WO2018168168A1 - Sensor unit - Google Patents

Sensor unit Download PDF

Info

Publication number
WO2018168168A1
WO2018168168A1 PCT/JP2017/047381 JP2017047381W WO2018168168A1 WO 2018168168 A1 WO2018168168 A1 WO 2018168168A1 JP 2017047381 W JP2017047381 W JP 2017047381W WO 2018168168 A1 WO2018168168 A1 WO 2018168168A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
pair
shield
sensor unit
electrode
Prior art date
Application number
PCT/JP2017/047381
Other languages
French (fr)
Japanese (ja)
Inventor
智矢 宮田
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2018168168A1 publication Critical patent/WO2018168168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar

Definitions

  • the present invention relates to a sensor unit.
  • a strain sensor that includes a sheet-like piezoelectric element and is attached to an acoustic device or the like to detect sound or vibration is known.
  • the piezoelectric element has a piezoelectric film and a pair of electrodes disposed on both sides of the piezoelectric film.
  • This strain sensor is configured such that a piezoelectric film is deformed by sound waves or vibrations to generate electric charges by a piezoelectric effect, and the electric charges can be taken out as a voltage signal by a pair of electrodes.
  • Such a strain sensor is often provided with shield layers on both sides of the piezoelectric element in order to prevent the piezoelectric element from picking up external noise (see JP-A-8-75575).
  • the shield layer is fixed to the entire outer surfaces of the pair of electrodes via the protective layer.
  • the shield layer since the shield layer is fixed to the entire outer surfaces of the pair of electrodes, the shield layer may affect the resonance of the piezoelectric film.
  • the shield layer in a strain sensor that detects sound waves, if the shield layer is fixed to the entire outer surfaces of a pair of electrodes, deformation of the piezoelectric film is likely to be hindered, and the characteristics of the sensor are likely to be affected.
  • the strain sensor may be handled in a bent state.
  • the shield layer is fixed to the entire outer surface of the pair of electrodes, the shield layer and the adhesive surface of the electrode or the electrode and the piezoelectric film
  • the adhesive surface may peel off unintentionally.
  • the adhesive surface between the electrode and the piezoelectric film is peeled off, noise may be mixed and the sensor function may be lost.
  • This invention is made based on such a situation, and makes it a subject to provide the sensor unit excellent in detection accuracy.
  • the present invention which has been made to solve the above problems, includes a sheet-like piezoelectric element and a pair of sheet-like shield portions that are disposed on both sides of the piezoelectric element in the thickness direction and are partially fixed to the piezoelectric element. It is a sensor unit provided with.
  • FIG. 6 is a schematic cross-sectional view showing a modification of the shield layer of the sensor unit in FIG. 1.
  • a sensor unit includes a sheet-shaped piezoelectric element and a pair of sheet-shaped shield portions that are disposed on both sides in the thickness direction of the piezoelectric element and are partially fixed to the piezoelectric element. It is a sensor unit provided.
  • the pair of shield portions are partially fixed to the piezoelectric element, and since these shield portions are not completely fixed to the piezoelectric element, the effect of the pair of shield portions on the resonance of the piezoelectric element. Can be reduced. Therefore, the sensor unit is excellent in detection accuracy.
  • spacers are provided on both sides of the piezoelectric element in plan view to hold the pair of shield portions in a separated state.
  • a space may be provided between the piezoelectric element and the pair of shield portions.
  • the piezoelectric element includes a signal electrode laminated on one side in the thickness direction, and the shield portion disposed on the signal electrode side is laminated on the inner side of the insulating layer and the insulating layer, It is preferable to have conductive layers that are connected to each other.
  • the detection area of the piezoelectric element is not fixed to the pair of shield portions.
  • the shield part is “partially fixed to the piezoelectric element” means that the shield part is piezoelectric, for example, via a lead wire, in addition to the case where the shield part is directly fixed to the piezoelectric element. This includes cases where the element is indirectly fixed to the element.
  • “Piezoelectric element detection area” refers to a certain area partitioned in the sheet surface of a piezoelectric element provided for detecting sound or vibration, for example, an area overlapping a pair of electrodes in plan view of the piezoelectric element. The area excluding the connection area with the lead wire.
  • the sensor unit 1 of FIG. 1 includes a sheet-like piezoelectric element 2 and a pair of sheet-like shield portions 3a and 3b disposed on both sides of the piezoelectric element 2 in the thickness direction.
  • the piezoelectric element 2 includes a piezoelectric film 11, a first electrode 12 laminated on one surface of the piezoelectric film 11, and a surface on the other side of the piezoelectric film 11 (opposite to the side on which the first electrode 12 is laminated). And a second electrode 13 stacked on the substrate.
  • the pair of shield portions 3a and 3b includes insulating layers 14a and 14b and a shield layer 15 laminated on the outer surface side of the insulating layers 14a and 14b (the side opposite to the side where the piezoelectric element 2 is disposed).
  • the sensor unit 1 is connected to the first electrode 12 and outputs a first lead wire 16a that outputs an electric signal to the outside.
  • the sensor unit 1 is connected to the second electrode 13 and outputs a second lead wire 16b that outputs an electric signal to the outside. And have.
  • the first lead wire 16a and the second lead wire 16b are electrically connected to an external detection circuit (not shown) at the end opposite to the side connected to the first electrode 12 and the second electrode 13. .
  • the sensor unit 1 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration.
  • the piezoelectric element 2 has flexibility.
  • the piezoelectric element 2 is configured to be deformable by a sound wave or vibration that is incident on the piezoelectric film 11 in the thickness direction, and thereby configured to detect sound or vibration.
  • the piezoelectric element 2 has a detection region X for detecting sound or vibration.
  • the piezoelectric element 2 is formed on the detection region X having a rectangular shape in plan view and on both outer sides in the longitudinal direction in the plan view of the detection region X, and includes a pair of electrodes 12 and 13 and a pair of electrodes. And a pair of connection regions (first connection region Y1 and second connection region Y2) to which the lead wires 16a and 16b are connected.
  • the piezoelectric element 2 is partially fixed to the shield portions 3a and 3b via the first lead wire 16a and the second lead wire 16b in the connection regions Y1 and Y2. That is, in the sensor unit 1, the detection region X is not fixed to the pair of shield portions 3a and 3b. In the sensor unit 1, since the detection region X is not fixed to the pair of shield portions 3a and 3b, the influence of the pair of shield portions 3a and 3b on the deformation of the detection region X can be easily and reliably removed. As a result, the sound or vibration detection accuracy can be significantly increased.
  • the piezoelectric film 11 is configured to be deformable by sound waves or vibration.
  • a specific configuration of the piezoelectric film 11 a known configuration such as one that bends and deforms due to sound waves or vibration and one that undergoes compression deformation can be employed.
  • the piezoelectric film 11 is disposed on the first electrode 12 side, and the negatively charged side is disposed on the second electrode 13 side.
  • the piezoelectric film 11 is formed in a strip shape in which the first connection region Y1 and the second connection region Y2 constitute both ends in the longitudinal direction.
  • the average thickness of the piezoelectric film 11 can be, for example, 30 ⁇ m or more and 150 ⁇ m or less.
  • the average length in the longitudinal direction of the piezoelectric film 11 can be set to, for example, 20 mm or more and 100 mm or less.
  • the average length of the piezoelectric film 11 in the short direction can be, for example, 10 mm or more and 80 mm or less.
  • the first electrode 12 and the second electrode 13 are laminated on substantially the entire surface of the piezoelectric film 11 in the thickness direction.
  • the first electrode 12 and the second electrode 13 are formed mainly of a conductive material such as metal.
  • the “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more.
  • the first electrode 12 constitutes a signal electrode
  • the second electrode 13 constitutes a ground electrode.
  • the sensor unit 1 generates electric charges due to deformation of the piezoelectric film 11.
  • the sensor unit 1 is configured to be able to detect sound and vibration by measuring the potential of the first electrode 12 using the second electrode 13 as a reference potential.
  • the pair of shield portions 3a and 3b are partially fixed to the piezoelectric element 2, respectively. Specifically, the pair of shield portions 3a and 3b are connected to the piezoelectric element 2 via the first lead wire 16a and the second lead wire 16b so as to restrict the movement of the piezoelectric element 2 in the planar direction (direction parallel to the thickness direction). Partially fixed to.
  • the region that is not fixed to the pair of shield portions 3a and 3b of the piezoelectric element 2 is a non-bonded region that is not bonded to other members.
  • the pair of shield portions 3a and 3b has flexibility.
  • the pair of shield portions 3 a and 3 b is a two-layer structure of a shield layer 15 and insulating layers 14 a and 14 b that are directly laminated on the inner surface of the shield layer 15, and the inner surfaces of the insulating layers 14 a and 14 b are part of the piezoelectric element 2. Fixed.
  • the pair of shield portions 3a and 3b and the first lead wire 16a and the second lead wire 16b are fixed by a known adhesive or the like.
  • the lower limit of the average width of the fixed portion R of the piezoelectric element 11 and the pair of shield portions 3a and 3b is preferably 1 mm, and more preferably 2 mm.
  • the upper limit of the average width of the fixed portion R is preferably 5 mm, and more preferably 3 mm. If the average width is smaller than the lower limit, the adhesive strength of the fixed portion R may be insufficient. On the other hand, if the average width exceeds the upper limit, the fixed portion R becomes unnecessarily large, and it may be difficult to make the detection region X sufficiently large.
  • the upper limit of the ratio of the area of the fixed portion R to the area of the piezoelectric element 2 in plan view is preferably 0.3, more preferably 0.2, and even more preferably 0.1. If the ratio exceeds the upper limit, the fixed portion R becomes unnecessarily large, and the influence of the fixed portion R on the deformation of the piezoelectric element 11 may increase.
  • the lower limit of the ratio is not particularly limited as long as the positional deviation between the pair of shield portions 3a and 3b and the piezoelectric element 11 can be prevented, and may be set to 0.01, for example.
  • the shield portions 3a and 3b are arranged so as to cover the entire region of the detection region X in plan view. As described above, since the shield portions 3a and 3b cover the entire region of the detection region X in plan view, the influence of external noise can be easily and reliably removed.
  • the insulating layers 14a and 14b constitute innermost layers of the shield portions 3a and 3b.
  • the insulating layers 14a and 14b have flexibility.
  • the insulating layers 14a and 14b are formed with synthetic resin as a main component.
  • the synthetic resin include polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polyester, polyamide, polyacetal, polyimide, and acrylic resin.
  • polyethylene terephthalate is preferable from the viewpoint of electrical characteristics, mechanical characteristics, cost, and the like.
  • the lower limit of the average thickness of the insulating layers 14a and 14b is preferably 0.1 ⁇ m, and more preferably 1 ⁇ m.
  • the upper limit of the average thickness of the insulating layers 14a and 14b is preferably 500 ⁇ m, and more preferably 100 ⁇ m. If the average thickness of the insulating layers 14a and 14b is less than the lower limit, the strength of the insulating layers 14a and 14b may be insufficient. On the other hand, if the average thickness of the insulating layers 14a and 14b exceeds the upper limit, the shield portions 3a and 3b may become unnecessarily thick or the flexibility of the shield portions 3a and 3b may be insufficient.
  • the shield layer 15 has conductivity.
  • the shield layer 15 constitutes the outermost layer of the shield portions 3a and 3b.
  • the shield layer 15 constituting the pair of shield portions 3a and 3b is composed of a single film member.
  • the shield layer 15 is formed of a band-shaped film member, and in a state where the longitudinal central portion of the film member is folded, one of the shield layers 15 is formed on the inner surface of the region on one side divided by the folded portion Z.
  • the insulating layer 14a is laminated, and the other insulating layer 14b is laminated on the inner surface of the other region.
  • the shield layer 15 has the second lead wire 16b in contact with the inner surface of the folded portion Z.
  • the shield layer 15 and the second lead wire 16b are bonded by solder, a conductive adhesive or the like. Thereby, the shield layer 15 is electrically connected to the second lead wire 16b.
  • the shield layer 15 is grounded and used to reduce the influence of external noise.
  • one insulating layer 14a and the other insulating layer 14b are formed as separate members, but one insulating layer serving as a pair of insulating layers 14a and 14b is formed on the inner surface of the shield layer 15. It may be laminated.
  • the shield layer 15 is formed mainly of metal.
  • the metal include silver, copper, gold, nickel, and aluminum.
  • the shield layer 15 is formed of, for example, a metal foil whose main component is the metal.
  • the pair of shield portions 3a and 3b is formed by, for example, applying a coating liquid containing a material for forming the pair of insulating layers 14a and 14b to the metal foil and then drying the pair of insulating layers 14a and 14b on the metal foil. It is formed by laminating 14b.
  • the lower limit of the average thickness of the shield layer 15 is preferably 0.01 ⁇ m, and more preferably 0.1 ⁇ m.
  • the upper limit of the average thickness of the shield layer 15 is preferably 500 ⁇ m, and more preferably 100 ⁇ m. If the average thickness is smaller than the lower limit, the shield layer 15 may be unintentionally torn. On the contrary, if the average thickness exceeds the upper limit, the shield portions 3a and 3b may become unnecessarily thick or the flexibility of the shield portions 3a and 3b may be insufficient.
  • the piezoelectric element 2 and the pair of shield portions 3a and 3b may be bonded by a known adhesive or the like, but the piezoelectric element 2 and the pair of shield portions 3a and 3b are preferably not bonded.
  • the sensor unit 1 can further suppress the influence of the pair of shield portions 3a and 3b on the deformation of the piezoelectric film 11 because the piezoelectric element 2 and the pair of shield portions 3a and 3b are not bonded.
  • the piezoelectric element 2 and the pair of shield portions 3a and 3b may be in close contact, but the piezoelectric element 2 and the pair of shield portions 3a. 3b is preferably provided. Since the sensor unit 1 has a space between the piezoelectric element 2 and the pair of shield portions 3 a and 3 b, the effect of the pair of shield portions 3 a and 3 b on the deformation of the piezoelectric film 11 can be further suppressed.
  • the lower limit of the ratio of the space area where the piezoelectric element 11 and the pair of shield portions 3a, 3b on the surface of the detection region X are not in close contact with the planar area of the detection region X is preferably 0.5, more preferably 0.7. 0.9 is more preferable.
  • the ratio is equal to or higher than the lower limit, it is easier to more accurately suppress the influence of the pair of shield portions 3a and 3b on the deformation of the piezoelectric film 11.
  • the upper limit of the ratio is not particularly limited and can be 1.0.
  • the pair of shield portions 3a and 3b may have a plurality of through holes (not shown) penetrating in the thickness direction.
  • the pair of shield portions 3a and 3b may expand outward due to thermal expansion of air existing in the space, The pair of shield portions 3a and 3b may be in close contact with the piezoelectric element 2 due to the cooling of the air.
  • the detection accuracy of sound and vibration may be reduced.
  • the sensor unit 1 has a plurality of through holes penetrating the pair of shield portions 3a and 3b in the thickness direction, so that the pair of shield portions 3a and 3b caused by the thermal expansion and cooling of the air. Swelling and close contact with the piezoelectric element 2 can be suppressed, and the detection accuracy of sound and vibration can be increased regardless of the use environment.
  • these through holes are preferably formed in a region that does not overlap the detection region X in plan view.
  • the average diameter of the plurality of through holes can be, for example, 100 ⁇ m or more and 5 mm or less. If the average diameter is less than the lower limit, there is a possibility that swelling of the pair of shield portions 3a and 3b and close contact with the piezoelectric element 2 cannot be sufficiently suppressed. Conversely, when the average diameter exceeds the upper limit, the plurality of through holes may affect the deformation of the piezoelectric film 11.
  • the first lead wire 16a and the second lead wire 16b are formed of, for example, a conductive linear conductor.
  • the first lead wire 16a has a bifurcated end opposite to the side connected to the detection circuit, and this branch portion is the first connection region Y1 and the second connection region Y2 and the outer surface of the first electrode 12. It is fixed to. Accordingly, the first lead wire 16a is electrically connected to the first electrode 12.
  • the second lead wire 16b has a bifurcated end opposite to the side connected to the detection circuit, and this branch portion is the second connection region Y1 in the first connection region Y1 and the second connection region Y2. It is fixed to the outer surface. Thereby, the second lead wire 16b is electrically connected to the second electrode 13.
  • the pair of shield portions 3 a and 3 b are partially fixed to the piezoelectric element 2, and the pair of shield portions 3 a and 3 b are not completely fixed to the piezoelectric element 2.
  • the influence of the portions 3a and 3b on the resonance of the piezoelectric element can be reduced. Therefore, the sensor unit 1 is excellent in detection accuracy.
  • the sensor unit 1 is excellent in detecting sound and vibration with high accuracy, and can particularly effectively improve sound detection accuracy.
  • the sensor unit 21 of FIG. 3 includes a sheet-like piezoelectric element 25 and a pair of sheet-like shield portions 3a and 3b disposed on both sides of the piezoelectric element 25 in the thickness direction.
  • the piezoelectric element 25 is partially fixed to the pair of shield portions 3a and 3b.
  • the piezoelectric element 25 has a piezoelectric film 26, a first electrode 27 stacked on one surface of the piezoelectric film 26, and a second electrode 28 stacked on the other surface of the piezoelectric film 26.
  • the pair of shield portions 3a and 3b includes insulating layers 14a and 14b and a shield layer 15 stacked on the outer surface side of the insulating layers 14a and 14b.
  • the sensor unit 21 is connected to the first electrode 27 and outputs a first lead wire 29a that outputs an electric signal to the outside.
  • the sensor unit 21 is connected to the second electrode 28 and outputs a second lead wire 29b that outputs an electric signal to the outside. And have.
  • the sensor unit 21 includes spacers 22a and 22b that hold the pair of shield portions 3a and 3b in a separated state on both sides of the piezoelectric element 25 in plan view.
  • the sensor unit 21 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration.
  • the pair of shield portions 3a and 3b in the sensor unit 21 are the same as the sensor unit 1 in FIG.
  • the piezoelectric element 25 has flexibility.
  • the piezoelectric element 25 is configured to be deformable by a sound wave or vibration that is incident on the piezoelectric film 26 in the thickness direction, and thereby configured to detect sound or vibration.
  • the piezoelectric element 25 has a detection region X for detecting sound or vibration.
  • the piezoelectric element 25 includes a detection region X having a rectangular shape in plan view, and a first connection region Y1 that protrudes outward from the detection region X in plan view and is connected to the first lead wire 29a. And a second connection region Y2 projecting outward from the detection region X in plan view and connected to the second lead wire 29b.
  • the first connection region Y1 and the second connection region Y2 protrude in opposite directions.
  • the piezoelectric element 25 can be configured in the same manner as the piezoelectric element 2 in FIG. 1 except that the shape is different.
  • the first lead wire 29a and the second lead wire 29b are formed of a linear conductor having conductivity, for example.
  • the first lead wire 29a is stacked on the outer surface of the first electrode 27 in the first connection region Y1, and is thereby electrically connected to the first electrode 27.
  • the second lead wire 29b is laminated on the outer surface of the second electrode 28 in the second connection region Y2, and is thereby electrically connected to the second electrode 28.
  • the spacers 22a and 22b are disposed so as to surround the piezoelectric element 25 in plan view.
  • Each of the spacers 22a and 22b has a pair of support surfaces disposed in parallel with the inner surfaces of the pair of shield portions 3a and 3b.
  • the spacers 22a and 22b are regions that do not overlap with the first lead wire 29a and the second lead wire 29b in a plan view, and the support surfaces are entirely on the inner surfaces of the pair of shield portions 3a and 3b. It arrange
  • the spacers 22a and 22b hold the pair of shield portions 3a and 3b in a state of being separated from each other at least on both sides of the piezoelectric element 25 in plan view.
  • the pair of shield portions 3a and 3b are held in a separated state.
  • the height of the spacers 22a and 22b is preferably equal to or greater than the maximum thickness of the piezoelectric element 25, and more preferably equal to the total thickness of the piezoelectric element 25 and the pair of lead wires 29a and 29b. Since the heights of the spacers 22a and 22b are equal to the total thickness of the piezoelectric element 25 and the pair of lead wires 29a and 29b, the spacers 22a and 22b are partially fixed to the pair of shield portions 3a and 3b. Are easily held in contact with the inner surfaces of the pair of shield portions 3a and 3b.
  • the material of the spacers 22a and 22b is not particularly limited, but may be a resin insulator that secures a space between the pair of shield portions 3a and 3b.
  • the spacers 22a and 22b may have adhesiveness to contribute to fixing the pair of shield portions 3a and 3b.
  • the spacers 22a and 22b may be made of a conductive metal. When the spacers 22a and 22b have conductivity, the shielding effect can be enhanced.
  • the sensor unit 21 is arranged so that the spacers 22a and 22b surround the piezoelectric element 25 in a plan view. Therefore, the spacer 22a and 22b can seal the outer region in the planar direction of the piezoelectric element 25. Thereby, it is possible to more reliably prevent external noise from entering the piezoelectric element 25 side.
  • the pair of shield portions 3a and 3b are partially fixed to the piezoelectric element 25 via the pair of lead wires 29a and 29b in the connection regions Y1 and Y2. Further, the inner surfaces of the pair of shield portions 3a and 3b are supported by the spacers 22a and 22b so as to surround the periphery of the piezoelectric element 25 in a region that does not overlap the first lead wire 29a and the second lead wire 29b in plan view. ing. Thereby, the detection region X of the piezoelectric element 25 is not fixed to the pair of shield portions 3a and 3b. Thereby, there is a space between the piezoelectric element 25 and the pair of shield portions 3a and 3b.
  • an air layer is formed between the entire area of the surface of the detection area X and the inner surfaces of the pair of shield portions 3a and 3b.
  • the ratio of the space area where the piezoelectric element 25 and the pair of shield portions 3 a and 3 b on the surface of the detection region X are not in close contact with the planar area of the detection region X is 1.
  • the sensor unit 21 can accurately remove the influence of the pair of shield portions 3a and 3b on the deformation of the detection region X.
  • the piezoelectric element 25 and the pair of shield portions 3a and 3b are fixed in a dot shape in the connection regions Y1 and Y2.
  • the lower limit of the average diameter of the fixed portion R of the piezoelectric element 25 and the pair of shield portions 3a and 3b is preferably 1 mm, and more preferably 2 mm.
  • the upper limit of the average diameter of the fixed portion R is preferably 5 mm, and more preferably 3 mm. If the average diameter is smaller than the lower limit, the adhesive strength of the fixed portion R may be insufficient. On the other hand, when the average diameter exceeds the upper limit, the influence of the fixed portion R on the deformation of the piezoelectric element 25 may increase.
  • the “average diameter” refers to a diameter converted into a perfect circle of equal area.
  • the “average diameter of the fixed portion” refers to the average diameter of the fixed portion in plan view.
  • the sensor unit 21 has spacers 22a and 22b that hold the pair of shield portions 3a and 3b in a separated state on both sides of the piezoelectric element 25 in a plan view. It is easy to increase the effect of reducing the influence of the piezoelectric element 25 on the deformation of the detection region X.
  • the sensor unit 31 of FIG. 5 includes a sheet-like piezoelectric element 25 and a pair of sheet-like shield portions 33a and 33b disposed on both sides of the piezoelectric element 25 in the thickness direction.
  • the piezoelectric element 25 is partially fixed to the pair of shield portions 33a and 33b.
  • the piezoelectric element 25 has a piezoelectric film 26, a first electrode 27 stacked on one surface of the piezoelectric film 26, and a second electrode 28 stacked on the other surface of the piezoelectric film 26.
  • the first electrode 27 constitutes a signal electrode
  • the second electrode 28 constitutes a ground electrode.
  • the piezoelectric element 25 has a signal electrode stacked on one side in the thickness direction and a ground electrode disposed on the other side in the thickness direction.
  • One shield portion 33a (the shield portion disposed on the first electrode 27 side of the piezoelectric element 25) includes the insulating layer 14a, the shield layer 15 laminated on the outer surface side of the insulating layer 14a, and the inner surface of the insulating layer 14a. And a conductive layer 34 stacked on the side.
  • the other shield part 33b shield part disposed on the second electrode 28 side of the piezoelectric element 25 has an insulating layer 14b and a shield layer 15 laminated on the outer surface side of the insulating layer 14b.
  • the sensor unit 31 is connected to the first electrode 27 and outputs an electric signal to the outside.
  • the second lead wire 29b is connected to the second electrode 28 and outputs an electric signal to the outside. And have.
  • the sensor unit 31 has spacers 22a and 22b that hold the pair of shield portions 33a and 33b in a separated state on both sides of the piezoelectric element 25 in plan view.
  • the sensor unit 31 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration.
  • the sensor unit 31 has the same configuration as the sensor unit 21 of FIG. 3 except that one shield portion 33a disposed on the signal electrode side includes a conductive layer 34 laminated on the inner surface side of the insulating layer 14a. Have. Therefore, only one shield part 33a will be described below.
  • one shield part 33a includes the insulating layer 14a, the shield layer 15 stacked on the outer surface side of the insulating layer 14a, and the conductive layer 34 stacked on the inner surface side of the insulating layer 14a.
  • One shield part 33 a is a three-layer structure of the insulating layer 14 a, the shield layer 15, and the conductive layer 34.
  • One shield part 33a has flexibility. Specific configurations of the insulating layer 14a and the shield layer 15 of the shield part 33a can be the same as those of the sensor unit 1 of FIG.
  • the conductive layer 34 constitutes the innermost layer of one shield part 33a.
  • the conductive layer 34 has conductivity.
  • the conductor layer 34 is held in an insulated state from the shield layer 15.
  • the conductive layer 34 is electrically connected to the first electrode 27 (signal electrode).
  • the conductive layer 34 is preferably disposed so as to cover the entire region on the surface side of the detection region X, and more preferably disposed so as to cover the entire region on the surface side of the piezoelectric film 26.
  • An air layer is preferably formed between the conductive layer 34 and the detection region X. The air layer is more preferably formed over the entire surface of the detection region X.
  • the conductive layer 34 is formed using, for example, a metal or a metal compound as a main component.
  • the metal include silver, copper, gold, nickel, aluminum, and carbon.
  • the metal compound include ITO.
  • the conductive layer 34 may be laminated on the inner surface of the insulating layer 14a by metal printing or metal vapor deposition, or may be laminated by adhering a metal foil to the inner surface of the insulating layer 14a.
  • the lower limit of the average thickness of the conductive layer 34 is preferably 0.01 ⁇ m, and more preferably 0.1 ⁇ m.
  • the upper limit of the average thickness of the conductive layer 34 is preferably 500 ⁇ m, and more preferably 100 ⁇ m.
  • the conductive layer 34 and the first electrode 27 may be electrically connected by bonding the conductive layer 34 and the first lead wire 29a with solder, a conductive adhesive, or the like.
  • the conductive layer 34 and the first electrode 27 may be electrically connected by forming the first lead wire 29a integrally with the conductive layer 34 continuously from the end of the conductive layer 34.
  • a shield portion 33 a disposed on the first electrode 27 side is laminated on the inner surface side of the insulating layer 14 a and the insulating layer 14 a, and the conductive layer 34 electrically connected to the first electrode 27 is provided. Therefore, the conductive layer 34 and the first electrode 27 can be kept at the same potential, and thus the generation of capacitance between the first electrode 27 and the conductive layer 34 can be suppressed. Therefore, the sensor unit 31 can suppress the influence of the electrostatic capacitance on the detection of sound and vibration, and can further increase the detection accuracy of sound and vibration.
  • the spacer may be provided only on both sides of the piezoelectric element in plan view.
  • the piezoelectric element is not necessarily fixed to the pair of shield portions via the lead wires, and for example, the outer surface of the electrode (that is, the outer surface of the detection region) may be directly fixed to the shield portion. Further, even when the piezoelectric element is fixed to the pair of shield portions via lead wires, the specific fixing method is not limited to the configuration of the above-described embodiment.
  • the sensor unit 41 includes a shield layer 45 having a conductive portion 43 b disposed outside the second electrode 42, and an insulating layer laminated on the inner surface of the shield layer 45. 44b and a conductive portion 44c having conductivity and penetrating the insulating layer 44b in the thickness direction, and the second lead wire 46b is electrically connected to the shield layer 45 via the conductive portion 44c. Also good.
  • the planar shape of the piezoelectric element is not particularly limited, and can be appropriately designed depending on the application. Further, the configurations of the above-described embodiments can be appropriately combined.
  • the sensor units 21 and 31 of FIGS. 3 and 5 can employ a configuration without the spacers 22a and 22b. And it is also possible to use a spacer in the sensor units 1 and 41 of FIG.
  • the shield layer 55 includes a pair of strip-shaped film members 55a disposed on both sides of the piezoelectric element, and ends on one side in the longitudinal direction of the pair of film members 55a. And a conductive member 55b that connects the two.
  • the connection method of a pair of film member 55a and the electrically-conductive member 55b is not specifically limited, For example, you may connect using a conductive tape and may connect using a screw.
  • the sensor unit can reduce the influence of the pair of shield parts on the resonance of the piezoelectric element by partially fixing the piezoelectric element and the pair of shield parts as described above.
  • the sensor unit may be stacked with a weight on the outer surface of the shield part as necessary.
  • a sheet-like weight having a synthetic resin as a main component may be laminated on the outer surface of the shield portion disposed on the first electrode side.
  • the sensor unit is configured by stacking a weight on the outer surface of the shield part disposed on the first electrode side.
  • the sensor unit can closely contact only the outer surface of the second electrode of the piezoelectric element and the inner surface of the shield portion disposed on the second electrode side. It is possible to facilitate transmission to the piezoelectric element.
  • the sensor unit can be used as a pickup for a musical instrument attached to a sound board of a stringed instrument, for example, a boundary microphone, a device for detecting abnormal noise or noise of a building, a machine, a transport aircraft, etc. It can also be used for members other than musical instruments.
  • the sensor unit of the present invention is suitable for being used as a pick-up for musical instruments such as stringed instruments because of its excellent sound and vibration detection accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

The present invention addresses the problem of providing a sensor unit having excellent detection accuracy. This sensor unit is provided with a sheet-shaped piezoelectric element, and a pair of sheet-shaped shield parts disposed on both sides in the thickness direction of the piezoelectric element and partially secured to the piezoelectric element. It is preferable to have a spacer for holding the pair of shield parts in a separated state on both sides in plan view of the piezoelectric element. It is preferable to have a space between the piezoelectric element and the pair of shield parts. It is preferable that the piezoelectric element is provided with a signal electrode stacked on one side thereof in the thickness direction, and that the shield part disposed on the signal electrode side comprises an insulating layer and a conductive layer stacked on the inner surface side of the insulating layer and electrically connected to the signal electrode. It is preferable that a detection region of the piezoelectric element is not secured to the pair of shield parts.

Description

センサーユニットSensor unit
 本発明は、センサーユニットに関する。 The present invention relates to a sensor unit.
 シート状の圧電素子を備え、音響機器等に取り付けられて音や振動を検出する歪みセンサーが知られている。この歪みセンサーは、前記圧電素子が、圧電膜とこの圧電膜の両面に配設される一対の電極を有する。この歪みセンサーは、圧電膜が音波や振動によって変形し圧電効果によって電荷を生じ、この電荷を一対の電極が電圧信号として取り出し可能に構成されている。 A strain sensor that includes a sheet-like piezoelectric element and is attached to an acoustic device or the like to detect sound or vibration is known. In this strain sensor, the piezoelectric element has a piezoelectric film and a pair of electrodes disposed on both sides of the piezoelectric film. This strain sensor is configured such that a piezoelectric film is deformed by sound waves or vibrations to generate electric charges by a piezoelectric effect, and the electric charges can be taken out as a voltage signal by a pair of electrodes.
 このような歪みセンサーは、圧電素子が外部ノイズを拾うことを防止するため、圧電素子の両面側にシールド層が設けられることが多い(特開平8-75575号公報参照)。この歪みセンサーは、シールド層が保護層を介して一対の電極の外面全面に固定されている。 Such a strain sensor is often provided with shield layers on both sides of the piezoelectric element in order to prevent the piezoelectric element from picking up external noise (see JP-A-8-75575). In this strain sensor, the shield layer is fixed to the entire outer surfaces of the pair of electrodes via the protective layer.
特開平8-75575号公報JP-A-8-75575
 しかしながら、前記従来の歪みセンサーは、シールド層が一対の電極の外面全面に固定されているため、シールド層が圧電膜の共振に影響を及ぼすおそれがある。特に、音波を検出する歪みセンサーにあっては、シールド層が一対の電極の外面全面に固定されていると圧電膜の変形が阻害されやすく、センサーの特性に影響を与えやすい。 However, in the conventional strain sensor, since the shield layer is fixed to the entire outer surfaces of the pair of electrodes, the shield layer may affect the resonance of the piezoelectric film. In particular, in a strain sensor that detects sound waves, if the shield layer is fixed to the entire outer surfaces of a pair of electrodes, deformation of the piezoelectric film is likely to be hindered, and the characteristics of the sensor are likely to be affected.
 また今日においては、歪みセンサーを曲げた状態で取り扱うこともあり、この場合シールド層が一対の電極の外面全面に固定されていると、シールド層と電極の接着面、又は電極と圧電膜との接着面が意図せず剥離することがある。特に、電極と圧電膜との接着面が剥離すると、ノイズが混入するおそれに加え、センサーとしての機能が失われるおそれもある。 In addition, today, the strain sensor may be handled in a bent state. In this case, if the shield layer is fixed to the entire outer surface of the pair of electrodes, the shield layer and the adhesive surface of the electrode or the electrode and the piezoelectric film The adhesive surface may peel off unintentionally. In particular, if the adhesive surface between the electrode and the piezoelectric film is peeled off, noise may be mixed and the sensor function may be lost.
 本発明は、このような事情に基づいてなされたものであり、検出精度に優れるセンサーユニットを提供することを課題とする。 This invention is made based on such a situation, and makes it a subject to provide the sensor unit excellent in detection accuracy.
 前記課題を解決するためになされた本発明は、シート状の圧電素子と、前記圧電素子の厚さ方向両側に配設され、この圧電素子に部分的に固定される一対のシート状のシールド部とを備えるセンサーユニットである。 The present invention, which has been made to solve the above problems, includes a sheet-like piezoelectric element and a pair of sheet-like shield portions that are disposed on both sides of the piezoelectric element in the thickness direction and are partially fixed to the piezoelectric element. It is a sensor unit provided with.
本発明の一実施形態に係るセンサーユニットを示す模式的断面図である。It is a typical sectional view showing the sensor unit concerning one embodiment of the present invention. 図1のセンサーユニットのシールド部の接続構造を説明するための模式的部分断面図である。It is a typical fragmentary sectional view for demonstrating the connection structure of the shield part of the sensor unit of FIG. 図1のセンサーユニットとは異なる形態に係るセンサーユニットを示す模式的断面図である。It is typical sectional drawing which shows the sensor unit which concerns on a different form from the sensor unit of FIG. 図3のセンサーユニットのシールド部の接続構造を説明するための模式的部分断面図である。It is a typical fragmentary sectional view for demonstrating the connection structure of the shield part of the sensor unit of FIG. 図1及び図3のセンサーユニットとは異なる形態に係るセンサーユニットを示す模式的断面図である。It is typical sectional drawing which shows the sensor unit which concerns on a different form from the sensor unit of FIG.1 and FIG.3. 図1、図3及び図5のセンサーユニットとは異なる形態に係るセンサーユニットを示す模式的断面図である。It is typical sectional drawing which shows the sensor unit which concerns on a different form from the sensor unit of FIG.1, FIG3 and FIG.5. 図1のセンサーユニットのシールド層の変形例を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a modification of the shield layer of the sensor unit in FIG. 1.
 本発明の一態様に係るセンサーユニットは、シート状の圧電素子と、前記圧電素子の厚さ方向両側に配設され、この圧電素子に部分的に固定される一対のシート状のシールド部とを備えるセンサーユニットである。 A sensor unit according to an aspect of the present invention includes a sheet-shaped piezoelectric element and a pair of sheet-shaped shield portions that are disposed on both sides in the thickness direction of the piezoelectric element and are partially fixed to the piezoelectric element. It is a sensor unit provided.
 当該センサーユニットは、一対のシールド部が圧電素子に部分的に固定されており、これらのシールド部が圧電素子に全面的に固定されていないので、一対のシールド部が圧電素子の共振に及ぼす影響を低減することができる。そのため、当該センサーユニットは検出精度に優れる。 In the sensor unit, the pair of shield portions are partially fixed to the piezoelectric element, and since these shield portions are not completely fixed to the piezoelectric element, the effect of the pair of shield portions on the resonance of the piezoelectric element. Can be reduced. Therefore, the sensor unit is excellent in detection accuracy.
 前記圧電素子の平面視両側に、前記一対のシールド部を離間した状態で保持するスペーサを有するとよい。 It is preferable that spacers are provided on both sides of the piezoelectric element in plan view to hold the pair of shield portions in a separated state.
 前記圧電素子と一対のシールド部との間に空間を有するとよい。 A space may be provided between the piezoelectric element and the pair of shield portions.
 前記圧電素子が厚さ方向一方側に積層されるシグナル電極を備え、このシグナル電極側に配設される前記シールド部が、絶縁層及びこの絶縁層の内面側に積層され、前記シグナル電極と電気的に接続される導電層を有するとよい。 The piezoelectric element includes a signal electrode laminated on one side in the thickness direction, and the shield portion disposed on the signal electrode side is laminated on the inner side of the insulating layer and the insulating layer, It is preferable to have conductive layers that are connected to each other.
 前記圧電素子の検出領域が前記一対のシールド部と固定されていないことが好ましい。 It is preferable that the detection area of the piezoelectric element is not fixed to the pair of shield portions.
 なお、本発明において、シールド部が「圧電素子に部分的に固定される」とは、シールド部が圧電素子に直接部分的に固定される場合の他、例えばリード線を介してシールド部が圧電素子に間接的に部分的に固定される場合も含む。「圧電素子の検出領域」とは、音又は振動を検出するために設けられた圧電素子のシート面内において区画される一定の領域をいい、例えば圧電素子の平面視において一対の電極と重なり合う領域であって、リード線との接続領域を除く領域をいう。 In the present invention, the shield part is “partially fixed to the piezoelectric element” means that the shield part is piezoelectric, for example, via a lead wire, in addition to the case where the shield part is directly fixed to the piezoelectric element. This includes cases where the element is indirectly fixed to the element. “Piezoelectric element detection area” refers to a certain area partitioned in the sheet surface of a piezoelectric element provided for detecting sound or vibration, for example, an area overlapping a pair of electrodes in plan view of the piezoelectric element. The area excluding the connection area with the lead wire.
 以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[第一実施形態]
<センサーユニット>
 図1のセンサーユニット1は、シート状の圧電素子2と、圧電素子2の厚さ方向両側に配設される一対のシート状のシールド部3a、3bとを備える。圧電素子2は、圧電膜11と、圧電膜11の一方側の面に積層される第1電極12と、圧電膜11の他方側(第1電極12が積層される側と反対側)の面に積層される第2電極13とを有する。一対のシールド部3a、3bは、絶縁層14a、14bと、絶縁層14a、14bの外面側(圧電素子2が配設される側と反対側)に積層されるシールド層15とを有する。また、当該センサーユニット1は、第1電極12に接続され、外部に電気信号を出力する第1リード線16aと、第2電極13に接続され、外部に電気信号を出力する第2リード線16bとを有する。第1リード線16a及び第2リード線16bは、第1電極12及び第2電極13と接続される側と反対側の端部が外部の検出回路(不図示)に電気的に接続されている。当該センサーユニット1は、例えば音響機器等に取り付けられて用いられ、音や振動を検出する歪みセンサーとして構成されている。
[First embodiment]
<Sensor unit>
The sensor unit 1 of FIG. 1 includes a sheet-like piezoelectric element 2 and a pair of sheet- like shield portions 3a and 3b disposed on both sides of the piezoelectric element 2 in the thickness direction. The piezoelectric element 2 includes a piezoelectric film 11, a first electrode 12 laminated on one surface of the piezoelectric film 11, and a surface on the other side of the piezoelectric film 11 (opposite to the side on which the first electrode 12 is laminated). And a second electrode 13 stacked on the substrate. The pair of shield portions 3a and 3b includes insulating layers 14a and 14b and a shield layer 15 laminated on the outer surface side of the insulating layers 14a and 14b (the side opposite to the side where the piezoelectric element 2 is disposed). The sensor unit 1 is connected to the first electrode 12 and outputs a first lead wire 16a that outputs an electric signal to the outside. The sensor unit 1 is connected to the second electrode 13 and outputs a second lead wire 16b that outputs an electric signal to the outside. And have. The first lead wire 16a and the second lead wire 16b are electrically connected to an external detection circuit (not shown) at the end opposite to the side connected to the first electrode 12 and the second electrode 13. . The sensor unit 1 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration.
(圧電素子)
 圧電素子2は可撓性を有する。圧電素子2は、圧電膜11が厚さ方向に入射する音波又は振動によって変形可能に構成されており、これにより音又は振動を検出可能に構成されている。圧電素子2は、音又は振動を検出するための検出領域Xを有する。詳細には、圧電素子2は、図2に示すように、平面視矩形状の検出領域Xと、検出領域Xの平面視における長手方向の両外側に形成され、一対の電極12、13及び一対のリード線16a、16bが接続される一対の接続領域(第1接続領域Y1及び第2接続領域Y2)とを有する。圧電素子2は、この接続領域Y1、Y2において第1リード線16a及び第2リード線16bを介してシールド部3a、3bと部分的に固定されている。つまり、当該センサーユニット1は、検出領域Xが一対のシールド部3a、3bと固定されていない。当該センサーユニット1は、検出領域Xが一対のシールド部3a、3bと固定されていないので、一対のシールド部3a、3bが検出領域Xの変形に及ぼす影響を容易かつ確実に取り除くことができ、その結果音又は振動の検出精度を著しく高めることができる。
(Piezoelectric element)
The piezoelectric element 2 has flexibility. The piezoelectric element 2 is configured to be deformable by a sound wave or vibration that is incident on the piezoelectric film 11 in the thickness direction, and thereby configured to detect sound or vibration. The piezoelectric element 2 has a detection region X for detecting sound or vibration. Specifically, as shown in FIG. 2, the piezoelectric element 2 is formed on the detection region X having a rectangular shape in plan view and on both outer sides in the longitudinal direction in the plan view of the detection region X, and includes a pair of electrodes 12 and 13 and a pair of electrodes. And a pair of connection regions (first connection region Y1 and second connection region Y2) to which the lead wires 16a and 16b are connected. The piezoelectric element 2 is partially fixed to the shield portions 3a and 3b via the first lead wire 16a and the second lead wire 16b in the connection regions Y1 and Y2. That is, in the sensor unit 1, the detection region X is not fixed to the pair of shield portions 3a and 3b. In the sensor unit 1, since the detection region X is not fixed to the pair of shield portions 3a and 3b, the influence of the pair of shield portions 3a and 3b on the deformation of the detection region X can be easily and reliably removed. As a result, the sound or vibration detection accuracy can be significantly increased.
 圧電膜11は、音波や振動によって変形可能に構成されている。圧電膜11の具体的構成としては、音波や振動によって撓み変形するものや圧縮変形するもの等、公知の構成のものを採用可能である。圧電膜11は、厚さ方向に荷重を付加した場合に正(プラス)に帯電する側が第1電極12側に配置され、負(マイナス)に帯電する側が第2電極13側に配置されている。圧電膜11は、第1接続領域Y1及び第2接続領域Y2が長手方向両端部を構成する帯状に形成されている。圧電膜11の平均厚さとしては、例えば30μm以上150μm以下とすることができる。圧電膜11の長手方向平均長さとしては、例えば20mm以上100mm以下とすることができる。圧電膜11の短手方向の平均長さとしては、例えば10mm以上80mm以下とすることができる。 The piezoelectric film 11 is configured to be deformable by sound waves or vibration. As a specific configuration of the piezoelectric film 11, a known configuration such as one that bends and deforms due to sound waves or vibration and one that undergoes compression deformation can be employed. When a load is applied in the thickness direction, the piezoelectric film 11 is disposed on the first electrode 12 side, and the negatively charged side is disposed on the second electrode 13 side. . The piezoelectric film 11 is formed in a strip shape in which the first connection region Y1 and the second connection region Y2 constitute both ends in the longitudinal direction. The average thickness of the piezoelectric film 11 can be, for example, 30 μm or more and 150 μm or less. The average length in the longitudinal direction of the piezoelectric film 11 can be set to, for example, 20 mm or more and 100 mm or less. The average length of the piezoelectric film 11 in the short direction can be, for example, 10 mm or more and 80 mm or less.
 第1電極12及び第2電極13は、圧電膜11の厚さ方向両面の略全面に積層されている。第1電極12及び第2電極13は、金属等の導電性を有する材料を主成分として形成される。なお、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上の成分をいう。 The first electrode 12 and the second electrode 13 are laminated on substantially the entire surface of the piezoelectric film 11 in the thickness direction. The first electrode 12 and the second electrode 13 are formed mainly of a conductive material such as metal. The “main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more.
 第1電極12はシグナル電極を構成し、第2電極13はグランド電極を構成している。当該センサーユニット1は、圧電膜11の変形により電荷を生じる。当該センサーユニット1は、第2電極13を基準電位として第1電極12の電位を測定することで音や振動を検出可能に構成されている。 The first electrode 12 constitutes a signal electrode, and the second electrode 13 constitutes a ground electrode. The sensor unit 1 generates electric charges due to deformation of the piezoelectric film 11. The sensor unit 1 is configured to be able to detect sound and vibration by measuring the potential of the first electrode 12 using the second electrode 13 as a reference potential.
(シールド部)
 一対のシールド部3a、3bは、それぞれ圧電素子2に部分的に固定される。詳細には一対のシールド部3a、3bは、圧電素子2の平面方向(厚さ方向と平行な方向)の移動を規制するよう第1リード線16a及び第2リード線16bを介して圧電素子2に部分的に固定される。圧電素子2の一対のシールド部3a、3bと固定されていない領域は、他の部材と接着されない非接着領域である。一対のシールド部3a、3bは可撓性を有する。一対のシールド部3a、3bは、シールド層15及びこのシールド層15の内面に直接積層される絶縁層14a、14bの2層構造体であり、絶縁層14a、14bの内面が圧電素子2に部分的に固定されている。一対のシールド部3a、3bと第1リード線16a及び第2リード線16bとは公知の接着剤等によって固定されている。
(Shield part)
The pair of shield portions 3a and 3b are partially fixed to the piezoelectric element 2, respectively. Specifically, the pair of shield portions 3a and 3b are connected to the piezoelectric element 2 via the first lead wire 16a and the second lead wire 16b so as to restrict the movement of the piezoelectric element 2 in the planar direction (direction parallel to the thickness direction). Partially fixed to. The region that is not fixed to the pair of shield portions 3a and 3b of the piezoelectric element 2 is a non-bonded region that is not bonded to other members. The pair of shield portions 3a and 3b has flexibility. The pair of shield portions 3 a and 3 b is a two-layer structure of a shield layer 15 and insulating layers 14 a and 14 b that are directly laminated on the inner surface of the shield layer 15, and the inner surfaces of the insulating layers 14 a and 14 b are part of the piezoelectric element 2. Fixed. The pair of shield portions 3a and 3b and the first lead wire 16a and the second lead wire 16b are fixed by a known adhesive or the like.
 圧電素子11及び一対のシールド部3a、3bの固定部Rの平均幅の下限としては、1mmが好ましく、2mmがより好ましい。一方、固定部Rの平均幅の上限としては、5mmが好ましく、3mmがより好ましい。前記平均幅が前記下限より小さいと、固定部Rの接着強度が不十分となるおそれがある。逆に、前記平均幅が前記上限を超えると、固定部Rが不要に大きくなり、検出領域Xを十分に大きくし難くなるおそれがある。 The lower limit of the average width of the fixed portion R of the piezoelectric element 11 and the pair of shield portions 3a and 3b is preferably 1 mm, and more preferably 2 mm. On the other hand, the upper limit of the average width of the fixed portion R is preferably 5 mm, and more preferably 3 mm. If the average width is smaller than the lower limit, the adhesive strength of the fixed portion R may be insufficient. On the other hand, if the average width exceeds the upper limit, the fixed portion R becomes unnecessarily large, and it may be difficult to make the detection region X sufficiently large.
 平面視における圧電素子2の面積に対する固定部Rの面積の比の上限としては、0.3が好ましく、0.2がより好ましく、0.1がさらに好ましい。前記比が前記上限を超えると、固定部Rが不要に大きくなり、固定部Rの圧電素子11の変形に及ぼす影響が大きくなるおそれがある。一方、前記比の下限としては、一対のシールド部3a、3b及び圧電素子11の位置ずれを防止できる限り特に限定されるものではなく、例えば0.01とすることができる。 The upper limit of the ratio of the area of the fixed portion R to the area of the piezoelectric element 2 in plan view is preferably 0.3, more preferably 0.2, and even more preferably 0.1. If the ratio exceeds the upper limit, the fixed portion R becomes unnecessarily large, and the influence of the fixed portion R on the deformation of the piezoelectric element 11 may increase. On the other hand, the lower limit of the ratio is not particularly limited as long as the positional deviation between the pair of shield portions 3a and 3b and the piezoelectric element 11 can be prevented, and may be set to 0.01, for example.
 シールド部3a、3bは、平面視で検出領域Xの全領域を被覆するよう配設されている。このように、シールド部3a、3bが平面視で検出領域Xの全領域を被覆することで外部ノイズの影響を容易かつ確実に取り除くことができる。 The shield portions 3a and 3b are arranged so as to cover the entire region of the detection region X in plan view. As described above, since the shield portions 3a and 3b cover the entire region of the detection region X in plan view, the influence of external noise can be easily and reliably removed.
 絶縁層14a、14bは、シールド部3a、3bの最内層を構成する。絶縁層14a、14bは可撓性を有する。絶縁層14a、14bは合成樹脂を主成分として形成されている。前記合成樹脂としては、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリカーボネート、ポリエステル、ポリアミド、ポリアセタール、ポリイミド、アクリル樹脂等が挙げられる。中でも、電気的特性、機械的特性、コスト等の点からポリエチレンテレフタレートが好ましい。 The insulating layers 14a and 14b constitute innermost layers of the shield portions 3a and 3b. The insulating layers 14a and 14b have flexibility. The insulating layers 14a and 14b are formed with synthetic resin as a main component. Examples of the synthetic resin include polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polyester, polyamide, polyacetal, polyimide, and acrylic resin. Among these, polyethylene terephthalate is preferable from the viewpoint of electrical characteristics, mechanical characteristics, cost, and the like.
 絶縁層14a、14bの平均厚さの下限としては、0.1μmが好ましく、1μmがより好ましい。一方、絶縁層14a、14bの平均厚さの上限としては、500μmが好ましく、100μmがより好ましい。絶縁層14a、14bの平均厚さが前記下限に満たないと、絶縁層14a、14bの強度が不十分となるおそれがある。逆に、絶縁層14a、14bの平均厚さが前記上限を超えると、シールド部3a、3bが不要に厚くなったり、シールド部3a、3bの可撓性が不十分となるおそれがある。 The lower limit of the average thickness of the insulating layers 14a and 14b is preferably 0.1 μm, and more preferably 1 μm. On the other hand, the upper limit of the average thickness of the insulating layers 14a and 14b is preferably 500 μm, and more preferably 100 μm. If the average thickness of the insulating layers 14a and 14b is less than the lower limit, the strength of the insulating layers 14a and 14b may be insufficient. On the other hand, if the average thickness of the insulating layers 14a and 14b exceeds the upper limit, the shield portions 3a and 3b may become unnecessarily thick or the flexibility of the shield portions 3a and 3b may be insufficient.
 シールド層15は導電性を有する。シールド層15は、シールド部3a、3bの最外層を構成する。一対のシールド部3a、3bを構成するシールド層15は、1枚のフィルム部材から構成される。具体的には、シールド層15は、帯状のフィルム部材によって形成されており、このフィルム部材の長手方向中央部を折り返した状態で、折り返し部Zによって区分される一方側の領域の内面に一方の絶縁層14aが積層され、他方側の領域の内面に他方の絶縁層14bが積層されている。また、シールド層15は、折り返し部Zの内面に第2リード線16bが当接している。シールド層15及び第2リード線16bは、半田、導電性接着剤等によって接着されている。これにより、シールド層15は、第2リード線16bと電気的に接続されている。シールド層15は、接地して用いられ、外部ノイズの影響を低減する。なお、本実施形態においては、一方の絶縁層14a及び他方の絶縁層14bは別部材として形成されているが、シールド層15の内面に一対の絶縁層14a、14bを兼ねる1枚の絶縁層が積層されていてもよい。 The shield layer 15 has conductivity. The shield layer 15 constitutes the outermost layer of the shield portions 3a and 3b. The shield layer 15 constituting the pair of shield portions 3a and 3b is composed of a single film member. Specifically, the shield layer 15 is formed of a band-shaped film member, and in a state where the longitudinal central portion of the film member is folded, one of the shield layers 15 is formed on the inner surface of the region on one side divided by the folded portion Z. The insulating layer 14a is laminated, and the other insulating layer 14b is laminated on the inner surface of the other region. The shield layer 15 has the second lead wire 16b in contact with the inner surface of the folded portion Z. The shield layer 15 and the second lead wire 16b are bonded by solder, a conductive adhesive or the like. Thereby, the shield layer 15 is electrically connected to the second lead wire 16b. The shield layer 15 is grounded and used to reduce the influence of external noise. In the present embodiment, one insulating layer 14a and the other insulating layer 14b are formed as separate members, but one insulating layer serving as a pair of insulating layers 14a and 14b is formed on the inner surface of the shield layer 15. It may be laminated.
 シールド層15は金属を主成分として形成される。前記金属としては、例えば銀、銅、金、ニッケル、アルミニウム等が挙げられる。シールド層15は、例えば前記金属を主成分とする金属箔によって形成される。また、一対のシールド部3a、3bは、例えばこの金属箔に一対の絶縁層14a、14bの形成材料を含む塗工液を塗布して乾燥することで、この金属箔に一対の絶縁層14a、14bを積層することで形成される。シールド層15の平均厚さの下限としては、0.01μmが好ましく、0.1μmがより好ましい。一方、シールド層15の平均厚さの上限としては、500μmが好ましく、100μmがより好ましい。前記平均厚さが前記下限より小さいと、シールド層15が意図せず断裂するおそれがある。逆に、前記平均厚さが前記上限を超えると、シールド部3a、3bが不要に厚くなったり、シールド部3a、3bの可撓性が不十分となるおそれがある。 The shield layer 15 is formed mainly of metal. Examples of the metal include silver, copper, gold, nickel, and aluminum. The shield layer 15 is formed of, for example, a metal foil whose main component is the metal. In addition, the pair of shield portions 3a and 3b is formed by, for example, applying a coating liquid containing a material for forming the pair of insulating layers 14a and 14b to the metal foil and then drying the pair of insulating layers 14a and 14b on the metal foil. It is formed by laminating 14b. The lower limit of the average thickness of the shield layer 15 is preferably 0.01 μm, and more preferably 0.1 μm. On the other hand, the upper limit of the average thickness of the shield layer 15 is preferably 500 μm, and more preferably 100 μm. If the average thickness is smaller than the lower limit, the shield layer 15 may be unintentionally torn. On the contrary, if the average thickness exceeds the upper limit, the shield portions 3a and 3b may become unnecessarily thick or the flexibility of the shield portions 3a and 3b may be insufficient.
 圧電素子2と一対のシールド部3a、3bとは公知の接着剤等によって接着されていてもよいが、圧電素子2と一対のシールド部3a、3bとは接着されていないことが好ましい。当該センサーユニット1は、圧電素子2と一対のシールド部3a、3bとが接着されていないことによって、一対のシールド部3a、3bが圧電膜11の変形に及ぼす影響をより抑えることができる。 The piezoelectric element 2 and the pair of shield portions 3a and 3b may be bonded by a known adhesive or the like, but the piezoelectric element 2 and the pair of shield portions 3a and 3b are preferably not bonded. The sensor unit 1 can further suppress the influence of the pair of shield portions 3a and 3b on the deformation of the piezoelectric film 11 because the piezoelectric element 2 and the pair of shield portions 3a and 3b are not bonded.
 圧電素子2と一対のシールド部3a、3bとが接着されていない場合において、圧電素子2と一対のシールド部3a、3bとは密着していてもよいが、圧電素子2と一対のシールド部3a、3bとの間に空間を有することが好ましい。当該センサーユニット1は、圧電素子2と一対のシールド部3a、3bとの間に空間を有することによって、一対のシールド部3a、3bが圧電膜11の変形に及ぼす影響をさらに抑えることができる。 In the case where the piezoelectric element 2 and the pair of shield portions 3a and 3b are not bonded, the piezoelectric element 2 and the pair of shield portions 3a and 3b may be in close contact, but the piezoelectric element 2 and the pair of shield portions 3a. 3b is preferably provided. Since the sensor unit 1 has a space between the piezoelectric element 2 and the pair of shield portions 3 a and 3 b, the effect of the pair of shield portions 3 a and 3 b on the deformation of the piezoelectric film 11 can be further suppressed.
 検出領域Xの平面面積に対する検出領域Xの表面における圧電素子11及び一対のシールド部3a、3bが密着していない空間面積の比の下限としては、0.5が好ましく、0.7がより好ましく、0.9がさらに好ましい。前記比が前記下限以上であることで、一対のシールド部3a、3bが圧電膜11の変形に及ぼす影響をより的確に抑えやすい。一方、前記比の上限としては、特に限定されるものではなく、1.0とすることができる。 The lower limit of the ratio of the space area where the piezoelectric element 11 and the pair of shield portions 3a, 3b on the surface of the detection region X are not in close contact with the planar area of the detection region X is preferably 0.5, more preferably 0.7. 0.9 is more preferable. When the ratio is equal to or higher than the lower limit, it is easier to more accurately suppress the influence of the pair of shield portions 3a and 3b on the deformation of the piezoelectric film 11. On the other hand, the upper limit of the ratio is not particularly limited and can be 1.0.
 一対のシールド部3a、3bは厚さ方向に貫通する複数の貫通孔(不図示)を有していてもよい。当該センサーユニット1は、圧電素子2と一対のシールド部3a、3bとの間に空間を有する場合、この空間に存在する空気の熱膨張によって一対のシールド部3a、3bが外側に膨れるおそれや、前記空気の冷却によって一対のシールド部3a、3bが圧電素子2と密着するおそれがある。特に、当該センサーユニット1は、一対のシールド部3a、3bと圧電素子2とが密着すると、音や振動の検出精度が低下するおそれがある。これに対し、当該センサーユニット1は、一対のシールド部3a、3bを厚さ方向に貫通する複数の貫通孔を有することによって、前記空気の熱膨張や冷却に起因する一対のシールド部3a、3bの膨れや圧電素子2との密着を抑制することでき、使用環境によらず音や振動の検出精度を高めることができる。 The pair of shield portions 3a and 3b may have a plurality of through holes (not shown) penetrating in the thickness direction. When the sensor unit 1 has a space between the piezoelectric element 2 and the pair of shield portions 3a and 3b, the pair of shield portions 3a and 3b may expand outward due to thermal expansion of air existing in the space, The pair of shield portions 3a and 3b may be in close contact with the piezoelectric element 2 due to the cooling of the air. In particular, in the sensor unit 1, when the pair of shield portions 3a and 3b and the piezoelectric element 2 are in close contact with each other, the detection accuracy of sound and vibration may be reduced. On the other hand, the sensor unit 1 has a plurality of through holes penetrating the pair of shield portions 3a and 3b in the thickness direction, so that the pair of shield portions 3a and 3b caused by the thermal expansion and cooling of the air. Swelling and close contact with the piezoelectric element 2 can be suppressed, and the detection accuracy of sound and vibration can be increased regardless of the use environment.
 一対のシールド部3a、3bが複数の貫通孔を有する場合、これらの貫通孔は平面視で検出領域Xと重ならない領域に形成されていることが好ましい。このように、複数の貫通孔が検出領域Xと重ならない領域に形成されていることで、これらの貫通孔に起因してシールド効果が低くなることを容易かつ確実に防止することができる。前記複数の貫通孔の平均径としては、例えば100μm以上5mm以下とすることができる。前記平均径が前記下限に満たないと、一対のシールド部3a、3bの膨れや圧電素子2との密着を十分に抑制することができないおそれがある。逆に、前記平均径が前記上限を超えると、複数の貫通孔が圧電膜11の変形に影響を及ぼすおそれがある。 When the pair of shield portions 3a and 3b have a plurality of through holes, these through holes are preferably formed in a region that does not overlap the detection region X in plan view. As described above, since the plurality of through holes are formed in the region that does not overlap with the detection region X, it is possible to easily and reliably prevent the shielding effect from being lowered due to the through holes. The average diameter of the plurality of through holes can be, for example, 100 μm or more and 5 mm or less. If the average diameter is less than the lower limit, there is a possibility that swelling of the pair of shield portions 3a and 3b and close contact with the piezoelectric element 2 cannot be sufficiently suppressed. Conversely, when the average diameter exceeds the upper limit, the plurality of through holes may affect the deformation of the piezoelectric film 11.
(リード線)
 第1リード線16a及び第2リード線16bは、例えば導電性を有する線状の導体によって形成される。第1リード線16aは、検出回路と接続される側と反対側の端部が二股に分岐しており、この分岐部が第1接続領域Y1及び第2接続領域Y2で第1電極12の外面に固定されている。これにより、第1リード線16aは、第1電極12と電気的に接続されている。また、第2リード線16bは、検出回路と接続される側と反対側の端部が二股に分岐しており、この分岐部が第1接続領域Y1及び第2接続領域Y2で第2電極13の外面に固定されている。これにより、第2リード線16bは、第2電極13と電気的に接続されている。
(Lead)
The first lead wire 16a and the second lead wire 16b are formed of, for example, a conductive linear conductor. The first lead wire 16a has a bifurcated end opposite to the side connected to the detection circuit, and this branch portion is the first connection region Y1 and the second connection region Y2 and the outer surface of the first electrode 12. It is fixed to. Accordingly, the first lead wire 16a is electrically connected to the first electrode 12. In addition, the second lead wire 16b has a bifurcated end opposite to the side connected to the detection circuit, and this branch portion is the second connection region Y1 in the first connection region Y1 and the second connection region Y2. It is fixed to the outer surface. Thereby, the second lead wire 16b is electrically connected to the second electrode 13.
<利点>
 当該センサーユニット1は、一対のシールド部3a、3bが圧電素子2に部分的に固定されており、一対のシールド部3a、3bが圧電素子2に全面的に固定されていないので、一対のシールド部3a、3bが圧電素子の共振に及ぼす影響を低減することができる。そのため、当該センサーユニット1は検出精度に優れる。当該センサーユニット1は、音や振動を高精度で検出するのに優れており、特に音の検出精度を効果的に高めることができる。
<Advantages>
In the sensor unit 1, the pair of shield portions 3 a and 3 b are partially fixed to the piezoelectric element 2, and the pair of shield portions 3 a and 3 b are not completely fixed to the piezoelectric element 2. The influence of the portions 3a and 3b on the resonance of the piezoelectric element can be reduced. Therefore, the sensor unit 1 is excellent in detection accuracy. The sensor unit 1 is excellent in detecting sound and vibration with high accuracy, and can particularly effectively improve sound detection accuracy.
[第二実施形態]
<センサーユニット>
 図3のセンサーユニット21は、シート状の圧電素子25と、圧電素子25の厚さ方向両側に配設される一対のシート状のシールド部3a、3bとを備える。圧電素子25は一対のシールド部3a、3bと部分的に固定されている。圧電素子25は、圧電膜26と、圧電膜26の一方側の面に積層される第1電極27と、圧電膜26の他方側の面に積層される第2電極28とを有する。一対のシールド部3a、3bは、絶縁層14a、14bと、絶縁層14a、14bの外面側に積層されるシールド層15とを有する。また、当該センサーユニット21は、第1電極27に接続され、外部に電気信号を出力する第1リード線29aと、第2電極28に接続され、外部に電気信号を出力する第2リード線29bとを有する。さらに、当該センサーユニット21は、圧電素子25の平面視両側に、一対のシールド部3a、3bを離間した状態で保持するスペーサ22a、22bを有する。当該センサーユニット21は、例えば音響機器等に取り付けられて用いられ、音や振動を検出する歪みセンサーとして構成されている。当該センサーユニット21における一対のシールド部3a、3bについては、図1のセンサーユニット1と同様のため、同一符号を付して説明を省略する。
[Second Embodiment]
<Sensor unit>
The sensor unit 21 of FIG. 3 includes a sheet-like piezoelectric element 25 and a pair of sheet- like shield portions 3a and 3b disposed on both sides of the piezoelectric element 25 in the thickness direction. The piezoelectric element 25 is partially fixed to the pair of shield portions 3a and 3b. The piezoelectric element 25 has a piezoelectric film 26, a first electrode 27 stacked on one surface of the piezoelectric film 26, and a second electrode 28 stacked on the other surface of the piezoelectric film 26. The pair of shield portions 3a and 3b includes insulating layers 14a and 14b and a shield layer 15 stacked on the outer surface side of the insulating layers 14a and 14b. The sensor unit 21 is connected to the first electrode 27 and outputs a first lead wire 29a that outputs an electric signal to the outside. The sensor unit 21 is connected to the second electrode 28 and outputs a second lead wire 29b that outputs an electric signal to the outside. And have. Furthermore, the sensor unit 21 includes spacers 22a and 22b that hold the pair of shield portions 3a and 3b in a separated state on both sides of the piezoelectric element 25 in plan view. The sensor unit 21 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration. The pair of shield portions 3a and 3b in the sensor unit 21 are the same as the sensor unit 1 in FIG.
(圧電素子)
 圧電素子25は可撓性を有する。圧電素子25は、圧電膜26が厚さ方向に入射する音波又は振動によって変形可能に構成されており、これにより音又は振動を検出可能に構成されている。圧電素子25は、音又は振動を検出するための検出領域Xを有する。詳細には、圧電素子25は、図4に示すように、平面視矩形状の検出領域Xと、検出領域Xから平面視外側に突出し、第1リード線29aと接続される第1接続領域Y1と、検出領域Xから平面視外側に突出し、第2リード線29bと接続される第2接続領域Y2とを有する。第1接続領域Y1及び第2接続領域Y2は反対方向に突出している。圧電素子25は、形状が相違する以外は図1の圧電素子2と同様に構成することができる。
(Piezoelectric element)
The piezoelectric element 25 has flexibility. The piezoelectric element 25 is configured to be deformable by a sound wave or vibration that is incident on the piezoelectric film 26 in the thickness direction, and thereby configured to detect sound or vibration. The piezoelectric element 25 has a detection region X for detecting sound or vibration. Specifically, as shown in FIG. 4, the piezoelectric element 25 includes a detection region X having a rectangular shape in plan view, and a first connection region Y1 that protrudes outward from the detection region X in plan view and is connected to the first lead wire 29a. And a second connection region Y2 projecting outward from the detection region X in plan view and connected to the second lead wire 29b. The first connection region Y1 and the second connection region Y2 protrude in opposite directions. The piezoelectric element 25 can be configured in the same manner as the piezoelectric element 2 in FIG. 1 except that the shape is different.
(リード線)
 第1リード線29a及び第2リード線29bは、例えば導電性を有する線状の導体によって形成される。第1リード線29aは、第1接続領域Y1において第1電極27の外面に積層され、これにより第1電極27と電気的に接続されている。また、第2リード線29bは、第2接続領域Y2において第2電極28の外面に積層され、これにより第2電極28と電気的に接続されている。
(Lead)
The first lead wire 29a and the second lead wire 29b are formed of a linear conductor having conductivity, for example. The first lead wire 29a is stacked on the outer surface of the first electrode 27 in the first connection region Y1, and is thereby electrically connected to the first electrode 27. The second lead wire 29b is laminated on the outer surface of the second electrode 28 in the second connection region Y2, and is thereby electrically connected to the second electrode 28.
(スペーサ)
 スペーサ22a、22bは、平面視で圧電素子25を囲むように配設されている。スペーサ22a、22bは、それぞれ一対のシールド部3a、3bの内面と平行に配設される一対の支持面を有する。スペーサ22a、22bは、図4に示すように、平面視で第1リード線29a及び第2リード線29bと重なり合わない領域で、支持面を一対のシールド部3a、3bの内面に全面的に当接した状態で配設されている。これにより、スペーサ22a、22bは、少なくとも圧電素子25の平面視両側において一対のシールド部3a、3bを離間した状態で保持しており、特に本実施形態では圧電素子25の周囲の略全領域において一対のシールド部3a、3bを離間した状態で保持している。
(Spacer)
The spacers 22a and 22b are disposed so as to surround the piezoelectric element 25 in plan view. Each of the spacers 22a and 22b has a pair of support surfaces disposed in parallel with the inner surfaces of the pair of shield portions 3a and 3b. As shown in FIG. 4, the spacers 22a and 22b are regions that do not overlap with the first lead wire 29a and the second lead wire 29b in a plan view, and the support surfaces are entirely on the inner surfaces of the pair of shield portions 3a and 3b. It arrange | positions in the state contact | abutted. Thereby, the spacers 22a and 22b hold the pair of shield portions 3a and 3b in a state of being separated from each other at least on both sides of the piezoelectric element 25 in plan view. In particular, in this embodiment, in the substantially entire region around the piezoelectric element 25. The pair of shield portions 3a and 3b are held in a separated state.
 スペーサ22a、22bの高さは、圧電素子25の最大厚さ以上であることが好ましく、圧電素子25及び一対のリード線29a、29bの合計厚さと等しいことがより好ましい。スペーサ22a、22bの高さが圧電素子25及び一対のリード線29a、29bの合計厚さと等しいことによって、圧電素子25を一対のシールド部3a、3bと部分的に固定しつつ、スペーサ22a、22bの支持面を一対のシールド部3a、3bの内面に当接した状態で保持しやすい。なお、「スペーサの高さが圧電素子及び一対のリード線の合計厚さと等しい」とは、スペーサの高さと圧電素子及び一対のリード線の合計厚さとの差の絶対値が500μm以下であることをいい、好ましくは100μm以下であることをいい、より好ましくは50μm以下であることをいう。 The height of the spacers 22a and 22b is preferably equal to or greater than the maximum thickness of the piezoelectric element 25, and more preferably equal to the total thickness of the piezoelectric element 25 and the pair of lead wires 29a and 29b. Since the heights of the spacers 22a and 22b are equal to the total thickness of the piezoelectric element 25 and the pair of lead wires 29a and 29b, the spacers 22a and 22b are partially fixed to the pair of shield portions 3a and 3b. Are easily held in contact with the inner surfaces of the pair of shield portions 3a and 3b. “The height of the spacer is equal to the total thickness of the piezoelectric element and the pair of lead wires” means that the absolute value of the difference between the height of the spacer and the total thickness of the piezoelectric element and the pair of lead wires is 500 μm or less. Preferably 100 μm or less, more preferably 50 μm or less.
 スペーサ22a、22bの材質としては、特に限定されるものではないが、一対のシールド部3a、3bの間のスペースを確保する樹脂製の絶縁体のものであるとよい。スペーサ22a、22bは、一対のシールド部3a、3bの固定に寄与するよう粘着性を有していてもよい。また、スペーサ22a、22bは、導電性を有する金属からなるものでもよい。スペーサ22a、22bが導電性を有する場合、シールド効果を高めることができる。特に当該センサーユニット21は、スペーサ22a、22bが平面視で圧電素子25を囲むように配設されているので、スペーサ22a、22bによって圧電素子25の平面方向外側領域を封止することができ、これにより外部ノイズが圧電素子25側に侵入することをより確実に防止することができる。 The material of the spacers 22a and 22b is not particularly limited, but may be a resin insulator that secures a space between the pair of shield portions 3a and 3b. The spacers 22a and 22b may have adhesiveness to contribute to fixing the pair of shield portions 3a and 3b. The spacers 22a and 22b may be made of a conductive metal. When the spacers 22a and 22b have conductivity, the shielding effect can be enhanced. In particular, the sensor unit 21 is arranged so that the spacers 22a and 22b surround the piezoelectric element 25 in a plan view. Therefore, the spacer 22a and 22b can seal the outer region in the planar direction of the piezoelectric element 25. Thereby, it is possible to more reliably prevent external noise from entering the piezoelectric element 25 side.
 一対のシールド部3a、3bは、図4に示すように、接続領域Y1、Y2において一対のリード線29a、29bを介して圧電素子25に部分的に固定されている。また、平面視で第1リード線29a及び第2リード線29bと重なり合わない領域において、一対のシールド部3a、3bの内面は、圧電素子25の周囲を囲むようにスペーサ22a、22bによって支持されている。これにより、圧電素子25の検出領域Xは一対のシールド部3a、3bと固定されていない。またこれにより、圧電素子25と一対のシールド部3a、3bとの間には空間を有する。詳細には検出領域Xの表面の全領域と一対のシールド部3a、3bの内面との間に空気層が形成されている。換言すると、当該センサーユニット21は、検出領域Xの平面面積に対する検出領域Xの表面における圧電素子25及び一対のシールド部3a、3bが密着していない空間面積の比が1である。これにより、当該センサーユニット21は、一対のシールド部3a、3bが検出領域Xの変形に及ぼす影響を的確に取り除くことができる。 As shown in FIG. 4, the pair of shield portions 3a and 3b are partially fixed to the piezoelectric element 25 via the pair of lead wires 29a and 29b in the connection regions Y1 and Y2. Further, the inner surfaces of the pair of shield portions 3a and 3b are supported by the spacers 22a and 22b so as to surround the periphery of the piezoelectric element 25 in a region that does not overlap the first lead wire 29a and the second lead wire 29b in plan view. ing. Thereby, the detection region X of the piezoelectric element 25 is not fixed to the pair of shield portions 3a and 3b. Thereby, there is a space between the piezoelectric element 25 and the pair of shield portions 3a and 3b. Specifically, an air layer is formed between the entire area of the surface of the detection area X and the inner surfaces of the pair of shield portions 3a and 3b. In other words, in the sensor unit 21, the ratio of the space area where the piezoelectric element 25 and the pair of shield portions 3 a and 3 b on the surface of the detection region X are not in close contact with the planar area of the detection region X is 1. Thereby, the sensor unit 21 can accurately remove the influence of the pair of shield portions 3a and 3b on the deformation of the detection region X.
 圧電素子25及び一対のシールド部3a、3bは、接続領域Y1、Y2において点状に固定されている。圧電素子25及び一対のシールド部3a、3bの固定部Rの平均径の下限としては、1mmが好ましく、2mmがより好ましい。一方、固定部Rの平均径の上限としては、5mmが好ましく、3mmがより好ましい。前記平均径が前記下限より小さいと、固定部Rの接着強度が不十分となるおそれがある。逆に、前記平均径が前記上限を超えると、固定部Rの圧電素子25の変形に及ぼす影響が大きくなるおそれがある。なお、「平均径」とは、等面積の真円に換算した径をいう。また、「固定部の平均径」とは、固定部の平面視における平均径をいう。 The piezoelectric element 25 and the pair of shield portions 3a and 3b are fixed in a dot shape in the connection regions Y1 and Y2. The lower limit of the average diameter of the fixed portion R of the piezoelectric element 25 and the pair of shield portions 3a and 3b is preferably 1 mm, and more preferably 2 mm. On the other hand, the upper limit of the average diameter of the fixed portion R is preferably 5 mm, and more preferably 3 mm. If the average diameter is smaller than the lower limit, the adhesive strength of the fixed portion R may be insufficient. On the other hand, when the average diameter exceeds the upper limit, the influence of the fixed portion R on the deformation of the piezoelectric element 25 may increase. The “average diameter” refers to a diameter converted into a perfect circle of equal area. The “average diameter of the fixed portion” refers to the average diameter of the fixed portion in plan view.
<利点>
 当該センサーユニット21は、圧電素子25の平面視両側に、一対のシールド部3a、3bを離間した状態で保持するスペーサ22a、22bを有するので、一対のシールド部3a、3bが圧電素子25、特に圧電素子25の検出領域Xの変形に及ぼす影響の低減効果を高めやすい。
<Advantages>
The sensor unit 21 has spacers 22a and 22b that hold the pair of shield portions 3a and 3b in a separated state on both sides of the piezoelectric element 25 in a plan view. It is easy to increase the effect of reducing the influence of the piezoelectric element 25 on the deformation of the detection region X.
[第三実施形態]
<センサーユニット>
 図5のセンサーユニット31は、シート状の圧電素子25と、圧電素子25の厚さ方向両側に配設される一対のシート状のシールド部33a、33bとを備える。圧電素子25は一対のシールド部33a、33bと部分的に固定されている。圧電素子25は、圧電膜26と、圧電膜26の一方側の面に積層される第1電極27と、圧電膜26の他方側の面に積層される第2電極28とを有する。第1電極27はシグナル電極を構成し、第2電極28はグランド電極を構成する。つまり、圧電素子25は、厚さ方向一方側に積層されるシグナル電極と、厚さ方向他方側に配設されるグランド電極とを有する。一方のシールド部33a(圧電素子25の第1電極27側に配設されるシールド部)は、絶縁層14aと、絶縁層14aの外面側に積層されるシールド層15と、絶縁層14aの内面側に積層される導電層34とを有する。他方のシールド部33b(圧電素子25の第2電極28側に配設されるシールド部)は、絶縁層14bと、絶縁層14bの外面側に積層されるシールド層15とを有する。また、当該センサーユニット31は、第1電極27に接続され、外部に電気信号を出力する第1リード線29aと、第2電極28に接続され、外部に電気信号を出力する第2リード線29bとを有する。さらに、当該センサーユニット31は、圧電素子25の平面視両側に、一対のシールド部33a、33bを離間した状態で保持するスペーサ22a、22bを有する。当該センサーユニット31は、例えば音響機器等に取り付けられて用いられ、音や振動を検出する歪みセンサーとして構成されている。当該センサーユニット31は、前記シグナル電極側に配設される一方のシールド部33aが、絶縁層14aの内面側に積層される導電層34を有する以外、図3のセンサーユニット21と同様の構成を有する。そのため、以下では一方のシールド部33aについてのみ説明する。
[Third embodiment]
<Sensor unit>
The sensor unit 31 of FIG. 5 includes a sheet-like piezoelectric element 25 and a pair of sheet- like shield portions 33a and 33b disposed on both sides of the piezoelectric element 25 in the thickness direction. The piezoelectric element 25 is partially fixed to the pair of shield portions 33a and 33b. The piezoelectric element 25 has a piezoelectric film 26, a first electrode 27 stacked on one surface of the piezoelectric film 26, and a second electrode 28 stacked on the other surface of the piezoelectric film 26. The first electrode 27 constitutes a signal electrode, and the second electrode 28 constitutes a ground electrode. That is, the piezoelectric element 25 has a signal electrode stacked on one side in the thickness direction and a ground electrode disposed on the other side in the thickness direction. One shield portion 33a (the shield portion disposed on the first electrode 27 side of the piezoelectric element 25) includes the insulating layer 14a, the shield layer 15 laminated on the outer surface side of the insulating layer 14a, and the inner surface of the insulating layer 14a. And a conductive layer 34 stacked on the side. The other shield part 33b (shield part disposed on the second electrode 28 side of the piezoelectric element 25) has an insulating layer 14b and a shield layer 15 laminated on the outer surface side of the insulating layer 14b. The sensor unit 31 is connected to the first electrode 27 and outputs an electric signal to the outside. The second lead wire 29b is connected to the second electrode 28 and outputs an electric signal to the outside. And have. Furthermore, the sensor unit 31 has spacers 22a and 22b that hold the pair of shield portions 33a and 33b in a separated state on both sides of the piezoelectric element 25 in plan view. The sensor unit 31 is used, for example, by being attached to an acoustic device or the like, and is configured as a distortion sensor that detects sound and vibration. The sensor unit 31 has the same configuration as the sensor unit 21 of FIG. 3 except that one shield portion 33a disposed on the signal electrode side includes a conductive layer 34 laminated on the inner surface side of the insulating layer 14a. Have. Therefore, only one shield part 33a will be described below.
(シールド部)
 前述のように、一方のシールド部33aは、絶縁層14aと、絶縁層14aの外面側に積層されるシールド層15と、絶縁層14aの内面側に積層される導電層34とを有する。一方のシールド部33aは、絶縁層14a、シールド層15及び導電層34の3層構造体である。一方のシールド部33aは可撓性を有する。シールド部33aの絶縁層14a及びシールド層15の具体的構成としては、図1のセンサーユニット1と同様とすることができる。
(Shield part)
As described above, one shield part 33a includes the insulating layer 14a, the shield layer 15 stacked on the outer surface side of the insulating layer 14a, and the conductive layer 34 stacked on the inner surface side of the insulating layer 14a. One shield part 33 a is a three-layer structure of the insulating layer 14 a, the shield layer 15, and the conductive layer 34. One shield part 33a has flexibility. Specific configurations of the insulating layer 14a and the shield layer 15 of the shield part 33a can be the same as those of the sensor unit 1 of FIG.
(導電層)
 導電層34は、一方のシールド部33aの最内層を構成する。導電層34は導電性を有する。また、導体層34は、シールド層15と絶縁状態で保持されている。導電層34は、第1電極27(シグナル電極)と電気的に接続されている。導電層34は、検出領域Xの表面側の全領域を被覆するよう配設されることが好ましく、圧電膜26の表面側の全領域を被覆するよう配設されることがより好ましい。導電層34と検出領域Xとの間には空気層が形成されていることが好ましい。また、この空気層は、検出領域Xの表面の全面に亘って形成されていることがより好ましい。
(Conductive layer)
The conductive layer 34 constitutes the innermost layer of one shield part 33a. The conductive layer 34 has conductivity. The conductor layer 34 is held in an insulated state from the shield layer 15. The conductive layer 34 is electrically connected to the first electrode 27 (signal electrode). The conductive layer 34 is preferably disposed so as to cover the entire region on the surface side of the detection region X, and more preferably disposed so as to cover the entire region on the surface side of the piezoelectric film 26. An air layer is preferably formed between the conductive layer 34 and the detection region X. The air layer is more preferably formed over the entire surface of the detection region X.
 導電層34は、例えば金属又は金属化合物を主成分として形成される。前記金属としては、例えば銀、銅、金、ニッケル、アルミニウム、カーボン等が挙げられる。また、前記金属化合物としては、例えばITO等が挙げられる。導電層34は、金属印刷又は金属蒸着によって絶縁層14aの内面に積層されてもよく、絶縁層14aの内面に金属箔を接着することで積層されてもよい。導電層34の平均厚さの下限としては、0.01μmが好ましく、0.1μmがより好ましい。一方、導電層34の平均厚さの上限としては、500μmが好ましく、100μmがより好ましい。前記平均厚さが前記下限より小さいと、導電層34の強度が不十分となるおそれがある。逆に、前記平均厚さが前記上限を超えると、シールド部33aが不要に厚くなったり、シールド部33aの可撓性が不十分となるおそれがある。なお、当該センサーユニット31は、導電層34と第1リード線29aとが、半田、導電性接着剤等によって接着されることで導電層34及び第1電極27が電気的に接続されてもよく、第1リード線29aが導電層34の端部から連続して導電層34と一体的に形成されることで導電層34及び第1電極27が電気的に接続されてもよい。 The conductive layer 34 is formed using, for example, a metal or a metal compound as a main component. Examples of the metal include silver, copper, gold, nickel, aluminum, and carbon. Examples of the metal compound include ITO. The conductive layer 34 may be laminated on the inner surface of the insulating layer 14a by metal printing or metal vapor deposition, or may be laminated by adhering a metal foil to the inner surface of the insulating layer 14a. The lower limit of the average thickness of the conductive layer 34 is preferably 0.01 μm, and more preferably 0.1 μm. On the other hand, the upper limit of the average thickness of the conductive layer 34 is preferably 500 μm, and more preferably 100 μm. If the average thickness is smaller than the lower limit, the strength of the conductive layer 34 may be insufficient. Conversely, if the average thickness exceeds the upper limit, the shield portion 33a may become unnecessarily thick or the flexibility of the shield portion 33a may be insufficient. In the sensor unit 31, the conductive layer 34 and the first electrode 27 may be electrically connected by bonding the conductive layer 34 and the first lead wire 29a with solder, a conductive adhesive, or the like. The conductive layer 34 and the first electrode 27 may be electrically connected by forming the first lead wire 29a integrally with the conductive layer 34 continuously from the end of the conductive layer 34.
<利点>
 当該センサーユニット31は、第1電極27側に配設されるシールド部33aが、絶縁層14a及び絶縁層14aの内面側に積層され、第1電極27と電気的に接続される導電層34を有するので、導電層34及び第1電極27を同電位に保つことができ、これにより第1電極27及び導電層34間における静電容量の発生を抑制することができる。従って、当該センサーユニット31は、この静電容量が音や振動の検出に与える影響を抑制することができ、音や振動の検出精度をより高めることができる。
<Advantages>
In the sensor unit 31, a shield portion 33 a disposed on the first electrode 27 side is laminated on the inner surface side of the insulating layer 14 a and the insulating layer 14 a, and the conductive layer 34 electrically connected to the first electrode 27 is provided. Therefore, the conductive layer 34 and the first electrode 27 can be kept at the same potential, and thus the generation of capacitance between the first electrode 27 and the conductive layer 34 can be suppressed. Therefore, the sensor unit 31 can suppress the influence of the electrostatic capacitance on the detection of sound and vibration, and can further increase the detection accuracy of sound and vibration.
[その他の実施形態]
 前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.
 例えば、前記スペーサは圧電素子の平面視両側のみに配設されていてもよい。 For example, the spacer may be provided only on both sides of the piezoelectric element in plan view.
 前記圧電素子は必ずしもリード線を介して一対のシールド部に固定される必要はなく、例えば電極の外面(つまり前記検出領域の外面)がシールド部に直接固定されてもよい。また、前記圧電素子がリード線を介して一対のシールド部に固定される場合であっても、具体的な固定方法は前述の実施形態の構成に限定されるものではない。例えば、図6に示すように、当該センサーユニット41は、第2電極42の外側に配設されるシールド部43bが導電性を有するシールド層45と、シールド層45の内面に積層される絶縁層44bと、導電性を有し、絶縁層44bを厚さ方向に貫通する導電部44cとを有し、第2リード線46bがこの導電部44cを介してシールド層45と電気的に接続されてもよい。 The piezoelectric element is not necessarily fixed to the pair of shield portions via the lead wires, and for example, the outer surface of the electrode (that is, the outer surface of the detection region) may be directly fixed to the shield portion. Further, even when the piezoelectric element is fixed to the pair of shield portions via lead wires, the specific fixing method is not limited to the configuration of the above-described embodiment. For example, as shown in FIG. 6, the sensor unit 41 includes a shield layer 45 having a conductive portion 43 b disposed outside the second electrode 42, and an insulating layer laminated on the inner surface of the shield layer 45. 44b and a conductive portion 44c having conductivity and penetrating the insulating layer 44b in the thickness direction, and the second lead wire 46b is electrically connected to the shield layer 45 via the conductive portion 44c. Also good.
 前記圧電素子の平面形状は、特に限定されるものではなく、用途に応じて適宜設計可能である。また、前述の各実施形態の構成は適宜組み合わせることが可能であり、例えば図3及び図5のセンサーユニット21、31においてスペーサ22a、22bを有しない構成を採用することも可能であり、図1及び図6のセンサーユニット1、41においてスペーサを用いることも可能である。 The planar shape of the piezoelectric element is not particularly limited, and can be appropriately designed depending on the application. Further, the configurations of the above-described embodiments can be appropriately combined. For example, the sensor units 21 and 31 of FIGS. 3 and 5 can employ a configuration without the spacers 22a and 22b. And it is also possible to use a spacer in the sensor units 1 and 41 of FIG.
 前述の実施形態では、シールド層が帯状のフィルム部材の長手方向中央部を折り返すことで形成される構成について説明した。この点に関し、例えば図7に示すように、シールド層55は、圧電素子の両面側に配設される一対の帯状のフィルム部材55aと、この一対のフィルム部材55aの長手方向一方側端部同士を接続する導電部材55bとによって形成されてもよい。また、一対のフィルム部材55a及び導電部材55bの接続方法は特に限定されるものではなく、例えば導電性テープを用いて接続してもよく、ネジを用いて接続してもよい。 In the above-described embodiment, the configuration in which the shield layer is formed by folding the central portion in the longitudinal direction of the strip-shaped film member has been described. In this regard, for example, as shown in FIG. 7, the shield layer 55 includes a pair of strip-shaped film members 55a disposed on both sides of the piezoelectric element, and ends on one side in the longitudinal direction of the pair of film members 55a. And a conductive member 55b that connects the two. Moreover, the connection method of a pair of film member 55a and the electrically-conductive member 55b is not specifically limited, For example, you may connect using a conductive tape and may connect using a screw.
 当該センサーユニットは、前述のように圧電素子及び一対のシールド部が部分的に固定されることで、一対のシールド部が圧電素子の共振に及ぼす影響を低減することができる。一方、当該センサーユニットは、必要に応じてシールド部の外面に錘を積層してもよい。具体的には、当該センサーユニットは、第1電極側に配設されるシールド部の外面に合成樹脂を主成分とするシート状の錘を積層してもよい。当該センサーユニットは、例えば第2電極側に配設されるシールド部の外面を弦楽器の響板に取り付けて用いる場合、第1電極側に配設されるシールド部の外面に錘を積層することで、圧電素子及び響板の間に空気層が形成されることを防止することができ、これにより響板の振動を圧電素子に伝わりやすくすることができる。また、当該センサーユニットは、圧電素子の第2電極の外面とこの第2電極側に配設されるシールド部の内面とのみを密着させることも可能であり、かかる構成によっても響板の振動を圧電素子に伝わりやすくすることが可能である。 The sensor unit can reduce the influence of the pair of shield parts on the resonance of the piezoelectric element by partially fixing the piezoelectric element and the pair of shield parts as described above. On the other hand, the sensor unit may be stacked with a weight on the outer surface of the shield part as necessary. Specifically, in the sensor unit, a sheet-like weight having a synthetic resin as a main component may be laminated on the outer surface of the shield portion disposed on the first electrode side. For example, when the sensor unit is used by attaching the outer surface of the shield part disposed on the second electrode side to the sound board of the stringed instrument, the sensor unit is configured by stacking a weight on the outer surface of the shield part disposed on the first electrode side. In addition, it is possible to prevent an air layer from being formed between the piezoelectric element and the soundboard, thereby making it easier to transmit the vibration of the soundboard to the piezoelectric element. In addition, the sensor unit can closely contact only the outer surface of the second electrode of the piezoelectric element and the inner surface of the shield portion disposed on the second electrode side. It is possible to facilitate transmission to the piezoelectric element.
 当該センサーユニットは、例えば弦楽器の響板等に取り付けられる楽器用ピックアップとして用いることができる他、バウンダリーマイクロホンや、建築物、機械、輸送機等の異音や騒音を検出するための装置等、楽器以外の部材に用いることも可能である。 The sensor unit can be used as a pickup for a musical instrument attached to a sound board of a stringed instrument, for example, a boundary microphone, a device for detecting abnormal noise or noise of a building, a machine, a transport aircraft, etc. It can also be used for members other than musical instruments.
 以上説明したように、本発明のセンサーユニットは、音や振動の検出精度に優れるので、弦楽器等の楽器用ピックアップとして用いられるのに適している。 As described above, the sensor unit of the present invention is suitable for being used as a pick-up for musical instruments such as stringed instruments because of its excellent sound and vibration detection accuracy.
1、21、31、41 センサーユニット
2、25 圧電素子
3a、3b、33a、33b、43b シールド部
11、26 圧電膜
12、27 第1電極
13、28、42 第2電極
14a、14b、44b 絶縁層
15、45、55 シールド層
16a、29a 第1リード線
16b、29b、46b 第2リード線
22a、22b スペーサ
34 導電層
44c 導電部
55a フィルム部材
55b 導電部材
R 固定部
X 検出領域
Y1 第1接続領域
Y2 第2接続領域
Z 折り返し部
1, 21, 31, 41 Sensor unit 2, 25 Piezoelectric element 3a, 3b, 33a, 33b, 43b Shield part 11, 26 Piezoelectric film 12, 27 First electrode 13, 28, 42 Second electrode 14a, 14b, 44b Insulation Layers 15, 45, 55 Shield layers 16a, 29a First lead wires 16b, 29b, 46b Second lead wires 22a, 22b Spacer 34 Conductive layer 44c Conductive portion 55a Film member 55b Conductive member R Fixed portion X Detection region Y1 First connection Area Y2 Second connection area Z Folded part

Claims (5)

  1.  シート状の圧電素子と、
     前記圧電素子の厚さ方向両側に配設され、この圧電素子に部分的に固定される一対のシート状のシールド部と
     を備えるセンサーユニット。
    A sheet-like piezoelectric element;
    A sensor unit comprising: a pair of sheet-like shield portions disposed on both sides in the thickness direction of the piezoelectric element and partially fixed to the piezoelectric element.
  2.  前記圧電素子の平面視両側に、前記一対のシールド部を離間した状態で保持するスペーサを有する請求項1に記載のセンサーユニット。 The sensor unit according to claim 1, further comprising spacers that hold the pair of shield portions in a separated state on both sides of the piezoelectric element in plan view.
  3.  前記圧電素子と一対のシールド部との間に空間を有する請求項1又は請求項2に記載のセンサーユニット。 The sensor unit according to claim 1 or 2, wherein a space is provided between the piezoelectric element and the pair of shield portions.
  4.  前記圧電素子が厚さ方向一方側に積層されるシグナル電極を備え、このシグナル電極側に配設される前記シールド部が、絶縁層、及びこの絶縁層の内面側に積層され、前記シグナル電極と電気的に接続される導電層を有する請求項1、請求項2又は請求項3に記載のセンサーユニット。 The piezoelectric element includes a signal electrode laminated on one side in the thickness direction, and the shield portion disposed on the signal electrode side is laminated on the inner side of the insulating layer and the insulating layer, and the signal electrode The sensor unit according to claim 1, further comprising a conductive layer electrically connected.
  5.  前記圧電素子の検出領域が前記一対のシールド部と固定されていない請求項1から請求項4のいずれか1項に記載のセンサーユニット。 The sensor unit according to any one of claims 1 to 4, wherein a detection area of the piezoelectric element is not fixed to the pair of shield portions.
PCT/JP2017/047381 2017-03-13 2017-12-28 Sensor unit WO2018168168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047872A JP2018152736A (en) 2017-03-13 2017-03-13 Sensor unit
JP2017-047872 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168168A1 true WO2018168168A1 (en) 2018-09-20

Family

ID=63522004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047381 WO2018168168A1 (en) 2017-03-13 2017-12-28 Sensor unit

Country Status (2)

Country Link
JP (1) JP2018152736A (en)
WO (1) WO2018168168A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134444A (en) * 2019-02-25 2020-08-31 ロボセンサー技研株式会社 Piezoelectric sensor
CN112968123A (en) * 2021-02-04 2021-06-15 电子科技大学 Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53157000U (en) * 1977-05-16 1978-12-09
JPH01272294A (en) * 1988-04-22 1989-10-31 Murata Mfg Co Ltd Bone conduction microphone
JPH0875575A (en) * 1994-09-02 1996-03-22 Matsushita Electric Ind Co Ltd Piezoelectric sensor
JP2001291906A (en) * 2000-04-07 2001-10-19 Matsushita Electric Ind Co Ltd Flexible piezoelectric element
JP2007507188A (en) * 2003-09-29 2007-03-22 バング アンド オルフセン メディコム アーエス Microphone component and manufacturing method thereof
JP2012212134A (en) * 2011-03-24 2012-11-01 Yamaha Corp Vibration sensor for musical instrument, pickup saddle, and musical instrument
WO2016027708A1 (en) * 2014-08-21 2016-02-25 株式会社村田製作所 Electromechanical conversion element and tactile presentation device
JP2017062200A (en) * 2015-09-25 2017-03-30 積水化学工業株式会社 Piezoelectric sensor structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53157000U (en) * 1977-05-16 1978-12-09
JPH01272294A (en) * 1988-04-22 1989-10-31 Murata Mfg Co Ltd Bone conduction microphone
JPH0875575A (en) * 1994-09-02 1996-03-22 Matsushita Electric Ind Co Ltd Piezoelectric sensor
JP2001291906A (en) * 2000-04-07 2001-10-19 Matsushita Electric Ind Co Ltd Flexible piezoelectric element
JP2007507188A (en) * 2003-09-29 2007-03-22 バング アンド オルフセン メディコム アーエス Microphone component and manufacturing method thereof
JP2012212134A (en) * 2011-03-24 2012-11-01 Yamaha Corp Vibration sensor for musical instrument, pickup saddle, and musical instrument
WO2016027708A1 (en) * 2014-08-21 2016-02-25 株式会社村田製作所 Electromechanical conversion element and tactile presentation device
JP2017062200A (en) * 2015-09-25 2017-03-30 積水化学工業株式会社 Piezoelectric sensor structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134444A (en) * 2019-02-25 2020-08-31 ロボセンサー技研株式会社 Piezoelectric sensor
CN112968123A (en) * 2021-02-04 2021-06-15 电子科技大学 Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof
CN112968123B (en) * 2021-02-04 2022-11-04 电子科技大学 Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018152736A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP5044196B2 (en) Piezoelectric sensor and manufacturing method thereof
JP6458199B2 (en) Transducer laminate
JP5605433B2 (en) Piezoelectric vibration device
WO2019100879A1 (en) Conductive diaphragm, loudspeaker, and method for manufacturing conductive diaphragm
JP5111071B2 (en) Piezoelectric sensor
US20130038174A1 (en) Ultrasonic sensor
JP6801306B2 (en) Shielded flat cable
CN108291796B (en) Piezoelectric deflection sensor and detection device
JP2011198687A (en) Flat cable
WO2018168168A1 (en) Sensor unit
WO2016002262A1 (en) Piezoelectric sensor and piezoelectric element
JPS58182285A (en) Piezoelectric pressure sensor
JP5499722B2 (en) Shielded flat cable
US20150139467A1 (en) Acoustic device and microphone package including the same
JP2007232616A (en) Magnetic sensor
JP2012019322A (en) Capacitor microphone
KR101145231B1 (en) Piezoelectric sound producing unit
WO2019142644A1 (en) Input device
CN106886333B (en) Sensing device
WO2021053977A1 (en) Pressure sensor
JP2018092223A (en) Fingerprint detector, and electronic apparatus
WO2021182209A1 (en) Piezoelectric coaxial sensor
JP5190959B2 (en) Voltage sensor and clip for electrostatic induction detector
JPWO2020012952A1 (en) Manufacturing method of flat cable and flat cable
JP2015215306A (en) Pressure sensitive sensor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900872

Country of ref document: EP

Kind code of ref document: A1