, and the measurement of the N1 transmit beams is implemented, thereby implementing beam measurement in a multi-beam scenario.
  • Step 104 Perform measurement report according to the measurement result of the first preset number of transmit beams.
  • the measurement report is performed on the network side device according to the measurement result of the N1 transmit beams, thereby realizing the measurement report in the multi-beam scenario.
  • the measurement reporting method of the beam in the embodiment of the present disclosure implements measurement reporting in a multi-beam scenario and improves network performance.
  • the technical problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • the measurement configuration information includes: a number of beams that the network side device configures for the terminal to be measured.
  • the network side device configures the number of beams Np1 to be measured for the terminal.
  • Np1 the number of beams to be measured configured by the network side device for the terminal.
  • the terminal can successfully complete beam measurement in a multi-beam scenario.
  • the network side device may configure the measurement of several beam beams on the user equipment (UE) side by using a System Information (SI) or a Dedicated RRC message (such as reconfiguring the reconfiguration message). That is, the above measurement configuration information may be included in the SI or Dedicated RRC message.
  • SI System Information
  • Dedicated RRC message such as reconfiguring the reconfiguration message
  • the above step 102 includes:
  • the terminal determines, according to the Np1 and the beam measurement capability threshold value M of the terminal (for the convenience of description, the beam measurement capability threshold of the terminal is represented by M), to determine that multiple presets need to be preset in the transmit beam.
  • N1 transmit beams measured by the reference signal.
  • Np1 is smaller than M, that is, the number of beams to be measured configured by the network side device for the terminal does not exceed the threshold value of the terminal beam measurement number
  • the number of configured beams is used as a preset reference signal measurement in multiple transmission beams.
  • the number of beams, N1 Np1, satisfies the network requirements.
  • Np1 is greater than or equal to M, that is, the number of beams to be measured configured by the network side device for the terminal exceeds the threshold value of the terminal beam measurement number
  • the threshold value of the terminal beam measurement capability is required as a plurality of transmission beams.
  • the terminal can accurately determine the N1 transmit beams of the plurality of transmit beams that need to perform preset reference signal measurement, according to the number of the required number of measurements, the number of the Np1, and the number of the measurement of the number of the measurement of the terminal.
  • the network requirements are most likely to be met while not exceeding the current measurement capability.
  • step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • the terminal can obtain the measurement result of the first preset reference signal on the N1 transmit beams of the serving cell, thereby completing the measurement reporting on the serving cell.
  • step 1032 the measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell is obtained.
  • the terminal may also obtain the measurement result of the second preset reference signal on the N1 transmit beams of the neighboring cell, thereby completing the measurement reporting on the neighboring cell.
  • the terminal can measure the transmit beam of the serving cell and/or the neighboring cell, thereby satisfying different requirements in different scenarios, and further improving network performance.
  • a single signal may be measured on the N1 transmit beams of the serving cell: xSS or CSI-RS; two signals may also be simultaneously measured on the N1 transmit beams of the serving cell: xSS and CSI-RS, xSS And DMRS or CSI-RS and DMRS; three signals can also be measured simultaneously on N1 transmit beams of the serving cell: xSS, CSI-RS and DMRS.
  • the first preset reference signal may include a synchronization signal xSS or a channel state information reference signal CSI-RS; or the first preset reference signal may include at least one of an xSS, a CSI-RS, and a demodulation reference signal DMRS. Both.
  • a single signal may be measured on N1 transmit beams of the neighboring cell: xSS or CSI-RS; two signals may also be simultaneously measured on N1 transmit beams of the neighboring cell: xSS and CSI- RS, xSS, and DMRS or CSI-RS and DMRS; three signals can also be simultaneously measured on N1 transmit beams of the neighboring cell: xSS, CSI-RS, and DMRS.
  • the second preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the second preset reference signal includes at least two of an xSS, a CSI-RS, and a demodulation reference signal DMRS. .
  • the first preset reference signal and the second preset reference signal may be the same or different.
  • the xSS includes a secondary synchronization signal SSS; or the xSS includes primary synchronization signals PSS and SSS.
  • the measurement result includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, and a reference signal dry-to-noise ratio RS-SINR.
  • the reference signal receiving power (RSRP) and/or the reference signal receiving quality (RSRQ) of the preset reference signal may be measured on the N1 transmit beams of the serving cell and/or the neighboring cell.
  • RSRP Reference Signal-Signal to Interference Noise Ratio
  • RSRQ Reference Signal-Signal to Interference Noise Ratio
  • Step 1031 the foregoing step 104 includes:
  • Step 1041 Determine, according to the measurement result of the first preset number of transmit beams, the cell quality of the serving cell, and report the cell quality of the serving cell.
  • the cell quality of the serving cell can be accurately determined according to the measurement result of the N1 transmit beams, and the cell quality of the serving cell is reported to the network side device for The network side device is used to complete the reporting of the cell quality in the multi-beam scenario, which further improves the network performance.
  • step 1041 includes:
  • the measurement result of the currently serving transmit beam is obtained in the measurement result of the first preset number of transmit beams, and the cell quality of the serving cell is determined according to the measurement result of the currently served transmit beam.
  • the terminal may obtain the measurement result of the currently serving transmission beam in the measurement result of the N1 transmission beams of the serving cell, and then accurately determine the cell quality of the serving cell according to the measurement result of the currently serving transmission beam.
  • the terminal may also calculate the measurement result of the N1 transmit beams of the serving cell according to a preset algorithm, such as summation, averaging, or weighting, and then accurately determine the cell quality of the serving cell according to the calculation result.
  • a preset algorithm such as summation, averaging, or weighting
  • the measurement result of the first preset number of transmit beams obtain a measurement result of the first type of transmit beam whose measurement result is greater than the first preset threshold, and send the first type of transmit beam according to a preset algorithm.
  • the measurement result is calculated, and the cell quality of the serving cell is determined according to the calculation result.
  • the terminal may first obtain, in the measurement result of the N1 transmit beams of the serving cell, the measurement result of the first type of transmit beam whose measurement result is greater than the first preset threshold, and then according to a preset algorithm, such as summation, average, or Weighting, etc., the measurement result of the obtained first type of transmission beam is calculated, and then the cell quality of the serving cell is accurately determined according to the calculation result.
  • a preset algorithm such as summation, average, or Weighting, etc.
  • the preset algorithm may include summation, averaging or weighting.
  • the first preset threshold may be predefined or configured by using an SI or a Dedicated RRC message.
  • the cell quality of the serving cell can be accurately determined by the above three methods, and the terminal can select according to different requirements.
  • Step 1032 the foregoing step 104 includes:
  • Step 1042 Determine, according to the measurement result of the first preset number of transmit beams, the cell quality of the neighboring cell, and report the cell quality of the neighboring cell.
  • the cell quality of the neighboring cell is accurately determined according to the measurement result of the N1 transmit beams, and the cell quality of the neighboring cell is reported to the network side device for The network side device is used to complete the reporting of the cell quality in the multi-beam scenario, which further improves the network performance.
  • step 1042 includes:
  • the measurement result of the first preset number of transmit beams is calculated according to a preset algorithm, and the cell quality of the neighboring cell is determined according to the calculation result.
  • the terminal may calculate the measurement result of the N1 transmit beams of the neighboring cell according to a preset algorithm, such as summation, averaging, or weighting, and then accurately determine the cell quality of the neighboring cell according to the calculation result.
  • a preset algorithm such as summation, averaging, or weighting
  • the measurement result of the first preset number of transmit beams obtain a measurement result of the second type of transmit beam whose measurement result is greater than the first preset threshold, and send the second type of transmit beam according to a preset algorithm.
  • the measurement result is calculated, and the cell quality of the neighboring cell is determined according to the calculation result.
  • the terminal may further obtain, in the measurement result of the N1 transmit beams of the neighboring cell, the measurement result of the second type of transmit beam whose measurement result is greater than the first preset threshold, and then according to a preset algorithm, such as summation, average, or Weighting, etc., the measurement result of the acquired second type of transmission beam is calculated, and then the cell quality of the neighboring cell is accurately determined according to the calculation result.
  • a preset algorithm such as summation, average, or Weighting, etc.
  • the preset algorithm may include summation, averaging or weighting.
  • the first preset threshold may be predefined or configured by using an SI or a Dedicated RRC message.
  • the cell quality of the neighboring cell can be accurately determined by the above two methods, and the terminal can select according to different requirements.
  • the terminal can accurately determine the cell quality of the serving cell and/or the neighboring cell according to the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell, and complete the reporting of the cell quality in the multi-beam scenario.
  • the terminal is further configured to report the measurement result of the transmit beam of the serving cell and/or the neighboring cell in the multi-beam scenario according to the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell. description.
  • the foregoing step 104 includes:
  • Step 1043 Obtain the report configuration information of the network side device, where the report configuration information includes: the number of beams to be reported that the network side device configures for the terminal.
  • the network side device configures the number of beams to be reported by the terminal to be Np2 (for the sake of description, the number of beams to be reported that the network side device configures for the terminal is represented by Np2), and provides support for the terminal to determine the beam to be reported.
  • the terminal can successfully report the beam measurement result in the multi-beam scenario.
  • the network side device may configure the reporting of several beam beams on the UE side by using an SI or a Dedicated RRC message (for example, a reconfiguration message). That is, the foregoing reporting configuration information may be included in the SI or Dedicated RRC message.
  • Step 1044 Acquire, according to the report configuration information, a measurement result of the second preset number of transmit beams in the measurement result of the first preset number of transmit beams, and send the second preset number of transmit The measurement result of the beam is reported; wherein the second preset quantity is less than or equal to the first preset quantity.
  • the terminal when reporting the beam measurement result, acquires the second pre-measure in the measurement result of the N1 transmit beams (the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell) according to the report configuration information of the network measurement device.
  • Set the number of N2 (for the sake of description, the second preset number in N2) is the measurement result of the transmit beam, and report the measurement result of the N2 transmit beams to the network side device for use by the network side device.
  • the reporting of beam measurements in the beam scenario further improves network performance.
  • step 104 further includes:
  • Step 1045 Acquire a beam identifier corresponding to the second preset number of the transmit beams, and report the beam identifiers corresponding to the second preset number of the transmit beams.
  • the terminal when the terminal reports the measurement result of the N2 transmit beams, the terminal can simultaneously report the beam identifiers corresponding to the N2 transmit beams, which is convenient for the network side device to use.
  • the beam identifier may be beam ID identification information, such as a number.
  • the terminal there are two ways for the terminal to obtain the measurement results of the N2 transmit beams in the measurement results of the N1 transmit beams, and the following are respectively introduced.
  • the acquiring, by the first preset number of the transmit beams, the measurement result of the second preset number of transmit beams, according to the report configuration information includes:
  • the number of the beams to be reported is less than the first preset number
  • the number of the required beams to be reported is determined as the second preset number
  • the first preset number is And a measurement result of the second preset number of the transmit beams, where the measurement result of the second preset number of transmit beams is greater than or equal to the second preset number of beams Measurement of other beams.
  • N2 is smaller than N1, that is, the number of beams to be reported by the network configuration is smaller than the number of beams measured by the terminal
  • the measurement result of the transmission beam is obtained by reporting the measurement result of the N2 (ie, Np2) best transmission beams, that is, the obtained measurement results of the N2 transmission beams are larger or equal to those of the other transmission beams, and are provided by the network side.
  • Np2 the measurement result of the N2 (ie, Np2) best transmission beams
  • the first preset quantity as the second preset quantity, and the first preset quantity
  • the measurement result of the transmission beam is used as a measurement result of the second predetermined number of transmission beams.
  • Np2 is greater than or equal to N1, that is, the number of beams to be reported by the network configuration is greater than or equal to the number of beams measured by the terminal
  • Side devices are used to fully meet network needs.
  • the measurement results of the best transmit beams are reported to the network side device, which provides data support for the network side device for network statistics and network optimization, and improves network performance.
  • the acquiring, by the first preset number of the transmit beams, the measurement result of the second preset number of transmit beams, according to the report configuration information includes:
  • the measurement result of the third type of transmit beam whose measurement result is greater than the second preset threshold is obtained for subsequent reporting.
  • the number of the third type of transmit beams is smaller than the number of beams to be reported, the number of the third type of transmit beams is determined as the second preset number, and the third type is sent.
  • the measurement result of the beam is used as a measurement result of the second predetermined number of transmission beams.
  • the obtained measurement results of the third type of transmit beams are all reported for use by the network side device to fully satisfy the network requirements.
  • the configured number of beams to be reported is determined as the second preset number, and in the third In the measurement result of the class transmission beam, the measurement result of the second preset number of transmission beams is obtained.
  • the measurement result of the N2 (that is, Np2) transmission beams is reported and reported for use by the network side device.
  • the measurement results of the transmission beams that are larger than the second preset threshold are reported to the network side device, which provides data support for the network side device for network statistics and network optimization, and improves network performance. .
  • the second preset threshold may be predefined or configured by using an SI or a Dedicated RRC message.
  • the terminal can accurately determine the cell quality of the serving cell and/or the neighboring cell according to the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell, and complete the reporting of the cell quality in the multi-beam scenario;
  • the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell completes the reporting of the measurement result of the transmit beam of the serving cell and/or the neighboring cell in the multi-beam scenario.
  • the method when the terminal performs the measurement and report according to the measurement result of the transmit beam of the serving cell and/or the neighboring cell, the method may be triggered by the periodic report, and may also be triggered by the event, which is described in detail below.
  • step 104 includes:
  • the terminal can periodically perform measurement and report to the network side device according to the measurement result of the N1 transmit beams of the serving cell and/or the neighboring cell, so that the measurement report in the multi-beam scenario is implemented.
  • the content of the report may be referred to the foregoing, and may include the cell quality of the serving cell and/or the neighboring cell, or the measurement result of the transmit beam of the serving cell and/or the neighboring cell, or both the serving cell and/or the neighboring cell.
  • the cell quality includes the measurement results of the transmit beam of the serving cell and/or the neighboring cell.
  • the foregoing step 104 includes:
  • Step 1046 Determine, according to the measurement result of the first preset number of transmit beams, whether the trigger condition for entering the measurement report event is met.
  • the triggering condition for the incoming measurement reporting event of the multi-beam scenario is defined. According to the measurement result of the N1 transmitting beams and the triggering condition of the incoming measurement reporting event, it is possible to accurately determine whether to perform measurement reporting, thereby implementing a multi-beam scenario. Enter the trigger for the measurement report event.
  • Step 1047 If the trigger condition for entering the measurement reporting event is met, the measurement is reported to the network side device.
  • the measurement is reported to the network side device, thereby implementing measurement reporting in the multi-beam scenario.
  • the content of the report may be referred to the foregoing, and may include the cell quality of the serving cell and/or the neighboring cell, or the measurement result of the transmit beam of the serving cell and/or the neighboring cell, or both the serving cell and/or the neighboring cell.
  • the cell quality includes the measurement results of the transmit beam of the serving cell and/or the neighboring cell.
  • the method of the embodiment of the disclosure further includes:
  • the trigger condition for the exit measurement report event of the multi-beam scene is defined. According to the measurement result of the N1 transmit beams and the trigger condition of the exit measurement report event, it is possible to accurately determine whether to stop the measurement report, thereby realizing the multi-beam scene. Exit the trigger of the measurement report event.
  • the measurement report to the network side device is stopped.
  • the measurement reporting to the network side device can be stopped in time.
  • the triggering conditions of multiple measurement reporting events are redefined for the multi-beam scenario, which can meet different requirements of different scenarios, and is described in detail below.
  • the foregoing step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the resource of the first preset reference signal of the serving cell becomes better than the threshold.
  • Mx represents the measurement result of the first preset reference signal x, regardless of any offset.
  • Ox represents a frequency-specific offset of x (ie, x individual offset defined in the new radio access technology NR in 3GPP for the measurement object corresponding to the frequency of the x resource), and if the frequency is not configured for the x resource A specific offset is set to zero.
  • Hys indicates the hysteresis parameter for measuring the reported event (ie, the hysteresis defined in the report configuration NR for this event).
  • Thresh1 represents the first threshold parameter for measuring the reported event (ie, the threshold Threshold defined in the report configuration NR of this event).
  • Mx and Thresh1 are expressed in dBm
  • Ox and Hys are expressed in dB.
  • the first preset reference signal x comprises xSS or CSI-RS; or the first preset reference signal x comprises at least two of xSS, CSI-RS and DMRS; xSS comprises SSS; or xSS comprises PSS and SSS.
  • the terminal may measure the RSRP of the xSS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event S1.
  • Mx is represented by Mss and Ox is represented by Oss.
  • Mss+Oss-Hys>Thresh1 it enters the trigger of the measurement reporting event, and performs measurement reporting to the network side device; when the terminal satisfies the condition: Mss+Oss+Hys ⁇ Thresh1, the terminal exits the trigger of the measurement reporting event, and stops.
  • the network side device performs measurement reporting.
  • Mss is the measurement result of xSS, regardless of any offset.
  • Oss is the frequency specific offset of the xSS (ie, the xSS individual offset defined within the measurement object NR corresponding to the frequency of the xSS resource), and is set to zero if the frequency specific offset is not configured for the xSS resource .
  • Hys indicates the hysteresis parameter for measuring the reported event (ie, the hysteresis defined in the report configuration NR for this event).
  • Thresh1 represents the first threshold parameter of the measurement reported event (ie, the threshold s1-Threshold defined in the report configuration NR of this event).
  • Mss and Thresh1 are expressed in dBm
  • Oss and Hys are expressed in dB.
  • the terminal may also measure the RSRP of the xSS and the CSI-RS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event CS1.
  • Mx is represented by Mss
  • Ox is represented by Oss
  • Mx is represented by Mcr
  • Ox is represented by Ocr.
  • Mss, Thresh1, Oss, Hys can be explained with reference to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • the terminal may also measure the RSRP of the xSS, the CSI-RS, and the DMRS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event DCS1.
  • Mx is represented by Mss
  • Ox is represented by Oss
  • Mx is represented by Mcr
  • Ox is represented by Ocr
  • Mx is represented by Mdm
  • Ox is represented by Odm.
  • the terminal enters the trigger of the measurement reporting event when the condition is satisfied: Mss+Oss-Hys>Thresh1 and Mcr+Ocr-Hys>Thresh1 and Mdm+Odm-Hys>Thresh1, and the measurement is reported to the network side device; the terminal satisfies the condition: Mss When +Oss+Hys ⁇ Thresh1 and Mcr+Ocr+Hys ⁇ Thresh1 and Mdm+Odm+Hys ⁇ Thresh1, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mss, Thresh1, Oss, Hys can be explained with reference to the above explanation.
  • Mcr, Ocr, Mdm, Odm can refer to the explanation of Mss and Oss.
  • the foregoing step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • Mref represents the measurement result of the reference x on the transmit beam of the serving cell
  • Oref represents the frequency specific offset of the reference beam on the transmit beam of the serving cell
  • Off represents the measurement report event.
  • the resource of the first preset reference signal x of the serving cell becomes better offset than the reference additional RS (Reference Signal) or x resource.
  • Mref represents the measurement result of the referenced x resource (ie, the reference c2-Ref defined in the report configuration NR for the measurement reported event), regardless of any offset.
  • Oref represents a frequency-specific offset of the referenced x resource (ie, x individual offset defined within the measurement object NR corresponding to the frequency of the reference x resource), and if not configured for reference to the x resource, Set to zero.
  • Off represents the offset parameter of the measured report event (ie the offset s2-Offset defined for this event in the measurement report NR).
  • Mx, Mref, and Thresh1 are expressed in dBm
  • Ox, Oref, Hys, and Off are expressed in dB.
  • the first preset reference signal x comprises xSS or CSI-RS; or the first preset reference signal x comprises at least two of xSS, CSI-RS and DMRS; xSS comprises SSS; or xSS comprises PSS and SSS.
  • the terminal can measure the RSRP of the xSS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event S2.
  • Mx is represented by Mss and Ox is represented by Oss.
  • Mss+Oss-Hys>Mref+Oref+Off it enters the trigger of the measurement reporting event, and performs measurement reporting to the network side device; the terminal exits when the condition is satisfied: Mss+Oss+Hys ⁇ Mref+Oref+Off The triggering of the reported event is stopped, and the measurement reporting to the network side device is stopped.
  • Mss, Oss, Hys, Mref, Oref, and Off can be referred to the above explanation.
  • the terminal may also measure the RSRP of the xSS and the CSI-RS on the N1 transmit beams of the serving cell, and the measurement reported event is recorded as Event CS2.
  • Mx is represented by Mss
  • Ox is represented by Oss
  • Mx is represented by Mcr
  • Ox is represented by Ocr.
  • the terminal enters the trigger of the measurement reporting event when the condition is satisfied: Mss+Oss-Hys>Mref+Oref+Off and Mcr+Ocr-Hys>Mref+Oref+Off, and the measurement is reported to the network side device; the terminal satisfies the condition: Mss When +Oss+Hys ⁇ Mref+Oref+Off and Mcr+Ocr+Hys ⁇ Mref+Oref+Off, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mss, Oss, Hys, Mref, Oref, and Off can be referred to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • the foregoing step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the resources of the first preset reference signal of the serving cell become worse than the threshold based on the condition five and the condition six.
  • Mx, Thresh1, Ox and Hys can be referred to the above explanation.
  • the first preset reference signal x comprises xSS or CSI-RS; or the first preset reference signal x comprises at least two of xSS, CSI-RS and DMRS; xSS comprises SSS; or xSS comprises PSS and SSS.
  • the terminal may measure the RSRP of the xSS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event S3a.
  • Mx is represented by Mss and Ox is represented by Oss.
  • Mss+Oss+Hys ⁇ Thresh1 it enters the trigger of the measurement reporting event, and performs measurement reporting to the network side device; when the terminal satisfies the condition: Mss+Oss-Hys>Thresh1, the terminal exits the trigger of the measurement reporting event, and stops.
  • the network side device performs measurement reporting.
  • the terminal may also measure the RSRP of the CSI-RS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event S3b.
  • Mx is represented by Mcr and Ox is represented by Ocr.
  • Mcr+Ocr+Hys ⁇ Thresh1 it enters the trigger of the measurement report event, and performs measurement report to the network side device; when the terminal satisfies the condition: Mcr+Ocr-Hys>Thresh1, the terminal exits the trigger of the measurement report event, and stops The network side device performs measurement reporting.
  • Thresh1 Thresh1
  • Hys can refer to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • the terminal may also measure the RSRP of the xSS and the CSI-RS on the N1 transmit beams of the serving cell, and the measurement report event is recorded as Event CS3.
  • Mx is represented by Mss
  • Ox is represented by Oss
  • Mx is represented by Mcr
  • Ox is represented by Ocr.
  • the terminal enters the trigger of the measurement reporting event when the condition is met: Mss+Oss+Hys ⁇ Thresh1 and Mcr+Ocr+Hys ⁇ Thresh1, and the measurement is reported to the network side device; the terminal satisfies the condition: Mss+Oss-Hys>Thresh1 and Mcr When +Ocr-Hys>Thresh1, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mss, Thresh1, Oss, Hys can be explained with reference to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • the foregoing step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • Step 1032 Obtain a measurement result of a second preset reference signal on a first preset number of transmit beams of a neighboring cell of the serving cell.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the a cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys indicates a lag parameter of the measurement reported event
  • Mp indicates a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Opp indicates A frequency-specific offset of x on the transmit beam of the serving cell
  • Ocp represents a cell-specific offset of x on the transmit beam of the serving cell
  • Off represents an offset parameter of the measurement reported event.
  • the resource of the second preset reference signal y in the neighboring cell becomes better than the resource of the first preset reference signal x in the serving cell.
  • Mn represents the measurement result of the neighboring cell, and does not consider any offset.
  • Ofn represents the frequency-specific offset of the neighboring cell.
  • Ocn represents the cell-specific offset of the neighboring cell and is set to zero if not configured for the neighboring cell.
  • Mp represents the measurement result of the serving cell, regardless of any offset.
  • Ofp represents the frequency-specific offset of the frequency of the serving cell.
  • Ocp represents a specific offset of the serving cell and is set to zero if it is not configured for the serving cell.
  • Hys indicates the hysteresis parameter for measuring the reported event.
  • Off indicates the offset parameter of the measured report event.
  • Mn and Mp are expressed in dBm in the case of RSRP, or in dB in the case of RSRQ and RS-SINR.
  • Ocn, Ofp, Ocp, Hys, Off are expressed in dB.
  • the terminal may measure at least one of RSRP, RSRQ, and RS-SINR of the xSS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event S4a.
  • Event S4a the terminal enters the trigger of the measurement reporting event when the condition: Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off is satisfied, and the measurement is reported to the network side device; the terminal satisfies the condition: Mn+Ofn+ When Ocn+Hys ⁇ Mp+Ofp+Ocp+Off, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mn, Mp, Ofn, Ocn, Ofp, Ocp, Hys, Off can be referred to the above explanation.
  • the terminal may also measure at least one of the RSRP, the RSRQ, and the RS-SINR of the CSI-RS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event S4b.
  • Event S4b the terminal enters the trigger of the measurement reporting event when the condition: Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off is satisfied, and the measurement is reported to the network side device; the terminal satisfies the condition: Mn+Ofn+ When Ocn+Hys ⁇ Mp+Ofp+Ocp+Off, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mn, Mp, Ofn, Ocn, Ofp, Ocp, Hys, Off can be referred to the above explanation.
  • the terminal may also measure at least one of the RSRP, the RSRQ, and the RS-SINR of the xSS and the CSI-RS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event CS4.
  • Event CS4 the terminal enters the trigger of the measurement report event when the condition: Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off is satisfied, and the measurement is reported to the network side device; the terminal satisfies the condition: Mn+Ofn+ When Ocn+Hys ⁇ Mp+Ofp+Ocp+Off, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mn, Mp, Ofn, Ocn, Ofp, Ocp, Hys, Off can be referred to the above explanation.
  • the foregoing step 103 includes:
  • Step 1032 Obtain a measurement result of a second preset reference signal on a first preset number of transmit beams of a neighboring cell of the serving cell where the terminal is located.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the A cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys represents a hysteresis parameter of the measurement reported event
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the resources of the second preset reference signal in the neighboring cell become better than the threshold based on the condition nine and the condition ten.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may measure at least one of RSRP, RSRQ, and RS-SINR of the xSS on the N1 transmit beams of the neighboring cell, and the measurement report event is recorded as Event S5a.
  • Event S5a the terminal enters the trigger of the measurement reporting event when the condition: Mn+Ofn+Ocn-Hys>Thresh2 is satisfied, and the measurement is reported to the network side device; when the terminal satisfies the condition: Mn+Ofn+Ocn+Hys ⁇ Thresh2
  • the trigger of the measurement reporting event is exited, and the measurement reporting to the network side device is stopped.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may also measure at least one of the RSRP, the RSRQ, and the RS-SINR of the CSI-RS on the N1 transmit beams of the neighboring cell, and the measurement report event is recorded as Event S5b.
  • Event S5b the terminal enters the trigger of the measurement reporting event when the condition: Mn+Ofn+Ocn-Hys>Thresh2 is satisfied, and the measurement is reported to the network side device; when the terminal satisfies the condition: Mn+Ofn+Ocn+Hys ⁇ Thresh2
  • the trigger of the measurement reporting event is exited, and the measurement reporting to the network side device is stopped.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may also measure at least one of RSRP, RSRQ, and RS-SINR of the xSS and the CSI-RS on the N1 transmit beams of the neighboring cell, and the measurement reported event is recorded as Event CS5.
  • Event CS5 the terminal enters the trigger of the measurement reporting event when the condition: Mn+Ofn+Ocn-Hys>Thresh2 is satisfied, and the measurement is reported to the network side device; when the terminal satisfies the condition: Mn+Ofn+Ocn+Hys ⁇ Thresh2
  • the trigger of the measurement reporting event is exited, and the measurement reporting to the network side device is stopped.
  • Mn, Mp, Ofn, Ocn, Ofp, Ocp, Hys, Off can be referred to the above explanation.
  • the foregoing step 103 includes:
  • Step 1031 Obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located.
  • Step 1032 Obtain a measurement result of a second preset reference signal on a first preset number of transmit beams of a neighboring cell of the serving cell.
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Condition 12 Mx+Ox-Hys>Thresh1 and Mn+Ofn+Ocn+Hys ⁇ Thresh2;
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the lag parameter, Thresh1 represents the first threshold parameter of the measurement reporting event
  • Mn represents the measurement result of the second preset reference signal y on the transmitting beam of the neighboring cell of the serving cell
  • Of represents the transmission of the neighboring cell
  • Ocn represents a cell-specific offset of y on the transmit beam of the neighboring cell
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the resources of the first preset reference signal in the serving cell become worse than the first threshold based on the condition 11 and the condition 12, and the second preset reference signal resource in the neighboring cell becomes smaller than the second threshold it is good.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may measure at least one of RSRP, RSRQ, and RS-SINR of the xSS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event S6a.
  • Mx is represented by Mss and Ox is represented by Oss.
  • Mss+Oss+Hys ⁇ Thresh1 and Mn+Ofn+Ocn-Hys>Thresh2 it triggers the measurement report event and reports to the network side device; the terminal satisfies the condition: Mss+Oss-Hys>Thresh1
  • Mn+Ofn+Ocn+Hys ⁇ Thresh2 the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may also measure at least one of the RSRP, the RSRQ, and the RS-SINR of the CSI-RS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event S6b.
  • Mx is represented by Mcr and Ox is represented by Ocr.
  • Mcr+Ocr+Hys ⁇ Thresh1 and Mn+Ofn+Ocn-Hys>Thresh2 the triggering of the measurement report event is performed, and the measurement is reported to the network side device; the terminal satisfies the condition: Mcr+Ocr-Hys>Thresh1
  • Mcr+Ocr-Hys>Thresh1 When Mn+Ofn+Ocn+Hys ⁇ Thresh2, the trigger of the measurement report event is exited, and the measurement report to the network side device is stopped.
  • Mn, Ofn, Ocn, Hys, and Thresh1 can be referred to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • Thresh2 can refer to the explanation of Thresh1.
  • the terminal may also measure at least one of RSRP, RSRQ, and RS-SINR of the xSS and the CSI-RS on the N1 transmit beams of the serving cell and the neighboring cell, and the measurement report event is recorded as Event CS6.
  • Mx is represented by Mss
  • Ox is represented by Oss
  • Mx is represented by Mcr
  • Ox is represented by Ocr.
  • Mss, Oss, Mn, Ofn, Ocn, Hys, and Thresh1 can be referred to the above explanation.
  • Mcr and Ocr can refer to the explanations of Mss and Oss.
  • Thresh2 can refer to the explanation of Thresh1.
  • the measurement reporting method of the beam of the embodiment of the present disclosure implements measurement and reporting of a beam for a measurement object that is an xSS or a CSI-RS for a measurement object, or a measurement object that is at least two of an xSS, a CSI-RS, and a DMRS. And measuring the triggering of reported events, improving network performance.
  • step 103 includes:
  • each of the receive beams included in the terminal receiving antenna packet respectively acquires measurement results on N1 transmit beams (measurement results on N1 transmit beams of the serving cell and/or the neighboring cell), and then on each receive beam.
  • the obtained measurement results are reported and reported in step 104, respectively.
  • the measurement of the beam is more accurate and comprehensive, and the network performance is further improved.
  • the receiving antenna group may be a receiving antenna beam set Rx beam set or a receiving antenna beam group Rx beam group.
  • Each beam beam in the Rx beam set can come from different panel panels, and each beam in the Rx beam group comes from the same panel panel.
  • the embodiment of the present disclosure may also obtain the measurement result of the preset reference signal on the N1 transmission beams for all the receiving antennas without considering the receiving antenna group, so that the measurement reporting response to the beam is faster.
  • the method for measuring and reporting a beam implements a multi-beam for a measurement object that is an xSS or a CSI-RS for a multi-beam scenario, or a measurement object that is at least two of an xSS, a CSI-RS, and a DMRS.
  • the measurement is reported to improve network performance.
  • FIG. 6 is a structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal 600 shown in FIG. 6 includes:
  • the first obtaining module 601 is configured to acquire measurement configuration information of the network side device.
  • the determining module 602 is configured to determine, according to the measurement configuration information, a first preset number of transmit beams in the multiple transmit beams, where the first preset number of transmit beams are in a connected state, and a preset reference is needed. a transmit beam for signal measurement;
  • the second obtaining module 603 is configured to obtain a measurement result of the preset reference signal on the first preset number of transmit beams
  • the measurement reporting module 604 is configured to perform measurement reporting according to the measurement result of the first preset number of transmission beams.
  • the terminal 600 of the embodiment of the present disclosure implements measurement reporting in a multi-beam scenario and improves network performance.
  • the technical problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • the measurement configuration information includes: a number of beams that the network side device configures for the terminal to be measured;
  • the determining module 602 includes:
  • a first determining submodule configured to determine, as the first preset quantity, the number of beams to be measured configured, if the configured number of required to be measured is smaller than a beam measurement capability threshold of the terminal ;
  • a second determining sub-module configured to determine, according to the beam measurement capability threshold of the terminal, the threshold of the number of beams measurement capability of the terminal, The default number.
  • the second obtaining module 603 includes:
  • a first acquiring submodule configured to acquire a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located;
  • a second acquiring submodule configured to acquire a measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell.
  • the first preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the first preset reference signal includes at least one of an xSS, a CSI-RS, and a demodulation reference signal DMRS.
  • the second preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the second preset reference signal includes at least two of an xSS, a CSI-RS, and a demodulation reference signal DMRS;
  • the xSS includes a secondary synchronization signal SSS; or the xSS includes a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the measurement result includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, and a reference signal dry-to-noise ratio RS-SINR.
  • the measurement reporting module 604 includes:
  • the first reporting sub-module is configured to determine a cell quality of the serving cell according to the measurement result of the first preset number of transmit beams, and report the cell quality of the serving cell.
  • the measurement reporting module 604 includes:
  • the second reporting sub-module is configured to determine a cell quality of the neighboring cell according to the measurement result of the first preset number of transmit beams, and report the cell quality of the neighboring cell.
  • the first reporting submodule includes:
  • a first determining unit configured to: obtain, in the measurement result of the first preset number of sending beams, a measurement result of a currently serving transmit beam, and determine the serving cell according to the measurement result of the currently served transmit beam Cell quality; or
  • a second determining unit configured to calculate, according to a preset algorithm, a measurement result of the first preset number of transmit beams, and determine, according to the calculation result, a cell quality of the serving cell;
  • a third determining unit configured to: in the measurement result of the first preset number of sending beams, obtain a measurement result of the first type of transmitting beam whose measurement result is greater than the first preset threshold, and perform the measurement according to a preset algorithm The measurement result of the first type of transmission beam is calculated, and according to the calculation result, the cell quality of the serving cell is determined,
  • the preset algorithm includes summation, averaging, or weighting.
  • the second reporting submodule includes:
  • a fourth determining unit configured to calculate, according to a preset algorithm, a measurement result of the first preset number of transmit beams, and determine, according to the calculation result, a cell quality of the neighboring cell;
  • a fifth determining unit configured to: in the measurement result of the first preset number of sending beams, obtain a measurement result of the second type of transmitting beam whose measurement result is greater than the first preset threshold, and perform the measurement according to a preset algorithm The measurement result of the second type of transmission beam is calculated, and according to the calculation result, the cell quality of the neighboring cell is determined,
  • the preset algorithm includes summation, averaging, or weighting.
  • the measurement reporting module 604 includes:
  • the third obtaining sub-module is configured to obtain the report configuration information of the network-side device, where the report configuration information includes: the number of beams to be reported that are configured by the network-side device for the terminal;
  • a third reporting sub-module configured to acquire, according to the reporting configuration information, a measurement result of the second preset number of transmitting beams, and the second The measurement results of a preset number of transmit beams are reported,
  • the second preset number is less than or equal to the first preset number.
  • the measurement reporting module 604 further includes:
  • the fourth reporting sub-module is configured to obtain a beam identifier corresponding to the second preset number of the sending beams, and report the beam identifier corresponding to the second preset number of the sending beams respectively.
  • the third reporting submodule includes:
  • a first acquiring unit configured to determine, according to the configured number of beams that need to be reported, that the number of beams to be reported is determined as the second preset quantity, and The measurement result of the second preset number of transmit beams is obtained by using the measurement result of the first preset number of transmit beams, wherein the measurement results of the second preset number of transmit beams are greater than or equal to Measurement results of two other preset beams other than the beam;
  • a second acquiring unit configured to determine the first preset quantity as the second preset quantity if the number of beams to be reported in the configuration is greater than or equal to the first preset quantity, and The measurement result of the first preset number of transmit beams is used as the measurement result of the second preset number of transmit beams.
  • the third reporting submodule includes:
  • a third acquiring unit configured to obtain, in the measurement result of the first preset number of sending beams, a measurement result of a third type of transmitting beam whose measurement result is greater than a second preset threshold;
  • a sixth determining unit configured to determine the number of the third type of transmit beams as the second preset quantity, if the number of the third type of transmit beams is smaller than the number of the required beams to be reported, and Taking the measurement result of the third type of transmission beam as a measurement result of the second preset number of transmission beams;
  • a fourth acquiring unit configured to determine, if the number of the third type of transmit beams is greater than or equal to the number of the required beams to be reported, the number of beams to be reported that are configured to be the second preset number. And obtaining, in the measurement result of the third type of transmit beam, a measurement result of the second preset number of transmit beams.
  • the measurement reporting module 604 includes:
  • the fifth reporting sub-module is configured to periodically perform measurement reporting on the network side device according to the measurement result of the first preset number of sending beams according to a preset period.
  • the measurement reporting module 604 includes:
  • a determining sub-module configured to determine, according to the measurement result of the first preset number of sending beams, whether a trigger condition for entering a measurement reporting event is met
  • the reporting sub-module is configured to perform measurement reporting to the network side device if the trigger condition for entering the measurement reporting event is met.
  • it also includes:
  • a determining module configured to determine, according to the measurement result of the first preset number of sending beams, whether a trigger condition for exiting the measurement reporting event is met;
  • the report module is used to stop the measurement report to the network side device if the trigger condition for exiting the measurement report event is met.
  • the second obtaining module 603 includes:
  • the first obtaining submodule is configured to obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the second obtaining module 603 includes:
  • the first obtaining submodule is configured to obtain a measurement result of the first preset reference signal on the first preset number of transmitting beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • Mref represents the measurement result of the reference x on the transmission beam of the serving cell
  • Oref represents the specific offset of the frequency of the transmission beam on the transmission beam of the serving cell
  • Off represents the measurement reporting event.
  • the second obtaining module 603 includes:
  • the first obtaining submodule is configured to obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the second obtaining module 603 includes:
  • the first obtaining submodule is configured to obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • a second acquiring submodule configured to acquire a measurement result of a second preset reference signal on a first preset number of transmit beams of a neighboring cell of the serving cell;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the a cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys indicates a lag parameter of the measurement reported event
  • Mp indicates a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Opp indicates A frequency-specific offset of x on the transmit beam of the serving cell
  • Ocp represents a cell-specific offset of x on the transmit beam of the serving cell
  • Off represents an offset parameter of the measurement reported event.
  • the second obtaining module 603 includes:
  • a second acquiring submodule configured to obtain a measurement result of a second preset reference signal on a first preset number of transmission beams of the neighboring cell of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the A cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys represents a hysteresis parameter of the measurement reported event
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the second obtaining module 603 includes:
  • the first obtaining submodule is configured to obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • a second acquiring submodule configured to acquire a measurement result of a second preset reference signal on a first preset number of transmit beams of a neighboring cell of the serving cell;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Condition 12 Mx+Ox-Hys>Thresh1 and Mn+Ofn+Ocn+Hys ⁇ Thresh2;
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the lag parameter, Thresh1 represents the first threshold parameter of the measurement reporting event
  • Mn represents the measurement result of the second preset reference signal y on the transmitting beam of the neighboring cell of the serving cell
  • Of represents the transmission of the neighboring cell
  • Ocn represents a cell-specific offset of y on the transmit beam of the neighboring cell
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the second obtaining module 603 includes:
  • a third acquiring submodule configured to acquire a measurement result of the preset reference signal on the first preset number of transmission beams respectively received on each receiving beam included in the receiving antenna group of the terminal.
  • the measurement reporting in the multi-beam scenario is implemented, and the network performance is improved.
  • the technical problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • FIG. 7 is a block diagram of a mobile terminal of another embodiment of the present disclosure.
  • the mobile terminal 700 shown in FIG. 7 includes at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in mobile terminal 700 are coupled together by a bus system 705.
  • the bus system 705 is used to implement connection communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 705 in FIG.
  • the user interface 703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 702 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • Memory 702 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 7021 and application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 7022.
  • the program or instruction stored in the memory 702 is specifically used to be a program or an instruction stored in the application 7022.
  • the processor 701 is configured to acquire measurement configuration information of the network side device. Determining, by the configuration information, a first preset number of transmit beams in the plurality of transmit beams, where the first preset number of transmit beams are transmit beams that need to perform preset reference signal measurement on the terminal in the connected state; a measurement result of a preset reference signal on a predetermined number of transmission beams; and performing measurement reporting according to the measurement result of the first preset number of transmission beams.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied as being performed by a hardware decoding processor or by a combination of hardware and software modules in a decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other electronic unit for performing the functions of the present application Or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other electronic unit for performing the functions of the present application Or a combination thereof.
  • the techniques herein can be implemented by modules (eg, procedures, functions, etc.) that perform the functions herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the measurement configuration information includes: a number of beams to be measured configured by the network side device for the terminal; the processor 701 is specifically configured to: if the configured number of beams to be measured is smaller than the number of beam measurements of the terminal And determining, by the capability threshold, the number of beams to be measured that are configured to be the first preset number; if the configured number of beams to be measured is greater than or equal to a threshold value of the beam measurement capability of the terminal, The beam measurement capability threshold of the terminal is determined as the first preset number.
  • the processor 701 is specifically configured to: obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located; and/or acquire a neighboring cell of the serving cell a measurement result of a second predetermined reference signal on a predetermined number of transmit beams.
  • the first preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the first preset reference signal includes at least one of an xSS, a CSI-RS, and a demodulation reference signal DMRS.
  • the second preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the second preset reference signal includes at least two of an xSS, a CSI-RS, and a demodulation reference signal DMRS.
  • the xSS includes a secondary synchronization signal SSS; or the xSS includes a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the measurement result includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, and a reference signal dry-to-noise ratio RS-SINR.
  • the processor 701 is specifically configured to: if the measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located, obtain the first preset number of transmit beams according to the first preset number of transmit beams The measurement result determines the cell quality of the serving cell, and reports the cell quality of the serving cell.
  • the processor 701 is specifically configured to: if the measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell is obtained, according to the first preset quantity The measurement result of the transmission beam determines the cell quality of the neighboring cell, and reports the cell quality of the neighboring cell.
  • the processor 701 is configured to: obtain, according to the measurement result of the first preset number of transmit beams, a measurement result of a currently serving transmit beam, and determine, according to the measurement result of the currently served transmit beam, The cell quality of the serving cell is calculated, or the measurement result of the first preset number of transmit beams is calculated according to a preset algorithm, and the cell quality of the serving cell is determined according to the calculation result; or in the first pre The measurement result of the first type of transmission beam whose measurement result is greater than the first preset threshold is obtained, and the measurement result of the first type of transmission beam is calculated according to a preset algorithm, according to the calculation As a result, the cell quality of the serving cell is determined; wherein the preset algorithm comprises summing, averaging or weighting.
  • the processor 701 is configured to: calculate, according to a preset algorithm, a measurement result of the first preset number of transmit beams, and determine, according to the calculation result, a cell quality of the neighboring cell; or A measurement result of the second type of transmission beam whose measurement result is greater than the first preset threshold is obtained, and the measurement result of the second type of transmission beam is calculated according to a preset algorithm, Determining, according to the calculation result, a cell quality of the neighboring cell, where the preset algorithm includes summing, averaging, or weighting.
  • the processor 701 is specifically configured to: obtain the report configuration information of the network side device, where the report configuration information includes: a number of beams that need to be reported by the network side device configured by the terminal; and according to the report configuration information, The measurement result of the second preset number of the transmit beams is obtained, and the measurement result of the second preset number of transmit beams is reported; wherein the second The preset number is less than or equal to the first preset number.
  • the processor 701 is configured to: obtain a beam identifier corresponding to the second preset number of the transmit beams, and report the beam identifier corresponding to the second preset number of the transmit beams.
  • the processor 701 is specifically configured to: if the number of the beams to be reported is less than the first preset quantity, determine the number of the required beams to be reported as the second preset quantity. And obtaining, in the measurement result of the first preset number of transmit beams, a measurement result of the second preset number of transmit beams, where the measurement results of the second preset number of transmit beams are greater than or equal to a measurement result of the other beams except the second predetermined number of beams; if the configured number of beams to be reported is greater than or equal to the first preset number, determining the first preset quantity as The second preset number is used as a measurement result of the second preset number of transmit beams.
  • the processor 701 is configured to: in the measurement result of the first preset number of transmit beams, obtain a measurement result of a third type of transmit beam whose measurement result is greater than a second preset threshold; If the number of the three types of transmit beams is smaller than the number of beams to be reported, the number of the third type of transmit beams is determined as the second preset number, and the measurement result of the third type of transmit beams is determined. And determining, as the measurement result of the second preset number of transmit beams, if the number of the third type of transmit beams is greater than or equal to the number of beams to be reported, For the second preset number, and in the measurement result of the third type of transmit beam, obtain the measurement result of the second preset number of transmit beams.
  • the processor 701 is configured to: periodically perform measurement and report to the network side device according to the preset period, according to the measurement result of the first preset number of transmit beams.
  • the processor 701 is configured to: determine, according to the measurement result of the first preset number of transmit beams, whether a trigger condition for entering a measurement report event is met; if the trigger condition for entering the measurement report event is met, then the network is sent to the network.
  • the side device performs measurement reporting.
  • the processor 701 is configured to: determine, according to the measurement result of the first preset number of transmit beams, whether a trigger condition for exiting the measurement report event is met; if the trigger condition for exiting the measurement report event is met, stopping The network side device performs measurement reporting.
  • the processor 701 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the processor 701 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • Mref represents the measurement result of the reference x on the transmit beam of the serving cell
  • Oref represents the frequency specific offset of the reference beam on the transmit beam of the serving cell
  • Off represents the measurement report event.
  • the processor 701 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the processor 701 is configured to: obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located, and acquire a first preset of a neighboring cell of the serving cell. a measurement result of a second preset reference signal on a plurality of transmit beams;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the a cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys indicates a lag parameter of the measurement reported event
  • Mp indicates a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Opp indicates A frequency-specific offset of x on the transmit beam of the serving cell
  • Ocp represents a cell-specific offset of x on the transmit beam of the serving cell
  • Off represents an offset parameter of the measurement reported event.
  • the processor 701 is specifically configured to: obtain a measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the A cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys represents a hysteresis parameter of the measurement reported event
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the processor 701 is configured to: obtain a measurement result of a first preset reference signal on a first preset number of transmit beams of a serving cell where the terminal is located, and acquire a first preset of a neighboring cell of the serving cell. a measurement result of a second preset reference signal on a plurality of transmit beams;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Condition 12 Mx+Ox-Hys>Thresh1 and Mn+Ofn+Ocn+Hys ⁇ Thresh2;
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the lag parameter, Thresh1 represents the first threshold parameter of the measurement reporting event
  • Mn represents the measurement result of the second preset reference signal y on the transmitting beam of the neighboring cell of the serving cell
  • Of represents the transmission of the neighboring cell
  • Ocn represents a cell-specific offset of y on the transmit beam of the neighboring cell
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the processor 701 is configured to: obtain a measurement result of a preset reference signal on a first preset number of transmit beams respectively received on each receive beam included in the receive antenna group of the terminal.
  • the mobile terminal 700 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the mobile terminal 700 of the embodiment of the present disclosure implements measurement reporting in a multi-beam scenario, improving network performance. The problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • FIG. 8 is a schematic structural diagram of a mobile terminal according to another embodiment of the present disclosure.
  • the mobile terminal 800 in FIG. 8 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an in-vehicle computer.
  • PDA personal digital assistant
  • the mobile terminal 800 in FIG. 8 includes a radio frequency (RF) circuit 810, a memory 820, an input unit 830, a display unit 840, a processor 860, an audio circuit 870, a WiFi (Wireless Fidelity) module 880, and a power supply 890.
  • RF radio frequency
  • the input unit 830 can be used to receive digital or character information input by the user, and generate signal input related to user setting and function control of the mobile terminal 800.
  • the input unit 830 may include a touch panel 831.
  • the touch panel 831 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 831), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 831 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 860 is provided and can receive commands from the processor 860 and execute them.
  • the touch panel 831 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 830 may further include other input devices 832, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 840 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 800.
  • the display unit 840 can include a display panel 841.
  • the display panel 841 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 831 can cover the display panel 841 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 860 to determine the type of the touch event, and then the processor The 860 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 860 is a control center of the mobile terminal 800, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 821, and calling the second storage.
  • the data in the memory 822 performs various functions and processing data of the mobile terminal 800, thereby performing overall monitoring of the mobile terminal 800.
  • processor 860 can include one or more processing units.
  • the processor 860 is configured to acquire measurement configuration information of the network side device by calling the software program and/or the module stored in the first memory 821 and/or the data in the second memory 822;
  • the measurement configuration information is used to determine a first preset number of transmit beams in a plurality of transmit beams, where the first preset number of transmit beams are transmit beams that need to perform preset reference signal measurement in a terminal in a connected state;
  • the measurement result of the preset reference signal on the first preset number of transmit beams; and the measurement report is performed according to the measurement result of the first preset number of transmit beams.
  • the measurement configuration information includes: a number of beams to be measured configured by the network side device for the terminal; the processor 860 is specifically configured to: if the configured number of beams to be measured is smaller than the number of beam measurements of the terminal And determining, by the capability threshold, the number of beams to be measured that are configured to be the first preset number; if the configured number of beams to be measured is greater than or equal to a threshold value of the beam measurement capability of the terminal, The beam measurement capability threshold of the terminal is determined as the first preset number.
  • the processor 860 is specifically configured to: obtain a measurement result of a first preset reference signal on a first preset number of transmission beams of a serving cell where the terminal is located; and/or acquire a neighboring cell of the serving cell a measurement result of a second predetermined reference signal on a predetermined number of transmit beams.
  • the first preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the first preset reference signal includes at least one of an xSS, a CSI-RS, and a demodulation reference signal DMRS.
  • the second preset reference signal includes a synchronization signal xSS or a channel state information reference signal CSI-RS; or the second preset reference signal includes at least two of an xSS, a CSI-RS, and a demodulation reference signal DMRS.
  • the xSS includes a secondary synchronization signal SSS; or the xSS includes a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the measurement result includes at least one of a reference signal received power RSRP, a reference signal received quality RSRQ, and a reference signal dry-to-noise ratio RS-SINR.
  • the processor 860 is specifically configured to: if acquiring a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located, according to the first preset number of transmit beams The measurement result determines the cell quality of the serving cell, and reports the cell quality of the serving cell.
  • the processor 860 is specifically configured to: if the measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell is obtained, according to the first preset quantity The measurement result of the transmission beam determines the cell quality of the neighboring cell, and reports the cell quality of the neighboring cell.
  • the processor 860 is configured to: obtain, in the measurement result of the first preset number of transmit beams, a measurement result of a currently serving transmit beam, and determine, according to the measurement result of the currently served transmit beam, The cell quality of the serving cell is calculated, or the measurement result of the first preset number of transmit beams is calculated according to a preset algorithm, and the cell quality of the serving cell is determined according to the calculation result; or in the first pre The measurement result of the first type of transmission beam whose measurement result is greater than the first preset threshold is obtained, and the measurement result of the first type of transmission beam is calculated according to a preset algorithm, according to the calculation As a result, the cell quality of the serving cell is determined; wherein the preset algorithm comprises summing, averaging or weighting.
  • the processor 860 is configured to: calculate, according to a preset algorithm, a measurement result of the first preset number of transmit beams, and determine, according to the calculation result, a cell quality of the neighboring cell; or A measurement result of the second type of transmission beam whose measurement result is greater than the first preset threshold is obtained, and the measurement result of the second type of transmission beam is calculated according to a preset algorithm, Determining, according to the calculation result, a cell quality of the neighboring cell, where the preset algorithm includes summing, averaging, or weighting.
  • the processor 860 is specifically configured to: obtain the report configuration information of the network side device, where the report configuration information includes: a number of beams that need to be reported by the network side device configured by the terminal; and according to the report configuration information, The measurement result of the second preset number of the transmit beams is obtained, and the measurement result of the second preset number of transmit beams is reported; wherein the second The preset number is less than or equal to the first preset number.
  • the processor 860 is configured to: obtain a beam identifier corresponding to the second preset number of transmit beams, and report the beam identifier corresponding to the second preset number of transmit beams.
  • the processor 860 is specifically configured to: if the number of the beams to be reported is less than the first preset quantity, determine the number of the required beams to be reported as the second preset quantity. And obtaining, in the measurement result of the first preset number of transmit beams, a measurement result of the second preset number of transmit beams, where the measurement results of the second preset number of transmit beams are greater than or equal to a measurement result of the other beams except the second predetermined number of beams; if the configured number of beams to be reported is greater than or equal to the first preset number, determining the first preset quantity as The second preset number is used as a measurement result of the second preset number of transmit beams.
  • the processor 860 is configured to: obtain, in the measurement result of the first preset number of transmit beams, a measurement result of a third type of transmit beam whose measurement result is greater than a second preset threshold; If the number of the three types of transmit beams is smaller than the number of beams to be reported, the number of the third type of transmit beams is determined as the second preset number, and the measurement result of the third type of transmit beams is determined. And determining, as the measurement result of the second preset number of transmit beams, if the number of the third type of transmit beams is greater than or equal to the number of beams to be reported, For the second preset number, and in the measurement result of the third type of transmit beam, obtain the measurement result of the second preset number of transmit beams.
  • the processor 860 is configured to: periodically perform measurement report to the network side device according to the preset period of the measurement result of the first preset number of transmit beams.
  • the processor 860 is specifically configured to: determine, according to the measurement result of the first preset number of transmit beams, whether a trigger condition for entering a measurement report event is met; if the trigger condition for entering the measurement report event is met, then the network is sent to the network The side device performs measurement reporting.
  • the processor 860 is configured to: determine, according to the measurement result of the first preset number of transmit beams, whether a trigger condition for exiting the measurement report event is met; if the trigger condition for exiting the measurement report event is met, stopping The network side device performs measurement reporting.
  • the processor 860 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the processor 860 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • Mref represents the measurement result of the reference x on the transmit beam of the serving cell
  • Oref represents the frequency specific offset of the reference beam on the transmit beam of the serving cell
  • Off represents the measurement report event.
  • the processor 860 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the hysteresis parameter, Thresh1 represents the first threshold parameter of the measurement reported event.
  • the processor 860 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located; and obtain a first preset of the neighboring cell of the serving cell a measurement result of a second preset reference signal on a plurality of transmit beams;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the a cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys represents a lag parameter of the measurement reported event
  • Mp represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ocp represents a cell-specific offset of x on the transmit beam of the serving cell
  • Off represents an offset parameter of the measurement reported event.
  • the processor 860 is specifically configured to: obtain a measurement result of the second preset reference signal on the first preset number of transmit beams of the neighboring cell of the serving cell where the terminal is located;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Mn represents a measurement result of the second preset reference signal y on the transmit beam of the neighboring cell of the serving cell
  • Offn represents a frequency-specific offset of the transmit beam of the neighboring cell to y
  • Ocn represents the A cell-specific offset of y on the transmit beam of the neighboring cell
  • Hys represents a hysteresis parameter of the measurement reported event
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the processor 860 is specifically configured to: obtain a measurement result of the first preset reference signal on the first preset number of transmit beams of the serving cell where the terminal is located; and obtain a first preset of the neighboring cell of the serving cell a measurement result of a second preset reference signal on a plurality of transmit beams;
  • the triggering condition for entering the measurement reporting event includes:
  • the triggering condition for exiting the measurement reporting event includes:
  • Condition 12 Mx+Ox-Hys>Thresh1 and Mn+Ofn+Ocn+Hys ⁇ Thresh2;
  • Mx represents a measurement result of the first preset reference signal x on the transmit beam of the serving cell
  • Ox represents a frequency-specific offset of the transmit beam of the serving cell to x
  • Hys represents the measurement report event.
  • the lag parameter, Thresh1 represents the first threshold parameter of the measurement reporting event
  • Mn represents the measurement result of the second preset reference signal y on the transmitting beam of the neighboring cell of the serving cell
  • Of represents the transmission of the neighboring cell
  • Ocn represents a cell-specific offset of y on the transmit beam of the neighboring cell
  • Thresh2 represents a second threshold parameter of the measurement reported event.
  • the processor 860 is specifically configured to: obtain a measurement result of the preset reference signal on the first preset number of transmit beams respectively received on each receive beam included in the receive antenna group of the terminal.
  • the mobile terminal 800 implements measurement reporting in a multi-beam scenario and improves network performance.
  • the problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • a method for measuring and reporting a beam is further provided, which is applied to a network side device, and includes:
  • Step 901 Send measurement configuration information to the terminal.
  • the measurement configuration information is used by the terminal, according to the measurement configuration information, determining a first preset number of transmit beams in the multiple transmit beams, and acquiring the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • the terminal determines, according to the measurement configuration information, a first preset number of transmit beams in the plurality of transmit beams, and obtains measurement results of the preset reference signals on the first preset number of transmit beams, according to the first The measurement result of the preset number of transmission beams is measured and reported, and the measurement of the beam in the multi-beam scene is reported.
  • the measurement reporting method of the beam in the embodiment of the present disclosure by transmitting the measurement configuration information to the terminal, enables the terminal to implement measurement reporting of the beam for the multi-beam scenario according to the measurement configuration information, thereby improving network performance.
  • the technical problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • the measurement configuration information includes: a number of beams that the network side device configures for the terminal to be measured.
  • the network side device configures the number of beams Np1 to be measured for the terminal, and provides support for the terminal to determine the beam to be measured, so that the terminal can successfully complete the beam measurement in the multi-beam scenario.
  • the network side device may configure the measurement of several beam beams on the UE side by using SI or a dedicated Dedicated RRC message. That is, the above measurement configuration information may be included in the SI or Dedicated RRC message.
  • the network side device further includes:
  • the report configuration information includes: a number of beams that need to be reported by the network side device configured for the terminal.
  • the network side device configures the number of the required number of the reported Np2 for the terminal, and provides support for the terminal to determine the beam to be reported, so that the terminal can successfully report the beam measurement result in the multi-beam scenario.
  • the network side device may configure the reporting of several beam beams on the UE side by using an SI or a Dedicated RRC message, such as a reconfiguration message. That is, the foregoing reporting configuration information may be included in the SI or Dedicated RRC message.
  • the method further includes:
  • Step 902 Receive information that the terminal measures and reports.
  • the terminal may obtain the measurement result of the first preset number of transmit beams according to the network configuration information, and then report the cell quality and/or the beam measurement result according to the measurement result of the first preset number of transmit beams.
  • the measurement reporting method of the beam in the embodiment of the present disclosure by transmitting measurement configuration information to the terminal, enables the terminal to implement measurement reporting in the multi-beam scenario according to the measurement configuration information, thereby improving network performance.
  • the problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • FIG. 10 is a structural diagram of a network side device according to an embodiment of the present disclosure.
  • the network side device 1000 shown in FIG. 10 includes:
  • the first sending module 1001 is configured to send measurement configuration information to the terminal.
  • the measurement configuration information is used by the terminal, according to the measurement configuration information, determining a first preset number of transmit beams in the multiple transmit beams, and acquiring the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • the network side device 1000 of the embodiment of the present disclosure by transmitting measurement configuration information to the terminal, enables the terminal to implement measurement reporting in a multi-beam scenario according to the measurement configuration information, thereby improving network performance.
  • the problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • the measurement configuration information includes: a number of beams that the network side device configures for the terminal to be measured.
  • the network side device 1000 further includes:
  • the second sending module is configured to send the report configuration information to the terminal, where the report configuration information includes: the number of beams to be reported that are configured by the network side device for the terminal.
  • the network side device 1000 further includes:
  • the receiving module 1002 is configured to receive information that is measured and reported by the terminal.
  • the network side device 1000 of the embodiment of the present disclosure by transmitting measurement configuration information to the terminal, enables the terminal to implement measurement reporting in a multi-beam scenario according to the measurement configuration information, thereby improving network performance.
  • the technical problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • the network side device 1100 includes: a processor 1101, a transceiver 1102, a memory 1103, and a bus interface, where:
  • the processor 1101 is configured to read a program in the memory 1103 and perform the following process:
  • the measurement configuration information is used by the terminal, according to the measurement configuration information, determining a first preset number of transmit beams in the multiple transmit beams, and acquiring the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1101 and various circuits of memory represented by memory 1103.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1102 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 can store data used by the processor 1101 when performing operations.
  • the measurement configuration information includes: a number of beams that the network side device configures for the terminal to be measured.
  • the processor 1101 is further configured to: send the report configuration information to the terminal, where the report configuration information includes: a number of beams that need to be reported by the network side device configured for the terminal.
  • the processor 1101 is further configured to: receive, by the transceiver 1102, information that is measured by the terminal.
  • the measurement configuration information is sent to the terminal, so that the terminal implements measurement reporting in the multi-beam scenario according to the measurement configuration information, thereby improving network performance.
  • the problem of measurement reporting without multiple beams in the existing LTE system is solved.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the measurement configuration information is used by the terminal, according to the measurement configuration information, determining a first preset number of transmit beams in the multiple transmit beams, and acquiring the first preset number of transmit beams.
  • the measurement result of the preset reference signal is measured according to the measurement result of the first preset number of transmission beams.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种波束的测量上报方法、终端侧设备及网络侧设备,涉及通信技术领域,解决现有LTE***中没有多波束的测量上报的问题。该方法包括获取网络侧设备的测量配置信息;根据所述测量配置信息,处于连接态的终端在第一预设数量个发送波束上进行预设参考信号的测量;测量获得所述第一预设数量个发送波束上的预设参考信号的测量结果;根据所述第一预设数量个发送波束的测量结果,进行测量上报。本公开实施例提供的方案实现了多波束场景下的测量上报,提高了网络性能。

Description

一种波束的测量上报方法、终端侧设备及网络侧设备
相关申请的交叉引用
本申请主张在2017年3月24日在中国提交的中国专利申请号No.201710184045.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信领域,尤其涉及一种波束的测量上报方法、终端侧设备及网络侧设备。
背景技术
在5G***中,引入了高频的波束赋形(beam forming),所以引入了多波束(Multiple beam)的场景。现有LTE技术中定义了测量上报的触发事件(trigger event)A1-A6、B1-B2、C1-C2、W1-W3。但是都没有涉及到根据Multiple beam测量进行测量上报和相关的trigger event。在相关的文稿讨论中,也没有涉及此部分内容。后续改进技术中也没有相关揭示。
因此,急需多波束Multiple beam的测量上报。
发明内容
本公开实施例提供了一种波束的测量上报方法、终端侧设备及网络侧设备,以解决多波束的测量上报的技术问题。
第一方面,本公开实施例提供了一种波束的测量上报方法,应用于终端侧设备,包括:
获取网络侧设备的测量配置信息;
根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端侧设备需要进行预设参考信号测量的发送波束;
获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
根据所述第一预设数量个发送波束的测量结果,进行测量上报。
第二方面,本公开实施例提供了一种终端侧设备,包括:
第一获取模块,用于获取网络侧设备的测量配置信息;
确定模块,用于根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端侧设备需要进行预设参考信号测量的发送波束;
第二获取模块,用于获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
测量上报模块,用于根据所述第一预设数量个发送波束的测量结果,进行测量上报。
第三方面,本公开实施例提供了一种波束的测量上报方法,应用于网络侧设备,包括:
向终端侧设备发送测量配置信息;
其中,所述测量配置信息用于:所述终端侧设备根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
第四方面,本公开实施例提供了一种网络侧设备,包括:
第一发送模块,用于向终端侧设备发送测量配置信息;
其中,所述测量配置信息用于:所述终端侧设备根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
第五方面,本公开实施例提供了一种终端侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的一种波束的测量上报方法中的步骤。
第六方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的一种波束的测量上报方法中的步骤。
第七方面,本公开实施例提供了一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的一种波束的测量上报方法中的步骤。
第八方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的一种波束的测量上报方法中的步骤。
这样,本公开实施例中,终端侧设备获取网络侧设备的测量配置信息;然后根据测量配置信息,在多个发送波束中确定第一预设数量个发送波束,该第一预设数量个发送波束为处于连接态的终端侧设备需要进行预设参考信号测量的发送波束;再获取第一预设数量个发送波束上的预设参考信号的测量结果;然后根据第一预设数量个发送波束的测量结果,进行测量上报。这样实现了多波束场景下的测量上报,提高了网络性能。有效地解决了多波束的测量上报的技术问题。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的波束的测量上报方法应用于终端的流程图;
图2为本公开实施例提供的波束的测量上报方法子步骤的流程图;
图3为本公开实施例提供的波束的测量上报方法另一子步骤的流程图;
图4为本公开实施例提供的波束的测量上报方法另一子步骤的流程图;
图5为本公开实施例提供的波束的测量上报方法另一子步骤的流程图;
图6为本公开实施例提供的终端的结构示意图;
图7为本公开实施例提供的移动终端的结构示意图;
图8为本公开实施例提供的移动终端的另一结构示意图;
图9为本公开实施例提供的波束的测量上报方法应用于网络侧设备的流 程图;
图10为本公开实施例提供的网络侧设备的结构示意图;
图11为本公开实施例提供的网络侧设备的另一结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的一些实施例中,参照图1所示,提供了一种波束的测量上报方法,应用于终端侧设备,包括:
步骤101,获取网络侧设备的测量配置信息。
这里,通过获取网络侧设备的测量配置信息,为后续在多个发送波束中确定需要测量的波束数量提供了支持。
步骤102,根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端需要进行预设参考信号测量的发送波束。
这里,根据测量配置信息,能够在多个发送波束中,准确、快速地为处于无线资源控制(Radio Resource Control,RRC)连接态的终端,确定第一预设数量N1(为了便于描述,本文中第一预设数量用N1表示)个需要进行预设参考信号测量的发送波束,从而为多波束场景下的波束测量提供了支持。
步骤103,获取所述第一预设数量个发送波束上的预设参考信号的测量结果。
这里,基于上述确定出的N1个发送波束,获取该N1个发送波束上的预设参考信号的测量结果,实现了对该N1个发送波束的测量,从而实现了多波束场景下的波束测量。
步骤104,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
这里,根据N1个发送波束的测量结果,向网络侧设备进行测量上报, 从而实现了多波束场景下的测量上报。
本公开实施例的波束的测量上报方法,实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的技术问题。
可选的,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量。
这里,网络侧设备为终端配置需要测量的波束数量Np1(为了便于描述,本文中网络侧设备为终端配置的需要测量的波束数量用Np1表示),为终端确定需要测量的波束提供了支持,使终端能顺利完成多波束场景下的波束测量。
其中,网络侧设备可通过***消息(System Information,SI)或者专用的(Dedicated)RRC消息(比如重新配置reconfiguration消息)来配置用户终端(User Equipment,UE)侧若干个波束beam的测量。即上述测量配置信息可以包括在SI或者Dedicated RRC消息中。
上述步骤102包括:
若所述配置的需要测量的波束数量小于所述终端的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量。
本公开实施例中,终端根据Np1与终端的波束测量个数能力阈值M(为了便于描述,本文中终端的波束测量个数能力阈值用M表示),来确定多个发送波束中需要进行预设参考信号测量的N1个发送波束。
这里,若Np1小于M,即网络侧设备为终端配置的需要测量的波束数量没有超过终端波束测量个数能力阈值,则以配置的波束数量作为多个发送波束中需要进行预设参考信号测量的波束数量,即N1=Np1,满足了网络需求。
若所述配置的需要测量的波束数量大于或等于所述终端的波束测量个数能力阈值,则将所述终端的波束测量个数能力阈值确定为所述第一预设数量。
这里,若Np1大于或等于M,即网络侧设备为终端配置的需要测量的波束数量超过了终端波束测量个数能力阈值,则以终端波束测量个数能力阈值作为多个发送波束中需要进行预设参考信号测量的波束数量,即N1=M,在不超过当前测量能力的前提下最大可能地满足了网络需求。
此时,终端根据网络侧设备为终端配置的需要测量的波束数量Np1与终 端的波束测量个数能力阈值M,能够准确确定多个发送波束中需要进行预设参考信号测量的N1个发送波束,在不超过当前测量能力的同时最大可能地满足了网络需求。
可选的,参照图2、3所示。上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果。
这里,终端可获取所在服务小区的N1个发送波束上的第一预设参考信号的测量结果,从而完成对服务小区的测量上报。
和/或,步骤1032,获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
这里,终端也可以获取邻小区的N1个发送波束上的第二预设参考信号的测量结果,从而完成对邻小区的测量上报。
此时,终端可以对服务小区和/或邻小区的发送波束进行测量,从而满足不同场景下的不同需求,进一步提高了网络性能。
本公开实施例中,可在服务小区的N1个发送波束上测量单个信号:xSS或者CSI-RS;也可在服务小区的N1个发送波束上同时测量两个信号:xSS和CSI-RS、xSS和DMRS或者CSI-RS和DMRS;也可在服务小区的N1个发送波束上同时测量三个信号:xSS、CSI-RS和DMRS。
即,所述第一预设参考信号可包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号可包括xSS、CSI-RS和解调参考信号DMRS中的至少两者。
同样的,本公开实施例中,可在邻小区的N1个发送波束上测量单个信号:xSS或者CSI-RS;也可在邻小区的N1个发送波束上同时测量两个信号:xSS和CSI-RS、xSS和DMRS或者CSI-RS和DMRS;也可在邻小区的N1个发送波束上同时测量三个信号:xSS、CSI-RS和DMRS。
即,所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者。
本公开实施例中,第一预设参考信号与第二预设参考信号可以相同,也 可以不同。
其中,所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和SSS。
可选的,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
此时,可在服务小区和/或邻小区的N1个发送波束上测量预设参考信号的参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)和/或参考信号信干噪比(Reference Signal-Signal to Interference Noise Ratio,RS-SINR),获得RSRP和/或RSRQ和/或RS-SINR的测量结果。
可选的,参照图2所示,若上述步骤103包括:步骤1031,则上述步骤104包括:
步骤1041,根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
此时,获取到服务小区的N1个发送波束的测量结果后,可根据N1个发送波束的测量结果,准确确定出服务小区的小区质量,并将服务小区的小区质量上报给网络侧设备,供网络侧设备使用,完成了多波束场景下小区质量的上报,进一步提高了网络性能。
具体的,上述步骤1041包括:
在所述第一预设数量个发送波束的测量结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量。
这里,终端可在服务小区的N1个发送波束的测量结果中,获取到当前服务的发送波束的测量结果,然后根据当前服务的发送波束的测量结果,准确确定出服务小区的小区质量。
或者,按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量。
这里,终端也可以按照预设算法,例如求和、平均或者加权等,对服务小区的N1个发送波束的测量结果进行计算,然后根据计算结果,准确确定 出服务小区的小区质量。
或者,在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量。
这里,终端还可以在服务小区的N1个发送波束的测量结果中,首先获取测量结果大于第一预设阈值的第一类发送波束的测量结果,然后按照预设算法,例如求和、平均或者加权等,对获取到的第一类发送波束的测量结果进行计算,再根据计算结果,准确确定服务小区的小区质量。
其中,上面已经提到,所述预设算法可包括求和、平均或者加权。
其中,第一预设阈值可以预先定义,也可以通过SI或者Dedicated RRC消息配置。
此时,通过上述三种方式均能够准确确定出服务小区的小区质量,终端可根据不同需求进行选择。
可选的,参照图3所示,若上述步骤103包括:步骤1032,则上述步骤104包括:
步骤1042,根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
此时,获取到邻小区的N1个发送波束的测量结果后,可根据N1个发送波束的测量结果,准确确定出邻小区的小区质量,并将邻小区的小区质量上报给网络侧设备,供网络侧设备使用,完成了多波束场景下小区质量的上报,进一步提高了网络性能。
具体的,上述步骤1042包括:
按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量。
这里,终端可以按照预设算法,例如求和、平均或者加权等,对邻小区的N1个发送波束的测量结果进行计算,然后根据计算结果,准确确定出邻小区的小区质量。
或者,在所述第一预设数量个发送波束的测量结果中,获取测量结果大 于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量。
这里,终端还可以在邻小区的N1个发送波束的测量结果中,首先获取测量结果大于第一预设阈值的第二类发送波束的测量结果,然后按照预设算法,例如求和、平均或者加权等,对获取到的第二类发送波束的测量结果进行计算,再根据计算结果,准确确定邻小区的小区质量。
其中,上面已经提到,所述预设算法可包括求和、平均或者加权。
其中,第一预设阈值可以预先定义,也可以通过SI或者Dedicated RRC消息配置。
此时,通过上述两种方式均能够准确确定出邻小区的小区质量,终端可根据不同需求进行选择。
通过上述可知,终端能够根据服务小区和/或邻小区的N1个发送波束的测量结果,准确确定出服务小区和/或邻小区的小区质量,完成了多波束场景下小区质量的上报。本公开实施例中,终端还能够根据服务小区和/或邻小区的N1个发送波束的测量结果,完成多波束场景下服务小区和/或邻小区的发送波束的测量结果的上报,下面进行详细描述。
可选的,参照图4所示,上述步骤104包括:
步骤1043,获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量。
这里,网络侧设备为终端配置需要上报的波束数量Np2(为了便于描述,本文中网络侧设备为终端配置的需要上报的波束数量用Np2表示),为终端确定需要上报的波束提供了支持,使终端能顺利完成多波束场景下的波束测量结果的上报。
其中,网络侧设备可通过SI或者Dedicated RRC消息(例如reconfiguration消息)来配置UE侧若干个波束beam的上报。即上述上报配置信息可以包括在SI或者Dedicated RRC消息中。
步骤1044,根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设 数量个发送波束的测量结果进行上报;其中,所述第二预设数量小于或等于所述第一预设数量。
这里,终端在上报波束测量结果时,根据网络测量设备的上报配置信息,在N1个发送波束的测量结果(服务小区和/或邻小区的N1个发送波束的测量结果)中,获取第二预设数量N2(为了便于描述,本文中第二预设数量用N2表示)个发送波束的测量结果,并将N2个发送波束的测量结果上报给网络侧设备,供网络侧设备使用,完成了多波束场景下波束的测量结果的上报,进一步提高了网络性能。
可选的,上述步骤104还包括:
步骤1045,获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
此时,终端在上报N2个发送波束的测量结果时,还可同时上报N2个发送波束分别对应的波束标识,方便网络侧设备使用。
其中,所述波束标识可以是波束ID识别信息,比如编号等。
本公开实施例中,终端在N1个发送波束的测量结果中获取N2个发送波束的测量结果进行上报的方式有两种,下面分别进行介绍。
方式一,上述步骤1044中,所述根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,包括:
若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果。
这里,若Np2小于N1,即网络配置的需要上报的波束数量小于终端测量的波束数量,则确定N2=Np2,即上报网络配置的Np2个波束的测量结果,从而充分满足网络需求;然后在N1个发送波束的测量结果中,获取N2(即Np2)个最好的发送波束的测量结果进行上报,即获取的N2个发送波束的测量结果比其他发送波束的测量结果大或者相等,供网络侧设备使用。
若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
这里,若Np2大于或等于N1,即网络配置的需要上报的波束数量大于或等于终端测量的波束数量,则确定N2=N1,即将终端测量的N1个发送波束的测量结果全部进行上报,供网络侧设备使用,以充分满足网络需求。
此时,根据网络配置的上报需求,将若干个最好的发送波束的测量结果上报给网络侧设备,为网络侧设备进行网络统计和网络优化提供了数据支持,提高了网络性能。
方式二,上述步骤1044中,所述根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,包括:
在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果。
这里,首先在N1个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果,供后续上报使用。
若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
这里,若第三类发送波束的数量小于Np2,则将获取到的第三类发送波束的测量结果全部进行上报,供网络侧设备使用,以充分满足网络需求。
若所述第三类发送波束的数量大于或等于所述配置的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
这里,若第三类发送波束的数量大于或等于Np2,则确定N2=Np2,即上报网络配置的Np2个波束的测量结果,从而充分满足网络需求;然后在获取到的第三类发送波束的测量结果中,获取N2(即Np2)个发送波束的测量结果进行上报,供网络侧设备使用。
此时,根据网络配置的上报需求,将若干个大于第二预设阈值的发送波 束的测量结果上报给网络侧设备,为网络侧设备进行网络统计和网络优化提供了数据支持,提高了网络性能。
其中,第二预设阈值可以预先定义,也可以通过SI或者Dedicated RRC消息配置。
通过上述可知,终端能够根据服务小区和/或邻小区的N1个发送波束的测量结果,准确确定出服务小区和/或邻小区的小区质量,完成多波束场景下小区质量的上报;还能够根据服务小区和/或邻小区的N1个发送波束的测量结果,完成多波束场景下服务小区和/或邻小区的发送波束的测量结果的上报。
本公开实施例中,终端根据服务小区和/或邻小区的发送波束的测量结果进行测量上报时,可通过周期性上报的方式,还可通过事件触发上报的方式,下面分别进行详细介绍。
周期性上报
可选的,上述步骤104包括:
根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
此时,终端可根据服务小区和/或邻小区的N1个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报,从而实现了多波束场景下的测量上报。
其中,上报的内容可参照上文介绍,可以包括服务小区和/或邻小区的小区质量,或者包括服务小区和/或邻小区的发送波束的测量结果,或者既包括服务小区和/或邻小区的小区质量,又包括服务小区和/或邻小区的发送波束的测量结果。
事件触发上报
可选的,参照图5所示,上述步骤104包括:
步骤1046,根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件。
这里,定义了针对多波束场景的进入测量上报事件的触发条件,根据对N1个发送波束的测量结果以及该进入测量上报事件的触发条件,能够准确判断是否进行测量上报,从而实现了多波束场景下进入测量上报事件的触发。
步骤1047,若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
这里,当满足进入测量上报事件的触发条件时,向网络侧设备进行测量上报,从而实现了多波束场景下的测量上报。
其中,上报的内容可参照上文介绍,可以包括服务小区和/或邻小区的小区质量,或者包括服务小区和/或邻小区的发送波束的测量结果,或者既包括服务小区和/或邻小区的小区质量,又包括服务小区和/或邻小区的发送波束的测量结果。
可选的,本公开实施例的方法还包括:
根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件。
这里,定义了针对多波束场景的退出测量上报事件的触发条件,根据对N1个发送波束的测量结果以及该退出测量上报事件的触发条件,能够准确判断是否停止测量上报,从而实现了多波束场景下退出测量上报事件的触发。
若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
这里,当满足退出测量上报事件的触发条件时,能够及时停止向网络侧设备进行测量上报。
本公开实施例中,针对多波束场景重新定义了多种测量上报事件的触发条件,能够满足不同场景的不同需求,下面进行详细介绍。
作为一种可选的实现方式,上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件一:Mx+Ox-Hys>Thresh1;
所述退出测量上报事件的触发条件,包括:
条件二:Mx+Ox+Hys<Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示 所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
此时,基于条件一和条件二使得服务小区的第一预设参考信号的资源变得好于阈值。
其中,Mx表示第一预设参考信号x的测量结果,不考虑任何偏移。Ox表示x的频率特定偏移量(即,在对应于x资源的频率的测量对象在3GPP中的新无线接入技术NR内定义的x个体偏移),并且如果没有为x资源配置该频率特定偏移量,则设置为零。Hys表示测量上报事件的滞后参数,(即,在此事件的报告配置NR中定义的滞后)。Thresh1表示测量上报事件的第一阈值参数,(即,在此事件的报告配置NR中定义的阈值Threshold)。
其中,Mx、Thresh1以dBm表示,Ox、Hys以dB表示。
其中,上面已经提到,第一预设参考信号x包括xSS或者CSI-RS;或者第一预设参考信号x包括xSS、CSI-RS和DMRS中的至少两者;xSS包括SSS;或者xSS包括PSS和SSS。
具体的,终端可在服务小区的N1个发送波束上测量xSS的RSRP,此时测量上报事件记为Event S1。
在Event S1下,Mx用Mss表示,Ox用Oss表示。终端在满足条件:Mss+Oss-Hys>Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss+Hys<Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S1下,服务小区的xSS资源变得好于阈值。
其中,Mss是xSS的测量结果,不考虑任何偏移。Oss是xSS的频率特定偏移量(即,在对应于xSS资源的频率的测量对象NR内定义的xSS个体偏移),并且如果没有为xSS资源配置该频率特定偏移量,则设置为零。Hys表示测量上报事件的滞后参数,(即,在此事件的报告配置NR中定义的滞后)。Thresh1表示所述测量上报事件的第一阈值参数,(即,在此事件的报告配置NR中定义的阈值s1-Threshold)。其中,Mss、Thresh1以dBm表示,Oss、Hys以dB表示。
具体的,终端也可在服务小区的N1个发送波束上测量xSS和CSI-RS的 RSRP,此时测量上报事件记为Event CS1。
在Event CS1下,针对xSS,Mx用Mss表示,Ox用Oss表示,针对CSI-RS,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mss+Oss-Hys>Thresh1且Mcr+Ocr-Hys>Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss+Hys<Thresh1且Mcr+Ocr+Hys<Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS1下,服务小区的xSS和CSI-RS资源变得好于阈值。
其中,Mss、Thresh1、Oss、Hys可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。
具体的,终端也可在服务小区的N1个发送波束上测量xSS、CSI-RS和DMRS的RSRP,此时测量上报事件记为Event DCS1。
在Event DCS1下,针对xSS,Mx用Mss表示,Ox用Oss表示,针对CSI-RS,Mx用Mcr表示,Ox用Ocr表示,针对DMRS,Mx用Mdm表示,Ox用Odm表示。终端在满足条件:Mss+Oss-Hys>Thresh1且Mcr+Ocr-Hys>Thresh1且Mdm+Odm-Hys>Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss+Hys<Thresh1且Mcr+Ocr+Hys<Thresh1且Mdm+Odm+Hys<Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event DCS1下,服务小区的xSS、CSI-RS和DMRS资源变得好于阈值。
其中,Mss、Thresh1、Oss、Hys可参照上面的解释说明。Mcr、Ocr、Mdm、Odm可参照Mss、Oss的解释说明。
作为另一种可选的实现方式,上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果。
所述进入测量上报事件的触发条件,包括:
条件三:Mx+Ox-Hys>Mref+Oref+Off;
所述退出测量上报事件的触发条件,包括:
条件四:Mx+Ox+Hys<Mref+Oref+Off;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对参考的x的频率特定偏移量,Off表示所述测量上报事件的偏移参数。
此时,基于条件三和条件四使得服务小区的第一预设参考信号x的资源变得比参考的附加RS(Reference Signal,参考信号)或x资源更好地偏移。
其中,Mx、Thresh1、Ox和Hys可参照上面的解释说明。Mref表示参考的x资源的测量结果(即,在针对测量上报事件的报告配置NR内定义的参考c2-Ref),而不考虑任何偏移。Oref表示参考的x资源的频率特定偏移量(即,在对应于参考x资源的频率的测量对象NR内定义的x个体偏移),并且如果没有被配置用于参考x资源,则将其设置为零。Off表示测量上报事件的偏移参数(即在测量报告NR中为此事件定义的偏移s2-Offset)。
其中,Mx、Mref、Thresh1以dBm表示,Ox、Oref、Hys、Off以dB表示。
其中,上面已经提到,第一预设参考信号x包括xSS或者CSI-RS;或者第一预设参考信号x包括xSS、CSI-RS和DMRS中的至少两者;xSS包括SSS;或者xSS包括PSS和SSS。
具体的,终端可在服务小区的N1个发送波束上测量xSS的RSRP,此时测量上报事件记为Event S2。
在Event S2下,Mx用Mss表示,Ox用Oss表示。终端在满足条件:Mss+Oss-Hys>Mref+Oref+Off时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss+Hys<Mref+Oref+Off时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S2下,服务小区的xSS资源变得比参考的附加RS或xSS资源更好地偏移。
其中,Mss、Oss、Hys、Mref、Oref、Off可参照上面的解释说明。
具体的,终端也可在服务小区的N1个发送波束上测量xSS和CSI-RS的RSRP,此时测量上报事件记为Event CS2。
在Event CS2下,针对xSS,Mx用Mss表示,Ox用Oss表示,针对CSI-RS,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mss+Oss-Hys>Mref+Oref+Off且Mcr+Ocr-Hys>Mref+Oref+Off时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss+Hys<Mref+Oref+Off且Mcr+Ocr+Hys<Mref+Oref+Off时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS2下,服务小区的xSS和CSI-RS资源变得比参考的附加RS或xSS资源更好地偏移。
其中,Mss、Oss、Hys、Mref、Oref、Off可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。
作为另一种可选的实现方式,上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件五:Mx+Ox+Hys<Thresh1;
所述退出测量上报事件的触发条件,包括:
条件六:Mx+Ox-Hys>Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
此时,基于条件五和条件六使得服务小区的第一预设参考信号的资源变得比阈值差。
其中,Mx、Thresh1、Ox和Hys可参照上面的解释说明。
其中,上面已经提到,第一预设参考信号x包括xSS或者CSI-RS;或者第一预设参考信号x包括xSS、CSI-RS和DMRS中的至少两者;xSS包括SSS;或者xSS包括PSS和SSS。
具体的,终端可在服务小区的N1个发送波束上测量xSS的RSRP,此时测量上报事件记为Event S3a。
在Event S3a下,Mx用Mss表示,Ox用Oss表示。终端在满足条件:Mss+Oss+Hys<Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss-Hys>Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S3a下,服务小区的xSS资源变得比阈值差。
其中,Mss、Oss、Thresh1和Hys可参照上面的解释说明。
具体的,终端也可在服务小区的N1个发送波束上测量CSI-RS的RSRP,此时测量上报事件记为Event S3b。
在Event S3b下,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mcr+Ocr+Hys<Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mcr+Ocr-Hys>Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S3b下,服务小区的CSI-RS资源比阈值差。
其中,Thresh1、Hys可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。
具体的,终端也可在服务小区的N1个发送波束上测量xSS和CSI-RS的RSRP,此时测量上报事件记为Event CS3。
在Event CS3下,针对xSS,Mx用Mss表示,Ox用Oss表示,针对CSI-RS,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mss+Oss+Hys<Thresh1且Mcr+Ocr+Hys<Thresh1时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss-Hys>Thresh1且Mcr+Ocr-Hys>Thresh1时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS3下,服务小区的xSS和CSI-RS资源变得比阈值差。
其中,Mss、Thresh1、Oss、Hys可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。
作为另一种可选的实现方式,上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
步骤1032,获取所述服务小区的邻小区的第一预设数量个发送波束上的 第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
所述退出测量上报事件的触发条件,包括:
条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
此时,基于条件七和条件八,邻小区中的第二预设参考信号y的资源变得比服务小区中的第一预设参考信号x的资源好。
其中,Mn表示邻小区的测量结果,不考虑任何偏移。Ofn表示邻小区的频率特定偏移。Ocn表示邻小区的小区特定偏移量,并且如果没有被配置用于邻小区,则设置为零。Mp表示服务小区的测量结果,不考虑任何偏移。Ofp表示服务小区的频率的频率特定偏移。Ocp表示服务小区的特定偏移,并且如果没有被配置用于服务小区,则将其设置为零。Hys表示测量上报事件的滞后参数。Off表示测量上报事件的偏移参数。
其中,Mn、Mp在RSRP的情况下以dBm表示,或者在RSRQ和RS-SINR的情况下以dB表示。Ofn、Ocn、Ofp、Ocp、Hys、Off以dB表示。
具体的,终端可在服务小区和邻小区的N1个发送波束上测量xSS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S4a。
在Event S4a下,终端在满足条件:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S4a下,邻小区中的xSS资源变得比服务小区中的xSS 资源好。
其中,Mn、Mp、Ofn、Ocn、Ofp、Ocp、Hys、Off可参照上面的解释说明。
具体的,终端也可在服务小区和邻小区的N1个发送波束上测量CSI-RS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S4b。
在Event S4b下,终端在满足条件:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S4b下,邻小区中的CSI-RS资源变得比服务小区中的CSI-RS资源好。
其中,Mn、Mp、Ofn、Ocn、Ofp、Ocp、Hys、Off可参照上面的解释说明。
具体的,终端也可在服务小区和邻小区的N1个发送波束上测量xSS与CSI-RS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event CS4。
在Event CS4下,终端在满足条件:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS4下,邻小区中的xSS和CSI-RS资源变得比服务小区中的xSS和CSI-RS资源好。
其中,Mn、Mp、Ofn、Ocn、Ofp、Ocp、Hys、Off可参照上面的解释说明。
作为另一种可选的实现方式,上述步骤103包括:
步骤1032,获取终端所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件九:Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十:Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
此时,基于条件九和条件十使得邻小区中的第二预设参考信号的资源变得比阈值好。
其中,Mn、Ofn、Ocn、Hys可参照上面的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端可在邻小区的N1个发送波束上测量xSS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S5a。
在Event S5a下,终端在满足条件:Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S5a下,邻小区中的xSS资源变得比阈值好。
其中,Mn、Ofn、Ocn、Hys可参照上面的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端也可在邻小区的N1个发送波束上测量CSI-RS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S5b。
在Event S5b下,终端在满足条件:Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S5b下,邻小区中的CSI-RS资源变得比阈值好。
其中,Mn、Ofn、Ocn、Hys可参照上面的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端也可在邻小区的N1个发送波束上测量xSS与CSI-RS的 RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event CS5。
在Event CS5下,终端在满足条件:Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS5下,邻小区中的xSS和CSI-RS资源变得比阈值好。
其中,Mn、Mp、Ofn、Ocn、Ofp、Ocp、Hys、Off可参照上面的解释说明。
作为另一种可选的实现方式,上述步骤103包括:
步骤1031,获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
步骤1032,获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
此时,基于条件十一和条件十二使得服务小区中的第一预设参考信号的资源变得比第一阈值差,并且邻小区中的第二预设参考信号资源变得比第二阈值好。
其中,Mx、Ox、Mn、Ofn、Ocn、Hys、Thresh1可参照上面的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端可在服务小区和邻小区N1个发送波束上测量xSS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S6a。
在Event S6a下,Mx用Mss表示,Ox用Oss表示。终端在满足条件:Mss+Oss+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S6a下,服务小区中的xSS资源变得比第一阈值差,并且邻小区中的xSS资源变得比第二阈值好。
其中,Mss、Oss、Mn、Ofn、Ocn、Hys、Thresh1可参照上面的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端也可在服务小区和邻小区的N1个发送波束上测量CSI-RS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event S6b。
在Event S6b下,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mcr+Ocr+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mcr+Ocr-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event S6b下,服务小区中的CSI-RS资源变得比第一阈值差,并且邻小区中的CSI-RS资源变得比第二阈值好。
其中,Mn、Ofn、Ocn、Hys、Thresh1可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。Thresh2可参照Thresh1的解释说明。
具体的,终端也可在服务小区和邻小区的N1个发送波束上测量xSS与CSI-RS的RSRP、RSRQ和RS-SINR中的至少一个,此时测量上报事件记为Event CS6。
在Event CS6下,针对xSS,Mx用Mss表示,Ox用Oss表示,针对CSI-RS,Mx用Mcr表示,Ox用Ocr表示。终端在满足条件:Mss+Oss+Hys<Thresh1且Mcr+Ocr+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2时进入测量上报事件的触发,向网络侧设备进行测量上报;终端在满足条件:Mss+Oss-Hys>Thresh1且 Mcr+Ocr-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2时退出测量上报事件的触发,停止向网络侧设备进行测量上报。
此时,在Event CS6下,服务小区中的xSS和CSI-RS资源变得比第一阈值差,并且邻小区中的xSS和CSI-RS资源变得比第二阈值好。
其中,Mss、Oss、Mn、Ofn、Ocn、Hys、Thresh1可参照上面的解释说明。Mcr、Ocr可参照Mss、Oss的解释说明。Thresh2可参照Thresh1的解释说明。
本公开实施例的波束的测量上报方法,针对多波束场景实现了针对测量对象为xSS或者CSI-RS,或者针对测量对象为xSS、CSI-RS和DMRS中的至少两者的波束的测量、上报及测量上报事件的触发,提高了网络性能。
可选的,上述步骤103包括:
获取终端的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
这里,对终端接收天线分组包含的每个接收波束都分别获取N1个发送波束上的测量结果(服务小区和/或邻小区的N1个发送波束上的测量结果),之后对每个接收波束上获取的测量结果,分别通过步骤104进行测量上报。
此时,通过考虑接收天线分组使得对波束的测量更加准确、全面,进一步提高了网络性能。
其中,接收天线分组可以是接收天线波束集Rx beam set或者接收天线波束组Rx beam group。Rx beam set内各个波束beam可以来自于不同的面板panel,Rx beam group内各个beam来自于相同的面板panel。
当然,本公开实施例也可以不考虑接收天线分组,对所有接收天线只获取一次N1个发送波束上的预设参考信号的测量结果,使对波束的测量上报响应更加快速。
综上,本公开实施例的波束的测量上报方法,针对多波束场景实现了针对测量对象为xSS或者CSI-RS,或者针对测量对象为xSS、CSI-RS和DMRS中的至少两者的多波束的测量上报,提高了网络性能。
图6是本公开一个实施例的终端的结构图。图6所示的终端600,包括:
第一获取模块601,用于获取网络侧设备的测量配置信息;
确定模块602,用于根据所述测量配置信息,在多个发送波束中确定第 一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端需要进行预设参考信号测量的发送波束;
第二获取模块603,用于获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
测量上报模块604,用于根据所述第一预设数量个发送波束的测量结果,进行测量上报。
本公开实施例的终端600,实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的技术问题。
可选的,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量;
所述确定模块602包括:
第一确定子模块,用于若所述配置的需要测量的波束数量小于所述终端的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量;
第二确定子模块,用于若所述配置的需要测量的波束数量大于或等于所述终端的波束测量个数能力阈值,则将所述终端的波束测量个数能力阈值确定为所述第一预设数量。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;和/或
第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
可选的,所述第一预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;
所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;
所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和辅 同步信号SSS。
可选的,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
可选的,若所述第二获取模块603包括:第一获取子模块,则所述测量上报模块604包括:
第一上报子模块,用于根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
可选的,若所述第二获取模块603包括:第二获取子模块,则所述测量上报模块604包括:
第二上报子模块,用于根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
可选的,所述第一上报子模块包括:
第一确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量;或者
第二确定单元,用于按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;或者
第三确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量,
其中,所述预设算法包括求和、平均或者加权。
可选的,所述第二上报子模块包括:
第四确定单元,用于按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;或者
第五确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量,
其中,所述预设算法包括求和、平均或者加权。
可选的,所述测量上报模块604包括:
第三获取子模块,用于获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量;
第三上报子模块,用于根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设数量个发送波束的测量结果进行上报,
其中,所述第二预设数量小于或等于所述第一预设数量。
可选的,所述测量上报模块604还包括:
第四上报子模块,用于获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
可选的,所述第三上报子模块包括:
第一获取单元,用于若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果;
第二获取单元,用于若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
可选的,所述第三上报子模块包括:
第三获取单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果;
第六确定单元,用于若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果;
第四获取单元,用于若所述第三类发送波束的数量大于或等于所述配置 的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
可选的,所述测量上报模块604包括:
第五上报子模块,用于根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
可选的,所述测量上报模块604包括:
判断子模块,用于根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件;
进入上报子模块,用于若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
可选的,还包括:
判断模块,用于根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件;
退出上报模块,用于若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件一:Mx+Ox-Hys>Thresh1;
所述退出测量上报事件的触发条件,包括:
条件二:Mx+Ox+Hys<Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波 束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件三:Mx+Ox-Hys>Mref+Oref+Off;
所述退出测量上报事件的触发条件,包括:
条件四:Mx+Ox+Hys<Mref+Oref+Off;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对x的频率参考特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件五:Mx+Ox+Hys<Thresh1;
所述退出测量上报事件的触发条件,包括:
条件六:Mx+Ox-Hys>Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
所述退出测量上报事件的触发条件,包括:
条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,所述第二获取模块603包括:
第二获取子模块,用于获取终端所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件九:Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十:Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,所述第二获取模块603包括:
第一获取子模块,用于获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量 结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,所述第二获取模块603包括:
第三获取子模块,用于获取终端的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
根据本公开实施例的终端,实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的技术问题。
图7是本公开另一个实施例的移动终端的框图。图7所示的移动终端700包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。移动终端700中的各个组件通过总线***705耦合在一起。可理解,总线***705用于实现这些组件之间的连接通信。总线***705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线***705。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM, DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的***和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***7021和应用程序7022。
其中,操作***7021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序7022中。
在本公开实施例中,通过调用存储器702存储的程序或指令,具体的,可以是应用程序7022中存储的程序或指令,处理器701用于获取网络侧设备的测量配置信息;根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端需要进行预设参考信号测量的发送波束;获取所述第一预设数量个发送波束上的预设参考信号的测量结果;根据所述第一预设数量个发送波束的测量结果,进行测量上报。
上述本公开实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完 成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文功能的模块(例如过程、函数等)来实现本文的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量;处理器701具体用于:若所述配置的需要测量的波束数量小于所述终端的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量;若所述配置的需要测量的波束数量大于或等于所述终端的波束测量个数能力阈值,则将所述终端的波束测量个数能力阈值确定为所述第一预设数量。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;和/或获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
可选的,所述第一预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和辅同步信号SSS。
可选的,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
可选的,处理器701具体用于:若获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果,则根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
可选的,处理器701具体用于:若获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果,则根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
可选的,处理器701具体用于:在所述第一预设数量个发送波束的测量结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量;或者按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;或者在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;其中,所述预设算法包括求和、平均或者加权。
可选的,处理器701具体用于:按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;或者在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;其中,所述预设算法包括求和、平均或者加权。
可选的,处理器701具体用于:获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量;根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设数量个发送波束的测量结果进行上报;其中,所述第二预设数量小于或等于所述第一预设数量。
可选的,处理器701具体用于:获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
可选的,处理器701具体用于:若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果;若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
可选的,处理器701具体用于:在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果;若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果;若所述第三类发送波束的数量大于或等于所述配置的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
可选的,处理器701具体用于:根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
可选的,处理器701具体用于:根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件;若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
可选的,处理器701具体用于:根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件;若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件一:Mx+Ox-Hys>Thresh1;
所述退出测量上报事件的触发条件,包括:
条件二:Mx+Ox+Hys<Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件三:Mx+Ox-Hys>Mref+Oref+Off;
所述退出测量上报事件的触发条件,包括:
条件四:Mx+Ox+Hys<Mref+Oref+Off;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对参考的x的频率特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件五:Mx+Ox+Hys<Thresh1;
所述退出测量上报事件的触发条件,包括:
条件六:Mx+Ox-Hys>Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
所述退出测量上报事件的触发条件,包括:
条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,处理器701具体用于:获取终端所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件九:Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十:Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,处理器701具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,处理器701具体用于:获取终端的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
移动终端700能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。本公开实施例的移动终端700实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的问题。
图8是本公开另一个实施例的移动终端的结构示意图。具体地,图8中的移动终端800可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图8中的移动终端800包括射频(Radio Frequency,RF)电路810、存储器820、输入单元830、显示单元840、处理器860、音频电路870、WiFi(Wireless Fidelity)模块880和电源890。
其中,输入单元830可用于接收用户输入的数字或字符信息,以及产生与移动终端800的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元830可以包括触控面板831。触控面板831,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板831上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板831可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器860,并能接收处理器860发 来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板831。除了触控面板831,输入单元830还可以包括其他输入设备832,其他输入设备832可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元840可用于显示由用户输入的信息或提供给用户的信息以及移动终端800的各种菜单界面。显示单元840可包括显示面板841,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板841。
应注意,触控面板831可以覆盖显示面板841,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器860以确定触摸事件的类型,随后处理器860根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器860是移动终端800的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器821内的软件程序和/或模块,以及调用存储在第二存储器822内的数据,执行移动终端800的各种功能和处理数据,从而对移动终端800进行整体监控。可选的,处理器860可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器821内的软件程序和/或模块和/或该第二存储器822内的数据,处理器860用于获取网络侧设备的测量配置信息;根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端需要进行预 设参考信号测量的发送波束;获取所述第一预设数量个发送波束上的预设参考信号的测量结果;根据所述第一预设数量个发送波束的测量结果,进行测量上报。
可选地,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量;处理器860具体用于:若所述配置的需要测量的波束数量小于所述终端的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量;若所述配置的需要测量的波束数量大于或等于所述终端的波束测量个数能力阈值,则将所述终端的波束测量个数能力阈值确定为所述第一预设数量。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;和/或获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
可选的,所述第一预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和辅同步信号SSS。
可选的,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
可选的,处理器860具体用于:若获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果,则根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
可选的,处理器860具体用于:若获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果,则根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
可选的,处理器860具体用于:在所述第一预设数量个发送波束的测量 结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量;或者按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;或者在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;其中,所述预设算法包括求和、平均或者加权。
可选的,处理器860具体用于:按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;或者在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;其中,所述预设算法包括求和、平均或者加权。
可选的,处理器860具体用于:获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量;根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设数量个发送波束的测量结果进行上报;其中,所述第二预设数量小于或等于所述第一预设数量。
可选的,处理器860具体用于:获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
可选的,处理器860具体用于:若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果;若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
可选的,处理器860具体用于:在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果;若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果;若所述第三类发送波束的数量大于或等于所述配置的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
可选的,处理器860具体用于:根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
可选的,处理器860具体用于:根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件;若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
可选的,处理器860具体用于:根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件;若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件一:Mx+Ox-Hys>Thresh1;
所述退出测量上报事件的触发条件,包括:
条件二:Mx+Ox+Hys<Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件三:Mx+Ox-Hys>Mref+Oref+Off;
所述退出测量上报事件的触发条件,包括:
条件四:Mx+Ox+Hys<Mref+Oref+Off;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对参考的x的频率特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件五:Mx+Ox+Hys<Thresh1;
所述退出测量上报事件的触发条件,包括:
条件六:Mx+Ox-Hys>Thresh1;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
所述退出测量上报事件的触发条件,包括:
条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x 的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
可选的,处理器860具体用于:获取终端所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件九:Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十:Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,处理器860具体用于:获取终端所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
所述进入测量上报事件的触发条件,包括:
条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
所述退出测量上报事件的触发条件,包括:
条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
可选的,处理器860具体用于:获取终端的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
可见,移动终端800实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的问题。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
获取网络侧设备的测量配置信息;
根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端需要进行预设参考信号测量的发送波束;
获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
根据所述第一预设数量个发送波束的测量结果,进行测量上报。
在本公开的一些实施例中,参照图9所示,还提供了一种波束的测量上报方法,应用于网络侧设备,包括:
步骤901,向终端发送测量配置信息。
其中,所述测量配置信息用于:所述终端根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
这里,终端根据测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果后,根据第一预设数量个发送波束的测量结果,进行测量上报,实现了多波束场景下波束的测量上报。
本公开实施例的波束的测量上报方法,通过向终端发送测量配置信息,使得终端根据该测量配置信息针对多波束场景实现了波束的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的技术问题。
可选的,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量。
这里,网络侧设备为终端配置需要测量的波束数量Np1,为终端确定需要测量的波束提供了支持,使终端能顺利完成多波束场景下的波束测量。
其中,网络侧设备可通过SI或者专用的Dedicated RRC消息来配置UE 侧若干个波束beam的测量。即上述测量配置信息可以包括在SI或者Dedicated RRC消息中。
可选的,所述网络侧设备还包括:
向所述终端发送上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量。
这里,网络侧设备为终端配置需要上报的波束数量Np2,为终端确定需要上报的波束提供了支持,使终端能顺利完成多波束场景下的波束测量结果的上报。
其中,网络侧设备可通过SI或者Dedicated RRC消息(比如reconfiguration消息)来配置UE侧若干个波束beam的上报。即上述上报配置信息可以包括在SI或者Dedicated RRC消息中。
可选的,步骤901之后,所述方法还包括:
步骤902,接收所述终端测量上报的信息。
这里,终端根据网络配置信息可以获取第一预设数量个发送波束的的测量结果,然后根据第一预设数量个发送波束的测量结果,进行小区质量和/或波束测量结果的上报。
本公开实施例的波束的测量上报方法,通过向终端发送测量配置信息,使得终端根据该测量配置信息实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的问题。
图10是本公开一个实施例的网络侧设备的结构图。图10所示的网络侧设备1000,包括:
第一发送模块1001,用于向终端发送测量配置信息。
其中,所述测量配置信息用于:所述终端根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
本公开实施例的网络侧设备1000,通过向终端发送测量配置信息,使得终端根据该测量配置信息实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的问题。
可选的,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量。
可选的,网络侧设备1000还包括:
第二发送模块,用于向所述终端发送上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量。
可选的,网络侧设备1000还包括:
接收模块1002,用于接收所述终端测量上报的信息。
本公开实施例的网络侧设备1000,通过向终端发送测量配置信息,使得终端根据该测量配置信息实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的技术问题。
图11是本公开另一个实施例的网络侧设备的结构图。如图11所示,网络侧设备1100包括:处理器1101、收发机1102、存储器1103和总线接口,其中:
处理器1101,用于读取存储器1103中的程序,执行下列过程:
通过收发机1102向终端发送测量配置信息;
其中,所述测量配置信息用于:所述终端根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
可选的,所述测量配置信息包括:网络侧设备为终端配置的需要测量的波束数量。
可选的,处理器1101还用于:向所述终端发送上报配置信息,所述上报配置信息包括:网络侧设备为终端配置的需要上报的波束数量。
可选的,处理器1101还用于:通过收发机1102接收所述终端测量上报的信息。
本公开实施例的网络侧设备1100中,通过向终端发送测量配置信息,使得终端根据该测量配置信息实现了多波束场景下的测量上报,提高了网络性能。解决了现有LTE***中没有多波束的测量上报的问题。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
向终端发送测量配置信息;
其中,所述测量配置信息用于:所述终端根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (58)

  1. 一种波束的测量上报方法,应用于终端侧设备,包括:
    获取网络侧设备的测量配置信息;
    根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的所述终端侧设备需要进行预设参考信号测量的发送波束;
    获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
    根据所述第一预设数量个发送波束的测量结果,进行测量上报。
  2. 根据权利要求1所述的方法,其中,所述测量配置信息包括:网络侧设备为终端侧设备配置的需要测量的波束数量;
    所述根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,包括:
    若所述配置的需要测量的波束数量小于所述终端侧设备的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量;以及
    若所述配置的需要测量的波束数量大于或等于所述终端侧设备的波束测量个数能力阈值,则将所述终端侧设备的波束测量个数能力阈值确定为所述第一预设数量。
  3. 根据权利要求1或2所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;和/或
    获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
  4. 根据权利要求3所述的方法,其中,所述第一预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;
    所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号 CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者,
    其中,所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和SSS。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
  6. 根据权利要求3所述的方法,其中,若所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果,则所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,包括:
    根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
  7. 根据权利要求3所述的方法,其中,若所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果,则所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,包括:
    根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
  8. 根据权利要求6所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,包括:
    在所述第一预设数量个发送波束的测量结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量;或者
    按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;或者
    在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量,
    其中,所述预设算法包括求和、平均或者加权。
  9. 根据权利要求7所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,包括:
    按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;或者
    在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量,
    其中,所述预设算法包括求和、平均或者加权。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,包括:
    获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端侧设备配置的需要上报的波束数量;以及
    根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设数量个发送波束的测量结果进行上报,
    其中,所述第二预设数量小于或等于所述第一预设数量。
  11. 根据权利要求10所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,还包括:
    获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
  12. 根据权利要求10所述的方法,其中,所述根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,包括:
    若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果;
    若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
  13. 根据权利要求10所述的方法,其中,所述根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,包括:
    在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果;
    若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果;
    若所述第三类发送波束的数量大于或等于所述配置的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,包括:
    根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述根据所述第一预设数量个发送波束的测量结果,进行测量上报,包括:
    根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件;以及
    若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件;以及
    若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
  17. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个 发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件一:Mx+Ox-Hys>Thresh1;
    所述退出测量上报事件的触发条件,包括:
    条件二:Mx+Ox+Hys<Thresh1;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
  18. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件三:Mx+Ox-Hys>Mref+Oref+Off;
    所述退出测量上报事件的触发条件,包括:
    条件四:Mx+Ox+Hys<Mref+Oref+Off;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对参考的x的频率特定偏移量,Off表示所述测量上报事件的偏移参数。
  19. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件五:Mx+Ox+Hys<Thresh1;
    所述退出测量上报事件的触发条件,包括:
    条件六:Mx+Ox-Hys>Thresh1;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
  20. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
    所述退出测量上报事件的触发条件,包括:
    条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
    其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
  21. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件九:Mn+Ofn+Ocn-Hys>Thresh2;
    所述退出测量上报事件的触发条件,包括:
    条件十:Mn+Ofn+Ocn+Hys<Thresh2;
    其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
  22. 根据权利要求16所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
    所述退出测量上报事件的触发条件,包括:
    条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
  23. 根据权利要求1至22中任一项所述的方法,其中,所述获取所述第一预设数量个发送波束上的预设参考信号的测量结果,包括:
    获取终端侧设备的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
  24. 一种终端侧设备,包括:
    第一获取模块,用于获取网络侧设备的测量配置信息;
    确定模块,用于根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,所述第一预设数量个发送波束为处于连接态的终端侧设备需要进行预设参考信号测量的发送波束;
    第二获取模块,用于获取所述第一预设数量个发送波束上的预设参考信号的测量结果;以及
    测量上报模块,用于根据所述第一预设数量个发送波束的测量结果,进行测量上报。
  25. 根据权利要求24所述的终端侧设备,其中,所述测量配置信息包括:网络侧设备为终端侧设备配置的需要测量的波束数量;
    所述确定模块包括:
    第一确定子模块,用于若所述配置的需要测量的波束数量小于所述终端侧设备的波束测量个数能力阈值,则将所述配置的需要测量的波束数量确定为所述第一预设数量;以及
    第二确定子模块,用于若所述配置的需要测量的波束数量大于或等于所述终端侧设备的波束测量个数能力阈值,则将所述终端侧设备的波束测量个数能力阈值确定为所述第一预设数量。
  26. 根据权利要求24或25所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;和/或
    第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果。
  27. 根据权利要求26所述的终端侧设备,其中,所述第一预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第一预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者;
    所述第二预设参考信号包括同步信号xSS或者信道状态信息参考信号CSI-RS;或者所述第二预设参考信号包括xSS、CSI-RS和解调参考信号DMRS中的至少两者,
    其中,所述xSS包括辅同步信号SSS;或者所述xSS包括主同步信号PSS和SSS。
  28. 根据权利要求24至27中任一项所述的终端侧设备,其中,所述测量结果包括参考信号接收功率RSRP、参考信号接收质量RSRQ和参考信号信干噪比RS-SINR中的至少一个。
  29. 根据权利要求26所述的终端侧设备,其中,若所述第二获取模块包括:第一获取子模块,则所述测量上报模块包括:
    第一上报子模块,用于根据所述第一预设数量个发送波束的测量结果,确定所述服务小区的小区质量,并将所述服务小区的小区质量进行上报。
  30. 根据权利要求26所述的终端侧设备,其中,若所述第二获取模块包括:第二获取子模块,则所述测量上报模块包括:
    第二上报子模块,用于根据所述第一预设数量个发送波束的测量结果,确定所述邻小区的小区质量,并将所述邻小区的小区质量进行上报。
  31. 根据权利要求29所述的终端侧设备,其中,所述第一上报子模块包括:
    第一确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取当前服务的发送波束的测量结果,根据所述当前服务的发送波束的测量结果,确定所述服务小区的小区质量;或者
    第二确定单元,用于按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量;或者
    第三确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第一类发送波束的测量结果,并按照预设算法对所述第一类发送波束的测量结果进行计算,根据计算结果,确定所述服务小区的小区质量,
    其中,所述预设算法包括求和、平均或者加权。
  32. 根据权利要求30所述的终端侧设备,其中,所述第二上报子模块包括:
    第四确定单元,用于按照预设算法对所述第一预设数量个发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量;或者
    第五确定单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第一预设阈值的第二类发送波束的测量结果,并按照预设算法对所述第二类发送波束的测量结果进行计算,根据计算结果,确定所述邻小区的小区质量,
    其中,所述预设算法包括求和、平均或者加权。
  33. 根据权利要求24至32中任一项所述的终端侧设备,其中,所述测量上报模块包括:
    第三获取子模块,用于获取网络侧设备的上报配置信息,所述上报配置信息包括:网络侧设备为终端侧设备配置的需要上报的波束数量;以及
    第三上报子模块,用于根据所述上报配置信息,在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,并将所述第二预设数量个发送波束的测量结果进行上报,
    其中,所述第二预设数量小于或等于所述第一预设数量。
  34. 根据权利要求33所述的终端侧设备,其中,所述测量上报模块还包括:
    第四上报子模块,用于获取所述第二预设数量个发送波束分别对应的波束标识,并将所述第二预设数量个发送波束分别对应的波束标识进行上报。
  35. 根据权利要求33所述的终端侧设备,其中,所述第三上报子模块包括:
    第一获取单元,用于若所述配置的需要上报的波束数量小于所述第一预设数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第一预设数量个发送波束的测量结果中,获取第二预设数量个发送波束的测量结果,其中,所述第二预设数量个发送波束的测量结果均大于或等于除所述第二预设数量个波束外的其他波束的测量结果;以及
    第二获取单元,用于若所述配置的需要上报的波束数量大于或者等于所述第一预设数量,则将所述第一预设数量确定为所述第二预设数量,并将所述第一预设数量个发送波束的测量结果作为所述第二预设数量个发送波束的测量结果。
  36. 根据权利要求33所述的终端侧设备,其中,所述第三上报子模块包 括:
    第三获取单元,用于在所述第一预设数量个发送波束的测量结果中,获取测量结果大于第二预设阈值的第三类发送波束的测量结果;
    第六确定单元,用于若所述第三类发送波束的数量小于所述配置的需要上报的波束数量,则将所述第三类发送波束的数量确定为所述第二预设数量,并将所述第三类发送波束的测量结果作为所述第二预设数量个发送波束的测量结果;以及
    第四获取单元,用于若所述第三类发送波束的数量大于或等于所述配置的需要上报的波束数量,则将所述配置的需要上报的波束数量确定为所述第二预设数量,并在所述第三类发送波束的测量结果中,获取第二预设数量个发送波束的测量结果。
  37. 根据权利要求24至36中任一项所述的终端侧设备,其中,所述测量上报模块包括:
    第五上报子模块,用于根据所述第一预设数量个发送波束的测量结果,按照预设周期,周期性向网络侧设备进行测量上报。
  38. 根据权利要求24至37中任一项所述的终端侧设备,其中,所述测量上报模块包括:
    判断子模块,用于根据所述第一预设数量个发送波束的测量结果,判断是否满足进入测量上报事件的触发条件;以及
    进入上报子模块,用于若满足进入测量上报事件的触发条件,则向网络侧设备进行测量上报。
  39. 根据权利要求38所述的终端侧设备,其中,所述终端侧设备还包括:
    判断模块,用于根据所述第一预设数量个发送波束的测量结果,判断是否满足退出测量上报事件的触发条件;以及
    退出上报模块,用于若满足退出测量上报事件的触发条件,则停止向网络侧设备进行测量上报。
  40. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件一:Mx+Ox-Hys>Thresh1;
    所述退出测量上报事件的触发条件,包括:
    条件二:Mx+Ox+Hys<Thresh1;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
  41. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件三:Mx+Ox-Hys>Mref+Oref+Off;
    所述退出测量上报事件的触发条件,包括:
    条件四:Mx+Ox+Hys<Mref+Oref+Off;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Mref表示所述服务小区的发送波束上对参考的x的测量结果,Oref表示所述服务小区的发送波束上对x的频率参考特定偏移量,Off表示所述测量上报事件的偏移参数。
  42. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件五:Mx+Ox+Hys<Thresh1;
    所述退出测量上报事件的触发条件,包括:
    条件六:Mx+Ox-Hys>Thresh1;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示 所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数。
  43. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件七:Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off;
    所述退出测量上报事件的触发条件,包括:
    条件八:Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off;
    其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Mp表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ofp表示所述服务小区的发送波束上对x的频率特定偏移量,Ocp表示所述服务小区的发送波束上对x的小区特定偏移量,Off表示所述测量上报事件的偏移参数。
  44. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第二获取子模块,用于获取终端侧设备所在服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件九:Mn+Ofn+Ocn-Hys>Thresh2;
    所述退出测量上报事件的触发条件,包括:
    条件十:Mn+Ofn+Ocn+Hys<Thresh2;
    其中,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh2表示所述测量上报事件的第二阈值参数。
  45. 根据权利要求39所述的终端侧设备,其中,所述第二获取模块包括:
    第一获取子模块,用于获取终端侧设备所在服务小区的第一预设数量个发送波束上的第一预设参考信号的测量结果;
    第二获取子模块,用于获取所述服务小区的邻小区的第一预设数量个发送波束上的第二预设参考信号的测量结果;
    所述进入测量上报事件的触发条件,包括:
    条件十一:Mx+Ox+Hys<Thresh1且Mn+Ofn+Ocn-Hys>Thresh2;
    所述退出测量上报事件的触发条件,包括:
    条件十二:Mx+Ox-Hys>Thresh1且Mn+Ofn+Ocn+Hys<Thresh2;
    其中,Mx表示所述服务小区的发送波束上对第一预设参考信号x的测量结果,Ox表示所述服务小区的发送波束上对x的频率特定偏移量,Hys表示所述测量上报事件的滞后参数,Thresh1表示所述测量上报事件的第一阈值参数,Mn表示所述服务小区的邻小区的发送波束上对第二预设参考信号y的测量结果,Ofn表示所述邻小区的发送波束上对y的频率特定偏移量,Ocn表示所述邻小区的发送波束上对y的小区特定偏移量,Thresh2表示所述测量上报事件的第二阈值参数。
  46. 根据权利要求24至45中任一项所述的终端侧设备,其中,所述第二获取模块包括:
    第三获取子模块,用于获取终端侧设备的接收天线分组包含的每个接收波束上分别接收的第一预设数量个发送波束上的预设参考信号的测量结果。
  47. 一种波束的测量上报方法,应用于网络侧设备,包括:
    向终端侧设备发送测量配置信息;
    其中,所述测量配置信息用于:所述终端侧设备根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
  48. 根据权利要求47所述的方法,其中,所述测量配置信息包括:网络侧设备为终端侧设备配置的需要测量的波束数量。
  49. 根据权利要求47或48所述的方法,其中,所述方法还包括:
    向所述终端侧设备发送上报配置信息,所述上报配置信息包括:网络侧设备为终端侧设备配置的需要上报的波束数量。
  50. 根据权利要求47至49中任一项所述的方法,其中,所述向终端侧设备发送测量配置信息之后,所述方法还包括:
    接收所述终端侧设备测量上报的信息。
  51. 一种网络侧设备,包括:
    第一发送模块,用于向终端侧设备发送测量配置信息;
    其中,所述测量配置信息用于:所述终端侧设备根据所述测量配置信息,在多个发送波束中确定第一预设数量个发送波束,并获取所述第一预设数量个发送波束上的预设参考信号的测量结果,根据所述第一预设数量个发送波束的测量结果,进行测量上报。
  52. 根据权利要求51所述的网络侧设备,其中,所述测量配置信息包括:网络侧设备为终端侧设备配置的需要测量的波束数量。
  53. 根据权利要求51或52所述的网络侧设备,其中,所述网络侧设备还包括:
    第二发送模块,用于向所述终端侧设备发送上报配置信息,所述上报配置信息包括:网络侧设备为终端侧设备配置的需要上报的波束数量。
  54. 根据权利要求51至53中任一项所述的网络侧设备,其中,所述网络侧设备还包括:
    接收模块,用于接收所述终端侧设备测量上报的信息。
  55. 一种终端侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至23中任一项所述的一种波束的测量上报方法中的步骤。
  56. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至23中任一项所述的一种波束的测量上报方法中的步骤。
  57. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求47至50中任一项所述的一种波束的测量上报方法中的步骤。
  58. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求47至50中任一项所述的一种波束的测量上报方法中的步骤。
PCT/CN2018/080014 2017-03-24 2018-03-22 一种波束的测量上报方法、终端侧设备及网络侧设备 WO2018171669A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18770666.8A EP3606130B1 (en) 2017-03-24 2018-03-22 Beam measurement reporting method, terminal side device and network side device
US16/490,355 US10707926B2 (en) 2017-03-24 2018-03-22 Beam measurement reporting method, terminal side device and network side device
ES18770666T ES2911210T3 (es) 2017-03-24 2018-03-22 Método de notificación de medición de haz, dispositivo del lado del terminal y dispositivo del lado de la red
US16/887,234 US10812153B1 (en) 2017-03-24 2020-05-29 Beam measurement reporting method, terminal side device and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184045.2 2017-03-24
CN201710184045.2A CN108632838A (zh) 2017-03-24 2017-03-24 一种波束的测量上报方法、终端及网络侧设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/490,355 A-371-Of-International US10707926B2 (en) 2017-03-24 2018-03-22 Beam measurement reporting method, terminal side device and network side device
US16/887,234 Continuation US10812153B1 (en) 2017-03-24 2020-05-29 Beam measurement reporting method, terminal side device and network side device

Publications (1)

Publication Number Publication Date
WO2018171669A1 true WO2018171669A1 (zh) 2018-09-27

Family

ID=63584993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080014 WO2018171669A1 (zh) 2017-03-24 2018-03-22 一种波束的测量上报方法、终端侧设备及网络侧设备

Country Status (7)

Country Link
US (2) US10707926B2 (zh)
EP (1) EP3606130B1 (zh)
CN (1) CN108632838A (zh)
ES (1) ES2911210T3 (zh)
HU (1) HUE058224T2 (zh)
PT (1) PT3606130T (zh)
WO (1) WO2018171669A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019015106A (es) * 2017-06-16 2020-02-05 Ericsson Telefon Ab L M Nodo de red de radio, dispositivo inalambrico y metodos llevados a cabo en los mismos de medicion de haces para derivacion de calidad celular.
CN112005572A (zh) * 2018-08-09 2020-11-27 Oppo广东移动通信有限公司 信号上报的方法、终端设备和网络设备
JP7426983B2 (ja) * 2018-08-09 2024-02-02 オッポ広東移動通信有限公司 信号報告の方法、端末装置、及びネットワーク装置
CN111147211B (zh) 2018-11-02 2022-04-05 华为技术有限公司 一种信息传输方法、装置和设备
CN111225406B (zh) * 2018-11-27 2022-02-18 华为技术有限公司 一种定时测量方法及相关设备
CN111263394B (zh) * 2018-12-17 2022-07-08 维沃移动通信有限公司 信号资源测量方法及终端
CN111479324B (zh) * 2019-01-24 2023-04-07 ***通信有限公司研究院 一种资源配置方法、网络侧设备及终端
CN112423336A (zh) * 2019-08-23 2021-02-26 ***通信有限公司研究院 信息记录上报方法及装置
CN112584420B (zh) * 2019-09-29 2022-07-29 大唐移动通信设备有限公司 一种信号测量方法、终端及网络侧设备
CN114826448B (zh) * 2019-12-13 2024-03-26 北京小米移动软件有限公司 波束测量方法及波束测量装置
CN113543237B (zh) * 2020-04-13 2022-06-24 荣耀终端有限公司 小区的选择方法及装置
CN112383368B (zh) * 2020-10-13 2022-03-04 厦门大学 波束测量方法及***
CN114390580A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 波束上报方法、波束信息确定方法及相关设备
CN115244965A (zh) * 2021-02-22 2022-10-25 北京小米移动软件有限公司 波束测量方法、波束测量装置及存储介质
US11792779B2 (en) * 2021-04-27 2023-10-17 Qualcomm Incorporated Techniques for beam switching in wireless communications systems
EP4327600A1 (en) * 2021-06-24 2024-02-28 Samsung Electronics Co., Ltd. Method and apparatus for handling ul timing alignment upon receiving tci state update signal in a wireless communication system
CN115623507A (zh) * 2021-07-16 2023-01-17 华为技术有限公司 一种测量方法及相关装置
CN116530170A (zh) * 2021-11-30 2023-08-01 北京小米移动软件有限公司 一种小区测量方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547341A (zh) * 2013-06-08 2014-01-29 华为技术有限公司 传输导频信号的方法、基站和用户设备
WO2016023227A1 (zh) * 2014-08-15 2016-02-18 富士通株式会社 资源配置方法、装置以及通信***
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站
CN106488472A (zh) * 2015-08-27 2017-03-08 ***通信集团公司 一种信道信息上报方法及终端

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032358A1 (fr) * 2006-09-11 2008-03-20 Fujitsu Limited Appareil de communication radio et procédé de communication radio
US8938238B2 (en) * 2009-11-06 2015-01-20 Qualcomm Incorporated Restricting access point transmissions
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
KR101847400B1 (ko) * 2011-09-01 2018-04-10 삼성전자주식회사 무선 통신 시스템에서 최적의 빔을 선택하기 위한 장치 및 방법
US9008585B2 (en) * 2012-01-30 2015-04-14 Futurewei Technologies, Inc. System and method for wireless communications measurements and CSI feedback
US8854981B2 (en) * 2012-04-27 2014-10-07 Intel Corporation Signal interference measurements in a wireless communication network
KR20150054718A (ko) * 2012-07-12 2015-05-20 엘지전자 주식회사 무선 접속 시스템에서 안테나 포트향 참조 신호 전송 방법
WO2014158226A1 (en) * 2013-03-29 2014-10-02 Intel Corporation Techniques for beamforming to mitigate multi-user leakage and interference
KR102261878B1 (ko) * 2013-04-30 2021-06-08 삼성전자주식회사 빔 포밍 방식을 지원하는 무선 통신 시스템에서 기준 신호 송/수신 장치 및 방법
KR102299326B1 (ko) * 2013-09-27 2021-09-08 삼성전자주식회사 무선 통신 시스템에서 빔 정보 송수신 장치 및 방법
WO2015080648A1 (en) 2013-11-27 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) Methods for receiving and sending a report comprising channel state information
EP3068156B1 (en) * 2013-11-29 2018-01-17 Huawei Device Co., Ltd. Beam precoding manner reporting method, and scheduling method and device
EP3095288A1 (en) 2014-01-17 2016-11-23 Idac Holding, Inc. 3gpp mmw access link system architecture
KR102187855B1 (ko) * 2014-07-31 2020-12-07 삼성전자 주식회사 빔포밍 시스템에서 셀 측정 방법 및 장치
KR102363547B1 (ko) * 2014-11-26 2022-02-17 삼성전자주식회사 빔포밍을 이용한 통신 방법 및 장치
US10492113B2 (en) 2015-09-02 2019-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Mobility procedures between beams from different radio network nodes
US10524150B2 (en) * 2016-01-14 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for generating cell measurement information in a wireless communication system
CN114466456A (zh) * 2016-09-29 2022-05-10 华为技术有限公司 下行控制信道的传输方法、接收网元及发送网元
US11395169B2 (en) * 2016-10-13 2022-07-19 Huawei Technologies Co., Ltd. Measurement reporting method and related device
MX2019006451A (es) * 2016-12-01 2019-08-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de medición, dispositivo terminal y dispositivo de red.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547341A (zh) * 2013-06-08 2014-01-29 华为技术有限公司 传输导频信号的方法、基站和用户设备
WO2016023227A1 (zh) * 2014-08-15 2016-02-18 富士通株式会社 资源配置方法、装置以及通信***
CN106301505A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 信息发送方法、波束测量方法、移动台和基站
CN106488472A (zh) * 2015-08-27 2017-03-08 ***通信集团公司 一种信道信息上报方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606130A4 *

Also Published As

Publication number Publication date
EP3606130A1 (en) 2020-02-05
US20200014428A1 (en) 2020-01-09
EP3606130B1 (en) 2022-03-16
CN108632838A (zh) 2018-10-09
US10812153B1 (en) 2020-10-20
PT3606130T (pt) 2022-04-11
EP3606130A4 (en) 2020-04-08
US10707926B2 (en) 2020-07-07
HUE058224T2 (hu) 2022-07-28
US20200328780A1 (en) 2020-10-15
ES2911210T3 (es) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2018171669A1 (zh) 一种波束的测量上报方法、终端侧设备及网络侧设备
US20190394664A1 (en) Beam management information configuration and processing method, terminal and base station
CN108347779B (zh) 上行数据发送方法、接收方法、用户终端和网络侧设备
EP3579441A1 (en) Beam recovery processing method, network side device and mobile terminal
CN110392374B (zh) 波束失败检测方法、信息配置方法、终端及网络设备
KR102403626B1 (ko) 측정 방법, 구성 측정 방법, 단말 및 네트워크 기기
WO2019029608A1 (zh) 波束报告的发送方法及终端
WO2018121203A1 (zh) 测量配置方法、网络设备及终端设备
CN108235336B (zh) 一种测量配置方法、网络设备及终端设备
US11546782B2 (en) Radio link monitoring method, radio link monitoring configuration method, user equipment and network device
WO2018121323A1 (zh) 一种接入切换方法、网络侧设备及移动终端
WO2018127000A1 (zh) 一种参考信号的指示方法、网络设备及终端设备
WO2019047784A1 (zh) Mdt的配置方法和相关设备
CN109391992B (zh) 一种信号测量方法、第一移动终端及网络侧设备
CN110351756B (zh) 波束失败恢复方法、终端、网络设备及计算机存储介质
WO2021227715A1 (zh) 候选波束测量方法、终端、网络设备、芯片***及介质
WO2019015470A1 (zh) 测量上报方法及装置
WO2019034052A1 (zh) 多波束的测量上报方法、移动终端及网络侧设备
US11546788B2 (en) Configuration method and device of measurement reporting, measurement reporting method and device
WO2018059508A1 (zh) 一种上报信道质量信息的方法、装置及***
CN110351892B (zh) 一种通知方法及相关设备
CN108616871B (zh) 一种用户终端的标识符定义方法、网络侧设备及用户终端
WO2018095257A1 (zh) 一种恢复数据传输的方法、终端和网络侧节点
WO2022237876A1 (zh) 信息处理方法、装置、终端和网络侧设备
WO2019034102A1 (zh) 确定物理资源块绑定的大小的方法和用户终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018770666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018770666

Country of ref document: EP

Effective date: 20191024