WO2018168490A1 - 材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法 - Google Patents

材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法 Download PDF

Info

Publication number
WO2018168490A1
WO2018168490A1 PCT/JP2018/007757 JP2018007757W WO2018168490A1 WO 2018168490 A1 WO2018168490 A1 WO 2018168490A1 JP 2018007757 W JP2018007757 W JP 2018007757W WO 2018168490 A1 WO2018168490 A1 WO 2018168490A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
region
mass
fibers
Prior art date
Application number
PCT/JP2018/007757
Other languages
English (en)
French (fr)
Inventor
朝美 仲井
政隆 梶
光朗 ▲高▼木
信彦 松本
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US16/493,521 priority Critical patent/US11499022B2/en
Priority to CN201880017648.6A priority patent/CN110418703B/zh
Priority to KR1020197027850A priority patent/KR102306762B1/ko
Priority to ES18768485T priority patent/ES2873876T3/es
Priority to EP18768485.7A priority patent/EP3597388B1/en
Publication of WO2018168490A1 publication Critical patent/WO2018168490A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • C08J5/048Macromolecular compound to be reinforced also in fibrous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • B29K2077/10Aromatic polyamides [polyaramides] or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a material, a method for producing the material, a partially welded material, a composite material, and a method for producing a molded product.
  • thermoplastic resins are widely used as various molding materials.
  • fibrous thermoplastic resins thermoplastic resin fibers
  • thermoplastic resin fibers thermoplastic resin fibers
  • Patent Document 1 a mixed yarn in which continuous reinforcing fibers are blended with thermoplastic resin fibers is also known.
  • the present invention aims to solve such a problem, and is an advantage of a material using a thermoplastic resin fiber, a novel material having a low heat shrinkage while maintaining flexibility, Another object of the present invention is to provide a method for producing the material, a partial welding material using the material, a composite material, and a method for producing a molded product.
  • the above problems have been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 21>.
  • ⁇ 1> Continuously in the thickness direction, the first region, the fiber region, and the second region are provided.
  • the first region and the second region are each independently 20 to 100% by mass of heat.
  • a resin layer composed of a plastic resin component and 80 to 0% by mass of reinforcing fibers, wherein the fiber region comprises 20 to 100% by mass of thermoplastic resin fibers and 80 to 0% by mass of reinforcing fibers.
  • the thermoplastic resin component contained in the first region and the thermoplastic resin component contained in the second region each independently have a temperature-rise crystallization energy measured by differential scanning calorimetry.
  • thermoplastic resin fiber contained in the fiber region is a material whose crystallization energy during heating measured by differential scanning calorimetry is less than 1 J / g;
  • the time crystallization energy is the differential scanning Using the amounts meter (DSC), in a nitrogen stream, a value measured by heating at the thermoplastic resin component or the melting point of the thermoplastic resin fiber + 20 ° C. until heating rate 10 ° C. / min from 25 ° C.. ⁇ 2>
  • the thermoplastic resin component contained in the first region, the thermoplastic resin component contained in the second region, and the thermoplastic resin fiber contained in the fiber region comprise 80% by mass or more of the composition.
  • the material according to ⁇ 1> which is common to each other.
  • thermoplastic resin component contained in the first region, the thermoplastic resin component contained in the second region, and the thermoplastic resin fiber contained in the fiber region are each independently a polyamide resin.
  • thermoplastic resin component contained in the first region, the thermoplastic resin component contained in the second region, and the thermoplastic resin fiber contained in the fiber region are each independently derived from diamine.
  • ⁇ 5> The material according to any one of ⁇ 1> to ⁇ 4>, wherein the fiber region is composed of 25 to 80% by mass of a thermoplastic resin fiber and 75 to 20% by mass of a reinforcing fiber. .
  • the first region, the second region, and the fiber region are each independently composed of 25 to 80% by mass of a thermoplastic resin component and 75 to 20% by mass of reinforcing fibers.
  • ⁇ 7> The first region, the second region, and the fiber region described in ⁇ 6>, wherein a difference in mass proportion of reinforcing fibers contained in each region is 5% by mass or less. material.
  • the reinforcing fiber includes at least one of carbon fiber and glass fiber.
  • the reinforcing fiber is a continuous reinforcing fiber.
  • the fiber region includes a mixed yarn including continuous reinforcing fiber and thermoplastic resin fiber.
  • the first region and the second region are formed from a mixed yarn including continuous reinforcing fiber and thermoplastic resin fiber.
  • ⁇ 12> The difference between the crystallization energy of the thermoplastic resin component contained in the first region during the temperature increase and the crystallization energy during the temperature increase of the thermoplastic resin fiber included in the fiber region, and the second The difference between the temperature-rise crystallization energy of the thermoplastic resin component contained in the region and the temperature-rise crystallization energy of the thermoplastic resin fiber contained in the fiber region is independently 3 J / g or more, ⁇ The material according to any one of 1> to ⁇ 11>. ⁇ 13> The material according to any one of ⁇ 1> to ⁇ 12>, wherein a thickness of the fiber region is 20% or more with respect to a total thickness of the material.
  • ⁇ 14> The material according to any one of ⁇ 1> to ⁇ 13>, which is a photoforming material or a microwave forming material.
  • ⁇ 15> The material according to any one of ⁇ 1> to ⁇ 14>, wherein the deformation resistance load is 1 N or less; provided that the deformation resistance load is a progression of the material at a speed of 300 mm / min. The load applied when pulling up through a guide that changes the direction by 90 degrees.
  • ⁇ 16> The material according to any one of ⁇ 1> to ⁇ 15>, wherein the thermoplastic resin fiber has a heat shrinkage rate of 1% or less after heating at a melting point of + 5 ° C. for 1 minute.
  • ⁇ 17> The material according to any one of ⁇ 1> to ⁇ 16>, which is in the form of a tape.
  • ⁇ 18> A partially welded material in which two or more materials according to any one of ⁇ 1> to ⁇ 17> are partially welded.
  • ⁇ 19> exciting ultrasonic waves to the surface of a fiber composed of 20 to 100% by mass of thermoplastic resin fibers arranged in at least one direction and 80 to 0% by mass of reinforcing fibers, ⁇ 1> to the method for producing a material according to any one of ⁇ 17>.
  • thermoplastic resin fiber is a composite material that is higher by 15 ° C. or more than the melting point of the thermoplastic resin fiber contained in the material or the partial welding material.
  • ⁇ 21> The material according to any one of ⁇ 1> to ⁇ 17>, the partially welded material according to ⁇ 18>, or the composite material according to ⁇ 20>, including optical molding or microwave molding , Manufacturing method of molded products.
  • a novel material that maintains the flexibility and has a low thermal shrinkage, which is an advantage of a material using a thermoplastic resin fiber, a method for producing the material, and a partially welded material using the material It has become possible to provide a method for producing a composite material and a molded product.
  • FIG. 1 is a schematic cross-sectional view of a material of the present invention. It is the schematic of the cross section of the other example of the material of this invention. It is the schematic which shows an example of the method of photoforming. An example of the schematic of the composite material of this invention is shown. It is the schematic of the apparatus which measures the deformation resistance load in an Example. It is the schematic of the apparatus which measures the thermal contraction rate in an Example. It is the schematic which shows the arrangement
  • the material of the present invention has a first region, a fiber region, and a second region continuously in the thickness direction, and the first region and the second region are independently 20 to 100 masses. % Of a thermoplastic resin component and 80 to 0% by mass of reinforcing fiber, and the fiber region has 20 to 100% by mass of thermoplastic resin fiber and 80 to 0% by mass of reinforcing fiber. And the thermoplastic resin component contained in the first region and the thermoplastic resin component contained in the second region are each independently heated crystals measured by differential scanning calorimetry. The crystallization energy is 2 J / g or more, and the thermoplastic resin fiber contained in the fiber region has a crystallization energy at elevated temperature measured by a differential scanning calorimetry method of less than 1 J / g. To do.
  • the crystallization energy at the time of temperature rise is determined by using a differential scanning calorimeter (DSC) in a nitrogen stream from 25 ° C. to the melting point of the thermoplastic resin component or the thermoplastic resin fiber + 20 ° C. The value measured by heating in minutes.
  • DSC differential scanning calorimeter
  • the crystallization energy of the thermoplastic resin component constituting the surface resin layer is set to a high crystallization energy state during heating, and the thermoplastic resin is made into fiber in the inside (fiber region).
  • thermoplastic resin fibers contained in the fiber region are lowered, and flexibility and operability are ensured.
  • the material of the present invention has a first region, a fiber region, and a second region continuously in the thickness direction.
  • Fig.1 (a) is the schematic of the cross section in case the material of this invention is tape shape.
  • FIG. 1A is a schematic view of a cross section in a direction perpendicular to the longitudinal direction of a tape-shaped material, where 1 is a first region, 2 is a fiber region, and 3 is a second. Shows the area.
  • the direction of the arrow in FIG. 1 (a) is the thickness direction.
  • the first region and the second region are each independently a resin layer which essentially includes a thermoplastic resin component and may contain reinforcing fibers.
  • the resin layer is in a state in which the thermoplastic resin component is melted to form a layered or film-like region.
  • the resin layer may contain the reinforced fiber.
  • the thermoplastic resin component is generally impregnated in the reinforced fiber.
  • the impregnation rate of the thermoplastic resin in the resin layer is preferably 70% or more, and more preferably 90% or more in the region from the surface to 20 ⁇ m in the thickness direction. The measurement of the impregnation rate can be referred to the description in paragraph 0108 of WO2016 / 039242, and the contents thereof are incorporated in the present specification.
  • the fiber region essentially requires thermoplastic resin fibers and may contain reinforcing fibers.
  • the first region 1 and the fiber region 2 are continuous in the thickness direction, and there may or may not be a clear interface between both regions.
  • the side close to the fiber region of the first region has a low melting ratio of the thermoplastic resin component, that is, a portion of the thermoplastic resin component is not melted and is close to the fiber or fiber. It may be in the form.
  • the fiber region 2 and the second region 3 are also continuous in the thickness direction, and there may or may not be a clear interface between both regions. That is, “continuously” means that the first region 1, the fiber region 2, and the second region 3 are present continuously in the thickness direction without including other regions therebetween. .
  • FIG.1 (b) shows the schematic of the cross section of the direction perpendicular
  • the reference numerals are the same as those in FIG. The arrow has shown the thickness direction of the material as described in FIG.1 (b).
  • the surface layer (the 1st area
  • FIG. 1 (b) the boundary between the first region and the second region may or may not be clear.
  • the embodiment of FIG. 1 (b) is also in the form of a tape, but as shown in FIG. 1 (b), when the cross section is not rectangular, such as an ellipse, it is the thickest in the direction perpendicular to the longitudinal direction of the material.
  • the portion may be a material thickness (total thickness), and the thickest portion may form the first region 1, the fiber region 2, and the second region 3.
  • an ellipse, a quadrangle, etc. are not limited to an ellipse and a rectangle in the geometrical sense, and are generally interpreted as an almost ellipse or a substantially quadrangle in the technical field of the present invention. It is the meaning including.
  • FIG. 2 is a schematic cross-sectional view of another example when the material of the present invention is tape-shaped.
  • This is an embodiment in which many reinforcing fibers are blended in the resin layer as the surface layer and many thermoplastic resin fibers are blended in the fiber region.
  • the black circle shows the cross section of the reinforcing fiber
  • the white circle shows the cross section of the thermoplastic resin fiber.
  • Reinforcing fibers are dispersed in the resin layers that are the first region 21 and the second region 22.
  • the fiber region 23 there is almost no molten resin, and there are many thermoplastic resin fibers, but some reinforcing fibers are also present in the region close to the surface layer (first region and second region).
  • the density of the fiber region is preferably 1.2 to 6.0, more preferably 1.5 to 5.0, and more preferably 1.8 to 4.5 with respect to the theoretical maximum density. More preferably.
  • the theoretical maximum density means the density when the fiber is assumed to have no voids.
  • the total thickness of the material is preferably 10 to 1000 ⁇ m, more preferably 30 to 500 ⁇ m, still more preferably 50 to 250 ⁇ m, and still more preferably 100 to 210 ⁇ m. By setting it as such a range, a more flexible material with a small heat shrinkage rate can be obtained.
  • the thickness of the fiber region with respect to the total thickness of the material is preferably 20% or more, more preferably 30% or more, and further preferably 40% or more.
  • the upper limit is preferably 90% or less, more preferably 80% or less, and even more preferably 75% or less.
  • the thickness of each of the first region and the second region is preferably 5 to 100 ⁇ m, more preferably 10 to 90 ⁇ m, and even more preferably 15 to 80 ⁇ m.
  • the thicknesses of the first region and the second region are generally the same thickness, but one thickness may be larger than the other depending on the application.
  • the length (tape width) in the direction perpendicular to the longitudinal direction (fiber length direction) of the tape is preferably 1 to 100 mm, and preferably 2 to 60 mm. Is more preferably 3 to 40 mm.
  • the length in the longitudinal direction of the tape (tape length) is preferably 1 to 100,000 m, more preferably 10 to 10,000 m, and further preferably 80 to 5,000 m. preferable.
  • w / t which is the relationship between the total thickness (t) of the material and the width (w) of the tape, is preferably 1 to 10,000, more preferably 10 to 500, and more preferably 10 to 100. Is more preferable, 20 to 80 is more preferable, and 30 to 60 is even more preferable. By setting it as such a range, a more supple material can be obtained.
  • the resin fibers contained in the fiber region are preferably continuous thermoplastic resin fibers.
  • the fiber region preferably includes reinforcing fibers, and the reinforcing fibers are preferably continuous reinforcing fibers.
  • the fiber region preferably includes a mixed yarn including continuous reinforcing fibers and thermoplastic resin fibers (preferably continuous thermoplastic resin fibers). These fibers may be arranged in one direction, or may be arranged in two or more directions, but is preferably arranged in one direction.
  • thermoplastic resin component contained in the first region and the thermoplastic resin component contained in the second region each independently have a temperature-rise crystallization energy measured by differential scanning calorimetry.
  • the thermoplastic resin fiber that is 2 J / g or more and is included in the fiber region has a crystallization energy at the time of temperature rise measured by a differential scanning calorimetry of less than 1 J / g.
  • the thermoplastic resin component contained in the first region and the thermoplastic resin component contained in the second region each independently have a crystallization energy during temperature increase of 2 J / g or more, and 3 J / g or more. It is preferable that it is 4 J / g or more.
  • the upper limit value of the crystallization energy at the time of temperature increase is preferably 40 J / g or less, more preferably 30 J / g or less, further preferably 20 J / g or less, and more preferably 10 J / g or less. 8 J / g or less.
  • the thermoplastic resin fiber contained in the fiber region also has a crystallization energy at elevated temperature measured by a differential scanning calorimetry method of less than 1 J / g and 0.8 J / g or less. Preferably, it is 0.6 J / g or less.
  • the lower limit value of the crystallization energy at the time of temperature rise is preferably 0.0 J / g or more, more preferably 0.1 J / g or more, and further preferably 0.2 J / g or more. Furthermore, the difference between the crystallization energy of the thermoplastic resin component contained in the first region during the temperature rise and the crystallization energy during the temperature rise of the thermoplastic resin fiber contained in the fiber region, and the heat contained in the second region. It is preferable that the difference between the crystallization energy of the plastic resin component during temperature increase and the crystallization energy of the thermoplastic resin fiber included in the fiber region is independently 3 J / g or more, preferably 4 J / g or more.
  • the upper limit value of the difference in crystallization energy at the time of temperature increase is preferably 40 J / g or less, more preferably 30 J / g or less, further preferably 20 J / g or less, and more preferably 10 J / g. g or less, or 8 J / g or less. By setting it as such a range, the thermal contraction rate of material can be reduced more effectively.
  • the crystallization energy at the time of temperature rise is about 25 ° C. in a nitrogen stream using a differential scanning calorimeter (DSC), about the melting point of the thermoplastic resin component and the fiber region for the first region and the second region.
  • DSC differential scanning calorimeter
  • the melting point in the present invention is the temperature at the peak top of the endothermic peak at the time of temperature rise observed by the DSC (Differential Scanning Calorimetry) method. Specifically, it is measured by the method described in the examples described later. Say the value was. In detail, it measures according to the method as described in the Example mentioned later.
  • thermoplastic resin thermoplastic resin component, thermoplastic resin fiber
  • the melting point of the resin having the higher melting point is set as the melting point of the thermoplastic resin or the like.
  • thermoplastic resin or the like has two or more melting points
  • the higher melting point is set as the melting point of the thermoplastic resin or the like.
  • the first region and the second region are each independently composed of 20 to 100% by mass of a thermoplastic resin component and 80 to 0% by mass of reinforcing fibers, and 25 to 80% by mass of It is preferably composed of a thermoplastic resin component and 75 to 20% by mass of reinforcing fiber, and is preferably composed of 30 to 70% by mass of thermoplastic resin component and 70 to 30% by mass of reinforcing fiber. More preferably, it is composed of 49 to 30% by mass of a thermoplastic resin component and 51 to 70% by mass of reinforcing fiber, and more preferably 45 to 30% by mass of thermoplastic resin component and 55 to 70% by mass. It is more preferable that it is composed of these reinforcing fibers.
  • the first region and the second region in the material of the present invention may contain a component other than the thermoplastic resin component and the reinforcing fiber to be blended as necessary. It is preferable that it is composed only of reinforcing fibers blended as necessary.
  • substantially means that other components other than the components described above are 5% by mass or less in each region, preferably 3% by mass or less, and 1% by mass or less. More preferably.
  • the fiber region is composed of 20 to 100% by mass of thermoplastic resin fiber and 80 to 0% by mass of reinforcing fiber, 25 to 80% by mass of thermoplastic resin fiber, and 75 to 20%.
  • it is composed of 30% by mass of reinforcing fiber, more preferably 30% to 70% by mass of thermoplastic resin fiber, and 70% to 30% by mass of reinforcing fiber, and 49% to 30% by mass.
  • it is composed of a thermoplastic resin fiber and 51 to 70% by mass of reinforcing fiber, and it is composed of 45 to 30% by mass of thermoplastic resin fiber and 55 to 70% by mass of reinforcing fiber. Is more preferable.
  • the fiber region in the material of the present invention may contain a thermoplastic resin component in which the thermoplastic resin fiber is melted in addition to the thermoplastic resin fiber and the reinforcing fiber component blended as necessary.
  • the fiber region in the material of the present invention is substantially composed only of a thermoplastic resin fiber, a thermoplastic resin component in which a thermoplastic resin fiber as an optional component is melted, and a reinforcing fiber blended as necessary. It is preferred that Here, “substantially” means that other components other than the components described above are 5% by mass or less in each region, preferably 3% by mass or less, and 1% by mass or less. More preferably.
  • Examples of the material of the present invention include the following aspects.
  • the first region and the second region are each independently a resin layer composed of a thermoplastic resin component and reinforcing fibers, and the fiber region is a region composed of thermoplastic resin fibers and reinforcing fibers.
  • a certain aspect of the material of the present invention is preferably the above (3).
  • the above (1) to (3) may contain components other than those described above. However, in each region, the above components preferably occupy 90% by mass or more of the whole.
  • the material of the present invention may contain reinforcing fibers only in one or more of the first region, the second region, and the fiber region.
  • the crystallization energy at the time of temperature rise can be finely adjusted.
  • the content of reinforcing fibers in the molded product can be adjusted.
  • the fiber region includes only thermoplastic resin fibers
  • the first region and the second region are resin layers including reinforcing fibers. Can do.
  • thermoplastic resin fibers constituting the mixed yarn remains without being melted, and the first region 21 and the second region 22.
  • reinforcing fibers black circles in FIG. 2 are present, and in the fiber region 23, there are regions where there are many reinforcing fibers, and few or no reinforcing fibers, and thermoplastic resin fibers (white circles in FIG. 2). ) May exist in some areas.
  • the thermoplastic resin fiber used in the present invention is usually composed of a thermoplastic resin component.
  • the thermoplastic resin component contained in the first region, the thermoplastic resin component contained in the second region, and the thermoplastic resin fiber contained in the fiber region comprise 80% by mass or more of the composition. It is preferable that they are common to each other, more preferably 90% by mass or more is common to each other, more preferably 95% by mass is common to each other, and even more preferably 98% by mass or more is common to each other. By setting it as such a range, the material excellent in the dimensional stability at the time of shaping
  • thermoplastic resin constituting the first region and the thermoplastic resin constituting the second region are different may be mentioned.
  • thermoplastic resins having different compositions the first region and the second region can have different functions.
  • the thermoplastic resin component constituting the first region includes a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 50 mol% or more of the structural unit derived from diamine is derived from xylylenediamine (preferably (Derived from xylylenediamine composed of 0 to 70 mol% paraxylylenediamine and 100 to 30 mol% metaxylylenediamine)), and a polyamide in which 50 mol% or more of the structural units derived from dicarboxylic acid are derived from sebacic acid
  • the thermoplastic resin component that contains 70% by mass or more of the resin and that constitutes the second region includes a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 50 mol% or more of the structural unit derived from diamine is xylylenediamine (Preferably metaxylylenediamine) and 50 mol% or more of the structural units derived from dicarboxylic acid
  • the thermoplastic resin fiber contained in the fiber region contains a structural unit derived from diamine and a structural unit derived from dicarboxylic acid, and 50 mol% or more of the structural unit derived from diamine is xylylenediamine.
  • a polyamide resin in which 50 mol% or more of the structural unit derived from dicarboxylic acid is derived from sebacic acid is 35 mass% or more, and 50 mol% or more of the structural unit derived from diamine is derived from xylylenediamine, and dicarboxylic acid
  • An example in which 50 mol% or more of the derived structural unit contains 35 mass% or more of a polyamide resin derived from adipic acid is exemplified.
  • thermoplastic resin component included in the first region the thermoplastic resin component included in the second region, and the thermoplastic resin component constituting the thermoplastic resin fiber will be described.
  • the main component means that 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more of the thermoplastic resin component is the thermoplastic resin.
  • thermoplastic resins polyolefin resins such as polyethylene and polypropylene, polyamide resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resins, polyoxymethylene resins, polyether ketones, polyether ether ketones, polyether ketones Polyetherketone resins such as ketone and polyetheretherketoneketone, polyethersulfone resin, polyethersulfide resin, thermoplastic polyetherimide, thermoplastic polyamideimide, wholly aromatic polyimide, semi-aromatic polyimide and other thermoplastic polyimide Resins can be used, and a polyamide resin is preferable. Details of the polyamide resin will be described later.
  • the thermoplastic resin used in the present invention is preferably a crystalline resin. Only one type of thermoplastic resin may be used, or two or more types may be used. The same kind of resin such as polyamide resin may be used.
  • the thermoplastic resin component used in the present invention contains a thermoplastic resin as a main component and may contain other components.
  • the thermoplastic resin component used in the present invention may contain an elastomer component.
  • the elastomer component for example, known elastomers such as polyolefin elastomers, diene elastomers, polystyrene elastomers, polyamide elastomers, polyester elastomers, polyurethane elastomers, fluorine elastomers, and silicon elastomers can be used. Elastomers and polystyrene-based elastomers.
  • elastomers are modified with ⁇ , ⁇ -unsaturated carboxylic acid and its anhydride, acrylamide and their derivatives in the presence or absence of a radical initiator in order to impart compatibility with polyamide resin. Modified elastomers are also preferred.
  • the blending amount of the elastomer component is preferably 5 to 25% by mass of the thermoplastic resin component.
  • the thermoplastic resin component used in the present invention includes fillers other than fibrous, antioxidants, stabilizers such as thermal stabilizers, hydrolysis resistance improvers, Weathering stabilizers, matting agents, UV absorbers, nucleating agents, plasticizers, dispersants, flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, release agents, lubricants, etc. Can be added. Details of these can be referred to the description of paragraph numbers 0130 to 0155 in Japanese Patent No. 4894982, the contents of which are incorporated herein.
  • the thermoplastic resin component used by this invention may contain the said filler, it is preferable not to contain the said filler. Specifically, it means that the content of the filler in the thermoplastic resin component is 3% by mass or less.
  • thermoplastic resin component used in the present invention a form in which 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more) of the thermoplastic resin component is a polyamide resin is exemplified. .
  • Polyamide resins used in the present invention include polyamide 4, polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 66, polyamide 610, polyamide 612, polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide. (Polyamide 6I), polyamide 66 / 6T, polyxylylene adipamide, polyxylylene sebacamide, polyxylylene dodecamide, polyamide 9T, polyamide 9MT, polyamide 6I / 6T, and the like.
  • a structural unit derived from diamine and a structural unit derived from dicarboxylic acid are included, and 50 mol% or more of the structural unit derived from diamine is derived from xylylenediamine.
  • It is preferably a polyamide resin (hereinafter sometimes referred to as “XD polyamide”).
  • XD polyamide a polyamide resin
  • the ratio of the XD polyamide in the polyamide resin is preferably 50% by mass or more, more preferably 80% by mass or more, further 90% by mass or more, May be 95% by mass or more.
  • the XD-based polyamide is preferably derived from xylylenediamine in which the constituent unit derived from diamine is preferably 70 mol% or more, more preferably 80 mol% or more, further preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the constituent unit derived from diamine is preferably 70 mol% or more, more preferably 80 mol% or more, further preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the xylylenediamine preferably contains at least metaxylylenediamine, more preferably 30 to 100 mol% metaxylylenediamine and 70 to 0 mol% paraxylylenediamine, and more preferably 50 to 100 mol. It is more preferable that it consists of% metaxylylenediamine and 50 to 0 mol% paraxylylenediamine.
  • diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw material diamine components for XD polyamides include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octane Aliphatic diamines such as methylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (amino Methyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis ( --Aminocyclohexyl
  • a diamine other than xylylenediamine is used as the diamine component, it is less than 50 mol%, preferably 30 mol% or less, more preferably 1 to 25 mol%, particularly preferably diamine-derived structural units. Used in a proportion of 5 to 20 mol%.
  • Preferred ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms for use as a raw material dicarboxylic acid component of polyamide resin include, for example, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid Examples thereof include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid and the like, and one or a mixture of two or more can be used.
  • the melting point of the polyamide resin is suitable for molding processing Since it becomes a range, adipic acid or sebacic acid is preferable and sebacic acid is especially preferable.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acids such as isomers such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid, and one kind or a mixture of two or more kinds can be used.
  • phthalic acid compounds such as isophthalic acid,
  • terephthalic acid or isophthalic acid may be used from the viewpoint of molding processability and barrier properties. preferable.
  • the proportion of terephthalic acid and isophthalic acid is preferably 30 mol% or less, more preferably 1 to 30 mol%, particularly preferably 5 to 20 mol% of the structural unit derived from dicarboxylic acid.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aliphatics such as aminocaproic acid and aminoundecanoic acid, as long as the effects of the present invention are not impaired.
  • Aminocarboxylic acids can also be used as copolymerization components.
  • the polyamide resin used in the present invention preferably has a number average molecular weight (Mn) of 6,000 to 30,000, more preferably 8,000 to 28,000, and still more preferably 9,000 to 26,000. 000, more preferably 10,000 to 24,000, and even more preferably 11,000 to 22,000. Within such a range, the heat resistance, elastic modulus, dimensional stability, and moldability become better.
  • Mn number average molecular weight
  • the melting point of the polyamide resin is preferably 150 to 310 ° C., more preferably 180 to 300 ° C., and further preferably 180 to 250 ° C.
  • the glass transition point of the polyamide resin is preferably 50 to 100 ° C., more preferably 55 to 100 ° C., and particularly preferably 60 to 100 ° C. Within this range, the resulting molded article tends to have better heat resistance.
  • the glass transition point refers to a glass transition point that is measured by once heating and melting a sample to eliminate the influence of the thermal history on crystallinity and then raising the temperature again.
  • the sample amount is about 1 mg
  • nitrogen gas is flowed at 30 mL / min as the atmospheric gas
  • the heating rate is 10 ° C./min.
  • the melting point can be determined from the temperature at the peak top of the endothermic peak observed when the mixture is heated from room temperature to a temperature higher than the expected melting point and melted.
  • the melted polyamide resin is rapidly cooled with dry ice, heated again to a temperature higher than the melting point at a rate of 10 ° C./min, and the glass transition point and melting point can be determined.
  • thermoplastic resin fiber used in the present invention is composed of the above thermoplastic resin component, and may be a short fiber or a continuous fiber.
  • the short fiber means a fiber of 50 mm or less
  • the continuous fiber means a fiber exceeding 50 mm.
  • continuous thermoplastic resin fibers are preferred.
  • the average fiber length of the continuous thermoplastic resin fiber used in the present invention is not particularly limited, but is preferably in the range of 1 to 100,000 m, more preferably 100 to 10 m from the viewpoint of improving moldability. 1,000 m, more preferably 1,000 to 5,000 m.
  • the section of the thermoplastic resin fiber in the present invention may be circular or flat. Only one type of thermoplastic resin fiber may be used, or two or more types may be used.
  • the continuous thermoplastic resin fiber used in the present invention is usually produced using a continuous thermoplastic resin fiber bundle in which continuous thermoplastic resin fibers are bundled, but the total per one such continuous thermoplastic resin fiber bundle.
  • the fineness is preferably 40 to 600 dtex, more preferably 50 to 500 dtex, and still more preferably 100 to 400 dtex. By setting it as such a range, the dispersion state of the continuous thermoplastic resin fiber in the obtained mixed fiber yarn becomes more favorable.
  • the number of fibers constituting such a continuous thermoplastic resin fiber bundle is preferably 1 to 200f, more preferably 5 to 100f, still more preferably 10 to 80f, and more preferably 20 to 50f. Particularly preferred. In particular, as will be described later in detail, when the material of the present invention is formed using a mixed fiber, the dispersion state of the continuous thermoplastic resin fibers becomes better.
  • thermoplastic resin fiber used in the present invention is preferably treated with a treating agent. Details of these can be referred to the description in paragraphs 0064 to 0065 of the pamphlet of WO2016 / 159340, the contents of which are incorporated herein.
  • the reinforcing fiber used in the present invention may be a short fiber or a continuous fiber.
  • the short fiber means a fiber of 50 mm or less
  • the continuous fiber means a fiber exceeding 50 mm.
  • continuous reinforcing fibers are preferred.
  • the average fiber length of the continuous reinforcing fibers used in the present invention is not particularly limited, but is preferably in the range of 1 to 100,000 m, more preferably 100 to 10,000 m from the viewpoint of improving the moldability. More preferably, it is 1,000 to 5,000 m.
  • the cross section of the reinforcing fiber in the present invention may be circular or flat. Only one type of reinforcing fiber may be used, or two or more types may be used.
  • the reinforcing fibers used in the present invention include glass fibers, carbon fibers, alumina fibers, boron fibers, ceramic fibers, inorganic fibers such as metal fibers (steel fibers, etc.), and plant fibers (Kenaf, bamboo fibers, etc.) ), Organic fibers such as aramid fibers, polyoxymethylene fibers, aromatic polyamide fibers, polyparaphenylene benzobisoxazole fibers, and ultrahigh molecular weight polyethylene fibers.
  • At least 1 type of a carbon fiber, an aramid fiber, and glass fiber is included, it is more preferable that at least 1 type of carbon fiber and glass fiber is included, and it is further more preferable that at least 1 type of carbon fiber is included.
  • the reinforcing fibers used in the present invention are preferably those treated with a treating agent.
  • a treatment agent include a sizing agent and a surface treatment agent, and those described in paragraph Nos. 0093 and 0094 of Japanese Patent No. 4894982 are preferably employed, and the contents thereof are incorporated herein.
  • the treating agent used in the present invention is preferably at least one of an epoxy resin, a urethane resin, a silane compound, an isocyanate compound, a titanate compound, and a polyamide resin, and an epoxy resin, a urethane resin, and a silane cup. More preferably, it is at least one of a ring agent, a water-insoluble polyamide resin and a water-soluble polyamide resin, more preferably at least one of an epoxy resin, a urethane resin, a water-insoluble polyamide resin and a water-soluble polyamide resin. More preferably, it is a conductive polyamide resin.
  • the amount of the treatment agent is preferably 0.001 to 1.5% by mass of the reinforcing fiber, more preferably 0.1 to 1.2% by mass, and 0.3 to 1.1% by mass. More preferably.
  • a known method can be adopted as a treatment method of the reinforcing fiber with the treatment agent.
  • the reinforcing fiber is immersed in a solution obtained by dissolving a treating agent in a solution, and the treating agent is attached to the surface of the reinforcing fiber.
  • the treatment agent can be air blown on the surface of the reinforcing fiber.
  • reinforcing fibers that have already been treated with a surface treatment agent or a treatment agent may be used, or after washing off a commercially available surface treatment agent or treatment agent, the amount of treatment agent again becomes a desired amount. The surface treatment may be performed again.
  • the material of the present invention preferably includes a mixed yarn in which the fiber region includes continuous reinforcing fiber and thermoplastic resin fiber.
  • the first region and the second region are formed from a mixed yarn containing continuous reinforcing fibers and thermoplastic resin fibers.
  • the mixed fiber used in the present invention is preferably one in which continuous reinforcing fibers and thermoplastic resin fibers are bundled through at least one treatment agent of continuous reinforcing fibers and thermoplastic resin fibers.
  • the continuous reinforcing fibers and the continuous thermoplastic resin fibers are bundled through at least one treatment agent of the continuous reinforcing fibers and the continuous thermoplastic resin fibers.
  • the volume ratio of the thermoplastic resin fiber and the continuous reinforcing fiber in the mixed yarn is preferably 0.5 to 1.5: 1.5 to 0.5. Further, the ratio of the continuous reinforcing fiber in the mixed yarn is preferably 55 to 65% by mass when the continuous reinforcing fiber is carbon fiber, and is 65 to 75% by mass when the continuous reinforcing fiber is glass fiber. It is more preferable.
  • the dispersity of the continuous reinforcing fiber in the mixed yarn is preferably 60 to 100%, more preferably 60 to 99%, still more preferably 63 to 99%, and 68 to 99%. Is particularly preferred and may be 80-99%. By setting it as such a range, it is easy to impregnate a continuous reinforcement fiber with a thermoplastic resin fiber, and the space
  • the degree of dispersion is measured in accordance with the description in paragraph 0090 of WO2016 / 159340.
  • thermoplastic resin fiber in the blended yarn, a part of the thermoplastic resin fiber may be impregnated in the continuous reinforcing fiber, but the impregnation ratio of the thermoplastic resin fiber is usually preferably 20% or less, and 15% Is more preferably 5% or less, further preferably 3% or less, and may be 1% or less.
  • the impregnation ratio of the mixed yarn is measured according to the description in paragraph 0091 of WO2016 / 159340.
  • the fibers constituting the mixed yarn is usually composed of continuous reinforcing fibers or thermoplastic resin fibers.
  • Blended yarn is usually produced using a thermoplastic resin fiber bundle and a continuous reinforcing fiber bundle.
  • the total fineness of the fibers used for the production of a single mixed yarn is 1000 to 100,000 dtex, more preferably 1500 to 50000 dtex, still more preferably 2000 to 50000 dtex, and particularly preferably 3000 to 30000 dtex.
  • the total fineness of fibers used for the production of a single mixed yarn is preferably 20,000 to 100,000 dtex, more preferably 3000 to 90,000 dtex, It is more preferably 40000 to 80000 dtex, and particularly preferably 45000 to 75000 dtex.
  • the high fineness continuous fiber means a continuous fiber having a large number of fibers constituting the continuous fiber, and usually means 50000f or more.
  • the total number of fibers used for the production of one blended yarn is preferably 100 to 100,000 f, More preferably, it is 1000 to 100,000 f, more preferably 1500 to 70000 f, and still more preferably 2000 to 20000 f.
  • the mixing property of a mixed fiber improves, and the molded article excellent in the physical property and the texture is obtained.
  • the total number of fibers used for the production of a single mixed yarn is preferably 10,000 to 500,000f, more preferably 20,000 to 400,000f. 30000-350,000f is more preferable, and 40000-300000f is more preferable.
  • the mixed yarn used in the present invention may be twisted.
  • the method of twisting is not particularly defined, and a known method can be adopted.
  • the number of twists is the type of thermoplastic resin used in the thermoplastic resin fiber, the number of fibers of the thermoplastic resin fiber bundle, the fineness, the type of continuous reinforcing fiber, the number of fibers, the fineness, the fiber of the thermoplastic resin fiber and the continuous reinforcing fiber. It can be appropriately determined according to the number ratio and the fineness ratio.
  • the number of twists can be, for example, 1 to 200 times / m (fiber length), and further 1 to 100 times / m, 1 to 70 times / m, 1 to 50 times / m, 10 to 30 times / m. It can also be. By setting it as such a structure, the molded article which was excellent in mechanical strength is obtained.
  • the mixed yarn used in the present invention When the mixed yarn used in the present invention has a tape shape, it may be folded in the width direction (direction perpendicular to the longitudinal direction of the material).
  • the folding method is not particularly defined, and a known method can be adopted.
  • the number of times of folding includes the type of thermoplastic resin used for the thermoplastic resin fiber, the number of fibers of the thermoplastic resin fiber bundle, the fineness, the type of continuous reinforcing fiber, the number of fibers, the fineness, the fiber of the thermoplastic resin fiber and the continuous reinforcing fiber It can be appropriately determined according to the number ratio and the fineness ratio.
  • the number of folding times can be, for example, 1 to 10 times, and further can be 1 to 7 times, 1 to 6 times, 1 to 5 times, and 1 to 4 times. With such a configuration, a more precise shape can be maintained.
  • the material of the present invention is a material that maintains flexibility.
  • the material of the present invention can have, for example, a deformation resistance load of 1 N or less, further 0.9 N or less, and particularly 0.8 N or less.
  • the lower limit value of the deformation resistance load is not particularly defined, but for example, it is sufficiently practical even if it is 0.1 N or more.
  • the deformation resistance load is a load applied when a material is pulled up through a guide that changes the traveling direction of the material by 90 degrees at a speed of 300 mm / min, and is measured according to a method described in an example described later.
  • the material of the present invention is a material having a small heat shrinkage rate.
  • the material of the present invention can have, for example, a heat shrinkage rate of 1% or less after heating for 1 minute at the melting point of the thermoplastic fiber + 5 ° C., and further 0.9% or less. In particular, it may be 0.8% or less.
  • the lower limit value of the heat shrinkage rate is not particularly defined, but is preferably 0%, for example.
  • the heat shrinkage rate after heating for 1 minute at the melting point of the thermoplastic resin fiber + 5 ° C. is measured according to the method described in the examples described later.
  • the manufacturing method of the material of this invention is demonstrated.
  • the manufacturing method of the material of this invention is not specifically defined, it is preferable to manufacture with the following method. That is, the first embodiment of the material manufacturing method of the present invention is a fiber composed of 20 to 100% by mass of thermoplastic resin fibers arranged in at least one direction and 80 to 0% by mass of reinforcing fibers.
  • a manufacturing method including exciting an ultrasonic wave on the surface of the substrate is disclosed. By thus oscillating ultrasonic waves, the thermoplastic resin fibers in the surface layer can be effectively melted, and the thermoplastic resin fibers in the interior can be kept in the fiber state.
  • the fibers may be arranged in one direction or in two or more directions, but preferably in one direction.
  • thermoplastic resin fibers and the reinforcing fibers are the same as those described in the above-mentioned materials, and the preferred ranges are also the same.
  • the mixed yarns are arranged in at least one direction and the ultrasonic waves are vibrated. By setting it as such an aspect, it becomes easy to control the crystallization energy at the time of temperature rising of a 1st area
  • the thermoplastic resin fibers on the surface of the raw material are preferably heated at 100 to 400 ° C., more preferably 120 to 350 ° C.
  • the thermoplastic resin fiber on the surface of the raw material is preferably heated at the melting point of the thermoplastic resin fiber + (0-40) ° C., and is preferably heated at the melting point of the thermoplastic resin fiber + (5-30) ° C. More preferred.
  • region can be maintained, impregnating a 1st area
  • an apparatus described in JP-A-2016-130011 is exemplified. That is, there is exemplified a method in which fibers (preferably mixed yarn) arranged in at least one direction are sandwiched between ultrathin films and vibrated.
  • the material of the present invention is preferably used for a molded article having a fine structure or a complicated shape because the heat shrinkage rate is small while maintaining flexibility.
  • the material of the present invention is preferably used as, for example, an optical molding material or a microwave molding material.
  • Photo molding and microwave molding are methods in which a mold made of silicone rubber or the like is used, and molding is performed by irradiating light or microwave irradiated from the outside.
  • FIG. 3 is a schematic view showing an example of a photoforming method, wherein 31 is a mold for photoforming, 32 is a material of the present invention, 33 is light, and 34 is formed of a material of the present invention.
  • the molded product is shown.
  • a mold for optical molding is used.
  • the photomolding die is not particularly defined as long as it transmits light to the inside, and a silicone rubber die or the like is used.
  • the material 32 of the present invention is placed in a mold 31. Since the material of the present invention is flexible, it can be installed so as to be matched with a complicated shape or a mold having a fine composition.
  • the mold is usually evacuated. By vacuuming in this way, pressure is applied to the material, and impregnation of the thermoplastic resin fibers can be promoted.
  • light 33 is irradiated from the outside of the mold.
  • the light 33 is appropriately selected from light that can heat and melt the thermoplastic resin contained in the material 32 of the present invention.
  • the light 33 is preferably an infrared ray.
  • microwave molding is a method in which a thermoplastic resin contained in a material is heated and melted using microwaves instead of the infrared rays.
  • appropriate means can be selected depending on the material and the like.
  • carbon fiber or glass fiber is suitable for photoforming
  • glass fiber is suitable for microwave forming.
  • photoforming is preferred.
  • optical molding or microwave molding may be performed.
  • FIG. 8 is a schematic view showing a state in which the material of the present invention, specifically, a tape-like material is laminated and each layer is partially welded.
  • the reference numerals are the same as those in FIG. 1, where 1 indicates a first region, 2 indicates a fiber region, and 3 indicates a second region. Further, reference numeral 81 in FIG. 8 denotes a welded portion.
  • the partial welding refers to an embodiment in which the materials of the present invention are welded to each other, preferably a part of the surface layer, for example, an embodiment in which 1 to 40% of the surface area of the material is welded.
  • the number of materials to be welded is preferably 2 to 10, more preferably 2 to 7, further preferably 2 to 4, and still more preferably 2.
  • the welding is usually heat welding, and specifically, welding is performed by laser irradiation.
  • a coating layer or the like is further provided on the surface layer (first region and second region) of the material of the present invention, or the material of the present invention is retained by other materials. And it is good also as a composite material.
  • An example of an embodiment of the composite material of the present invention includes the material of the present invention or a partially welded material and a second thermoplastic resin fiber that retains the shape of the material, and the second thermoplastic resin fiber (for shape retention).
  • (Resin fiber) is a composite material that is higher by 15 ° C. than the melting point of the thermoplastic resin fiber contained in the material.
  • the material of the present invention and the partially welded material have flexibility, they are preferably used in a form in which the material is folded or crossed to retain the shape. And in this invention, the molded article excellent in the external appearance is obtained by shape-retaining using the 2nd thermoplastic resin fiber 15 degreeC or more higher than melting
  • thermoplastic resin fiber constituting the material of the present invention is melted before the second thermoplastic resin fiber, and is appropriately impregnated into the reinforcing fiber. Therefore, it can be estimated that molding can be performed while maintaining a high dispersion degree of the reinforcing fibers in the composite material, and the reinforcing fibers are not disturbed and the appearance is improved. Furthermore, by suppressing such disturbance of the mixed yarn, the mechanical strength can be remarkably improved.
  • FIG. 4 shows an example of a schematic diagram of the composite material of the present invention.
  • 41 is a composite material
  • 42 is a material of the present invention
  • 43 is a second thermoplastic fiber
  • 44 is a thermoplastic resin.
  • the resin film is shown.
  • the material 42 of the present invention is arranged in one direction on the thermoplastic resin film 44 and stitched with the second thermoplastic resin fibers 43 to retain the material 42 of the present invention. ing.
  • the mixed yarns are arranged in one direction, but may be arranged in other ways. For example, the arrangement shown in FIG. 2 and FIG. 3 of the pamphlet of WO2016 / 159340 is exemplified.
  • the thermoplastic resin film preferably has a melting point of the thermoplastic resin constituting the thermoplastic resin film higher by 15 ° C. or more than the melting point of the thermoplastic resin fiber contained in the material.
  • the material 42 of the present invention is arranged on the base material (thermoplastic resin film 44), and is held by the second thermoplastic resin fibers 43.
  • Stitching is exemplified as the shape retaining means. By adopting such means, shape retention of the material of the present invention is facilitated. However, as long as the material of the present invention can be retained in the desired form, stitching to the substrate is not essential.
  • the material of the present invention can be retained even without the base material by retaining only the portion where the materials of the present invention intersect with the second thermoplastic resin fiber without stitching the base material.
  • the composite material of the present invention may be a material in which the above-mentioned material retains a partially welded material as shown in FIG. By using the partial welding material, more materials can be arranged at the time of stitching, and the productivity is further improved.
  • the 2nd thermoplastic resin fiber used by this invention consists of a thermoplastic resin composition which has a thermoplastic resin as a main component.
  • a thermoplastic resin composition which is a raw material of the 2nd thermoplastic resin fiber
  • 50 mass% or more is a thermoplastic resin normally, and 60 mass% or more is a thermoplastic resin, 70 mass% or more is preferable. It is good also as a thermoplastic resin.
  • the thermoplastic resin used for the second thermoplastic resin fiber those used for composite materials can be widely used.
  • polyolefin resins such as polyethylene and polypropylene, polyamide resins, polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • the second thermoplastic resin fiber preferably contains a polyamide resin.
  • a polyamide resin contained in the above-described thermoplastic resin component can be preferably employed.
  • thermoplastic resin composition that is the raw material of the second thermoplastic resin fiber may contain components other than the thermoplastic resin, and these are synonymous with those described above for the thermoplastic resin component.
  • the preferable range is also the same.
  • the melting point of the second thermoplastic resin fiber is preferably from 180 to 405 ° C., more preferably from 180 to 390 ° C., and further preferably from 180 to 320 ° C., depending on the type of resin used.
  • the temperature is 190 to 310 ° C, more preferably 200 to 300 ° C.
  • fusing point of 2nd thermoplastic resin fiber is 15 degreeC or more higher than melting
  • the thermoplastic resin fiber which comprises the material of this invention can be impregnated, without disturbing the dispersion
  • Difference between melting point of second thermoplastic resin fiber and melting point of thermoplastic resin fiber contained in material of present invention melting point of second thermoplastic resin fiber ⁇ melting point of thermoplastic resin fiber contained in material of present invention
  • the upper limit of the difference between the melting point of the second thermoplastic resin fiber and the melting point of the thermoplastic resin fiber contained in the material of the present invention is not particularly defined, but is preferably 100 ° C. or less, and 80 ° C. or less. It is more preferable to set it to 75 ° C. or less. By setting it as such a range, after the thermoplastic resin which comprises the material of this invention fuse
  • the difference between the melting point of the resin (film resin) constituting the thermoplastic resin film as the shape-retaining substrate and the melting point of the thermoplastic resin fiber contained in the material of the present invention (the melting point of the film resin—included in the material of the present invention)
  • the melting point of the thermoplastic resin fiber can be 16 ° C. or higher, further 17 ° C. or higher, and particularly 18 ° C. or higher.
  • the upper limit of the difference between the melting point of the film resin and the melting point of the thermoplastic resin fiber contained in the material of the present invention is not particularly defined, but is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. And 75 ° C. or less are particularly preferable.
  • Another example of the embodiment of the composite material of the present invention includes the material of the present invention and a fiber for retaining the material, and the fiber for retaining the shape is subjected to normal heating (for example, 320 ° C. or less). The fiber is not melted by heating.
  • fibers include carbon fibers, glass fibers, aramid resin fibers, modified polyphenylene ether resin fibers, polyetherimide fibers, polyether ether ketone fibers, and polyimide fibers.
  • the thickness of the composite material of the present invention can be set to 0.2 to 4 mm, for example.
  • the present invention also discloses a method for producing a molded article, which includes optical molding or microwave molding of the material of the present invention or the composite material described above.
  • a material of the present invention or a composite material is disposed in a mold for optical molding or microwave molding so as to have a thickness of 1 to 2 mm.
  • Microwave shaping is exemplified.
  • the field of use of the molded product formed by molding the material of the present invention and the composite material is not particularly defined, and is not limited to automobile, aircraft and other transport parts, general machine parts, precision machine parts, electronic / electric equipment parts, OA equipment parts. Widely used in building materials and housing equipment parts, medical equipment, leisure sports equipment, playground equipment, medical products, food packaging films and other daily necessities, defense and aerospace products.
  • it is suitably used as a molding material for medical devices (such as long leg devices), window frames for automobiles, trains, boats, etc., frames for goggles of helmets, glasses frames, safety shoes, and the like.
  • the composite material of the present invention has a high utility value as a medical device forming material and a secondary structural member for automobiles.
  • the internal temperature was raised, and when the temperature reached 250 ° C., the pressure in the reaction vessel was reduced, and the internal temperature was further raised to continue the melt polycondensation reaction at 255 ° C. for 20 minutes. Thereafter, the inside of the system was pressurized with nitrogen, and the obtained polymer was taken out of the strand die and pelletized to obtain a polyamide resin MPXD10.
  • the obtained polyamide resin had a melting point of 213 ° C. and a number average molecular weight of 15,400.
  • MXD6 metaxylylene adipamide resin (manufactured by Mitsubishi Gas Chemical Co., Inc., grade S6001), melting point 237 ° C., number average molecular weight 16800 Shape retention polyamide 66 fiber: Gunze, Woolley nylon, melting point: 265 ° C
  • thermoplastic resin ⁇ Melting point of thermoplastic resin> DSC-60 manufactured by SHIMADZU CORPORATION is used, the sample amount is about 1 mg, nitrogen is flowed at 30 mL / min as the atmospheric gas, and the temperature rising rate is from room temperature (25 ° C.) at 10 ° C./min.
  • the melting points of the thermoplastic resin component and the thermoplastic resin fiber are similarly measured.
  • Continuous reinforcing fiber Continuous carbon fiber: Mitsubishi Rayon Co., Ltd., Pyrofil-TR-50S-12000-AD, 8000 dtex, number of fibers 12000f. Surface treatment with epoxy resin.
  • Continuous glass fiber manufactured by Nitto Boseki Co., Ltd., ECG 75 1/0 0.7Z, fineness 687 dtex, number of fibers 400 f, surface-treated with sizing agent.
  • thermoplastic resin shown in Table 1 was used to form a fiber according to the following method.
  • a thermoplastic resin fiber bundle obtained by melt-extruding a thermoplastic resin with a single-screw extruder having a 30 mm ⁇ screw, extruding it from a 60-hole die into a strand shape, stretching it while winding it with a roll, and winding it around a wound body Got.
  • the melting temperature was the melting point of the thermoplastic resin + 15 ° C.
  • the blended yarn was produced according to the following method. Each fiber is drawn out from a wound body of thermoplastic resin fibers having a length of 1 m or more and a continuous reinforcing fiber winding body having a length of 1 m or more, and opened by air blow while passing through a plurality of guides. went. While opening the fibers, the thermoplastic resin fibers and the continuous reinforcing fibers were bundled, and air blow was given while passing through a plurality of guides to promote homogenization.
  • the obtained mixed fiber is made of continuous carbon fiber (Pyrofil-TR-50S-12000-AD) and has a fineness of about 13,000 dtex, a number of fibers of about 13500 f, and a high-fineness continuous carbon fiber (Pyrofil-TRH50-60M). What was used had a fineness of about 65000 dtex and a fiber number of about 675000 f, and those using continuous glass fiber had a fineness of about 15000 dtex and a fiber number of about 10,000 f.
  • the volume ratio of continuous thermoplastic resin fibers to continuous reinforcing fibers was 1: 1.
  • the ratio of continuous reinforcing fiber is 61% by mass of mixed fiber using continuous carbon fiber (Pyrofil-TR-50S-12000-AD), and mixed fiber using high-fineness continuous carbon fiber (Pyrofil-TRH50-60M).
  • the yarn was 61% by mass and the mixed fiber using glass fiber was 69% by mass.
  • a vibrating horn was applied to one surface to form one surface layer (first region), and then the vibrating horn was applied to the back surface to form the other surface layer (second region).
  • the applied pressure was 0.2 MPa
  • the frequency was 20 kHz
  • the output was 2400 kW
  • the running speed was adjusted so that the surface layer (first region or second region) and the fiber region shown in Table 1 existed.
  • W3080 manufactured by Future Co., Ltd. was used.
  • the thermoplastic resin was melted to the inside, and for Comparative Example 2, ultrasonic treatment was not performed.
  • thermoplastic resin component including thermoplastic resin and additives blended as necessary
  • razor Fluorescence Sensor, Feather High Stainless
  • DSC differential scanning calorimeter
  • ⁇ Material surface layer, interior and material thickness> Among the materials, for the material in the above state A, arbitrary 5 points of the materials were selected, and the average value was taken as the total thickness of the materials. Next, in the arbitrary five points, in the thickness direction, a region in which the ratio of the thermoplastic resin that forms a layered or film-shaped region in the entire thermoplastic resin is 90% by area or more is defined as a surface layer (first region). Or the second region), and the average thickness was the thickness of the surface layer (first region, second region). The value obtained by subtracting the thickness of the surface layer (first region and second region) from the total thickness of the material was defined as the thickness of the fiber region. The thickness was analyzed from the image obtained by the cross-sectional observation.
  • Density ratio of fiber region (density of fiber region) / (theoretical density)
  • the deformation resistance load which is an index indicating the softness that is not necessary at the time of textile production, was measured.
  • the material 52 obtained from the wound body 51 is unwound, and after passing through the guide roll 53, the traveling direction of the material 52 is changed by 90 ° C., and then has a cylindrical passage having the dimensions shown in FIG. 5.
  • a drawing jig 54 manufactured by Quadrant, manufactured by processing MC nylon was passed, and the end was fixed to a load meter 55. A load applied when the load meter 55 was pulled up was measured as a deformation resistance load value.
  • FIGS. 5A and 5B are schematic views of an apparatus for measuring a deformation resistance load in the embodiment, where FIG. 5A is a cross-sectional view and FIG. 5B is a perspective view.
  • the heat shrinkage rate was measured using the jig shown in FIG.
  • the fixtures 61 at both ends do not move, and the fixture 62 between them slides without resistance.
  • shape retention Using the thermoplastic resin described in the column of “shape-retaining thermoplastic resin fiber” shown in Table 1, shape-retaining thermoplastic resin fibers were produced in the same manner as in the above ⁇ Manufacture of continuous thermoplastic resin fibers>.
  • the material obtained above is arranged as shown in FIG. 7 on the shape-retaining polyamide 66 film produced above, and two shape-retaining thermoplastic resin fibers 72 are twisted to form a mixed yarn.
  • the shape was retained by stitching on a shape-retaining polyamide 66 film to obtain a composite material.
  • 71 indicates a material of the present invention
  • 72 indicates a shape-retaining thermoplastic resin fiber.
  • B The shape could not be retained properly, for example, part of the material was broken.
  • Example 2-6 and Example 8 and Comparative Examples 1 and 2 In Example 1, it changed as shown in following Table 1, and performed others similarly.
  • Example 7 In Example 1, it changed as shown to a table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

繊維を用いた材料の利点である、しなやかさを維持しつつ、かつ、熱収縮率が小さい新規な材料ならびに、前記材料の製造方法、前記材料を用いた部分溶着材料、複合材料および成形品の製造方法の提供。 厚み方向に連続して、第一の領域、繊維領域、第二の領域を有し、前記第一の領域および前記第二の領域は、それぞれ独立に、20~100質量%の熱可塑性樹脂成分と、80~0質量%の強化繊維とから構成される樹脂層であり、前記繊維領域は、20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成され、前記第一の領域に含まれる熱可塑性樹脂成分および前記第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、2J/g以上であり、前記繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満である、材料;但し、昇温時結晶化エネルギーとは、示差走査熱量計(DSC)を用いて、窒素気流中、25℃から前記熱可塑性樹脂成分または熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱して測定した値をいう。

Description

材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法
 本発明は、材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法に関する。
 熱可塑性樹脂は、各種成形材料として、広く用いられている。近年、繊維状にした熱可塑性樹脂(熱可塑性樹脂繊維)を種々の成形材料として用いることも検討されている。特に、成形品の強度向上のため、熱可塑性樹脂繊維に、連続強化繊維を配合した混繊糸も知られている(特許文献1)。
特開2014-173196号公報
 上述のような繊維状材料は、しなやかであり、操作性に優れるが、成形時に熱可塑性樹脂繊維が収縮してしまう、という問題がある。特に、上述の混繊糸のように、強化繊維と共に成形する場合には、熱可塑性樹脂繊維と強化繊維の熱収縮率が異なるため、さらに問題となりやすい。
 本発明は、かかる課題を解決することを目的とするものであって、熱可塑性樹脂繊維を用いた材料の利点である、しなやかさを維持しつつ、かつ、熱収縮率が小さい新規な材料、ならびに、前記材料の製造方法、前記材料を用いた部分溶着材料、複合材料および成形品の製造方法を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、下記手段<1>により、好ましくは<2>~<21>により、上記課題は解決された。
<1>厚み方向に連続して、第一の領域、繊維領域、第二の領域を有し、前記第一の領域および前記第二の領域は、それぞれ独立に、20~100質量%の熱可塑性樹脂成分と、80~0質量%の強化繊維とから構成される樹脂層であり、前記繊維領域は、20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成され、前記第一の領域に含まれる熱可塑性樹脂成分および前記第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、2J/g以上であり、前記繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満である、材料;但し、昇温時結晶化エネルギーとは、示差走査熱量計(DSC)を用いて、窒素気流中、25℃から前記熱可塑性樹脂成分または熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱して測定した値をいう。
<2>前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、組成の80質量%以上が互いに共通する、<1>に記載の材料。
<3>前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、それぞれ独立に、ポリアミド樹脂を含む、<1>または<2>に記載の材料。
<4>前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、それぞれ独立に、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂である、<1>または<2>に記載の材料。
<5>前記繊維領域は、25~80質量%の熱可塑性樹脂繊維と、75~20質量%の強化繊維とから構成される、<1>~<4>のいずれか1つに記載の材料。
<6>前記第一の領域、前記第二の領域および前記繊維領域は、それぞれ独立に25~80質量%の熱可塑性樹脂成分と、75~20質量%の強化繊維とから構成される、<1>~<4>のいずれか1つに記載の材料。
<7>前記第一の領域、前記第二の領域および前記繊維領域は、それぞれの領域に含まれる強化繊維の質量割合の差が、互いに、5質量%以下である、<6>に記載の材料。
<8>前記強化繊維が炭素繊維およびガラス繊維の少なくとも一方を含む、<5>~<7>のいずれか1つに記載の材料。
<9>前記強化繊維が連続強化繊維である、<5>~<8>のいずれか1つに記載の材料。
<10>前記繊維領域は、連続強化繊維と熱可塑性樹脂繊維を含む混繊糸を含む、<9>に記載の材料。
<11>前記第一の領域および前記第二の領域は、連続強化繊維と熱可塑性樹脂繊維を含む混繊糸から形成される、<9>または<10>に記載の材料。
<12>前記第一の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと前記繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差、および、前記第二の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと前記繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差が、それぞれ独立に、3J/g以上である、<1>~<11>のいずれか1つに記載の材料。
<13>前記材料の総厚みに対する、前記繊維領域の厚みが、20%以上である、<1>~<12>のいずれか1つに記載の材料。
<14>光成形用材料またはマイクロ波成形用材料である、<1>~<13>のいずれか1つに記載の材料。
<15>変形抵抗荷重が1N以下である、<1>~<14>のいずれか1つに記載の材料;但し、変形抵抗荷重とは、材料を速度300mm/分にて、前記材料の進行方向を90度変化させるガイドを経て引き上げる際にかかる荷重をいう。
<16>前記熱可塑性樹脂繊維の融点+5℃で1分間加熱した後の熱収縮率が1%以下である、<1>~<15>のいずれか1つに記載の材料。
<17>テープ状である、<1>~<16>のいずれか1つに記載の材料。
<18><1>~<17>のいずれか1つに記載の材料2つ以上が一部で溶着している部分溶着材料。
<19>少なくとも一方向に配列された20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成される繊維の表面に、超音波を加振することを含む、<1>~<17>のいずれか1つに記載の材料の製造方法。
<20><1>~<17>のいずれか1つに記載の材料または<18>に記載の部分溶着材料と、前記材料または部分溶着材料を保形する第二の熱可塑性樹脂繊維を含み、前記第二の熱可塑性樹脂繊維は、前記材料または部分溶着材料に含まれる熱可塑性樹脂繊維の融点よりも15℃以上高い、複合材料。
<21><1>~<17>のいずれか1つに記載の材料、<18>に記載の部分溶着材料または<20>に記載の複合材料を、光成形またはマイクロ波成形することを含む、成形品の製造方法。
 本発明により、熱可塑性樹脂繊維を用いた材料の利点である、しなやかさを維持しつつ、かつ、熱収縮率が小さい新規な材料ならびに、前記材料の製造方法、前記材料を用いた部分溶着材料、複合材料および成形品の製造方法を提供可能になった。
本発明の材料の断面の概略図である。 本発明の材料の他の一例の断面の概略図である。 光成形の方法の一例を示す概略図である。 本発明の複合材料の概略図の一例を示す。 実施例における変形抵抗荷重を測定する装置の概略図である。 実施例における熱収縮率を測定する装置の概略図である。 実施例における複合材料を形成するための材料の配列状態を示す概略図である。 本発明の部分溶着材料の断面の概略図である。
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の材料は、厚み方向に連続して、第一の領域、繊維領域、第二の領域を有し、前記第一の領域および前記第二の領域は、それぞれ独立に、20~100質量%の熱可塑性樹脂成分と、80~0質量%の強化繊維とから構成される樹脂層であり、前記繊維領域は、20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成され、前記第一の領域に含まれる熱可塑性樹脂成分および前記第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、2J/g以上であり、前記繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満であることを特徴とする。但し、昇温時結晶化エネルギーとは、示差走査熱量計(DSC)を用いて、窒素気流中、25℃から前記熱可塑性樹脂成分または熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱して測定した値をいう。
 このような材料とすることにより、しなやかさを維持しつつ、熱可塑性樹脂の収縮を抑制可能になる。本発明では、表層の樹脂層(第一の領域および第二の領域)を構成する熱可塑性樹脂成分の昇温時結晶化エネルギーを高い状態とし、内部(繊維領域)では、熱可塑性樹脂を繊維状のまま存在させ、かつ、繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーを、表層に含まれる熱可塑性樹脂成分よりも、低くすることによって達成される。このように表層の熱可塑性樹脂繊維の昇温時結晶化エネルギーを高くすると、熱可塑性樹脂繊維のうち、非結晶状態のものが一定量以上存在するため、しなやかさを維持しつつ、寸法変化を抑制することができる。さらに、第一および第二の領域が表層にあることにより、内部の繊維状の熱可塑性樹脂が保護され、しなやかさと操作性が確保される。
<構成>
 本発明の材料は、厚み方向に連続して、第一の領域、繊維領域、第二の領域を有する。
 図1(a)は、本発明の材料がテープ状である場合の断面の概略図である。具体的には、図1(a)は、テープ状の材料の長手方向に垂直な方向の断面の概略図であって、1が第一の領域を、2が繊維領域を、3が第二の領域を示している。図1(a)の矢印の方向が厚み方向である。
 第一の領域および第二の領域は、それぞれ独立に、熱可塑性樹脂成分を必須とし、強化繊維を含んでいてもよい樹脂層である。樹脂層は、熱可塑性樹脂成分が溶融し、層状またはフィルム状領域を形成した状態である。
 また、樹脂層は、強化繊維を含んでいてもよく、強化繊維を含む場合は、熱可塑性樹脂成分は、概ね、強化繊維に含浸している。この場合、樹脂層における熱可塑性樹脂の含浸率は、表面から厚さ方向に20μmまでの領域において、70%以上であることが好ましく、90%以上であることがより好ましい。含浸率の測定は、WO2016/039242号パンフレットの段落0108の記載を参酌でき、この内容は本明細書に組み込まれる。
 繊維領域は、熱可塑性樹脂繊維を必須とし、強化繊維を含んでいてもよい。
 第一の領域1と繊維領域2は厚み方向に連続しており、両方の領域の明確な界面があってもよいし、なくてもよい。明確な界面がない例としては、第一の領域の繊維領域に近い側は、熱可塑性樹脂成分の溶融割合が低く、すなわち、熱可塑性樹脂成分の一部が溶融せずに繊維または繊維に近い形態となっていてもよい。また、繊維領域2と第二の領域3も厚み方向に連続しており、両方の領域の明確な界面があってもよいし、なくてもよい。すなわち、「連続して」とは、第一の領域1と、繊維領域2と、第二の領域3が間に他の領域を含まずに、厚み方向に続いて存在していることをいう。
 本発明では、さらに、第一の領域と第二の領域は連続していてもよい。図1(b)は、本発明の材料における、第一の領域と第二の領域が連続している態様について、材料の長手方向(繊維長方向)に垂直な方向の断面の概略図を示したものである。符号は、図1(a)と同じである。矢印は、図1(b)に記載の材料の厚み方向を示している。図1(b)の形態では、表層(第一の領域1および第二の領域3)が内部(繊維領域2)を覆う構成となっている。このような構成とすることにより、材料の取り扱い性がより向上する傾向にある。図1(b)の実施形態では、第一の領域と第二の領域の境界は明確であってもよいし、明確でなくてもよい。
 図1(b)の実施形態も、テープ状であるが、図1(b)に示すように、断面が楕円形など、四角形ではない場合、材料の長手方向に垂直な方向のうち、最も厚い部分を材料の厚み(総厚み)とし、前記最も厚い部分が第一の領域1、繊維領域2、第二の領域3を形成していればよい。
 尚、本明細書における、楕円形、四角形などは、幾何学的な意味での楕円形、四角形に限らず、本発明の技術分野において、通常、ほぼ楕円形状、ほぼ四角形状と解釈されるものを含む趣旨である。
 図2は、本発明の材料がテープ状である場合の他の一例の断面の概略図である。表層である樹脂層に強化繊維を多く配合し、繊維領域に熱可塑性樹脂繊維を多く配合した態様である。
 図2では、黒丸が強化繊維の断面を、白丸が熱可塑性樹脂繊維の断面を示している。第一の領域21および第二の領域22である樹脂層には、強化繊維が分散している。繊維領域23では、溶融した樹脂は殆ど存在せず、熱可塑性樹脂繊維が多いが、表層(第一の領域および第二の領域)に近い領域では、強化繊維も一部存在している。
 本発明では、繊維領域の密度が、理論最大密度に対し、1.2~6.0であることが好ましく、1.5~5.0であることがより好ましく、1.8~4.5であることがさらに好ましい。このような範囲とすることにより、しなやかさを維持すると同時に、回巻体にした際の膨らみやよれを効果的に低減することが可能になる。
 理論最大密度とは、繊維を全く空隙が無いと仮定した時の密度を言う。
 本発明では、材料の総厚みが、10~1000μmであることが好ましく、30~500μmであることがより好ましく、50~250μmであることがさらに好ましく、100~210μmであることが一層好ましい。このような範囲とすることにより、よりしなやかさで、かつ、熱収縮率が小さい材料が得られる。
 本発明の材料は、材料の総厚みに対する、前記繊維領域の厚みが、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがさらに好ましい。上限としては、90%以下であることが好ましく、80%以下であることがより好ましく、75%以下であることがさらに好ましい。
 本発明では、第一の領域および第二の領域の厚みがそれぞれ、5~100μmであることが好ましく、10~90μmであることがより好ましく、15~80μmであることがさらに好ましい。第一の領域と第二の領域の厚みは、通常、概ね同じ厚みであるが、用途等に応じて、一方の厚みを他方の厚みよりも厚くしてもよい。
 本発明の材料が、テープ状である場合、テープの長手方向(繊維長方向)に垂直な方向の長さ(テープの幅)は、1~100mmであることが好ましく、2~60mmであることがより好ましく、3~40mmであることがさらに好ましい。また、テープの長手方向の長さ(テープの長さ)は、1~100,000mであることが好ましく、10~10,000mであることがより好ましく、80~5,000mであることがさらに好ましい。
 特に、材料の総厚み(t)とテープの幅(w)の関係である、w/tが1~10000であることが好ましく、10~500であることがより好ましく、10~100であることがさらに好ましく、20~80であることが一層好ましく、30~60であることがより一層好ましい。このような範囲とすることにより、よりしなやかな材料が得られる。
 本発明では、詳細を後述するとおり、繊維領域に含まれる樹脂繊維が、連続熱可塑性樹脂繊維であることが好ましい。さらに、繊維領域には、強化繊維も含まれることが好ましく、強化繊維は連続強化繊維であることが好ましい。特に、繊維領域には、連続強化繊維と熱可塑性樹脂繊維(好ましくは連続熱可塑性樹脂繊維)を含む混繊糸が含まれることが好ましい。これらの繊維は、一方向に配列していてもよいし、二方向以上に配列していてもよいが、好ましくは一方向に配列している態様である。
<昇温時結晶化エネルギー>
 本発明では、第一の領域に含まれる熱可塑性樹脂成分および第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、2J/g以上であり、繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満である。
 第一の領域に含まれる熱可塑性樹脂成分および第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、昇温時結晶化エネルギーが、2J/g以上であり、3J/g以上であることが好ましく、4J/g以上であることがより好ましい。前記昇温時結晶化エネルギーの上限値は、それぞれ、40J/g以下であることが好ましく、30J/g以下であることがより好ましく、20J/g以下であることがさらに好ましく、10J/g以下、8J/g以下であってもよい。
 本発明ではまた、繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満であり、0.8J/g以下であることが好ましく、0.6J/g以下であることがより好ましい。前記昇温時結晶化エネルギーの下限値は、0.0J/g以上であることが好ましく、0.1J/g以上であることがより好ましく、0.2J/g以上であることがさらに好ましい。
 さらに第一の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差、および、第二の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差が、それぞれ独立に、3J/g以上であることが好ましく、4J/g以上であることがより好ましく、4.5J/g以上であることがさらに好ましく、5J/g以上であることが一層好ましい。前記昇温時結晶化エネルギーの差の上限値は、それぞれ、40J/g以下であることが好ましく、30J/g以下であることがより好ましく、20J/g以下であることがさらに好ましく、10J/g以下、8J/g以下であってもよい。このような範囲とすることにより、材料の熱収縮率をより効果的に低減できる。
 昇温時結晶化エネルギーとは、示差走査熱量計(DSC)を用いて、窒素気流中、25℃から、第一の領域および第二の領域については、熱可塑性樹脂成分の融点、繊維領域については、熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱して測定した値をいう。
 なお、本発明における融点とは、DSC(示差走査熱量測定)法により観測される昇温時の吸熱ピークのピークトップの温度であり、具体的には、後述する実施例に記載の方法で測定された値を言う。
 詳しくは、後述する実施例に記載の方法に従って測定される。実施例で使用する機器等が廃番等により入手不可能な場合は、同等の性能を有する他の機器等を使用することができる。以下、他の測定方法についても同様である。
 本発明では、熱可塑性樹脂(熱可塑性樹脂成分、熱可塑性樹脂繊維)が2種以上の樹脂からなる場合、融点の高い方の樹脂の融点をもって、熱可塑性樹脂等の融点とする。また、熱可塑性樹脂等が融点を2つ以上有する場合、高い方の融点をもって熱可塑性樹脂等の融点とする。
<材料組成>
 本発明では、第一の領域および第二の領域は、それぞれ独立に、20~100質量%の熱可塑性樹脂成分と、80~0質量%の強化繊維とから構成され、25~80質量%の熱可塑性樹脂成分と、75~20質量%の強化繊維とから構成されることが好ましく、30~70質量%の熱可塑性樹脂成分と、70~30質量%の強化繊維とから構成されることがより好ましく、49~30質量%の熱可塑性樹脂成分と、51~70質量%の強化繊維とから構成されることがさらに好ましく、45~30質量%の熱可塑性樹脂成分と、55~70質量%の強化繊維とから構成されることが一層好ましい。
 本発明の材料における第一の領域および第二の領域は、熱可塑性樹脂成分と、必要に応じ配合される強化繊維以外の成分を含んでいてもよいが、実質的に、熱可塑性樹脂成分と、必要に応じ配合される強化繊維のみから構成されることが好ましい。
 ここでの、「実質的に」とは、上述した成分以外の他の成分が各領域における5質量%以下であることをいい、3質量%以下であることが好ましく、1質量%以下であることがさらに好ましい。
 本発明では、また、繊維領域は、20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成され、25~80質量%の熱可塑性樹脂繊維と、75~20質量%の強化繊維とから構成されることが好ましく、30~70質量%の熱可塑性樹脂繊維と、70~30質量%の強化繊維とから構成されることがより好ましく、49~30質量%の熱可塑性樹脂繊維と、51~70質量%の強化繊維とから構成されることがさらに好ましく、45~30質量%の熱可塑性樹脂繊維と、55~70質量%の強化繊維とから構成されることが一層好ましい。
 また、本発明の材料における繊維領域は、熱可塑性樹脂繊維と、必要に応じ配合される強化繊維成分に加え、熱可塑性樹脂繊維が溶融した熱可塑性樹脂成分が含まれていてもよい。さらに、本発明の材料における繊維領域は、実質的に、熱可塑性樹脂繊維と、任意成分としての熱可塑性樹脂繊維が溶融した熱可塑性樹脂成分、ならびに、必要に応じ配合される強化繊維のみから構成されることが好ましい。
 ここでの、「実質的に」とは、上述した成分以外の他の成分が各領域における5質量%以下であることをいい、3質量%以下であることが好ましく、1質量%以下であることがさらに好ましい。
 本発明の材料では、例えば、以下の態様が例示される。
(1)第一の領域および第二の領域が、それぞれ独立に、熱可塑性樹脂成分と強化繊維から構成される樹脂層であり、繊維領域が熱可塑性樹脂繊維から構成される領域である態様
(2)第一の領域および第二の領域が、それぞれ独立に、熱可塑性樹脂成分から構成される樹脂層であり、繊維領域が熱可塑性樹脂繊維と強化繊維とから構成される領域である態様
(3)第一の領域および第二の領域が、それぞれ独立に、熱可塑性樹脂成分と強化繊維から構成される樹脂層であり、繊維領域が熱可塑性樹脂繊維と強化繊維とから構成される領域である態様
 本発明の材料は、上記(3)が好ましい。上記(1)~(3)は、上記以外の成分を含んでいてもよい、しかしながら、各領域は、上記成分が全体の90質量%以上を占めることが好ましい。
 本発明の材料は、第一の領域、第二の領域および繊維領域のいずれか1つ以上の領域にのみ強化繊維を含んでいてもよい。このような構成とすることにより、昇温時結晶化エネルギーを微調整することができる。また、同時に成形品の強化繊維の含有量を調整することもできる。
 例えば、後述する混繊糸で、熱可塑性樹脂繊維をはさみ、両面の混繊糸を超音波加振しながら、樹脂層を形成することが考えられる。このような材料では、超音波の加振の程度を調整することにより、繊維領域は熱可塑性樹脂繊維のみを含み、第一の領域および第二の領域は、強化繊維を含む樹脂層とすることができる。また、上記図2に示す様に、超音波加振の程度によっては、混繊糸を構成する熱可塑性樹脂繊維の一部が溶融せずに残り、第一の領域21および第二の領域22は、樹脂層中に強化繊維(図2中の黒丸)が存在し、繊維領域23では、強化繊維が多い領域と、強化繊維が少ないあるいは存在せず、熱可塑性樹脂繊維(図2中の白丸)が多く存在する領域が存在する場合もあろう。
 本発明で用いる熱可塑性樹脂繊維は、通常、熱可塑性樹脂成分から構成される。
 本発明の材料は、第一の領域に含まれる熱可塑性樹脂成分と、第二の領域に含まれる熱可塑性樹脂成分と、繊維領域に含まれる熱可塑性樹脂繊維は、組成の80質量%以上が互いに共通することが好ましく、90質量%以上が互いに共通することがより好ましく、95質量%が互いに共通することがさらに好ましく、98質量%以上が互いに共通することが一層好ましい。このような範囲とすることにより、成形時の寸法安定性により優れた材料が得られる。
 また、本発明の材料の他の実施形態として、第一の領域を構成する熱可塑性樹脂と第二の領域を構成する熱可塑性樹脂の組成を異なるものとする態様も挙げられる。異なる組成の熱可塑性樹脂を用いることにより、第一の領域と第二の領域に異なる機能を持たせることができる。例えば、第一の領域を構成する熱可塑性樹脂成分が、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し(好ましくは0~70モル%のパラキシリレンジアミンと、100~30モル%のメタキシリレンジアミンからなるキシリレンジアミンに由来し)、ジカルボン酸由来の構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂を70質量%以上含み、第二の領域を構成する熱可塑性樹脂成分が、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミン(好ましくはメタキシリレンジアミン)に由来し、ジカルボン酸由来の構成単位の50モル%以上がアジピン酸に由来するポリアミド樹脂を70質量%以上含み、繊維領域に含まれる熱可塑性樹脂繊維がジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂を35質量%以上、および、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の50モル%以上がアジピン酸に由来するポリアミド樹脂を35質量%以上含む態様が例示される。このような材料とすることにより、第一の領域では、外部からの水分の侵入を効果的に抑制することができ、第二の領域では、金属との密着性を向上させることができる。
<<熱可塑性樹脂成分>>
 次に、第一の領域に含まれる熱可塑性樹脂成分、第二の領域に含まれる熱可塑性樹脂成分および熱可塑性樹脂繊維を構成する熱可塑性樹脂成分について説明する。
 前記熱可塑性樹脂成分は、それぞれ独立に、熱可塑性樹脂を主成分として含む。主成分とは、熱可塑性樹脂成分の80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上が熱可塑性樹脂であることをいう。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂類、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂類、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン等のポリエーテルケトン樹脂類、ポリエーテルスルフォン樹脂、ポリエーテルサルファイド樹脂、熱可塑性ポリエーテルイミド、熱可塑性ポリアミドイミド、全芳香族ポリイミド、半芳香族ポリイミド等の熱可塑性ポリイミド樹脂類等を用いることができ、ポリアミド樹脂であることが好ましい。ポリアミド樹脂の詳細は後述する。本発明で用いる熱可塑性樹脂は、結晶性樹脂であることが好ましい。
 熱可塑性樹脂は、1種のみであってもよいし、2種以上であってもよい。ポリアミド樹脂等の同種の樹脂を用いてもよい。
 本発明で用いる熱可塑性樹脂成分は、熱可塑性樹脂を主成分とし、他の成分を含んでいてもよい。
 本発明で用いる熱可塑性樹脂成分は、エラストマー成分を含んでいてもよい。
 エラストマー成分としては、例えば、ポリオレフィン系エラストマー、ジエン系エラストマー、ポリスチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、フッ素系エラストマー、シリコン系エラストマー等公知のエラストマーが使用でき、好ましくはポリオレフィン系エラストマーおよびポリスチレン系エラストマーである。これらのエラストマーとしては、ポリアミド樹脂に対する相溶性を付与するため、ラジカル開始剤の存在下または非存在下で、α,β-不飽和カルボン酸およびその酸無水物、アクリルアミド並びにそれらの誘導体等で変性した変性エラストマーも好ましい。
 熱可塑性樹脂成分に、エラストマー成分を配合する場合、エラストマー成分の配合量は、熱可塑性樹脂成分の5~25質量%であることが好ましい。
 さらに、本発明の目的・効果を損なわない範囲で、本発明で用いる熱可塑性樹脂成分には、繊維状以外のフィラー、酸化防止剤、熱安定剤等の安定剤、耐加水分解性改良剤、耐候安定剤、艶消剤、紫外線吸収剤、核剤、可塑剤、分散剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、離型剤、滑剤等の添加剤等を加えることができる。これらの詳細は、特許第4894982号公報の段落番号0130~0155の記載を参酌でき、これらの内容は本明細書に組み込まれる。尚、本発明で用いる熱可塑性樹脂成分は、上記フィラーを含んでいてもよいが、上記フィラーを含まないことが好ましい。具体的には、熱可塑性樹脂成分中の上記フィラーの含有量が、3質量%以下であることをいう。
 本発明で用いる熱可塑性樹脂成分の好ましい実施形態として、熱可塑性樹脂成分の80質量%以上(好ましくは90質量%以上、より好ましくは95質量%以上)が、ポリアミド樹脂である形態が例示される。
 本発明で用いるポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリアミド66/6T、ポリキシリレンアジパミド、ポリキシリレンセバカミド、ポリキシリレンドデカミド、ポリアミド9T、ポリアミド9MT、ポリアミド6I/6T等が挙げられる。
 上述のようなポリアミド樹脂の中でも、成形性、耐熱性の観点から、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂(以下、「XD系ポリアミド」ということがある)であることが好ましい。
 また、ポリアミド樹脂が混合物である場合は、ポリアミド樹脂中のXD系ポリアミドの比率が50質量%以上であることが好ましく、80質量%以上であることがより好ましく、さらには90質量%以上、特には95質量%以上であってもよい。
 XD系ポリアミドは、ジアミン由来の構成単位の、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、一層好ましくは95モル%以上が、キシリレンジアミンに由来し、ジカルボン酸由来の構成単位の、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上、一層好ましくは90モル%以上、より一層好ましくは95モル%以上が、炭素原子数が好ましくは4~20のα,ω-直鎖脂肪族ジカルボン酸に由来する。
 上記キシリレンジアミンは、少なくともメタキシリレンジアミンを含むことが好ましく、30~100モル%のメタキシリレンジアミンと、70~0モル%のパラキシリレンジアミンからなることがより好ましく、50~100モル%のメタキシリレンジアミンと、50~0モル%のパラキシリレンジアミンからなることがさらに好ましい。
 XD系ポリアミドの原料ジアミン成分として用いることができるメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の50モル%未満であり、30モル%以下であることが好ましく、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸が好ましく、セバシン酸が特に好ましい。
 上記炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といった異性体等のナフタレンジカルボン酸等を例示することができ、1種または2種以上を混合して使用できる。
 ジカルボン酸成分として、炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性、バリア性の点から、テレフタル酸、イソフタル酸を用いることが好ましい。テレフタル酸、イソフタル酸の割合は、好ましくはジカルボン酸由来の構成単位の30モル%以下であり、より好ましくは1~30モル%、特に好ましくは5~20モル%の範囲である。
 さらに、ジアミン成分、ジカルボン酸成分以外にも、ポリアミド樹脂を構成する成分として、本発明の効果を損なわない範囲でε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。
 本発明で用いるポリアミド樹脂は、数平均分子量(Mn)が6,000~30,000であることが好ましく、より好ましくは8,000~28,000であり、さらに好ましくは9,000~26,000であり、一層好ましくは10,000~24,000であり、より一層好ましくは11,000~22,000である。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 なお、ここでいう数平均分子量(Mn)とは、ポリアミド樹脂の末端アミノ基濃度[NH2](μ当量/g)と末端カルボキシル基濃度[COOH](μ当量/g)から、次式で算出される。
数平均分子量(Mn)=2,000,000/([COOH]+[NH2])
 ポリアミド樹脂の製造方法は、特開2014-173196号公報公報の段落0052~0053の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明においては、ポリアミド樹脂の融点は、150~310℃であることが好ましく、180~300℃であることがより好ましく、180~250℃であることがさらに好ましい。
 また、ポリアミド樹脂のガラス転移点は、50~100℃が好ましく、55~100℃がより好ましく、特に好ましくは60~100℃である。この範囲であると、得られる成形品の耐熱性がより良好となる傾向にある。
 ガラス転移点とは、試料を一度加熱溶融させ熱履歴による結晶性への影響をなくした後、再度昇温して測定されるガラス転移点をいう。測定には、例えば、島津製作所(SHIMADZU CORPORATION)製、DSC-60を用い、試料量は約1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、昇温速度は10℃/分の条件で室温から予想される融点以上の温度まで加熱し溶融させた際に観測される吸熱ピークのピークトップの温度から融点を求めることができる。次いで、溶融したポリアミド樹脂を、ドライアイスで急冷し、10℃/分の速度で融点以上の温度まで再度昇温し、ガラス転移点、融点を求めることができる。
<<熱可塑性樹脂繊維>>
 次に、本発明で用いる熱可塑性樹脂繊維について説明する。本発明で用いる熱可塑性樹脂繊維は、上記熱可塑性樹脂成分から構成され、短繊維であっても、連続繊維であってもよい。ここで、短繊維とは、50mm以下の繊維をいい、連続繊維とは、50mmを超える繊維をいう。本発明では、連続熱可塑性樹脂繊維が好ましい。本発明で使用する連続熱可塑性樹脂繊維の平均繊維長に特に制限はないが、成形加工性を良好にする観点から、1~100,000mの範囲であることが好ましく、より好ましくは100~10,000m、さらに好ましくは1,000~5,000mである。
 本発明における熱可塑性樹脂繊維の断面は、円形であってもよいし、扁平であってもよい。
 熱可塑性樹脂繊維は、1種のみ用いてもよいし、2種以上用いてもよい。
 本発明で用いる連続熱可塑性樹脂繊維は、通常、連続熱可塑性樹脂繊維が束状になった連続熱可塑性樹脂繊維束を用いて製造するが、かかる連続熱可塑性樹脂繊維束1本の当たりの合計繊度が、40~600dtexであることが好ましく、50~500dtexであることがより好ましく、100~400dtexであることがさらに好ましい。このような範囲とすることにより、得られる混繊糸中での連続熱可塑性樹脂繊維の分散状態がより良好となる。かかる連続熱可塑性樹脂繊維束を構成する繊維数は、1~200fであることが好ましく、5~100fであることがより好ましく、10~80fであることがさらに好ましく、20~50fであることが特に好ましい。特に、詳細を後述するとおり、混繊糸を用いて本発明の材料を形成する場合、連続熱可塑性樹脂繊維の分散状態がより良好となる。
 本発明で用いる熱可塑性樹脂繊維は、その表面を処理剤で処理することも好ましい。これらの詳細は、WO2016/159340号パンフレットの段落0064~0065の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<強化繊維>>
 次に、本発明で用いる強化繊維について説明する。本発明で用いる強化繊維は、短繊維であっても、連続繊維であってもよい。ここで、短繊維とは、50mm以下の繊維をいい、連続繊維とは、50mmを超える繊維をいう。本発明では、連続強化繊維が好ましい。本発明で使用する連続強化繊維の平均繊維長に特に制限はないが、成形加工性を良好にする観点から、1~100,000mの範囲であることが好ましく、より好ましくは100~10,000m、さらに好ましくは1,000~5,000mである。
 本発明における強化繊維の断面は、円形であってもよいし、扁平であってもよい。
 強化繊維は、1種のみ用いてもよいし、2種以上用いてもよい。
 本発明で用いる強化繊維は、ガラス繊維、炭素繊維、アルミナ繊維、ボロン繊維、セラミック繊維、金属繊維(スチール繊維等)等の無機繊維、および、植物繊維(ケナフ(Kenaf)、竹繊維等を含む)、アラミド繊維、ポリオキシメチレン繊維、芳香族ポリアミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の有機繊維などが挙げられる。なかでも、炭素繊維、アラミド繊維およびガラス繊維の少なくとも1種を含むことが好ましく、炭素繊維およびガラス繊維の少なくとも1種を含むことがより好ましく、炭素繊維の少なくとも1種を含むことがさらに好ましい。
 本発明で用いる強化繊維は、処理剤で処理されたものを用いることが好ましい。このような処理剤としては、集束剤や表面処理剤が例示され、特許第4894982号公報の段落番号0093および0094に記載のものが好ましく採用され、これらの内容は本明細書に組み込まれる。
 具体的には、本発明で用いる処理剤は、エポキシ樹脂、ウレタン樹脂、シラン系化合物、イソシアネート化合物、チタネート系化合物、ポリアミド樹脂の少なくとも1種であることが好ましく、エポキシ樹脂、ウレタン樹脂、シランカップリング剤、水不溶性ポリアミド樹脂および水溶性ポリアミド樹脂の少なくとも1種であることがより好ましく、エポキシ樹脂、ウレタン樹脂、水不溶性ポリアミド樹脂および水溶性ポリアミド樹脂の少なくとも1種であることがさらに好ましく、水溶性ポリアミド樹脂であることが一層好ましい。
 前記処理剤の量は、強化繊維の0.001~1.5質量%であることが好ましく、0.1~1.2質量%であることがより好ましく、0.3~1.1質量%であることがさらに好ましい。
 強化繊維の処理剤による処理方法は、公知の方法を採用できる。例えば、強化繊維を、処理剤を溶液に溶解させたものに浸漬し、強化繊維の表面に処理剤を付着させることが挙げられる。また、処理剤を強化繊維の表面にエアブローすることもできる。さらに、既に、表面処理剤や処理剤で処理されている強化繊維を用いてもよいし、市販品の表面処理剤や処理剤を洗い落してから、再度、所望の処理剤量となるように、表面処理しなおしてもよい。
<<混繊糸>>
 本発明の材料は、繊維領域が連続強化繊維と熱可塑性樹脂繊維を含む混繊糸を含むことが好ましい。混繊糸を用いることにより、しなやかさを維持しつつ、成形加工性に優れた材料がより容易に得られる。また、本発明の材料は、第一の領域および前記第二の領域が、連続強化繊維と熱可塑性樹脂繊維を含む混繊糸から形成されることが好ましい。
 本発明で用いる混繊糸は、好ましくは、連続強化繊維と熱可塑性樹脂繊維とが、連続強化繊維および熱可塑性樹脂繊維の少なくとも一方の処理剤を介して、束状にされたものであることが好ましく、連続強化繊維と連続熱可塑性樹脂繊維とが、連続強化繊維および連続熱可塑性樹脂繊維の少なくとも一方の処理剤を介して、束状にされたものであることがより好ましい。
 混繊糸中における熱可塑性樹脂繊維と連続強化繊維の体積比率は、0.5~1.5:1.5~0.5であることが好ましい。また、混繊糸中における連続強化繊維の割合は、連続強化繊維が炭素繊維の場合、55~65質量%であることが好ましく、連続強化繊維がガラス繊維の場合、65~75質量%であることがより好ましい。
 混繊糸中における、連続強化繊維の分散度は、60~100%であることが好ましく、60~99%であることがより好ましく、63~99%であることがさらに好ましく、68~99%が特に好ましく、80~99%であってもよい。このような範囲とすることにより、連続強化繊維に熱可塑性樹脂繊維が含浸しやすく、また、得られる成形品中の空隙をより少なくすることができる。分散度は、WO2016/159340号公報の段落0090の記載に従って測定される。
 また、混繊糸は、熱可塑性樹脂繊維の一部が連続強化繊維に含浸していてもよいが、かかる熱可塑性樹脂繊維の含浸率は、通常、20%以下であることが好ましく、15%以下であることがより好ましく、5%以下であることがさらに好ましく、3%以下であることが一層好ましく、1%以下であってもよい。
 混繊糸の含浸率は、WO2016/159340号公報の段落0091の記載に従って測定される。
 本発明で用いる混繊糸は、通常、混繊糸を構成する繊維の95質量%以上が連続強化繊維または熱可塑性樹脂繊維で構成される。
 混繊糸は、通常、熱可塑性樹脂繊維束と連続強化繊維束を用いて製造する。一本の混繊糸の製造に用いられる繊維の合計繊度(一本の混繊糸の製造に用いられる熱可塑性樹脂繊維の繊度の合計および連続強化繊維の繊度の合計を足し合わせた値)は、1000~100000dtexであることが好ましく、1500~50000dtexであることがより好ましく、2000~50000dtexであることがさらに好ましく、3000~30000dtexであることが特に好ましい。特に、連続強化繊維として高繊度連続炭素繊維を用いる場合、一本の混繊糸の製造に用いられる繊維の合計繊度は20000~100000dtexであることが好ましく、3000~90000dtexであることがより好ましく、40000~80000dtexであることがさらに好ましく、45000~75000dtexであることが特に好ましい。高繊度連続繊維とは、連続繊維を構成する繊維の数が多い連続繊維をいい、通常は、50000f以上をいう。
 一本の混繊糸の製造に用いる繊維数の合計(熱可塑性樹脂繊維の繊維数の合計と連続強化繊維の繊維数の合計を合計した繊維数)は、100~100000fであることが好ましく、1000~100000fであることがより好ましく、1500~70000fであることがさらに好ましく、2000~20000fであることが一層好ましい。このような範囲とすることにより、混繊糸の混繊性が向上し、物性と質感により優れた成形品が得られる。また、いずれかの繊維が偏る領域が少なく互いの繊維がより均一に分散し易い。特に、連続強化繊維として高繊度連続炭素繊維を用いる場合、一本の混繊糸の製造に用いられる繊維数の合計は、10000~500000fであることが好ましく、20000~400000fであることがより好ましく、30000~350000fであることがさらに好ましく、40000~300000fであることが一層好ましい。
 本発明で用いる混繊糸は、撚りがかっていてもよい。撚りのかけ方は、特に定めるものではなく、公知の方法を採用できる。撚りの回数としては、熱可塑性樹脂繊維に用いる熱可塑性樹脂の種類、熱可塑性樹脂繊維束の繊維数、繊度、連続強化繊維の種類、繊維数、繊度、熱可塑性樹脂繊維と連続強化繊維の繊維数比や繊度比に応じて適宜定めることができる。撚り回数は、例えば1~200回/m(繊維長)とすることができ、さらには1~100回/m、1~70回/m、1~50回/m、10~30回/mとすることもできる。このような構成とすることにより、より機械的強度に優れた成形品が得られる。
 本発明で用いる混繊糸は、テープ状である場合、幅方向(材料の長手方向に垂直な方向)に折りたたんでもよい。折りたたみの方法は、特に定めるものではなく、公知の方法を採用できる。折りたたみの回数としては、熱可塑性樹脂繊維に用いる熱可塑性樹脂の種類、熱可塑性樹脂繊維束の繊維数、繊度、連続強化繊維の種類、繊維数、繊度、熱可塑性樹脂繊維と連続強化繊維の繊維数比や繊度比に応じて適宜定めることができる。折りたたみ回数は、例えば1~10回とすることができ、さらには1~7回、1~6回、1~5回、1~4回とすることもできる。このような構成とすることにより、より緻密な形状を保形することができる。
<材料の性能>
 本発明の材料は、上述の通り、しなやかさを維持している材料である。本発明の材料は、例えば、変形抵抗荷重を1N以下とすることができ、さらには0.9N以下とすることもでき、特には、0.8N以下とすることもできる。前記変形抵抗荷重の下限値については、特に定めるものではないが、例えば、0.1N以上であっても十分に実用レベルである。
 変形抵抗荷重とは、材料を速度300mm/分にて前記材料の進行方向を90度変化させるガイドを経て引き上げる際にかかる荷重をいい、後述する実施例に記載の方法に従って測定される。
 本発明の材料は、また、上述のとおり、熱収縮率が小さい材料である。本発明の材料は、例えば、前記熱可塑性樹脂繊維の融点+5℃で1分間加熱した後の熱収縮率を1%以下とすることができ、さらには0.9%以下とすることもでき、特には、0.8%以下とすることもできる。前記熱収縮率の下限値については、特に定めるものではないが、例えば、0%が望ましい。
 熱可塑性樹脂繊維の融点+5℃で1分間加熱した後の熱収縮率は、後述する実施例に記載の方法に従って測定される。
<材料の製造方法>
 次に、本発明の材料の製造方法について、説明する。本発明の材料の製造方法は特に定めるのではないが、以下の方法によって製造することが好ましい。
 すなわち、本発明の材料の製造方法の第一の実施形態は、少なくとも一方向に配列された20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成される繊維の表面に、超音波を加振することを含む製造方法が開示される。このように超音波を加振することにより、表層における熱可塑性樹脂繊維を効果的に溶融させ、内部における熱可塑性樹脂繊維を繊維の状態のまま保つことができる。前記繊維は、一方向に配列してもよいし、二方向以上に配列してもよいが、好ましくは一方向である。
 熱可塑性樹脂繊維および強化繊維の詳細は、上述の材料のところで述べたものと同義であり、好ましい範囲も同様である。
 本発明では、混繊糸を少なくとも一方向に配列し、超音波を加振することが好ましい。このような態様とすることにより、第一の領域およびまたは第二の領域の昇温時結晶化エネルギーを制御しやすくなる。
 超音波を用いる場合、原材料の表面の熱可塑性樹脂繊維を100~400℃で加熱することが好ましく、120~350℃で加熱することがより好ましい。特に、原材料の表面の熱可塑性樹脂繊維を、熱可塑性樹脂繊維の融点+(0~40)℃で加熱することが好ましく、熱可塑性樹脂繊維の融点+(5~30)℃で加熱することがより好ましい。このような態様とすることにより、第一の領域を効果的に含浸しつつ、繊維領域のしなやかさを維持することができる。
 超音波を加振する装置としては、特開2016-130011号公報に記載の装置が例示される。すなわち、少なくとも一方向に配列した繊維(好ましくは混繊糸)を極薄フィルムで挟んで加振する方法が例示される。
<材料の利用>
 本発明の材料は、しなやかさを維持しつつ、熱収縮率が小さいため、微細構造や複雑な形状を有する成形品に好ましく用いられる。
 本発明の材料は、例えば、光成形用材料またはマイクロ波成形用材料として好ましく用いられる。光成形およびマイクロ波成形とは、シリコーンゴムなどからなる型を用い、外部から照射された光またはマイクロ波を照射して成形する方法である。
 図3は、光成形の方法の一例を示す概略図であって、31は、光成形用の型を、32は本発明の材料を、33は光を、34は本発明の材料から形成された成形品を示している。
 光成形では、図3(a)に示すように、光成形用の型が用いられる。光成形用の型は、光を内部に透過させるものであれば、特に定めるものでは無く、シリコーンゴム型などが用いられる。
 次いで、図3(b)に示すように、本発明の材料32が型31内に設置される。本発明の材料はしなやかであるため、複雑な形状や微細な構図の型にも整合するように設置することができる。材料32を型31に設置した後、通常は、型内を真空引きする。このように真空引きすることにより、材料に圧力が加えられ、熱可塑性樹脂繊維の含浸を促進することができる。次いで、型の外側から、光33を照射する。光33は、本発明の材料32に含まれる熱可塑性樹脂を加熱溶融することができる光から適宜選択される。光33は、好ましくは、赤外線が例示される。その後、真空引きをしていた場合は、冷却した後、真空停止し、脱型する。本発明の材料32は、熱収縮率が小さいため、このような型に入れて成形しても、型の形状を適切に転写、再現した成形品34が得られる。
 一方、マイクロ波成形は、上記赤外線に代え、マイクロ波を用いて材料に含まれる熱可塑性樹脂を加熱溶融する方法である。
 光成形とマイクロ波成形は、材料などに応じて適切な手段を選択することができる。例えば、光成形には、炭素繊維やガラス繊維が好適であり、マイクロ波成形にはガラス繊維が好適である。本発明では、光成形の方が好ましい。
 また、後述する複合材料に成形してから、光成形またはマイクロ波成形を行ってもよい。
<<部分溶着材料>>
 本発明の材料は、そのまま、成形加工してもよいが、本発明の材料2つ以上が一部で溶着している部分溶着材料として用いることもできる。
 図8は、本発明の材料、具体的には、テープ状の材料を積層して、各層が部分的に溶着した状態を示す概略図である。符号は、図1と共通であり、1は第一の領域を、2は繊維領域を、3は第二の領域を示している。また、図8の81は溶着部分である。このように本発明の材料を部分的に溶着させることにより、少ない積層数で目的量の材料を保形でき、加工時間をより短縮することができる。
 一部で溶着とは、本発明の材料同士をその一部分、好ましくは表層の一部分で溶着している態様をいい、例えば、材料の表面積の1~40%が溶着している態様をいう。また、溶着する材料の数は、2~10つが好ましく、2~7つがより好ましく、2~4つがさらに好ましく、2つが一層好ましい。
 溶着は、通常、熱溶着であり、具体的に、レーザー照射によって、溶着される。
<<複合材料>>
 本発明の材料は、また、本発明の材料の表層(第一の領域および第二の領域)の表層に、さらにコーティング層などを設けたり、本発明の材料を他の材料で保形したりして、複合材料としてもよい。
 本発明の複合材料の実施形態の一例は、本発明の材料または部分溶着材料と、前記材料を保形する第二の熱可塑性樹脂繊維を含み、前記第二の熱可塑性樹脂繊維(保形用樹脂繊維)は、前記材料に含まれる熱可塑性樹脂繊維の融点よりも15℃以上高い複合材料である。本発明の材料や部分溶着材料は、しなやかさがあるので、材料を折り返したり、交差させて保形する形態に好ましく用いられる。そして、本発明では、熱可塑性樹脂繊維の融点よりも15℃以上高い第二の熱可塑性樹脂繊維を用いて保形することにより、外観に優れた成形品が得られる。さらには、本発明の材料を構成する熱可塑性樹脂繊維と第二の熱可塑性樹脂繊維に、融点が同程度の樹脂を用いる場合と比較して機械的強度が飛躍的に向上し、成形加工性に優れた成形品が得られる。
 この理由は推定であるが、本発明の複合材料は、混繊糸を保形する第二の熱可塑性樹脂繊維の融点を、本発明の材料を構成する熱可塑性樹脂繊維の融点よりも15℃以上高くすることにより、本発明の複合材料を加熱加工した際に、本発明の材料を構成する熱可塑性樹脂が第二の熱可塑性樹脂繊維よりも先に溶融し、強化繊維内に適切に含浸するので、複合材料中の強化繊維の分散度を高く保った状態まま成形加工することができ、強化繊維が乱れず、外観が向上するものと推定される。さらに、このような混繊糸の乱れを抑制することにより、機械的強度も、顕著に向上させることが可能になる。
 図4は、本発明の複合材料の概略図の一例を示すものであって、41は複合材料を、42は本発明の材料を、43は第二の熱可塑性樹脂繊維を、44は熱可塑性樹脂フィルムを示している。
 本実施形態では、熱可塑性樹脂フィルム44の上に、本発明の材料42が一方向に配列し、第二の熱可塑性樹脂繊維43でステッチングすることにより、本発明の材料42を保形している。図3では、混繊糸は、一方向に並んでいるが、他の並び方でもよい。例えば、WO2016/159340号パンフレットの図2や図3に示す並び方が例示される。熱可塑性樹脂フィルムは、熱可塑性樹脂フィルムを構成する熱可塑性樹脂の融点が前記材料に含まれる熱可塑性樹脂繊維の融点よりも、15℃以上高いことが好ましい。
 再び、本明細書の図4に戻り、図4の形態では、本発明の材料42は、基材(熱可塑性樹脂フィルム44)の上に配列され、第二の熱可塑性樹脂繊維43で保形されている。保形手段としては、ステッチングが例示される。このような手段を採用することにより、本発明の材料の保形が容易になる。しかしながら、本発明の材料を所望の形態に保形できる限り、基材にステッチングすることは必須ではない。例えば、基材にステッチングせずに、本発明の材料同士が交差する部分のみを第二の熱可塑性樹脂繊維で保形することにより、基材なしでも、本発明の材料を保形できる。
 また、本発明の複合材料は、上記材料が図8に示すように、部分溶着材料を保形した材料であってもよい。部分溶着材料を用いることで、ステッチング時により多くの材料を配置することが可能で、より生産性に優れる。
 本発明で用いる第二の熱可塑性樹脂繊維は、熱可塑性樹脂を主成分とする熱可塑性樹脂組成物からなる。第二の熱可塑性樹脂繊維の原料である熱可塑性樹脂組成物は、通常、50質量%以上が熱可塑性樹脂であり、60質量%以上が熱可塑性樹脂であることが好ましく、70質量%以上を熱可塑性樹脂としてもよい。
 第二の熱可塑性樹脂繊維に用いられる熱可塑性樹脂としては、複合材料に用いるものを広く使用することができ、例えばポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂類、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン等のポリエーテルケトン樹脂類、ポリエーテルスルフォン樹脂、ポリエーテルサルファイド樹脂、熱可塑性ポリエーテルイミド、熱可塑性ポリアミドイミド、全芳香族ポリイミド、半芳香族ポリイミド等の熱可塑性ポリイミド樹脂類等を用いることができる。本発明では、第二の熱可塑性樹脂繊維がポリアミド樹脂を含むことが好ましい。ポリアミド樹脂の具体例としては、上述の熱可塑性樹脂成分に含まれるポリアミド樹脂が好ましく採用できる。また、第二の熱可塑性樹脂繊維の原料である熱可塑性樹脂組成物は、熱可塑性樹脂以外の成分を含んでいても良く、これらは、上述の熱可塑性樹脂成分で述べたものと同義であり、好ましい範囲も同様である。
 第二の熱可塑性樹脂繊維の融点は、用いる樹脂の種類にもよるが、180~405℃であることが好ましく、180~390℃であることがより好ましく、180~320℃であることがさらに好ましく、190~310℃であることが一層好ましく、200~300℃であることがより一層好ましい。
 本発明では、上述したとおり、第二の熱可塑性樹脂繊維の融点が本発明の材料を構成する熱可塑性樹脂繊維の融点よりも15℃以上高い。このような構成とすることにより、強化繊維の分散状態が乱れないまま、本発明の材料を構成する熱可塑性樹脂繊維を含浸させることができ、得られる成形品の外観が向上する。
 第二の熱可塑性樹脂繊維の融点と本発明の材料に含まれる熱可塑性樹脂繊維の融点の差(第二の熱可塑性樹脂繊維の融点-本発明の材料に含まれる熱可塑性樹脂繊維の融点)は、16℃以上とすることもでき、さらには17℃以上とすることもでき、特には18℃以上とすることもできる。また、第二の熱可塑性樹脂繊維の融点と本発明の材料に含まれる熱可塑性樹脂繊維の融点の差の上限は特に定めるものでは無いが、100℃以下とすることが好ましく、80℃以下とすることがより好ましく、75℃以下とすることが特に好ましい。このような範囲とすることにより、加熱成形の際に、本発明の材料を構成する熱可塑性樹脂が溶融した後に、第二の熱可塑性樹脂繊維も溶融し、第二の熱可塑性樹脂繊維が目立たなくなり、より外観が良好な成形品が得られる。
 保形の基材となる上記熱可塑性樹脂フィルムを構成する樹脂(フィルム樹脂)の融点と本発明の材料に含まれる熱可塑性樹脂繊維の融点の差(フィルム樹脂の融点-本発明の材料に含まれる熱可塑性樹脂繊維の融点)は、16℃以上とすることもでき、さらには17℃以上とすることもでき、特には18℃以上とすることもできる。また、フィルム樹脂の融点と本発明の材料に含まれる熱可塑性樹脂繊維の融点の差の上限は特に定めるものでは無いが、100℃以下とすることが好ましく、80℃以下とすることがより好ましく、75℃以下とすることが特に好ましい。
 本発明の複合材料の実施形態の他の一例は、本発明の材料と、前記材料を保形するための繊維を含み、前記保形するための繊維は、通常の加熱(例えば、320℃以下の加熱)で溶融しない繊維である。このような繊維としては、炭素繊維、ガラス繊維、アラミド樹脂繊維、変性ポリフェニレンエーテル樹脂繊維、ポリエーテルイミド繊維、ポリエーテルエーテルケトン繊維、ポリイミド繊維などが例示される。
 本発明の複合材料の厚さは、例えば、0.2~4mmとすることができる。
<成形品の製造>
 本発明では、また、本発明の材料または上述の複合材料を、光成形またはマイクロ波成形することを含む、成形品の製造方法を開示する。
 本発明の成形品の製造方法の実施形態の一例として、光成形またはマイクロ波成形の金型に、本発明の材料または複合材料を1~2mmの厚さとなるように配置して、光成形またはマイクロ波成形することが例示される。
<成形品の用途>
 本発明の材料および複合材料を成形してなる成形品の利用分野については特に定めるものではなく、自動車、航空機等輸送機部品、一般機械部品、精密機械部品、電子・電気機器部品、OA機器部品、建材・住設関連部品、医療装置、レジャースポーツ用品、遊戯具、医療品、食品包装用フィルム等の日用品、防衛および航空宇宙製品等に広く用いられる。特に、医療用装具(長下肢装具など)、自動車、電車および舟等の窓枠、ヘルメットのゴーグル部位の枠、メガネフレーム、安全靴など用の成形材料として、好適に用いられる。特に、本発明の複合材料は、医療用装具形成用材料、自動車用二次構造部材としての利用価値が高い。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
1.熱可塑性樹脂
<合成例1 MPXD10>
 撹拌機、分縮器、全縮器、温度計、滴下ロートおよび窒素導入管、ストランドダイを備えた反応容器に、セバシン酸(伊藤製油(株)製TAグレード)10kg(49.4mol)および酢酸ナトリウム/次亜リン酸ナトリウム・一水和物(モル比=1/1.5)11.66gを仕込み、十分に窒素置換した後、更に少量の窒素気流下で系内を撹搾しながら170℃まで加熱溶融した。
 メタキシリレンジアミン(三菱ガス化学(株)製)とパラキシリレンジアミン(三菱ガス化学(株)製)のモル比が70/30である混合キシリレンジアミン6.647kg(メタキシリレンジアミン34.16mol、パラキシリレンジアミン14.64mol)を溶融したセバシン酸に撹拌下で滴下し、生成する縮合水を系外に排出しながら、内温を連続的に2.5時間かけて240℃まで昇温した。
 滴下終了後、内温を上昇させ、250℃に達した時点で反応容器内を減圧にし、さらに内温を上昇させて255℃で20分間、溶融重縮合反応を継続した。その後、系内を窒素で加圧し、得られた重合物をストランドダイから取り出して、これをペレット化することにより、ポリアミド樹脂MPXD10を得た。
 得られたポリアミド樹脂の融点は、213℃、数平均分子量は、15400であった。
<合成例2 MXD10>
 合成例1において、メタキシリレンジアミンとパラキシリレンジアミンの混合キシリレンジアミンを、等量のメタキシリレンジアミンに変更したこと以外は、合成例1と同様の方法でポリアミド樹脂MXD10を得た。
 得られたポリアミド樹脂の融点は、190℃、数平均分子量は、14900であった。
MXD6:メタキシリレンアジパミド樹脂(三菱ガス化学(株)製、グレードS6001)、融点237℃、数平均分子量16800
保形用ポリアミド66繊維:グンゼ社製、ウーリーナイロン、融点:265℃
保形用ポリアミド66フィルムの製造方法
 ポリアミド66ペレット(東レ製、CM3001N)をシリンダー径30mmのTダイ付き単軸押出機(プラスチック工学研社製、PTM-30)に供給した。シリンダー温度を290℃、スクリュー回転数30rpmの条件で溶融混練を行った。溶融混練した後、Tダイを通じてフィルム状物を押出し、冷却ロール上で固化し、厚み100μmのフィルムを得た。ポリアミド66の融点は265℃であった。
<熱可塑性樹脂の融点>
 島津製作所(SHIMADZU CORPORATION)製、DSC-60を用い、試料量は約1mgとし、雰囲気ガスとしては窒素を30mL/分で流し、昇温速度は10℃/分の条件で室温(25℃)から予想される融点以上の温度まで加熱し溶融させ次いで、溶融した熱可塑性樹脂を、ドライアイスで急冷し、10℃/分の速度で融点以上の温度まで再度昇温した際に観測される吸熱ピークのピークトップの温度を融点とした。熱可塑性樹脂成分および熱可塑性樹脂繊維の融点も同様に測定される。
2.連続強化繊維
連続炭素繊維:三菱レイヨン社製、Pyrofil-TR-50S-12000-AD、8000dtex、繊維数12000f。エポキシ樹脂で表面処理されている。
連続ガラス繊維:日東紡績社製、ECG 75 1/0 0.7Z、繊度687dtex、繊維数400f、集束剤で表面処理されている。
高繊度連続炭素繊維(高繊度炭素繊維):三菱レイヨン社製、Pyrofil-TRH50-60M、32000dtex、繊維数60000f。
実施例1
<連続熱可塑性樹脂繊維の製造>
 下記表1に示す熱可塑性樹脂を用い、以下の手法に従って繊維状にした。
 熱可塑性樹脂を30mmφのスクリューを有する単軸押出機にて溶融押出しし、60穴のダイからストランド状に押出し、ロールにて巻き取りながら延伸し、回巻体に巻き取った熱可塑性樹脂繊維束を得た。溶融温度は、熱可塑性樹脂の融点+15℃とした。
<混繊糸の製造>
 混繊糸は、以下の方法に従って製造した。
 1m以上の長さを有する熱可塑性樹脂繊維の回巻体、および、1m以上の長さを有する連続強化繊維の回巻体からそれぞれの繊維を引き出し、複数のガイドを通しながらエアブローにより開繊を行った。開繊しながら、熱可塑性樹脂繊維および連続強化繊維を一束とし、さらに、複数のガイドを通しながらエアブローを与え、均一化を進めた。
 得られた混繊糸は、連続炭素繊維(Pyrofil-TR-50S-12000-AD)を用いたものが繊度約13000dtex、繊維数約13500f、高繊度連続炭素繊維(Pyrofil-TRH50-60M)を用いたものが繊度約65000dtex、繊維数約675000f、連続ガラス繊維を用いたものが繊度約15000dtex、繊維数約10000fであった。
 連続熱可塑性樹脂繊維と連続強化繊維の体積比率は1:1であった。
 また、連続強化繊維の割合は連続炭素繊維(Pyrofil-TR-50S-12000-AD)を用いた混繊糸が61質量%、高繊度連続炭素繊維(Pyrofil-TRH50-60M)を用いた混繊糸が61質量%、ガラス繊維を用いた混繊糸が69質量%であった。
<材料の製造>
 上記で得られた混繊糸の回巻体1本をクリールに設置し、1束を引き出し、以下の条件で超音波加振し、表面の熱可塑性樹脂繊維を溶融させて、材料を得た。
 得られた材料の幅は8mm、長さは100mであった。
<<超音波加振条件>>
 振動するホーンの押圧面により、支持体の支持面に対して押圧しながら、混繊糸を長手方向に走行させることにより、熱可塑性樹脂の表面付近を溶融させ、表1に示す表層(第一の領域または第二の領域)を形成した。具体的には、振動するホーンを一面に当てて一方の表層(第一の領域)を形成し、次いで、振動するホーンをその裏面に当てて他方の表層(第二の領域)を形成した。加圧力0.2MPa、周波数20kHz、出力2400kWとし、表1に示す表層(第一の領域または第二の領域)および繊維領域が存在するよう、走行速度を調整した。超音波機器はヒューチャー社製W3080を用いた。比較例1については、内部まで熱可塑性樹脂を溶融させ、比較例2については、超音波処理を施さなかった。
<材料の昇温時結晶化エネルギー>
 表層(第一の領域または第二の領域)の熱可塑性樹脂成分(熱可塑性樹脂と、必要によって配合される添加剤等を含む)を5mg、カミソリ(フェザー安全剃刀社製、フェザーハイ・ステンレス)で削り取り、示差走査熱量計(DSC:SII製、DSC6200)を用いて、窒素気流中、25℃から熱可塑性樹脂成分の融点+20℃まで昇温速度10℃/分で加熱し、検出した結晶化ピークから昇温時結晶化エネルギーを算出した。
 繊維領域:超音波処理した混繊糸を半分に裂き、中央部の熱可塑性樹脂繊維を5mg採取し、熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱し、同様に、検出した結晶化ピークから昇温時結晶化エネルギーを算出した。
 単位は、J/gで示した。
<材料の断面の観察>
 測定試料(材料)を切り取ってエポキシ樹脂で包埋し、前記包埋した測定試料の長手方向に垂直な断面を研磨し、断面図を超深度カラー3D形状測定顕微鏡VK-9500(コントローラー部)/VK-9510(測定部)(キーエンス社製)を使用して撮影した。
 以下の通り評価した。
A:表面は熱可塑性樹脂繊維が溶融し、層状またはフィルム状領域を形成しており、内部は熱可塑性樹脂繊維が溶融せず、熱可塑性樹脂繊維の大半が繊維状の状態を保っていた。
B:表層と内部の境界が認められなかった。
<材料の表層、内部および材料の厚み>
 材料のうち、上記Aの状態のものについて、材料の任意の5点を選択し、その平均値を材料の総厚みとした。次いで、前記任意の5点において、厚み方向において、全熱可塑性樹脂中の溶融し層状またはフィルム状領域を形成している熱可塑性樹脂の割合が90面積%以上の領域を表層(第一の領域または第二の領域)とし、その厚みの平均を表層(第一の領域、第二の領域)の厚さとした。材料の総厚みから、表層(第一の領域および第二の領域)の厚さを引いた値を、繊維領域の厚みとした。
 厚みの測定は、上記断面観察で得た画像から解析した。
<理論最大密度に対する繊維領域の密度比>
 材料の幅と、繊維領域の厚みから密度を算出し、次式から繊維領域の密度比を算出した。
繊維領域の密度比 = (繊維領域の密度)/(理論密度)
<変形抵抗荷重(しなやかさ)>
 テキスタイル作製時に必要なしなやかさを表す指標である変形抵抗荷重を測定した。図5に示す通り、回巻体51から得た材料52を巻きだし、ガイドロール53を経て、材料52の進行方向を90℃変化させた後、図5に示す寸法の円筒状の通路を有する絞り治具54(クオドラント社製、MCナイロンを加工して作製)を通し、末端を荷重計55に固定した。荷重計55を上に引き上げる際にかかる荷重を変形抵抗荷重値として測定した。変形抵抗荷重の測定は、東洋精機社製、ストログラフEIIを用い、引き上げ速度は300mm/分とした。図5(a)と(b)は実施例における変形抵抗荷重を測定する装置の概略図であって、(a)は断面図であり、(b)は斜視図である。
<熱収縮率>
 図6に示す治具を用い、熱収縮率を測定した。両端の固定具61は動かず、その間にある固定具62は抵抗なくスライドする。固定具62に得られた材料63を標点間距離(L)300mmで貼り付け、熱可塑性樹脂繊維の融点+5℃の温度のドライオーブン中に1分間静置した。その後の標点間距離(L')を計測し次式にて熱収縮率を測定した。
熱収縮率=(L-L')/L×100(%)
<複合材料の製造(保形性)>
 表1に示す「保形用熱可塑性樹脂繊維」の欄に記載の熱可塑性樹脂を用い、上記<連続熱可塑性樹脂繊維の製造>と同様にして、保形用熱可塑性樹脂繊維を製造した。上記で得られた材料を、上記で製造した保形用ポリアミド66フィルムの上に、図7に示すように配列し、保形用熱可塑性樹脂繊維72を2本撚りにして、混繊糸を保形用ポリアミド66フィルムの上にステッチングするようにして、保形し、複合材料を得た。図7中、71は本発明の材料を、72は保形用熱可塑性樹脂繊維を示している。
A:急なカーブとなっている部分を含め、適切に保形ができていた。
B:材料の一部が破断する等、適切に保形ができなかった。
<光成形による複合材料の成形(成形性)>
 上記で得られ複合材料を、シリコーンゴム型に設置し、ゴム型内を真空引きし、赤外線をゴム型の外部から照射して、熱可塑性樹脂を290℃まで加熱した。赤外線照射を停止し、冷却した。真空引きを停止し、ゴム型から脱型し、成形品を得た。以下の通り評価した。
A:良好な成形品が得られた。
B:成形中に収縮変形する等、良好な成形品が得られなかった。
C:複合材料が適切に成形できず、光成形が行えなかった。
実施例2~6および実施例8ならびに比較例1および2
 実施例1において、下記表1に示す通り変更し、他は同様に行った。
実施例7
 実施例1において、表に示す通り変更し、材料を得た。得られた材料2枚の第一の領域側の表層同士が重なる箇所について、1cmの幅の部分(各材料の幅の9%に相当)について、それぞれ、レーザーで加熱して、加熱した部分を部分的に溶着した。加熱温度は、250℃、溶着部分の厚さは、30μmであった。

Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなとおり、本発明の材料を用いた場合(実施例1~6、8)あるいは本発明の一部溶着材料を用いた場合(実施例7)、しなやかで熱収縮率の小さい材料が得られた。さらに、前記材料を保形した複合材料は、良好な成形品が得られた。特に、本発明の材料および一部溶着材料は、しなやかで熱収縮率が小さいため、複雑で細かい形状の成形品を製造する際に好適であることが分かった。
 一方、内部の熱可塑性樹脂繊維の昇温時結晶化エネルギーが大きい場合(比較例1)、表層と内部が区別された材料とならず、しなやかさにかける材料となった。そのため、屈曲部で破断しやすく、保形が困難であった。また、表層の熱可塑性樹脂成分の昇温時結晶化エネルギーが小さい場合(比較例2)、寸法変化を抑制できず熱収縮率が大きかった。また、集束せず毛羽立ちが多く、保形が困難であった。
1  第一の領域
2  繊維領域
3  第二の領域
21 第一の領域
22 第二の領域
23 繊維領域
31 型
32 材料
33 光
34 成形品
41 複合材料
42 材料
43 第二の熱可塑性樹脂繊維
44 熱可塑性樹脂フィルム
51 回巻体
52 材料
53 ガイドロール
54 絞り治具
55 荷重計
61 固定具
62 固定具
63 材料
71 材料
72 保形用熱可塑性樹脂繊維
81 溶着部分

Claims (21)

  1. 厚み方向に連続して、第一の領域、繊維領域、第二の領域を有し、
    前記第一の領域および前記第二の領域は、それぞれ独立に、20~100質量%の熱可塑性樹脂成分と、80~0質量%の強化繊維とから構成される樹脂層であり、
    前記繊維領域は、20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成され、
    前記第一の領域に含まれる熱可塑性樹脂成分および前記第二の領域に含まれる熱可塑性樹脂成分は、それぞれ独立に、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、2J/g以上であり、
    前記繊維領域に含まれる熱可塑性樹脂繊維は、示差走査熱量測定法により測定される昇温時結晶化エネルギーが、1J/g未満である、材料;但し、昇温時結晶化エネルギーとは、示差走査熱量計(DSC)を用いて、窒素気流中、25℃から前記熱可塑性樹脂成分または熱可塑性樹脂繊維の融点+20℃まで昇温速度10℃/分で加熱して測定した値をいう。
  2. 前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、組成の80質量%以上が互いに共通する、請求項1に記載の材料。
  3. 前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、それぞれ独立に、ポリアミド樹脂を含む、請求項1または2に記載の材料。
  4. 前記第一の領域に含まれる熱可塑性樹脂成分と、前記第二の領域に含まれる熱可塑性樹脂成分と、前記繊維領域に含まれる熱可塑性樹脂繊維は、それぞれ独立に、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂である、請求項1または2に記載の材料。
  5. 前記繊維領域は、25~80質量%の熱可塑性樹脂繊維と、75~20質量%の強化繊維とから構成される、請求項1~4のいずれか1項に記載の材料。
  6. 前記第一の領域、前記第二の領域および前記繊維領域は、それぞれ独立に25~80質量%の熱可塑性樹脂成分と、75~20質量%の強化繊維とから構成される、請求項1~4のいずれか1項に記載の材料。
  7. 前記第一の領域、前記第二の領域および前記繊維領域は、それぞれの領域に含まれる強化繊維の質量割合の差が、互いに、5質量%以下である、請求項6に記載の材料。
  8. 前記強化繊維が炭素繊維およびガラス繊維の少なくとも一方を含む、請求項5~7のいずれか1項に記載の材料。
  9. 前記強化繊維が連続強化繊維である、請求項5~8のいずれか1項に記載の材料。
  10. 前記繊維領域は、連続強化繊維と熱可塑性樹脂繊維を含む混繊糸を含む、請求項9に記載の材料。
  11. 前記第一の領域および前記第二の領域は、連続強化繊維と熱可塑性樹脂繊維を含む混繊糸から形成される、請求項9または10に記載の材料。
  12. 前記第一の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと前記繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差、および、前記第二の領域に含まれる熱可塑性樹脂成分の昇温時結晶化エネルギーと前記繊維領域に含まれる熱可塑性樹脂繊維の昇温時結晶化エネルギーとの差が、それぞれ独立に、3J/g以上である、請求項1~11のいずれか1項に記載の材料。
  13. 前記材料の総厚みに対する、前記繊維領域の厚みが、20%以上である、請求項1~12のいずれか1項に記載の材料。
  14. 光成形用材料またはマイクロ波成形用材料である、請求項1~13のいずれか1項に記載の材料。
  15. 変形抵抗荷重が1N以下である、請求項1~14のいずれか1項に記載の材料;但し、変形抵抗荷重とは、材料を速度300mm/分にて、前記材料の進行方向を90度変化させるガイドを経て引き上げる際にかかる荷重をいう。
  16. 前記熱可塑性樹脂繊維の融点+5℃で1分間加熱した後の熱収縮率が1%以下である、請求項1~15のいずれか1項に記載の材料。
  17. テープ状である、請求項1~16のいずれか1項に記載の材料。
  18. 請求項1~17のいずれか1項に記載の材料2つ以上が一部で溶着している部分溶着材料。
  19. 少なくとも一方向に配列された20~100質量%の熱可塑性樹脂繊維と、80~0質量%の強化繊維とから構成される繊維の表面に、超音波を加振することを含む、請求項1~17のいずれか1項に記載の材料の製造方法。
  20. 請求項1~17のいずれか1項に記載の材料または請求項18に記載の部分溶着材料と、前記材料または部分溶着材料を保形する第二の熱可塑性樹脂繊維を含み、前記第二の熱可塑性樹脂繊維は、前記材料または部分溶着材料に含まれる熱可塑性樹脂繊維の融点よりも15℃以上高い、複合材料。
  21. 請求項1~17のいずれか1項に記載の材料、請求項18に記載の部分溶着材料または請求項20に記載の複合材料を、光成形またはマイクロ波成形することを含む、成形品の製造方法。
PCT/JP2018/007757 2017-03-15 2018-03-01 材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法 WO2018168490A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/493,521 US11499022B2 (en) 2017-03-15 2018-03-01 Material, method for producing the material, partially welded material, composite material, and method of producing molded product
CN201880017648.6A CN110418703B (zh) 2017-03-15 2018-03-01 材料、材料的制造方法、局部熔接材料、复合材料和成型品的制造方法
KR1020197027850A KR102306762B1 (ko) 2017-03-15 2018-03-01 재료, 재료의 제조방법, 부분용착재료, 복합재료 및 성형품의 제조방법
ES18768485T ES2873876T3 (es) 2017-03-15 2018-03-01 Material, método para producir el material, material parcialmente soldado, material compuesto y método de producción de un producto moldeado
EP18768485.7A EP3597388B1 (en) 2017-03-15 2018-03-01 Material, method for producing the material, partially welded material, composite material, and method of producing molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049445 2017-03-15
JP2017-049445 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168490A1 true WO2018168490A1 (ja) 2018-09-20

Family

ID=63523856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007757 WO2018168490A1 (ja) 2017-03-15 2018-03-01 材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法

Country Status (8)

Country Link
US (1) US11499022B2 (ja)
EP (1) EP3597388B1 (ja)
JP (1) JP6390051B1 (ja)
KR (1) KR102306762B1 (ja)
CN (1) CN110418703B (ja)
ES (1) ES2873876T3 (ja)
TW (1) TWI651189B (ja)
WO (1) WO2018168490A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213416A1 (ja) * 2019-04-17 2020-10-22 日東紡績株式会社 複合糸織物及びそれを用いる繊維強化樹脂成形品の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000238142A (ja) * 1999-02-22 2000-09-05 Ykk Corp 強化繊維入り成形用材料およびそれを用いた成形体の製造方法並びに安全靴先芯
JP2002500576A (ja) * 1997-03-14 2002-01-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアミドフィルムおよび布を含む複合シート材料
JP2005052987A (ja) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびその製造方法、ならびにそれを用いた成形体
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2014061384A1 (ja) * 2012-10-17 2014-04-24 国立大学法人岐阜大学 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
WO2014132776A1 (ja) * 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
WO2014132775A1 (ja) * 2013-02-28 2014-09-04 三菱瓦斯化学株式会社 織物およびこれを成形してなる成形品
JP2014173196A (ja) 2013-03-06 2014-09-22 Gifu Univ 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
WO2016039242A1 (ja) 2014-09-10 2016-03-17 三菱瓦斯化学株式会社 混繊糸の製造方法、混繊糸、巻取体、および、織物
JP2016130011A (ja) 2015-12-17 2016-07-21 株式会社アドウェルズ 処理方法および処理装置
WO2016159340A1 (ja) 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 複合材料、複合材料の製造方法および成形品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504688B2 (ja) 2009-05-07 2014-05-28 東レ株式会社 積層樹脂成形体
FR2997089B1 (fr) 2012-10-23 2015-11-13 Arkema France Materiau composite thermoplastique a base de polyamide semi-cristallin et procede de fabrication
JP6659322B2 (ja) 2015-04-03 2020-03-04 国立大学法人岐阜大学 複合材料、複合材料の製造方法および成形品の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500576A (ja) * 1997-03-14 2002-01-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアミドフィルムおよび布を含む複合シート材料
JP2000238142A (ja) * 1999-02-22 2000-09-05 Ykk Corp 強化繊維入り成形用材料およびそれを用いた成形体の製造方法並びに安全靴先芯
JP2005052987A (ja) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd 繊維補強熱可塑性樹脂複合材料およびその製造方法、ならびにそれを用いた成形体
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2012140785A1 (ja) * 2011-04-12 2012-10-18 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2014061384A1 (ja) * 2012-10-17 2014-04-24 国立大学法人岐阜大学 連続繊維強化熱可塑性樹脂複合材料製造用の強化繊維/樹脂繊維複合体、およびその製造方法
WO2014132775A1 (ja) * 2013-02-28 2014-09-04 三菱瓦斯化学株式会社 織物およびこれを成形してなる成形品
WO2014132776A1 (ja) * 2013-03-01 2014-09-04 三菱瓦斯化学株式会社 複合繊維、織物、編み物および複合材料
JP2014173196A (ja) 2013-03-06 2014-09-22 Gifu Univ 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
WO2016039242A1 (ja) 2014-09-10 2016-03-17 三菱瓦斯化学株式会社 混繊糸の製造方法、混繊糸、巻取体、および、織物
JP2016056478A (ja) * 2014-09-10 2016-04-21 国立大学法人岐阜大学 混繊糸の製造方法、混繊糸、巻取体、および、織物
WO2016159340A1 (ja) 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 複合材料、複合材料の製造方法および成形品の製造方法
JP2016130011A (ja) 2015-12-17 2016-07-21 株式会社アドウェルズ 処理方法および処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597388A4

Also Published As

Publication number Publication date
JP2018154126A (ja) 2018-10-04
ES2873876T3 (es) 2021-11-04
CN110418703B (zh) 2021-05-28
KR20190121815A (ko) 2019-10-28
JP6390051B1 (ja) 2018-09-19
US20200002484A1 (en) 2020-01-02
CN110418703A (zh) 2019-11-05
EP3597388A4 (en) 2020-03-25
EP3597388B1 (en) 2021-04-21
TWI651189B (zh) 2019-02-21
US11499022B2 (en) 2022-11-15
EP3597388A1 (en) 2020-01-22
TW201843033A (zh) 2018-12-16
KR102306762B1 (ko) 2021-09-30

Similar Documents

Publication Publication Date Title
TWI681865B (zh) 複合材料、複合材料之製造方法及成形品之製造方法
TWI728039B (zh) 立體構造物的製造方法
TWI771449B (zh) 成形品之製造方法及製造裝置
CN107428042B (zh) 成型体的制造方法
KR102385582B1 (ko) 복합재료, 복합재료의 제조방법 및 성형품의 제조방법
JP2021066974A (ja) カバリング糸、カバリング糸の製造方法および成形品の製造方法
JP6390051B1 (ja) 材料、材料の製造方法、部分溶着材料、複合材料および成形品の製造方法
JP7228178B2 (ja) 材料および成形品の製造方法
JP6922519B2 (ja) 樹脂組成物、成形品、繊維およびフィルム
CN115151749B (zh) 软管、软管的制造方法和液压式泵
JP6806292B1 (ja) 成形品の製造方法および複合材料
JP7219053B2 (ja) 繊維強化樹脂成形品の製造方法
JP7275962B2 (ja) 長尺平板状材料
JP7301289B2 (ja) 成形品の製造方法
JP7177433B2 (ja) 巻取体および巻取体の製造方法
JP7138015B2 (ja) 繊維強化樹脂材料の製造方法
WO2021019928A1 (ja) 成形品の製造方法および複合材料
JP2021041622A (ja) 成形品の製造方法
JP2018008449A (ja) 一対のロール成形型、成形装置および成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027850

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018768485

Country of ref document: EP

Effective date: 20191015