WO2018171636A1 - 一种无线通信中的信号发送方法、接收方法、装置和*** - Google Patents

一种无线通信中的信号发送方法、接收方法、装置和*** Download PDF

Info

Publication number
WO2018171636A1
WO2018171636A1 PCT/CN2018/079878 CN2018079878W WO2018171636A1 WO 2018171636 A1 WO2018171636 A1 WO 2018171636A1 CN 2018079878 W CN2018079878 W CN 2018079878W WO 2018171636 A1 WO2018171636 A1 WO 2018171636A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
subcarriers
sequences
subcarrier group
following
Prior art date
Application number
PCT/CN2018/079878
Other languages
English (en)
French (fr)
Inventor
曲秉玉
孙昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18770660.1A priority Critical patent/EP3573275B1/en
Publication of WO2018171636A1 publication Critical patent/WO2018171636A1/zh
Priority to US16/563,368 priority patent/US10972236B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a signal transmitting method, a receiving method, an apparatus, and a system in a wireless communication system.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology has advantages in combating multipath interference and compatible with Multiple-Input Multiple-Output (MIMO).
  • MIMO Multiple-Input Multiple-Output
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • next-generation communication system such as the 5th Generation mobile communication (5G)
  • 5G 5th Generation mobile communication
  • PUCCH Physical Uplink Control CHannel
  • RS Reference Signal
  • UCI uplink control information
  • two signals need to be transmitted, and the information modulation of each signal is transmitted on the respective sequence elements. If the above two signals are carried in a sequence in a long term evolution (LTE) system, an increase in the cubic metric (CM)/peak-to-average ratio is caused.
  • LTE long term evolution
  • the CM causes signal distortion when the transmitted signal passes through the Power Amplifier (PA), and generates an additional Vector Amplitude Error (EVM) at the transmitting end, which ultimately degrades the demodulation performance of the receiving end.
  • PA Power Amplifier
  • EVM Vector Amplitude Error
  • the actual transmit power usually needs to be backed up, but the decrease of the transmit power will also cause the demodulation performance of the receiver to decrease.
  • a high Peak to Average Power Ratio (PAPR) will result in a decrease in transmit power, which will result in a decrease in demodulation performance.
  • PAPR Peak to Average Power Ratio
  • the transmitting device uses a sequence to carry data and reference signals, respectively.
  • the transmitting device carries two pieces of data to the odd and even elements of the sequence.
  • the transmitting device continuously transmits the sequence carrying the two channels of data to the allocated subcarriers, and then transmits the method by using Orthogonal Frequency Division Multiplexing (OFDM).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present application aims to reduce the cubic metric (CM)/peak-to-average ratio of the transmitted signals of an Orthogonal Frequency Division Multiplexing (OFDM) system by sequence design and mapping of subcarriers of the two channels of data. , thereby improving the link quality of the entire transmission system.
  • an embodiment of the present application provides a signaling method for wireless communication, where the method includes:
  • a 1 , A 2 is a non-zero complex number, and ⁇ is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • ⁇ x n ⁇ is a sequence of x n that satisfies at least one of the following conditions:
  • x n+N a ⁇ j ⁇ x n ,
  • n is an odd number greater than or equal to 0 and less than or equal to N-1
  • N is a positive integer and is an even number
  • x 2n+6 a n ⁇ x 2n ,
  • the present application further provides a signal sending method for wireless communication, the method comprising:
  • a 1 , A 2 is a non-zero complex number, and ⁇ is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • ⁇ x n ⁇ is one of the following conditions, and the element x n in ⁇ x n ⁇ satisfies:
  • ⁇ s n ⁇ is a sequence of s n
  • sequence ⁇ u i ⁇ is one of the following sequences:
  • mapping the sequence ⁇ f n ⁇ onto 2 ⁇ N subcarriers includes:
  • each of said subcarrier group 1 and said subcarrier group 2 comprising N discontinuous and equally spaced subcarriers, and said subcarrier group 1 And the subcarrier group 2 is separated by at least one subcarrier.
  • the subcarrier group 1 and the subcarrier group 2 are separated by at least N-1 subcarriers. .
  • a 1 , A 2 have a value range of ⁇ 1, -1, j, -j ⁇ .
  • a 1 and A 2 are the above values, the value of the CM/PAPR of the transmitted signal is low.
  • a 1 is a modulation symbol.
  • a 1 is a modulation symbol
  • a 2 is a constant.
  • a 2 is a modulation symbol and A 1 is a constant.
  • an embodiment of the present application provides a signal receiving method for wireless communication, where the method includes:
  • a 3 , A 4 is a non-zero complex number, and ⁇ ' is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • x n+N a ⁇ j ⁇ x n ,
  • n is an odd number greater than or equal to 0 and less than or equal to N-1
  • N is a positive integer and is an even number;
  • x 2n+6 a n ⁇ x 2n ,
  • an embodiment of the present application provides a signal receiving method for wireless communication, where the method includes:
  • a 3 , A 4 is a non-zero complex number, and ⁇ ' is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • ⁇ x n ⁇ is one of the following conditions, and the element x n in ⁇ x n ⁇ satisfies:
  • x n u ⁇ exp( ⁇ j ⁇ s n /4), u is a non-zero complex number, and ⁇ s n ⁇ is a sequence of s n
  • sequence ⁇ u i ⁇ is one of the following sequences:
  • the above sequence design and data-to-subcarrier mapping manner reduce the CM/PAPR value of the transmitted signal of the OFDM system, thereby improving the link quality.
  • x n g ⁇ exp( ⁇ j ⁇ s n /4), g is a non-zero complex number; where ⁇ s n ⁇ is a sequence of s n
  • ⁇ Z i ⁇ is ⁇ 2 0 6 2 4 6 ⁇
  • ⁇ Z i ⁇ is ⁇ 6 0 2 6 4 2 ⁇
  • ⁇ Z i ⁇ is ⁇ 0 6 4 4 2 0 ⁇
  • ⁇ Z i ⁇ is ⁇ 2 6 6 4 4 0 ⁇
  • ⁇ Z i ⁇ is ⁇ 6 2 2 4 4 0 ⁇
  • ⁇ Z i ⁇ is ⁇ 6 6 2 4 0 0 ⁇
  • ⁇ Z i ⁇ is ⁇ 2 2 6 4 0 0 ⁇
  • sequence ⁇ u i ⁇ is one of the following sequences:
  • the receiving signals on 2 ⁇ N subcarriers includes:
  • the CM value is better if the ⁇ f n ⁇ is mapped to the subcarriers continuously or equally.
  • the subcarrier group 1 and the subcarrier group 2 are separated by at least N-1 subcarriers.
  • At least N-1 subcarriers of carrier group 1 and carrier group 2 can obtain a lower PAPR/CM. At the same time get better frequency diversity.
  • a 3 , A 4 have a value range of ⁇ 1, -1, j, -j ⁇ .
  • the sequence ⁇ x n ⁇ is selected from the set of sequences J. Since there are cases where a plurality of cells coexist in a communication system, adjacent cells need to use different sequences for transmitting data. Therefore, it is necessary to have a sequence set J, and adjacent cells can use different sequences in the sequence set J to reduce interference between cells.
  • a communication device which may be a communication device or a chip.
  • the communication device may be a terminal device or a network device.
  • an embodiment of the present application provides a communication device, which may be a communication device or a chip.
  • the communication device may be a terminal or a base station.
  • the communication device can implement the method of any of the above first to fourth aspects and has corresponding functional units.
  • the functional unit may be implemented by hardware, software, or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the communication device includes a processing unit and a storage unit, the storage unit storing instructions for causing the processing unit to perform the method of any of the first to fourth aspects described above.
  • the processing unit can be implemented by one or more processors.
  • the storage unit may be a memory or any other storage module having a storage function.
  • the storage unit may be provided separately from the processor or integrated with the processor.
  • the communication device may further include: a transceiver unit, where the transceiver unit includes a sending unit and a receiving unit.
  • the sending unit is configured to send information to the receiving device when the communication device is used as a transmitting device.
  • the receiving unit is configured to receive information from the transmitting device when the communication device is used as a receiving device.
  • the transceiver unit can be implemented by a transceiver.
  • a transmitting unit may be configured to transmit a signal carrying the sequence ⁇ f n ⁇ on the 2 ⁇ N subcarriers.
  • the receiving unit can be configured to receive a signal.
  • the processing unit is configured to acquire signals on the 2 ⁇ N subcarriers according to the received signal.
  • the embodiment of the present application provides a computer storage medium, configured to store computer software instructions for use in the foregoing communication device, including the first aspect or the second aspect or the third aspect or the fourth aspect. The procedures involved.
  • an embodiment of the present application provides a computer program product, comprising instructions, when the computer program is executed by a computer, the instruction causes the computer to perform the first aspect or the second aspect or the third aspect or the fourth aspect The method described in the aspects.
  • an embodiment of the present invention provides a system, where the system includes the foregoing communication device.
  • the present application provides a chip system including a processor for supporting the above-described communication device to implement the functions involved in the above aspects, for example, generating or processing data involved in the above method and/or Or information.
  • the chip system may further comprise a memory for storing program instructions and data necessary for the data transmitting device.
  • the chip system can be composed of a chip, and can also include a chip and other separate devices.
  • the present application describes a signal transmitting method, a receiving method, a device and a system, which aim to reduce the CM/PAPR value of a transmitted signal of an OFDM system by means of sequence design and data-to-subcarrier mapping. Improve the link quality of the entire transmission system.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application
  • FIG. 2 is a schematic flowchart of data transmission according to an embodiment of the present application.
  • FIG. 3a is a schematic diagram of generating a generated sequence ⁇ f n ⁇ according to an embodiment of the present application
  • FIG. 3b is a schematic diagram of mapping a sequence ⁇ f n ⁇ to a subcarrier according to an embodiment of the present disclosure
  • FIG. 3c is another schematic diagram of mapping a sequence ⁇ f n ⁇ to a subcarrier according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of mapping a sequence ⁇ f n ⁇ to a subcarrier according to an embodiment of the present disclosure
  • FIG. 3e is still another schematic diagram of mapping a sequence ⁇ f n ⁇ to a subcarrier according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of data receiving according to an embodiment of the present disclosure.
  • 4a is a schematic diagram of data detection by a receiving end according to an embodiment of the present application.
  • FIG. 4b is another schematic diagram of data detection by a receiving end according to an embodiment of the present application.
  • FIG. 4c is still another schematic diagram of data detection by a receiving end according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a data sending device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another data receiving device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • the communication system 100 includes at least one network device 20 (for example, including a base station) and a plurality of terminal devices 10 (10A and 10B).
  • the plurality of terminal devices 10 and the network device 20 communicate. Downstream, network device 20 communicates with terminal device 10 over the downstream channel.
  • the terminal device 10 communicates with the network device 20 through the upstream channel.
  • the downlink refers to the direction in which the network device 20 transmits data to the terminal device 10
  • the uplink refers to the direction in which the terminal device 10 transmits data to the network device 20.
  • LTE long term evolution
  • FDD frequency division duplex
  • LTE LTE frequency division duplex
  • TDD time division duplex
  • 5G fifth generation
  • 5G NR new radio
  • a terminal equipment may be referred to as a terminal, or may be a user equipment (UE), a mobile station (MS), and a mobile terminal ( Mobile terminal), a notebook computer, etc.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), for example, the terminal device can be a mobile phone (or "cellular" phone Or a computer or the like having a mobile terminal, for example, the terminal device may also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • RAN radio access network
  • the network device may be an evolved base station (evolved node B, referred to as "eNB or e-NodeB”) in the LTE system, a base station in the 5G LTE system, or a base station in the 5G NR system, or It is another base station, and it can also be a network device such as a relay.
  • eNB evolved node B
  • e-NodeB evolved node B
  • the invention is not limited.
  • the technical solution provided by the present application may be applied to uplink data transmission and/or downlink data transmission.
  • the data sending device may be a terminal device, and the data receiving device may be a network side device, such as a base station;
  • the data transmitting device may be a network side device, such as a base station, and the data receiving device may be a terminal device.
  • the Fast Fourier Transformation (FFT) described in this application is a fast algorithm for implementing Discrete Fourier Transform (DFT).
  • the FFT described in this application can also be replaced with other
  • the algorithm of the Fourier transform can be implemented, which is not limited in this application.
  • Inverse Fast Fourier Transformation (IFFT) is a fast algorithm for implementing Inverse Discrete Fourier Transform (IDFT).
  • IDFT Inverse Discrete Fourier Transform
  • the IFFT described in this application can also be replaced with other can implement Fu.
  • the inverse transform algorithm is not limited in this application.
  • the “data” described in the present application generally refers to service data, but may also include signaling, messages, and the like that the system needs to transmit, for example, reference signals, uplink and downlink control messages, and the like.
  • TX denotes T x X
  • T and X may be any number.
  • 2X means 2 x X.
  • C mod K in the present application denotes a C-to-K modulo operation, which ranges from 0 to K-1, K is a positive integer, and C is a real number. For example, the value of 10mod 8 is 2.
  • (mod K) On the right side of the equation, use "(mod K)" to indicate that the equation is equal in the sense of mod K, that is, the mod K operation is performed on both sides of the equation.
  • the equivalent sequence of the sequence ⁇ p i ⁇ is itself and the following sequence, 0 ⁇ i ⁇ 2 ⁇ N-1, and N is a positive integer: ⁇ q 0 , q 1 , q 2 , ..., q 2N-1 ⁇ , satisfied
  • the sequence obtained by summing the selected v i can be repeated.
  • the transmitting end is a device that transmits a sequence.
  • the sender is a device that sends UCI.
  • the UCI may be an Acknowledgement/Negative Acknowledgement (ACK/NACK).
  • the UCI may also be Channel State Information (CSI).
  • the CSI may include one or more of the following information: a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • FIG. 2 is a schematic diagram of a sending device of a data processing method according to an embodiment of the present disclosure.
  • the transmitting device determines the sequence ⁇ f n ⁇ .
  • the transmitting device determines a sequence ⁇ f n ⁇ comprising 2 ⁇ N elements, where f n is an element in ⁇ f n ⁇ , N is a positive integer and is an even number, n is an integer, and 0 ⁇ n ⁇ 2 ⁇ N -1.
  • a 1 , A 2 is a non-zero complex number, and ⁇ is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number.
  • is k/(2 ⁇ N), and 0 ⁇ k ⁇ 2 ⁇ N-1.
  • Multiplication of x n with exp(2 ⁇ j ⁇ n) is equivalent to phase weighting of x n .
  • Performing the above-described phase weighting on each element of the sequence ⁇ x n ⁇ is such that the signal sequence is cyclically shifted by the IFFT transform of ⁇ x n ⁇ . In this way, the transmitting device can be distinguished by different cyclic shifts of the sequence, and the multiplexing effect of multiple transmitting devices can be achieved.
  • FIG. 3a An example of the 301 partial generation ⁇ f n ⁇ is given in Figure 3a.
  • the transmitting device determines ⁇ x n ⁇ and A 1 , A 2 .
  • a 1 and x 0 , x 2 , x 4 , x 6 , x 8 , x 10 are respectively multiplied;
  • a 1 and A 2 have values ranging from ⁇ 1, -1, j, -j ⁇ .
  • the range of A 1 and A 2 may also be ⁇ (1+j)/r, (1-j)/r, (-1+j)/r, (-1-j)/r ⁇ , r is the square root of 2.
  • the range is ⁇ (1+j)/r, (1-j)/r, (-1+j)/r, (-1-j)/r ⁇
  • a 1 and A 2 have a value range of ⁇ 1, -1, j, -j ⁇ , the CM/PAPR value of the transmitted signal is lower.
  • a 1 , A 2 is a modulation symbol.
  • one channel of data information bits or control information bits is modulated to obtain A 1 .
  • a 1 is carried on an even element of ⁇ f n ⁇ (an even element can also be called an element with an even number).
  • another data information bit or control information bit is modulated to obtain A 2 .
  • a 2 is carried on an odd element of ⁇ x n ⁇ (an odd element may also be called an odd-numbered element).
  • one channel of data is a 2-bit ACK/NACK, and the other channel is a 2-bit CQI.
  • a 1 is a modulation symbol and A 2 is a constant.
  • the data information bits or control information bits are modulated to obtain A 1 .
  • a 1 is carried on an even element of ⁇ f n ⁇ .
  • the odd element of ⁇ f n ⁇ or ⁇ x n ⁇ is the reference signal.
  • a 2 is a constant means that A 2 does not carry information bits.
  • a 2 can be a symbol known to both the sender and the receiver.
  • a 2 can also be expressed as amplitude.
  • a 2 is a constant does not mean that A 2 is fixed, and A 2 can be changed when transmitted at different times.
  • the transmitting device is a terminal device
  • the odd element of ⁇ f n ⁇ or ⁇ x n ⁇ is a reference signal
  • a 2 is the amplitude of the reference signal.
  • a 2 is a modulation symbol and A 1 is a constant. In this case, and A 1 is a modulation symbol, and A 2 is a constant similar. No longer.
  • bits of the control information are mapped to ⁇ 1, j, -1, j ⁇ , for example, one state of the 2-bit information is mapped to one of ⁇ 1, j, -1, -j ⁇ .
  • (0,0) maps to 1, (1,0) maps to -1
  • (0,1) maps to j
  • (1,0) maps to -j
  • (1,1) maps to -1.
  • ⁇ x n ⁇ is a sequence of x n that satisfies at least one of the following conditions:
  • x n+N a ⁇ j ⁇ x n ,
  • n is an odd number greater than or equal to 0 and less than or equal to N-1
  • N is a positive integer and is an even number
  • x 2n+6 a n ⁇ x 2n ,
  • x 2n+1+6 b n ⁇ x 2n+1 ,
  • the ⁇ Z i ⁇ is one of the following sequences:
  • Table 1 gives an example of ⁇ E i ⁇ , ⁇ B i ⁇ , ⁇ C i ⁇ or ⁇ D i ⁇ obtained according to the above formula.
  • the value of ⁇ y 0 y 1 y 2 y 3 y 4 y 5 ⁇ is one of the 28 sequences in Table 1.
  • N 6, and ⁇ x n ⁇ is one of the following conditions.
  • the element x n in ⁇ x n ⁇ satisfies condition 3.
  • x n u ⁇ exp( ⁇ j ⁇ s n /4), 0 ⁇ n ⁇ 2 ⁇ N-1.
  • ⁇ s n ⁇ is a sequence of sn .
  • the set P33 is a collection of the following sequences:
  • Set P25 is a collection of the following sequences:
  • P30 is a collection of the following sequences:
  • P33, P25, and P30 all include a common 25 sequences.
  • the other sequences of P33 relax the cross-correlation between sequences to obtain more sequences, and have lower CM/PAPR characteristics.
  • P30 relaxes the CM/PAPR of the sequence to obtain more sequences, and has lower cross-correlation. .
  • N 6, the element x n in ⁇ x n ⁇ , 0 ⁇ n ⁇ 11, satisfies
  • x n g ⁇ exp( ⁇ j ⁇ s n /4), g is a non-zero complex number; where ⁇ s n ⁇ is a sequence of s n
  • sequence ⁇ u i ⁇ is one of the following sequences:
  • the method further comprises the transmitting device selecting the sequence ⁇ x n ⁇ from the set of sequences J.
  • the set J is a set of available sequences ⁇ x n ⁇ preset in the communication system, the set J includes a plurality of sequences, and at least one of the plurality of sequences includes the condition 1 or the condition 2 Or condition 3; or, the set J is composed of a plurality of sequences satisfying the condition 1 or the condition 2 or the condition 3.
  • the set J does not include an equivalent sequence of the sequence.
  • the sending device selects the sequence ⁇ x n ⁇ in a predefined rule according to the cell ID as an input parameter, or obtains a sequence used for sending according to the configuration signaling of the base station when the transmitting device is a UE. n ⁇ . Alternatively, any one of the equivalent sequences of ⁇ x n ⁇ is not in the sequence set J.
  • the transmitting device maps the sequence ⁇ f n ⁇ onto 2 x N subcarriers.
  • the transmitting device sequentially maps 2N elements in ⁇ f n ⁇ to 2N subcarriers in descending order of subcarriers, where an element in ⁇ f n ⁇ is mapped to a frequency domain.
  • Carrier where the frequency domain subcarrier is the smallest unit of frequency domain resources used to carry data information.
  • the sending device sequentially maps 2N elements in ⁇ f n ⁇ to 2N subcarriers in descending order of subcarriers. Mapping an element in ⁇ f n ⁇ to a subcarrier is to carry this element on this subcarrier. After the mapping, when the transmitting device sends the data through the radio, it is equivalent to sending the element on this subcarrier.
  • 2M subcarriers M>N. Different transmitting devices can occupy different subcarriers to transmit data.
  • the 2N subcarriers are part of 2M subcarriers, and their locations in 2M subcarriers may be predefined or the base station is configured by signaling.
  • the transmitting device maps ⁇ f n ⁇ onto consecutive 2 x N subcarriers.
  • f 0 to f 11 are respectively mapped to 12 consecutive subcarriers s+0, s+1, s+2, s+3, s+4, s+5, s+6, s+7, s+8, s+9, s+10, s+11.
  • f 0 is mapped to subcarrier s+0
  • f 1 is mapped to subcarrier s+1, ...
  • f 11 is mapped to subcarrier s+11.
  • s represents ⁇ f n ⁇ 2 ⁇ N sub-carriers mapped to the first sub-carrier index 2M subcarriers in the system.
  • the sending device maps ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, and the subcarrier group 1 and the subcarrier group 2 each include N consecutive subcarriers.
  • 2N 12.
  • f 0 to f 5 are mapped to consecutive 6 subcarriers s+0, s+1, s+2, s+3, s+4, s+5 (subcarriers of subcarrier group 1), f 6 to f 11 It is mapped to another continuous 6 subcarriers s+12, s+13, s+14, s+15, s+16, s+17 (subcarriers of subcarrier group 2).
  • subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • f 5 is mapped to a subcarrier with an index of s+5
  • f 6 cannot map a subcarrier with an index of s+6. That is to say, subcarrier group 1 and subcarrier group 2 cannot be adjacent, and at least one subcarrier that does not belong to subcarrier group 1 and subcarrier group 2 is between the two.
  • at least N-1 subcarriers of carrier group 1 and carrier group 2 may obtain a lower PAPR/CM, and N is greater than An integer of 1. At the same time get better frequency diversity.
  • the sending device maps ⁇ f n ⁇ to non-contiguous and equally spaced 2 ⁇ N subcarriers.
  • the interval is 1.
  • the interval between the f n mapped subcarrier and the f n+1 mapped subcarrier is 1 subcarrier.
  • f 0 to f 11 are respectively mapped to 12 equally spaced subcarriers s+0, s+2, s+4, s+6, s+8, s+10, s+12, s+14, s+16 , s+18, s+20, s+22.
  • the sending device maps ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N discontinuous and equally spaced subcarriers. And subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • the interval of adjacent subcarriers in one subcarrier group is 1. As shown in FIG. 3e, f 0 to f 5 are mapped to 6 equally spaced subcarriers s+0, s+2, s+4, s+6, s+8, s+10 in subcarrier group 1.
  • f 6 to f 11 are mapped to s+18, s+20, s+22, s+24, s+26, s+28 in subcarrier group 2.
  • N subcarriers in each of carrier group 1 and carrier group 2 at least N-1 subcarriers of carrier group 1 and carrier group 2 may obtain a lower PAPR/CM, and N is greater than An integer of 1. At the same time get better frequency diversity.
  • the interval between two carrier groups 1 and carrier group 2 X subcarriers refers to the number of subcarriers between the two carrier groups with the smallest number of spaced subcarriers between the two carrier groups. As shown in FIG. 3c, the interval between carrier group 1 and carrier group 2 is 6.
  • the set P12 is a collection of the following sequences:
  • the bandwidth of the transmitting end in the frequency domain includes 2M subcarriers, it is necessary to fill the frequency domain subcarriers of the (2M-2N) points other than the 2N point with 0 or fill other data to generate a signal of 2M points.
  • the transmitting device converts the generated 2M point signal (frequency domain signal of 2M point) into a time domain signal by IFFT, and adds a cyclic prefix to the time domain signal to generate a transmission signal.
  • the time domain signal obtained by the transmitting device after passing the generated 2M point frequency domain signal through the IFFT is an OFDM symbol.
  • the transmitting device sends a signal through the radio frequency. That is, the terminal device transmits a signal carrying the sequence ⁇ f n ⁇ on the 2 ⁇ N subcarriers.
  • the transmitting device transmits a signal carrying ⁇ f n ⁇ on one OFDM symbol.
  • the transmitting device can also transmit a signal carrying ⁇ f n ⁇ over a plurality of OFDM symbols.
  • the transmitting device is a terminal device.
  • the transmitted signal is transmitted on the PUCCH.
  • FIG. 4 is a schematic flowchart of a receiving end of a data processing method provided by an embodiment of the present application.
  • the receiving device acquires the time domain signal and de-cycles the prefix.
  • the receiving device performs an FFT of 2 ⁇ M points on the signal of the de-cyclic prefix to obtain a frequency domain signal of 2 ⁇ M points.
  • the receiving device receives a signal on 2 x N subcarriers, the signal being a sequence ⁇ w n ⁇ comprising 2 x N elements, 0 ⁇ n ⁇ 2 x N-1.
  • the receiving device receives the signals on the 2 ⁇ N subcarriers in 2 ⁇ M subcarriers according to a predefined or 2 ⁇ N subcarriers configured by the base station.
  • the receiving device processes the signals on the 2 ⁇ N subcarriers.
  • the receiving device acquires 2 ⁇ N elements of the sequence acquisition sequence ⁇ f' n ⁇ , where f′ n is an element in ⁇ f′ n ⁇ , N is a positive integer, and is an even number, n is Integer, and 0 ⁇ n ⁇ 2 ⁇ N-1.
  • the receiving device processes signals on the 2 ⁇ N subcarriers according to 2 ⁇ N elements of the sequence ⁇ x n ⁇ .
  • a 3 , A 4 is a non-zero complex number, and ⁇ ' is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • a 3 may be one of the range of values of A 1 , and A 3 may also be equal to 1.
  • a 4 may be a value in the range of A 2, A 4 may be equal to one.
  • ⁇ ' may be equal to ⁇ ' or may be equal to zero.
  • the receiving device obtains ⁇ f' n ⁇ according to A 3 equal to 1.
  • the receiving device performs joint processing on the odd elements of ⁇ f' n ⁇ and the odd elements of ⁇ w n ⁇ , and acquires the channel state corresponding to the received sequence.
  • the channel state is obtained by correlating the odd element pairs of the received sequence with the odd element pairs of x n .
  • the even elements of ⁇ f n ⁇ on the transmitting side carry data information.
  • the data information may be business data information or control information.
  • the receiving device ⁇ f 'n ⁇ of channel state even elements was subjected to joint processing, and acquires data.
  • the channel state is used to perform frequency domain equalization on the even elements of the received sequence to obtain data transmitted by the transmitting device.
  • Channel estimation is performed in Figure 4a with an odd element of ⁇ f n ⁇ as an example.
  • the even element of ⁇ f n ⁇ is a reference signal, the channel estimation and subsequent processing are similar to those of FIG. 4a and will not be described again.
  • FIG. 4b another example of the receiving device processing the acquired signals on the 2 ⁇ N subcarriers is given.
  • section 407 all possible values of the receiving device A 1 and all possible values of A 2 are traversed through all possible sequences of ⁇ f' n ⁇ . All possible sequences of ⁇ w n ⁇ and ⁇ f n ⁇ are processed separately and subjected to maximum likelihood comparison to obtain data transmitted by the transmitting device.
  • a 1 corresponds to a value range of ⁇ -1, +1 ⁇
  • a 2 corresponds to a value of ⁇ -1, +1 ⁇ .
  • the combination of (A 1 , A 2 ) is ⁇ (-1, -1), (-1, 1), (1, -1), (1, 1) ⁇ . According to Fig.
  • the obtained ⁇ f' n ⁇ is the sequence ⁇ f' 1,n ⁇ , when (A 3 , A 4 ) is (- When 1,1), the obtained ⁇ f n ⁇ is the sequence ⁇ f' 2,n ⁇ , and when (A 3 ,A 4 ) is (1,-1), the obtained ⁇ f' n ⁇ is the sequence ⁇ f ' 3,n ⁇ , when (A 3 , A 4 ) is (1, 1), the obtained ⁇ f' n ⁇ is the sequence ⁇ f' 4, n ⁇ .
  • ⁇ w n ⁇ is associated with ⁇ f' 1,n ⁇ , ⁇ f' 2,n ⁇ , ⁇ f' 3,n ⁇ , ⁇ f' 4,n ⁇ respectively, and four correlation values are obtained.
  • the value of (A 3 , A 4 ) corresponding to the maximum correlation value is the data acquired by the receiving device. For example, if the maximum correlation value is ⁇ w n ⁇ associated with ⁇ f' 1,n ⁇ , then (A 1 , A 2 ) is (-1, -1).
  • a 1 , A 2 is a modulation symbol obtained by modulating data information bits or control information bits.
  • the receiving device performs correlation processing on all elements of ⁇ f' n ⁇ and all elements of ⁇ w n ⁇ using the already obtained channel estimation values to obtain the above-mentioned data information bits or control information bits.
  • the receiving device separately performs the joint processing of the odd/even-numbered elements of ⁇ f' n ⁇ and the odd/even-numbered elements of ⁇ w n ⁇ by using the obtained channel estimation values, and directly acquires the data transmitted by the transmitting device.
  • the data transmitted by the transmitting device is obtained by performing correlation detection using ⁇ f' n ⁇ .
  • the above channel estimation values may be obtained from reference signals in other OFDM symbols.
  • Table 2 gives the comparison results of the sequence of the present application and the CM value of the LTE sequence (the sequence includes 12 elements). As shown in Table 2, the maximum value of the CM value of the sequence of the present application is much smaller than the CM value of the LTE sequence. And the CM value of the LTE sequence is 77% greater than 2 dB, and the CM value of the sequence of the present application is superior to the LTE sequence.
  • CM value The sequence in this application set P25 LTE sequence Maximum 1.1dB 3.78dB Minimum value 0.83dB 0.92dB
  • the data processing method for wireless communication in the embodiment of the present application can reduce the CM/PAPR value of the transmitted signal of the OFDM system, thereby improving the link quality of the entire transmission system.
  • an embodiment of the present invention provides a communication apparatus.
  • the communication device can be applied to the communication system shown in FIG. 1 to implement the above-mentioned FIG. 2, FIG. 3a, FIG. 3b, FIG. 3c, FIG. 3d, FIG. 3e, FIG. 4, FIG. 4a, FIG. 4b or FIG. Methods.
  • the communication device may be the network device 20 in FIG. 1 or the terminal device 10 in FIG.
  • the communication device can be a transmitting device or a receiving device.
  • the communication device When the communication device is a transmitting device, the communication device includes:
  • the processing unit 501 is configured to determine a sequence ⁇ f n ⁇ including 2 ⁇ N elements, where f n is an element in ⁇ f n ⁇ , N is a positive integer and is an even number, n is an integer, and 0 ⁇ n ⁇ 2 ⁇ N-1;
  • the processing unit 501 is further configured to map the sequence ⁇ f n ⁇ to 2 ⁇ N subcarriers;
  • a 1 , A 2 is a non-zero complex number, and ⁇ is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number.
  • ⁇ x n ⁇ is a sequence consisting of x n satisfying at least one of condition 1 and condition 2 in the above embodiment:
  • the communication device further includes a transmitting unit 502, configured to transmit a signal carrying the sequence ⁇ f n ⁇ on the 2 ⁇ N subcarriers.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ onto consecutive 2 ⁇ N subcarriers.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ onto 2 ⁇ N subcarriers of the equal subcarrier spacing.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N consecutive children. Carrier, and subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N equal subcarriers The subcarriers are separated, and the subcarrier group 1 and the subcarrier group 2 are separated by at least one subcarrier.
  • the communication device further includes a storage unit 504 for coupling with the processor 501 to store program instructions and data necessary for the communication device.
  • the communication device when the communication device is a transmitting device, the communication device includes:
  • the processing unit 501 is further configured to map the sequence ⁇ f n ⁇ to 2 ⁇ N subcarriers;
  • a 1 , A 2 is a non-zero complex number, and ⁇ is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number;
  • ⁇ x n ⁇ is one of the following conditions, and the element x n in ⁇ x n ⁇ satisfies:
  • ⁇ s n ⁇ is a sequence of s n
  • the communication device further includes a transmitting unit 502, configured to transmit a signal carrying the sequence ⁇ f n ⁇ on the 2 ⁇ N subcarriers.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ onto consecutive 2 ⁇ N subcarriers.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ ⁇ f n ⁇ to be mapped onto the non-continuous and 2 ⁇ N equally spaced subcarriers.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N consecutive subcarriers. And the subcarrier group 1 and the subcarrier group 2 are separated by at least one subcarrier.
  • the processing unit 501 is further configured to map ⁇ f n ⁇ to the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N discontinuous and the like The subcarriers are separated, and the subcarrier group 1 and the subcarrier group 2 are separated by at least one subcarrier.
  • subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier of N-1.
  • the communication device further includes a storage unit 504 for coupling with the processor 501 to store program instructions and data necessary for the communication device.
  • the communication device When the communication device is a receiving device, the communication device includes:
  • the receiving unit 503 is configured to receive signals on 2 ⁇ N subcarriers.
  • the processing unit 501 is configured to acquire 2 ⁇ N elements of the sequence ⁇ f′ n ⁇ , where f′ n is an element in ⁇ f′ n ⁇ , N is a positive integer, and is an even number, and n is an integer. And 0 ⁇ n ⁇ 2 ⁇ N-1; processing the signals on the 2 ⁇ N subcarriers according to 2 ⁇ N elements of the sequence ⁇ f' n ⁇ ;
  • a 3 , A 4 is a non-zero complex number, and ⁇ ' is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number.
  • ⁇ x n ⁇ is a sequence consisting of x n satisfying at least one of condition 1 and condition 2 in the above embodiment:
  • the receiving unit 503 is further configured to receive signals on the 2 ⁇ N subcarriers on consecutive 2 ⁇ N subcarriers.
  • the receiving unit 503 is further configured to receive signals on the 2 ⁇ N subcarriers on non-contiguous and equally spaced 2 ⁇ N subcarriers.
  • the receiving unit 503 is further configured to acquire the signal on the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N consecutive subcarriers, and the subcarriers Group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • the receiving unit 503 is further configured to acquire the signal on the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N subcarriers with equal subcarrier spacing And subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • the communication device further includes a storage unit 504 for coupling with the processor 501 to store program instructions and data necessary for the communication device.
  • the communication device when the communication device is a receiving device, the communication device includes:
  • the processing unit 501 is configured to acquire signals on 2 ⁇ N subcarriers.
  • the processing unit 501 is configured to acquire 2 ⁇ N elements of the sequence ⁇ f′ n ⁇ , where f′ n is an element in ⁇ f′ n ⁇ , where N is a positive integer, and is an even number, and n is an integer. And 0 ⁇ n ⁇ 2 ⁇ N-1; processing the signals on the 2 ⁇ N subcarriers according to 2 ⁇ N elements of the sequence ⁇ f' n ⁇ ;
  • a 3 , A 4 is a non-zero complex number, and ⁇ ' is a real number.
  • Exp(j ⁇ h) denotes e j ⁇ h , where h is an arbitrary real number.
  • ⁇ x n ⁇ is one of the following conditions, and the element x n in ⁇ x n ⁇ satisfies:
  • ⁇ s n ⁇ is a sequence of s n
  • the communication device also includes a receiving unit 503 for receiving a signal.
  • the processing unit 501 is further configured to acquire, according to the received signal, a signal on the 2 ⁇ N subcarriers.
  • the receiving unit 503 is further configured to receive the signal on consecutive 2 ⁇ N subcarriers.
  • the receiving unit 503 is further configured to receive the signal on 2 ⁇ N subcarriers of an equal subcarrier interval.
  • the receiving unit 503 is further configured to receive the signal on the subcarrier group 1 and the subcarrier group 2, and the subcarrier group 1 and the subcarrier group 2 each include N consecutive subcarriers, and the subcarriers Group 1 and subcarrier group 2 are separated by at least one subcarrier.
  • subcarrier group 1 and subcarrier group 2 are separated by at least N-1 subcarriers.
  • the receiving unit 503 is further configured to receive the signal on the subcarrier group 1 and the subcarrier group 2, where the subcarrier group 1 and the subcarrier group 2 each include N subcarriers with equal subcarrier spacing And subcarrier group 1 and subcarrier group 2 are separated by at least one subcarrier. Optionally, subcarrier group 1 and subcarrier group 2 are separated by at least N-1 subcarriers.
  • the communication device further includes a storage unit 504 for coupling with the processor 501 to store program instructions and data necessary for the communication device.
  • the communication apparatus for wireless communication in the embodiment of the present application reduces the CM value of the transmission signal of the OFDM system, thereby improving the link quality of the entire transmission system.
  • FIG. 6 shows a possible structural diagram of the communication device involved in the above embodiment.
  • the communication device includes a processor 601 and a memory 604, the storage unit 604 storing instructions for causing the processor 601 to perform the method of the above embodiments.
  • the communication device also includes a transmitter 602 and a receiver 603.
  • the communication device transmits a signal
  • the signal to be transmitted is transmitted through the antenna via the 602 output.
  • the receiver 603 receives the signal from the antenna.
  • the communication device can be applied to the communication system shown in FIG. 1 to implement the method in FIG. 2, FIG. 3a, FIG. 3b, FIG. 3c, FIG. 3d, FIG. 4, FIG. 4a, FIG. 4b or FIG.
  • the communication device may be the network device 20 in FIG. 1, or may be the terminal device 10 in FIG.
  • the communication device can be a transmitting device or a receiving device.
  • the function of the processing unit 501 in FIG. 5 can be implemented by the processor 601 in FIG.
  • the processing unit 501 in FIG. 5 can also be the processor 601 in FIG.
  • the function of the transmitting unit 502 in FIG. 5 can be implemented by the transmitter 602 in FIG.
  • the transmitting unit 502 in FIG. 5 may also be the transmitter 602 in FIG.
  • the function of the receiving unit 503 in FIG. 5 can be implemented by the receiver 603 in FIG.
  • the receiving unit 603 in FIG. 5 can also be the receiver 603 in FIG.
  • the function of memory unit 504 in FIG. 5 can be implemented by memory 604 in FIG.
  • the memory unit 504 in FIG. 5 can also be the memory 604 in FIG.
  • Figure 6 only shows a simplified design of the communication device.
  • the communication device may include any number of transmitters, receivers, processors, memories, etc., and all data receiving devices that can implement the present application are within the scope of the present application.
  • the embodiment of the present application further provides a chip, which can execute the 301, 302, 303 part in FIG. 2, or the 401, 402, 403, 404 part in FIG. 4 and FIG. 3a, FIG. 3b, FIG. 3c, FIG. 4a, Figure 4b, Figure 4c.
  • the chip can include corresponding functional units in the figure to perform the corresponding functions.
  • the processor for performing the above communication device of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the processor 601 and the memory 604 in FIG. 6 can also synthesize a unit as a processor to implement the functions of the processor 601 and the memory 604 in FIG.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a data receiving device and/or a data transmitting device.
  • the processor and the storage medium may also be present as discrete components in the data receiving device and/or the data transmitting device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,尤其涉及一种数据处理方法、装置和***。本申请提供了一种数据处理方法,发送设备使用一个序列分别承载数据和参考信号。该发送设备将两路数据分别承载到该序列的奇数元素和偶数元素上。该发送设备将承载了所述两路数据的序列连续地映射到分配的子载波上后,通过通过正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)的方式发送。本申请旨在通过序列设计以及这两路数据的子载波的映射,降低正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)***的发射信号的立方度量(cubic metric, CM)/峰均比,从而提升整个传输***的链路质量。

Description

一种无线通信中的信号发送方法、接收方法、装置和***
本申请要求于2017年03月24日提交中国专利局、申请号为CN201710199625.9、申请名称为“一种无线通信中的信号发送方法、接收方法、装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及无线通信***中的信号发送方法、接收方法、装置和***。
背景技术
基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术在对抗多径干扰、兼容多输入多输出(Multiple-Input Multiple-Output,MIMO)等方面具有优势。当前无线通信***较多的采用了该技术,如长期演进(Long Term Evolution,LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)等***。
在下一代通信***中,如第五代移动通信(the 5th Generation mobile communication,5G),支持一个OFDM符号上,发送物理上行控制信道(Physical Uplink Control CHannel,PUCCH),且在这一个OFDM符号上,同时发送参考信号(Reference Signal,RS)和上行控制信息(Uplink Control Information,UCI)。或者需要发射两路信号,每路信号的信息调制在各自的序列元素上发射。如果沿用长期演进(long term evolution,LTE)***中序列来承载上述的两路信号,则会造成立方度量(cubic metric,CM)/峰均比的提高。但CM会导致发射信号通过功率放大器(Power Amplifier,PA)时产生信号畸变,在发射端产生额外矢量幅度误差(Error Vector Magnitude,EVM),最终使接收端解调性能下降。为了减少发射信号EVM,实际发射功率通常需要做一定的回退,但发射功率的降低,也会导致接收端解调性能的下降。或者高的峰均比(Peak to Average Power Ratio,PAPR)会导致发射功率的降低,会导致解调性能的下降。
因此,需要一种基于OFDM***的低CM/PAPR的信号发送方法,提升链路质量。
发明内容
本文描述了一种用于无线通信的信号发送方法、接收方法、装置和***。本申请中,发送设备使用一个序列分别承载数据和参考信号。该发送设备将两路数据分别承载到该序列的奇数元素和偶数元素上。该发送设备将承载了所述两路数据的该序列连续地映射到分配的子载波上后,通过通过正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的方式发送。本申请旨在通过序列设计以及这两路数据的子载波的映射,降低正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)***的发射信号的立方度量(cubic metric,CM)/峰均比,从而提升整个传输***的链路质量。
第一方面,本申请实施例提供一种用于无线通信的信号发送方法,该方法包括:
确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1;
将所述序列{f n}映射到2×N个子载波上;
其中,所述序列{f n}为:
当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
A 1,A 2是非零复数,α为实数,
Figure PCTCN2018079878-appb-000001
exp(j×h)表示e j×h,h为任意的实数;
{x n}是由x n组成的序列,满足下述条件中的至少一个:
条件1:当n为大于等于0,且小于等于N-1的偶数时,
x n+N=a×j×x n
当n为大于等于0,且小于等于N-1的奇数时,
x n+N=-a×j×x n
其中,a=1或-1,
Figure PCTCN2018079878-appb-000002
N为正整数,且为偶数;
条件2:所述N=6,
x 2n+6=a n·x 2n
x 2n+1+6=b n·x 2n+1
其中,
Figure PCTCN2018079878-appb-000003
且c为一个非零复数,0≤n≤2,{y 0y 1y 2y 3y 4y 5}为如下序列之一:
{2 0 6 2 4 6},
{6 0 2 6 4 2},
{0 6 4 4 2 0},
{2 6 6 4 4 0},
{6 2 2 4 4 0},
{6 6 2 4 0 0},
{2 2 6 4 0 0},
{4 2 0 4 6 0},
{0 2 4 0 6 4},
{2 0 6 6 4 2},
{4 0 0 6 6 2},
{0 4 4 6 6 2},
{0 0 4 6 2 2},
{4 4 0 6 2 2},
{6 4 2 6 0 2},
{2 4 6 2 0 6},
{4 2 0 0 6 4},
{6 2 2 0 0 4},
{2 6 6 0 0 4},
{2 2 6 0 4 4},
{6 6 2 0 4 4},
{0 6 4 0 2 4},
{4 6 0 4 2 0},
{6 4 2 2 0 6},
{0 4 4 2 2 6},
{4 0 0 2 2 6},
{4 4 0 2 6 6},
{0 0 4 2 6 6}。
第二方面,本申请还提供了一种用于无线通信的信号发送方法,该方法包括:
确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1,N=6;
将所述序列{f n}映射到2×N个子载波上;
在所述2×N个子载波上发送承载所述序列{f n}的信号;
其中,所述序列{f n}为:
当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
A 1,A 2是非零复数,α为实数,
Figure PCTCN2018079878-appb-000004
exp(j×h)表示e j×h,h为任意的实数;
{x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
x n=u·exp(π·j·s n/4),u是非零复数,
{s n}是由s n组成的序列,
序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3},
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3},
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3},
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1},
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3},
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3},
{1,3,-1,1,1,3,1,-1,-3,3,-3,3},
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1},
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1},
{-3,1,3,3,1,3,-1,-3,1,1,-1,3},
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1},
{1,3,1,-1-3,-1,-1,-3,-3,-1,1,-1},
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1},
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3},
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1},
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1},
{3,-3,1,3,1,1,1,-3,3,1,-3,3},
{3,3,-1,-1-1,1,1,-1,-1,3,-1,3},
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3},
{1,-3,3,3,3,1,-3,-1,1,1,3,-1},和
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
{s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
其中,序列{u i}为如下序列中之一:
{0,0,4,4,0,0,4,4,0,0,4,4},
{0,2,0,2,0,2,0,2,0,2,0,2},
{0,2,4,6,0,2,4,6,0,2,4,6},
{0,4,0,4,0,4,0,4,0,4,0,4},
{0,4,4,0,0,4,4,0,0,4,4,0},
{0,6,0,6,0,6,0,6,0,6,0,6},
{0,6,4,2,0,6,4,2,0,6,4,2},
{2,0,2,0,2,0,2,0,2,0,2,0},
{2,0,6,4,2,0,6,4,2,0,6,4},
{2,2,2,2,2,2,2,2,2,2,2,2},
{2,2,6,6,2,2,6,6,2,2,6,6},
{2,4,2,4,2,4,2,4,2,4,2,4},
{2,4,6,0,2,4,6,0,2,4,6,0},
{2,6,2,6,2,6,2,6,2,6,2,6},
{2,6,6,2,2,6,6,2,2,6,6,2},
{4,0,0,4,4,0,0,4,4,0,0,4},
{4,0,4,0,4,0,4,0,4,0,4,0},
{4,2,0,6,4,2,0,6,4,2,0,6},
{4,2,4,2,4,2,4,2,4,2,4,2},
{4,4,0,0,4,4,0,0,4,4,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4},
{4,6,0,2,4,6,0,2,4,6,0,2},
{4,6,4,6,4,6,4,6,4,6,4,6},
{6,0,2,4,6,0,2,4,6,0,2,4},
{6,0,6,0,6,0,6,0,6,0,6,0},
{6,2,2,6,6,2,2,6,6,2,2,6},
{6,2,6,2,6,2,6,2,6,2,6,2},
{6,4,2,0,6,4,2,0,6,4,2,0},
{6,4,6,4,6,4,6,4,6,4,6,4},
{6,6,2,2,6,6,2,2,6,6,2,2},和
{6,6,6,6,6,6,6,6,6,6,6,6}。
在上述第一方面和第二方面,还有如下可选设计。
在一个示例中,所述将所述序列{f n}映射到2×N个子载波上,包括:
将{f n}映射到连续的2×N个子载波上;或者,
将{f n}映射到非连续且等间隔的2×N个子载波上;或者,
将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个连续的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波;或者,
将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
可选的,所述子载波组1和所述子载波组2至少间隔N-1个子载波。。
在一个示例中,A 1,A 2的取值范围为{1,-1,j,-j}。当A 1,A 2为上述取值时,发送信号的CM/PAPR的值低。
在一个示例中A 1,A 2是调制符号。或者,A 1是调制符号,A 2是常数。或者,A 2是调制符号,A 1是常数。
第三方面,本申请实施例提供一种用于无线通信的信号接收方法,该方法包括:
接收2×N个子载波上的信号;
获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据序列{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
其中,{f’ n}为:
当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
A 3,A 4是非零复数,α’为实数,
Figure PCTCN2018079878-appb-000005
exp(j×h)表示e j×h,h为任意的实数;
{x n}满足下述条件中的至少一个:
条件1:当n为大于等于0,且小于等于N-1的偶数时,
x n+N=a×j×x n
当n为大于等于0,且小于等于N-1的奇数时,
x n+N=-a×j×x n
其中,a=1或-1,
Figure PCTCN2018079878-appb-000006
N为正整数,且为偶数;条件2:所述N=6,
x 2n+6=a n·x 2n
x 2n+1+6=b n·x 2n+1
其中,
Figure PCTCN2018079878-appb-000007
且c为一个非零复数,0≤n≤2,{y 0y 1y 2y 3y 4y 5}为如下序列之一:
{2 0 6 2 4 6},
{6 0 2 6 4 2},
{0 6 4 4 2 0},
{2 6 6 4 4 0},
{6 2 2 4 4 0},
{6 6 2 4 0 0},
{2 2 6 4 0 0},
{4 2 0 4 6 0},
{0 2 4 0 6 4},
{2 0 6 6 4 2},
{4 0 0 6 6 2},
{0 4 4 6 6 2},
{0 0 4 6 2 2},
{4 4 0 6 2 2},
{6 4 2 6 0 2},
{2 4 6 2 0 6},
{4 2 0 0 6 4},
{6 2 2 0 0 4},
{2 6 6 0 0 4},
{2 2 6 0 4 4},
{6 6 2 0 4 4},
{0 6 4 0 2 4},
{4 6 0 4 2 0},
{6 4 2 2 0 6},
{0 4 4 2 2 6},
{4 0 0 2 2 6},
{4 4 0 2 6 6},
{0 0 4 2 6 6}。
第四方面,本申请实施例提供一种用于无线通信的信号接收方法,该方法包括:
接收2×N个子载波上的信号;
获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据序列{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
其中,{f’ n}为:
当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
A 3,A 4是非零复数,α’为实数,
Figure PCTCN2018079878-appb-000008
exp(j×h)表示e j×h,h为任意的实数;
{x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
x n=u·exp(π·j·s n/4),u是非零复数,{s n}是由s n组成的序列,
所述序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3},
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3},
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3},
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1},
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3},
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3},
{1,3,-1,1,1,3,1,-1,-3,3,-3,3},
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1},
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1},
{-3,1,3,3,1,3,-1,-3,1,1,-1,3},
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1},
{1,3,1,-1-3,-1,-1,-3,-3,-1,1,-1},
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1},
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3},
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1},
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1},
{3,-3,1,3,1,1,1,-3,3,1,-3,3},
{3,3,-1,-1-1,1,1,-1,-1,3,-1,3},
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3},
{1,-3,3,3,3,1,-3,-1,1,1,3,-1},和
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
{s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
其中,序列{u i}为如下序列中之一:
{0,0,4,4,0,0,4,4,0,0,4,4},
{0,2,0,2,0,2,0,2,0,2,0,2},
{0,2,4,6,0,2,4,6,0,2,4,6},
{0,4,0,4,0,4,0,4,0,4,0,4},
{0,4,4,0,0,4,4,0,0,4,4,0},
{0,6,0,6,0,6,0,6,0,6,0,6},
{0,6,4,2,0,6,4,2,0,6,4,2},
{2,0,2,0,2,0,2,0,2,0,2,0},
{2,0,6,4,2,0,6,4,2,0,6,4},
{2,2,2,2,2,2,2,2,2,2,2,2},
{2,2,6,6,2,2,6,6,2,2,6,6},
{2,4,2,4,2,4,2,4,2,4,2,4},
{2,4,6,0,2,4,6,0,2,4,6,0},
{2,6,2,6,2,6,2,6,2,6,2,6},
{2,6,6,2,2,6,6,2,2,6,6,2},
{4,0,0,4,4,0,0,4,4,0,0,4},
{4,0,4,0,4,0,4,0,4,0,4,0},
{4,2,0,6,4,2,0,6,4,2,0,6},
{4,2,4,2,4,2,4,2,4,2,4,2},
{4,4,0,0,4,4,0,0,4,4,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4},
{4,6,0,2,4,6,0,2,4,6,0,2},
{4,6,4,6,4,6,4,6,4,6,4,6},
{6,0,2,4,6,0,2,4,6,0,2,4},
{6,0,6,0,6,0,6,0,6,0,6,0},
{6,2,2,6,6,2,2,6,6,2,2,6},
{6,2,6,2,6,2,6,2,6,2,6,2},
{6,4,2,0,6,4,2,0,6,4,2,0},
{6,4,6,4,6,4,6,4,6,4,6,4},
{6,6,2,2,6,6,2,2,6,6,2,2},和
{6,6,6,6,6,6,6,6,6,6,6,6}。
上述的序列设计和数据到子载波的映射方式降低OFDM***的发射信号的CM/PAPR值, 进而提高了链路质量。
在上述的第一方面和第三方面,还有如下的可选设计。
N=6,{x n}中的元素x n,0≤n≤11,满足
x n=g·exp(π·j·s n/4),g为非零复数;其中,{s n}是由s n组成的序列,
当{x n}满足条件1时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,3,1,-3,-1,3,1,-3,-1,-1,-3};
{-3,1,3,1,-3,-3,-1,-1,-3,-1,-1,3};
{-1,3,-1,1,3,3,1,1,1,-1,-3,1};
{1,-1,-3,1,-3,-1,3,-3,-1,-1,-1,-3};
{3,1,-3,-3,3,-3,-3,-1,-1,3,-3,3};
当所述序列{x n}满足所述条件2时,{s n}满足
当{Z i}为{2 0 6 2 4 6}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,-3,1,-3,3,3,-3,-3,-3,3,1},
{1,-3,1,-1,-3,-3,3,-1,1,3,3,3},
{3,-3,-3,1,3,1,-1,1,-1,-1,3,1},
{3,1,1,1,3,-3,-1,-3,3,-1,3,-3},
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
{3,1,1,1,3,-3,-1,-3,3,-1,3,-3};或者,
当{Z i}为{6 0 2 6 4 2}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
{-1,1,3,3,3,1,-1,1,-3,1,-1,-3},
{1,3,1,1,-3,3,1,3,3,-1,1,-1};或者,
当{Z i}为{0 6 4 4 2 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,-1,1,1,3,1,-1,-3,3,-3,3},
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
{-1,3,3,-1,3,-1,1,1,3,3,1,1},
{-3,3,-3,3,1,-1,-1,1,-3,-1,-1,1};或者,
当{Z i}为{2 6 6 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{3,-3,-3,-3,1,3,-3,1,3,1,-1,3},
{-3,-3,-1,-3,3,3,1,3,-1,3,3,-3},
当{Z i}为{6 2 2 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-3,1,3,1,-1,3,3,-3,-3,-3,1,3},
{3,1,-3,-3,-3,3,3,-1,1,3,1,-3},
当{Z i}为{6 6 2 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-3,-3,3,-3,-1,-1,3,1,1,-3,1,-1},
{-3,3,3,3,-1,-3,-3,1,3,-3,3,-1};或者,
当{Z i}为{2 2 6 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-1,3,1,3,-3,1,1,-1,3,3,3,1},
{-3,3,3,-1,3,1,1,1,-1,1,3,3};或者,
{s n}的除自身之外的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
其中,序列{u i}为如下序列中之一:
{0,0,4,4,0,0,4,4,0,0,4,4},
{0,2,0,2,0,2,0,2,0,2,0,2},
{0,2,4,6,0,2,4,6,0,2,4,6},
{0,4,0,4,0,4,0,4,0,4,0,4},
{0,4,4,0,0,4,4,0,0,4,4,0},
{0,6,0,6,0,6,0,6,0,6,0,6},
{0,6,4,2,0,6,4,2,0,6,4,2},
{2,0,2,0,2,0,2,0,2,0,2,0},
{2,0,6,4,2,0,6,4,2,0,6,4},
{2,2,2,2,2,2,2,2,2,2,2,2},
{2,2,6,6,2,2,6,6,2,2,6,6},
{2,4,2,4,2,4,2,4,2,4,2,4},
{2,4,6,0,2,4,6,0,2,4,6,0},
{2,6,2,6,2,6,2,6,2,6,2,6},
{2,6,6,2,2,6,6,2,2,6,6,2},
{4,0,0,4,4,0,0,4,4,0,0,4},
{4,0,4,0,4,0,4,0,4,0,4,0},
{4,2,0,6,4,2,0,6,4,2,0,6},
{4,2,4,2,4,2,4,2,4,2,4,2},
{4,4,0,0,4,4,0,0,4,4,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4},
{4,6,0,2,4,6,0,2,4,6,0,2},
{4,6,4,6,4,6,4,6,4,6,4,6},
{6,0,2,4,6,0,2,4,6,0,2,4},
{6,0,6,0,6,0,6,0,6,0,6,0},
{6,2,2,6,6,2,2,6,6,2,2,6},
{6,2,6,2,6,2,6,2,6,2,6,2},
{6,4,2,0,6,4,2,0,6,4,2,0},
{6,4,6,4,6,4,6,4,6,4,6,4},
{6,6,2,2,6,6,2,2,6,6,2,2},和
{6,6,6,6,6,6,6,6,6,6,6,6}。
在上述的第三方面和第四方面,还有如下的可选设计。
在一个示例中,所述接收2×N个子载波上的信号,包括:
在连续的2×N个子载波上获取所述2×N个子载波上的信号。或者,在非连续且等间隔的2×N个子载波上获取所述2×N个子载波上的信号。连续或等间隔的将{f n}映射到子载波的方式,CM值比较好。
或者,在子载波组1和子载波组2上获取所述2×N个子载波上的信号,所述子载波组1和所述子载波组2各包括N个连续的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。或者,在子载波组1和子载波组2上获取所述2×N个子载波上的信号,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
可选的,所述子载波组1和所述子载波组2至少间隔N-1个子载波。载波组1和载波组2的至少间隔N-1个子载波,可以得到更低的PAPR/CM。同时得到更好的频率分集效果。
在一个示例中,A 3,A 4的取值范围为{1,-1,j,-j}。
在上述的第一方面到第四方面,还有如下的可选设计。
在一个示例中,从序列集合J中选择所述序列{x n}。由于在通信***中,存在多个小区共存的情况,相邻的小区需要使用不同的序列用于传输数据。因此需要有一个序列集合J,相邻的小区可以使用该序列集合J中的不同序列,以降低小区间的干扰。
可以理解,可以通过通信装置来实现上述第一方面至第四方面任一方面所述的方法,该装置可以是通信设备,也可以是芯片。所述通信设备可以是终端设备,也可以是网络设备。
第五方面,本申请实施例提供一种通信装置,该装置可以是通信设备,也可 以是芯片。所述通信设备可以是终端,也可以是基站。该通信装置可以实现上述第一方面至第四方面任一方面所述的方法,并具有相应的功能单元。所述功能单元可以通过硬件实现,也可以软件实现,或者通过硬件执行相应的软件来实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述通信装置包括:处理单元和存储单元,所述存储单元存储指令,所述指令用于使所述处理单元执行上述第一方面至第四方面任一方面所述的方法。所述处理单元可以由一个或多个处理器来实现。所述存储单元可以是存储器,或者是其他任何具有存储功能的存储模块。所述存储单元可以与处理器单独设置,也可以与处理器集成在一起。
可选的,所述通信装置还可以包括:收发单元,所述收发单元包括发送单元和接收单元。所述发送单元用以当所述通信装置作为发送设备时,向接收设备发送信息。所述接收单元用以当所述通信装置作为接收设备时,从发送设备接收信息。例如。所述收发单元可以通过收发器来实现。
例如,发送单元,可用于在所述2×N个子载波上发送承载所述序列{f n}的信号。
又例如,所述接收单元,可用于接收信号。所述处理单元,用于根据所述接收的信号,获取所述2×N个子载波上的信号。
第六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述通信装置所用的计算机软件指令,其包含用于执行上述第一方面或第二方面或第三方面或第四方面所涉及的程序。
第七方面,本申请实施例提供一种计算机程序产品,其包含指令,当所述计算机程序被计算机所执行时,该指令使得计算机执行上述第一方面或第二方面或第三方面或第四方面所述的方法。
第八方面,本发明实施例提供了一种***,该***包括上述通信装置。
第九方面,本申请提供了一种芯片***,该芯片***包括处理器,用于支持上述通信装置实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片***还可以包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分离器件。
相较于现有技术,本申请描述了一种信号发送方法、接收方法、装置和***,旨在通过序列设计和数据到子载波的映射方式降低OFDM***的发射信号的CM/PAPR值,从而提升整个传输***的链路质量。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述。
图1为本申请的一种可能的应用场景示意图;
图2为本申请实施例提供的一种数据发送的流程示意图;
图3a为本申请实施例提供的一种生成序列{f n}生成示意图;
图3b为本申请实施例提供的一种将序列{f n}映射到子载波的示意图;
图3c为本申请实施例提供的一种将序列{f n}映射到子载波的另一示意图;
图3d为本申请实施例提供的一种将序列{f n}映射到子载波的又一示意图;
图3e为本申请实施例提供的一种将序列{f n}映射到子载波的再一示意图;
图4为本申请实施例提供的一种数据接收的流程示意图;
图4a为本申请实施例提供的接收端对数据检测一个示意图;
图4b为本申请实施例提供的接收端对数据检测另一个示意图;
图4c为本申请实施例提供的接收端对数据检测又一个示意图;
图5为本申请实施例提供的一种数据发送设备结构示意图;
图6为本申请实施例提供的另一种数据接收设备结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请描述的技术可以适用于LTE***以及后续的演进***如第五代移动通信(the 5th Generation mobile communication,5G)等,或其他采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接入技术的无线通信***,尤其适用于需要降低发射信号CM值的通信***。如图1所示,是本申请的一种可能的应用场景示意图。以如图1所示的通信***为例,通信***100至少包括至少一个网络设备20(例如,包括基站)和多个终端设备10(10A和10B)。所述多个终端设备10和所述网络设备20通信。在下行,网络设备20通过下行信道和终端设备10通信。在上行,终端设备10通过上行信道和网络设备20通信。下行指的是网络设备20向终端设备10发送数据的方向,上行指的是终端设备10向网络设备20发送数据的方向。
应理解,本发明实施例的技术方案可以应用于各种接入制式的通信***,例如:长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)通信***、5G(fifth generation)LTE***、5G NR(new radio,新空口)***,以及后续演进***,或者多种接入制式的融合的***等等。
还应理解,在本发明实施例中,终端设备(terminal equipment)可称之为终端(terminal),也可以是用户设备(user equipment,UE)、移动台(mobile station,MS),移动终端(mobile terminal),笔记本电脑等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,网络设备可以是LTE***中的演进型基站(evolved node B,简称为“eNB或e-NodeB”),5G LTE***中的基站、5G NR***中的基站,也可以是其他基站,也可以是中继(relay)之类的网络设备。本发明并不限定。
本申请所提供的技术方案可以应用于上行数据传输和/或下行数据传输,对于上行数据传输,数据发送设备可以是终端设备,数据接收设备可以是网络侧设备,如基站;对于下行数据传输,数据发送设备可以是网络侧设备,如基站,数据接收设备可以是终端设备。
下面对本申请实施例中所涉及到的一些通用概念或者定义做出解释,需要说明的是,本文中的一些英文简称为以LTE***为例对本申请实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
本申请中所述的快速傅里叶变换(Fast Fourier Transformation,FFT)是实现离散傅里叶变换(Discrete Fourier Transform,DFT)的一种快速算法,本申请中所述的FFT也可以替换成其他可以实现傅里叶变换的算法,本申请对此不做限定。快速傅里叶反变换(Inverse Fast Fourier Transformation,IFFT)是实现离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT)的一种快速算法本申请中所述的IFFT也可以替换成其他可以实现傅里叶反变换的算法,本申请对此不做限定。
本申请中所述的“数据”,通常情况下指业务数据,但也可以包括***需要传输的信令、消息等内容,例如,参考信号、上下行控制消息等。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请中,TX表示T×X,T,X可以为任意数。例如2X表示2×X。
本申请中的C mod K表示C对K取模运算,其取值范围都是0~K-1,K是一个正整数,C是实数。例如,10mod 8的值为2。在等式右侧用“(mod K)”表示等式在mod K意义下相等,即等式两边都要进行mod K操作。例如a=b(mod K),表示a mod K=b mod K。
在本申请中,序列{p i}的等价序列为自身和如下的序列,0≤i≤2×N-1,N为正整数:{q 0,q 1,q 2,...,q 2N-1},满足
q i=p i+u i(mod8),其中u i=v i,或者是多个
可以重复选取的v i的求和得到的序列。
其中,v i=(i mod2)·4,i=0,1,2,..,2N-1
或者v i=(i mod2)·2,i=0,1,2,..,2N-1
或者v i=-(i mod2)·2,i=0,1,2,..,2N-1
或者v i=(i mod4)·2,i=0,1,2,..,2N-1
或者v i=-(i mod4)·2,i=0,1,2,..,2N-1
或者v i=2,i=0,1,2,..,2N-1,
或者v i=4,i=0,1,2,..,2N-1,
或者v i=6,i=0,1,2,..,2N-1。
在本申请中,j表示复数的虚部。也就是j 2=-1,或
Figure PCTCN2018079878-appb-000009
下面将结合附图,对本申请实施例所提供的方案进行更为详细的描述。
在本申请中,发送端是发送序列的设备。可选的,发送端是发送UCI的设备。UCI 可以是确定应答/否定应答(Acknowledgement/Negative Acknowledgement,ACK/NACK)。可选的,UCI还可以是信道状态信息(Channel State Information,CSI)。CSI可以包括以下信息之中的一种或者几种:信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)和秩指示(Rank Indication,RI)。
图2为本申请实施例提供的一种数据处理方法的发送设备的示意图。
在301部分,发送设备确定序列{f n}。
该发送设备确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1。
其中,所述序列{f n}为:
当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
A 1,A 2是非零复数,α为实数,
Figure PCTCN2018079878-appb-000010
exp(j×h)表示e j×h,h为任意的实数。
可选的,α为k/(2×N),0≤k≤2×N-1。x n与exp(2·π·j·α·n)相乘相当于对x n的相位加权。对序列{x n}每个元素进行上述的相位加权其作用是使{x n}经过IFFT变换后信号序列进行循环移位。这样可以通过序列的不同循环移位来区分发送设备,达到多个发送设备复用的效果。
在图3a中给出了301部分生成{f n}的一个示例。该发送设备确定{x n}和A 1,A 2。{x n}可以是该发送设备存储的,也可以是该发送设备根据预定义的公式计算得到的。在图3a中,0≤n≤11,α=0。A 1和x 0,x 2,x 4,x 6,x 8,x 10分别相乘;A 2和x 1,x 3,x 5,x 7,x 9,x 11分别相乘得到{f n}={A 1 x 0,A 2 x 1,A 1 x 2,A 2 x 3,A 1 x 4,A 2 x 5,A 1 x 6,A 2 x 7,A 1 x 8,A 2 x 9,A 1 x 10,A 2 x 11}。可以认为,{x n}的偶数元素承载了调制符号A,{x n}的奇数元素是参考信号。A 1,A 2的取值范围为{1,-1,j,-j}。可选的,A 1,A 2的取值范围也可以为{(1+j)/r,(1-j)/r,(-1+j)/r,(-1-j)/r},r是2的平方根。与A 1,A 2的取值范围为{(1+j)/r,(1-j)/r,(-1+j)/r,(-1-j)/r}相比,当A 1,A 2的取值范围为{1,-1,j,-j}时,发送信号的CM/PAPR值更低。
对于A 1,A 2,还有如下的可选设计:
1.A 1,A 2是调制符号。
在这样情况下,一路数据信息比特或者控制信息比特经过调制后,得到A 1。A 1承载在{f n}的偶数元素(偶数元素也可以叫作偶数标号的元素)上。同时另外一路数据信息比特或者控制信息比特经过调制后的,得到A 2。A 2承载在{x n}的奇数元素(奇数元素也可以叫作奇数标号的元素)上。例如,一路数据是2比特的ACK/NACK,另一路数据时2比特的CQI。
2.A 1是调制符号,A 2是常数。
例如,数据信息比特或者控制信息比特经过调制后得到A 1。A 1承载在{f n}的偶数元素上。{f n}或{x n}的奇数元素是参考信号。A 2是常数,例如A 2=1。A 2是常数是指A 2没有携带信息比特。例如,A 2可以是发送端和接收端都已知的符号。A 2也可以表示是幅度。A 2是常数不代表A 2是固定不变的,在不同的时刻发送时,A 2可以 是变的。例如,发送设备是终端设备,{f n}或{x n}的奇数元素是参考信号,A 2是参考信号的幅度,第一次发UCI时,终端设备按A 2=1发送。第二次发UCI时,终端设备按A 2=2发送。
3.A 2是调制符号,A 1是常数。这种情况下,和A 1是调制符号,A 2是常数类似。不再赘述。
据或者控制信息的比特映射到{1,j,-1,j}可以有多种方法,例如2比特信息的一个状态映射到{1,j,-1,-j}中的一个值。例如,(0,0)映射到1,(1,0)映射到-1,(0,1)映射到j,(1,0)映射到-j,(1,1)映射到-1。
在一个示例中,{x n}是由x n组成的序列,满足下述条件中的至少一个:
条件1:当n为大于等于0,且小于等于N-1的偶数时,
x n+N=a×j×x n
当n为大于等于0,且小于等于N-1的奇数时,
x n+N=-a×j×x n
其中,a=1或-1,
Figure PCTCN2018079878-appb-000011
N为正整数,且为偶数;
条件2:所述N=6,
x 2n+6=a n·x 2n
x 2n+1+6=b n·x 2n+1
其中,
Figure PCTCN2018079878-appb-000012
且c为一个非零复数,0≤n≤2,
{y 0 y 1 y 2 y 3 y 4 y 5}的取值为序列{E i},{B i},{C i}或{D i},其中0≤i≤5且i为整数,B i=Z i+2(mod 8),C i=Z i+4(mod 8),D i=Z i+6(mod 8),E i=Z i(mod 8),mod表示模运算;所述{Z i}为如下序列之一:
{2 0 6 2 4 6},
{6 0 2 6 4 2},
{0 6 4 4 2 0},
{2 6 6 4 4 0},
{6 2 2 4 4 0},
{6 6 2 4 0 0},
{2 2 6 4 0 0}。
表1给出了根据上述公式得到的{E i},{B i},{C i}或{D i}的一个示例。可选的,{y 0y 1y 2y 3y 4y 5}的取值为表1中的28个序列之一。
表1
{E i} {B i} {C i} {D i}
{2 0 6 2 4 6} {4 2 0 4 6 0} {6 4 2 6 0 2} {0 6 4 0 2 4}
{6 0 2 6 4 2} {0 2 4 0 6 4} {2 4 6 2 0 6} {4 6 0 4 2 0}
{0 6 4 4 2 0} {2 0 6 6 4 2} {4 2 0 0 6 4} {6 4 2 2 0 6}
{2 6 6 4 4 0} {4 0 0 6 6 2} {6 2 2 0 0 4} {0 4 4 2 2 6}
{6 2 2 4 4 0} {0 4 4 6 6 2} {2 6 6 0 0 4} {4 0 0 2 2 6}
{6 6 2 4 0 0} {0 0 4 6 2 2} {2 2 6 0 4 4} {4 4 0 2 6 6}
{2 2 6 4 0 0} {4 4 0 6 2 2} {6 6 2 0 4 4} {0 0 4 2 6 6}
在另一个示例中,N=6,且{x n}是满足下述条件中的一个序列。{x n}中元素x n满足条件3。
条件3:
x n=u·exp(π·j·s n/4),0≤n≤2×N-1。其中{s n}是由s n组成的序列。
序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3},
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3},
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3},
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1},
{-3,3,-3,3,1,-1,-3,-1,-1,1,-3,-1},
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3},
{1,3,-1,1,1,3,1,-1,-3,3,-3,3},
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
{3,1,1,1,3,-3,-3,3,1,-3,1,3},
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1},
{-3,1,3,3,1,3,-1,-3,1,1,-1,3},
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1},
{1,3,1,-1,-3,-1,-1,-3,-3,-1,1,-1},
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1},
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3},
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1},
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1},
{3,-3,1,3,1,1,1,-3,3,1,-3,3},
{3,3,-1,-1,-1,1,1,-1,-1,3,-1,3},
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3},
{1,-3,3,3,3,1,-3,-1,1,1,3,-1},
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1},
{1,-3,-3,3,-1,3,3,-3,-1,-1,-3,-1},
{-1,3,-3,1,-3,-3,-3,-1,-1,1,-1,-3},
{-3,3,1,1,3,1,3,3,-1,1,-1,3},
{1,3,-1,-1,1,-1,-1,3,3,1,-3,1},
{-1,-3,3,-3,-3,-1,-1,-1,3,-1,1,-3},和
{-1,3,3,-3,1,-3,-1,-3,3,3,-3,3}。
上述序列集合定义为P31。
或者序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为集合P33中的序列之一或集合P33中的序列的等价序列之一;或者集合P25中的序列之一或集合P25中的序列的等价序列之一;或者集合P30中的序列之一或集合P30中的序列的等价序列之一。
集合P33为如下序列的集合:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3}
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3};
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3};
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1};
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3};
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3};
{1,3,-1,1,1,3,1,-1,-3,3,-3,3};
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1};
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1};
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1};
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1};
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1};
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1};
{-3,1,3,3,1,3,-1,-3,1,1,-1,3};
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1};
{1,3,1,-1,-3,-1,-1,-3,-3,-1,1,-1};
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1};
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3};
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1};
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1};
{3,-3,1,3,1,1,1,-3,3,1,-3,3};
{3,3,-1,-1,-1,1,1,-1,-1,3,-1,3};
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3};
{1,-3,3,3,3,1,-3,-1,1,1,3,-1};
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
{-3,-1,-1,1,-1,-3,3,3,-1,3,-3,1};
{-3,1,-3,-3,-1,-1,-1,1,-1,-3,-3,3};
{1,3,-1,-1,-1,1,-1,3,-3,3,1,-3};
{-1,1,-3,-1,1,-1,3,-1,-3,1,1,1};
{-1,3,-3,1,-3,-3,-3,-1,-1,1,-1,-3};
{-3,3,-3,-1,3,-3,1,1,1,-3,3,-1};
{3,-3,-3,-1,1,-1,3,-1,3,3,1,1};
{3,-3,-3,1,-3,-1,-1,-1,1,-1,-3,-3}。
集合P25为如下序列的集合:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3}
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3};
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3};
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1};
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3};
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3};
{1,3,-1,1,1,3,1,-1,-3,3,-3,3};
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1};
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1};
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1};
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1};
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1};
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1};
{-3,1,3,3,1,3,-1,-3,1,1,-1,3};
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1};
{1,3,1,-1,-3,-1,-1,-3,-3,-1,1,-1};
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1};
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3};
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1};
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1};
{3,-3,1,3,1,1,1,-3,3,1,-3,3};
{3,3,-1,-1,-1,1,1,-1,-1,3,-1,3};
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3};
{1,-3,3,3,3,1,-3,-1,1,1,3,-1};
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
P30为如下序列的集合:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3}
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3};
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3};
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1};
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3};
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3};
{1,3,-1,1,1,3,1,-1,-3,3,-3,3};
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1};
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1};
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1};
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1};
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1};
{-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1};
{-3,1,3,3,1,3,-1,-3,1,1,-1,3};
{-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1};
{1,3,1,-1,-3,-1,-1,-3,-3,-1,1,-1};
{1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1};
{-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3};
{3,-1,-3,-3,1,-1,3,-3,3,3,-3,1};
{-1,1,-1,-3,1,3,-1,-3,-1,1,3,1};
{3,-3,1,3,1,1,1,-3,3,1,-3,3};
{3,3,-1,-1,-1,1,1,-1,-1,3,-1,3};
{1,3,1,3,-1,-1,1,-3,1,-1,-3,3};
{1,-3,3,3,3,1,-3,-1,1,1,3,-1};
{-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
{-1,1,-3,-1,1,-1,-1,-3,1,-3,3,-1};
{-1,-1,-3,-3,-3,1,3,-1,3,1,-3,3};
{3,-1,-3,3,-1,-1,-3,-3,-3,1,3,1};
{3,3,-3,-1,-1,-1,-3,-3,1,-3,-1,-3};
{1,3,3,1,-1,1,-3,-1,1,1,-1,3}。
P33,P25,和P30都包括共同的25个序列。P33其他的序列放宽了序列之间的互相关以获得更多序列,有比较低的CM/PAPR特性,P30则放宽了序列的CM/PAPR以获得更多的序列,有比较低的互相关性。
在一个示例中,N=6,{x n}中的元素x n,0≤n≤11,满足
x n=g·exp(π·j·s n/4),g为非零复数;其中,{s n}是由s n组成的序列,
当{x n}满足条件1时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,3,1,-3,-1,3,1,-3,-1,-1,-3};
{-3,1,3,1,-3,-3,-1,-1,-3,-1,-1,3};
{-1,3,-1,1,3,3,1,1,1,-1,-3,1};
{1,-1,-3,1,-3,-1,3,-3,-1,-1,-1,-3};
{3,1,-3,-3,3,-3,-3,-1,-1,3,-3,3}。
当所述序列{x n}满足所述条件2,且{Z i}为{2 0 6 2 4 6}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,-3,1,-3,3,3,-3,-3,-3,3,1},
{1,-3,1,-1,-3,-3,3,-1,1,3,3,3},
{3,-3,-3,1,3,1,-1,1,-1,-1,3,1},
{3,1,1,1,3,-3,-1,-3,3,-1,3,-3},
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
{3,1,1,1,3,-3,-1,-3,3,-1,3,-3}。
当所述序列{x n}满足所述条件2,且{Z i}为{6 0 2 6 4 2}时,
{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
{-1,1,3,3,3,1,-1,1,-3,1,-1,-3},
{1,3,1,1,-3,3,1,3,3,-1,1,-1}。
当所述序列{x n}满足所述条件2,且{Z i}为{0 6 4 4 2 0}时,
{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{1,3,-1,1,1,3,1,-1,-3,3,-3,3},
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
{-1,3,3,-1,3,-1,1,1,3,3,1,1},
{-3,3,-3,3,1,-1,-1,1,-3,-1,-1,1}。
当所述序列{x n}满足所述条件2,且{Z i}为{2 6 6 4 4 0}时,
{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{3,-3,-3,-3,1,3,-3,1,3,1,-1,3},
{-3,-3,-1,-3,3,3,1,3,-1,3,3,-3}。
当所述序列{x n}满足所述条件2,且{Z i}为{6 2 2 4 4 0}时,
{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-3,1,3,1,-1,3,3,-3,-3,-3,1,3},
{3,1,-3,-3,-3,3,3,-1,1,3,1,-3}。
当所述序列{x n}满足所述条件2,且{Z i}为{6 6 2 4 0 0}时,
{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-3,-3,3,-3,-1,-1,3,1,1,-3,1,-1},
{-3,3,3,3,-1,-3,-3,1,3,-3,3,-1}。
当所述序列{x n}满足所述条件2,且{Z i}为{2 2 6 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
{-1,3,1,3,-3,1,1,-1,3,3,3,1},
{-3,3,3,-1,3,1,1,1,-1,1,3,3}。
在本申请中,包括12个元素的{s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
其中,序列{u i}为如下序列中之一:
{0,0,4,4,0,0,4,4,0,0,4,4},
{0,2,0,2,0,2,0,2,0,2,0,2},
{0,2,4,6,0,2,4,6,0,2,4,6},
{0,4,0,4,0,4,0,4,0,4,0,4},
{0,4,4,0,0,4,4,0,0,4,4,0},
{0,6,0,6,0,6,0,6,0,6,0,6},
{0,6,4,2,0,6,4,2,0,6,4,2},
{2,0,2,0,2,0,2,0,2,0,2,0},
{2,0,6,4,2,0,6,4,2,0,6,4},
{2,2,2,2,2,2,2,2,2,2,2,2},
{2,2,6,6,2,2,6,6,2,2,6,6},
{2,4,2,4,2,4,2,4,2,4,2,4},
{2,4,6,0,2,4,6,0,2,4,6,0},
{2,6,2,6,2,6,2,6,2,6,2,6},
{2,6,6,2,2,6,6,2,2,6,6,2},
{4,0,0,4,4,0,0,4,4,0,0,4},
{4,0,4,0,4,0,4,0,4,0,4,0},
{4,2,0,6,4,2,0,6,4,2,0,6},
{4,2,4,2,4,2,4,2,4,2,4,2},
{4,4,0,0,4,4,0,0,4,4,0,0},
{4,4,4,4,4,4,4,4,4,4,4,4},
{4,6,0,2,4,6,0,2,4,6,0,2},
{4,6,4,6,4,6,4,6,4,6,4,6},
{6,0,2,4,6,0,2,4,6,0,2,4},
{6,0,6,0,6,0,6,0,6,0,6,0},
{6,2,2,6,6,2,2,6,6,2,2,6},
{6,2,6,2,6,2,6,2,6,2,6,2},
{6,4,2,0,6,4,2,0,6,4,2,0},
{6,4,6,4,6,4,6,4,6,4,6,4},
{6,6,2,2,6,6,2,2,6,6,2,2},和
{6,6,6,6,6,6,6,6,6,6,6,6}。
在一个示例中,在步骤301之前,所述方法还包括:所述发送设备从序列集合J 中选择所述序列{x n}。所述集合J为通信***中预先设定的可用的序列{x n}的集合,所述集合J包括多个序列,且所述多个序列中包括至少一个序列满足所述条件1或条件2或条件3;或者,所述集合J由多个满足所述条件1或条件2或条件3的序列构成。其中,对于所述集合J中任一一个序列,所述集合J中不包含该序列的等价序列。
由于在通信***中,存在多个小区共存的情况,相邻的小区需要使用不同的序列用于传输数据。因此需要有一个序列集合J,相邻的小区可以使用该序列集合J中的不同序列,以降低小区间的干扰。例如,所述发送设备根据小区ID作为输入参数在预定义的规则中选取序列{x n},或者当所述发送设备为UE时,其根据基站的配置信令获取发送所使用的序列{x n}。可选的,{x n}的任意一个等价序列不在所述序列集合J中。由于一个序列和他自己等价序列相关性较高,如果在集合J同时包括一个序列和它的等价序列,而且相邻的小区分别使用某序列和它的一个等价序列,则这两个小区的在相同资源上使用这两个序列发送数据时,小区间的干扰严重。
在302部分,该发送设备将所述序列{f n}映射到2×N个子载波上。
在一个示例中,该发送设备将{f n}中的2N个元素按照子载波从高到低的顺序,依次映射到2N个子载波上,其中一个{f n}中元素映射到一个频域子载波,其中频域子载波是频域资源的最小单元,其用于承载数据信息。可选的,该发送设备将{f n}中的2N个元素按照子载波从低到高的顺序,依次映射到2N个子载波上。将{f n}中一个元素映射到一个子载波就是在这个子载波上承载这个元素。映射之后,该发送设备将数据通过射频发送时,就相当于在这个子载波上发送这个元素。在通信***中,一般包含2M个子载波,M>N。不同的发送设备可以占用不同的子载波发送数据。这2N个子载波是2M个子载波的一部分,其在2M个子载波中的位置可以是预定义或者基站通过信令配置的。
在一个示例中,图3b到图3e给出了在302部分中将{f n}映射到子载波的4种映射的方式。在图3b到图3e中的示例中,2N=12。
如图3b所示,所述发送设备将{f n}映射到连续的2×N个子载波上。f 0到f 11分别映射到12个连续的子载波s+0,s+1,s+2,s+3,s+4,s+5,s+6,s+7,s+8,s+9,s+10,s+11。具体的说,f 0映射到子载波s+0,f 1映射到子载波s+1,……,f 11映射到子载波s+11。在图3b到图3e中,s表示{f n}映射的2×N个子载波中的第一个子载波在***中的2M个子载波中索引。
可选的,所述发送设备将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个连续的子载波。如图3c所示,2N=12。f 0到f 5映射到连续的6个子载波s+0,s+1,s+2,s+3,s+4,s+5(子载波组1的子载波),f 6到f 11映射到另外一块连续的6个子载波s+12,s+13,s+14,s+15,s+16,s+17(子载波组2的子载波)。且子载波组1和子载波组2至少间隔一个子载波。例如,在图3c中,f 5映射到索引为s+5的子载波,则f 6不能映射索引为s+6的子载波。也就是说,子载波组1和子载波组2不能相邻,两者之间至少有一个不属于子载波组1和子载波组2的子载波。可选的,载波组1和载波组2中各有N个子载波的情况下,载波组1和载波组2的至少间隔N-1个子载波,则 可以得到更低的PAPR/CM,N为大于1的整数。同时得到更好的频率分集效果。
可选的,所述发送设备将{f n}映射到非连续且等间隔的2×N个子载波上。可选的,间隔为1。如图3d所示。这2N个子载波在频域上是等间隔分布的。例如,在图3c中,f n映射的子载波和f n+1映射的子载波的间隔为1个子载波。f 0到f 11分别映射到12个等间隔的子载波s+0,s+2,s+4,s+6,s+8,s+10,s+12,s+14,s+16,s+18,s+20,s+22。
可选的,所述发送设备将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且子载波组1和子载波组2至少间隔一个子载波。可选的,一个子载波组(组1或组2)内的相邻子载波的间隔为1。如图3e所示,f 0到f 5映射到子载波组1中的6个等间隔分布的子载波s+0,s+2,s+4,s+6,s+8,s+10,f 6到f 11映射到子载波组2中的s+18,s+20,s+22,s+24,s+26,s+28。可选的,载波组1和载波组2中各有N个子载波的情况下,载波组1和载波组2的至少间隔N-1个子载波,则可以得到更低的PAPR/CM,N为大于1的整数。同时得到更好的频率分集效果。
两个载波组1和载波组2间隔X个子载波指的是两个载波组之间间隔子载波数目最少的两个子载波的之间的子载波的数目。如图3c中所示,载波组1和载波组2的间隔为6。
图3b和图3d中的连续或等间隔的将{f n}映射到子载波的方式,CM值比较好。图3c和图3e中将{f n}映射到两个子载波组的方式,CM值比图3b和图3d中的方式高,但频率分集效果好些。
可选的,当2N=12时,且{f n}映射到两个子载波组时(图3c和图3e),{f n}为中的{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为集合P12中的序列之一或集合P12中的序列的等价序列之一。
集合P12为如下序列的集合:
{3,3,-3,-1,3,-1,3,-1,-3,3,3,3}
{1,-1,1,-3,-3,-1,1,3,1,1,-3,3};
{-3,-1,1,1,1,-1,-3,3,1,-3,1,3};
{-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1};
{3,1,3,1,-1,-3,3,-3,-3,-1,3,-3};
{3,1,-1,-3,-1,-3,3,-3,1,3,3,-3};
{1,3,-1,1,1,3,1,-1,-3,3,-3,3};
{-1,1,1,3,-1,1,-1,-3,-1,-3,3,1};
{1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1};
{-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1};
{3,1,3,3,-1,1,-1,-3,-3,1,-1,1};
{3,3,-3,-1,3,-1,1,1,1,-1,-3,1}。
根据上述方式得到的{f n}映射到两个子载波组,CM/PAPR的值非常好。
由于该发送端在频域的带宽包含了2M个子载波,因此需要将除了2N点以外的(2M-2N)点的频域子载波填充0或填充其他数据来生成2M点的信号。
在303部分,该发送设备将生成的2M点信号(2M点的频域信号)通过IFFT转换为时域信号,并为该时域信号添加循环前缀,生成发送信号。在303部分,该发送设备将生成的2M点频域信号通过IFFT后得到的时域信号是一个OFDM符号。在304部分,该发送设 备将发送信号通过射频发出去。也就是该终端设备在所述2×N个子载波上发送承载所述序列{f n}的信号。
在一个示例中,该发送设备在一个OFDM符号上发送承载{f n}的信号。该发送设备也可以在多个OFDM符号上发送承载{f n}的信号。
在一个示例中,该发送设备是终端设备。该发送信号在PUCCH上发送。
在一个示例中,图4给出了为本申请实施例提供的一种数据处理方法的接收端流程示意图。
在401部分中,该接收设备获取时域信号并去循环前缀。
在402部分中,该接收设备对去循环前缀的信号进行2×M点的FFT,获取2×M点的频域信号。
在403部分中,该接收设备接收2×N个子载波上的信号,该信号是包括2×N元素的序列{w n},0≤n≤2×N-1。例如,该接收设备按照预定义或者基站配置的2×N个子载波在2×M个子载波中位置接收所述2×N个子载波上的信号。
在404部分中,该接收设备对获取所述2×N个子载波上的信号进行处理。
在一个示例中,该接收设备获取序列获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1。所述接收设备根据所述序列{x n}的2×N个元素对所述2×N个子载波上的信号进行处理。
{f’ n}为:
当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
A 3,A 4是非零复数,α’为实数,
Figure PCTCN2018079878-appb-000013
exp(j×h)表示e j×h,h为任意的实数;
其中,A 3取值可以为A 1的取值范围中的一个,A 3也可以等于1。A 4取值可以为A 2的取值范围中的一个,A 4也可以等于1。α’可以等于α’也可以等于0。
对404部分,有如图4a,图4b,图4c所示的可选设计。
如图4a中405部分所示,当发送端的{f n}的奇数元素是参考信号时。该接收端设备按照A 3等于1得到{f’ n}。该接收设备对{f’ n}的奇数元素与{w n}的奇数元素进行联合处理,并获取接收序列对应的信道状态。例如利用接收序列奇数元素对x n的奇数元素对进行相关后获取信道状态。此时,发送侧的{f n}的偶数元素承载了数据信息。数据信息可以是业务数据信息,也可以是控制信息。
在图4a中406部分中,该接收设备对{f’ n}的偶数元素与得到的信道状态进行联合处理,并获取数据信息。例如利用信道状态对接收序列偶数元素进行频域均衡后得到发送设备传输的数据。
图4a中以对{f n}的奇数元素为例进行信道估计。当{f n}的偶数元素是参考信号时,信道估计和后续的处理和图4a类似,不再赘述。
可选的,在图4b中,给出了该接收设备对获取的所述2×N个子载波上的信号进行处理的另一个示例。在407部分中,该接收设备A 1所有可能的取值以及A 2所有可能的取值,遍历{f’ n}所有可能的序列。将{w n}与{f n}所有可能的序列分别相关处理并进行最大似然比较,获取发送设备传输的数据。
例如,A 1对应的取值范围为{-1,+1},A 2对应的取值为{-1,+1}。,(A 1,A 2)的取值组合为{(-1,-1),(-1,1),(1,-1),(1,1)}。根据图3a,当(A 3,A 4)为(-1,-1)时,得到的{f’ n}是序列{f’ 1,n},当(A 3,A 4)为(-1,1)时,得到的{f n}是序列{f’ 2,n},当(A 3,A 4)为(1,-1)时,得到的{f’ n}是序列{f’ 3,n},当(A 3,A 4)为(1,1)时,得到的{f’ n}是序列{f’ 4,n}。将{w n}与{f’ 1,n},{f’ 2,n},{f’ 3,n},{f’ 4,n}分别相关,得到4个相关值。在最大相关值对应的(A 3,A 4)的取值即为接收设备获取的数据。例如,最大相关值是{w n}与{f’ 1,n}相关得到的,则(A 1,A 2)是(-1,-1)。
可选的,在图4c中给出了该接收设备对获取的所述2×N个子载波上的信号进行处理的另一个示例。A 1,A 2是数据信息比特或者控制信息比特经过调制后得到的调制符号。在408部分中,该接收设备利用已经获得的信道估计值,对{f’ n}的全部元素与{w n}的全部元素进行相关处理,获取上述数据信息比特或者控制信息比特。或者该接收设备利用已经获得的信道估计值,对{f’ n}的奇数/偶数标号的元素与{w n}的奇数/偶数标号的元素分别进行联合处理,直接获取发送设备传输的数据。例如利用{f’ n}进行相关检测得到发送设备传输的数据。上述信道估计值可以根据其他的OFDM符号中的参考信号获得。
表2给出了本申请的序列和LTE序列CM值的比较结果(序列包括的元素是12个),如表2所示,本申请的序列的CM值的最大值远小于LTE序列的CM值,且LTE序列的CM值77%大于2dB,本申请的序列的CM值优于LTE序列。
表2 本申请的序列和LTE序列CM值的比较
CM值 本申请集合P25中的序列 LTE序列
最大值 1.1dB 3.78dB
最小值 0.83dB 0.92dB
其中CM的计算公式为:
Figure PCTCN2018079878-appb-000014
Figure PCTCN2018079878-appb-000015
其中K=1.54,ref dB=1.52.x'x表示列向量x的共轭转置乘序列x,N为序列长度。v(t)是用于计算CM的信号,对t不同时刻的采样,得到表示采样点的列向量x。
因此,本申请实施例的用于无线通信的数据处理方法,可以降低OFDM***的发射信号的CM/PAPR值,从而提升整个传输***的链路质量。
如图5所示,本发明实施例提供了一种通信装置。该通信装置能够应用于图1所示的通信***中,实现上述图2,图3a,图3b,图3c,图3d,图3e,图4,图4a,图4b或图4c对应实施例中的方法。该通信装置可以是图1中的网络设备20,也可以是图1中的终端设备10。该通信装置可以是发送设备,也可以是接收设备。
当该通信装置是发送设备时,该通信装置包括:
处理单元501,用于确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素, N为正整数且为偶数,n为整数,且0≤n≤2×N-1;
所述处理单元501,还用于将所述序列{f n}映射到2×N个子载波上;
其中,所述序列{f n}为:
当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
A 1,A 2是非零复数,α为实数,
Figure PCTCN2018079878-appb-000016
exp(j×h)表示e j×h,h为任意的实数。
{x n}是由x n组成的序列,满足上述实施例中的条件1和条件2的至少一个:
所述通信装置还包括,发送单元502,用于在所述2×N个子载波上发送承载所述序列{f n}的信号。
在一个示例中,所述处理单元501还用于,将{f n}映射到连续的2×N个子载波上。可选的,所述处理单元501还用于将{f n}映射到等子载波间隔的2×N个子载波上。可选的,所述处理单元501,还用于将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个连续的子载波,且子载波组1和子载波组2至少间隔一个子载波。可选的,所述处理单元501,还用于将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个等子载波间隔的子载波,且子载波组1和子载波组2至少间隔一个子载波。
在一个示例中,所述通信装置还包括包括存储单元504,所述存储器用于与所述处理器501耦合,保存所述通信装置必要的程序指令和数据。
或者,当该通信装置是发送设备时,该通信装置包括:
处理单元501,用于确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1,N=6;
所述处理单元501,还用于将所述序列{f n}映射到2×N个子载波上;
其中,所述序列{f n}为:
当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
A 1,A 2是非零复数,α为实数,
Figure PCTCN2018079878-appb-000017
exp(j×h)表示e j×h,h为任意的实数;
{x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
x n=u·exp(π·j·s n/4),u是非零复数,
{s n}是由s n组成的序列,
序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为上述实施例中的集合P25中序列之一或所述集合P25中序列之一的等价序列之一。
所述通信装置还包括,发送单元502,用于在所述2×N个子载波上发送承载所述序列{f n}的信号。
在一个示例中,所述处理单元501还用于,将{f n}映射到连续的2×N个子载波上。
可选的,所述处理单元501还用于将{f n}映射到将{f n}映射到非连续且等间隔的2×N个子载波上。
可选的,所述处理单元501还用于将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个连续的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
可选的,所述处理单元501还用于将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
可选的,子载波组1和子载波组2至少间隔N-1一个子载波。
在一个示例中,所述通信装置还包括包括存储单元504,所述存储器用于与所述处理器501耦合,保存所述通信装置必要的程序指令和数据。
当该通信装置是接收设备时,该通信装置包括:
接收单元503,用于接收2×N个子载波上的信号。
所述处理单元501,用于获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据序列{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
其中,{f’ n}为:
当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
A 3,A 4是非零复数,α’为实数,
Figure PCTCN2018079878-appb-000018
exp(j×h)表示e j×h,h为任意的实数。
{x n}是由x n组成的序列,满足上述实施例中的条件1和条件2的至少一个:
在一个示例中,所述接收单元503,还用于在连续的2×N个子载波上接收所述2×N个子载波上的信号。或者,所述接收单元503,还用于在非连续且等间隔的2×N个子载波上接收所述2×N个子载波上的信号。或者,所述接收单元503,还用于子载波组1和子载波组2上获取所述信号,所述子载波组1和所述子载波组2各包括N个连续的子载波,且子载波组1和子载波组2至少间隔一个子载波。或者,所述接收单元503,还用于在子载波组1和子载波组2上获取所述信号,所述子载波组1和所述子载波组2各包括N个等子载波间隔的子载波,且子载波组1和子载波组2至少间隔一个子载波。
在一个示例中,所述通信装置还包括包括存储单元504,所述存储器用于与所述处理器501耦合,保存所述通信装置必要的程序指令和数据。
或者,当该通信装置是接收设备时,该通信装置包括:
处理单元501,用于获取2×N个子载波上的信号。
所述处理单元501,用于获取序列{f’ n}的2×N个元素,f’ n为{f’ n}中的 元素,其中,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据序列{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
其中,{f’ n}为:
当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
A 3,A 4是非零复数,α’为实数,
Figure PCTCN2018079878-appb-000019
exp(j×h)表示e j×h,h为任意的实数。
{x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
x n=u·exp(π·j·s n/4),
{s n}是由s n组成的序列,
序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为上述实施例中的集合P25中序列之一或所述集合P25中序列之一的等价序列之一。
所述通信装置还包括接收单元503,用于接收信号。所述处理单元501,还用于根据所述接收的信号,获取所述2×N个子载波上的信号。
在一个示例中,所述接收单元503,还用于在连续的2×N个子载波上接收所述信号。或者,所述接收单元503,还用于在等子载波间隔的2×N个子载波上接收所述信号。
或者,所述接收单元503,还用于子载波组1和子载波组2上接收所述信号,所述子载波组1和所述子载波组2各包括N个连续的子载波,且子载波组1和子载波组2至少间隔一个子载波。可选的,子载波组1和子载波组2至少间隔N-1个子载波。
或者,所述接收单元503,还用于在子载波组1和子载波组2上接收所述信号,所述子载波组1和所述子载波组2各包括N个等子载波间隔的子载波,且子载波组1和子载波组2至少间隔一个子载波。可选的,子载波组1和子载波组2至少间隔N-1个子载波。
在一个示例中,所述通信装置还包括包括存储单元504,所述存储器用于与所述处理器501耦合,保存所述通信装置必要的程序指令和数据。
关于序列{x n},{f n},A 1,A 2等的其他特征,可以参见上述实施例的描述,不再赘述。
因此,本申请实施例的用于无线通信的通信装置,降低OFDM***的发射信号的CM值,从而提升整个传输***的链路质量。
图6示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。
所述通信装置包括处理器601和存储器604,所述存储单元604存储指令,所述指令用于使所述处理器601执行上述实施例涉及的方法。
所述通信装置还包括发送器602和接收器603。该通信装置发送信号时,要发送的信号经过602输出经由天线发射。该通信装置接收信号时,接收器603从天线接收 信号。
该通信装置能够应用于图1所示的通信***中,实现图2,图3a,图3b,图3c,图3d,图4,图4a,图4b或图4c对应实施例中的方法。该通信设备可以是图1中的网络设备20,也可以是图1中的终端设备10。该通信装置可以是发送设备,也可以是接收设备。
图5中的处理单元501的功能可以由图6中的处理器601来实现。图5中的处理单元501也可以是图6中的处理器601。图5中的发送单元502的功能可以由图6中的发送器602来实现。图5中的发送单元502也可以是图6中的发送器602。图5中的接收单元503的功能可以由图6中的接收器603来实现。图5中的接收单元603也可以是图6中的接收器603。图5中的存储单元504的功能可以由图6中的存储器604来实现。图5中的存储单元504也可以是图6中的存储器604。
可以理解的是,图6仅仅示出了所述通信装置的简化设计。在实际应用中,所述通信装置可以包含任意数量的发送器,接收器,处理器,存储器等,而所有可以实现本申请的数据接收设备都在本申请的保护范围之内。
本申请实施例还提供一种芯片,可以执行图2中的301,302,303部分,或者图4中的401,402,403,404部分以及图3a,图3b,图3c,图3d,图4a,图4b,图4c中的设计。该芯片可以包括图中相应的功能单元,执行相应的功能。
用于执行本申请上述通信装置的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多于一个微处理器组合,DSP和微处理器的组合等等。在图6中的处理器601和存储器604也可以合成一个单元,作为处理器,实现图6中处理器601和存储器604的功能。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于数据接收设备和/或数据发送设备中。当然,处理器和存储介质也可以作为分立组件存在于数据接收设备和/或数据发送设备中。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小 并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (15)

  1. 一种无线通信中的信号发送方法,其特征在于,包括:
    确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1;
    将所述序列{f n}映射到2×N个子载波上;
    在所述2×N个子载波上发送承载所述序列{f n}的信号;
    其中,所述序列{f n}为:
    当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
    当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
    A 1,A 2是非零复数,α为实数,
    Figure PCTCN2018079878-appb-100001
    exp(j×h)表示e j×h,h为任意的实数;
    {x n}是由x n组成的序列,满足下述条件中的至少一个:
    条件1:当n为大于等于0,且小于等于N-1的偶数时,
    x n+N=a×j×x n
    当n为大于等于0,且小于等于N-1的奇数时,
    x n+N=-a×j×x n
    其中,a=1或-1,
    Figure PCTCN2018079878-appb-100002
    N为正整数,且为偶数;
    条件2:所述N=6,
    x 2n+6=a n·x 2n
    x 2n+1+6=b n·x 2n+1
    其中,
    Figure PCTCN2018079878-appb-100003
    且c为一个非零复数,0≤n≤2,{y 0 y 1 y 2 y 3 y 4 y 5}为如下序列之一:
    {2 0 6 2 4 6},
    {6 0 2 6 4 2},
    {0 6 4 4 2 0},
    {2 6 6 4 4 0},
    {6 2 2 4 4 0},
    {6 6 2 4 0 0},
    {2 2 6 4 0 0},
    {4 2 0 4 6 0},
    {0 2 4 0 6 4},
    {2 0 6 6 4 2},
    {4 0 0 6 6 2},
    {0 4 4 6 6 2},
    {0 0 4 6 2 2},
    {4 4 0 6 2 2},
    {6 4 2 6 0 2},
    {2 4 6 2 0 6},
    {4 2 0 0 6 4},
    {6 2 2 0 0 4},
    {2 6 6 0 0 4},
    {2 2 6 0 4 4},
    {6 6 2 0 4 4},
    {0 6 4 0 2 4},
    {4 6 0 4 2 0},
    {6 4 2 2 0 6},
    {0 4 4 2 2 6},
    {4 0 0 2 2 6},
    {4 4 0 2 6 6},
    {0 0 4 2 6 6}。
  2. 根据权利要求1所述的方法,其特征在于,
    N=6,{x n}中的元素x n,0≤n≤11,满足
    x n=g·exp(π·j·s n/4),g为非零复数;其中,{s n}是由s n组成的序列,
    当{x n}满足条件1时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,3,1,-3,-1,3,1,-3,-1,-1,-3},
    {-3,1,3,1,-3,-3,-1,-1,-3,-1,-1,3},
    {-1,3,-1,1,3,3,1,1,1,-1,-3,1},
    {1,-1,-3,1,-3,-1,3,-3,-1,-1,-1,-3},
    {3,1,-3,-3,3,-3,-3,-1,-1,3,-3,3};
    和/或,
    当所述序列{x n}满足所述条件2时,{s n}满足
    当{Z i}为{2 0 6 2 4 6}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,-3,1,-3,3,3,-3,-3,-3,3,1},
    {1,-3,1,-1,-3,-3,3,-1,1,3,3,3},
    {3,-3,-3,1,3,1,-1,1,-1,-1,3,1},
    {3,1,1,1,3,-3,-1,-3,3,-1,3,-3},
    {3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
    {3,1,1,1,3,-3,-1,-3,3,-1,3,-3};
    或,
    当{Z i}为{6 0 2 6 4 2}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序 列之一或如下序列的等价序列之一:
    {1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
    {-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
    {-1,1,3,3,3,1,-1,1,-3,1,-1,-3},
    {1,3,1,1,-3,3,1,3,3,-1,1,-1};
    或,
    当{Z i}为{0 6 4 4 2 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,-1,1,1,3,1,-1,-3,3,-3,3},
    {-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
    {-1,3,3,-1,3,-1,1,1,3,3,1,1},
    {-3,3,-3,3,1,-1,-1,1,-3,-1,-1,1};
    或,
    当{Z i}为{2 6 6 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {3,-3,-3,-3,1,3,-3,1,3,1,-1,3},
    {-3,-3,-1,-3,3,3,1,3,-1,3,3,-3},
    或,
    当{Z i}为{6 2 2 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-3,1,3,1,-1,3,3,-3,-3,-3,1,3},
    {3,1,-3,-3,-3,3,3,-1,1,3,1,-3},
    或,
    当{Z i}为{6 6 2 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-3,-3,3,-3,-1,-1,3,1,1,-3,1,-1},
    {-3,3,3,3,-1,-3,-3,1,3,-3,3,-1};
    或,
    当{Z i}为{2 2 6 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-1,3,1,3,-3,1,1,-1,3,3,3,1},
    {-3,3,3,-1,3,1,1,1,-1,1,3,3};
    其中,{s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
    序列{u i}为如下序列中之一:
    {0,0,4,4,0,0,4,4,0,0,4,4},
    {0,2,0,2,0,2,0,2,0,2,0,2},
    {0,2,4,6,0,2,4,6,0,2,4,6},
    {0,4,0,4,0,4,0,4,0,4,0,4},
    {0,4,4,0,0,4,4,0,0,4,4,0},
    {0,6,0,6,0,6,0,6,0,6,0,6},
    {0,6,4,2,0,6,4,2,0,6,4,2},
    {2,0,2,0,2,0,2,0,2,0,2,0},
    {2,0,6,4,2,0,6,4,2,0,6,4},
    {2,2,2,2,2,2,2,2,2,2,2,2},
    {2,2,6,6,2,2,6,6,2,2,6,6},
    {2,4,2,4,2,4,2,4,2,4,2,4},
    {2,4,6,0,2,4,6,0,2,4,6,0},
    {2,6,2,6,2,6,2,6,2,6,2,6},
    {2,6,6,2,2,6,6,2,2,6,6,2},
    {4,0,0,4,4,0,0,4,4,0,0,4},
    {4,0,4,0,4,0,4,0,4,0,4,0},
    {4,2,0,6,4,2,0,6,4,2,0,6},
    {4,2,4,2,4,2,4,2,4,2,4,2},
    {4,4,0,0,4,4,0,0,4,4,0,0},
    {4,4,4,4,4,4,4,4,4,4,4,4},
    {4,6,0,2,4,6,0,2,4,6,0,2},
    {4,6,4,6,4,6,4,6,4,6,4,6},
    {6,0,2,4,6,0,2,4,6,0,2,4},
    {6,0,6,0,6,0,6,0,6,0,6,0},
    {6,2,2,6,6,2,2,6,6,2,2,6},
    {6,2,6,2,6,2,6,2,6,2,6,2},
    {6,4,2,0,6,4,2,0,6,4,2,0},
    {6,4,6,4,6,4,6,4,6,4,6,4},
    {6,6,2,2,6,6,2,2,6,6,2,2},和
    {6,6,6,6,6,6,6,6,6,6,6,6}。
  3. 一种无线通信中的信号发送方法,其特征在于,包括:
    确定包括2×N个元素的序列{f n},其中,f n为{f n}中的元素,N为正整数且为偶数,n为整数,且0≤n≤2×N-1,N=6;
    将所述序列{f n}映射到2×N个子载波上;
    在所述2×N个子载波上发送承载所述序列{f n}的信号;
    其中,所述序列{f n}为:
    当n为奇数时,f n=A 1·x n·exp(2π·j·α·n),
    当n为偶数时,f n=A 2·x n·exp(2π·j·α·n),
    A 1,A 2是非零复数,α为实数,
    Figure PCTCN2018079878-appb-100004
    exp(j×h)表示e j×h,h为任意的实数;
    {x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
    x n=u·exp(π·j·s n/4),u是非零复数,
    {s n}是由s n组成的序列,
    序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {3,3,-3,-1,3,-1,3,-1,-3,3,3,3},
    {1,-1,1,-3,-3,-1,1,3,1,1,-3,3},
    {-3,-1,1,1,1,-1,-3,3,1,-3,1,3},
    {-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1},
    {3,1,3,1,-1,-3,3,-3,-3,-1,3,-3},
    {3,1,-1,-3,-1,-3,3,-3,1,3,3,-3},
    {1,3,-1,1,1,3,1,-1,-3,3,-3,3},
    {-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
    {1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
    {-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
    {3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
    {3,3,-3,-1,3,-1,1,1,1,-1,-3,1},
    {-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1},
    {-3,1,3,3,1,3,-1,-3,1,1,-1,3},
    {-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1},
    {1,3,1,-1-3,-1,-1,-3,-3,-1,1,-1},
    {1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1},
    {-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3},
    {3,-1,-3,-3,1,-1,3,-3,3,3,-3,1},
    {-1,1,-1,-3,1,3,-1,-3,-1,1,3,1},
    {3,-3,1,3,1,1,1,-3,3,1,-3,3},
    {3,3,-1,-1-1,1,1,-1,-1,3,-1,3},
    {1,3,1,3,-1,-1,1,-3,1,-1,-3,3},
    {1,-3,3,3,3,1,-3,-1,1,1,3,-1},和
    {-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
    {s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
    其中,序列{u i}为如下序列中之一:
    {0,0,4,4,0,0,4,4,0,0,4,4},
    {0,2,0,2,0,2,0,2,0,2,0,2},
    {0,2,4,6,0,2,4,6,0,2,4,6},
    {0,4,0,4,0,4,0,4,0,4,0,4},
    {0,4,4,0,0,4,4,0,0,4,4,0},
    {0,6,0,6,0,6,0,6,0,6,0,6},
    {0,6,4,2,0,6,4,2,0,6,4,2},
    {2,0,2,0,2,0,2,0,2,0,2,0},
    {2,0,6,4,2,0,6,4,2,0,6,4},
    {2,2,2,2,2,2,2,2,2,2,2,2},
    {2,2,6,6,2,2,6,6,2,2,6,6},
    {2,4,2,4,2,4,2,4,2,4,2,4},
    {2,4,6,0,2,4,6,0,2,4,6,0},
    {2,6,2,6,2,6,2,6,2,6,2,6},
    {2,6,6,2,2,6,6,2,2,6,6,2},
    {4,0,0,4,4,0,0,4,4,0,0,4},
    {4,0,4,0,4,0,4,0,4,0,4,0},
    {4,2,0,6,4,2,0,6,4,2,0,6},
    {4,2,4,2,4,2,4,2,4,2,4,2},
    {4,4,0,0,4,4,0,0,4,4,0,0},
    {4,4,4,4,4,4,4,4,4,4,4,4},
    {4,6,0,2,4,6,0,2,4,6,0,2},
    {4,6,4,6,4,6,4,6,4,6,4,6},
    {6,0,2,4,6,0,2,4,6,0,2,4},
    {6,0,6,0,6,0,6,0,6,0,6,0},
    {6,2,2,6,6,2,2,6,6,2,2,6},
    {6,2,6,2,6,2,6,2,6,2,6,2},
    {6,4,2,0,6,4,2,0,6,4,2,0},
    {6,4,6,4,6,4,6,4,6,4,6,4},
    {6,6,2,2,6,6,2,2,6,6,2,2},和
    {6,6,6,6,6,6,6,6,6,6,6,6}。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述将所述序列{f n}映射到2×N个子载波上,包括:
    将{f n}映射到连续的2×N个子载波上;或者,
    将{f n}映射到非连续且等间隔的2×N个子载波上;或者,
    将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个连续的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波;或者,
    将{f n}映射到子载波组1和子载波组2上,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
  5. 根据权利要求4所述的方法,其特征在于:
    所述子载波组1和所述子载波组2至少间隔一个子载波,包括:
    所述子载波组1和所述子载波组2至少间隔N-1个子载波。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,A 1,A 2的取值范围为{1, -1,j,-j}。
  7. 根据权利要求1-5任意一项所述的方法,其特征在于:
    A 1,A 2是调制符号;或者,
    A 1是调制符号,A 2是常数;或者
    A 2是调制符号,A 1是常数。
  8. 一种无线通信中的信号接收方法,其特征在于:
    接收2×N个子载波上的信号;
    获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
    其中,{f’ n}为:
    当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
    当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
    A 3,A 4是非零复数,α’为实数,
    Figure PCTCN2018079878-appb-100005
    exp(j×h)表示e j×h,h为任意的实数;
    {x n}是由x n组成的序列,满足下述条件中的至少一个:
    条件1:当n为大于等于0,且小于等于N-1的偶数时,
    x n+N=a×j×x n
    当n为大于等于0,且小于等于N-1的奇数时,
    x n+N=-a×j×x n
    其中,a=1或-1,
    Figure PCTCN2018079878-appb-100006
    N为正整数,且为偶数;
    条件2:所述N=6,
    x 2n+6=a n·x 2n
    x 2n+1+6=b n·x 2n+1
    其中,
    Figure PCTCN2018079878-appb-100007
    且c为一个非零复数,0≤n≤2,{y 0 y 1 y 2 y 3 y 4 y 5}为如下序列之一:
    {2 0 6 2 4 6},
    {6 0 2 6 4 2},
    {0 6 4 4 2 0},
    {2 6 6 4 4 0},
    {6 2 2 4 4 0},
    {6 6 2 4 0 0},
    {2 2 6 4 0 0},
    {4 2 0 4 6 0},
    {0 2 4 0 6 4},
    {2 0 6 6 4 2},
    {4 0 0 6 6 2},
    {0 4 4 6 6 2},
    {0 0 4 6 2 2},
    {4 4 0 6 2 2},
    {6 4 2 6 0 2},
    {2 4 6 2 0 6},
    {4 2 0 0 6 4},
    {6 2 2 0 0 4},
    {2 6 6 0 0 4},
    {2 2 6 0 4 4},
    {6 6 2 0 4 4},
    {0 6 4 0 2 4},
    {4 6 0 4 2 0},
    {6 4 2 2 0 6},
    {0 4 4 2 2 6},
    {4 0 0 2 2 6},
    {4 4 0 2 6 6},和
    {0 0 4 2 6 6}。
  9. 根据权利要求8所述的方法,其特征在于,包括:
    N=6,{x n}中的元素x n,0≤n≤11,满足
    x n=g·exp(π·j·s n/4),g为非零复数;其中,{s n}是由s n组成的序列,
    当{x n}满足条件1时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,3,1,-3,-1,3,1,-3,-1,-1,-3},
    {-3,1,3,1,-3,-3,-1,-1,-3,-1,-1,3},
    {-1,3,-1,1,3,3,1,1,1,-1,-3,1},
    {1,-1,-3,1,-3,-1,3,-3,-1,-1,-1,-3},
    {3,1,-3,-3,3,-3,-3,-1,-1,3,-3,3};
    和/或,
    当所述序列{x n}满足所述条件2时,{s n}满足
    当{Z i}为{2 0 6 2 4 6}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,-3,1,-3,3,3,-3,-3,-3,3,1},
    {1,-3,1,-1,-3,-3,3,-1,1,3,3,3},
    {3,-3,-3,1,3,1,-1,1,-1,-1,3,1},
    {3,1,1,1,3,-3,-1,-3,3,-1,3,-3},
    {3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
    {3,1,1,1,3,-3,-1,-3,3,-1,3,-3};
    或,
    当{Z i}为{6 0 2 6 4 2}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
    {-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
    {-1,1,3,3,3,1,-1,1,-3,1,-1,-3},
    {1,3,1,1,-3,3,1,3,3,-1,1,-1};
    或,
    当{Z i}为{0 6 4 4 2 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {1,3,-1,1,1,3,1,-1,-3,3,-3,3},
    {-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
    {-1,3,3,-1,3,-1,1,1,3,3,1,1},
    {-3,3,-3,3,1,-1,-1,1,-3,-1,-1,1};
    或,
    当{Z i}为{2 6 6 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {3,-3,-3,-3,1,3,-3,1,3,1,-1,3},
    {-3,-3,-1,-3,3,3,1,3,-1,3,3,-3},
    或,
    当{Z i}为{6 2 2 4 4 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-3,1,3,1,-1,3,3,-3,-3,-3,1,3},
    {3,1,-3,-3,-3,3,3,-1,1,3,1,-3},
    或,
    当{Z i}为{6 6 2 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-3,-3,3,-3,-1,-1,3,1,1,-3,1,-1},
    {-3,3,3,3,-1,-3,-3,1,3,-3,3,-1};
    或,
    当{Z i}为{2 2 6 4 0 0}时,{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {-1,3,1,3,-3,1,1,-1,3,3,3,1},
    {-3,3,3,-1,3,1,1,1,-1,1,3,3};
    其中,{s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,序列{u i}为如下序列中之一:
    {0,0,4,4,0,0,4,4,0,0,4,4},
    {0,2,0,2,0,2,0,2,0,2,0,2},
    {0,2,4,6,0,2,4,6,0,2,4,6},
    {0,4,0,4,0,4,0,4,0,4,0,4},
    {0,4,4,0,0,4,4,0,0,4,4,0},
    {0,6,0,6,0,6,0,6,0,6,0,6},
    {0,6,4,2,0,6,4,2,0,6,4,2},
    {2,0,2,0,2,0,2,0,2,0,2,0},
    {2,0,6,4,2,0,6,4,2,0,6,4},
    {2,2,2,2,2,2,2,2,2,2,2,2},
    {2,2,6,6,2,2,6,6,2,2,6,6},
    {2,4,2,4,2,4,2,4,2,4,2,4},
    {2,4,6,0,2,4,6,0,2,4,6,0},
    {2,6,2,6,2,6,2,6,2,6,2,6},
    {2,6,6,2,2,6,6,2,2,6,6,2},
    {4,0,0,4,4,0,0,4,4,0,0,4},
    {4,0,4,0,4,0,4,0,4,0,4,0},
    {4,2,0,6,4,2,0,6,4,2,0,6},
    {4,2,4,2,4,2,4,2,4,2,4,2},
    {4,4,0,0,4,4,0,0,4,4,0,0},
    {4,4,4,4,4,4,4,4,4,4,4,4},
    {4,6,0,2,4,6,0,2,4,6,0,2},
    {4,6,4,6,4,6,4,6,4,6,4,6},
    {6,0,2,4,6,0,2,4,6,0,2,4},
    {6,0,6,0,6,0,6,0,6,0,6,0},
    {6,2,2,6,6,2,2,6,6,2,2,6},
    {6,2,6,2,6,2,6,2,6,2,6,2},
    {6,4,2,0,6,4,2,0,6,4,2,0},
    {6,4,6,4,6,4,6,4,6,4,6,4},
    {6,6,2,2,6,6,2,2,6,6,2,2},和
    {6,6,6,6,6,6,6,6,6,6,6,6}。
  10. 一种无线通信中的信号接收方法,其特征在于:
    接收2×N个子载波上的信号;
    获取序列{f’ n}的2×N个元素,其中,f’ n为{f’ n}中的元素,N为正整数,且为偶数,n为整数,且0≤n≤2×N-1;根据{f’ n}的2×N个元素对所述2×N个子载波上的信号进行处理;
    其中,{f’ n}为:
    当n为奇数时,f’ n=A 3·x n·exp(2π·j·α’·n),
    当n为偶数时,f’ n=A 4·x n·exp(2π·j·α’·n),
    A 3,A 4是非零复数,α’为实数,
    Figure PCTCN2018079878-appb-100008
    exp(j×h)表示e j×h,h为任意的实数;
    {x n}是满足下述条件中的一个序列,{x n}中元素x n满足:
    x n=u·exp(π·j·s n/4),u是非零复数,{s n}是由s n组成的序列,
    所述序列{s n}={s 0,s 1,s 2,s 3,s 4,s 5,s 6,s 7,s 8,s 9,s 10,s 11}为如下序列之一或如下序列的等价序列之一:
    {3,3,-3,-1,3,-1,3,-1,-3,3,3,3},
    {1,-1,1,-3,-3,-1,1,3,1,1,-3,3},
    {-3,-1,1,1,1,-1,-3,3,1,-3,1,3},
    {-3,-1,3,-1,-3,3,-3,3,3,3,-3,-1},
    {3,1,3,1,-1,-3,3,-3,-3,-1,3,-3},
    {3,1,-1,-3,-1,-3,3,-3,1,3,3,-3},
    {1,3,-1,1,1,3,1,-1,-3,3,-3,3},
    {-1,1,1,3,-1,1,-1,-3,-1,-3,3,1},
    {1,-3,-3,-1,-3,-3,-1,3,-3,3,-1,-1},
    {-1,-3,-1,3,3,-3,-3,3,-1,-1,-3,-1},
    {3,1,3,3,-1,1,-1,-3,-3,1,-1,1},
    {3,3,-3,-1,3,-1,1,1,1,-1,-3,1},
    {-3,3,1,3,-3,3,-3,-1,1,-1,-3,-1},
    {-3,1,3,3,1,3,-1,-3,1,1,-1,3},
    {-1,-3,3,-3,-3,3,-1,1,-1,-3,-1,1},
    {1,3,1,-1-3,-1,-1,-3,-3,-1,1,-1},
    {1,-1,-1,-3,-3,-3,1,-3,-3,-1,-1,1},
    {-1,1,-1,-3,-1,1,1,-1,3,-3,-1,-3},
    {3,-1,-3,-3,1,-1,3,-3,3,3,-3,1},
    {-1,1,-1,-3,1,3,-1,-3,-1,1,3,1},
    {3,-3,1,3,1,1,1,-3,3,1,-3,3},
    {3,3,-1,-1-1,1,1,-1,-1,3,-1,3},
    {1,3,1,3,-1,-1,1,-3,1,-1,-3,3},
    {1,-3,3,3,3,1,-3,-1,1,1,3,-1},和
    {-3,3,-3,-1,1,-3,1,1,1,3,1,-1};
    {s n}的等价序列为{q n},q n=s n+u n(mod8),0≤n≤11,
    其中,序列{u i}为如下序列中之一:
    {0,0,4,4,0,0,4,4,0,0,4,4},
    {0,2,0,2,0,2,0,2,0,2,0,2},
    {0,2,4,6,0,2,4,6,0,2,4,6},
    {0,4,0,4,0,4,0,4,0,4,0,4},
    {0,4,4,0,0,4,4,0,0,4,4,0},
    {0,6,0,6,0,6,0,6,0,6,0,6},
    {0,6,4,2,0,6,4,2,0,6,4,2},
    {2,0,2,0,2,0,2,0,2,0,2,0},
    {2,0,6,4,2,0,6,4,2,0,6,4},
    {2,2,2,2,2,2,2,2,2,2,2,2},
    {2,2,6,6,2,2,6,6,2,2,6,6},
    {2,4,2,4,2,4,2,4,2,4,2,4},
    {2,4,6,0,2,4,6,0,2,4,6,0},
    {2,6,2,6,2,6,2,6,2,6,2,6},
    {2,6,6,2,2,6,6,2,2,6,6,2},
    {4,0,0,4,4,0,0,4,4,0,0,4},
    {4,0,4,0,4,0,4,0,4,0,4,0},
    {4,2,0,6,4,2,0,6,4,2,0,6},
    {4,2,4,2,4,2,4,2,4,2,4,2},
    {4,4,0,0,4,4,0,0,4,4,0,0},
    {4,4,4,4,4,4,4,4,4,4,4,4},
    {4,6,0,2,4,6,0,2,4,6,0,2},
    {4,6,4,6,4,6,4,6,4,6,4,6},
    {6,0,2,4,6,0,2,4,6,0,2,4},
    {6,0,6,0,6,0,6,0,6,0,6,0},
    {6,2,2,6,6,2,2,6,6,2,2,6},
    {6,2,6,2,6,2,6,2,6,2,6,2},
    {6,4,2,0,6,4,2,0,6,4,2,0},
    {6,4,6,4,6,4,6,4,6,4,6,4},
    {6,6,2,2,6,6,2,2,6,6,2,2},和
    {6,6,6,6,6,6,6,6,6,6,6,6}。
  11. 根据权利要求8-10任意一项所述的方法,其特征在于,所述接收2×N个子载波上的信号,包括:
    在连续的2×N个子载波上获取所述2×N个子载波上的信号;或者,
    在非连续且等间隔的2×N个子载波上获取所述2×N个子载波上的信号;或者,
    在子载波组1和子载波组2上获取所述2×N个子载波上的信号,所述子载波组1和所述子载波组2各包括N个连续的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波;或者,
    在子载波组1和子载波组2上获取所述2×N个子载波上的信号,所述子载波组1和所述子载波组2各包括N个非连续且等间隔的子载波,且所述子载波组1和所述子载波组2至少间隔一个子载波。
  12. 根据权利要求11所述的方法,其特征在于:
    所述子载波组1和所述子载波组2至少间隔一个子载波,包括:
    所述子载波组1和所述子载波组2至少间隔N-1个子载波。
  13. 根据权利要求8-12任意一项所述的方法,其特征在于,A 3,A 4的取值范围为{1,-1,j,-j}。
  14. 一种通信装置,其特征在于,包括:
    处理器和存储器,所述存储单元存储指令,所述指令用于使所述处理器执行如权利要求1-13任一项所述的方法。
  15. 如权利要求14所述的通信装置,其特征在于,包括:收发机,所述收发机用于在所述2×N个子载波上发送承载所述序列{f n}的信号,或者所述收发机用于接收信号;
    所述处理器还用于根据所述接收信号获取所述2×N个子载波上的信号。
PCT/CN2018/079878 2017-03-24 2018-03-21 一种无线通信中的信号发送方法、接收方法、装置和*** WO2018171636A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18770660.1A EP3573275B1 (en) 2017-03-24 2018-03-21 Signal sending and receiving method, apparatus and system in wireless communications
US16/563,368 US10972236B2 (en) 2017-03-24 2019-09-06 Signal transmission method, signal reception method, apparatus, and system in wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710199625.9A CN108632002B (zh) 2017-03-24 2017-03-24 一种无线通信中的信号发送方法、接收方法、装置和***
CN201710199625.9 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/563,368 Continuation US10972236B2 (en) 2017-03-24 2019-09-06 Signal transmission method, signal reception method, apparatus, and system in wireless communication

Publications (1)

Publication Number Publication Date
WO2018171636A1 true WO2018171636A1 (zh) 2018-09-27

Family

ID=63584170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079878 WO2018171636A1 (zh) 2017-03-24 2018-03-21 一种无线通信中的信号发送方法、接收方法、装置和***

Country Status (4)

Country Link
US (1) US10972236B2 (zh)
EP (1) EP3573275B1 (zh)
CN (1) CN108632002B (zh)
WO (1) WO2018171636A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039979B (zh) 2017-08-11 2019-09-20 华为技术有限公司 基于序列的信号处理方法、通信设备及通信***
CN112929965B (zh) * 2018-06-26 2022-12-20 Oppo广东移动通信有限公司 一种上行信号的传输方法及终端设备、网络设备
CN111464478B (zh) 2019-01-21 2023-04-07 华为技术有限公司 一种信号发送、接收方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635980A (zh) * 2009-08-28 2010-01-27 中国科学院上海微***与信息技术研究所 利用cazac序列降低参考信号papr的装置和方法
CN101729212A (zh) * 2008-10-16 2010-06-09 中兴通讯股份有限公司 一种空频分组码的子载波映射方法
US8194764B2 (en) * 2008-03-24 2012-06-05 Fujitsu Limited Phase tracking circuit and radio receiver using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422627A3 (en) * 2006-07-25 2019-02-13 Electronics and Telecommunications Research Institute Cell search method, forward link frame transmission method, apparatus using the same and forward link frame structure
US7944999B2 (en) * 2008-04-04 2011-05-17 Newport Media, Inc. Robust fine frequency and time estimation in mobile multimedia multicast system receivers
KR101513044B1 (ko) * 2008-08-05 2015-04-17 엘지전자 주식회사 Papr을 줄이기 위한 무선 접속 방식
JP2011114368A (ja) * 2009-11-24 2011-06-09 Fujitsu Ltd 通信装置及び通信方法
KR20130142932A (ko) 2012-06-19 2013-12-30 한국전자통신연구원 무선랜 시스템의 오에프디엠 전송 방법 및 장치
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
CN103490842B (zh) * 2013-09-26 2016-09-28 深圳市大疆创新科技有限公司 数据传输***及方法
CN103763082A (zh) * 2014-01-13 2014-04-30 宁波大学 多媒体广播单频网鲁棒移动信号成帧调制方法
KR102283183B1 (ko) * 2014-07-28 2021-07-30 삼성전자주식회사 이동통신 시스템에서의 시퀀스 동기화 수행을 위한 방법 및 장치
CN105515713B (zh) 2014-09-25 2018-11-30 中兴通讯股份有限公司 一种多用户码分多址接入通信方法与相应发射机、接收机
CN104394116B (zh) * 2014-12-10 2017-11-21 济南大学 降低ofdm***峰值功率的交替优化pts发射***及方法
KR102537783B1 (ko) * 2016-01-22 2023-05-30 삼성전자주식회사 수신 장치 및 그 제어 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194764B2 (en) * 2008-03-24 2012-06-05 Fujitsu Limited Phase tracking circuit and radio receiver using the same
CN101729212A (zh) * 2008-10-16 2010-06-09 中兴通讯股份有限公司 一种空频分组码的子载波映射方法
CN101635980A (zh) * 2009-08-28 2010-01-27 中国科学院上海微***与信息技术研究所 利用cazac序列降低参考信号papr的装置和方法

Also Published As

Publication number Publication date
US10972236B2 (en) 2021-04-06
EP3573275A1 (en) 2019-11-27
CN108632002B (zh) 2021-06-01
EP3573275B1 (en) 2020-12-30
EP3573275A4 (en) 2020-02-26
CN108632002A (zh) 2018-10-09
US20200007284A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
CN108289018B (zh) 一种传输参考信号的方法以及设备
KR100983958B1 (ko) 다중 반송파 시스템에서 데이터 전송 방법 및 전송기
US8718168B2 (en) Method of transmitting uplink DM-RS multiplexed with data in uplink MIMO transmission
WO2017092697A1 (zh) 通信***中处理通信信号的方法和装置
CN115001923B (zh) 基于序列的信号处理方法及装置
WO2018059488A1 (zh) 一种参考信号传输方法和装置
CN109802908B (zh) 基于序列的信号处理方法、信号处理装置及计算机可读存储介质
US11245562B2 (en) Data processing method, apparatus, and system
US10972236B2 (en) Signal transmission method, signal reception method, apparatus, and system in wireless communication
JP7463477B2 (ja) 系列に基づく信号処理方法および装置
US10999108B2 (en) Wireless communication method, apparatus, and system
US11109365B2 (en) Communication method, terminal, and network device for repeating uplink control information to obtain data segment
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
US11252003B2 (en) Sequence-based signal processing method and apparatus
CN111277383A (zh) 参考信号生成的方法及通信设备
CN112751796B (zh) 一种参考信号序列映射、解映射的方法及装置
WO2022253116A1 (zh) 一种多用户通信的方法及相关通信装置
WO2020143458A1 (zh) 传输方法及第一通信设备
WO2020063930A9 (zh) 一种参考信号的发送、接收方法及装置
US20200220758A1 (en) Communication method using waveform robust to frequency dispersion in communication system and apparatus for the same
WO2016015190A1 (zh) 传输信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018770660

Country of ref document: EP

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE