WO2018171613A1 - 两级式开关电源 - Google Patents

两级式开关电源 Download PDF

Info

Publication number
WO2018171613A1
WO2018171613A1 PCT/CN2018/079740 CN2018079740W WO2018171613A1 WO 2018171613 A1 WO2018171613 A1 WO 2018171613A1 CN 2018079740 W CN2018079740 W CN 2018079740W WO 2018171613 A1 WO2018171613 A1 WO 2018171613A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
module
resistor
control
power supply
Prior art date
Application number
PCT/CN2018/079740
Other languages
English (en)
French (fr)
Inventor
毛秋翔
陈志文
唐江新
钟国基
Original Assignee
赤多尼科两合股份有限公司
毛秋翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赤多尼科两合股份有限公司, 毛秋翔 filed Critical 赤多尼科两合股份有限公司
Priority to EP18771684.0A priority Critical patent/EP3584917B1/en
Publication of WO2018171613A1 publication Critical patent/WO2018171613A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present invention relates to the field of switching power supplies, and in particular, to a two-stage switching power supply.
  • the two-stage switching power supply in the prior art includes a first control module, a second control module, a first conversion module, and a second conversion module, and the first control module and the second control module respectively control the first conversion module and the second conversion
  • the module, the first conversion module outputs a voltage to the second conversion module, and when the output of the second conversion module is brought into the load, the output voltage of the first conversion module is rapidly decreased, causing the entire switch to be in an intermittent working state, and increasing the number
  • the output voltage of a conversion module increases the consumption of the switching power supply.
  • increasing the output voltage of the first conversion module leads to an increase in the consumption of the switching power supply. .
  • the present invention is implemented in this way.
  • the first aspect of the present invention provides a two-stage switching power supply, where the two-stage switching power supply includes an input rectification module, a first control module, a first conversion module, a second control module, and a second Conversion module and voltage limiting switch module;
  • the output end of the input rectifier module is connected to the voltage input end of the first control module and the voltage input end of the first conversion module, and the signal output end of the first control module is connected to the control of the first conversion module
  • the voltage output end of the first conversion module is connected to the first voltage input end of the second conversion module, the first voltage input end of the voltage limiting switch module, and the voltage input end of the second control module.
  • a second voltage input end of the voltage limiting switch module is connected to a control end of the second control module, and an output end of the second control module is connected to a second voltage input end and a third voltage input of the second conversion module end;
  • the input rectifier module performs rectification and filtering on the input voltage, and outputs a rectified and filtered voltage signal to the first control module and the first conversion module;
  • the first control module starts according to the rectified and filtered voltage signal, and controls the first conversion module to perform voltage conversion on the rectified and filtered voltage signal to obtain a power supply voltage and a bus voltage;
  • the first conversion module outputs the power supply voltage to the first control module, and outputs the bus voltage to the second conversion module, the voltage limiting switch module, and the second control module;
  • the voltage limiting switch module controls the second control module to output a voltage signal to the second conversion module when the bus voltage reaches a preset voltage, to control the second conversion module to convert the bus voltage to the load Make the output.
  • the invention provides a two-stage switching power supply, by setting a voltage limiting delay starting module, delaying control of starting of the second level control module during the starting process, thereby avoiding switching due to low output voltage of the first conversion module
  • the problem that the power supply is in an intermittent working state achieves efficient and low-loss quick start, and has a simple structure and low overall cost.
  • FIG. 1 is a schematic structural diagram of a two-stage switching power supply according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a voltage limiting switch module in a two-stage switching power supply according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first control module in a two-stage switching power supply according to an embodiment of the present invention
  • FIG. 4 is a circuit diagram of a two-stage switching power supply according to another embodiment of the present invention.
  • the embodiment of the present invention provides a two-stage switching power supply 10.
  • the two-stage switching power supply 10 includes an input rectification module 101, a first control module 102, a first conversion module 103, and a second control module 106. a second conversion module 104 and a voltage limiting switch module 105;
  • the output end of the input rectifier module 101 is connected to the voltage input end of the first control module 102 and the voltage input end of the first conversion module 103.
  • the signal output end of the first control module 102 is connected to the control end of the first conversion module 103, and the first conversion
  • the voltage output end of the module 103 is connected to the first voltage input end of the second conversion module 104, the first voltage input end of the voltage limiting switch module 105, and the voltage input end of the second control module 106, and the second voltage of the voltage limiting switch module 105
  • the input end is connected to the control end of the second control module 106, and the output end of the second control module 106 is connected to the second voltage input end and the third voltage input end of the second conversion module 104;
  • the input rectifier module 101 rectifies and filters the input voltage, and outputs the rectified filtered voltage signal to the first control module 102 and the first conversion module 103;
  • the first control module 102 starts according to the rectified and filtered voltage signal, and controls the first conversion module 103 to perform voltage conversion on the rectified and filtered voltage signal to obtain a power supply voltage and a bus voltage;
  • the first conversion module 103 outputs a power supply voltage to the first control module 102, and outputs a bus voltage to the second conversion module 104, the voltage limiting switch module 105, and the second control module 106;
  • the voltage limiting switch module 105 controls the second control module 106 to output a voltage signal to the second conversion module 104 when the bus voltage reaches the preset voltage, to control the second conversion module 104 to convert the bus voltage to output to the load.
  • the input rectification module 101 is configured to rectify and filter the input alternating current to supply power to the first control module 102 and the first conversion module 103, and the first control module 102 starts to start and controls the first conversion module 103.
  • the output voltage of the first conversion module 103 is on the one hand powering the first control module 102, and on the other hand is supplying power to the second conversion module 104, the voltage limiting switch module 105 and the second control module 106.
  • the voltage limiting switch After receiving the voltage output by the first conversion module 103, the module 105 does not immediately control the operation of the second control module 106 until the voltage output by the first conversion module 103 reaches a preset voltage, and then controls the second control module 106 to start working. The control module 106 then controls the second conversion module 104 to start working. Although the output of the second conversion module 104 is connected to the load, the first control module 102 is not caused to supply too much power due to the high output voltage of the first conversion module 103.
  • the state of intermittent operation occurs, wherein the voltage limiting switch module 105 can be a delay module composed of discrete components, or can be delayed. Pressure chip.
  • the voltage limiting switch module 105 is in a grounded conducting state when the bus voltage does not reach the preset voltage, and the control end of the second control module 106 is connected to the ground;
  • the voltage limiting switch module 105 is disconnected from the ground when the bus voltage reaches a preset voltage, and the second control module 106 charges the voltage limiting switch module 105 through its control terminal to bring the second control module 106 into an active state.
  • the second control module 106 can be a control chip.
  • the working principle of the control chip is to output a voltage to the voltage limiting switch module 105 through the soft start function pin.
  • the control chip works, so that the control chip does not work when the output voltage of the first conversion module 103 is small, and the grounding conduction state is when the bus voltage does not reach the preset voltage, and the soft start function of the control chip is connected to the ground.
  • the voltage value stored on the voltage limiting switch module 105 is 0, the control chip does not work, and is disconnected from the ground when the bus voltage reaches the preset voltage, and the control chip charges the voltage limiting switch module 105 through the soft start function pin to make the first
  • the second control module 106 reaches the working state.
  • the voltage limiting switch module 105 includes a voltage limiting device 1501, a first voltage dividing device 1502, a second voltage dividing device 1503, a switching tube 1504, and an energy storage device 1505.
  • the voltage limiting device 1501 The first end of the voltage limiting device 1501 is connected to the first end of the first voltage dividing device 1502, and the second end of the first voltage dividing device 1502 is connected to the switching tube 1504.
  • the control end and the first end of the second voltage dividing device 1503, the input end of the switch tube 1504 is connected to the control end of the second control module 106 and the first end of the energy storage device 1505, the output end of the switch tube 1504, the second partial pressure
  • the second end of the device 1503 and the second end of the energy storage device 1505 are connected to the ground;
  • the voltage limiting device 1501 is in an off state when the bus voltage does not reach the preset voltage, and the switch tube 1504 is in an on state to connect the control end of the second control module 106 to the ground;
  • the voltage limiting device 1504 is in an on state when the bus voltage reaches a preset voltage, and the switch tube 1504 is in an off state, so that the second control module 106 charges the energy storage device 1505 through its control terminal to make the second control module 106 work. status.
  • the voltage limiting device 1504 can be a voltage stabilizing tube, and the cathode and the anode of the voltage stabilizing tube are the first end and the second end of the voltage limiting device, and the voltage limiting device 1504 can also be a chip with a voltage limiting function, which is not limited herein. .
  • the switch tube 1504 is a PNP type triode, and the collector, the emitter, and the base of the PNP type triode are respectively an output end, an input end, and a control end of the switch tube.
  • the switch tube 1504 is a P-type MOS transistor, and the drain, the source, and the gate of the P-type MOS transistor are respectively an output end, an input end, and a control end of the switch tube.
  • the first conversion module 103 stops working, the voltage limiting device 1501 is in an off state, and the switching transistor 1504 is in an on state to discharge the energy storage device to the ground, and discharges to the ground through the energy storage device.
  • the soft start function of the control chip is quickly reset, so that the soft start function has a soft start function in the next startup process.
  • the first control module 102 includes a power supply module 1201 and a first control chip 1202.
  • the voltage input end of the power supply module 1201 is the voltage of the first control module 102.
  • the voltage output end of the power supply module 1201 is connected to the voltage input end of the first control chip 1202, and the voltage output end of the first control chip 1202 is the voltage output end of the first control module 102;
  • the power supply module 1201 starts the first control chip 1202 according to the rectified and filtered voltage signal
  • the first control chip 1202 controls the first conversion module 103 to perform voltage conversion on the rectified and filtered voltage signal to supply power to the power supply module;
  • the power supply module 1201 outputs a power supply voltage to the first control chip 1202.
  • the first control module 102 is continuously powered according to the voltage output by the first conversion module 103, and the first conversion module 103 and the power supply module can pass through.
  • the energy conversion device is powered.
  • the first conversion module 103 includes a resistor R1, a resistor R2, a resistor R5, a resistor R11, a resistor R69, a capacitor C4, a capacitor C63, a diode D2, a diode D61, a field effect transistor M1, and a transformer;
  • the first end of the resistor R1 is connected to the first end of the capacitor C4 and the different end of the primary winding L1 of the transformer, and constitutes a voltage input end of the first conversion module 103, and the second end of the resistor R1 is connected to the first end of the resistor R2.
  • the second end of the resistor R2 is connected to the second end of the capacitor C4 and the cathode of the diode D2, the anode of the diode D2 is connected to the same name end of the primary winding L1 of the transformer and the drain of the field effect transistor M1, and the gate connection resistance of the field effect transistor M1
  • the first end of the R5, the second end of the resistor R5 is the control end of the first conversion module 103
  • the source of the FET M1 is connected to the first end of the resistor R11
  • the second end of the resistor R11 is grounded, the first time of the transformer
  • the same name end of the stage winding L2 is connected to the anode of the diode D61
  • the cathode of the diode D61 is connected to the first end of the capacitor C63 and the first end of the resistor R69, the different end of the first secondary winding L2 of the transformer, and the second end of the capacitor C63.
  • the second end of the resistor R69 is
  • the power supply module includes a resistor R21, a resistor R22, a resistor R23, a resistor R24, a resistor R25, a capacitor C21, a capacitor C22, a transistor Q21, a Zener diode ZD22, and a diode D22;
  • the first end of the resistor R21 is a voltage input end of the power supply module
  • the second end of the resistor R21 is connected to the first end of the resistor R22
  • the second end of the resistor R22 is connected to the first end of the resistor R23
  • the second end of the resistor R23 is connected to the triode
  • the emitter of Q21 and the first end of capacitor C21 constitute the voltage output end of the power supply module.
  • the base of the transistor Q21 is connected to the first end of the resistor R24 and the cathode of the Zener ZD22, and the second end of the resistor R24 is connected to the transistor Q21.
  • the collector, the first end of the capacitor C22 and the cathode of the diode D22, the anode of the diode D22 is connected to the first end of the resistor R25, the second end of the resistor R25 is connected to the same end of the second secondary winding L3 of the transformer, and the transformer The opposite end of the second secondary winding L3, the second end of the capacitor C22, the anode of the Zener diode ZD22, and the second end of the capacitor C21 are commonly connected.
  • the specific voltage limiting delay module includes a Zener diode ZD71, a resistor R71, a resistor R72, a triode Q71 and a capacitor C70.
  • the cathode of the Zener diode ZD71 is a voltage input terminal of the voltage limiting delay module, and the voltage regulator tube
  • the anode of the ZD71 is connected to the first end of the resistor R71, the second end of the resistor R71 is connected to the first end of the resistor R72 and the base of the transistor Q71, the collector of the transistor Q71 is connected to the first end of the capacitor C70, and the second end of the resistor R72
  • the emitter of the transistor Q71 and the second end of the capacitor C70 are grounded.
  • the second conversion module 104 includes a resistor R65, a diode D62, a power inductor L61, and a capacitor C62.
  • the first end of the resistor R65 is connected to the cathode of the diode D62, and constitutes the first of the second conversion module.
  • the voltage input terminal, the second end of the resistor R65 is connected to the first end of the capacitor C62 and constitutes the first voltage output end of the second conversion module 104, the anode of the diode D62 is connected to the first end of the power inductor L61, and the second end of the power inductor L61 The terminal is connected to the second end of the capacitor C62 and constitutes a second voltage output terminal of the second conversion module 104.
  • the first-level control circuit starts to work, the OUT pin output PWM of the first control chip U10 modulates the first-stage conversion module, and the control switch M1 performs high-frequency switching operation, and the first primary winding of the transformer L20 is induced by L1.
  • the Zener diode ZD71 When the bus voltage Vbus does not rise above the regulation voltage of the Zener diode ZD71, the Zener diode ZD71 is in the off state. At this time, the voltage of the resistor Q71 and the resistor R72 makes the base voltage of the transistor Q71 close to 0V, and the transistor Q71 is positive. Partial conduction, short-circuit the soft-start PWM pin to ground to prevent its voltage from rising, and the second-stage conversion module has no output.
  • the Zener diode ZD71 When the bus voltage Vbus rises above the regulation voltage of the Zener diode ZD71, the Zener diode ZD71 reverses in reverse. At this time, the voltage division of the resistor R71 and the resistor R72 causes the base voltage of the transistor Q71 to rise, when the voltage is greater than the capacitor.
  • the voltage of C70 When the voltage of C70 is subtracted from the EB pole saturation voltage of the transistor (about 0.7V for the triode), the transistor Q71 starts to reverse bias, and the second control chip IC starts to charge the capacitor C70 via the PWM pin (soft start function pin). As the voltage of capacitor C70 rises, the second stage conversion module starts to work and the output voltage/current also rises.
  • the bus voltage Vbus drops after the output of the second-stage conversion module is loaded.
  • the voltage of the VCC winding that is, the second secondary winding L3, is not too low, so that the first control chip IC U10 is intermittently operated, achieving an overall smooth start.
  • the first conversion module 103 stops working quickly, and stops supplying energy to the second conversion module 104, so the bus voltage Vbus also rapidly drops, resulting in a Zener tube.
  • ZD71 is cut off, the transistor Q71 is forward-biased, and the charge stored on the capacitor C70 is quickly discharged through the transistor Q71, realizing a quick reset of the soft-start PWM pin, so that it has a soft-start function in the next startup process.
  • delay control of the startup of the second-level control module is performed during the startup process to achieve high-efficiency and low-loss rapid startup; and at the same time, when the input voltage is powered off, the soft-start of the second-level control circuit is quickly reset.
  • the soft start function is still provided, and the technical solution has the advantages of simple structure and low overall cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种两级式开关电源(10)包括输入整流模块(101)、第一控制模块(102)、第一转换模块(103)、第二控制模块(106)、第二转换模块(104)以及限压开关模块(105)。第一控制模块控制第一转换模块对整流滤波电压信号进行电压变换从而获取供电电压和母线电压;第一转换模块向第一控制模块输出供电电压,并向第二转换模块、限压开关模块以及第二控制模块输出母线电压;限压开关模块在母线电压到达预设电压时控制第二控制模块向第二转换模块输出电压信号,以控制第二转换模块对母线电压进行转换后向负载进行输出,从而避免了由于第一转换模块由于输出的电压低导致开关电源处于间歇式工作状态的问题,并且整体结构简单。

Description

两级式开关电源 技术领域
本发明涉及开关电源技术领域,尤其涉及一种两级式开关电源。
背景技术
现有技术中的两级式开关电源包括第一控制模块、第二控制模块、第一转换模块以及第二转换模块,第一控制模块和第二控制模块分别控制第一转换模块和第二转换模块,第一转换模块输出电压给第二转换模块,当第二转换模块输出带入负载时,会使第一转换模块的输出电压快速下降,导致整个开关处于间歇式工作状态,而增大第一转换模块的输出电压又会增加开关电源的消耗,综上所述,现有技术中存在为了避免开关电源处于间歇式工作状态增大第一转换模块的输出电压导致增加开关电源的消耗的问题。
技术问题
本发明的目的在于提供一种两级式开关电源,能够解决现有技术中存在的为了避免开关电源处于间歇式工作状态增大第一转换模块的输出电压导致增加开关电源的消耗的问题。
技术解决方案
本发明是这样实现的,本发明第一方面提供一种两级式开关电源,所述两级式开关电源包括输入整流模块、第一控制模块、第一转换模块、第二控制模块、第二转换模块以及限压开关模块;
所述输入整流模块的输出端连接所述第一控制模块的电压输入端和所述第一转换模块的电压输入端,所述第一控制模块的信号输出端连接所述第一转换模块的控制端,所述第一转换模块的电压输出端连接所述第二转换模块的第一电压输入端、所述限压开关模块的第一电压输入端以及所述第二控制模块的电压输入端,所述限压开关模块的第二电压输入端连接所述第二控制模块的控制端,所述第二控制模块的输出端连接所述第二转换模块的第二电压输入端和第三电压输入端;
所述输入整流模块将输入电压进行整流滤波后输出整流滤波电压信号给所述第一控制模块和所述第一转换模块;
所述第一控制模块根据所述整流滤波电压信号进行启动,并控制所述第一转换模块对所述整流滤波电压信号进行电压变换获取供电电压和母线电压;
所述第一转换模块向所述第一控制模块输出所述供电电压,并向所述第二转换模块、所述限压开关模块以及所述第二控制模块输出所述母线电压;
所述限压开关模块在所述母线电压到达预设电压时控制所述第二控制模块向所述第二转换模块输出电压信号,以控制所述第二转换模块对母线电压进行转换后向负载进行输出。
有益效果
本发明提供一种两级式开关电源,通过设置限压延时启动模块,在启动过程中对第二级控制模块的启动进行延时控制,避免了由于第一转换模块由于输出的电压低导致开关电源处于间歇式工作状态的问题,实现高效低损耗的快速启动,并且结构简单,整体成本低。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种实施例提供的两级式开关电源的结构示意图;
图2是本发明一种实施例提供的两级式开关电源中的限压开关模块的结构示意图;
图3是本发明一种实施例提供的两级式开关电源中的第一控制模块的结构示意图;
图4是本发明另一种实施例提供的两级式开关电源的电路图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明的技术方案,下面通过具体实施例来进行说明。
本发明实施例提供一种两级式开关电源10,如图1所示,两级式开关电源10包括输入整流模块101、第一控制模块102、第一转换模块103、第二控制模块106、第二转换模块104以及限压开关模块105;
输入整流模块101的输出端连接第一控制模块102的电压输入端和第一转换模块103的电压输入端,第一控制模块102的信号输出端连接第一转换模块103的控制端,第一转换模块103的电压输出端连接第二转换模块104的第一电压输入端、限压开关模块105的第一电压输入端以及第二控制模块106的电压输入端,限压开关模块105的第二电压输入端连接第二控制模块106的控制端,第二控制模块106的输出端连接第二转换模块104的第二电压输入端和第三电压输入端;
输入整流模块101将输入电压进行整流滤波后输出整流滤波电压信号给第一控制模块102和第一转换模块103;
第一控制模块102根据整流滤波电压信号进行启动,并控制第一转换模块103对整流滤波电压信号进行电压变换获取供电电压和母线电压;
第一转换模块103向第一控制模块102输出供电电压,并向第二转换模块104、限压开关模块105以及第二控制模块106输出母线电压;
限压开关模块105在母线电压到达预设电压时控制第二控制模块106向第二转换模块104输出电压信号,以控制第二转换模块104对母线电压进行转换后向负载进行输出。
在本发明实施例中,输入整流模块101用于对输入的交流电进行整流滤波后为第一控制模块102和第一转换模块103进行供电,第一控制模块102开始启动并控制第一转换模块103进行工作,第一转换模块103后输出电压一方面为第一控制模块102供电,另一方面为第二转换模块104、限压开关模块105以及第二控制模块106供电,此时,限压开关模块105在接收第一转换模块103输出的电压后并不马上控制第二控制模块106工作,直至第一转换模块103输出的电压达到预设电压时再控制第二控制模块106开始工作,第二控制模块106再控制第二转换模块104开始工作,虽然第二转换模块104输出端连接负载,由于第一转换模块103的输出电压较高,不会导致为负载供电太多使第一控制模块102出现间歇式工作的状态,其中,限压开关模块105可以为由分立元件组成的延时模块,也可以为延时限压芯片。
进一步的,限压开关模块105在母线电压未达到预设电压时处于接地导通状态,第二控制模块106的控制端与地连接;
限压开关模块105在母线电压达到预设电压时与地断开,第二控制模块106通过其控制端向限压开关模块105进行充电以使第二控制模块106达到工作状态。
具体的,第二控制模块106可以为控制芯片,该控制芯片的工作原理为通过软启动功能脚向限压开关模块105输出电压,当限压开关模块105上存储的电压值达到预设值时使控制芯片工作,为了使控制芯片在第一转换模块103的输出电压较小时不工作,在母线电压未达到预设电压时处于接地导通状态,控制芯片的软启动功能脚与地连接,此时,限压开关模块105上存储的电压值为0,控制芯片不工作,在母线电压达到预设电压时与地断开,控制芯片通过软启动功能脚向限压开关模块105进行充电以使第二控制模块106达到工作状态。
作为一种实施方式,如图2所示,限压开关模块105包括限压器件1501、第一分压器件1502、第二分压器件1503、开关管1504以及储能器件1505,限压器件1501的第一端为限压开关模块105的电压输入端,限压器件1501的第二端连接第一分压器件1502的第一端,第一分压器件1502的第二端连接开关管1504的控制端和第二分压器件1503的第一端,开关管1504的输入端连接第二控制模块106的控制端和储能器件1505的第一端,开关管1504的输出端、第二分压器件1503的第二端以及储能器件1505的第二端共接于地;
限压器件1501在母线电压未达到预设电压时处于截止状态,开关管1504处于导通状态使第二控制模块106的控制端与地连接;
限压器件1504在母线电压达到预设电压时处于导通状态,开关管1504处于截止状态,使第二控制模块106通过其控制端向储能器件1505进行充电以使第二控制模块106达到工作状态。
其中,限压器件1504可以稳压管,稳压管的阴极和阳极为限压器件的第一端和第二端,限压器件1504也可以为具有限压功能的芯片,在此不做限定。
其中,作为一种实施方式,开关管1504为PNP型三极管,PNP型三极管的集电极、发射极以及基极分别为开关管的输出端、输入端以及控制端。
其中,作为另一种实施方式,开关管1504为P型MOS管,P型MOS管的漏极、源极以及栅极分别为开关管的输出端、输入端以及控制端。
进一步的,当输入电压断电时,第一转换模块103停止工作,限压器件1501处于截止状态,开关管1504处于导通状态使储能器件对地放电,通过储能器件的对地放电,实现控制芯片的软启动功能脚快速复位,使软启动功能脚在下一次启动过程具有软启动功能。
对于第一控制模块102,作为一种实施方式,如图3所示,第一控制模块102包括供电模块1201和第一控制芯片1202,供电模块1201的电压输入端为第一控制模块102的电压输入端,供电模块1201的电压输出端连接第一控制芯片1202的电压输入端,第一控制芯片1202的电压输出端为第一控制模块102的电压输出端;
供电模块1201根据整流滤波电压信号启动第一控制芯片1202;
第一控制芯片1202控制第一转换模块103对整流滤波电压信号进行电压变换以向供电模块进行供电;
供电模块1201向第一控制芯片1202输出供电电压。
具体的,当供电模块1201根据输入整流模块101的输出电压进行启动后,根据第一转换模块103输出的电压对第一控制模块102进行持续供电,第一转换模块103与供电模块之间可以通过能量转换器件实现供电。
下面通过具体的电路结构对本发明实施例进行具体说明,如图4所示:
对于第一转换模块103,具体的,第一转换模块103包括电阻R1、电阻R2、电阻R5、电阻R11、电阻R69、电容C4、电容C63、二极管D2、二极管D61、场效应管M1以及变压器;
电阻R1的第一端连接电容C4的第一端和变压器的初级绕组L1的异名端,并构成第一转换模块103的电压输入端,电阻R1的第二端连接电阻R2的第一端,电阻R2的第二端连接电容C4的第二端和二极管D2的阴极,二极管D2的阳极连接变压器的初级绕组L1的同名端和场效应管M1的漏极,场效应管M1的栅极连接电阻R5的第一端,电阻R5的第二端为第一转换模块103的控制端,场效应管M1的源极连接电阻R11的第一端,电阻R11的第二端接地,变压器的第一次级绕组L2的同名端连接二极管D61的阳极,二极管D61的阴极连接电容C63的第一端和电阻R69的第一端,变压器的第一次级绕组L2的异名端、电容C63的第二端以及电阻R69的第二端共接于地。
对于供电模块,具体的,供电模块包括电阻R21、电阻R22、电阻R23、电阻R24、电阻R25、电容C21、电容C22、三极管Q21、稳压管ZD22以及二极管D22;
电阻R21的第一端为供电模块的电压输入端,电阻R21的第二端连接电阻R22的第一端,电阻R22的第二端连接电阻R23的第一端,电阻R23的第二端连接三极管Q21的发射极和电容C21的第一端,并构成供电模块的电压输出端,三极管Q21的基极连接电阻R24的第一端和稳压管ZD22的阴极,电阻R24的第二端连接三极管Q21的集电极、电容C22的第一端以及二极管D22的阴极,二极管D22的阳极连接电阻R25的第一端,电阻R25的第二端连接变压器的第二次级绕组L3的同名端,变压器的第二次级绕组L3的异名端、电容C22的第二端、稳压管ZD22的阳极以及电容C21的第二端共地连接。
对于限压延时模块,具体的,限压延时模块包括稳压管ZD71、电阻R71、电阻R72、三极管Q71以及电容C70,稳压管ZD71的阴极为限压延时模块的电压输入端,稳压管ZD71的阳极连接电阻R71的第一端,电阻R71的第二端连接电阻R72的第一端和三极管Q71的基极,三极管Q71的集电极连接电容C70的第一端,电阻R72的第二端、三极管Q71的发射极以及电容C70的第二端接地。
对于第二转换模块104,具体的,第二转换模块104包括电阻R65、二极管D62、功率电感L61以及电容C62,电阻R65的第一端连接二极管D62的阴极,并构成第二转换模块的第一电压输入端,电阻R65的第二端连接电容C62的第一端并构成第二转换模块104的第一电压输出端,二极管D62的阳极连接功率电感L61的第一端,功率电感L61的第二端连接电容C62的第二端并构成第二转换模块104的第二电压输出端。
输入电压经输入整流模块101进行整流滤波以后,在电容C2上形成压降,该电压经电阻R21、电阻R22电阻及R23对电容C21充电,电容C21的电压上升到第一控制芯片U10的开启电压后,第一级控制电路开始工作,第一控制芯片U10的OUT脚输出PWM型对第一级转换模块进行调制,控制开关管M1进行高频开关动作,变压器L20第一初级绕组获L1得感应电压,第一次级绕组L2输出PWM电压,经二极管D61整流及电容C63滤波获得母线电压Vbus,第二次级绕组L3输出经二极管D22整流及电容C22滤波,获得直流电压供给第一控制芯片。
当母线电压Vbus未上升到超过稳压管ZD71的稳压值时,稳压管ZD71处于截止状态,此时经过电阻R71和电阻R72的分压使三极管Q71的基极电压接近0V,三极管Q71正偏导通,将软启动PWM引脚短路到地,阻止其电压的上升,第二级转换模块无输出。
当母线电压Vbus上升到超过稳压管ZD71的稳压值时,稳压管ZD71反向击穿,此时电阻R71和电阻R72的分压使三极管Q71的基极电压上升,当此电压大于电容C70的电压减去三极管E-B极饱和电压(三极管时约为0.7V)时,三极管Q71开始反偏关断,第二控制芯片IC经PWM脚(软启动功能脚)开始对电容C70充电,随着电容C70电压的升高,第二级转换模块开始工作,并输出电压/电流也随之升高。由于第二级转换模块是在第一级转换模块的输出电压Vbus达到一个较高值时才开始工作,并实现软启动,因此,第二级转换模块输出带上负载后,母线电压Vbus的下降不至于过低而导致VCC绕组即第二次级绕组L3的电压过低,从而导致的第一控制芯片IC U10断续工作,实现了整体的顺利启动。
对应的另一情况下,当输入整流模块101的输入电压断电时,第一转换模块103快速停止工作,停止对第二转换模块104提供能量,因此母线电压Vbus也迅速下降,导致稳压管ZD71截止,三极管Q71正偏导通,存储在电容C70上的电荷经三极管Q71迅速放电,实现软启动PWM脚的快速复位,使其在下一次启动过程具有软启动功能。
本发明实施例在启动过程对第二级控制模块的启动进行延时控制,实现高效低损耗的快速启动;同时,在输入电压断电时,对第二级控制电路的软启动进行快速复位,实现在输入快速开关时,仍然具有软启动功能,本技术方案实现结构简单,整体成本低。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (10)

  1. 一种两级式开关电源,其特征在于,所述两级式开关电源包括输入整流模块、第一控制模块、第一转换模块、第二控制模块、第二转换模块以及限压开关模块;
    所述输入整流模块的输出端连接所述第一控制模块的电压输入端和所述第一转换模块的电压输入端,所述第一控制模块的信号输出端连接所述第一转换模块的控制端,所述第一转换模块的电压输出端连接所述第二转换模块的第一电压输入端、所述限压开关模块的第一电压输入端以及所述第二控制模块的电压输入端,所述限压开关模块的第二电压输入端连接所述第二控制模块的控制端,所述第二控制模块的输出端连接所述第二转换模块的第二电压输入端和第三电压输入端;
    所述输入整流模块将输入电压进行整流滤波后输出整流滤波电压信号给所述第一控制模块和所述第一转换模块;
    所述第一控制模块根据所述整流滤波电压信号进行启动,并控制所述第一转换模块对所述整流滤波电压信号进行电压变换获取供电电压和母线电压;
    所述第一转换模块向所述第一控制模块输出所述供电电压,并向所述第二转换模块、所述限压开关模块以及所述第二控制模块输出所述母线电压;
    所述限压开关模块在所述母线电压到达预设电压时控制所述第二控制模块向所述第二转换模块输出电压信号,以控制所述第二转换模块对母线电压进行转换后向负载进行输出。
  2. 如权利要求1所述的两级式开关电源,其特征在于,所述限压开关模块在所述母线电压未达到预设电压时处于接地导通状态,所述第二控制模块的控制端与地连接;
    所述限压开关模块在所述母线电压达到预设电压时,所述第二控制模块通过其控制端向所述限压开关模块进行充电以使所述第二控制模块达到工作状态。
  3. 如权利要求2所述的两级式开关电源,其特征在于,所述限压开关模块包括限压器件、第一分压器件、第二分压器件、开关管以及储能器件,所述限压器件的第一端为所述限压开关模块的电压输入端,所述限压器件的第二端连接所述第一分压器件的第一端,所述第一分压器件的第二端连接所述开关管的控制端和所述第二分压器件的第一端,所述开关管的输入端连接所述第二控制模块的控制端和所述储能器件的第一端,所述开关管的输出端、所述第二分压器件的第二端以及所述储能器件的第二端共接于地;
    所述限压器件在所述母线电压未达到预设电压时处于截止状态,所述开关管处于导通状态使所述第二控制模块的控制端与地连接;
    所述限压器件在所述母线电压达到预设电压时处于导通状态,所述开关管处于截止状态,使所述第二控制模块通过其控制端向所述储能器件进行充电以使所述第二控制模块达到工作状态。
  4. 如权利要求3所述的两级式开关电源,其特征在于,当所述第一转换模块停止工作时,所述限压器件处于截止状态,所述开关管处于导通状态使所述储能器件对地放电。
  5. 如权利要求3所述的两级式开关电源,其特征在于,所述限压器件为稳压管,所述稳压管的阴极和阳极为所述限压器件的第一端和第二端。
  6. 如权利要求3所述的两级式开关电源,其特征在于,所述开关管为PNP型三极管,所述PNP型三极管的集电极、发射极以及基极分别为所述开关管的输出端、输入端以及控制端。
  7. 如权利要求3所述的两级式开关电源,其特征在于,所述开关管为P型MOS管,所述P型MOS管的漏极、源极以及栅极分别为所述开关管的输出端、输入端以及控制端。
  8. 如权利要求1所述的两级式开关电源,其特征在于,所述第一控制电路包括供电模块和第一控制芯片,所述供电模块的电压输入端为所述第一控制电路的电压输入端,所述供电模块的电压输出端连接所述第一控制芯片的电压输入端,所述第一控制芯片的电压输出端为所述第一控制电路的电压输出端;
    所述供电模块根据所述整流滤波电压信号启动所述第一控制芯片;
    所述第一控制芯片控制所述第一转换模块对所述整流滤波电压信号进行电压变换;
    所述供电模块向所述第一控制芯片输出供电电压。
  9. 如权利要求8所述的两级式开关电源,其特征在于,所述第一转换模块包括电阻R1、电阻R2、电阻R5、电阻R11、电阻R69、电容C4、电容C63、二极管D2、二极管D61、场效应管M1以及变压器;
    所述电阻R1的第一端连接所述电容C4的第一端和所述变压器的初级绕组L1的异名端,并构成所述第一转换模块的电压输入端,所述电阻R1的第二端连接所述电阻R2的第一端,所述电阻R2的第二端连接所述电容C4的第二端和所述二极管D2的阴极,所述二极管D2的阳极连接所述变压器的初级绕组L1的同名端和所述场效应管M1的漏极,所述场效应管M1的栅极连接所述电阻R5的第一端,所述电阻R5的第二端为所述第一转换模块的控制端,所述场效应管M1的源极连接所述电阻R11的第一端,所述电阻R11的第二端接地,所述变压器的第一次级绕组L2的同名端连接所述二极管D61的阳极,所述二极管D61的阴极连接所述电容C63的第一端和所述电阻R69的第一端,所述变压器的第一次级绕组L2的异名端、所述电容C63的第二端以及所述电阻R69的第二端共接于地。
  10. 如权利要求9所述的两级式开关电源,其特征在于,所述供电模块包括电阻R21、电阻R22、电阻R23、电阻R24、电阻R25、电容C21、电容C22、三极管Q21、稳压管ZD22以及二极管D22;
    所述电阻R21的第一端为所述供电模块的电压输入端,所述电阻R21的第二端连接所述电阻R22的第一端,所述电阻R22的第二端连接所述电阻R23的第一端,所述电阻R23的第二端连接所述三极管Q21的发射极和所述电容C21的第一端,并构成所述供电模块的电压输出端,所述三极管Q21的基极连接所述电阻R24的第一端和所述稳压管ZD22的阴极,所述电阻R24的第二端连接所述三极管Q21的集电极、所述电容C22的第一端以及所述二极管D22的阴极,所述二极管D22的阳极连接所述电阻R25的第一端,所述电阻R25的第二端连接所述变压器的第二次级绕组L3的同名端,所述变压器的第二次级绕组L3的异名端、所述电容C22的第二端、所述稳压管ZD22的阳极以及所述电容C21的第二端共地连接。
PCT/CN2018/079740 2017-03-21 2018-03-21 两级式开关电源 WO2018171613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18771684.0A EP3584917B1 (en) 2017-03-21 2018-03-21 Two-stage switch power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710169436.7A CN108631565B (zh) 2017-03-21 2017-03-21 两级式开关电源
CN201710169436.7 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018171613A1 true WO2018171613A1 (zh) 2018-09-27

Family

ID=63584164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079740 WO2018171613A1 (zh) 2017-03-21 2018-03-21 两级式开关电源

Country Status (3)

Country Link
EP (1) EP3584917B1 (zh)
CN (1) CN108631565B (zh)
WO (1) WO2018171613A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941124A (zh) * 2019-02-14 2019-06-28 深圳市永联科技股份有限公司 充电桩及其充电模块和充电稳压控制方法
CN112631357A (zh) * 2020-12-22 2021-04-09 博科能源***(深圳)有限公司 直流稳压电源电路
CN115102561A (zh) * 2022-07-04 2022-09-23 禹创半导体(深圳)有限公司 一种藉由调控转换效率降低差分发射电磁干扰的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596503A (zh) * 2001-12-03 2005-03-16 三垦电气株式会社 开关电源装置及其驱动方法
US20080111594A1 (en) * 2006-11-09 2008-05-15 Denso Corporation Switching booster power circuit
CN204424869U (zh) * 2015-02-12 2015-06-24 东莞理工学院 一种打嗝保护电路及应用此电路的光伏发电***
CN205160363U (zh) * 2015-11-27 2016-04-13 英飞特电子(杭州)股份有限公司 一种辅助供电电路和开关电源

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3236587B2 (ja) * 1999-09-30 2001-12-10 長野日本無線株式会社 スイッチング電源装置
CN100442644C (zh) * 2002-02-08 2008-12-10 三垦电气株式会社 电源装置启动方法、电源装置的启动电路及电源装置
CN2653774Y (zh) * 2003-10-22 2004-11-03 广州珠江电信设备制造有限公司 用于通信设备的高频开关电源整流模块
CN101378230B (zh) * 2007-08-31 2011-06-15 群康科技(深圳)有限公司 开关电源电路
JP2012152066A (ja) * 2011-01-20 2012-08-09 Olympus Corp 電源装置
CN202268808U (zh) * 2011-09-15 2012-06-06 北京国网普瑞特高压输电技术有限公司 电流型控制的单路输出反激式变换器
CN103227560B (zh) * 2013-03-28 2015-08-19 华为技术有限公司 启动逆变器的方法和装置
CN103929055A (zh) * 2014-04-30 2014-07-16 矽力杰半导体技术(杭州)有限公司 一种供电电路和开关电源
TWI548186B (zh) * 2014-08-15 2016-09-01 Richtek Technology Corp Quick Start Circuit and Method of Chi - back Power Supply
WO2016037855A1 (en) * 2014-09-12 2016-03-17 Philips Lighting Holding B.V. Power supply circuits
CN104377950B (zh) * 2014-11-05 2017-02-15 深圳市汇川技术股份有限公司 一种电源控制芯片的启动电路
CN104734516B (zh) * 2015-02-11 2017-12-15 深圳市航嘉驰源电气股份有限公司 开关电源电路和计算机电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596503A (zh) * 2001-12-03 2005-03-16 三垦电气株式会社 开关电源装置及其驱动方法
US20080111594A1 (en) * 2006-11-09 2008-05-15 Denso Corporation Switching booster power circuit
CN204424869U (zh) * 2015-02-12 2015-06-24 东莞理工学院 一种打嗝保护电路及应用此电路的光伏发电***
CN205160363U (zh) * 2015-11-27 2016-04-13 英飞特电子(杭州)股份有限公司 一种辅助供电电路和开关电源

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109941124A (zh) * 2019-02-14 2019-06-28 深圳市永联科技股份有限公司 充电桩及其充电模块和充电稳压控制方法
CN112631357A (zh) * 2020-12-22 2021-04-09 博科能源***(深圳)有限公司 直流稳压电源电路
CN115102561A (zh) * 2022-07-04 2022-09-23 禹创半导体(深圳)有限公司 一种藉由调控转换效率降低差分发射电磁干扰的装置

Also Published As

Publication number Publication date
EP3584917A1 (en) 2019-12-25
CN108631565B (zh) 2020-04-28
CN108631565A (zh) 2018-10-09
EP3584917A4 (en) 2020-05-20
EP3584917B1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CN101674025B (zh) 一种市电和电池双路供电的多路输出辅助开关电源
US8482222B2 (en) Lighting device and light fixture using lighting device
EP3595413B1 (en) Constant current led power supply circuit with maximum output power limiting circuit
EP2506685A1 (en) Led driving power supply circuit, driving power supply and lighting device
WO2022027264A1 (zh) 通道开关的驱动电路、充电控制方法及充电器
WO2019161711A1 (zh) 一种低导通压降的启动电路
CN205070791U (zh) 一种开关电源的自供电电路
WO2018171613A1 (zh) 两级式开关电源
JP2015053225A (ja) Led駆動回路
JP6116002B2 (ja) Dc−dc電源回路
JP6631701B2 (ja) アクティブスナバー回路付きスイッチ回路およびdc−dcコンバータ
CN106655749B (zh) 一种电源控制电路及应用其的开关电源
US8213196B2 (en) Power supply circuit with protecting circuit having switch element for protecting pulse width modulation circuit
CN201611842U (zh) 一种市电和电池双路供电的多路输出辅助开关电源
CN218388013U (zh) 一种内置输出短路保护的升压恒流驱动电路
CN216390802U (zh) 一种电表开关电源电路
WO2021047387A1 (zh) 用于供电的buck拓扑电路
WO2021249332A1 (zh) 一种电荷泵控制电路及驱动电源
CN205070792U (zh) 开关电源的自供电电路
CN208939817U (zh) 一种高压启动电路及开关电源
CN209642550U (zh) 一种开关电源供电电路及开关电源***
CN109936888B (zh) 高频驱动电路及使用该高频驱动电路的照明装置
US9936545B2 (en) LED voltage driver circuit
CN105429120A (zh) 一种浪涌电流抑制电路
CN109302052A (zh) 一种高压启动电路及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771684

Country of ref document: EP

Effective date: 20190920