WO2018167992A1 - Spline fitting body and method for manufacturing spline fitting body - Google Patents

Spline fitting body and method for manufacturing spline fitting body Download PDF

Info

Publication number
WO2018167992A1
WO2018167992A1 PCT/JP2017/020714 JP2017020714W WO2018167992A1 WO 2018167992 A1 WO2018167992 A1 WO 2018167992A1 JP 2017020714 W JP2017020714 W JP 2017020714W WO 2018167992 A1 WO2018167992 A1 WO 2018167992A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
spline
tooth
teeth
hole
Prior art date
Application number
PCT/JP2017/020714
Other languages
French (fr)
Japanese (ja)
Inventor
集一郎 北島
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Publication of WO2018167992A1 publication Critical patent/WO2018167992A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end

Definitions

  • the present invention relates to a spline fitting body and a method for manufacturing the spline fitting body.
  • a rear-wheel drive vehicle or a four-wheel drive vehicle in which a prime mover is mounted on the front side of the vehicle body is provided with a propulsion shaft for transmitting power from a transmission device mounted on the front side of the vehicle body to a reduction gear mounted on the rear side of the vehicle body.
  • the distance between the transmission and the final reduction gear is not constant, and the rotation center between the output shaft of the transmission and the input shaft of the final reduction gear is not coaxial.
  • the propulsion shaft is connected to the transmission and the final reduction gear through a universal joint such as a cross joint.
  • the steel pipe which comprises a propulsion shaft exceeds fixed length, a resonance point will become low. Therefore, in order to prevent this, the steel pipe is divided into two and the two steel pipes are connected by a universal joint.
  • the propulsion shaft or the like is shortened by receiving a collision load from the front-rear direction so as not to be a “stick rod” that prevents the engine or the like from moving backward.
  • a sleeve (shaft cylinder member) provided at the front end of the propulsion shaft and a yoke (shaft member) fitted in the sleeve constitute a spline fitting body and are shortened.
  • a hole spline is formed in the sleeve
  • a shaft spline is formed in the yoke.
  • the hole spline and the shaft spline are spline-fitted, and the sleeve and the yoke are connected so as to be slidable (can be shortened) in the axial direction.
  • Patent Document 1 in order to set the collision load when the spline fitting body is shortened to a predetermined value or more, the rear end portion of the sleeve is swaged to form a swaged portion that regulates the retreat of the yoke. Yes.
  • the circumferential clearance between the shaft spline and the hole spline that can be reduced by applying the twist angle becomes a negative clearance due to the above-mentioned factors (processing error, deformation due to heat treatment, etc.) and causes a margin in the circumferential direction. There is. For this reason, the press-fit load at the time of assembling increased, and the assembling work became difficult.
  • An object of the present invention is to provide a method for manufacturing a united body and a spline fitting body.
  • a spline fitting body includes a shaft member in which a shaft spline is formed on an outer peripheral surface, and a shaft cylinder member in which a hole spline to be splined with the shaft spline is formed on an inner peripheral surface.
  • Each of the shaft spline teeth constituting the shaft spline includes a first tooth extending in the axial direction and the first tooth extending in the axial direction while being spaced apart from the first tooth in the axial direction.
  • a second tooth having a shorter axial length than one tooth, the first tooth and the second tooth have different phases, and the first tooth is located in one circumferential direction.
  • the shaft member includes a first shaft portion formed with a plurality of the first teeth; A second shaft portion formed with a plurality of the second teeth, and the first shaft; Interposed between said second shaft portion, characterized in that it comprises a deformable twisted portion twisted around the axis, a.
  • the torsion portion is twisted so that the phase difference between the first teeth and the second teeth is reduced.
  • the second tooth is inserted between the hole spline teeth.
  • the second tooth moves to the other side in the circumferential direction by the elastic restoring force of the torsion part and comes into contact with the hole spline teeth on the other side in the circumferential direction.
  • a twist angle is given to the first tooth.
  • the first tooth and the hole spline tooth are more strongly pressed, and a gap is hardly generated between the first tooth and the hole spline tooth. Therefore, vibration and noise during high-speed rotation are further less likely to occur. .
  • the outer diameter of the twisted portion may be formed smaller than the outer diameter of the first shaft portion and the outer diameter of the second shaft portion, or the inside of the twisted portion may be It may be meatless.
  • the rigidity of the twisted portion around the axis is low, and the twisted portion is easily deformed (twisted). Therefore, the assembly work can be further facilitated.
  • a jig mounting hole formed of at least a pair of opposing surfaces may be formed on the end surface of the shaft member.
  • wearing which consists of at least a pair of opposing surface may be formed in the outer peripheral surface of the said shaft cylinder member.
  • a jig mounting locking surface including at least a pair of opposing surfaces may be formed on the outer peripheral surface of the shaft member.
  • the work of twisting the twisted portion can be facilitated.
  • a method of manufacturing a spline fitting body includes a shaft member having a shaft spline formed on an outer peripheral surface, and a hole spline for spline fitting with the shaft spline formed on an inner peripheral surface.
  • Each of the shaft spline teeth constituting the shaft spline includes a first tooth and a second tooth spaced axially from the first tooth, and the first tooth.
  • the second teeth have different phases, a first shaft portion formed with a plurality of the first teeth, a second shaft portion formed with a plurality of the second teeth, and the first shaft portion And the second shaft portion, and a twisted portion that can be twisted and deformed around the shaft, and the first shaft portion is inserted into the shaft tube member. And twisting the twisted portion in one circumferential direction, and positioning the first tooth in one circumferential direction. And a step of abutting the hole spline teeth of the hole spline and displacing the second teeth in one circumferential direction, and a step of inserting the second shaft portion into the shaft tube member. It is characterized by that.
  • the torsion portion is twisted so that the phase difference between the first teeth and the second teeth is reduced.
  • the second tooth is inserted between the hole spline teeth.
  • the second tooth moves to the other side in the circumferential direction by the elastic restoring force of the torsion part and comes into contact with the hole spline teeth on the other side in the circumferential direction.
  • the manufacturing method of the spline fitting body which can prevent generation
  • FIG. 1 is a cross-sectional view taken along the line IIA-IIA in FIG. 1
  • FIG. 2 is a cross-sectional view taken along the line IIIB-IIIB in FIG.
  • A) is sectional drawing which cut
  • (b) is the rear view which looked at the shaft member before assembly
  • FIG. 1 is a figure which shows the process in which a shaft member is inserted in a sleeve
  • (b) is a figure which shows the state which inserted only the 1st tooth
  • (c) is a figure. It is a figure which shows the state which inserted the 1st tooth
  • (A) is a sectional view taken along the line VIA-VIA in FIG. 5 (b), and (b) is a sectional view showing a state in which a rotational load is applied to the rear part of the shaft member from the state of FIG. 6 (a).
  • FIG. 1 is a figure which shows the process in which a shaft member is inserted in a sleeve
  • (b) is a figure which shows the state which inserted only the 1st tooth
  • FIG. 5C is a cross-sectional view taken along the line VIC-VIC in FIG.
  • FIG. (A) is sectional drawing which shows the engagement state of the shaft spline and hole spline when a shaft member rotates forward, (b) is the engagement of the shaft spline and hole spline when a shaft member reversely rotates. It is sectional drawing which shows a state. It is sectional drawing which shows the cross shaft joint and propulsion shaft to which the spline fitting body of 2nd Embodiment was applied.
  • (A) is a cross-sectional view of the shaft member before assembly taken along the rotation axis O
  • (b) is a cross-sectional view taken along line IXB-IXB in FIG.
  • FIG. 8 is a cross-sectional view taken along line XA-XA in FIG. 8
  • (b) is a cross-sectional view taken along line XB-XB in FIG.
  • (A) is sectional drawing which shows the engagement state of the shaft spline and hole spline when a shaft member rotates forward
  • (b) is the engagement of the shaft spline and hole spline when a shaft member reversely rotates. It is sectional drawing which shows a state. It is the figure which expanded a part of shaft spline formed in the shaft member.
  • the vehicle includes a propulsion shaft 1 extending in the propulsion direction (front-rear direction) and a cross shaft joint 2 connected to the front end of the propulsion shaft 1.
  • the propulsion shaft 1 is a shaft that transmits power output from an engine (not shown) mounted on the front side of the vehicle body to a final reduction gear (not shown) mounted on the rear side of the vehicle body, and extends in the front-rear direction. ing.
  • the propulsion shaft 1 is constituted by two cylindrical steel pipes (only the front steel pipe 3 is shown in FIG. 1) divided at an intermediate portion, and has a two-piece structure.
  • the front steel pipe 3 and the rear steel pipe are connected by a constant velocity joint (not shown).
  • a sleeve 10 for connecting the cross joint 2 and the steel pipe 3 is provided at the front end of the front steel pipe 3.
  • the front steel pipe 3 is simply referred to as “steel pipe 3”.
  • the sleeve 10 is a substantially cylindrical member, and the rear end portion 10a is joined to the front end of the steel pipe 3 by friction welding.
  • a hole spline 11 and a circumferential groove 16 extending in the circumferential direction are formed inside the sleeve 10.
  • a substantially C-shaped snap ring 17 is fitted in the circumferential groove 16 when viewed from the axial direction.
  • the cross shaft joint 2 includes a flange yoke 4 connected to an output shaft (not shown) of the transmission, a stub yoke 5 connected to the sleeve 10, and a cross shaft 6 connecting the flange yoke 4 and the stub yoke 5. .
  • the stub yoke 5 includes a yoke portion 7 that is bifurcated and rotatably supports the cross shaft 6, and a cylindrical portion 7 a that extends in the front-rear direction.
  • the cylindrical portion 7a of the yoke portion 7 is formed with an assembly hole 7b penetrating in the front-rear direction.
  • a hole spline 7c is formed in the assembly hole 7b, and the shaft member 8 is fitted in the spline.
  • a shaft spline 8a that is spline-fitted with the hole spline 7c is formed at the front portion of the shaft member 8. For this reason, the yoke part 7 and the shaft member 8 are connected so that relative rotation is impossible.
  • the shaft member 8 is formed with a flange 8 b that abuts against the rear surface of the yoke portion 7.
  • a male screw portion 8c protruding forward from the assembly hole 7b is formed.
  • a nut N that tightens the base portion 7a of the yoke portion 7 toward the rear flange 8b is screwed into the male screw portion 8c. For this reason, the stub yoke 5 is fixed to the shaft member 8 so as not to move back and forth.
  • a rear portion of the shaft member 8 (hereinafter referred to as a rear shaft portion 9) is fitted in the sleeve 10.
  • the rear shaft portion 9 is formed with a shaft spline 9 a that is spline-fitted with the hole spline 11 of the sleeve 10. For this reason, the sleeve 10 and the shaft member 8 are connected so as not to be relatively rotatable.
  • a flange 9 b that abuts on the step surface 18 in the sleeve 10 is formed. Therefore, the shaft member 8 is prevented from moving forward with respect to the sleeve 10.
  • the rear end surface of the rear shaft portion 9 is in contact with the snap ring 17 in the sleeve 10. For this reason, when the collision load acting on the shaft member 8 is equal to or greater than the load capable of breaking the snap ring 17, the shaft member 8 breaks the snap ring 17 and moves backward.
  • An O-ring 9 c is provided in the front opening of the sleeve 10. Therefore, muddy water or the like does not enter the gap between the shaft spline 9a and the hole spline 11.
  • the hole spline 11 is composed of a plurality of hole spline teeth 12 spaced apart in the circumferential direction.
  • the hole spline teeth 12 have a left tooth surface 13 facing in the counterclockwise direction around the rotation axis O as viewed from the rear, and a right tooth surface 14 facing in the clockwise direction.
  • the right tooth surface 14 of the hole spline tooth 12 is pressed against the tooth surface 21a of the first tooth 21 of the shaft spline tooth 20 described later. Therefore, as shown by the arrow A in FIG. 2A, the sleeve 10 rotates counterclockwise.
  • the left tooth surface 13 of the hole spline tooth 12 is pressed against the tooth surface 21b of the first tooth 21 of the shaft spline tooth 20, as indicated by an arrow B in FIG.
  • the sleeve 10 rotates clockwise.
  • the direction indicated by the arrow A is referred to as a forward rotation direction
  • the direction indicated by the arrow B is referred to as a reverse rotation direction.
  • the shaft spline 9a is composed of a plurality of shaft spline teeth 20 that are spaced apart from each other in the circumferential direction. As shown in FIG. 3A, each of the shaft spline teeth 20 is divided into a front side and a rear side, and a first tooth 21 located on the front side and a second tooth 22 located on the rear side are provided. I have.
  • the first tooth 21 extends in the axial direction and is a tooth for transmitting a driving force to the hole spline 11. Therefore, the length of the first tooth 21 in the axial direction is substantially the same as that of the conventional shaft spline tooth and is long in the axial direction.
  • the second teeth 22 extend in the axial direction, the length in the axial direction is shorter than that of the first teeth 21 and the rigidity is low.
  • the first teeth 21 and the second teeth 22 have the same tooth profile as viewed from the axial direction. Further, the first tooth 21 is positioned in the forward rotation direction with respect to the second tooth 22, and the phase difference between the first tooth 21 and the second tooth 22 is ⁇ ⁇ b> 1. That is, the first tooth 21 and the second tooth 22 are spline-fitted with the phases being different.
  • the left tooth surface 21a of the first tooth 21 is in contact with the right tooth surface 14 of the hole spline tooth 12 located in the positive rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
  • the right tooth surface 21 b of the first tooth 21 is not in contact with the hole spline teeth 12.
  • the right tooth surface 22b of the second tooth 22 is in contact with the left tooth surface 13 of the hole spline tooth 12 positioned in the reverse rotation direction among the two hole spline teeth 12 and 12 adjacent in the circumferential direction.
  • the left tooth surface 22 a of the second tooth 22 is not in contact with the hole spline tooth 12.
  • the rear shaft portion 9 has a portion where the shaft spline teeth 20 are not formed.
  • the portion where the first teeth 21 are formed is referred to as a first shaft portion 31
  • the portion where the second teeth 22 are formed is referred to as a second shaft portion 32
  • the shaft spline teeth 20 are formed.
  • the part that is not formed is referred to as a twisted portion 33.
  • the shaft spline teeth 20 are not formed in the twisted portion 33, the strength against the twisted load is smaller than that of the first shaft portion 31 and the second shaft portion 32. For this reason, for example, when a load that rotates the first shaft portion 31 in the forward rotation direction and rotates the second shaft portion 32 in the reverse rotation direction is applied, the torsion portion 33 is twisted. .
  • the shaft member 8 of the present embodiment is made of carbon steel for machine structure and has an elastic restoring force. For this reason, the twisted part 33 also has an elastic restoring force.
  • the rear end surface of the rear shaft portion 9 is formed with a thinning hole 9d toward the front, and the inside of the twisted portion 33 is thinned. Further, a notch 9 e is provided on the outer peripheral surface of the twisted portion 33, and the outer diameter of the twisted portion 33 is smaller than that of the first shaft portion 31 and the second shaft portion 32. For this reason, the torsion 33 part has a further reduced strength against a torsional load and is easily twisted.
  • a jig hole 9f (see FIG. 3) and a pair of locking surfaces 19 and 19 (see FIG. 4) are formed.
  • the jig hole 9f is a hole formed in the rear end surface of the shaft member 8, has a diameter larger than that of the lightening hole 9d, and has a regular hexagonal shape (see FIG. 3). (See (b)).
  • a jig such as a rod-shaped member having an outer diameter of a regular hexagon is inserted into the jig hole 9f, and the load around the rotation axis O is placed on the rear part (second shaft part 32) side of the rear shaft part 9. It becomes easy to apply.
  • the pair of locking surfaces 19, 19 are the outer peripheral surfaces of the sleeve 10 that are opposed to each other. According to this, it becomes easy to mount the fixing jig such as a wrench capable of sandwiching the pair of locking surfaces 19 and 19 and fix the sleeve 10.
  • the phase difference between the first tooth 21 and the second tooth 22 is ⁇ 2, and the phase difference ⁇ 1 after the assembly. Bigger than. That is, the circumferential length S occupied by the first teeth 21 and the second teeth 22 before assembly is larger than that after assembly, and the shaft spline 9a cannot be press-fitted into the hole spline 11 as it is.
  • the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3 including the process of carrying out the spline fitting of the shaft spline 9a to the hole spline 11 is demonstrated.
  • a jig is attached to the pair of locking surfaces 19 and 19 (see FIG. 4) of the sleeve 10 to fix the sleeve 10. Further, a jig is attached to the jig hole 9f of the shaft member 8, and the second shaft portion 32 is rotated in the forward rotation direction. As a result, the first shaft portion 31 of the rear shaft portion 9 does not rotate because the first teeth 21 engage (contact) the hole spline teeth 12 (see FIG. 6B). Also. A twisted portion 33 interposed between the first shaft portion 31 that does not rotate and the second shaft portion 32 on which a rotational load acts is twisted, and the second shaft portion 32 rotates in the forward rotation direction. As a result, as shown in FIG. 6B, the phase difference between the first tooth 21 and the second 22 is reduced. The twisting amount of the twisted portion 33 needs to be set so that the phase difference between the first tooth 21 and the second tooth 22 is less than ⁇ 1.
  • the shaft member 8 is further inserted while the twisted portion 33 is kept twisted.
  • the phase difference between the first tooth 21 and the second tooth 22 is less than ⁇ 1
  • the right tooth surface 22b of the second tooth 22 does not contact the left tooth surface 13 of the hole spline tooth 12. Therefore, the second teeth 22 can be easily inserted between the hole spline teeth 12 without being press-fitted.
  • the shaft member 8 is inserted until the flange 9b of the shaft member 8 contacts the stepped surface 18 in the sleeve 10, as shown in FIG. Thereby, the insertion of the second tooth 22 is completed.
  • the phase difference between the first teeth 21 and the second teeth 22 is ⁇ 1, and the twisted portion 33 is equivalent to ( ⁇ 2 ⁇ 1).
  • the twist remains.
  • the torsion part 33 after the assembly exhibits an elastic restoring force such that the first teeth 21 and the second teeth 22 are separated in the circumferential direction.
  • the first teeth 21 are pressed against the hole spline teeth 12 positioned in the forward rotation direction (see arrow A1 in FIG. 6C), and the second teeth 22 are the hole spline teeth 12 positioned in the reverse rotation direction. (See arrow B1 in FIG. 6C).
  • the O-ring 9c is inserted from the front end of the shaft member 8, and the O-ring 9c is assembled between the sleeve 10 and the shaft member 8 (see FIG. 1). Further, the snap ring 17 is inserted from the rear opening of the sleeve 10, and the snap ring 17 is assembled into the sleeve 10 (see FIG. 1).
  • the front portion of the shaft member 8 is inserted into the assembly hole 7 b of the yoke portion 7, and is fastened with a nut N to the male screw portion 8 c of the shaft member 8 to connect the shaft member 8 and the yoke portion 7.
  • the above is the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3.
  • the shaft member 8 rotates in the reverse rotation direction when the vehicle moves backward, the first teeth 21 and the second teeth 22 of the shaft spline teeth 20 move in the reverse rotation direction. Further, when the shaft member 8 rotates, the twisted portion 33 is twisted, and as shown in FIG. 7B, the right tooth surface 21b of the first tooth 21 is the left tooth surface of the hole spline tooth 12 positioned in the reverse rotation direction. 13 abuts. When the shaft member 8 further rotates, the first teeth 21 press the hole spline teeth 12 in the reverse rotation direction, and the sleeve 10 rotates in the reverse rotation direction.
  • the shaft member 8 and the sleeve 10 can be combined by twisting the shaft member 8 (twisted portion 33). Therefore, the press-fitting work that has been conventionally performed can be avoided, and the assembly work can be facilitated.
  • the present invention is not limited to the example described in the embodiment.
  • the O-ring 9c is used to prevent muddy water or the like from entering the gap between the shaft spline 9a and the hole spline 11, but a sealing agent may be filled instead.
  • the front opening of the sleeve 10 may be covered with a boot-like member or a heat shrinkable sheet.
  • the yoke portion 7 and the shaft member 8 are separable, and an example in which the shaft member 8 is assembled from the rear of the sleeve 10 has been described.
  • a stub yoke 105 in which the portion 7 and the shaft member 8 are integrated may be used.
  • a second embodiment using the stub yoke 105 will be described. In the description of the second embodiment, only differences from the first embodiment will be described. Moreover, the same code
  • the stub yoke 105 of the second embodiment includes a yoke portion 107 that rotatably supports the cross shaft 6, and a shaft portion 108 that extends rearward from the yoke portion 107.
  • a rear shaft portion 109 that is a rear portion of the shaft portion 108 is formed with a shaft spline 109a that is spline-fitted with the hole spline 11 of the sleeve 10.
  • the shaft spline 109a has a plurality of shaft spline teeth 120 spaced apart in the circumferential direction.
  • Each of the shaft spline teeth 120 includes a second tooth 122 located on the front side, and a first tooth 121 that is disposed rearwardly with respect to the second tooth 122.
  • a portion where the first teeth 121 are formed is referred to as a first shaft portion 131
  • a portion where the second teeth 22 are formed is referred to as a second shaft portion 132
  • a shaft spline tooth 120 is formed.
  • the part that is not formed is referred to as a twisted portion 133.
  • the twisted portion 133 Since the twisted portion 133 is not formed with the shaft spline teeth 120, the twisted portion 133 has a lower strength against the twisted load than the first shaft portion 131 and the second shaft portion 132. Further, the twisted portion 133 is formed with a lightening hole 109d and a notch 109e provided on the outer peripheral surface, and the strength against the twist load is further reduced.
  • the first tooth 121 is positioned in the forward rotation direction with respect to the second tooth 122, and the phase difference between the first tooth 121 and the second tooth 122 is ⁇ 3.
  • the first tooth 121 is in contact with the right tooth surface 14 of the hole spline tooth 12 located in the forward rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
  • the second tooth 122 is in contact with the left tooth surface 13 of the hole spline tooth 12 located in the reverse rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
  • the phase difference between the first tooth 121 and the second tooth 122 is ⁇ 4, which is larger than the phase difference ⁇ 3 after the assembly. Is formed. That is, also in the second embodiment, the twisted portion 133 is assembled in a twisted state and has an elastic restoring force. Therefore, the first teeth 121 are pressed against the hole spline teeth 12 positioned in the forward rotation direction (see arrow A3 in FIG. 10A), and the second teeth 122 are the hole spline teeth 12 positioned in the reverse rotation direction. (See arrow B3 in FIG. 10A).
  • a jig hole 9f is formed in the shaft member 8 of the first embodiment (see FIG. 3B).
  • a jig is attached to the base 107a of the yoke portion 107. It can be installed. More specifically, as shown in FIG. 9B, the base portion 107a of the yoke portion 107 has a regular hexagonal cross section, and the yoke portion 107 and the shaft portion 108 are rotated by a jig such as a wrench. It can be done.
  • the shaft portion 108 of the stub yoke 105 is inserted into the sleeve 10 from the front opening portion of the sleeve 10. Further, only the first teeth 121 of the shaft spline 109 a are inserted between the hole spline teeth 12 of the sleeve 10.
  • a jig is attached to the pair of locking surfaces 19 and 19 (see FIG. 4) of the sleeve 10 to fix the sleeve 10 so as not to rotate.
  • the first teeth 121 engage with the hole spline teeth 12, and the first shaft portion 131 of the rear shaft portion 109 does not rotate.
  • a jig is mounted on the outer peripheral surface 107b of the base portion 107a, the stub yoke 105 is rotated in the forward rotation direction, and the second shaft portion 132 of the rear shaft portion 109 is rotated.
  • the twisted portion 133 is twisted to reduce the phase difference between the first tooth 121 and the second tooth 122, and the second tooth 122 can be inserted between the hole spline teeth 12.
  • the stub yoke 105 is further inserted, and the rear end surface of the rear shaft portion 109 is brought into contact with the snap ring 17.
  • the load acting on the shaft portion 108 is released by removing the jig.
  • the twisted portion 133 exhibits an elastic restoring force, and the second shaft portion 132 rotates in the reverse rotation direction.
  • the second tooth 122 moves in the reverse rotation direction, and the hole spline teeth located in the reverse rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction. 12 abuts.
  • a sealant is filled between the front opening portion of the sleeve 10 and the rear shaft portion 109 of the stub yoke 105 so that muddy water or the like does not enter between the shaft spline 109 a and the hole spline 11.
  • the above is the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3.
  • the twisted portion 133 is set so as to have an elastic restoring force that can counter a reaction force when the first tooth 121 presses against the right tooth surface 14 of the hole spline tooth 12.
  • the first teeth 121 of the shaft spline 120 move in the reverse rotation direction.
  • the first teeth 121 are pressed in the A4 direction by the elastic restoring force of the twisted portion 133, but when the vehicle moves backward, the first teeth 121 move in the B4 direction by further twisting the twisted portion 133. It becomes possible.
  • the second embodiment it is possible to avoid the press-fitting work that has been conventionally performed and to facilitate the assembling work. Further, since the shaft portion 108 moves backward even with a small collision load, the spline fitting body can be reliably shortened when the vehicle collides.
  • the first tooth 121 is disposed on the front side and the second tooth 122 is disposed on the rear side with respect to the shaft spline 109a formed on the rear shaft portion 109 of the stub yoke 105. You may arrange.
  • the first teeth 21 and 121 are linearly formed in the axial direction.
  • a helical spline with a twist angle (lead angle) ⁇ 5 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

The present invention addresses the problem of providing a spline fitting body and a method for manufacturing a spline fitting body, with which the assembly work can be made easier and rattling of a spline-fitted part can be reduced. A spline fitting body is equipped with a shaft member (8) on which shaft splines (9a) are formed, and a shaft tube member (10) on which hole splines (11) are formed. Each spline tooth (20) has a first tooth (21) extending in the axial direction and a second tooth (22) separated from the first tooth (21) in the axial direction. The first teeth (21) and the second teeth (22) have different phases, the first teeth (21) abut hole spline teeth (12) of the hole splines (11) positioned in one circumferential direction, and the second teeth (22) abut the hole spline teeth (12) positioned in the other circumferential direction. The shaft member (8) is equipped with a first shaft section (31) on which the multiple first teeth (21) are formed, a second shaft section (32) on which the multiple second teeth (22) are formed, and a twisting section (33) that is interposed between the first shaft section (31) and the second shaft section (32), and that can undergo twisting deformation.

Description

スプライン嵌合体及びスプライン嵌合体の製造方法Spline fitting body and manufacturing method of spline fitting body
 本発明は、スプライン嵌合体及びスプライン嵌合体の製造方法に関する。 The present invention relates to a spline fitting body and a method for manufacturing the spline fitting body.
 車体前側に原動機を搭載する後輪駆動車又は四輪駆動車は、車体前側に搭載された変速装置から車体後側に搭載された減速機に動力を伝達するため、推進軸を備えている。
 一般に、変速装置と終減速装置との距離が一定でなく、かつ、変速装置の出力軸と終減速装置の入力軸との回転中心が同軸上にない。このため、推進軸は、例えば十字軸継手などの自在継手を介して、変速装置や終減速装置に連結している。
 また、推進軸を構成する鋼管が一定の長さを超えると共振点が低くなる。よって、これを防止すべく、鋼管を二つに分割し、その二つの鋼管を自在継手で連結している。
A rear-wheel drive vehicle or a four-wheel drive vehicle in which a prime mover is mounted on the front side of the vehicle body is provided with a propulsion shaft for transmitting power from a transmission device mounted on the front side of the vehicle body to a reduction gear mounted on the rear side of the vehicle body.
Generally, the distance between the transmission and the final reduction gear is not constant, and the rotation center between the output shaft of the transmission and the input shaft of the final reduction gear is not coaxial. For this reason, the propulsion shaft is connected to the transmission and the final reduction gear through a universal joint such as a cross joint.
Moreover, if the steel pipe which comprises a propulsion shaft exceeds fixed length, a resonance point will become low. Therefore, in order to prevent this, the steel pipe is divided into two and the two steel pipes are connected by a universal joint.
 ところで、近年の車両は、前方から衝突された場合、エンジンルーム内のエンジン、変速装置を速やかに後退させ、エンジンルームを含む車体(ボディ)の圧縮変形により衝突エネルギーを吸収するようになっている。
 上記理由から、推進軸等は、エンジン等の後退を妨げる「つっかい棒」とならないようにするため、前後方向からの衝突荷重を受けて短縮するようになっている。
By the way, when a vehicle in recent years collides from the front, the engine and the transmission in the engine room are quickly retracted, and the collision energy is absorbed by the compression deformation of the vehicle body (body) including the engine room. .
For the above reasons, the propulsion shaft or the like is shortened by receiving a collision load from the front-rear direction so as not to be a “stick rod” that prevents the engine or the like from moving backward.
 例えば特許文献1では、推進軸の前端に設けられたスリーブ(軸筒部材)と、スリーブに内嵌されたヨーク(軸部材)と、がスプライン嵌合体を構成し、短縮するようになっている。具体的に説明すると、スリーブに孔スプラインが形成され、ヨークに軸スプラインが形成されている。そして、孔スプラインと軸スプラインとがスプライン嵌合し、スリーブとヨークとが軸方向にスライド自在(短縮自在)に連結している。
 また、特許文献1では、スプライン嵌合体が短縮する場合の衝突荷重を所定値以上に設定するため、スリーブの後端部を加締めして、ヨークの後退を規制する加締め部を形成している。
For example, in Patent Document 1, a sleeve (shaft cylinder member) provided at the front end of the propulsion shaft and a yoke (shaft member) fitted in the sleeve constitute a spline fitting body and are shortened. . More specifically, a hole spline is formed in the sleeve, and a shaft spline is formed in the yoke. The hole spline and the shaft spline are spline-fitted, and the sleeve and the yoke are connected so as to be slidable (can be shortened) in the axial direction.
Further, in Patent Document 1, in order to set the collision load when the spline fitting body is shortened to a predetermined value or more, the rear end portion of the sleeve is swaged to form a swaged portion that regulates the retreat of the yoke. Yes.
特許第3722617公報Japanese Patent No. 3722617
 ここで、加工誤差、熱処理による変形などの要因により、軸スプラインを構成する軸スプライン歯と、孔スプラインを構成する孔スプライン歯との間に、周方向の隙間が生じることがある。
 このような隙間は、車両が前進する高速回転時において、振動や騒音が生じる原因となる。よって、従来は、高速回転時に振動や騒音が生じないようにするため、軸スプライン歯に微小な捩じれ角を付与し、その軸スプライン歯を孔スプラン歯間に圧入している。
Here, due to processing errors, deformation due to heat treatment, and the like, there may be a circumferential gap between the shaft spline teeth constituting the shaft spline and the hole spline teeth constituting the hole spline.
Such a gap causes vibration and noise during high-speed rotation when the vehicle moves forward. Therefore, conventionally, in order to prevent vibration and noise during high-speed rotation, a small twist angle is imparted to the shaft spline teeth and the shaft spline teeth are press-fitted between the hole spline teeth.
 しかしながら、捩じれ角の付与により減少できる軸スプラインと孔スプラインの周方向の隙間が、上記した要因(加工誤差、熱処理による変形など)により、負の隙間となって周方向に締め代を生じさせることがある。このため、組み付け時の圧入荷重が増加し、組み付け作業が困難となった。 However, the circumferential clearance between the shaft spline and the hole spline that can be reduced by applying the twist angle becomes a negative clearance due to the above-mentioned factors (processing error, deformation due to heat treatment, etc.) and causes a margin in the circumferential direction. There is. For this reason, the press-fit load at the time of assembling increased, and the assembling work became difficult.
 本発明は、このような課題を解決するために創作されたものであり、組み付け作業の容易化を図りつつ、高速回転時の不快な振動や騒音の発生することを防止することができるスプライン嵌合体及びスプライン嵌合体の製造方法を提供することを目的とする。 The present invention was created in order to solve such problems, and is capable of preventing the generation of unpleasant vibration and noise during high-speed rotation while facilitating the assembly work. An object of the present invention is to provide a method for manufacturing a united body and a spline fitting body.
 前記課題を解決するため、本発明に係るスプライン嵌合体は、軸スプラインが外周面に形成された軸部材と、前記軸スプラインとスプライン嵌合する孔スプラインが内周面に形成された軸筒部材と、を備えたスプライン嵌合体であって、前記軸スプラインを構成する軸スプライン歯のそれぞれは、軸方向に延在する第1歯と、前記第1歯と軸方向に離間しつつ、前記第1歯よりも軸方向の長さが短い第2歯と、を備え、前記第1歯と前記第2歯は、位相が異なっており、前記第1歯は、周方向一方に位置する前記孔スプラインの孔スプライン歯に当接し、前記第2歯は、周方向他方に位置する前記孔スプライン歯に当接し、前記軸部材は、複数の前記第1歯が形成された第1軸部と、複数の前記第2歯が形成された第2軸部と、前記第1軸部と前記第2軸部との間に介在し、軸回りに捩じれ変形可能な捩じれ部と、を備えることを特徴とする。 In order to solve the above-mentioned problems, a spline fitting body according to the present invention includes a shaft member in which a shaft spline is formed on an outer peripheral surface, and a shaft cylinder member in which a hole spline to be splined with the shaft spline is formed on an inner peripheral surface. Each of the shaft spline teeth constituting the shaft spline includes a first tooth extending in the axial direction and the first tooth extending in the axial direction while being spaced apart from the first tooth in the axial direction. A second tooth having a shorter axial length than one tooth, the first tooth and the second tooth have different phases, and the first tooth is located in one circumferential direction. Abutting against the hole spline teeth of the spline, the second teeth abutting against the hole spline teeth located on the other circumferential side, and the shaft member includes a first shaft portion formed with a plurality of the first teeth; A second shaft portion formed with a plurality of the second teeth, and the first shaft; Interposed between said second shaft portion, characterized in that it comprises a deformable twisted portion twisted around the axis, a.
 前記発明によれば、第1軸部を孔スプライン歯間に挿入した後、第1歯と第2歯の位相差が減少するように、捩じれ部を捩じる。つぎに、第2歯を孔スプライン歯間に挿入する。つぎに、捩じれ部の捩じりを解除することで、捩じれ部の弾性復元力により、第2歯が周方向他方側に移動し、周方向他方側の孔スプライン歯に当接する。
 以上から、軸部材の圧入作業を回避することができ、組み付け作業の容易化を図れる。また、前記構成によれば、スプラインの周方向の隙間を効果的に抑えているため、高回転時の不快な振動や騒音の発生を防止することができる。
According to the invention, after the first shaft portion is inserted between the hole spline teeth, the torsion portion is twisted so that the phase difference between the first teeth and the second teeth is reduced. Next, the second tooth is inserted between the hole spline teeth. Next, by releasing the torsion of the torsion part, the second tooth moves to the other side in the circumferential direction by the elastic restoring force of the torsion part and comes into contact with the hole spline teeth on the other side in the circumferential direction.
From the above, the press-fitting work of the shaft member can be avoided, and the assembling work can be facilitated. Moreover, according to the said structure, since the clearance of the circumferential direction of a spline is suppressed effectively, generation | occurrence | production of the unpleasant vibration and noise at the time of high rotation can be prevented.
 また、前記発明において、前記第1歯に捩じれ角が付与されていることが好ましい。 In the invention, it is preferable that a twist angle is given to the first tooth.
 前記構成によれば、第1歯と孔スプライン歯とがより強く圧着し、第1歯と孔スプライン歯との間に隙間が生じ難くなるため、高速回転時の振動や騒音がさらに生じ難くなる。 According to the above-described configuration, the first tooth and the hole spline tooth are more strongly pressed, and a gap is hardly generated between the first tooth and the hole spline tooth. Therefore, vibration and noise during high-speed rotation are further less likely to occur. .
 また、前記発明において、前記捩じれ部の外径は、前記第1軸部の外径及び前記第2軸部の外径よりも小径に形成されていてもよく、又は、前記捩じれ部の内部が肉抜きされていてもよい。 In the present invention, the outer diameter of the twisted portion may be formed smaller than the outer diameter of the first shaft portion and the outer diameter of the second shaft portion, or the inside of the twisted portion may be It may be meatless.
 前記構成によれば、捩じれ部の軸回りの剛性が低くなり、変形し(捩じれ)易くなる。よって、組み付け作業の容易化をさらに図れる。 According to the above configuration, the rigidity of the twisted portion around the axis is low, and the twisted portion is easily deformed (twisted). Therefore, the assembly work can be further facilitated.
 また、前記発明において、前記軸部材の端面には、少なくとも一対以上の対向面からなる治具装着用孔部が形成されていてもよい。
 又は、前記発明において、前記軸筒部材の外周面には、少なくとも一対以上の対向面からなる治具装着用係止面が形成されていてもよい。
 若しくは、前記軸部材の外周面には、少なくとも一対以上の対向面からなる治具装着用係止面が形成されていてもよい。
 なお、前記する治具は、前記第1歯を挿入後に前記第2歯を前記孔スプライン内に挿入する際に前記捩じれ部を捩じるための治具を係合するものである。
 よって、前記構成によれば、捩じれ部を捩じる作業を容易とすることができる。
In the present invention, a jig mounting hole formed of at least a pair of opposing surfaces may be formed on the end surface of the shaft member.
Or in the said invention, the latching surface for jig | tool mounting | wearing which consists of at least a pair of opposing surface may be formed in the outer peripheral surface of the said shaft cylinder member.
Alternatively, a jig mounting locking surface including at least a pair of opposing surfaces may be formed on the outer peripheral surface of the shaft member.
The jig described above engages a jig for twisting the twisted portion when the second tooth is inserted into the hole spline after the first tooth is inserted.
Therefore, according to the said structure, the operation | work which twists a twist part can be made easy.
 前記構成によれば、捩じれ部を捩じる作業を容易にすることができる。 According to the above configuration, the work of twisting the twisted portion can be facilitated.
 また、前記課題を解決するため、本発明に係るスプライン嵌合体の製造方法は、軸スプラインが外周面に形成された軸部材と、前記軸スプラインとスプライン嵌合する孔スプラインが内周面に形成された軸筒部材と、を備え、前記軸スプラインを構成する軸スプライン歯のそれぞれは、第1歯と、前記第1歯と軸方向に離間する第2歯と、を備え、前記第1歯と前記第2歯は、位相が異なっており、複数の前記第1歯が形成された第1軸部と、複数の前記第2歯が形成された第2軸部と、前記第1軸部と前記第2軸部との間に介在し、軸回りに捩じれ変形可能な捩じれ部と、を備えたスプライン嵌合体の製造方法であって前記第1軸部を前記軸筒部材内に挿入する工程と、前記捩じれ部を周方向一方へ捩じり、前記第1歯を周方向一方に位置する前記孔スプラインの孔スプライン歯に当接させるとともに、前記第2歯を周方向一方に変位させる工程と、前記第2軸部を前記軸筒部材内に挿入する工程と、を有していることを特徴とする。 In addition, in order to solve the above-described problem, a method of manufacturing a spline fitting body according to the present invention includes a shaft member having a shaft spline formed on an outer peripheral surface, and a hole spline for spline fitting with the shaft spline formed on an inner peripheral surface. Each of the shaft spline teeth constituting the shaft spline includes a first tooth and a second tooth spaced axially from the first tooth, and the first tooth. And the second teeth have different phases, a first shaft portion formed with a plurality of the first teeth, a second shaft portion formed with a plurality of the second teeth, and the first shaft portion And the second shaft portion, and a twisted portion that can be twisted and deformed around the shaft, and the first shaft portion is inserted into the shaft tube member. And twisting the twisted portion in one circumferential direction, and positioning the first tooth in one circumferential direction. And a step of abutting the hole spline teeth of the hole spline and displacing the second teeth in one circumferential direction, and a step of inserting the second shaft portion into the shaft tube member. It is characterized by that.
 前記発明によれば、第1軸部を孔スプライン歯間に挿入した後、第1歯と第2歯の位相差が減少するように、捩じれ部を捩じる。つぎに、第2歯を孔スプライン歯間に挿入する。つぎに、捩じれ部の捩じりを解除することで、捩じれ部の弾性復元力により、第2歯が周方向他方側に移動し、周方向他方側の孔スプライン歯に当接する。
 以上から、軸部材の圧入作業を回避することができ、組み付け作業の容易化を図れる。また、前記構成によれば、軸スプラインと孔スプライン間の周方向の隙間を効果的に抑えているため、高回転時の不快な振動や騒音の発生を防止することができる。
According to the invention, after the first shaft portion is inserted between the hole spline teeth, the torsion portion is twisted so that the phase difference between the first teeth and the second teeth is reduced. Next, the second tooth is inserted between the hole spline teeth. Next, by releasing the torsion of the torsion part, the second tooth moves to the other side in the circumferential direction by the elastic restoring force of the torsion part and comes into contact with the hole spline teeth on the other side in the circumferential direction.
From the above, the press-fitting work of the shaft member can be avoided, and the assembling work can be facilitated. Moreover, according to the said structure, since the clearance of the circumferential direction between a shaft spline and a hole spline is suppressed effectively, generation | occurrence | production of the unpleasant vibration and noise at the time of high rotation can be prevented.
 本発明によれば、組み付け作業の容易化を図りつつ、高速回転時の不快な振動や騒音の発生することを防止することができるスプライン嵌合体及びスプライン嵌合体の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the spline fitting body which can prevent generation | occurrence | production of the unpleasant vibration and noise at the time of high-speed rotation can be provided, aiming at the ease of an assembly | attachment operation | work. .
第1実施形態のスプライン嵌合体が適用された十字軸ジョイント及び推進軸を示す断面図である。It is sectional drawing which shows the cross shaft joint and propulsion shaft to which the spline fitting body of 1st Embodiment was applied. (a)は図1のIIA-IIA線矢視断面図であり、(b)は図1のIIIB-IIIB線矢視断面図である。(A) is a cross-sectional view taken along the line IIA-IIA in FIG. 1, and (b) is a cross-sectional view taken along the line IIIB-IIIB in FIG. (a)は組み付け前の軸部材を回転軸Oに沿って切った断面図であり、(b)は組み付け前の軸部材を後方から視た背面図である。(A) is sectional drawing which cut | disconnected the shaft member before assembly | attachment along the rotating shaft O, (b) is the rear view which looked at the shaft member before assembly | attachment from back. 組み付け前のスリーブを前方から視た正面図である。It is the front view which looked at the sleeve before an assembly from the front. (a)はスリーブ内に軸部材を挿入する過程を示す図であり、(b)は孔スプライン歯間に軸スプライン歯の第1歯のみを挿入した状態を示す図であり、(c)は孔スプライン歯間に軸スプライン歯の第1歯と第2歯を挿入した状態を示す図である。(A) is a figure which shows the process in which a shaft member is inserted in a sleeve, (b) is a figure which shows the state which inserted only the 1st tooth | gear of the shaft spline tooth between hole spline teeth, (c) is a figure. It is a figure which shows the state which inserted the 1st tooth | gear and 2nd tooth | gear of the shaft spline tooth between the hole spline teeth. (a)は図5(b)のVIA-VIA線矢視断面図であり、(b)は図6(a)の状態から軸部材の後部に回動荷重を加えた状態を示す断面図であり、(c)は図5(c)のVIC-VIC線矢視断面図である。を示す図である。(A) is a sectional view taken along the line VIA-VIA in FIG. 5 (b), and (b) is a sectional view showing a state in which a rotational load is applied to the rear part of the shaft member from the state of FIG. 6 (a). FIG. 5C is a cross-sectional view taken along the line VIC-VIC in FIG. FIG. (a)は軸部材が正回転した場合における軸スプラインと孔スプラインとの係合状態を示す断面図であり、(b)は軸部材が逆回転した場合における軸スプラインと孔スプラインとの係合状態を示す断面図である。(A) is sectional drawing which shows the engagement state of the shaft spline and hole spline when a shaft member rotates forward, (b) is the engagement of the shaft spline and hole spline when a shaft member reversely rotates. It is sectional drawing which shows a state. 第2実施形態のスプライン嵌合体が適用された十字軸ジョイント及び推進軸を示す断面図である。It is sectional drawing which shows the cross shaft joint and propulsion shaft to which the spline fitting body of 2nd Embodiment was applied. (a)は組み付け前の軸部材を回転軸Oに沿って切った断面図であり、(b)は図8のIXB-IXB線矢視断面図である。(A) is a cross-sectional view of the shaft member before assembly taken along the rotation axis O, and (b) is a cross-sectional view taken along line IXB-IXB in FIG. (a)は図8のXA-XA線矢視断面図であり、(b)は図9のXB-XB線矢視断面図である。(A) is a cross-sectional view taken along line XA-XA in FIG. 8, and (b) is a cross-sectional view taken along line XB-XB in FIG. (a)は軸部材が正回転した場合における軸スプラインと孔スプラインとの係合状態を示す断面図であり、(b)は軸部材が逆回転した場合における軸スプラインと孔スプラインとの係合状態を示す断面図である。(A) is sectional drawing which shows the engagement state of the shaft spline and hole spline when a shaft member rotates forward, (b) is the engagement of the shaft spline and hole spline when a shaft member reversely rotates. It is sectional drawing which shows a state. 軸部材に形成された軸スプラインの一部を拡大した図である。It is the figure which expanded a part of shaft spline formed in the shaft member.
 本発明の第1実施形態及び第2実施形態について適宜図面を参照しながら説明する。 The first embodiment and the second embodiment of the present invention will be described with reference to the drawings as appropriate.
(第1実施形態)
 図1に示すように、車両は、推進方向(前後方向)に延在する推進軸1と、その推進軸1の前端に連結された十字軸ジョイント2と、を備えている。
(First embodiment)
As shown in FIG. 1, the vehicle includes a propulsion shaft 1 extending in the propulsion direction (front-rear direction) and a cross shaft joint 2 connected to the front end of the propulsion shaft 1.
(推進軸)
 推進軸1は、車体前側に搭載されたエンジン(不図示)から出力された動力を、車体後側に搭載された終減速装置(不図示)に伝達させる軸であり、前後方向に延在している。
 推進軸1は、中間部分で分割された2つの円筒状の鋼管(図1において前側の鋼管3のみ図示)により構成され、2ピース構造になっている。
 前側の鋼管3と後側の鋼管とは、図示しない等速ジョイントにより連結されている。
 前側の鋼管3の前端には、十字軸ジョイント2と鋼管3とを連結するスリーブ10が設けられている。なお、以下の説明において、前側の鋼管3を単に「鋼管3」という。
(Propulsion axis)
The propulsion shaft 1 is a shaft that transmits power output from an engine (not shown) mounted on the front side of the vehicle body to a final reduction gear (not shown) mounted on the rear side of the vehicle body, and extends in the front-rear direction. ing.
The propulsion shaft 1 is constituted by two cylindrical steel pipes (only the front steel pipe 3 is shown in FIG. 1) divided at an intermediate portion, and has a two-piece structure.
The front steel pipe 3 and the rear steel pipe are connected by a constant velocity joint (not shown).
A sleeve 10 for connecting the cross joint 2 and the steel pipe 3 is provided at the front end of the front steel pipe 3. In the following description, the front steel pipe 3 is simply referred to as “steel pipe 3”.
(スリーブ)
 スリーブ10は、略円筒状の部材であり、後端部10aが鋼管3の前端と摩擦圧接により接合している。スリーブ10の内部には、孔スプライン11と、周方向に延在する周溝16と、が形成されている。周溝16には、軸方向から視て略C字状のスナップリング17が嵌め込まれている。
(sleeve)
The sleeve 10 is a substantially cylindrical member, and the rear end portion 10a is joined to the front end of the steel pipe 3 by friction welding. A hole spline 11 and a circumferential groove 16 extending in the circumferential direction are formed inside the sleeve 10. A substantially C-shaped snap ring 17 is fitted in the circumferential groove 16 when viewed from the axial direction.
(十字軸ジョイント)
 十字軸ジョイント2は、変速装置の出力軸(不図示)と連結するフランジヨーク4と、スリーブ10と連結するスタブヨーク5と、フランジヨーク4とスタブヨーク5を連結する十字軸6と、を備えている。
(Cross shaft joint)
The cross shaft joint 2 includes a flange yoke 4 connected to an output shaft (not shown) of the transmission, a stub yoke 5 connected to the sleeve 10, and a cross shaft 6 connecting the flange yoke 4 and the stub yoke 5. .
 スタブヨーク5は、二又に分かれて十字軸6を回転自在に支持するヨーク部7と、前後方向に延在する円筒部7aと、を備えている。
 ヨーク部7の円筒部7aには、前後方向に貫通する組み付け孔7bが形成されている。この組み付け孔7b内には、孔スプライン7cが形成され、軸部材8がスプライン嵌合している。
The stub yoke 5 includes a yoke portion 7 that is bifurcated and rotatably supports the cross shaft 6, and a cylindrical portion 7 a that extends in the front-rear direction.
The cylindrical portion 7a of the yoke portion 7 is formed with an assembly hole 7b penetrating in the front-rear direction. A hole spline 7c is formed in the assembly hole 7b, and the shaft member 8 is fitted in the spline.
 軸部材8の前部には、孔スプライン7cとスプライン嵌合する軸スプライン8aが形成されている。このため、ヨーク部7と軸部材8は相対回転不能に連結している。
 軸部材8には、ヨーク部7の後面に当接するフランジ8bが形成されている。
 軸部材8の前端面には、組み付け孔7bから前方に突出する雄ねじ部8cが形成されている。
 雄ねじ部8cには、ヨーク部7の基部7aを後方のフランジ8bに向って締め付けるナットNが螺合している。このため、スタブヨーク5は、軸部材8に前後動しないように固定されている。
A shaft spline 8a that is spline-fitted with the hole spline 7c is formed at the front portion of the shaft member 8. For this reason, the yoke part 7 and the shaft member 8 are connected so that relative rotation is impossible.
The shaft member 8 is formed with a flange 8 b that abuts against the rear surface of the yoke portion 7.
On the front end surface of the shaft member 8, a male screw portion 8c protruding forward from the assembly hole 7b is formed.
A nut N that tightens the base portion 7a of the yoke portion 7 toward the rear flange 8b is screwed into the male screw portion 8c. For this reason, the stub yoke 5 is fixed to the shaft member 8 so as not to move back and forth.
(後軸部)
 軸部材8の後部(以下、後軸部9と称する)は、スリーブ10内に嵌め込まれている。
 後軸部9には、スリーブ10の孔スプライン11とスプライン嵌合する軸スプライン9aが形成されている。このため、スリーブ10と軸部材8とは、相対回転不能に連結している。
 後軸部9の後端には、スリーブ10内の段差面18に当接するフランジ9bが形成されている。よって、軸部材8は、スリーブ10に対し前方へ移動しないようになっている。
(Rear shaft)
A rear portion of the shaft member 8 (hereinafter referred to as a rear shaft portion 9) is fitted in the sleeve 10.
The rear shaft portion 9 is formed with a shaft spline 9 a that is spline-fitted with the hole spline 11 of the sleeve 10. For this reason, the sleeve 10 and the shaft member 8 are connected so as not to be relatively rotatable.
At the rear end of the rear shaft portion 9, a flange 9 b that abuts on the step surface 18 in the sleeve 10 is formed. Therefore, the shaft member 8 is prevented from moving forward with respect to the sleeve 10.
 後軸部9の後端面は、スリーブ10内のスナップリング17に当接している。このため、軸部材8に作用する衝突荷重がスナップリング17を破断できる荷重以上の場合、軸部材8は、スナップリング17を破断して後方へ移動するようになっている。 The rear end surface of the rear shaft portion 9 is in contact with the snap ring 17 in the sleeve 10. For this reason, when the collision load acting on the shaft member 8 is equal to or greater than the load capable of breaking the snap ring 17, the shaft member 8 breaks the snap ring 17 and moves backward.
 スリーブ10の前側開口部内には、Oリング9cが設けられている。よって、軸スプライン9aと孔スプライン11との隙間に泥水等が浸入しないようになっている。
 つぎに、本発明のスプライン嵌合体が適用された後軸部9とスリーブ10の詳細を説明する。
An O-ring 9 c is provided in the front opening of the sleeve 10. Therefore, muddy water or the like does not enter the gap between the shaft spline 9a and the hole spline 11.
Next, details of the rear shaft portion 9 and the sleeve 10 to which the spline fitting body of the present invention is applied will be described.
(スプライン嵌合体)
 図2(a)に示すように、孔スプライン11は、周方向に離間して配置される複数の孔スプライン歯12により構成されている。
 孔スプライン歯12は、後方から視て回転軸Oを中心に左回り方向を向く左歯面13と、右回り方向を向く右歯面14とを有している。
 そして、車両が前進する場合には、孔スプライン歯12の右歯面14が後述する軸スプライン歯20の第1歯21の歯面21aに押圧される。よって、図2(a)の矢印Aで示すように、スリーブ10が左回りに回転する。
 一方で、車両が後退する場合には、孔スプライン歯12の左歯面13が軸スプライン歯20の第1歯21の歯面21bに押圧され、図2(a)の矢印Bで示すようにスリーブ10が右回りに回転する。
以下、矢印Aが指す方向を正回転方向と称し、矢印Bが指す方向を逆回転方向と称する。
(Spline fitting)
As shown in FIG. 2 (a), the hole spline 11 is composed of a plurality of hole spline teeth 12 spaced apart in the circumferential direction.
The hole spline teeth 12 have a left tooth surface 13 facing in the counterclockwise direction around the rotation axis O as viewed from the rear, and a right tooth surface 14 facing in the clockwise direction.
When the vehicle moves forward, the right tooth surface 14 of the hole spline tooth 12 is pressed against the tooth surface 21a of the first tooth 21 of the shaft spline tooth 20 described later. Therefore, as shown by the arrow A in FIG. 2A, the sleeve 10 rotates counterclockwise.
On the other hand, when the vehicle moves backward, the left tooth surface 13 of the hole spline tooth 12 is pressed against the tooth surface 21b of the first tooth 21 of the shaft spline tooth 20, as indicated by an arrow B in FIG. The sleeve 10 rotates clockwise.
Hereinafter, the direction indicated by the arrow A is referred to as a forward rotation direction, and the direction indicated by the arrow B is referred to as a reverse rotation direction.
 図2(a)に示すように、軸スプライン9aは、周方向に互いに離間して配置される複数の軸スプライン歯20により構成されている。
 図3(a)に示すように、軸スプライン歯20のそれぞれは、前側と後側に分割されており、前側に位置する第1歯21と、後側に位置する第2歯22と、を備えている。
As shown in FIG. 2A, the shaft spline 9a is composed of a plurality of shaft spline teeth 20 that are spaced apart from each other in the circumferential direction.
As shown in FIG. 3A, each of the shaft spline teeth 20 is divided into a front side and a rear side, and a first tooth 21 located on the front side and a second tooth 22 located on the rear side are provided. I have.
 第1歯21は、軸方向に延びており、駆動力を孔スプライン11に伝達するための歯である。よって、第1歯21の軸方向の長さは、従来の軸スプライン歯と略同等に形成されており、軸方向に長い。一方で、第2歯22は、軸方向に延びているものの、第1歯21よりも軸方向の長さが短く、剛性が低い。 The first tooth 21 extends in the axial direction and is a tooth for transmitting a driving force to the hole spline 11. Therefore, the length of the first tooth 21 in the axial direction is substantially the same as that of the conventional shaft spline tooth and is long in the axial direction. On the other hand, although the second teeth 22 extend in the axial direction, the length in the axial direction is shorter than that of the first teeth 21 and the rigidity is low.
 図2(a)に示すように、第1歯21と第2歯22とは、軸方向から視た歯形が同一に形成されている。
 また、第1歯21は、第2歯22よりも正回転方向に位置し、第1歯21と第2歯22との位相差がθ1となっている。つまり、第1歯21と第2歯22は、位相が異なった状態でスプライン嵌合している。
As shown in FIG. 2A, the first teeth 21 and the second teeth 22 have the same tooth profile as viewed from the axial direction.
Further, the first tooth 21 is positioned in the forward rotation direction with respect to the second tooth 22, and the phase difference between the first tooth 21 and the second tooth 22 is θ <b> 1. That is, the first tooth 21 and the second tooth 22 are spline-fitted with the phases being different.
 第1歯21の左歯面21aは、周方向に隣り合う2つの孔スプライン歯12,12のうち、正回転方向に位置する孔スプライン歯12の右歯面14に当接している。
 なお、第1歯21の右歯面21bは、孔スプライン歯12に当接していない。
 一方で、第2歯22の右歯面22bは、周方向に隣り合う2つの孔スプライン歯12,12のうち、逆回転方向に位置する孔スプライン歯12の左歯面13に当接している。
 なお、第2歯22の左歯面22aは、孔スプライン歯12に当接していない。
The left tooth surface 21a of the first tooth 21 is in contact with the right tooth surface 14 of the hole spline tooth 12 located in the positive rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
The right tooth surface 21 b of the first tooth 21 is not in contact with the hole spline teeth 12.
On the other hand, the right tooth surface 22b of the second tooth 22 is in contact with the left tooth surface 13 of the hole spline tooth 12 positioned in the reverse rotation direction among the two hole spline teeth 12 and 12 adjacent in the circumferential direction. .
Note that the left tooth surface 22 a of the second tooth 22 is not in contact with the hole spline tooth 12.
 図3(a)に示すように、第1歯21と第2歯22とは、前後方向に離間している。このため、後軸部9において、軸スプライン歯20が形成されていない部位が生じている。
 なお、後軸部9において、第1歯21が形成された部分を第1軸部31と称し、第2歯22が形成された部分を第2軸部32と称し、軸スプライン歯20が形成されていない部位を捩じれ部33と称する。
As shown to Fig.3 (a), the 1st tooth | gear 21 and the 2nd tooth | gear 22 are spaced apart in the front-back direction. For this reason, the rear shaft portion 9 has a portion where the shaft spline teeth 20 are not formed.
In the rear shaft portion 9, the portion where the first teeth 21 are formed is referred to as a first shaft portion 31, the portion where the second teeth 22 are formed is referred to as a second shaft portion 32, and the shaft spline teeth 20 are formed. The part that is not formed is referred to as a twisted portion 33.
 捩じれ部33は、軸スプライン歯20が形成されていないため、第1軸部31と第2軸部32よりも捩じれ荷重に対する強度が小さい。このため、例えば、第1軸部31を正回転方向に回転させる一方で、第2軸部32を逆回転方向に回転させるような負荷をかけると、捩じれ部33が捩じれるようになっている。
 また、本実施形態の軸部材8は、機械構造用炭素鋼で形成されており、弾性復元力を有している。このため、捩じれ部33も弾性復元力を有している。
Since the shaft spline teeth 20 are not formed in the twisted portion 33, the strength against the twisted load is smaller than that of the first shaft portion 31 and the second shaft portion 32. For this reason, for example, when a load that rotates the first shaft portion 31 in the forward rotation direction and rotates the second shaft portion 32 in the reverse rotation direction is applied, the torsion portion 33 is twisted. .
Moreover, the shaft member 8 of the present embodiment is made of carbon steel for machine structure and has an elastic restoring force. For this reason, the twisted part 33 also has an elastic restoring force.
 また、後軸部9の後端面には、前方に向って肉抜き孔9dが形成され、捩じれ部33の内部が肉抜きされている。さらに、捩じれ部33の外周面には、切り欠き9eが設けられ、捩じれ部33の外径は、第1軸部31、第2軸部32よりも小径となっている。このため、捩じれ33部は、捩じれ荷重に対する強度が更に低減し、捩じれ易くなっている。 In addition, the rear end surface of the rear shaft portion 9 is formed with a thinning hole 9d toward the front, and the inside of the twisted portion 33 is thinned. Further, a notch 9 e is provided on the outer peripheral surface of the twisted portion 33, and the outer diameter of the twisted portion 33 is smaller than that of the first shaft portion 31 and the second shaft portion 32. For this reason, the torsion 33 part has a further reduced strength against a torsional load and is easily twisted.
 また、捩じれ部33に捩じれ荷重をかけるために、治具用孔9f(図3参照)と、一対の係止面19,19(図4参照)と、が形成されている。
 図3に示すように、治具用孔9fは、軸部材8の後端面に形成された孔であり、肉抜き孔9dよりも拡径しており、後方から視て正六角形状(図3(b)参照)に形成されている。これによれば、外径が正六角形状の棒状部材などの治具を治具用孔9fに挿入し、後軸部9の後部(第2軸部32)側に、回転軸O周りの荷重をかけることが容易となる。
 図4に示すように、一対の係止面19,19は、スリーブ10の外周面であって対向する平面である。これによれば、一対の係止面19,19を挟持可能なレンチ等の固定用治具を装着し、スリーブ10を固定することが容易となる。
Further, in order to apply a twisting load to the twisted portion 33, a jig hole 9f (see FIG. 3) and a pair of locking surfaces 19 and 19 (see FIG. 4) are formed.
As shown in FIG. 3, the jig hole 9f is a hole formed in the rear end surface of the shaft member 8, has a diameter larger than that of the lightening hole 9d, and has a regular hexagonal shape (see FIG. 3). (See (b)). According to this, a jig such as a rod-shaped member having an outer diameter of a regular hexagon is inserted into the jig hole 9f, and the load around the rotation axis O is placed on the rear part (second shaft part 32) side of the rear shaft part 9. It becomes easy to apply.
As shown in FIG. 4, the pair of locking surfaces 19, 19 are the outer peripheral surfaces of the sleeve 10 that are opposed to each other. According to this, it becomes easy to mount the fixing jig such as a wrench capable of sandwiching the pair of locking surfaces 19 and 19 and fix the sleeve 10.
 ここで、図2(b)に示すように、軸部材8をスリーブ10に組み付ける前において、第1歯21と第2歯22との位相差はθ2となっており、組み付け後の位相差θ1よりも大きい。つまり、組み付け前における第1歯21と第2歯22とが占める周方向の長さSは、組み付け後よりも大きく、孔スプライン11に対し軸スプライン9aをそのまま圧入できない形状となっている。
 以下において、孔スプライン11に軸スプライン9aをスプライン嵌合させる工程を含む、スタブヨーク5とスリーブ10と鋼管3との組み立て工程について説明する。
Here, as shown in FIG. 2B, before the shaft member 8 is assembled to the sleeve 10, the phase difference between the first tooth 21 and the second tooth 22 is θ2, and the phase difference θ1 after the assembly. Bigger than. That is, the circumferential length S occupied by the first teeth 21 and the second teeth 22 before assembly is larger than that after assembly, and the shaft spline 9a cannot be press-fitted into the hole spline 11 as it is.
Below, the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3 including the process of carrying out the spline fitting of the shaft spline 9a to the hole spline 11 is demonstrated.
(組み立て)
 最初に、軸部材8とスリーブ10との連結を行う。
 図5(a)に示すように、スリーブ10の後方に軸部材8の前部を向けて配置し、スリーブ10の後開口部内に軸部材8を挿入する。
 図5(b)に示すように、スリーブ10の孔スプライン歯12間に、軸スプライン9aの第1歯21のみを挿入する。
 なお、この状態において、図6(a)に示すように、第1歯21と第2歯22との位相差はθ2となっている。
(assembly)
First, the shaft member 8 and the sleeve 10 are connected.
As shown in FIG. 5A, the shaft member 8 is disposed with the front portion facing the rear of the sleeve 10, and the shaft member 8 is inserted into the rear opening of the sleeve 10.
As shown in FIG. 5 (b), only the first teeth 21 of the shaft spline 9 a are inserted between the hole spline teeth 12 of the sleeve 10.
In this state, as shown in FIG. 6A, the phase difference between the first tooth 21 and the second tooth 22 is θ2.
 つぎに、スリーブ10の一対の係止面19,19(図4参照)に治具を装着してスリーブ10を固定する。さらに、軸部材8の治具用孔9fに治具を装着し、第2軸部32を正回転方向へ回動させる。
 これによれば、後軸部9の第1軸部31は、第1歯21が孔スプライン歯12に係合(当接)し、回転しない(図6(b)参照)。また。回転しない第1軸部31と回転荷重が作用する第2軸部32との間に介在する捩じれ部33が捩じれ、第2軸部32が正回転方向に回動する。
 この結果、図6(b)に示すように、第1歯21と第2は22との位相差が小さくなる。なお、捩じれ部33の捩じれ量は、第1歯21と第2歯22との位相差がθ1未満となる程度に行う必要がある。
Next, a jig is attached to the pair of locking surfaces 19 and 19 (see FIG. 4) of the sleeve 10 to fix the sleeve 10. Further, a jig is attached to the jig hole 9f of the shaft member 8, and the second shaft portion 32 is rotated in the forward rotation direction.
As a result, the first shaft portion 31 of the rear shaft portion 9 does not rotate because the first teeth 21 engage (contact) the hole spline teeth 12 (see FIG. 6B). Also. A twisted portion 33 interposed between the first shaft portion 31 that does not rotate and the second shaft portion 32 on which a rotational load acts is twisted, and the second shaft portion 32 rotates in the forward rotation direction.
As a result, as shown in FIG. 6B, the phase difference between the first tooth 21 and the second 22 is reduced. The twisting amount of the twisted portion 33 needs to be set so that the phase difference between the first tooth 21 and the second tooth 22 is less than θ1.
 つぎに、捩じれ部33が捩じれた状態を保持しながら、軸部材8をさらに挿入する。ここで、第1歯21と第2歯22との位相差はθ1未満となっているため、第2歯22の右歯面22bは、孔スプライン歯12の左歯面13に接触しない。よって、圧入することなく容易に第2歯22を孔スプライン歯12間に挿入できる。
 また、軸部材8の挿入は、図5(c)に示すように、軸部材8のフランジ9bがスリーブ10内の段差面18に当接するまで行う。これにより、第2歯22の挿入が完了する。
Next, the shaft member 8 is further inserted while the twisted portion 33 is kept twisted. Here, since the phase difference between the first tooth 21 and the second tooth 22 is less than θ1, the right tooth surface 22b of the second tooth 22 does not contact the left tooth surface 13 of the hole spline tooth 12. Therefore, the second teeth 22 can be easily inserted between the hole spline teeth 12 without being press-fitted.
Further, the shaft member 8 is inserted until the flange 9b of the shaft member 8 contacts the stepped surface 18 in the sleeve 10, as shown in FIG. Thereby, the insertion of the second tooth 22 is completed.
 つぎに、治具を外して後軸部9に作用する負荷を解除する。
 これによれば、捩じれ部33が弾性復元力を発揮し、第2軸部32が逆回転方向に回動する。このため、図6(c)に示すように、第2歯22は、逆回転方向に移動し、周方向に隣り合う2つの孔スプライン歯12,12のうち逆回転方向に位置する孔スプライン歯12に当接する。
Next, the load applied to the rear shaft portion 9 is released by removing the jig.
According to this, the twisted portion 33 exhibits an elastic restoring force, and the second shaft portion 32 rotates in the reverse rotation direction. For this reason, as shown in FIG.6 (c), the 2nd tooth | gear 22 moves to a reverse rotation direction, and the hole spline tooth located in a reverse rotation direction among the two hole spline teeth 12 and 12 adjacent to the circumferential direction 12 abuts.
 ここで、第2歯22が孔スプライン歯12に当接している状態において、第1歯21と第2歯22との位相差はθ1であり、捩じれ部33には(θ2-θ1)分だけ捩じれが残った状態となる。このため、組み付け後の捩じれ部33は、第1歯21と第2歯22とが周方向に離間させるような弾性復元力を発揮している。
 この結果、第1歯21は、正回転方向に位置する孔スプライン歯12に押圧され(図6(c)の矢印A1参照)、第2歯22は、逆回転方向に位置する孔スプライン歯12に押圧される(図6(c)の矢印B1参照)。
Here, in a state where the second teeth 22 are in contact with the hole spline teeth 12, the phase difference between the first teeth 21 and the second teeth 22 is θ1, and the twisted portion 33 is equivalent to (θ2−θ1). The twist remains. For this reason, the torsion part 33 after the assembly exhibits an elastic restoring force such that the first teeth 21 and the second teeth 22 are separated in the circumferential direction.
As a result, the first teeth 21 are pressed against the hole spline teeth 12 positioned in the forward rotation direction (see arrow A1 in FIG. 6C), and the second teeth 22 are the hole spline teeth 12 positioned in the reverse rotation direction. (See arrow B1 in FIG. 6C).
 つぎに、軸部材8の前端からOリング9cを挿通させ、スリーブ10と軸部材8との間にOリング9cを組み付ける(図1参照)。また、スリーブ10の後側開口部からスナップリング17を挿入し、スリーブ10内にスナップリング17を組み付ける(図1参照)。 Next, the O-ring 9c is inserted from the front end of the shaft member 8, and the O-ring 9c is assembled between the sleeve 10 and the shaft member 8 (see FIG. 1). Further, the snap ring 17 is inserted from the rear opening of the sleeve 10, and the snap ring 17 is assembled into the sleeve 10 (see FIG. 1).
 つぎに、スリーブ10と鋼管3とを摩擦圧接により接合する。 Next, the sleeve 10 and the steel pipe 3 are joined by friction welding.
 つぎに、軸部材8の前部をヨーク部7の組み付け孔7b内に挿入するとともに、軸部材8の雄ねじ部8cにナットNで締結し、軸部材8とヨーク部7とを連結する。
 以上が、スタブヨーク5とスリーブ10と鋼管3との組み付け工程である。
Next, the front portion of the shaft member 8 is inserted into the assembly hole 7 b of the yoke portion 7, and is fastened with a nut N to the male screw portion 8 c of the shaft member 8 to connect the shaft member 8 and the yoke portion 7.
The above is the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3.
(車両の駆動時)
 つぎに、図7を参照しながら、軸部材8からスリーブ10への動力伝達状態について説明する。
 車両の前進時、軸部材8が正回転方向に回転するため、軸スプライン歯20の第1歯21及び第2歯22が正回転方向に移動する。
 このため、図7(a)の矢印A2に示すように、第1歯21は当接する孔スプライン歯12の右歯面14を正回転方向に押圧し、スリーブ10が正回転方向に回転する。
 また、捩じれ部33の弾性復元力により、第1歯21は、孔スプライン歯12の右歯面14に押圧されて隙間が生じないようになっている。このため、振動や騒音の発生が抑えられている。
(When driving the vehicle)
Next, a power transmission state from the shaft member 8 to the sleeve 10 will be described with reference to FIG.
Since the shaft member 8 rotates in the forward rotation direction when the vehicle moves forward, the first teeth 21 and the second teeth 22 of the shaft spline teeth 20 move in the forward rotation direction.
Therefore, as indicated by an arrow A2 in FIG. 7A, the first tooth 21 presses the right tooth surface 14 of the hole spline tooth 12 in contact in the forward rotation direction, and the sleeve 10 rotates in the forward rotation direction.
Further, the first tooth 21 is pressed against the right tooth surface 14 of the hole spline tooth 12 by the elastic restoring force of the twisted portion 33 so that no gap is generated. For this reason, generation | occurrence | production of a vibration and noise is suppressed.
 一方で、車両の後退時、軸部材8が逆回転方向に回転するため、軸スプライン歯20の第1歯21及び第2歯22が逆回転方向に移動する。
 さらに、軸部材8が回動すると、捩じれ部33が捩じれ、図7(b)に示すように、第1歯21の右歯面21bが逆回転方向に位置する孔スプライン歯12の左歯面13に当接する。
 そして、さらに軸部材8が回動すると、第1歯21が孔スプライン歯12を逆回転方向に押圧し、スリーブ10が逆回転方向に回転する。
 なお、軸部材8の逆回転、第1歯21と押圧される孔スプライン歯12との間には隙間が形成されているものの、車両の後退時における軸部材8等の回転は低速回転であるため、振動や騒音が生じるおそれがない。
On the other hand, since the shaft member 8 rotates in the reverse rotation direction when the vehicle moves backward, the first teeth 21 and the second teeth 22 of the shaft spline teeth 20 move in the reverse rotation direction.
Further, when the shaft member 8 rotates, the twisted portion 33 is twisted, and as shown in FIG. 7B, the right tooth surface 21b of the first tooth 21 is the left tooth surface of the hole spline tooth 12 positioned in the reverse rotation direction. 13 abuts.
When the shaft member 8 further rotates, the first teeth 21 press the hole spline teeth 12 in the reverse rotation direction, and the sleeve 10 rotates in the reverse rotation direction.
In addition, although the clearance gap is formed between the reverse rotation of the shaft member 8 and the 1st tooth | gear 21 and the hole spline tooth | gear 12 pressed, rotation of the shaft member 8 grade | etc., At the time of reverse of a vehicle is low speed rotation. Therefore, there is no risk of vibration or noise.
(車両の衝突時)
 つぎに、車両が前方から衝突された場合について説明する。
 前方からの衝突により、軸部材8に後方に向う衝突荷重が作用する。そして、軸部材8がスナップリング17を破断した場合、軸部材8は、スリーブ10内を後退して鋼管3に移動する。
 ここで、軸部材8とスリーブ10とはスプライン嵌合しているものの、孔スプライン歯12に第1歯21と第2歯22とを押し付ける力(図6(c)の矢印A1,B1参照)は、捩じれ部33の弾性復元力であって比較的小さな力である。よって、軸部材8に作用する衝突荷重が小さくても軸部材8が後退する。
(At the time of vehicle collision)
Next, a case where the vehicle is collided from the front will be described.
A collision load directed rearward acts on the shaft member 8 due to a collision from the front. When the shaft member 8 breaks the snap ring 17, the shaft member 8 moves backward in the sleeve 10 and moves to the steel pipe 3.
Here, although the shaft member 8 and the sleeve 10 are spline-fitted, the force for pressing the first teeth 21 and the second teeth 22 against the hole spline teeth 12 (see arrows A1 and B1 in FIG. 6C) Is an elastic restoring force of the twisted portion 33 and a relatively small force. Therefore, the shaft member 8 moves backward even if the collision load acting on the shaft member 8 is small.
 また、軸スプライン歯20の第2歯22がスリーブ10の孔スプライン歯12間から脱落すると、軸スプライン9aと孔スプライン11とのスプライン嵌合が解除される。このため、軸部材8は、速やかに後退して鋼管3内に進入する。この結果、十字軸ジョイント2及び推進軸1における前後方向の長さが短縮する。 Further, when the second teeth 22 of the shaft spline teeth 20 are dropped from between the hole spline teeth 12 of the sleeve 10, the spline fitting between the shaft spline 9a and the hole spline 11 is released. For this reason, the shaft member 8 quickly retracts and enters the steel pipe 3. As a result, the longitudinal lengths of the cross shaft joint 2 and the propulsion shaft 1 are shortened.
 以上、第1実施形態によれば、軸部材8(捩じれ部33)を捩じることで軸部材8とスリーブ10とを組み合わせることができる。よって、従来行われてきた圧入作業を回避でき、組み付け作業の容易化を図ることができる。 As described above, according to the first embodiment, the shaft member 8 and the sleeve 10 can be combined by twisting the shaft member 8 (twisted portion 33). Therefore, the press-fitting work that has been conventionally performed can be avoided, and the assembly work can be facilitated.
 以上、第1実施形態について説明したが、本発明は実施形態で説明した例に限定されない。
 第1実施形態では、軸スプライン9aと孔スプライン11との隙間に泥水等が浸入することを防止するためにOリング9cを用いているが、代わりに、シール剤を充填してもよい。または、ブーツ状部材又は熱収縮シートにより、スリーブ10の前開口部を覆ってもよい。
Although the first embodiment has been described above, the present invention is not limited to the example described in the embodiment.
In the first embodiment, the O-ring 9c is used to prevent muddy water or the like from entering the gap between the shaft spline 9a and the hole spline 11, but a sealing agent may be filled instead. Alternatively, the front opening of the sleeve 10 may be covered with a boot-like member or a heat shrinkable sheet.
 また、第1実施形態のスタブヨーク5は、ヨーク部7と軸部材8とが分離可能なものであって、軸部材8をスリーブ10の後方から組み付けた例を挙げたが、本発明は、ヨーク部7と軸部材8とが一体なスタブヨーク105を用いてもよい。以下、スタブヨーク105を用いた第2実施形態について説明する。なお、第2実施形態の説明では、第1実施形態との相違点のみを説明する。また、第1実施形態で説明した構成と同じ構成には、同一の符号を付している。 In the stub yoke 5 of the first embodiment, the yoke portion 7 and the shaft member 8 are separable, and an example in which the shaft member 8 is assembled from the rear of the sleeve 10 has been described. A stub yoke 105 in which the portion 7 and the shaft member 8 are integrated may be used. Hereinafter, a second embodiment using the stub yoke 105 will be described. In the description of the second embodiment, only differences from the first embodiment will be described. Moreover, the same code | symbol is attached | subjected to the same structure as the structure demonstrated in 1st Embodiment.
(第2実施形態)
 図8に示すように、第2実施形態のスタブヨーク105は、十字軸6を回転自在に支持するヨーク部107と、ヨーク部107から後方に延びる軸部108と、を備えている。
(Second Embodiment)
As shown in FIG. 8, the stub yoke 105 of the second embodiment includes a yoke portion 107 that rotatably supports the cross shaft 6, and a shaft portion 108 that extends rearward from the yoke portion 107.
 軸部108の後部である後軸部109には、スリーブ10の孔スプライン11とスプライン嵌合する軸スプライン109aが形成されている。
 図9に示すように、軸スプライン109aは、周方向に離間する複数の軸スプライン歯120を有している。
 また、軸スプライン歯120のそれぞれは、前側に位置する第2歯122と、第2歯122に対して後方に離間して配置される第1歯121と、を備えている。
A rear shaft portion 109 that is a rear portion of the shaft portion 108 is formed with a shaft spline 109a that is spline-fitted with the hole spline 11 of the sleeve 10.
As shown in FIG. 9, the shaft spline 109a has a plurality of shaft spline teeth 120 spaced apart in the circumferential direction.
Each of the shaft spline teeth 120 includes a second tooth 122 located on the front side, and a first tooth 121 that is disposed rearwardly with respect to the second tooth 122.
 なお、後軸部109において、第1歯121が形成された部分を第1軸部131と称し、第2歯22が形成された部分を第2軸部132と称し、軸スプライン歯120が形成されていない部位を捩じれ部133と称する。 In the rear shaft portion 109, a portion where the first teeth 121 are formed is referred to as a first shaft portion 131, a portion where the second teeth 22 are formed is referred to as a second shaft portion 132, and a shaft spline tooth 120 is formed. The part that is not formed is referred to as a twisted portion 133.
 捩じれ部133は、軸スプライン歯120が形成されていないため、第1軸部131と第2軸部132よりも捩じれ荷重に対する強度が小さい。
 また、捩じれ部133には、肉抜き孔109dと、外周面に設けられた切り欠き109eとが形成されており、捩じれ荷重に対する強度が更に低減している。
Since the twisted portion 133 is not formed with the shaft spline teeth 120, the twisted portion 133 has a lower strength against the twisted load than the first shaft portion 131 and the second shaft portion 132.
Further, the twisted portion 133 is formed with a lightening hole 109d and a notch 109e provided on the outer peripheral surface, and the strength against the twist load is further reduced.
 図10(a)に示すように、第1歯121は、第2歯122よりも正回転方向に位置し、第1歯121と第2歯122との位相差がθ3となっている。
 また、第1歯121は、周方向に隣り合う2つの孔スプライン歯12,12のうち、正回転方向に位置する孔スプライン歯12の右歯面14に当接している。
 一方で、第2歯122は、周方向に隣り合う2つの孔スプライン歯12,12のうち、逆回転方向に位置する孔スプライン歯12の左歯面13に当接している。
As shown in FIG. 10A, the first tooth 121 is positioned in the forward rotation direction with respect to the second tooth 122, and the phase difference between the first tooth 121 and the second tooth 122 is θ3.
The first tooth 121 is in contact with the right tooth surface 14 of the hole spline tooth 12 located in the forward rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
On the other hand, the second tooth 122 is in contact with the left tooth surface 13 of the hole spline tooth 12 located in the reverse rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction.
 図10(b)に示すように、軸部108をスリーブ10に組み付ける前において、第1歯121と第2歯122との位相差はθ4となっており、組み付け後の位相差θ3よりも大きく形成されている。
 つまり、第2実施形態においても、捩じれ部133は、捩じれた状態で組み付けられ、弾性復元力を有している。
 このため、第1歯121は、正回転方向に位置する孔スプライン歯12に押圧され(図10(a)の矢印A3参照)、第2歯122は、逆回転方向に位置する孔スプライン歯12に押圧される(図10(a)の矢印B3参照)。
As shown in FIG. 10B, before the shaft portion 108 is assembled to the sleeve 10, the phase difference between the first tooth 121 and the second tooth 122 is θ4, which is larger than the phase difference θ3 after the assembly. Is formed.
That is, also in the second embodiment, the twisted portion 133 is assembled in a twisted state and has an elastic restoring force.
Therefore, the first teeth 121 are pressed against the hole spline teeth 12 positioned in the forward rotation direction (see arrow A3 in FIG. 10A), and the second teeth 122 are the hole spline teeth 12 positioned in the reverse rotation direction. (See arrow B3 in FIG. 10A).
 そのほか、第1実施形態の軸部材8には治具用孔9fが形成されていたが(図3(b)参照)、代わりに、第2実施形態ではヨーク部107の基部107aに治具を装着できるようになっている。
 詳細に説明すると、図9(b)に示すように、ヨーク部107の基部107aは、断面形状が正六角形状となっており、レンチ等の治具によりヨーク部107及び軸部108を回動できるようになっている。
In addition, a jig hole 9f is formed in the shaft member 8 of the first embodiment (see FIG. 3B). Instead, in the second embodiment, a jig is attached to the base 107a of the yoke portion 107. It can be installed.
More specifically, as shown in FIG. 9B, the base portion 107a of the yoke portion 107 has a regular hexagonal cross section, and the yoke portion 107 and the shaft portion 108 are rotated by a jig such as a wrench. It can be done.
(組み立て)
 つぎに、スタブヨーク105とスリーブ10と鋼管3とを組み立てる工程について説明する。
 最初にスリーブ10内にスナップリング17を組み付け、その後にスリーブ10の後端と鋼管3の前端とを摩擦圧接により接合する。
(assembly)
Next, a process of assembling the stub yoke 105, the sleeve 10, and the steel pipe 3 will be described.
First, the snap ring 17 is assembled in the sleeve 10, and then the rear end of the sleeve 10 and the front end of the steel pipe 3 are joined by friction welding.
 つぎに、スリーブ10の前開口部からスリーブ10内にスタブヨーク105の軸部108を挿入する。また、スリーブ10の孔スプライン歯12間に、軸スプライン109aの第1歯121のみを挿入する。 Next, the shaft portion 108 of the stub yoke 105 is inserted into the sleeve 10 from the front opening portion of the sleeve 10. Further, only the first teeth 121 of the shaft spline 109 a are inserted between the hole spline teeth 12 of the sleeve 10.
 つぎに、スリーブ10の一対の係止面19,19(図4参照)に治具を装着してスリーブ10が回動しないように固定する。これによれば、第1歯121が孔スプライン歯12に係合し、後軸部109の第1軸部131が回動しない。
 一方で、基部107aの外周面107bに治具を装着し、スタブヨーク105を正回転方向に回動させ、後軸部109の第2軸部132を回動させる。
 これにより、捩じれ部133が捩じれて第1歯121と第2歯122との位相差が小さくなり、第2歯122を孔スプライン歯12間に挿入できるようになる。
Next, a jig is attached to the pair of locking surfaces 19 and 19 (see FIG. 4) of the sleeve 10 to fix the sleeve 10 so as not to rotate. According to this, the first teeth 121 engage with the hole spline teeth 12, and the first shaft portion 131 of the rear shaft portion 109 does not rotate.
On the other hand, a jig is mounted on the outer peripheral surface 107b of the base portion 107a, the stub yoke 105 is rotated in the forward rotation direction, and the second shaft portion 132 of the rear shaft portion 109 is rotated.
As a result, the twisted portion 133 is twisted to reduce the phase difference between the first tooth 121 and the second tooth 122, and the second tooth 122 can be inserted between the hole spline teeth 12.
 つぎに、捩じれ部133が捩じれた状態を保持しながら、スタブヨーク105をさらに挿入し、後軸部109の後端面をスナップリング17に当接させる。 つぎに、治具を外して軸部108に作用する負荷を解除する。これによれば、捻じれ部133が弾性復元力を発揮し、第2軸部132が逆回転方向に回動する。この結果、図10(a)に示すように、第2歯122は、逆回転方向に移動し、周方向に隣り合う2つの孔スプライン歯12,12のうち逆回転方向に位置する孔スプライン歯12に当接する。
 つぎに、スリーブ10の前開口部とスタブヨーク105の後軸部109との間に、シール剤を充填し、軸スプライン109aと孔スプライン11との間に泥水等が浸入しないようにする。
 以上がスタブヨーク5とスリーブ10と鋼管3との組み付け工程である。
Next, while maintaining the twisted state of the twisted portion 133, the stub yoke 105 is further inserted, and the rear end surface of the rear shaft portion 109 is brought into contact with the snap ring 17. Next, the load acting on the shaft portion 108 is released by removing the jig. According to this, the twisted portion 133 exhibits an elastic restoring force, and the second shaft portion 132 rotates in the reverse rotation direction. As a result, as shown in FIG. 10A, the second tooth 122 moves in the reverse rotation direction, and the hole spline teeth located in the reverse rotation direction among the two hole spline teeth 12, 12 adjacent in the circumferential direction. 12 abuts.
Next, a sealant is filled between the front opening portion of the sleeve 10 and the rear shaft portion 109 of the stub yoke 105 so that muddy water or the like does not enter between the shaft spline 109 a and the hole spline 11.
The above is the assembly process of the stub yoke 5, the sleeve 10, and the steel pipe 3.
(車両の駆動時)
 つぎに、図11を参照しながら、スタブヨーク105からスリーブ10への動力伝達状態について説明する。
 車両の前進時、スタブヨーク105が正回転方向に回転するため、軸スプライン120の第1歯121及び第2歯122が正回転方向に移動する。
 このため、図11(a)の矢印A4に示すように、第1歯121は当接する孔スプライン歯12の右歯面14を正回転方向に押圧し、スリーブ10が正回転方向に回転する。
 また、捩じれ部133の弾性復元力により、第1歯121は、孔スプライン歯12の右歯面14に押圧されて隙間が生じないようになっている。このため、振動や騒音の発生を抑えることができる。
 なお、捩じれ部133は、第1歯121が孔スプライン歯12の右歯面14に押圧する際の反力に対抗できる弾性復元力を有するように設定されている。
(When driving the vehicle)
Next, the power transmission state from the stub yoke 105 to the sleeve 10 will be described with reference to FIG.
When the vehicle moves forward, the stub yoke 105 rotates in the forward rotation direction, so that the first teeth 121 and the second teeth 122 of the shaft spline 120 move in the forward rotation direction.
For this reason, as shown by arrow A4 in FIG. 11A, the first tooth 121 presses the right tooth surface 14 of the hole spline tooth 12 in contact in the forward rotation direction, and the sleeve 10 rotates in the forward rotation direction.
Further, the first tooth 121 is pressed against the right tooth surface 14 of the hole spline tooth 12 by the elastic restoring force of the twisted portion 133 so that no gap is generated. For this reason, generation | occurrence | production of a vibration and noise can be suppressed.
The twisted portion 133 is set so as to have an elastic restoring force that can counter a reaction force when the first tooth 121 presses against the right tooth surface 14 of the hole spline tooth 12.
 一方で、車両の後退時、スタブヨーク105が逆回転方向に回転するため、軸スプライン120の第1歯121が逆回転方向に移動する。
 車両の前進時は、捩じれ部133の弾性復元力により第1歯121はA4方向に押圧されるが、後退時は捩じれ部133がさらに捩じられることで第1歯121はB4方向に移動することが可能となる。
On the other hand, since the stub yoke 105 rotates in the reverse rotation direction when the vehicle moves backward, the first teeth 121 of the shaft spline 120 move in the reverse rotation direction.
When the vehicle moves forward, the first teeth 121 are pressed in the A4 direction by the elastic restoring force of the twisted portion 133, but when the vehicle moves backward, the first teeth 121 move in the B4 direction by further twisting the twisted portion 133. It becomes possible.
(車両の衝突時)
 つぎに、車両が前方から衝突された場合を簡単に説明する。
 第2実施形態において、スタブヨーク105の軸部108とスリーブ10とはスプライン嵌合しているものの、孔スプライン歯12に第1歯121と第2歯122とを押し付ける力(図10(a)の矢印A3,B3参照)は、捩じれ部133の弾性復元力であってスナップリング17を破断するのに要する荷重に対して極めて小さい。よって、車両の衝突時に推進軸の短縮に影響しない。
(At the time of vehicle collision)
Next, a case where the vehicle is collided from the front will be briefly described.
In the second embodiment, the shaft portion 108 of the stub yoke 105 and the sleeve 10 are spline-fitted, but the force that presses the first teeth 121 and the second teeth 122 against the hole spline teeth 12 (see FIG. 10A). Arrows A3 and B3) are the elastic restoring force of the twisted portion 133 and are extremely small with respect to the load required to break the snap ring 17. Therefore, the propulsion shaft is not affected when the vehicle collides.
 また、軸スプライン歯120の第1歯121がスリーブ10の孔スプライン歯12間から脱落すると、軸スプライン109aと孔スプライン11とのスプライン嵌合が解除される。このため、軸部108は、速やかに後退して鋼管3内に進入する。この結果、十字軸ジョイント2及び推進軸1における前後方向の長さが短縮する。 Further, when the first teeth 121 of the shaft spline teeth 120 drop out from between the hole spline teeth 12 of the sleeve 10, the spline fitting between the shaft spline 109a and the hole spline 11 is released. For this reason, the shaft portion 108 quickly retracts and enters the steel pipe 3. As a result, the longitudinal lengths of the cross shaft joint 2 and the propulsion shaft 1 are shortened.
 以上、第2実施形態によっても、従来行われてきた圧入作業を回避でき、組み付け作業の容易化を図ることができる。また、小さな衝突荷重でも軸部108が後退するため、車両の衝突時にスプライン嵌合体を確実に短縮することができる。 As described above, according to the second embodiment, it is possible to avoid the press-fitting work that has been conventionally performed and to facilitate the assembling work. Further, since the shaft portion 108 moves backward even with a small collision load, the spline fitting body can be reliably shortened when the vehicle collides.
 以上、第2実施形態について説明したが、変形例としては、スタブヨーク105の後軸部109に形成される軸スプライン109aに関し、第1歯121を前側に配置し、第2歯122を後側に配置してもよい。 Although the second embodiment has been described above, as a modification, the first tooth 121 is disposed on the front side and the second tooth 122 is disposed on the rear side with respect to the shaft spline 109a formed on the rear shaft portion 109 of the stub yoke 105. You may arrange.
 なお、第1実施形態、第2実施形態において、第1歯21,121は、軸方向に直線状に形成されているが、本発明は、図12に示すように、第1歯221に捩じり角(リード角)θ5が付与されたヘリカルスプラインであってもよい。 In the first embodiment and the second embodiment, the first teeth 21 and 121 are linearly formed in the axial direction. However, in the present invention, as shown in FIG. A helical spline with a twist angle (lead angle) θ5 may be used.
 1   推進軸
 2   十字軸ジョイント
 3   鋼管
 5,105 スタブヨーク
 7   ヨーク部
 8   軸部材
 9,109 後軸部
 9a,109a 軸スプライン
 9d  肉抜き孔
 9f  治具用孔
 10  スリーブ(軸筒部材)
 11  孔スプライン
 12  孔スプライン歯
 20,120 軸スプライン歯
 21,121 第1歯
 22,122 第2歯
 31,131 第1軸部
 32,132 第2軸部
 33,133 捩じれ部
DESCRIPTION OF SYMBOLS 1 Propulsion shaft 2 Cross-shaft joint 3 Steel pipe 5,105 Stub yoke 7 Yoke part 8 Shaft member 9,109 Rear shaft part 9a, 109a Shaft spline 9d Vent hole 9f Jig hole 10 Sleeve (shaft cylinder member)
11 hole spline 12 hole spline tooth 20,120 shaft spline tooth 21,121 first tooth 22,122 second tooth 31,131 first shaft part 32,132 second shaft part 33,133 twisted part

Claims (8)

  1.  軸スプラインが外周面に形成された軸部材と、前記軸スプラインとスプライン嵌合する孔スプラインが内周面に形成された軸筒部材と、を備えたスプライン嵌合体であって、
     前記軸スプラインを構成する軸スプライン歯のそれぞれは、
     軸方向に延在する第1歯と、
     前記第1歯と軸方向に離間しつつ、前記第1歯よりも軸方向の長さが短い第2歯と、
     を備え、
     前記第1歯と前記第2歯は、位相が異なっており、
     前記第1歯は、周方向一方に位置する前記孔スプラインの孔スプライン歯に当接し、
     前記第2歯は、周方向他方に位置する前記孔スプライン歯に当接し、
     前記軸部材は、
     複数の前記第1歯が形成された第1軸部と、
     複数の前記第2歯が形成された第2軸部と、
     前記第1軸部と前記第2軸部との間に介在し、軸回りに捩じれ変形可能な捩じれ部と、
     を備えることを特徴とするスプライン嵌合体。
    A spline fitting body comprising: a shaft member having a shaft spline formed on an outer peripheral surface; and a shaft cylinder member having a hole spline fitted to the shaft spline on the inner peripheral surface;
    Each of the shaft spline teeth constituting the shaft spline is
    A first tooth extending in the axial direction;
    A second tooth having an axial length shorter than the first tooth while being spaced apart from the first tooth in the axial direction;
    With
    The first tooth and the second tooth have different phases,
    The first teeth abut on the hole spline teeth of the hole spline located in one circumferential direction,
    The second tooth abuts on the hole spline tooth located on the other circumferential side,
    The shaft member is
    A first shaft portion on which a plurality of the first teeth are formed;
    A second shaft portion formed with a plurality of the second teeth;
    A twisted portion interposed between the first shaft portion and the second shaft portion and capable of being twisted and deformed about an axis;
    A spline fitting body comprising:
  2.  前記第1歯に捩じれ角が付与されていることを特徴とする請求項1に記載のスプライン嵌合体。 The spline fitting body according to claim 1, wherein a twist angle is given to the first teeth.
  3.  前記捩じれ部の外径は、前記第1軸部の外径及び前記第2軸部の外径よりも小径に形成されていることを特徴とする請求項1に記載のスプライン嵌合体。 2. The spline fitting body according to claim 1, wherein an outer diameter of the twisted portion is formed to be smaller than an outer diameter of the first shaft portion and an outer diameter of the second shaft portion.
  4.  前記捩じれ部の内部が肉抜きされていることを特徴とする請求項1に記載のスプライン嵌合体。 The spline fitting body according to claim 1, wherein the inside of the twisted portion is hollowed out.
  5.  前記軸部材の端面には、少なくとも一対以上の対向面からなる治具装着用孔部が形成されていることを特徴とする請求項1に記載のスプライン嵌合体。 The spline fitting body according to claim 1, wherein a jig mounting hole made of at least a pair of opposing surfaces is formed on an end surface of the shaft member.
  6.  前記軸筒部材の外周面には、少なくとも一対以上の対向面からなる治具装着用係止面が形成されていることを特徴とする請求項1に記載のスプライン嵌合体。 2. The spline fitting body according to claim 1, wherein a jig mounting locking surface including at least a pair of opposing surfaces is formed on an outer peripheral surface of the shaft tube member.
  7.  前記軸部材の外周面には、少なくとも一対以上の対向面からなる治具装着用係止面が形成されていることを特徴とする請求項1に記載のスプライン嵌合体。 2. The spline fitting body according to claim 1, wherein a jig mounting locking surface including at least a pair of opposing surfaces is formed on an outer peripheral surface of the shaft member.
  8.  軸スプラインが外周面に形成された軸部材と、
     前記軸スプラインとスプライン嵌合する孔スプラインが内周面に形成された軸筒部材と、を備え、
     前記軸スプラインを構成する軸スプライン歯のそれぞれは、第1歯と、前記第1歯と軸方向に離間する第2歯と、を備え、
     前記第1歯と前記第2歯は、位相が異なっており、
     複数の前記第1歯が形成された第1軸部と、
     複数の前記第2歯が形成された第2軸部と、
     前記第1軸部と前記第2軸部との間に介在し、軸回りに捩じれ変形可能な捩じれ部と、を備えたスプライン嵌合体の製造方法であって
     前記第1軸部を前記軸筒部材内に挿入する工程と、
     前記捩じれ部を周方向一方へ捩じり、前記第1歯を周方向一方に位置する前記孔スプラインの孔スプライン歯に当接させるとともに、前記第2歯を周方向一方に変位させる工程と、
     前記第2軸部を前記軸筒部材内に挿入する工程と、を有していることを特徴とするスプライン嵌合体の製造方法。
    A shaft member having a shaft spline formed on the outer peripheral surface;
    A shaft cylinder member in which a hole spline for spline fitting with the shaft spline is formed on an inner peripheral surface, and
    Each of the shaft spline teeth constituting the shaft spline includes a first tooth and a second tooth spaced axially from the first tooth,
    The first tooth and the second tooth have different phases,
    A first shaft portion on which a plurality of the first teeth are formed;
    A second shaft portion formed with a plurality of the second teeth;
    A spline fitting manufacturing method comprising: a twisted portion interposed between the first shaft portion and the second shaft portion and capable of being twisted and deformed around an axis, wherein the first shaft portion is the shaft cylinder. Inserting into the member;
    Twisting the twisted portion in one circumferential direction, bringing the first teeth into contact with the hole spline teeth of the hole spline located in one circumferential direction, and displacing the second teeth in one circumferential direction;
    And a step of inserting the second shaft portion into the shaft tube member.
PCT/JP2017/020714 2017-03-16 2017-06-02 Spline fitting body and method for manufacturing spline fitting body WO2018167992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051176A JP2018155291A (en) 2017-03-16 2017-03-16 Spline fitting body
JP2017-051176 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018167992A1 true WO2018167992A1 (en) 2018-09-20

Family

ID=63523501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020714 WO2018167992A1 (en) 2017-03-16 2017-06-02 Spline fitting body and method for manufacturing spline fitting body

Country Status (2)

Country Link
JP (1) JP2018155291A (en)
WO (1) WO2018167992A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156039B2 (en) * 2019-01-09 2022-10-19 株式会社デンソー actuator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372118U (en) * 1989-11-15 1991-07-22
JP2001003947A (en) * 1999-06-22 2001-01-09 Ntn Corp Power transmitting shaft and outside joint member for constant velocity universal joint
US20070177939A1 (en) * 2006-01-27 2007-08-02 Kozlowski Keith A Spline arrangement for rotatably coupling two members
JP2009214804A (en) * 2008-03-12 2009-09-24 Nsk Ltd Electric power steering device
JP2012117560A (en) * 2010-11-29 2012-06-21 Jtekt Corp Extensible shaft, method of manufacturing the same, and steering device for vehicle
JP2013189195A (en) * 2007-10-22 2013-09-26 Ntn Corp Bearing device for wheel, and manufacturing method therefor
JP2014114915A (en) * 2012-12-11 2014-06-26 Jtekt Corp Expansion and contraction shaft and steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280984B2 (en) * 2003-08-27 2009-06-17 株式会社ジェイテクト Sliding shaft
JP2009250303A (en) * 2008-04-03 2009-10-29 Denso Corp Power transmission device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372118U (en) * 1989-11-15 1991-07-22
JP2001003947A (en) * 1999-06-22 2001-01-09 Ntn Corp Power transmitting shaft and outside joint member for constant velocity universal joint
US20070177939A1 (en) * 2006-01-27 2007-08-02 Kozlowski Keith A Spline arrangement for rotatably coupling two members
JP2013189195A (en) * 2007-10-22 2013-09-26 Ntn Corp Bearing device for wheel, and manufacturing method therefor
JP2009214804A (en) * 2008-03-12 2009-09-24 Nsk Ltd Electric power steering device
JP2012117560A (en) * 2010-11-29 2012-06-21 Jtekt Corp Extensible shaft, method of manufacturing the same, and steering device for vehicle
JP2014114915A (en) * 2012-12-11 2014-06-26 Jtekt Corp Expansion and contraction shaft and steering device

Also Published As

Publication number Publication date
JP2018155291A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5088387B2 (en) Cross shaft type universal joint
US11035414B2 (en) Torque transmission shaft
JP2009040302A (en) Energy absorption type shaft for steering device
WO2018167992A1 (en) Spline fitting body and method for manufacturing spline fitting body
JP2008087517A (en) Vehicular propeller shaft
JP4157213B2 (en) Connecting structure of yoke and shaft in universal joint
JP6673308B2 (en) Torque transmission shaft for steering
JP6364823B2 (en) Electric power steering apparatus and manufacturing method thereof
WO2015133167A1 (en) Electric power steering device and method for assembling same
WO2020153408A1 (en) Torque transmission shaft
JP5321655B2 (en) Torque transmission device for steering device
JP2009299776A (en) Worm reduction gear and electric power steering device
JP6673309B2 (en) Torque transmission shaft
JP2015168306A5 (en)
JP5093284B2 (en) Cross shaft type universal joint
CN115087581A (en) Method for manufacturing steering device
CN111065835B (en) Torque transmission shaft
JP5545275B2 (en) Method for manufacturing shock absorbing steering shaft
JP7147509B2 (en) torque transmission shaft
JP6547329B2 (en) Joint structure of universal joint yoke and shaft member and steering apparatus
JP2011220417A (en) Joint cross type universal joint yoke
JP6596958B2 (en) Universal joint and steering apparatus including the universal joint
JP2012076724A (en) Intermediate shaft and electric power steering device
JP2011106566A (en) Shaft structure for power transmission, intermediate shaft, and outside joint member
JP2010202125A (en) Bearing device for driving wheel and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901049

Country of ref document: EP

Kind code of ref document: A1