WO2018170847A1 - Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks - Google Patents

Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks Download PDF

Info

Publication number
WO2018170847A1
WO2018170847A1 PCT/CN2017/077904 CN2017077904W WO2018170847A1 WO 2018170847 A1 WO2018170847 A1 WO 2018170847A1 CN 2017077904 W CN2017077904 W CN 2017077904W WO 2018170847 A1 WO2018170847 A1 WO 2018170847A1
Authority
WO
WIPO (PCT)
Prior art keywords
coded
wireless communication
block
coded communication
threshold value
Prior art date
Application number
PCT/CN2017/077904
Other languages
French (fr)
Inventor
Changlong Xu
Liangming WU
Chao Wei
Jilei Hou
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/077904 priority Critical patent/WO2018170847A1/en
Publication of WO2018170847A1 publication Critical patent/WO2018170847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information

Definitions

  • aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
  • New radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread ODFM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • CP-OFDM OFDM with a cyclic prefix
  • SC-FDM e.g., also known as discrete Fourier transform spread ODFM (DFT-s-OFDM)
  • MIMO multiple-input multiple-output
  • the method may include receiving a coded communication block associated with a wireless communication; attempting to decode the coded communication block; generating a confidence value associated with a result of the attempting to decode; comparing, by the wireless communication device, the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determining, by the wireless communication device, whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  • SNR signal to noise ratio
  • the apparatus may include a memory and at least one processor coupled to the memory.
  • the at least one processor may be configured to receive a coded communication block associated with a wireless communication; attempt to decode the coded communication block; generate a confidence value associated with a result of the attempting to decode; compare the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  • SNR signal to noise ratio
  • the apparatus may include means for means for receiving a coded communication block associated with a wireless communication; means for attempting to decode the coded communication block; means for generating a confidence value associated with a result of the attempting to decode; means for comparing the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or means for determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  • SNR signal to noise ratio
  • the computer program product may include a non-transitory computer-readable medium storing computer executable code.
  • the code may include code for receiving a coded communication block associated with a wireless communication; code for attempting to decode the coded communication block; generating a confidence value associated with a result of the attempting to decode; comparing the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  • SNR signal to noise ratio
  • FIG. 1 is diagram illustrating an example of a wireless communication network.
  • FIG. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network.
  • UE user equipment
  • FIG. 3 is a diagram illustrating an example of a frame structure in a wireless communication network.
  • FIG. 4 is a diagram illustrating two example subframe formats with the normal cyclic prefix.
  • FIG. 5 is a diagram illustrating an example logical architecture of a distributed radio access network (RAN) .
  • RAN radio access network
  • FIG. 6 is a diagram illustrating an example physical architecture of a distributed RAN.
  • FIG. 7 is a diagram illustrating an example of a downlink (DL) -centric wireless communication structure.
  • FIG. 9 is a diagram illustrating an example of reducing a false acceptance rate for coded communication blocks without cyclic redundancy checks.
  • FIG. 10 is a flow chart of a method of wireless communication.
  • FIG. 11 is a conceptual data flow diagram illustrating the data flow between different modules/means/components in an example apparatus.
  • FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • One or more processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • magnetic disk storage magnetic disk storage or other magnetic storage devices
  • An access point may comprise, be implemented as, or known as a NodeB, a Radio Network Controller ( “RNC “) , an eNodeB (eNB) , a Base Station Controller ( “BSC “) , a Base Transceiver Station ( “BTS “) , a Base Station ( “BS “) , a Transceiver Function ( “TF “) , a Radio Router, a Radio Transceiver, a Basic Service Set ( “BSS “) , an Extended Service Set ( “ESS “) , a Radio Base Station ( “RBS “) , a Node B (NB) , a gNB, a 5G NB, a NR BS, a Transmit Receive Point (TRP) , or some other terminology.
  • RNC Radio Network Controller
  • eNB eNodeB
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BS Base Station
  • TF Transceiver Function
  • TF Radio Router
  • An access terminal may comprise, be implemented as, or be known as an access terminal, a subscriber station, a subscriber unit, a mobile station, a remote station, a remote terminal, a user terminal, a user agent, a user device, user equipment (UE) , a user station, a wireless node, or some other terminology.
  • an access terminal may comprise a cellular telephone, a smart phone, a cordless telephone, a Session Initiation Protocol ( “SIP” ) phone, a wireless local loop ( “WLL” ) station, a personal digital assistant ( “PDA” ) , a tablet, a netbook, a smartbook, an ultrabook, a handheld device having wireless connection capability, a Station ( “STA” ) , or some other suitable processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a phone e.g., a cellular phone, a smart phone
  • a computer e.g., a desktop
  • a portable communication device e.g., a portable computing device (e.g., a laptop, a personal data assistant, a tablet, a netbook, a smartbook, an ultrabook)
  • wearable device e.g., smart watch, smart glasses, smart bracelet, smart wristband, smart ring, smart clothing, and/or the like
  • medical devices or equipment e.g., biometric sensors/devices
  • an entertainment device e.g., music device, video device, satellite radio, gaming device, and/or the like
  • a vehicular component or sensor smart meters/sensors
  • industrial manufacturing equipment e.g., a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • the node is a wireless node.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as the Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered machine-type communication (MTC) UEs, which may include remote devices that may communicate with a base station, another remote device, or some other entity.
  • Machine type communications (MTC) may refer to communication involving at least one remote device on at least one end of the communication and may include forms of data communication which involve one or more entities that do not necessarily need human interaction.
  • MTC UEs may include UEs that are capable of MTC communications with MTC servers and/or other MTC devices through Public Land Mobile Networks (PLMN) , for example.
  • MTC devices include sensors, meters, location tags, monitors, drones, robots/robotic devices, and/or the like.
  • MTC UEs, as well as other types of UEs, may be implemented as NB-IoT (narrowband internet of things) devices.
  • aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • FIG. 1 is a diagram illustrating a network 100 in which aspects of the present disclosure may be practiced.
  • the network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G NB, an access point, a TRP, and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the access network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, such as sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • IoT Internet-of-Things
  • CPE Customer Premises Equipment
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • P2P peer-to-peer
  • mesh network UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • FIG. 1 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 1.
  • FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine RSRP, RSSI, RSRQ, CQI, and/or the like.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controllers/processors 240 and 280 and/or any other component (s) in FIG. 2 may direct the operation at base station 110 and UE 120, respectively, to reduce false acceptance rate for coded communication blocks without cyclic redundancy checks.
  • controller/processor 280 and/or other processors and modules at base station 110 may perform or direct operations of UE 120 to reduce false acceptance rate for coded communication blocks without cyclic redundancy checks.
  • controller/processor 280 and/or other controllers/processors and modules at BS 110 may perform or direct operations of, for example, method 1000 of FIG. 10 and/or other processes as described herein.
  • one or more of the components shown in FIG. 2 may be employed to perform example method 1000 of FIG. 10 and/or other processes for the techniques described herein.
  • Memories 242 and 282 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 2 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 2.
  • FIG. 3 shows an example frame structure 300 for FDD in a telecommunications system (e.g., LTE) .
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into 10 subframes with indices of 0 through 9.
  • Each subframe may include two slots.
  • Each radio frame may thus include 20 slots with indices of 0 through 19.
  • Each slot may include L symbol periods, e.g., seven symbol periods for a normal cyclic prefix (as shown in FIG. 3) or six symbol periods for an extended cyclic prefix.
  • the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol.
  • a BS may transmit a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) on the downlink in the center of the system bandwidth for each cell supported by the BS.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PSS and SSS may be transmitted in symbol periods 6 and 5, respectively, in subframes 0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIG. 3.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the BS may transmit a cell-specific reference signal (CRS) across the system bandwidth for each cell supported by the BS.
  • CRS cell-specific reference signal
  • the CRS may be transmitted in certain symbol periods of each subframe and may be used by the UEs to perform channel estimation, channel quality measurement, and/or other functions.
  • the BS may also transmit a physical broadcast channel (PBCH) in symbol periods 0 to 3 in slot 1 of certain radio frames.
  • PBCH physical broadcast channel
  • the PBCH may carry some system information.
  • the BS may transmit other system information such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain subframes.
  • SIBs system information blocks
  • PDSCH physical downlink shared channel
  • the BS may transmit control information/data on a physical downlink control channel (PDCCH) in the first B symbol periods of a subframe, where B may be configurable for each subframe.
  • the BS may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each subframe.
  • a Node B may transmit these or other signals in these locations or in different locations of the subframe.
  • FIG. 3 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 3.
  • FIG. 4 shows two example subframe formats 410 and 420 with the normal cyclic prefix.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover 12 subcarriers in one slot and may include a number of resource elements.
  • Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
  • Subframe format 410 may be used for two antennas.
  • a CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11.
  • a reference signal is a signal that is known a priori by a transmitter and a receiver and may also be referred to as pilot.
  • a CRS is a reference signal that is specific for a cell, e.g., generated based at least in part on a cell identity (ID) .
  • ID cell identity
  • Subframe format 420 may be used with four antennas.
  • a CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11 and from antennas 2 and 3 in symbol periods 1 and 8.
  • a CRS may be transmitted on evenly spaced subcarriers, which may be determined based at least in part on cell ID.
  • CRSs may be transmitted on the same or different subcarriers, depending on their cell IDs.
  • resource elements not used for the CRS may be used to transmit data (e.g., traffic data, control data, and/or other data) .
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., LTE) .
  • Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value.
  • Each interlace may include subframes that are spaced apart by Q frames.
  • interlace q may include subframes q, q + Q, q + 2Q, and/or the like, where q ⁇ ⁇ 0, ..., Q-1 ⁇ .
  • the wireless network may support hybrid automatic retransmission request (HARQ) for data transmission on the downlink and uplink.
  • HARQ hybrid automatic retransmission request
  • a transmitter e.g., a BS
  • a receiver e.g., a UE
  • all transmissions of the packet may be sent in subframes of a single interlace.
  • each transmission of the packet may be sent in any subframe.
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SINR signal-to-noise-and-interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communication systems, such as NR or 5G technologies.
  • New radio may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) .
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • CP-OFDM OFDM with a CP
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency-division multiplexing
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kilohertz (kHz) over a 0.1 ms duration.
  • Each radio frame may include 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 7 and 8.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such central units or distributed units.
  • the RAN may include a central unit (CU) and distributed units (DUs) .
  • a NR BS e.g., gNB, 5G Node B, Node B, transmit receive point (TRP) , access point (AP)
  • NR cells can be configured as access cells (ACells) or data only cells (DCells) .
  • the RAN e.g., a central unit or distributed unit
  • DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases, DCells may not transmit synchronization signals—in some case cases DCells may transmit SS.
  • NR BSs may transmit downlink signals to UEs indicating the cell type. Based at least in part on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based at least in part on the indicated cell type.
  • FIG. 4 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 4.
  • FIG. 5 illustrates an example logical architecture of a distributed RAN 500, according to aspects of the present disclosure.
  • a 5G access node 506 may include an access node controller (ANC) 502.
  • the ANC may be a central unit (CU) of the distributed RAN 500.
  • the backhaul interface to the next generation core network (NG-CN) 504 may terminate at the ANC.
  • the backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC.
  • the ANC may include one or more TRPs 508 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, gNB, or some other term) .
  • TRPs 508 which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, gNB, or some other term.
  • TRP may be used interchangeably with “cell. ”
  • the TRPs 508 may be a distributed unit (DU) .
  • the TRPs may be connected to one ANC (ANC 502) or more than one ANC (not illustrated) .
  • ANC 502 ANC 502
  • RaaS radio as a service
  • a TRP may include one or more antenna ports.
  • the TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the local architecture of RAN 500 may be used to illustrate fronthaul definition.
  • the architecture may be defined that support fronthauling solutions across different deployment types.
  • the architecture may be based at least in part on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • the architecture may share features and/or components with LTE.
  • the next generation AN (NG-AN) 510 may support dual connectivity with NR.
  • the NG-AN may share a common fronthaul for LTE and NR.
  • the architecture may enable cooperation between and among TRPs 508. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 502. According to aspects, no inter-TRP interface may be needed/present.
  • a dynamic configuration of split logical functions may be present within the architecture of RAN 500.
  • the PDCP, RLC, MAC protocol may be adaptably placed at the ANC or TRP.
  • a BS may include a central unit (CU) (e.g., ANC 502) and/or one or more distributed units (e.g., one or more TRPs 508) .
  • CU central unit
  • distributed units e.g., one or more TRPs 508 .
  • FIG. 5 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 5.
  • FIG. 6 illustrates an example physical architecture of a distributed RAN 600, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 602 may host core network functions.
  • the C-CU may be centrally deployed.
  • C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 604 may host one or more ANC functions.
  • the C-RU may host core network functions locally.
  • the C-RU may have distributed deployment.
  • the C-RU may be closer to the network edge.
  • a distributed unit (DU) 606 may host one or more TRPs.
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 6 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 6.
  • FIG. 7 is a diagram 700 showing an example of a DL-centric subframe or wireless communication structure.
  • the DL-centric subframe may include a control portion 702.
  • the control portion 702 may exist in the initial or beginning portion of the DL-centric subframe.
  • the control portion 702 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe.
  • the control portion 702 may be a physical DL control channel (PDCCH) , as indicated in FIG. 7.
  • PDCH physical DL control channel
  • the DL-centric subframe may also include a DL data portion 704.
  • the DL data portion 704 may sometimes be referred to as the payload of the DL-centric subframe.
  • the DL data portion 704 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE) .
  • the DL data portion 704 may be a physical DL shared channel (PDSCH) .
  • PDSCH physical DL shared channel
  • the DL-centric subframe may also include an UL short burst portion 706.
  • the UL short burst portion 706 may sometimes be referred to as an UL burst, an UL burst portion, a common UL burst, a short burst, an UL short burst, a common UL short burst, a common UL short burst portion, and/or various other suitable terms.
  • the UL short burst portion 706 may include one or more reference signals. Additionally, or alternatively, the UL short burst portion 706 may include feedback information corresponding to various other portions of the DL-centric subframe.
  • the UL short burst portion 706 may include feedback information corresponding to the control portion 702 and/or the data portion 704.
  • information that may be included in the UL short burst portion 706 include an ACK signal (e.g., a PUCCH ACK, a PUSCH ACK, an immediate ACK) , a NACK signal (e.g., a PUCCH NACK, a PUSCH NACK, an immediate NACK) , a scheduling request (SR) , a buffer status report (BSR) , a HARQ indicator, a channel state indication (CSI) , a channel quality indicator (CQI) , a sounding reference signal (SRS) , a demodulation reference signal (DMRS) , PUSCH data, and/or various other suitable types of information.
  • the UL short burst portion 706 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests, and various other suitable types of information.
  • the end of the DL data portion 704 may be separated in time from the beginning of the UL short burst portion 706.
  • This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms.
  • This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE) ) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) .
  • DL communication e.g., reception operation by the subordinate entity (e.g., UE)
  • UL communication e.g., transmission by the subordinate entity (e.g., UE)
  • FIG. 7 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 7.
  • FIG. 8 is a diagram 800 showing an example of an UL-centric subframe or wireless communication structure.
  • the UL-centric subframe may include a control portion 802.
  • the control portion 802 may exist in the initial or beginning portion of the UL-centric subframe.
  • the control portion 802 in FIG. 8 may be similar to the control portion 702 described above with reference to FIG. 7.
  • the control portion 802 may be a physical DL control channel (PDCCH) .
  • PDCH physical DL control channel
  • the UL-centric subframe may also include an UL long burst portion 804.
  • the UL long burst portion 804 may sometimes be referred to as the payload of the UL-centric subframe.
  • the UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) .
  • the end of the control portion 802 may be separated in time from the beginning of the UL long burst portion 804.
  • This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms.
  • This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) .
  • the UL-centric subframe may also include an UL short burst portion 806.
  • the UL short burst portion 806 in FIG. 8 may be similar to the UL short burst portion 706 described above with reference to FIG. 7, and may include any of the information described above in connection with FIG. 7.
  • the foregoing is merely one example of an UL-centric wireless communication structure and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a wireless communication structure such as a frame, may include both UL-centric subframes and DL-centric subframes.
  • the ratio of UL-centric subframes to DL-centric subframes in a frame may be dynamically adjusted based at least in part on the amount of UL data and the amount of DL data that are transmitted. For example, if there is more UL data, then the ratio of UL-centric subframes to DL-centric subframes may be increased. Conversely, if there is more DL data, then the ratio of UL-centric subframes to DL-centric subframes may be decreased.
  • FIG. 8 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 8.
  • a wireless communication device may receive a coded communication block, and may decode the coded communication block to determine information included in the coded communication block.
  • the wireless communication device may use a maximum likelihood (ML) approach, and/or the like, to decode the coded communication block.
  • ML maximum likelihood
  • decoding may not be successful.
  • a coded communication block may be partially corrupted or distorted. This, in turn, may lead to an incorrect result of decoding.
  • a wireless communication device may use an error checking technique to identify when decoding is unsuccessful.
  • the error checking technique may indicate that the decoding was successful, or that the decoding was unsuccessful.
  • One common error checking technique uses cyclic redundancy checks (CRC) , where an error-detecting code is inserted in the coded communication block to detect errors in decoding the coded communication block.
  • CRC cyclic redundancy checks
  • not all communications include a CRC, since a CRC uses one or more bits.
  • a very small block length, associated with NR may not use a CRC.
  • a wireless communication device may perform another error checking technique based at least in part on a closeness of the coded communication block to one or more candidate decoded blocks.
  • an error checking technique may generate a false acceptance where the error checking technique erroneously accepts a decoding that was, in fact, unsuccessful.
  • the error checking technique may have a false acceptance rate (FAR) that is based at least in part on the approach used for the error checking technique.
  • the FAR may be equal to a quantity of erroneously decoded packets that are deemed acceptable divided by a total quantity of erroneously decoded packets, and may correspond to a detection block error rate (BLER) of the wireless communication device.
  • the detection BLER may be based at least in part on a sum of unsuccessfully decoded blocks that were correctly identified as unsuccessfully decoded, and unsuccessfully decoded blocks that were incorrectly identified as successfully decoded. It may be beneficial to reduce FAR, since false acceptance may lead to loss of network traffic and/or delay.
  • one error checking technique determines a first magnitude of similarity of the coded communication block to a closest candidate decoded block and a second magnitude of similarity of the coded communication block to a second closest candidate decoded block.
  • the wireless communication device may compare a ratio of the first magnitude and the second magnitude to a threshold. When the ratio satisfies the threshold, the wireless communication device may determine that decoding was successful and no false acceptance has occurred. When the ratio does not satisfy the threshold, the wireless communication device may determine that decoding was unsuccessful.
  • the acceptance of the decoding is more likely to be correct than when the ratio is low.
  • the threshold may be determined based at least in part on a target FAR, such as 1 percent, 0.1 percent, and/or the like.
  • the FAR may change as channel conditions change. For example, as signal to noise ratio (SNR) increases, the FAR may decrease.
  • SNR signal to noise ratio
  • the threshold is configured without consideration of the SNR, the threshold may be an inaccurate indicator of FAR in different channel conditions. This may lead to missed false acceptances and, therefore, decreased performance of the wireless communication device.
  • a wireless communication device may determine an SNR for a coded communication block, and may determine a value of the threshold based at least in part on the SNR.
  • the value of the threshold may be configured so that a target FAR is accurate at different SNR values, which improves accuracy of false acceptance detection.
  • the wireless communication device may adjust the threshold so that detection of false acceptances remains accurate.
  • detection BLER of the wireless communication device may be reduced, thereby improving wireless communication performance of the wireless communication device.
  • FIG. 9 is a diagram illustrating an example 900 of reducing false acceptance rate for coded communication blocks without cyclic redundancy checks.
  • a BS 110 may provide a coded communication block to a UE 120.
  • the coded communication block may include a packet, a network communication, a codeword, uplink control information, and/or the like.
  • the coded communication block may have a particular coded block size (e.g., 5 bits, 10 bits, 20 bits, and/or the like) , a particular information bit size (e.g., 4 bits per information bit, 8 bits per information bit, and/or the like, based at least in part on a modulation and coding scheme of the coded communication block) , and/or the like.
  • the coded communication block may not include a CRC.
  • the coded communication block may be associated with a very short block size.
  • the UE 120 may compare values of the coded communication block to a set of candidate decoded blocks. For example, the UE 120 may attempt to decode the coded communication block based at least in part on a ML approach. To decode the coded communication block, the UE 120 may compare the coded communication block to a set of candidate blocks. As shown by reference number 906, the UE 120 may identify a most likely candidate block that is most similar to the coded communication block. Further, the UE 120 may identify a second most likely candidate block that is most similar to the coded communication block after the most likely candidate block.
  • the UE 120 may determine a confidence value according to a ratio of a magnitude associated with the most likely candidate decoded block and a magnitude associated with the second most likely candidate decoded block. For example, the UE 120 may identify a magnitude associated with the most likely candidate block (e.g., by combining bit values of the coded communication block and the most likely candidate block) and a magnitude associated with the second most likely candidate block (e.g., by combining bit values of the coded communication block and the second most likely candidate block) . The UE 120 may determine a confidence value by determining a ratio of the magnitude associated with the most likely candidate block and the magnitude associated with the second most likely candidate block. A high value of the ratio may indicate that the most likely candidate block is a significantly better match than the second most likely candidate block, which indicates that false acceptance of decoding of the coded communication block is unlikely to occur.
  • the UE 120 may identify an SNR associated with the coded communication block. For example, the UE 120 may determine an SNR of a channel on which the coded communication block was received. As shown by reference number 912, the UE 120 may determine a threshold value based at least in part on a coded block size, an information bit size, and/or the SNR. For example, the UE 120 may determine a coded block size and an information bit size of the coded communication block (e.g., based at least in part on one or more higher-layer parameters) . The UE 120 may refer to a table, using the coded block size, the information bit size, and the SNR, to identify a threshold value.
  • the table may identify threshold values for different coded block sizes, information bit sizes, and SNRs.
  • the table may be generated based at least in part on a simulation.
  • a network entity may simulate decoding of a quantity N of coded communication blocks in various SNR conditions, and may identify respective ratios M 1 through M N for the quantity of coded communication blocks (e.g., the ratio described in connection with reference number 908) .
  • the network entity may arrange the ratios in order as M sort (1) , M sort (2) ... M sort (N) .
  • the network entity may identify a target FAR value, and may determine a threshold T based at least in part on the ratios. For example, the network entity may use the equation
  • the network entity may generate a table identifying threshold values for different SNR conditions, which enables more accurate identification of false acceptances than a threshold value that does not take into account SNR conditions.
  • the UE 120 may compare the confidence value to a threshold value. For example, the UE 120 may compare the confidence value (e.g., the ratio of the magnitudes associated with the most likely candidate block and the second most likely candidate block) and the threshold value.
  • the confidence value e.g., the ratio of the magnitudes associated with the most likely candidate block and the second most likely candidate block
  • the UE 120 may output a result of decoding the coded communication block. For example, when the confidence value satisfies the threshold value, the UE 120 may determine that the acceptance of the decoding result was not a false acceptance and may, therefore, output the result of decoding the coded communication block.
  • a detection BLER e.g., a BLER including false acceptances
  • the UE 120 may output a decoding error. For example, when the confidence value does not satisfy the threshold identified by the table, the UE 120 may determine that the decoding may be associated with a false acceptance and may, therefore, output a decoding error. Thus, a FAR, and therefore a detection BLER, of the UE 120 is reduced by taking into account SNR when determining a threshold for false acceptance detection.
  • FIG. 9 is provided as an example. Other examples are possible and may differ from what was described with respect to FIG. 9. Furthermore, while the operations of FIG. 9 are described as being performed by a UE 120, some or all of the operations of FIG. 9 can be performed by a BS 110, in some aspects.
  • FIG. 10 is a flow chart of a method 1000 of wireless communication.
  • the method may be performed by a wireless communication device, such as a base station or a UE (e.g., the BS 110 of FIG. 1, the UE 120 of FIG. 1, the apparatus 1102/1102’, and/or the like) .
  • a wireless communication device such as a base station or a UE (e.g., the BS 110 of FIG. 1, the UE 120 of FIG. 1, the apparatus 1102/1102’, and/or the like) .
  • the wireless communication device may receive a coded communication block associated with a wireless communication.
  • the wireless communication device may receive a coded communication block associated with a wireless communication, as described above in connection with FIG. 9.
  • the coded communication block may be encoded (e.g., based at least in part on a MCS associated with the coded communication block) .
  • the wireless communication device may attempt to decode the coded communication block. For example, the wireless communication device may attempt to decode the coded communication block, as described above in connection with FIG. 9. In some cases, the wireless communication device may be successful (e.g., when channel conditions are sufficient for the coded communication block not to be corrupted) . In other cases, the wireless communication device may not be successful (e.g., due to channel noise, imperfect reception, and/or the like.
  • the wireless communication device may generate a confidence value associated with a result of the attempting to decode.
  • the wireless communication device may generate a confidence value, as described above in connection with FIG. 9.
  • the confidence value may be based at least in part on a comparison of a most likely candidate block and a second most likely candidate block.
  • the confidence value may be a ratio based at least in part on the most likely candidate block and the second most likely candidate block, as described above.
  • the wireless communication device may compare the confidence value and a threshold value, wherein the threshold value is based at least in part on a SNR associated with the wireless communication. For example, the wireless communication device may compare the confidence value and a threshold value that is based at least in part on an SNR associated with the wireless communication (e.g., an SNR of a channel in which the wireless communication is received) , as described above in connection with FIG. 9.
  • an SNR associated with the wireless communication e.g., an SNR of a channel in which the wireless communication is received
  • the wireless communication device may determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison. For example, when the confidence value is higher than the threshold value, the wireless communication device may determine that decoding of the coded communication block was successful and/or that an acceptance of the decoding of the coded communication block is not a false acceptance. When the confidence value is not higher than the threshold value, the wireless communication device may determine that decoding of the coded communication block is not successful and/or that an acceptance of the decoding is a false acceptance.
  • the wireless communication device may output the result of the attempting to decode, or a decoding error, based at least in part on a determination of whether the confidence value satisfies the threshold. For example, when the confidence value satisfies the threshold value, the wireless communication device may output the result of attempting to decode the coded communication block. When the confidence value does not satisfy the threshold value, the wireless communication device may output a decoding error.
  • the threshold value may be based at least in part on a coded block size of the coded communication block. In some aspects, the threshold value may be based at least in part on an information bit size of the coded communication block. In some aspects, the threshold value may be determined based at least in part on a table of threshold values corresponding to SNRs including the SNR. In some aspects, the table may be based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block. In some aspects, the table may be based at least in part on a target false acceptance rate for the decoding error.
  • the confidence value may be determined based at least in part on a maximum likelihood decoding technique. In some aspects, the confidence value may be determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block. In some aspects, the coded communication block may not be associated with a cyclic redundancy check value. In some aspects, the wireless communication may correspond to uplink control information.
  • FIG. 10 shows example blocks of a method of wireless communication
  • the method may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those shown in FIG. 10. Additionally, or alternatively, two or more blocks shown in FIG. 10 may be performed in parallel.
  • FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different modules/means/components in an example apparatus 1102.
  • the apparatus 1102 may be a wireless communication device, such as a UE or an eNB.
  • the apparatus 1102 includes a reception module 1104, an attempting module 1106, a generating module 1108, a comparing module 1110, a determining module 1112, an outputting module 1114, and/or a transmission module 1116.
  • the reception module 1104 may receive signals 1118 from a wireless communication device 1150 (e.g., a BS 110 and/or a UE 120) .
  • the signals 1118 may include a coded communication block that the apparatus 1102 is to attempt to decode.
  • the reception module 1104 may provide data 1120 to the attempting module 1106 based at least in part on the signals 1118.
  • the data 1120 may include the coded communication block and/or an SNR associated with the coded communication block.
  • the attempting module 1106 may attempt to decode the coded communication block. For example, the attempting module 1106 may use a ML decoding technique and/or the like to attempt to decode the coded communication block based at least in part on comparing the coded communication block to candidate communication blocks. The attempting module 1106 may provide data 1122 to the generating module 1108. The data 1122 may include information indicating a result of attempting to decode the coded communication block, the candidate communication blocks, the coded communication block, the SNR, and/or the like.
  • the generating module 1108 may generate a confidence value associated with the result of attempting to decode the coded communication block. For example, the confidence value may be based at least in part on the data 1122 received from the attempting module 1106.
  • the generating module may provide data 1124 to the comparing module 1110.
  • the data 1124 may identify the confidence value and/or the SNR.
  • the comparing module 1110 may compare the confidence value and a threshold value that is determined based at least in part on the SNR.
  • the comparing module 1110 may provide data 1126 to the determining module 1112 based at least in part on the comparison.
  • the data 1126 may identify information regarding the comparison (e.g., whether the confidence value satisfies the threshold value) .
  • the determining module 1112 may determine whether the result of attempting to decode the coded communication block was successful based at least in part on the data 1126. For example, the determining module 1112 may determine whether the result was successful based at least in part on whether the confidence value satisfies the threshold value. The determining module may provide data 1128 to the outputting module 1114 based at least in part on whether the result of attempting to decode was successful. The data 1128 may indicate whether the outputting module is to output a decoding error or the result of attempting to decode the coded communication block.
  • the outputting module 1114 may output the result of attempting to decode the coded communication block as data 1130 when the confidence value satisfies the threshold value.
  • the outputting module 1114 may output the decoding error as data 1130 when the confidence value does not satisfy the threshold value.
  • the transmission module 1116 may transmit signals 1132 based at least in part on an output of the outputting module 1114. For example, the transmission module 1116 may transmit a retransmission request for the coded communication block when the outputting module 1114 outputs the decoding error.
  • the apparatus may include additional modules that perform each of the blocks of the algorithm in the aforementioned flow chart of FIG. 10. As such, each block in the aforementioned flow chart of FIG. 10 may be performed by a module and the apparatus may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • modules shown in FIG. 11 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 11. Furthermore, two or more modules shown in FIG. 11 may be implemented within a single module, or a single module shown in FIG. 11 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 11 may perform one or more functions described as being performed by another set of modules shown in FIG. 11.
  • FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1102'employing a processing system 1202.
  • the apparatus 1102' may be a wireless communication device, such as an eNB and/or a UE.
  • the processing system 1202 may be implemented with a bus architecture, represented generally by the bus 1204.
  • the bus 1204 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1202 and the overall design constraints.
  • the bus 1204 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1206, the modules 1104, 1106, 1108, 1110, 1112, 1114, and 1116, and the computer-readable medium /memory 1208.
  • the bus 1204 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1202 may be coupled to a transceiver 1210.
  • the transceiver 1210 is coupled to one or more antennas 1212.
  • the transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1210 receives a signal from the one or more antennas 1212, extracts information from the received signal, and provides the extracted information to the processing system 1202, specifically the reception module 1104.
  • the transceiver 1210 receives information from the processing system 1202, specifically the transmission module 1116, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1212.
  • the processing system 1202 includes a processor 1206 coupled to a computer-readable medium /memory 1208.
  • the processor 1206 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1208.
  • the software when executed by the processor 1206, causes the processing system 1202 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1208 may also be used for storing data that is manipulated by the processor 1206 when executing software.
  • the processing system further includes at least one of the modules 1104, 1106, 1108, 1110, 1112, 1114, and 1116.
  • the modules may be software modules running in the processor 1206, resident/stored in the computer readable medium /memory 1208, one or more hardware modules coupled to the processor 1206, or some combination thereof.
  • the processing system 1202 may be a component of the eNB 110 and may include the memory 242 and/or at least one of the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240. Additionally, or alternatively, the processing system 1202 may be a component of the UE 120 and may include the memory 282 and/or at least one of the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280.
  • the apparatus 1202/1202'for wireless communication includes means for receiving a coded communication block associated with a wireless communication; means for attempting to decode the coded communication block; means for generating a confidence value associated with a result of the attempting to decode; means for comparing the confidence value and a threshold value; means for determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison; means for outputting the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; and/or means for outputting a decoding error based at least in part on a determination that the confidence value does not satisfy the threshold value.
  • the aforementioned means may be one or more of the aforementioned modules of the apparatus 1102 and/or the processing system 1202 of the apparatus 1102'configured to perform the functions recited by the aforementioned means.
  • the processing system 1202 may include the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240.
  • the aforementioned means may be the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means may be the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280 configured to perform the functions recited by the aforementioned means.
  • FIG. 12 is provided as an example. Other examples are possible and may differ from what was described in connection with FIG. 12.
  • Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may receive a coded communication block associated with a wireless communication; attempt to decode the coded communication block; generate a confidence value associated with a result of the attempting to decode; compare the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.

Description

TECHNIQUES AND APPARATUSES FOR REDUCING FALSE ACCEPTANCE RATE FOR CODED COMMUNICATION BLOCKS WITHOUT CYCLIC REDUNDANCY CHECKS BACKGROUND
Field
Aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless communication devices to communicate on a municipal, national, regional,  and even global level. New radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDM with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread ODFM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In an aspect of the disclosure, a method, an apparatus, and a computer program product are provided.
In some aspects, the method may include receiving a coded communication block associated with a wireless communication; attempting to decode the coded communication block; generating a confidence value associated with a result of the attempting to decode; comparing, by the wireless communication device, the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determining, by the wireless communication device, whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
In some aspects, the apparatus may include a memory and at least one processor coupled to the memory. The at least one processor may be configured to receive a coded communication block associated with a wireless communication; attempt to decode the coded communication block; generate a confidence value associated with a result of the attempting to decode; compare the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio  (SNR) associated with the wireless communication; and/or determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
In some aspects, the apparatus may include means for means for receiving a coded communication block associated with a wireless communication; means for attempting to decode the coded communication block; means for generating a confidence value associated with a result of the attempting to decode; means for comparing the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or means for determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
In some aspects, the computer program product may include a non-transitory computer-readable medium storing computer executable code. The code may include code for receiving a coded communication block associated with a wireless communication; code for attempting to decode the coded communication block; generating a confidence value associated with a result of the attempting to decode; comparing the confidence value and a threshold value, wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and/or determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with  associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is diagram illustrating an example of a wireless communication network.
FIG. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network.
FIG. 3 is a diagram illustrating an example of a frame structure in a wireless communication network.
FIG. 4 is a diagram illustrating two example subframe formats with the normal cyclic prefix.
FIG. 5 is a diagram illustrating an example logical architecture of a distributed radio access network (RAN) .
FIG. 6 is a diagram illustrating an example physical architecture of a distributed RAN.
FIG. 7 is a diagram illustrating an example of a downlink (DL) -centric wireless communication structure.
FIG. 8 is a diagram illustrating an example of an uplink (UL) -centric wireless communication structure.
FIG. 9 is a diagram illustrating an example of reducing a false acceptance rate for coded communication blocks without cyclic redundancy checks.
FIG. 10 is a flow chart of a method of wireless communication.
FIG. 11 is a conceptual data flow diagram illustrating the data flow between different modules/means/components in an example apparatus.
FIG. 12 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the configurations in which the concepts described herein may be practiced. The  detailed description includes specific details for the purposes of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) ,  compact disk ROM (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
An access point ( “AP” ) may comprise, be implemented as, or known as a NodeB, a Radio Network Controller ( “RNC “) , an eNodeB (eNB) , a Base Station Controller ( “BSC “) , a Base Transceiver Station ( “BTS “) , a Base Station ( “BS “) , a Transceiver Function ( “TF “) , a Radio Router, a Radio Transceiver, a Basic Service Set ( “BSS “) , an Extended Service Set ( “ESS “) , a Radio Base Station ( “RBS “) , a Node B (NB) , a gNB, a 5G NB, a NR BS, a Transmit Receive Point (TRP) , or some other terminology.
An access terminal ( “AT” ) may comprise, be implemented as, or be known as an access terminal, a subscriber station, a subscriber unit, a mobile station, a remote station, a remote terminal, a user terminal, a user agent, a user device, user equipment (UE) , a user station, a wireless node, or some other terminology. In some aspects, an access terminal may comprise a cellular telephone, a smart phone, a cordless telephone, a Session Initiation Protocol ( “SIP” ) phone, a wireless local loop ( “WLL” ) station, a personal digital assistant ( “PDA” ) , a tablet, a netbook, a smartbook, an ultrabook, a handheld device having wireless connection capability, a Station ( “STA” ) , or some other suitable processing device connected to a wireless modem. Accordingly, one or more aspects taught herein may be incorporated into a phone (e.g., a cellular phone, a smart phone) , a computer (e.g., a desktop) , a portable communication device, a portable computing device (e.g., a laptop, a personal data assistant, a tablet, a netbook, a smartbook, an ultrabook) , wearable device (e.g., smart watch, smart glasses, smart bracelet, smart wristband, smart ring, smart clothing, and/or the like) , medical devices or equipment, biometric sensors/devices, an entertainment device (e.g., music device, video device, satellite radio, gaming device, and/or the like) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. In some aspects, the node is a wireless node. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as the Internet or a cellular network) via a wired or wireless communication  link. Some UEs may be considered machine-type communication (MTC) UEs, which may include remote devices that may communicate with a base station, another remote device, or some other entity. Machine type communications (MTC) may refer to communication involving at least one remote device on at least one end of the communication and may include forms of data communication which involve one or more entities that do not necessarily need human interaction. MTC UEs may include UEs that are capable of MTC communications with MTC servers and/or other MTC devices through Public Land Mobile Networks (PLMN) , for example. Examples of MTC devices include sensors, meters, location tags, monitors, drones, robots/robotic devices, and/or the like. MTC UEs, as well as other types of UEs, may be implemented as NB-IoT (narrowband internet of things) devices.
It is noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
FIG. 1 is a diagram illustrating a network 100 in which aspects of the present disclosure may be practiced. The network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. Wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G NB, an access point, a TRP, and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto  cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the access network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIG. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the  like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, such as sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices. Some UEs may be considered a Customer Premises Equipment (CPE) .
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A dashed line with double arrows indicates potentially interfering transmissions between a UE and a BS.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within the scheduling entity’s service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for  one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
As indicated above, FIG. 1 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 1.
FIG. 2 shows a block diagram 200 of a design of base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIG. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) , and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the CRS) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable,  and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to certain aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive (RX) processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine RSRP, RSSI, RSRQ, CQI, and/or the like.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to  controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controllers/ processors  240 and 280 and/or any other component (s) in FIG. 2 may direct the operation at base station 110 and UE 120, respectively, to reduce false acceptance rate for coded communication blocks without cyclic redundancy checks. For example, controller/processor 280 and/or other processors and modules at base station 110, may perform or direct operations of UE 120 to reduce false acceptance rate for coded communication blocks without cyclic redundancy checks. For example, controller/processor 280 and/or other controllers/processors and modules at BS 110 may perform or direct operations of, for example, method 1000 of FIG. 10 and/or other processes as described herein. In some aspects, one or more of the components shown in FIG. 2 may be employed to perform example method 1000 of FIG. 10 and/or other processes for the techniques described herein.  Memories  242 and 282 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
As indicated above, FIG. 2 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 2.
FIG. 3 shows an example frame structure 300 for FDD in a telecommunications system (e.g., LTE) . The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into 10 subframes with indices of 0 through 9. Each subframe may include two slots. Each radio frame may thus include 20 slots with indices of 0 through 19. Each slot may include L symbol periods, e.g., seven symbol periods for a normal cyclic prefix (as shown in FIG. 3) or six symbol periods for an extended cyclic prefix. The 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” and/or the like in 5G NR. In some aspects, a wireless  communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol.
In certain telecommunications (e.g., LTE) , a BS may transmit a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) on the downlink in the center of the system bandwidth for each cell supported by the BS. The PSS and SSS may be transmitted in  symbol periods  6 and 5, respectively, in  subframes  0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIG. 3. The PSS and SSS may be used by UEs for cell search and acquisition. The BS may transmit a cell-specific reference signal (CRS) across the system bandwidth for each cell supported by the BS. The CRS may be transmitted in certain symbol periods of each subframe and may be used by the UEs to perform channel estimation, channel quality measurement, and/or other functions. The BS may also transmit a physical broadcast channel (PBCH) in symbol periods 0 to 3 in slot 1 of certain radio frames. The PBCH may carry some system information. The BS may transmit other system information such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain subframes. The BS may transmit control information/data on a physical downlink control channel (PDCCH) in the first B symbol periods of a subframe, where B may be configurable for each subframe. The BS may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each subframe.
In other systems (e.g., such NR or 5G systems) , a Node B may transmit these or other signals in these locations or in different locations of the subframe.
As indicated above, FIG. 3 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 3.
FIG. 4 shows two example subframe formats 410 and 420 with the normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover 12 subcarriers in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
Subframe format 410 may be used for two antennas. A CRS may be transmitted from  antennas  0 and 1 in  symbol periods  0, 4, 7 and 11. A reference signal is a signal that is known a priori by a transmitter and a receiver and may also be referred to as pilot. A CRS is a reference signal that is specific for a cell, e.g., generated  based at least in part on a cell identity (ID) . In FIG. 4, for a given resource element with label Ra, a modulation symbol may be transmitted on that resource element from antenna a, and no modulation symbols may be transmitted on that resource element from other antennas. Subframe format 420 may be used with four antennas. A CRS may be transmitted from  antennas  0 and 1 in  symbol periods  0, 4, 7 and 11 and from  antennas  2 and 3 in  symbol periods  1 and 8. For both  subframe formats  410 and 420, a CRS may be transmitted on evenly spaced subcarriers, which may be determined based at least in part on cell ID. CRSs may be transmitted on the same or different subcarriers, depending on their cell IDs. For both  subframe formats  410 and 420, resource elements not used for the CRS may be used to transmit data (e.g., traffic data, control data, and/or other data) .
The PSS, SSS, CRS and PBCH in LTE are described in 3GPP TS 36.211, entitled "Evolved Universal Terrestrial Radio Access (E-UTRA) ; Physical Channels and Modulation, " which is publicly available.
An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., LTE) . For example, Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include subframes that are spaced apart by Q frames. In particular, interlace q may include subframes q, q + Q, q + 2Q, and/or the like, where q ∈ {0, …, Q-1} .
The wireless network may support hybrid automatic retransmission request (HARQ) for data transmission on the downlink and uplink. For HARQ, a transmitter (e.g., a BS) may send one or more transmissions of a packet until the packet is decoded correctly by a receiver (e.g., a UE) or some other termination condition is encountered. For synchronous HARQ, all transmissions of the packet may be sent in subframes of a single interlace. For asynchronous HARQ, each transmission of the packet may be sent in any subframe.
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communication systems, such as NR or 5G technologies.
New radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) . In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
A single component carrier bandwidth of 100 MHZ may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kilohertz (kHz) over a 0.1 ms duration. Each radio frame may include 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 7 and 8.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based interface. NR networks may include entities such central units or distributed units.
The RAN may include a central unit (CU) and distributed units (DUs) . A NR BS (e.g., gNB, 5G Node B, Node B, transmit receive point (TRP) , access point (AP) ) may correspond to one or multiple BSs. NR cells can be configured as access cells (ACells) or data only cells (DCells) . For example, the RAN (e.g., a central unit or distributed unit) can configure the cells. DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases, DCells may not transmit synchronization signals—in some case cases DCells may transmit SS. NR BSs may transmit downlink signals to UEs indicating the cell type. Based at least in part on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based at least in part on the indicated cell type.
As indicated above, FIG. 4 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 4.
FIG. 5 illustrates an example logical architecture of a distributed RAN 500, according to aspects of the present disclosure. A 5G access node 506 may include an access node controller (ANC) 502. The ANC may be a central unit (CU) of the distributed RAN 500. The backhaul interface to the next generation core network (NG-CN) 504 may terminate at the ANC. The backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC. The ANC may include one or more TRPs 508 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, gNB, or some other term) . As described above, a TRP may be used interchangeably with “cell. ”
The TRPs 508 may be a distributed unit (DU) . The TRPs may be connected to one ANC (ANC 502) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, the TRP may be connected to more than one ANC. A TRP may include one or more antenna ports. The TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The local architecture of RAN 500 may be used to illustrate fronthaul definition. The architecture may be defined that support fronthauling solutions across different deployment types. For example, the architecture may be based at least in part on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The architecture may share features and/or components with LTE. According to aspects, the next generation AN (NG-AN) 510 may support dual connectivity with NR. The NG-AN may share a common fronthaul for LTE and NR.
The architecture may enable cooperation between and among TRPs 508. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 502. According to aspects, no inter-TRP interface may be needed/present.
According to aspects, a dynamic configuration of split logical functions may be present within the architecture of RAN 500. The PDCP, RLC, MAC protocol may be adaptably placed at the ANC or TRP.
According to certain aspects, a BS may include a central unit (CU) (e.g., ANC 502) and/or one or more distributed units (e.g., one or more TRPs 508) .
As indicated above, FIG. 5 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 5.
FIG. 6 illustrates an example physical architecture of a distributed RAN 600, according to aspects of the present disclosure. A centralized core network unit (C-CU) 602 may host core network functions. The C-CU may be centrally deployed. C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 604 may host one or more ANC functions. Optionally, the C-RU may host core network functions locally. The C-RU may have distributed deployment. The C-RU may be closer to the network edge.
A distributed unit (DU) 606 may host one or more TRPs. The DU may be located at edges of the network with radio frequency (RF) functionality.
As indicated above, FIG. 6 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 6.
FIG. 7 is a diagram 700 showing an example of a DL-centric subframe or wireless communication structure. The DL-centric subframe may include a control portion 702. The control portion 702 may exist in the initial or beginning portion of the DL-centric subframe. The control portion 702 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe. In some configurations, the control portion 702 may be a physical DL control channel (PDCCH) , as indicated in FIG. 7.
The DL-centric subframe may also include a DL data portion 704. The DL data portion 704 may sometimes be referred to as the payload of the DL-centric subframe.  The DL data portion 704 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE) . In some configurations, the DL data portion 704 may be a physical DL shared channel (PDSCH) .
The DL-centric subframe may also include an UL short burst portion 706. The UL short burst portion 706 may sometimes be referred to as an UL burst, an UL burst portion, a common UL burst, a short burst, an UL short burst, a common UL short burst, a common UL short burst portion, and/or various other suitable terms. In some aspects, the UL short burst portion 706 may include one or more reference signals. Additionally, or alternatively, the UL short burst portion 706 may include feedback information corresponding to various other portions of the DL-centric subframe. For example, the UL short burst portion 706 may include feedback information corresponding to the control portion 702 and/or the data portion 704. Non-limiting examples of information that may be included in the UL short burst portion 706 include an ACK signal (e.g., a PUCCH ACK, a PUSCH ACK, an immediate ACK) , a NACK signal (e.g., a PUCCH NACK, a PUSCH NACK, an immediate NACK) , a scheduling request (SR) , a buffer status report (BSR) , a HARQ indicator, a channel state indication (CSI) , a channel quality indicator (CQI) , a sounding reference signal (SRS) , a demodulation reference signal (DMRS) , PUSCH data, and/or various other suitable types of information. The UL short burst portion 706 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests, and various other suitable types of information.
As illustrated in FIG. 7, the end of the DL data portion 704 may be separated in time from the beginning of the UL short burst portion 706. This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE) ) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) . The foregoing is merely one example of a DL-centric wireless communication structure, and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.
As indicated above, FIG. 7 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 7.
FIG. 8 is a diagram 800 showing an example of an UL-centric subframe or wireless communication structure. The UL-centric subframe may include a control portion 802. The control portion 802 may exist in the initial or beginning portion of the UL-centric subframe. The control portion 802 in FIG. 8 may be similar to the control portion 702 described above with reference to FIG. 7. In some configurations, the control portion 802 may be a physical DL control channel (PDCCH) .
The UL-centric subframe may also include an UL long burst portion 804. The UL long burst portion 804 may sometimes be referred to as the payload of the UL-centric subframe. The UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) .
As illustrated in FIG. 8, the end of the control portion 802 may be separated in time from the beginning of the UL long burst portion 804. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) .
The UL-centric subframe may also include an UL short burst portion 806. The UL short burst portion 806 in FIG. 8 may be similar to the UL short burst portion 706 described above with reference to FIG. 7, and may include any of the information described above in connection with FIG. 7. The foregoing is merely one example of an UL-centric wireless communication structure and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated  using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
In one example, a wireless communication structure, such as a frame, may include both UL-centric subframes and DL-centric subframes. In this example, the ratio of UL-centric subframes to DL-centric subframes in a frame may be dynamically adjusted based at least in part on the amount of UL data and the amount of DL data that are transmitted. For example, if there is more UL data, then the ratio of UL-centric subframes to DL-centric subframes may be increased. Conversely, if there is more DL data, then the ratio of UL-centric subframes to DL-centric subframes may be decreased.
As indicated above, FIG. 8 is provided merely as an example. Other examples are possible and may differ from what was described with regard to FIG. 8.
A wireless communication device (e.g., a BS 110 and/or a UE 120) may receive a coded communication block, and may decode the coded communication block to determine information included in the coded communication block. For example, the wireless communication device may use a maximum likelihood (ML) approach, and/or the like, to decode the coded communication block. In some cases, decoding may not be successful. For example, due to the nature of radio communication, a coded communication block may be partially corrupted or distorted. This, in turn, may lead to an incorrect result of decoding.
A wireless communication device may use an error checking technique to identify when decoding is unsuccessful. For example, the error checking technique may indicate that the decoding was successful, or that the decoding was unsuccessful. One common error checking technique uses cyclic redundancy checks (CRC) , where an error-detecting code is inserted in the coded communication block to detect errors in decoding the coded communication block. However, not all communications include a CRC, since a CRC uses one or more bits. For example, a very small block length, associated with NR, may not use a CRC. For non-CRC coded communication blocks, a wireless communication device may perform another error checking technique based at least in part on a closeness of the coded communication block to one or more candidate decoded blocks.
In some cases, an error checking technique may generate a false acceptance where the error checking technique erroneously accepts a decoding that was, in fact, unsuccessful. For example, the error checking technique may have a false  acceptance rate (FAR) that is based at least in part on the approach used for the error checking technique. The FAR may be equal to a quantity of erroneously decoded packets that are deemed acceptable divided by a total quantity of erroneously decoded packets, and may correspond to a detection block error rate (BLER) of the wireless communication device. The detection BLER may be based at least in part on a sum of unsuccessfully decoded blocks that were correctly identified as unsuccessfully decoded, and unsuccessfully decoded blocks that were incorrectly identified as successfully decoded. It may be beneficial to reduce FAR, since false acceptance may lead to loss of network traffic and/or delay.
In the case of a coded communication block without a CRC that is decoded using ML, one error checking technique determines a first magnitude of similarity of the coded communication block to a closest candidate decoded block and a second magnitude of similarity of the coded communication block to a second closest candidate decoded block. The wireless communication device may compare a ratio of the first magnitude and the second magnitude to a threshold. When the ratio satisfies the threshold, the wireless communication device may determine that decoding was successful and no false acceptance has occurred. When the ratio does not satisfy the threshold, the wireless communication device may determine that decoding was unsuccessful. For example, when the ratio is high (indicating that the closest candidate decoded block is a much better match than the second closest candidate block) , the acceptance of the decoding is more likely to be correct than when the ratio is low. The threshold may be determined based at least in part on a target FAR, such as 1 percent, 0.1 percent, and/or the like.
However, the FAR may change as channel conditions change. For example, as signal to noise ratio (SNR) increases, the FAR may decrease. When the threshold is configured without consideration of the SNR, the threshold may be an inaccurate indicator of FAR in different channel conditions. This may lead to missed false acceptances and, therefore, decreased performance of the wireless communication device.
Techniques and apparatuses, described herein, detect false acceptance of a coded communication block based at least in part on an SNR associated with the coded communication block. For example, a wireless communication device may determine an SNR for a coded communication block, and may determine a value of the threshold based at least in part on the SNR. The value of the threshold may be  configured so that a target FAR is accurate at different SNR values, which improves accuracy of false acceptance detection. For example, when a changing SNR causes a target FAR of the wireless communication device to change, the wireless communication device may adjust the threshold so that detection of false acceptances remains accurate. Thus, detection BLER of the wireless communication device may be reduced, thereby improving wireless communication performance of the wireless communication device.
FIG. 9 is a diagram illustrating an example 900 of reducing false acceptance rate for coded communication blocks without cyclic redundancy checks.
As shown in FIG. 9, and by reference number 902, a BS 110 may provide a coded communication block to a UE 120. The coded communication block may include a packet, a network communication, a codeword, uplink control information, and/or the like. For example, the coded communication block may have a particular coded block size (e.g., 5 bits, 10 bits, 20 bits, and/or the like) , a particular information bit size (e.g., 4 bits per information bit, 8 bits per information bit, and/or the like, based at least in part on a modulation and coding scheme of the coded communication block) , and/or the like. In some aspects, the coded communication block may not include a CRC. For example, the coded communication block may be associated with a very short block size.
As shown by reference number 904, the UE 120 may compare values of the coded communication block to a set of candidate decoded blocks. For example, the UE 120 may attempt to decode the coded communication block based at least in part on a ML approach. To decode the coded communication block, the UE 120 may compare the coded communication block to a set of candidate blocks. As shown by reference number 906, the UE 120 may identify a most likely candidate block that is most similar to the coded communication block. Further, the UE 120 may identify a second most likely candidate block that is most similar to the coded communication block after the most likely candidate block.
As shown by reference number 908, the UE 120 may determine a confidence value according to a ratio of a magnitude associated with the most likely candidate decoded block and a magnitude associated with the second most likely candidate decoded block. For example, the UE 120 may identify a magnitude associated with the most likely candidate block (e.g., by combining bit values of the coded communication block and the most likely candidate block) and a magnitude  associated with the second most likely candidate block (e.g., by combining bit values of the coded communication block and the second most likely candidate block) . The UE 120 may determine a confidence value by determining a ratio of the magnitude associated with the most likely candidate block and the magnitude associated with the second most likely candidate block. A high value of the ratio may indicate that the most likely candidate block is a significantly better match than the second most likely candidate block, which indicates that false acceptance of decoding of the coded communication block is unlikely to occur.
As shown by reference number 910, the UE 120 may identify an SNR associated with the coded communication block. For example, the UE 120 may determine an SNR of a channel on which the coded communication block was received. As shown by reference number 912, the UE 120 may determine a threshold value based at least in part on a coded block size, an information bit size, and/or the SNR. For example, the UE 120 may determine a coded block size and an information bit size of the coded communication block (e.g., based at least in part on one or more higher-layer parameters) . The UE 120 may refer to a table, using the coded block size, the information bit size, and the SNR, to identify a threshold value.
The table may identify threshold values for different coded block sizes, information bit sizes, and SNRs. In some aspects, the table may be generated based at least in part on a simulation. For example, a network entity may simulate decoding of a quantity N of coded communication blocks in various SNR conditions, and may identify respective ratios M1 through MN for the quantity of coded communication blocks (e.g., the ratio described in connection with reference number 908) . The network entity may arrange the ratios in order as Msort (1) , Msort (2) ... Msort (N) . The network entity may identify a target FAR value, and may determine a threshold T based at least in part on the ratios. For example, the network entity may use the equation 
Figure PCTCN2017077904-appb-000001
 Thus, the network entity may generate a table identifying threshold values for different SNR conditions, which enables more accurate identification of false acceptances than a threshold value that does not take into account SNR conditions.
As shown by reference number 914, the UE 120 may compare the confidence value to a threshold value. For example, the UE 120 may compare the confidence value (e.g., the ratio of the magnitudes associated with the most likely candidate block and the second most likely candidate block) and the threshold value.
As shown by reference number 916, if the confidence value satisfies the threshold value, the UE 120 may output a result of decoding the coded communication block. For example, when the confidence value satisfies the threshold value, the UE 120 may determine that the acceptance of the decoding result was not a false acceptance and may, therefore, output the result of decoding the coded communication block. By using the threshold determined based at least in part on the SNR, a detection BLER (e.g., a BLER including false acceptances) of the UE 120 is reduced relative to using a threshold that is not determined based at least in part on the SNR.
As shown by reference number 918, if the confidence value does not satisfy the threshold, the UE 120 may output a decoding error. For example, when the confidence value does not satisfy the threshold identified by the table, the UE 120 may determine that the decoding may be associated with a false acceptance and may, therefore, output a decoding error. Thus, a FAR, and therefore a detection BLER, of the UE 120 is reduced by taking into account SNR when determining a threshold for false acceptance detection.
As indicated above, FIG. 9 is provided as an example. Other examples are possible and may differ from what was described with respect to FIG. 9. Furthermore, while the operations of FIG. 9 are described as being performed by a UE 120, some or all of the operations of FIG. 9 can be performed by a BS 110, in some aspects.
FIG. 10 is a flow chart of a method 1000 of wireless communication. The method may be performed by a wireless communication device, such as a base station or a UE (e.g., the BS 110 of FIG. 1, the UE 120 of FIG. 1, the apparatus 1102/1102’, and/or the like) .
At 1010, the wireless communication device may receive a coded communication block associated with a wireless communication. For example, the wireless communication device may receive a coded communication block associated with a wireless communication, as described above in connection with FIG. 9. The coded communication block may be encoded (e.g., based at least in part on a MCS associated with the coded communication block) .
At 1020, the wireless communication device may attempt to decode the coded communication block. For example, the wireless communication device may attempt to decode the coded communication block, as described above in connection with FIG. 9. In some cases, the wireless communication device may be successful (e.g., when channel conditions are sufficient for the coded communication block not  to be corrupted) . In other cases, the wireless communication device may not be successful (e.g., due to channel noise, imperfect reception, and/or the like.
At 1030, the wireless communication device may generate a confidence value associated with a result of the attempting to decode. For example, the wireless communication device may generate a confidence value, as described above in connection with FIG. 9. In some aspects, the confidence value may be based at least in part on a comparison of a most likely candidate block and a second most likely candidate block. For example, the confidence value may be a ratio based at least in part on the most likely candidate block and the second most likely candidate block, as described above.
At 1040, the wireless communication device may compare the confidence value and a threshold value, wherein the threshold value is based at least in part on a SNR associated with the wireless communication. For example, the wireless communication device may compare the confidence value and a threshold value that is based at least in part on an SNR associated with the wireless communication (e.g., an SNR of a channel in which the wireless communication is received) , as described above in connection with FIG. 9.
At 1050, the wireless communication device may determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison. For example, when the confidence value is higher than the threshold value, the wireless communication device may determine that decoding of the coded communication block was successful and/or that an acceptance of the decoding of the coded communication block is not a false acceptance. When the confidence value is not higher than the threshold value, the wireless communication device may determine that decoding of the coded communication block is not successful and/or that an acceptance of the decoding is a false acceptance.
At 1060, the wireless communication device may output the result of the attempting to decode, or a decoding error, based at least in part on a determination of whether the confidence value satisfies the threshold. For example, when the confidence value satisfies the threshold value, the wireless communication device may output the result of attempting to decode the coded communication block. When the confidence value does not satisfy the threshold value, the wireless communication device may output a decoding error.
In some aspects, the threshold value may be based at least in part on a coded block size of the coded communication block. In some aspects, the threshold value may be based at least in part on an information bit size of the coded communication block. In some aspects, the threshold value may be determined based at least in part on a table of threshold values corresponding to SNRs including the SNR. In some aspects, the table may be based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block. In some aspects, the table may be based at least in part on a target false acceptance rate for the decoding error. In some aspects, the confidence value may be determined based at least in part on a maximum likelihood decoding technique. In some aspects, the confidence value may be determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block. In some aspects, the coded communication block may not be associated with a cyclic redundancy check value. In some aspects, the wireless communication may correspond to uplink control information.
Although FIG. 10 shows example blocks of a method of wireless communication, in some aspects, the method may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those shown in FIG. 10. Additionally, or alternatively, two or more blocks shown in FIG. 10 may be performed in parallel.
FIG. 11 is a conceptual data flow diagram 1100 illustrating the data flow between different modules/means/components in an example apparatus 1102. The apparatus 1102 may be a wireless communication device, such as a UE or an eNB. In some aspects, the apparatus 1102 includes a reception module 1104, an attempting module 1106, a generating module 1108, a comparing module 1110, a determining module 1112, an outputting module 1114, and/or a transmission module 1116.
The reception module 1104 may receive signals 1118 from a wireless communication device 1150 (e.g., a BS 110 and/or a UE 120) . The signals 1118 may include a coded communication block that the apparatus 1102 is to attempt to decode. The reception module 1104 may provide data 1120 to the attempting module 1106 based at least in part on the signals 1118. For example, the data 1120 may include the coded communication block and/or an SNR associated with the coded communication block.
The attempting module 1106 may attempt to decode the coded communication block. For example, the attempting module 1106 may use a ML decoding technique and/or the like to attempt to decode the coded communication block based at least in part on comparing the coded communication block to candidate communication blocks. The attempting module 1106 may provide data 1122 to the generating module 1108. The data 1122 may include information indicating a result of attempting to decode the coded communication block, the candidate communication blocks, the coded communication block, the SNR, and/or the like.
The generating module 1108 may generate a confidence value associated with the result of attempting to decode the coded communication block. For example, the confidence value may be based at least in part on the data 1122 received from the attempting module 1106. The generating module may provide data 1124 to the comparing module 1110. The data 1124 may identify the confidence value and/or the SNR.
The comparing module 1110 may compare the confidence value and a threshold value that is determined based at least in part on the SNR. The comparing module 1110 may provide data 1126 to the determining module 1112 based at least in part on the comparison. The data 1126 may identify information regarding the comparison (e.g., whether the confidence value satisfies the threshold value) .
The determining module 1112 may determine whether the result of attempting to decode the coded communication block was successful based at least in part on the data 1126. For example, the determining module 1112 may determine whether the result was successful based at least in part on whether the confidence value satisfies the threshold value. The determining module may provide data 1128 to the outputting module 1114 based at least in part on whether the result of attempting to decode was successful. The data 1128 may indicate whether the outputting module is to output a decoding error or the result of attempting to decode the coded communication block.
The outputting module 1114 may output the result of attempting to decode the coded communication block as data 1130 when the confidence value satisfies the threshold value. The outputting module 1114 may output the decoding error as data 1130 when the confidence value does not satisfy the threshold value. In some aspects, the transmission module 1116 may transmit signals 1132 based at least in part on an output of the outputting module 1114. For example, the transmission  module 1116 may transmit a retransmission request for the coded communication block when the outputting module 1114 outputs the decoding error.
The apparatus may include additional modules that perform each of the blocks of the algorithm in the aforementioned flow chart of FIG. 10. As such, each block in the aforementioned flow chart of FIG. 10 may be performed by a module and the apparatus may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of modules shown in FIG. 11 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in FIG. 11. Furthermore, two or more modules shown in FIG. 11 may be implemented within a single module, or a single module shown in FIG. 11 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in FIG. 11 may perform one or more functions described as being performed by another set of modules shown in FIG. 11.
FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1102'employing a processing system 1202. The apparatus 1102'may be a wireless communication device, such as an eNB and/or a UE.
The processing system 1202 may be implemented with a bus architecture, represented generally by the bus 1204. The bus 1204 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1202 and the overall design constraints. The bus 1204 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1206, the  modules  1104, 1106, 1108, 1110, 1112, 1114, and 1116, and the computer-readable medium /memory 1208. The bus 1204 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1202 may be coupled to a transceiver 1210. The transceiver 1210 is coupled to one or more antennas 1212. The transceiver 1210 provides a means for communicating with various other apparatus over a transmission medium.  The transceiver 1210 receives a signal from the one or more antennas 1212, extracts information from the received signal, and provides the extracted information to the processing system 1202, specifically the reception module 1104. In addition, the transceiver 1210 receives information from the processing system 1202, specifically the transmission module 1116, and based at least in part on the received information, generates a signal to be applied to the one or more antennas 1212. The processing system 1202 includes a processor 1206 coupled to a computer-readable medium /memory 1208. The processor 1206 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1208. The software, when executed by the processor 1206, causes the processing system 1202 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1208 may also be used for storing data that is manipulated by the processor 1206 when executing software. The processing system further includes at least one of the  modules  1104, 1106, 1108, 1110, 1112, 1114, and 1116. The modules may be software modules running in the processor 1206, resident/stored in the computer readable medium /memory 1208, one or more hardware modules coupled to the processor 1206, or some combination thereof. The processing system 1202 may be a component of the eNB 110 and may include the memory 242 and/or at least one of the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240. Additionally, or alternatively, the processing system 1202 may be a component of the UE 120 and may include the memory 282 and/or at least one of the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280.
In some aspects, the apparatus 1202/1202'for wireless communication includes means for receiving a coded communication block associated with a wireless communication; means for attempting to decode the coded communication block; means for generating a confidence value associated with a result of the attempting to decode; means for comparing the confidence value and a threshold value; means for determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison; means for outputting the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; and/or means for outputting a decoding error based at least in part on a determination that the confidence value does not satisfy  the threshold value. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1102 and/or the processing system 1202 of the apparatus 1102'configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1202 may include the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240. As such, in one configuration, the aforementioned means may be the TX MIMO processor 230, the RX processor 238, and/or the controller/processor 240 configured to perform the functions recited by the aforementioned means. Additionally, or alternatively, and as described supra, in one configuration, the aforementioned means may be the TX MIMO processor 266, the RX processor 258, and/or the controller/processor 280 configured to perform the functions recited by the aforementioned means.
FIG. 12 is provided as an example. Other examples are possible and may differ from what was described in connection with FIG. 12.
It is understood that the specific order or hierarchy of blocks in the processes /flow charts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flow charts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may  include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “at least one of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (44)

  1. A method of wireless communication, comprising:
    receiving, by a wireless communication device, a coded communication block associated with a wireless communication;
    attempting, by the wireless communication device, to decode the coded communication block;
    generating, by the wireless communication device, a confidence value associated with a result of the attempting to decode;
    comparing, by the wireless communication device, the confidence value and a threshold value,
    wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and
    determining, by the wireless communication device, whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  2. The method of claim 1, further comprising:
    outputting the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; or
    outputting a decoding error based at least in part on a determination that the confidence value does not satisfy the threshold value.
  3. The method of claim 1, wherein the threshold value is based at least in part on a coded block size of the coded communication block.
  4. The method of claim 1, wherein the threshold value is based at least on an information bit size of the coded communication block.
  5. The method of claim 1, wherein the threshold value is determined based at least in part on a table of threshold values corresponding to SNRs including the SNR.
  6. The method of claim 5, wherein the table is based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block.
  7. The method of claim 5, wherein the table is based at least in part on a target false acceptance rate for a decoding error.
  8. The method of claim 1, wherein the confidence value is determined based at least in part on a maximum likelihood (ML) decoding technique.
  9. The method of claim 1, wherein the confidence value is determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block.
  10. The method of claim 1, wherein the coded communication block is not associated with a cyclic redundancy check value.
  11. The method of claim 1, wherein the wireless communication corresponds to uplink control information.
  12. A wireless communication device, comprising:
    a memory; and
    at least one processor coupled to the memory, the at least one processing being configured to:
    receive a coded communication block associated with a wireless communication;
    attempt to decode the coded communication block;
    generate a confidence value associated with a result of the attempting to decode;
    compare the confidence value and a threshold value,
    wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and
    determine whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  13. The wireless communication device of claim 12, wherein the at least one processor is further configured to:
    output the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; or
    output a decoding error based at least in part on a determination that the confidence value does not satisfy the threshold value.
  14. The wireless communication device of claim 12, wherein the threshold value is based at least in part on a coded block size of the coded communication block.
  15. The wireless communication device of claim 12, wherein the threshold value is based at least on an information bit size of the coded communication block.
  16. The wireless communication device of claim 12, wherein the threshold value is determined based at least in part on a table of threshold values corresponding to SNRs including the SNR.
  17. The wireless communication device of claim 16, wherein the table is based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block.
  18. The wireless communication device of claim 16, wherein the table is based at least in part on a target false acceptance rate for a decoding error.
  19. The wireless communication device of claim 12, wherein the confidence value is determined based at least in part on a maximum likelihood (ML) decoding technique.
  20. The wireless communication device of claim 12, wherein the confidence value is determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block.
  21. The wireless communication device of claim 12, wherein the coded communication block is not associated with a cyclic redundancy check value.
  22. The wireless communication device of claim 12, wherein the wireless communication corresponds to uplink control information.
  23. An apparatus for wireless communication, comprising:
    means for receiving a coded communication block associated with a wireless communication;
    means for attempting to decode the coded communication block;
    means for generating a confidence value associated with a result of the attempting to decode;
    means for comparing the confidence value and a threshold value,
    wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and
    means for determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  24. The apparatus of claim 23, further comprising:
    means for outputting the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; or
    means for outputting a decoding error based at least in part on a determination that the confidence value does not satisfy the threshold value.
  25. The apparatus of claim 23, wherein the threshold value is based at least in part on a coded block size of the coded communication block.
  26. The apparatus of claim 23, wherein the threshold value is based at least on an information bit size of the coded communication block.
  27. The apparatus of claim 23, wherein the threshold value is determined based at least in part on a table of threshold values corresponding to SNRs including the SNR.
  28. The apparatus of claim 27, wherein the table is based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block.
  29. The apparatus of claim 27, wherein the table is based at least in part on a target false acceptance rate for a decoding error.
  30. The apparatus of claim 23, wherein the confidence value is determined based at least in part on a maximum likelihood (ML) decoding technique.
  31. The apparatus of claim 23, wherein the confidence value is determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block.
  32. The apparatus of claim 23, wherein the coded communication block is not associated with a cyclic redundancy check value.
  33. The apparatus of claim 23, wherein the wireless communication corresponds to uplink control information.
  34. A computer-readable medium storing computer executable code for wireless communication, comprising code for:
    receiving a coded communication block associated with a wireless communication;
    attempting to decode the coded communication block;
    generating a confidence value associated with a result of the attempting to decode;
    comparing the confidence value and a threshold value,
    wherein the threshold value is based at least in part on a signal to noise ratio (SNR) associated with the wireless communication; and
    determining whether the result of the attempting to decode the coded communication block was successful based at least in part on the comparison.
  35. The computer-readable medium of claim 34, wherein the code further comprises code for:
    outputting the result of the attempting to decode the coded communication block based at least in part on a determination that the confidence value satisfies the threshold value; or
    outputting a decoding error based at least in part on a determination that the confidence value does not satisfy the threshold value.
  36. The computer-readable medium of claim 34, wherein the threshold value is based at least in part on a coded block size of the coded communication block.
  37. The computer-readable medium of claim 34, wherein the threshold value is based at least on an information bit size of the coded communication block.
  38. The computer-readable medium of claim 34, wherein the threshold value is determined based at least in part on a table of threshold values corresponding to SNRs including the SNR.
  39. The computer-readable medium of claim 38, wherein the table is based at least in part on a simulation of decoding errors associated with coded communication blocks of a same coded block size, a same information bit size, and a same SNR as the coded communication block.
  40. The computer-readable medium of claim 38, wherein the table is based at least in part on a target false acceptance rate for a decoding error.
  41. The computer-readable medium of claim 34, wherein the confidence value is determined based at least in part on a maximum likelihood (ML) decoding technique.
  42. The computer-readable medium of claim 34, wherein the confidence value is determined based at least in part on a comparison of the coded communication block and at least two candidate communication blocks as part of decoding the coded communication block.
  43. The computer-readable medium of claim 34, wherein the coded communication block is not associated with a cyclic redundancy check value.
  44. The computer-readable medium of claim 34, wherein the wireless communication corresponds to uplink control information.
PCT/CN2017/077904 2017-03-23 2017-03-23 Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks WO2018170847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077904 WO2018170847A1 (en) 2017-03-23 2017-03-23 Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077904 WO2018170847A1 (en) 2017-03-23 2017-03-23 Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks

Publications (1)

Publication Number Publication Date
WO2018170847A1 true WO2018170847A1 (en) 2018-09-27

Family

ID=63584007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077904 WO2018170847A1 (en) 2017-03-23 2017-03-23 Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks

Country Status (1)

Country Link
WO (1) WO2018170847A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242881A (en) * 2020-10-16 2021-01-19 展讯通信(上海)有限公司 Method, device and equipment for detecting downlink control information
US11070254B2 (en) 2018-09-28 2021-07-20 At&T Intellectual Property I, L.P. Decoding data in new radio ultra-reliable low latency communications with multiple transmission points

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160721A1 (en) * 2000-03-30 2002-10-31 Hideki Kanemoto Radio communication apparatus and radio communication method
US20110317746A1 (en) * 2008-12-25 2011-12-29 Canon Kabushiki Kaisha Communication apparatus, relay method thereof, and computer-readable storage medium
US20150172000A1 (en) * 2012-08-09 2015-06-18 St-Ericsson Sa Blind Transport Format Detection Depending on the Conditions of Reception of the Signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160721A1 (en) * 2000-03-30 2002-10-31 Hideki Kanemoto Radio communication apparatus and radio communication method
US20110317746A1 (en) * 2008-12-25 2011-12-29 Canon Kabushiki Kaisha Communication apparatus, relay method thereof, and computer-readable storage medium
US20150172000A1 (en) * 2012-08-09 2015-06-18 St-Ericsson Sa Blind Transport Format Detection Depending on the Conditions of Reception of the Signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11070254B2 (en) 2018-09-28 2021-07-20 At&T Intellectual Property I, L.P. Decoding data in new radio ultra-reliable low latency communications with multiple transmission points
CN112242881A (en) * 2020-10-16 2021-01-19 展讯通信(上海)有限公司 Method, device and equipment for detecting downlink control information
CN112242881B (en) * 2020-10-16 2023-03-07 展讯通信(上海)有限公司 Method, device and equipment for detecting downlink control information

Similar Documents

Publication Publication Date Title
US11076400B2 (en) Multi-link new radio physical uplink control channel beam selection and reporting based at least in part on physical downlink control channel or physical downlink shared channel reference signals
EP3602913B1 (en) Waveform signaling for downlink communications
US10708007B2 (en) Methods and apparatuses for indication of transmission preemption based on a hybrid automatic repeat request configuration
EP3536076B1 (en) Ultra-reliable low-latency communication mini-slot control
EP3593568B1 (en) Techniques and apparatuses for reducing inter-cell interference with low-latency traffic in new radio
US10182424B2 (en) Techniques and apparatuses for configuring transmission of corresponding uplink control information in new radio
US10536975B2 (en) Techniques and apparatuses for handling collisions between legacy transmission time interval (TTI) communications and shortened TTI communications
EP3539250B1 (en) Techniques and apparatuses for configuring a common uplink portion in new radio
US11902997B2 (en) Unicast data transmission on a downlink common burst of a slot using mini-slots
US10498477B2 (en) Tracking reference signal configuration design
US10652169B2 (en) Hybrid automatic repeat request management for differing types of hybrid automatic repeat request processes
US10743332B2 (en) Techniques and apparatuses for complementary transmission relating to an interrupted traffic flow in new radio
WO2018170847A1 (en) Techniques and apparatuses for reducing false acceptance rate for coded communication blocks without cyclic redundancy checks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901615

Country of ref document: EP

Kind code of ref document: A1