WO2018166150A1 - 一种应用于大型多板波浪模拟***的运动测量方法与装置 - Google Patents

一种应用于大型多板波浪模拟***的运动测量方法与装置 Download PDF

Info

Publication number
WO2018166150A1
WO2018166150A1 PCT/CN2017/101158 CN2017101158W WO2018166150A1 WO 2018166150 A1 WO2018166150 A1 WO 2018166150A1 CN 2017101158 W CN2017101158 W CN 2017101158W WO 2018166150 A1 WO2018166150 A1 WO 2018166150A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
ethercat
image
motion
board
Prior art date
Application number
PCT/CN2017/101158
Other languages
English (en)
French (fr)
Inventor
杜海
孟娟
李木国
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/308,999 priority Critical patent/US10488194B2/en
Publication of WO2018166150A1 publication Critical patent/WO2018166150A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/02Hydraulic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Definitions

  • the invention belongs to the field of image measurement technology, and relates to real-time acquisition of the position of the wave plate in the large wave simulation system and evaluation of the combined motion curve, in particular, based on EtheCAT.
  • the design method of the network image measurement system is based on EtheCAT.
  • Wave simulation systems are an essential environmental simulation device in marine engineering laboratories. Through the use of the wave machine, regular waves and irregular waves can be artificially generated in the limited pool and water tank of the laboratory to provide an experimental verification simulation environment for the development of marine equipment.
  • the experimenter When using the wave machine to simulate the wave, the experimenter first sets the wave parameters according to the target spectrum; then calculates the motion curve of each wave plate according to the system transfer function, and generates the corresponding control signal; then, the information is transmitted to the control. Then, the controller controls the motion of the servo axis connected thereto according to the received motion information; finally, the wave plate reciprocates under the driving of the servo shaft, thereby generating different forms of waves. From this process, it can be seen that the accuracy of the wave simulation is completely dependent on the accuracy of the wave motion control.
  • the wave-making process is a process in which multiple wave-making plates are linked. The motion value of each wave-making plate is a discrete sampling point of the spatial distribution of the wave-making motion curve. In addition, not all wave-making boards in a multi-plate wave machine operate under one clock, that is, there is a problem of accuracy of synchronous control during the movement of the wave-making board.
  • the method of human eye observation and the method using the laser displacement sensor are often used in practice. These two methods can partially solve some of the problems of on-site evaluation, but there are great problems in the accuracy of time control, the number of simultaneous measurement of the wave plate, the cost of experimental measurement, and the convenience of operation. Therefore, there is an urgent need for a measurement method and device that can be applied to a multi-plate wave simulation system to acquire the transient position information of all the wave-making plates in real time.
  • the method of image measurement has the characteristics of high precision, no disturbance, full field measurement and information visibility.
  • the image measurement system built by the data acquisition technology not only has the characteristics of image measurement technology, but also has the characteristics of simple field wiring, large field of view, convenient installation and high data transmission efficiency. It is very suitable for building large multi-board wave-making system. Motion measurement system.
  • the present invention will be a wave plate motion measurement and image processing technology, EtherCAT Combined with network technology, a motion measurement method and device for large-scale multi-board wave simulation system is proposed.
  • a motion measuring device applied to a large multi-plate wave simulation system comprising a computer, a camera, an infrared light fixture, a circular fluorescent marker point, and an EtherCAT Image processing board;
  • the camera is an infrared enhanced industrial camera with a fixed focus lens, the number of which is determined by the measurement range; the number of the infrared fill light is determined by the imaging conditions on site, EtherCAT The number of image processing boards is the same as the number of cameras;
  • the motion measurement device uses a data acquisition structure based on the EtherCAT network, and the computer acts as an EtherCAT
  • the main station of the network the camera is arranged above the wave-making system, and the field of view covers all the wave-making boards under the requirement of the measurement accuracy.
  • the CameraLink interface is connected to each EtherCAT image processing board as a slave to the EtherCAT network; Trig for each EtherCAT image processing board The trigger interfaces are interconnected.
  • the first EtherCAT image processing board is connected to the computer via the RJ45 network interface.
  • the EtherCAT image processing board of each camera passes the RJ45.
  • the network interfaces are interconnected; the infrared filler is placed on one side of the camera for illuminating the scene, the number of which is selected according to the quality of the on-site imaging; the circular fluorescent marker points are pasted or filled with the corrugated board connecting plates
  • the infrared filler is placed on one side of the camera for illuminating the scene, the number of which is selected according to the quality of the on-site imaging; the circular fluorescent marker points are pasted or filled with the corrugated board connecting plates
  • the EtherCAT network transmits the data to the computer and encodes and identifies the data. Finally, the measured value of the wave plate motion is compared with the target value in the computer to obtain the motion information of the wave machine.
  • the infrared filler is an 850 nm infrared fill light.
  • a motion measurement method applied to a large multi-plate wave simulation system the steps are as follows:
  • Step A Install the camera directly above the wave maker and select the number of cameras based on measurement accuracy, camera resolution and measurement range.
  • the EtherCAT image processing boards are interconnected and connected to a computer to form an EtherCAT The data acquisition structure of the network; the circular fluorescent marker points are fixed on the connecting plate above the wave-making board, and the four-neighbor arrangement is adopted, that is, at the same distance of the upper, lower, left and right of the identification point along the running axis direction of the wave-making board Four auxiliary identification points are arranged; the position of the camera is adjusted such that the arrangement direction of the marker points is consistent with the direction of the line of the captured image; EtherCAT image processing board sets the camera to external trigger mode; EtherCAT image processing board passes Trig The interface performs the unification of the trigger signals, and simultaneously sends a consistent synchronization trigger acquisition signal to the respective cameras;
  • Step B After the camera is arranged, the system needs to be calibrated for the initial operation, and the image is taken at the initial position and the maximum stroke position of the wave-making board respectively; the EtherCAT image processing board performs image binarization and circular target on the acquired image.
  • Step C Perform image acquisition on the scene at the current time.
  • the FPGA collects the image data into the storage unit, and then the DSP on the EtherCAT image processing board processes the image of the storage area: first in each block All the identification points are extracted within the motion range of the wave board; then each extraction point is identified on the motion line of the central marker point recorded during the calibration process, and is considered only when there is one adjacent point on the top, bottom, left and right of the current point.
  • the EtherCAT image processing board constructs the sub-message according to the 'number + displacement amount' motion information of the wave plate in the image. And feedback back to the computer via the EtherCAT network;
  • Step D The computer extracts the message transmitted by the image processing card, and renumbers the data in the message according to the serial number of the slave station, so that the number of the push plate motion information of each wave machine is unique and sequentially arranged according to the spatial position relationship. ;
  • Step E The computer analyzes the displacement information of the wave-making board: the displacement data of each wave-making board is arranged in order of number to form a measurement data curve; at the same time, the difference between the current time measurement data curve and the target data curve is calculated. , statistical maximum difference value and average difference value, and draw the error curve of each wave plate operation to facilitate the experimenter to detect the control accuracy of the wave machine;
  • Step F Repeat step C-step E until the end of the wave motion measurement.
  • the circular marker dot matrix is first arranged on the corrugated board connection plate; then the camera is arranged directly above the wave maker and the system is scaled; then the measurement is started, and the measurement is performed through the image processing board. Identification of the marker points and center extraction; then calculate the displacement with the calibration parameters and pass The EtherCAT network is transmitted to the computer for numbering; finally, the measured data is compared with the target data in the computer to obtain the motion control information of the wave board.
  • the invention has the beneficial effects that the motion recognition of the wave making machine fully considers the difficulty of target recognition caused by the uneven illumination of the experimental scene, the problem of unstable motion tracking, and the time-consuming image analysis algorithm and the low data transmission efficiency of the multi-camera system.
  • the problem Infrared spectroscopy combined with marker dot matrix to enhance the robustness of target tracking, and using image processing board hardware calculation and
  • the combination of EtherCAT network not only improves the speed of image measurement, but also greatly improves the data transmission efficiency, which greatly promotes the application of image measurement technology in the research and design of wave machine.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic structural view of an image processing board.
  • the entire measurement system uses EtherCAT A form of network construction in which computer 1 acts as the primary station for the measurement network.
  • the infrared-enhanced industrial camera 2 is placed above the wave-making system, and covers all the wave-making plates as far as possible to meet the measurement accuracy requirements. . When a single camera cannot cover the measured area, multiple cameras 2 work together. Each camera 2 via CameraLink interface and EtherCAT image processing board 3 Connected as a slave to the EtherCAT network.
  • the image processing boards 3 are interconnected by an RJ45 network interface.
  • Trig of each EtherCAT image processing board 3 The trigger interfaces are interconnected.
  • An 850 nm infrared fill light is placed on one side of the camera 2 for illuminating the field, the number of which is selected based on the quality of the field imaging.
  • Round fluorescent marker point 5 It can be placed on the connecting plate 6 of the wave making plate 7 by means of pasting or filling.
  • Step A Mount the camera 2 directly above the wave maker and select the camera according to the measurement accuracy, camera resolution and measurement range. 2 quantity.
  • the EtherCAT image processing board 3 is interconnected with each other and connected to the computer 1 to form a data acquisition structure based on the EtherCAT network.
  • the wave board 7 Fixing fluorescent dots on the upper connecting plate 6 5 .
  • Four layouts are adopted when deploying, that is, four auxiliary identification points are arranged at the same distances of the upper, lower, left and right of the identification points along the running axis direction of the wave-making plate.
  • adjust the camera 2 The position is such that the arrangement direction of the marker points coincides with the direction of the matrix of the captured image.
  • EtherCAT Image Processing Board 3 The trigger signals are unified through the Trig interface, and a coincident synchronous trigger acquisition signal is sent to the respective cameras 2.
  • Step B System calibration is required when the camera 2 is set up for the first run. At this time, images are taken once at each of the initial position and the maximum stroke position of the wave making plate 7.
  • the EtherCAT image processing board 3 performs image binarization and circular object extraction on the acquired image, and creates a lookup table for the moving image information of each wave plate 7 to record the physical distance and image plane distance of the wave traveling plate 7
  • each of the wave making plates 7 is numbered in order from left to right, and the calibration information is stored in the storage space of the EtherCAT image processing board 3 in accordance with the number.
  • Step C Perform image acquisition on the scene at the current time.
  • the FPGA collects the image data into the storage unit, and then the DSP on the board performs data processing on the image of the storage area: first, all the identification points are extracted within the range of motion of each wave board. Then, each extraction point is identified on the motion line of the central marker point recorded during the calibration process. Only when there is an adjacent point on the top, bottom, left and right of the current point, the point is considered to be the correct marker point; The coordinates of the point are subtracted from the initial position of the record to obtain the image displacement of the wave plate 7 movement, and then the value is multiplied by K i ; the physical displacement value is obtained.
  • the EtherCAT image processing board 3 constructs the sub-message of the motion information of the wave-making board 7 in the image according to the 'number + displacement amount', and feeds back to the computer 1 through the EtherCAT network.
  • Step D Computer 1
  • the message transmitted by the image processing card is extracted, and the data in the message is renumbered according to the serial number of the slave station, so that the number of the push plate motion information of each wave maker 7 is unique and sequentially arranged according to the spatial positional relationship.
  • Step E Computer 1 analyzes the displacement information of the wave board 7: each wave board in the order of number 7
  • the displacement data is arranged to form a measurement data curve.
  • the difference between the current time measurement data curve and the target data curve is calculated, the maximum difference value and the average difference value are counted, and each wave plate is drawn.
  • the running error curve is convenient for the experimenter to detect the control accuracy of the wave machine.
  • Step F Repeat step C-step E until the end of the wave motion measurement.
  • a circular fluorescent marker point 5 is arranged on the corrugated plate 7 connecting plate 6 before the measurement; then the camera is arranged directly above the wave making machine. 2 and perform system calibration; after that, the measurement is started, and the identification and center extraction of the marker points are performed by the EtherCAT image processing board 3; then the displacement amount is calculated by the calibration parameters and passed.
  • the EtherCAT network is transmitted to the computer 1 for numbering; finally, the measurement data is compared with the target data in computer 1, and the motion control information of the wave board 7 is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种应用于大型多板波浪模拟***的运动测量方法与装置。在对造波机运动测量时,首先利用摄像机(2)采集现场图像,并在图像处理板(3)中对每块造波板(7)上的标志点(5)进行识别,并计算中心位置。然后与初始位置进行对比计算其像面位移,并结合定标参数转化为物理空间上的位移量。接下来通过EtherCAT网络将数据传输到计算机(1),并对数据进行编码识别。最后,在计算机(1)中将造波板(7)运动的测量值与目标值进行对比分析,从而得到造波机的运动信息。在造波机运动测量时充分考虑了实验现场光照的不均匀所造成的目标识别难,运动追踪不稳定的问题,以及图像分析算法耗时大、多相机***数据传输效率低的问题。

Description

一种应用于大型多板波浪模拟***的运动测量方法与装置
技术领域
本发明属于图像测量技术领域,涉及到大型波浪模拟***中造波板位置的实时获取及组合运动曲线的评测问题,特别涉及基于 EtheCAT 网络的图像测量***的设计方法。
背景技术
波浪模拟***(又称为造波机***)是海洋工程实验室中必备的一种环境模拟设备。通过造波机的使用可以在实验室有限的水池、水槽中人工产生规则波浪、不规则波浪,为海洋装备的研制提供实验验证的仿真环境。
使用造波机进行波浪模拟时,实验者首先根据目标谱设置波浪参数;然后根据***传递函数计算每块造波板的运动曲线,并产生相应的控制信号;接下来,这些信息被传输到控制器中;随后,控制器根据所接受的运动信息控制与其连接的伺服轴产生运动;最后,造波板在伺服轴的带动下进行往复运动,从而产生不同形式的波浪。由此过程可以看出,波浪模拟的准确度完全取决于造波运动控制的精度。然而,造波过程是多块造波板联动的过程,每块造波板的运动数值均是造波运动曲线在空间分布上的一个离散采样点。另外,在多板造波机中并不是所有的造波板均在一个时钟下工作,即在造波板运动过程中存在着同步控制的精度问题。
为了解决造波机研制过程以及造波实验过程中对造波板运动控制性能的评测,在实际中常常采用人眼观测的方法以及采用激光位移传感器的方法。这两种方法可以部分解决一些现场评测的问题,但是在时间控制的精度上、对造波板同时测量的数量上、实验测量成本上以及操作的方便程度上都存在着很大的问题。因此迫切需要一种可应用于多板波浪模拟***的测量方法与装置来实时同步获取所有造波板的瞬态位置信息。而采用图像测量的方法具有精度高、无扰动、全场测量、信息可视的特点。另外当该技术与 EtherCAT 数据采集技术融合后构建的图像测量***不仅具有图像测量技术的特点,而且具有现场布线简单、视场范围大、安装方便、数据传输效率高的特点,非常适宜于建造大型多板造波***的运动测量***。
发明内容
针对海洋工程实验室中造波***的运行状态监测问题,本发明将造波板运动测量与图像处理技术、 EtherCAT 网络技术相结合,提出了一种应用于大型多板波浪模拟***的运动测量方法与装置。
本发明的技术方案:
一种应用于大型多板波浪模拟***的运动测量装置,所述的运动测量装置包括计算机、摄像机、红外补光器、圆形荧光标志点以及 EtherCAT 图像处理板;所述的摄像机为带有定焦镜头的红外增强型工业摄像机,其数量由测量范围决定;所述的红外补光器的数量由现场的成像条件决定, EtherCAT 图像处理板的数量与摄像机的数量一致;
运动测量装置采用基于 EtherCAT 网络的数据采集结构,计算机作为 EtherCAT 网络的主站;将摄像机布置在造波***的上方,在满足测量精度的要求下视场覆盖所有造波板,当单台摄像机无法覆盖被测区域时则采用多台摄像机联合工作的方式;每台摄像机通过 CameraLink 接口与每个 EtherCAT 图像处理板相连,作为 EtherCAT 网络的从站;每块 EtherCAT 图像处理板的 Trig 触发接口互连在一起,第一块 EtherCAT 图像处理板与计算机通过 RJ45 网络接口连接,每台摄像机的 EtherCAT 图像处理板通过 RJ45 网络接口彼此互联在一起;红外补光器放置在摄像机的一侧用于对现场进行照明,其数量根据现场成像的质量进行选择;圆形荧光标志点黏贴或填涂造波板的连接板上;在对造波机运动测量时,首先利用摄像机采集现场图像,并在图像处理板中对每块造波板上的标志点进行识别,并计算中心位置;然后与初始位置进行对比计算其像面位移,并结合定标参数转化为物理空间上的位移量;接下来通过 EtherCAT 网络将数据传输到计算机,并对数据进行编码识别;最后,在计算机中将造波板运动的测量值与目标值进行对比分析,从而得到造波机的运动信息。
所述的红外补光器为 850nm 红外补光灯。
一种应用于大型多板波浪模拟***的运动测量方法,步骤如下:
步骤 A :在造波机的正上方安装好摄像机,并根据测量精度、相机分辨率以及测量范围选择摄像机的数量,将 EtherCAT 图像处理板彼此互联后与计算机相连,组成基于 EtherCAT 网络的数据采集结构;在造波板上方的连接板上固定圆形荧光标志点,采用四邻域布置方式,即沿造波板运行轴线方向在标识点的上、下、左、右相同距离处各布置四个辅助识别点;调整摄像机的位置使得标志点的布置方向与摄像图像的行列方向一致;通过 EtherCAT 图像处理板设置摄像机为外触发模式; EtherCAT 图像处理板彼此间通过 Trig 接口进行触发信号的统一,同时向各自的摄像机发出一致的同步触发采集信号;
步骤 B :摄像机布置完毕,初次运行时需要进行***定标,分别在造波板的初始位置与最大行程位置各拍摄一次图像; EtherCAT 图像处理板对采集的图像进行图像二值化以及圆形目标提取,并为每台造波板的运动图像信息建立查找表,记录造波板运动行程的物理距离与像面距离的比值 K i ,i =1,2,--- , N ;其中 N 为像面上造波板的数量,同时记录标志点的运动范围以及中心标志点运行轨迹的起点与终点图像坐标;在像面上为每个造波板按照从左到右的顺序进行编号,并将标定信息按照编号存储在图像处理板的存储空间内;
步骤 C :对当前时刻的现场进行图像采集,在 EtherCAT 图像处理板中 FPGA 将图像数据采集到存储单元中,之后由 EtherCAT 图像处理板上的 DSP 对存储区的图像进行数据处理:首先在每块造波板的运动范围内提取所有标识点;然后在定标过程中记录的中心标识点运动区间线上对每个提取点进行辨别,仅当当前点上下左右各有一个邻近点时认为该点为正确的标志点;接下来将标志点的坐标减去记录的初始位置,从而得到该造波板运动的图像位移,随后将该数值乘上 K i ; 得到物理位移值;在完成对每块造波板的图像分析后,得到每个图像上各块造波板的位移信息;最后, EtherCAT 图像处理板将图像中造波板的运动信息按照 ' 编号 + 位移量 ' 的方式构建子报文,并通过 EtherCAT 网络反馈回计算机;
步骤 D :计算机提取图像处理卡所传送来的报文,并按照从站的序号对报文中的数据进行重新编号,使得每台造波机的推板运动信息的编号唯一并且按照空间位置关系依次排列;
步骤 E :计算机对造波板的位移信息进行分析:按照编号顺序将每块造波板的位移数据进行排列,形成测量数据曲线;与此同时,将当前时刻测量数据曲线与目标数据曲线进行差值计算,统计最大差异值以及平均差异值,并绘制每台造波板运行的误差曲线方便实验者进行造波机控制精度的检测;
步骤 F :反复执行步骤 C- 步骤 E ,直到造波运动测量结束。
综上所述,测量前首先在造波板连接板上布置圆形标志点点阵;然后在造波机的正上方布置摄像机并进行***定标;之后开始进行测量,测量时通过图像处理板进行标志点的鉴别与中心提取;接下来结合定标参数计算位移量并通过 EtherCAT 网络传输到计算机进行编号;最后在计算机中将测量数据与目标数据进行对比,从而得到造波板的运动控制信息。
本发明的有益效果:造波机运动测量时充分考虑了实验现场光照的不均匀所造成的目标识别难,运动追踪不稳定的问题,以及图像分析算法耗时大、多相机***数据传输效率低的问题。以红外光谱配合标志点点阵来增强目标追踪的鲁棒性,并采用图像处理板硬件计算和 EtherCAT 网络相结合的方式,不仅提高了图像测量的速度,而且大幅度提高了数据传输效率,极大地促进了图像测量技术在造波机研究设计中的应用推广。
附图说明
图 1 是本发明的结构示意图。
图 2 是图像处理板的结构示意图。
图中: 1 计算机; 2 摄像机; 3EtherCAT 图像处理板; 4 红外补光器;
5 圆形荧光标志点; 6 连接板; 7 造波板。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
一种应用于大型多板波浪模拟***的运动测量方法与装置,其结构示意如附图 1 所示:
包括一台计算机 1 、带有定焦镜头的红外增强型工业摄像机 2 (数量由测量范围决定)、红外补光器 4 (数量由现场的成像条件决定)、圆形荧光标志物 5 若干以及 EtherCAT 图像处理板 3 (数量与摄像机的数量一致)。整个测量***采用 EtherCAT 网络构建形式,其中计算机 1 作为测量网络的主站。红外增强型工业摄像机 2 布置在造波***的上方,在满足测量精度的要求下视场尽量覆盖所有造波板 7 。当单台摄像机无法覆盖被测区域时则采用多台摄像机 2 联合工作的方式。每台摄像机 2 通过 CameraLink 接口与 EtherCAT 图像处理板 3 相连,作为 EtherCAT 网络的从站。将第一块图像处理板 3 与计算机 1 通过 RJ45 网络接口连接在一起。将每台摄像机 2 的 EtherCAT 图像处理板 3 通过 RJ45 网络接口彼此互联在一起。此外,为了保证摄像机 2 同步的精度,将每块 EtherCAT 图像处理板 3 的 Trig 触发接口互连在一起。 850nm 红外补光灯放置在摄像机 2 的一侧用于对现场进行照明,其数量根据现场成像的质量进行选择。圆形荧光标志点 5 可以采用黏贴或填涂的方式,放置在造波板 7 的连接板 6 上。在对造波机运动测量时,首先利用摄像机 2 采集现场图像,并在 EtherCAT 图像处理板 3 中对每块造波板 7 上的圆形荧光标志点 5 进行识别,并计算中心位置。然后与初始位置进行对比计算其像面位移,并结合定标参数转化为物理空间上的位移量。接下来通过 EtherCAT 网络将数据传输到计算机,并对数据进行编码识别。最后,在计算机 1 中将造波板 7 运动的测量值与目标值进行对比分析,从而得到造波机的运动信息。具体方法描述如下:
步骤 A :在造波机的正上方安装好摄像机 2 ,并根据测量精度、相机分辨率以及测量范围选择摄像机 2 的数量。将 EtherCAT 图像处理板 3 彼此互联后与计算机 1 相连,从而组成基于 EtherCAT 网络的数据采集结构。与此同时,在造波板 7 上方的连接板 6 上固定荧光标志点 5 。布放时采用四邻域布置方式,即沿造波板运行轴线方向在标识点的上、下、左、右相同距离处各再布置四个辅助识别点。之后,调整摄像机 2 的位置使得标志点的布置方向与摄像图像的行列方向一致。通过 EtherCAT 图像处理板 3 设置摄像机 2 为外触发模式。 EtherCAT 图像处理板 3 彼此间通过 Trig 接口进行触发信号的统一,同时向各自的摄像机 2 发出一致的同步触发采集信号。
步骤 B :当摄像机 2 布置完毕初次运行时需要进行***定标。此时分别在造波板 7 的初始位置与最大行程位置各拍摄一次图像。 EtherCAT 图像处理板 3 对采集的图像进行图像二值化以及圆形目标提取,并为每台造波板 7 的运动图像信息建立查找表,记录造波板 7 运动行程的物理距离与像面距离的比值 K i i =1,2,---, N ; 其中 N 为像面上造波板 7 的数量,同时记录圆形荧光标志点 5 的运动的范围以及中心标志点运行轨迹的起点与终点图像坐标。在像面上为每个造波板 7 按照从左到右的顺序进行编号,并将标定信息按照编号存储在 EtherCAT 图像处理板 3 的存储空间内。
步骤 C :对当前时刻的现场进行图像采集。此时,在 EtherCAT 图像处理板 3 中 FPGA 将图像数据采集到存储单元中,之后由板上的 DSP 对存储区的图像进行数据处理:首先在每块造波板的运动范围内提取所有标识点;然后在定标过程中记录的中心标识点运动区间线上对每个提取点进行辨别,仅当当前点上下左右各有一个邻近点时认为改该点为正确的标志点;接下来将标志点的坐标减去记录的初始位置,从而得到该造波板 7 运动的图像位移,随后将该数值乘上 K i ; 得到物理位移值。在完成对每块造波板 7 的图像分析后,便可以得到每个图像上各块造波板 7 的位移信息。最后, EtherCAT 图像处理板 3 将图像中造波板 7 的运动信息按照 ' 编号 + 位移量 ' 的方式构建子报文,并通过 EtherCAT 网络反馈回计算机 1 。
步骤 D :计算机 1 提取图像处理卡所传送来的报文,并按照从站的序号对报文中的数据进行重新编号,使得每台造波机 7 的推板运动信息的编号唯一并且按照空间位置关系依次排列。
步骤 E :计算机 1 对造波板 7 的位移信息进行分析:按照编号顺序将每块造波板 7 的位移数据进行排列,形成测量数据曲线。与此同时,将当前时刻测量数据曲线与目标数据曲线进行差值计算,统计最大差异值以及平均差异值,并绘制每台造波板 7 运行的误差曲线方便实验者进行造波机控制精度的检测。
步骤 F :反复执行步骤 C- 步骤 E ,直到造波运动测量结束。
综上所述,测量前首先在造波板 7 连接板 6 上布置圆形荧光标志点 5 ;然后在造波机的正上方布置摄像机 2 并进行***定标;之后开始进行测量,测量时通过 EtherCAT 图像处理板 3 进行标志点的鉴别与中心提取;接下来结合定标参数计算位移量并通过 EtherCAT 网络传输到计算机 1 进行编号;最后在计算机 1 中将测量数据与目标数据进行对比,从而得到造波板 7 的运动控制信息。

Claims (3)

  1. 一种应用于大型多板波浪模拟***的运动测量装置,其特征在于,所述的运动测量装置包括计算机、摄像机、红外补光器、圆形荧光标志点以及 EtherCAT 图像处理板;所述的摄像机为带有定焦镜头的红外增强型工业摄像机,其数量由测量范围决定;所述的红外补光器的数量由现场的成像条件决定, EtherCAT 图像处理板的数量与摄像机的数量一致;
    运动测量装置采用基于 EtherCAT 网络的数据采集结构,计算机作为 EtherCAT 网络的主站;将摄像机布置在造波***的上方,在满足测量精度的要求下视场覆盖所有造波板,当单台摄像机无法覆盖被测区域时则采用多台摄像机联合工作的方式;每台摄像机通过 CameraLink 接口与每个 EtherCAT 图像处理板相连,作为 EtherCAT 网络的从站;每块 EtherCAT 图像处理板的 Trig 触发接口互连在一起,第一块 EtherCAT 图像处理板与计算机通过 RJ45 网络接口连接,每台摄像机的 EtherCAT 图像处理板通过 RJ45 网络接口彼此互联在一起;红外补光器放置在摄像机的一侧用于对现场进行照明,其数量根据现场成像的质量进行选择;圆形荧光标志点黏贴或填涂造波板的连接板上。
  2. 根据权利要求 1 所述的运动测量装置,其特征在于,所述的红外补光器为 850nm 红外补光灯。
  3. 一种应用于大型多板波浪模拟***的运动测量方法,其特征在于,步骤如下:
    步骤 A :在造波机的正上方安装好摄像机,并根据测量精度、相机分辨率以及测量范围选择摄像机的数量,将 EtherCAT 图像处理板彼此互联后与计算机相连,组成基于 EtherCAT 网络的数据采集结构;在造波板上方的连接板上固定圆形荧光标志点,采用四邻域布置方式,即沿造波板运行轴线方向在标识点的上、下、左、右相同距离处各布置四个辅助识别点;调整摄像机的位置使得标志点的布置方向与摄像图像的行列方向一致;通过 EtherCAT 图像处理板设置摄像机为外触发模式; EtherCAT 图像处理板彼此间通过 Trig 接口进行触发信号的统一,同时向各自的摄像机发出一致的同步触发采集信号;
    步骤 B :摄像机布置完毕,初次运行时需要进行***定标,分别在造波板的初始位置与最大行程位置各拍摄一次图像; EtherCAT 图像处理板对采集的图像进行图像二值化以及圆形目标提取,并为每台造波板的运动图像信息建立查找表,记录造波板运动行程的物理距离与像面距离的比值 K i ,i =1,2,--- , N ,其中 N 为像面上造波板的数量,同时记录标志点的运动范围以及中心标志点运行轨迹的起点与终点图像坐标;在像面上为每个造波板按照从左到右的顺序进行编号,并将标定信息按照编号存储在图像处理板的存储空间内;
    步骤 C :对当前时刻的现场进行图像采集,在 EtherCAT 图像处理板中 FPGA 将图像数据采集到存储单元中,之后由 EtherCAT 图像处理板上的 DSP 对存储区的图像进行数据处理:首先在每块造波板的运动范围内提取所有标识点;然后在定标过程中记录的中心标识点运动区间线上对每个提取点进行辨别,仅当当前点上下左右各有一个邻近点时认为该点为正确的标志点;接下来将标志点的坐标减去记录的初始位置,从而得到该造波板运动的图像位移,随后将该数值乘上 K i 得到物理位移值;在完成对每块造波板的图像分析后,得到每个图像上各块造波板的位移信息;最后, EtherCAT 图像处理板将图像中造波板的运动信息按照'编号 + 位移量'的方式构建子报文,并通过 EtherCAT 网络反馈回计算机;
    步骤 D :计算机提取图像处理卡所传送来的报文,并按照从站的序号对报文中的数据进行重新编号,使得每台造波机的推板运动信息的编号唯一并且按照空间位置关系依次排列;
    步骤 E :计算机对造波板的位移信息进行分析:按照编号顺序将每块造波板的位移数据进行排列,形成测量数据曲线;与此同时,将当前时刻测量数据曲线与目标数据曲线进行差值计算,统计最大差异值以及平均差异值,并绘制每台造波板运行的误差曲线方便实验者进行造波机控制精度的检测;
    步骤 F :反复执行步骤 C- 步骤 E ,直到造波运动测量结束。
PCT/CN2017/101158 2017-03-17 2017-09-11 一种应用于大型多板波浪模拟***的运动测量方法与装置 WO2018166150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,999 US10488194B2 (en) 2017-03-17 2017-09-11 Motion measurement method and apparatus applied to large multi-paddle wave simulation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710153815.7A CN106840110B (zh) 2017-03-17 2017-03-17 一种应用于大型多板波浪模拟***的运动测量方法与装置
CN201710153815.7 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018166150A1 true WO2018166150A1 (zh) 2018-09-20

Family

ID=59144682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101158 WO2018166150A1 (zh) 2017-03-17 2017-09-11 一种应用于大型多板波浪模拟***的运动测量方法与装置

Country Status (3)

Country Link
US (1) US10488194B2 (zh)
CN (1) CN106840110B (zh)
WO (1) WO2018166150A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040131A (zh) * 2020-09-08 2020-12-04 湖南两湖机电科技有限公司 基于EtherCAT工业以太网总线的智能相机及其控制方法
CN113933157A (zh) * 2021-10-12 2022-01-14 江苏省电力试验研究院有限公司 一种电缆绝缘哑铃试件的拉力测试方法和装置
CN114475958A (zh) * 2022-01-20 2022-05-13 哈尔滨工程大学 一种水翼模型敞水性能试验装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851218B (zh) * 2017-03-17 2023-05-02 大连理工大学 一种造波机运行状态的视频监测装置及方法
CN106840110B (zh) * 2017-03-17 2019-08-13 大连理工大学 一种应用于大型多板波浪模拟***的运动测量方法与装置
CN108445830B (zh) * 2018-03-13 2020-11-06 大连理工大学 一种基于多控制器同步控制的造波机控制***
CN109084953B (zh) * 2018-08-28 2020-03-31 水利部交通运输部国家能源局南京水利科学研究院 水槽中波浪特征参数获取装置及其获取方法
CN111325802B (zh) * 2020-02-11 2023-04-25 中国空气动力研究与发展中心低速空气动力研究所 一种直升机风洞试验中圆形标记点识别匹配方法
CN111537189B (zh) * 2020-05-12 2021-10-08 大连理工大学 一种基于u型结构的造波装置及其方法
CN112525109A (zh) * 2020-12-18 2021-03-19 成都立鑫新技术科技有限公司 一种基于gpu测量物体运动姿态角的方法
CN114061902A (zh) * 2021-11-29 2022-02-18 重庆交通大学 基于图像法的卵砾石输移实时监测装置、方法及***
CN117707100B (zh) * 2024-02-06 2024-04-19 深圳市杰美康机电有限公司 EtherCAT总线驱动控制器及其同步控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019155A (zh) * 2012-12-15 2013-04-03 北京航空航天大学 一种用于数控***可靠性测试的试验装置
CN103631190A (zh) * 2013-11-05 2014-03-12 上海交通大学 基于EtherCAT网络的监控***
EP2835784A1 (fr) * 2013-08-07 2015-02-11 Solystic Système de convoyage comportant un suivi des objets convoyés par imagerie et capteurs virtuels
CN105806319A (zh) * 2016-03-11 2016-07-27 大连理工大学 一种用于玻璃管线三维运动分析的跨轴式图像测量方法
CN106353070A (zh) * 2016-09-30 2017-01-25 武汉菲仕运动控制***有限公司 一种造波机运动控制方法和***
CN106840110A (zh) * 2017-03-17 2017-06-13 大连理工大学 一种应用于大型多板波浪模拟***的运动测量方法与装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229969A (en) * 1979-03-12 1980-10-28 Hark William B Apparatus for making waves in a body of liquid
US4406162A (en) * 1981-07-02 1983-09-27 Seasom Controls Limited Apparatus for creating waves in a body of liquid
KR100447573B1 (ko) * 2001-08-07 2004-09-04 (주) 백산 오엠비 수중진동파 발생 욕조
CN101344782B (zh) * 2008-06-13 2011-02-16 上海海事大学 海洋工程水池造波机远程测控***
CN202188830U (zh) * 2011-08-04 2012-04-11 福州大学 单相机多测点动位移测量装置
CN102506900A (zh) * 2011-11-17 2012-06-20 大连理工大学 视觉测量***中坐标方向校正方法及装置
CN104848917B (zh) * 2015-04-20 2017-11-10 大连理工大学 一种用于玻璃水槽内水位分析的图像测量方法
WO2017079141A1 (en) * 2015-11-03 2017-05-11 The Florida State University Research Foundation, Inc. Wave propagation apparatus
CN206709833U (zh) * 2017-03-17 2017-12-05 大连理工大学 一种应用于大型多板波浪模拟***的运动测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019155A (zh) * 2012-12-15 2013-04-03 北京航空航天大学 一种用于数控***可靠性测试的试验装置
EP2835784A1 (fr) * 2013-08-07 2015-02-11 Solystic Système de convoyage comportant un suivi des objets convoyés par imagerie et capteurs virtuels
CN103631190A (zh) * 2013-11-05 2014-03-12 上海交通大学 基于EtherCAT网络的监控***
CN105806319A (zh) * 2016-03-11 2016-07-27 大连理工大学 一种用于玻璃管线三维运动分析的跨轴式图像测量方法
CN106353070A (zh) * 2016-09-30 2017-01-25 武汉菲仕运动控制***有限公司 一种造波机运动控制方法和***
CN106840110A (zh) * 2017-03-17 2017-06-13 大连理工大学 一种应用于大型多板波浪模拟***的运动测量方法与装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040131A (zh) * 2020-09-08 2020-12-04 湖南两湖机电科技有限公司 基于EtherCAT工业以太网总线的智能相机及其控制方法
CN112040131B (zh) * 2020-09-08 2022-08-26 湖南两湖机电科技有限公司 基于EtherCAT工业以太网总线的智能相机及其控制方法
CN113933157A (zh) * 2021-10-12 2022-01-14 江苏省电力试验研究院有限公司 一种电缆绝缘哑铃试件的拉力测试方法和装置
CN114475958A (zh) * 2022-01-20 2022-05-13 哈尔滨工程大学 一种水翼模型敞水性能试验装置

Also Published As

Publication number Publication date
CN106840110A (zh) 2017-06-13
US10488194B2 (en) 2019-11-26
CN106840110B (zh) 2019-08-13
US20190310084A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018166150A1 (zh) 一种应用于大型多板波浪模拟***的运动测量方法与装置
CN105203046B (zh) 多线阵列激光三维扫描***及多线阵列激光三维扫描方法
US10731967B2 (en) System for quickly detecting tunnel deformation
CN103954221B (zh) 大型柔性结构振动位移的双目摄影测量方法
KR102015606B1 (ko) 멀티 라인 레이저 어레이 3차원 스캐닝 시스템 및 멀티 라인 레이저 어레이 3차원 스캐닝 방법
CN110487816A (zh) 一种隧道巡检图像采集装置及隧道巡检***
CN103712555B (zh) 汽车大梁装配孔视觉在线测量***及其方法
CN110363878A (zh) 一种基于图像处理技术的机房巡检方法
CN111351431B (zh) 一种pcb板上多孔位的检测***的校正方法
WO2018166149A1 (zh) 一种造波机运行状态的视频监测装置及方法
CN110310503B (zh) 一种微缩模型车的高精度定位***
CN110996054A (zh) 智能输电线路巡线机器人巡检***及巡检方法
CN103162623A (zh) 一种双摄像机垂直安装的立体测量***及标定方法
CN109405755A (zh) 一种大尺寸管板孔径和节距测量装置与测量方法
CN105262994A (zh) 一种基于智能轨道摄像机的仪表识别装置和方法
CN113888712A (zh) 一种建筑结构施工偏差分析方法
CN206709833U (zh) 一种应用于大型多板波浪模拟***的运动测量装置
CN106918300A (zh) 一种基于多立体***的大型物体三维测量数据拼接方法
CN114051093A (zh) 一种基于图像处理技术的便携式航标灯现场检测***
CN107782907A (zh) 行进车辆测量***及相关方法
CN100590645C (zh) 基于拓扑栅格学习的命中点解算方法及装置
WO2023224313A1 (ko) 인공지능 기반 풍하중 산정 시스템
CN1510391A (zh) 影像测量***和方法
CN208636679U (zh) 一种基于舞台机械设备检测的舞台同步控制***
CN114511620B (zh) 一种基于Mask R-CNN的结构位移监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901125

Country of ref document: EP

Kind code of ref document: A1