WO2018166122A1 - 应用于电动客车的电池防失效切断*** - Google Patents

应用于电动客车的电池防失效切断*** Download PDF

Info

Publication number
WO2018166122A1
WO2018166122A1 PCT/CN2017/092326 CN2017092326W WO2018166122A1 WO 2018166122 A1 WO2018166122 A1 WO 2018166122A1 CN 2017092326 W CN2017092326 W CN 2017092326W WO 2018166122 A1 WO2018166122 A1 WO 2018166122A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
module
battery
time
sampling
Prior art date
Application number
PCT/CN2017/092326
Other languages
English (en)
French (fr)
Inventor
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018166122A1 publication Critical patent/WO2018166122A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention pertains to the field of batteries, and more particularly to a battery fail-safe cutting system for use in an electric passenger car.
  • thermal runaway of the battery The technical parameters to be followed by the thermal runaway of the battery are described in Appendix A.3.4 to A.3.5 of "Safety Technical Conditions for Electric Buses", that is, when thermal runaway occurs or the temperature of the monitoring point defined in A.3.2 reaches 300 °C, the trigger is stopped. , turn off the heating device.
  • the following are the conditions for determining whether thermal runaway occurs: a) the voltage drop of the test object; b) the temperature of the monitoring point reaches the maximum operating temperature specified by the battery manufacturer; c) the temperature rise rate of the monitoring point dT/dt ⁇ 1 °C / s; When a)&c) or b)&c) occurs, it is determined that thermal runaway has occurred.
  • the temperature rise rate calculated by the prior art cannot accurately reflect the characteristics of the thermal runaway and reduce the accuracy of the thermal runaway control. Due to the different stages of battery operation, too long a time interval will reduce the accuracy of the control, too short to ensure that the battery operates under stable conditions, which is not conducive to the standardization, standardization, operability and repeatability of the thermal runaway management of the battery. Demand.
  • the present invention provides a battery fail-safe cutting system for an electric passenger car, which comprises an initial value setting module, a sampling module, a temperature time acquisition module, a temperature rise rate calculation module, and a Battery cut-off module.
  • the initial value setting module is configured to initially set a failure reference parameter, a temperature interval minimum value, and a sampling time interval maximum value of the battery, and the failure parameter includes a temperature rise rate parameter M.
  • the sampling module is configured to collect different time values and collect temperature values corresponding to different time values.
  • the temperature time acquisition module is used in two adjacent The time difference between the sampling time points is less than the maximum value of the sampling time interval, and the temperature values at different time points are collected, and when the temperature difference between two adjacent time points is greater than the minimum value of the set temperature interval, the time difference of the temperature interval is collected.
  • the temperature rise rate calculation module is configured to calculate a temperature rise rate according to a time difference corresponding to the collected temperature difference and the temperature difference, and the calculation formula of the temperature rise rate is:
  • dT/dt is the temperature rise rate value in a certain period of time
  • T is the temperature value
  • t is the time value
  • i is the collection point.
  • the battery cut-off module is configured to output a command to cut off the output of the battery when dT/dt is greater than the set temperature rise rate parameter M.
  • the sampling time interval is at most 1 second.
  • the initial value setting module is further configured to initially set a voltage drop reference parameter and a temperature reference parameter.
  • the sampling module is further configured to collect voltage drop and temperature values of the battery at any time.
  • the battery cutting module is further configured to: when the voltage drop at any time collected by the sampling module is greater than the initially set voltage reference parameter The output of the battery is cut off.
  • the battery cutting module is further configured to: when the temperature value at any time collected by the sampling module is greater than the initially set temperature reference parameter The output of the battery is cut off.
  • the battery fail-safe cutting system further includes a data calculation comparison module, and the data calculation comparison module is configured to collect according to the sampling module.
  • the temperature value and the time value are used to calculate the corresponding temperature difference and time difference, and the temperature difference and the time difference are respectively compared with the minimum value of the temperature interval and the maximum value of the sampling time interval.
  • the sampling module includes a data acquisition device.
  • the data collecting instrument is integrated with a computer for executing the temperature time collecting module and the temperature rising rate. Calculate the calculation instructions of the module.
  • the battery fail-safe cutting system further includes a computer for performing calculation of the temperature time acquisition module and the temperature rise rate calculation module instruction.
  • the present invention is applied to the battery fail-safe cutting system of the electric passenger car through the initial value setting module, the sampling module, the temperature time collecting module, the temperature rising rate calculating module, and the battery cutting module.
  • the working mode of the temperature time collecting module is such that the collection of the temperature difference is not completed in the same time interval, but is completed in a dynamic time interval, so that the efficiency can be ensured and the accuracy can be ensured.
  • the experience of the personnel is no longer relied on, so that the stable working state of the battery can be ensured.
  • FIG. 1 is a schematic block diagram of a battery fail-safe cutting system applied to an electric passenger car of the present invention.
  • Figure 2 is a T-t plot of the LFP battery when it is heated to thermal runaway due to operation.
  • FIG. 1 is a schematic block diagram of a battery fail-safe cutting system applied to an electric passenger car according to the present invention.
  • the battery fail-safe shutdown system 100 for an electric passenger car includes an initial value setting module 10, a sampling module 20, a temperature time acquisition module 30, a temperature rise rate calculation module 40, a data calculation comparison module 50, and a Battery cut-off module 60. It can be understood that each of the above functional modules are electrically connected together, so that data transmission and command execution can be performed.
  • the battery fail-safe shutdown system 100 may further include other functional modules, such as a leakage protection device, a switch module, and a controller for controlling the on/off of the switch module, and of course,
  • a leakage protection device such as a switch module, and a controller for controlling the on/off of the switch module
  • a battery in which an electric bus provides electric energy is a technique known to those skilled in the art and will not be described in detail herein.
  • the battery is electrically connected to the switch module, and the controller is electrically connected to the battery cut-off module 50 to execute an output command of the battery cut-off module 50.
  • the initial value setting module 10 is configured to initially set a failure reference parameter, a temperature interval minimum value, and a sampling time interval maximum value of the battery.
  • the various reference values in the initial value setting module 10 can be manually entered by the user or automatically generated by the computing system.
  • the failure reference parameter is a reference value, that is, when the collected data is greater than or less than the reference value, a command is output to perform a certain task.
  • the failure reference parameter includes a temperature rise rate parameter M, a voltage drop reference parameter, and a temperature value reference parameter. It is of course conceivable that the failure reference parameter may also include other parameters, such as humidity, according to actual needs.
  • the minimum temperature interval is set to ensure that an accurate rate of temperature rise can be obtained to avoid rapid changes in temperature but no acquisition.
  • the maximum value of the acquisition time interval is set according to the requirements of "Safety Technical Conditions for Electric Buses", and the maximum value is 1 second. Therefore, it can be understood that the time interval for data collection should be no longer than 1 and can be 0.1 seconds, 0.2 seconds, or 0.5 seconds.
  • the sampling module 20 includes a data acquisition device for sampling the temperature, the voltage drop, and the time value corresponding to each temperature value of the battery during operation, that is, for collecting different time values and collecting different values.
  • a computer can also be integrated in the data acquisition instrument. The computer is configured to execute the calculation instructions of the temperature time acquisition module 30 and the temperature rise rate calculation module 40. It is of course conceivable that the computer can also be provided separately from the data acquisition device. In this embodiment, the computer is integrated in the data acquisition device.
  • the temperature time acquisition module 30 is configured to collect temperature values at different time points when the time difference between two adjacent sampling time points is less than the maximum sampling time interval set by the initial value setting module 10, and when two The temperature difference at the adjacent time point is greater than the temperature value at the minimum value of the temperature interval set by the initial value setting module 10.
  • the Tt curve of a certain LFP battery is heated to the thermal runaway as an example. Referring to FIG. 2, it can be seen that the operating temperature of the battery is divided into two stages. In the first phase (Phase 1), the battery has just started to be triggered, and the temperature rise of the cell will be very slow due to the absence of a violent chemical reaction inside the battery.
  • the sampling interval should be as long as possible, but not more than 1 second, otherwise it will not meet the requirements of "Safety Technical Conditions for Electric Buses".
  • stage 2 when the battery is heated to near thermal runaway due to work, the temperature will rise sharply.
  • the sampling interval should be shorter, how to quantify the time interval, according to the The minimum value of the temperature interval set by the initial value setting module 10 is as long as the temperature difference between the two adjacent time points is collected when the temperature difference between the two time points is greater than the minimum value of the temperature interval. Thereby, the acquisition time difference can be changed into a dynamic process, which can ensure efficiency to ensure accuracy, thereby improving the performance of the battery fail-safe cutting system 100.
  • the temperature rise rate calculation module 40 is configured to collect the temperature according to the temperature time acquisition module 30.
  • the temperature difference is calculated by the time difference corresponding to the temperature difference, and the temperature rise rate is calculated as:
  • dT/dt is the temperature rise rate value in a certain period of time
  • T is the temperature value
  • i is the collection point
  • the value of the temperature rise rate can be calculated.
  • the data calculation and comparison module 50 is configured to calculate a corresponding temperature difference and a time difference according to the temperature value and the time value collected by the sampling module 20, and respectively compare the temperature difference and the time difference with the temperature interval minimum value and the sampling time interval. The maximum is compared.
  • the data calculation comparison module 50 is electrically connected to the sampling module 20, and receives the sampled and returned data of the sampling module 20, and calculates the difference between the returned data and the temperature, and then performs the difference. The resulting time difference and temperature difference are compared to the minimum temperature interval and the maximum sampling interval. Finally, the compared result is transmitted to the temperature time acquisition module 30.
  • the battery shut-off module 60 is configured to output a command to cut off the output of the battery when dT/dt is greater than the set temperature rise rate parameter M, that is, when the temperature rise rate is greater than the temperature rise rate parameter M, The battery shut-off module 60 will output a command, and the controller cuts off the output of the battery through the switch module according to the command to avoid the loss of control of the common heat.
  • the battery cut-off module 60 is not only used when the temperature value of the sampling module 20 is greater than the initial setting.
  • the temperature is referenced to cut off the output of the battery, and a command to cut off the output of the battery is also output when the voltage drop at any one time is greater than the initially set voltage reference parameter.
  • the battery fail-safe cutting system of the present invention cooperates with the initial value setting module 10, the sampling module 20, the temperature time collecting module 30, the temperature rise rate calculating module 40, and the battery cutting module 60.
  • the operating mode of the temperature time acquisition module 30 is such that the acquisition of the temperature difference is not completed in the same time interval, but is completed within a dynamic time interval, so that efficiency can be ensured and accuracy can be ensured.
  • the experience of the personnel is no longer relied on, so that the stable working state of the battery can be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种应用于电动客车的电池防失效切断***,其包括一个初始值设定模块(10),一个采样模块(20),一个温度时间采集模块(30),一个温升速率计算模块(40)和一个电池切断模块(50)。温度时间采集模块(30)用于在两个相邻的采样时间点的时间差小于所采样时间间隔最大值时采集不同时间点的温度值,并当两个相邻时间点的温度差大于所设定的温度间隔最小值时,采集该温度间隔的时间差。电池切断模块(50)用于当温升速率大于所设定的温升速率参数时,输出切断电池的输出的命令。该***通过温度时间采集模块的工作模式,使得温度差的采集不是在相同的时间间隔内完成,而是一个动态的时间间隔内采集完成,因此即可以保证效率又可以确保精确度。

Description

应用于电动客车的电池防失效切断*** 技术领域
本发明属于电池领域,更具体地说,本发明涉及一种应用于电动客车的电池防失效切断***。
背景技术
《电动客车安全技术条件》的附录A.3.4~A.3.5中描述了其电池热失控所要遵循的技术参数,即当发生热失控或者A.3.2定义的监测点温度达到300℃时,停止触发,关闭加热装置。以下是判定是否发生热失控的条件:a)测试对象产生电压降;b)监测点温度达到电池厂商规定的最高工作温度;c)监测点的温升速率dT/dt≥1℃/s;当a)&c)或者b)&c)发生时,判定发生热失控。
现有技术在开展蓄电池单元热失控试验时,在整个试验过程中温升速率的计算一般采用相同的时间间隔,同时,目前只能通过肉眼判断样品是否达到“关闭加热装置”的条件。因此,其采用现有技术计算出的温升速率,不能精确反应热失控时的特征,降低热失控控制的精确度。由于在电池工作的不同阶段,时间间隔过长会降低控制的精确度,过短以不能确保电池在稳定工作状态下工作,不利于电池的热失控管理规范化、标准化、可操作性及可重复性的需求。
有鉴于此,确有必要提供一种即可以保护效率又可以确保热失控的精确度的应用于电动客车的电池防失效切断***。
发明内容
本发明的目的在于,克服现有技术的不足,提供一种即可以保护效率又可以确保热失控的精确度的应用于电动客车的电池防失效切断***。
为了实现上述发明目的,本发明提供了一种应用于电动客车的电池防失效切断***,其包括一个初始值设定模块,一个采样模块,一个温度时间采集模块,一个温升速率计算模块,一个电池切断模块。所述初始值设定模块用于初始设置所述电池的失效参考参数、温度间隔最小值、以及采样时间间隔最大值,所述失效参数包括温升速率参数M。所述采样模块用于采集不同的时间值并采集在不同的时间值所对应的温度值。所述温度时间采集模块用于在两个相邻的 采样时间点的时间差小于所采样时间间隔最大值时采集不同时间点的温度值,并当两个相邻时间点的温度差大于所设定的温度间隔最小值时,采集该温度间隔的时间差。所述温升速率计算模块用于根据所述采集的温度差与该温度差对应的时间差来计算温升速率,该温升速率的计算公式为:
dT/dt=(Ti+1-Ti)/(ti+1-ti)(i=1,2,......)
其中:dT/dt为某一个时间段内的温升速率值,
T为温度值,
t为时间值,以及
i为采集点。
所述电池切断模块用于当dT/dt大于所设定的温升速率参数M时,输出切断所述电池的输出的命令。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述采样时间间隔最大值为1秒。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述初始值设定模块还用于初始设置电压降参考参数和温度参考参数。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述采样模块还用于采集所述电池在任一时刻的电压降与温度值。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述电池切断模块还用于当所述采样模块所采集的任一时刻的电压降大于所初始设定的电压参考参数时切断所述电池的输出。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述电池切断模块还用于当所述采样模块所采集的任一时刻的温度值大于所初始设定的温度参考参数时切断所述电池的输出。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述电池防失效切断***还包括一个数据计算比较模块,所述数据计算比较模块用于根据所述采样模块所采集到的温度值和时间值进行计算相应的温度差与时间差,并将该温度差与时间差分别和温度间隔最小值以及采样时间间隔最大值进行比较。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述采样模块包括一个数据采集仪。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述数据采集仪里集成有计算机,所述计算机用于执行所述温度时间采集模块与温升速率 计算模块的计算指令。
作为本发明应用于电动客车的电池防失效切断***的一种改进,所述电池防失效切断***还包括一个计算机,所述计算机用于执行所述温度时间采集模块与温升速率计算模块的计算指令。
与现有技术相比,本发明应用于电动客车的电池防失效切断***通过初始值设定模块,采样模块,温度时间采集模块,温升速率计算模块,电池切断模块的相互配合工作,特别是所述温度时间采集模块的工作模式,使得温度差的采集不是在相同的时间间隔内完成,而是一个动态的时间间隔内采集完成,因此即可以保证效率又可以确保精确度。同时由于上述的采集、计算皆可以由计算机完成,不再依赖人员自身的经验,从而可以确保电池的稳定工作状态。
附图说明
下面结合附图和具体实施方式,对本发明应用于电动客车的电池防失效切断***进行详细说明,其中:
图1为本发明应用于电动客车的电池防失效切断***的原理框图。
图2为LFP电池因工作被加热到热失控时T-t曲线图。
具体实施方式
为了使本发明的发明目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图1,其为本发明提供的一种应用于电动客车的电池防失效切断***的原理框图。所述应用于电动客车的电池防失效切断***100包括一个初始值设置模块10,一个采样模块20,一个温度时间采集模块30,一个温升速率计算模块40,一个数据计算比较模块50,以及一个电池切断模块60。可以理解的是上述的各个功能模块皆电性连接在一起,从而可以进行数据传输与命令执行。还需要说明的是,所述电池防失效切断***100还可以包括其他一些功能模块,如漏电保护装置,开关模块、以及用于控制该开关模块的通断的控制器,当然还包括用于为电动客车提供电能的电池,其为本领域技术人员习知的技术,在此不再详细说明。该电池与开关模块电性连接,而控制器与所述电池切断模块50电性连接以执行所述电池切断模块50的输出命令。
所述初始值设置模块10用于初始设置所述电池的失效参考参数、温度间隔最小值、以及采样时间间隔最大值。该初始值设置模块10里的各种参考值可以由用户手动输入,也可以由计算***自动生成。所述失效参考参数为一个基准值,即当所采集到的数据大于或小于该基准值则输出某个命令去执行某项任务。在本实施例中,所述失效参考参数包括温升速率参数M,电压降参考参数,以及温度值参考参数。当然可以想到的是该失效参考参数根据实际需要还可以包括其他的一些参数,如湿度等。所述温度间隔最小值的设定是为了确保可以得到准确的温度升高的速率,以避免温度变化很快却没有能采集到的情况出现。所述采集时间间隔最大值是根据《电动客车安全技术条件》的要求设定的,其最大值为1秒。因此可以理解的是数据采集的时间间隔最长应当不超过1称,可以是0.1秒、0.2秒,或0.5秒等。
所述采样模块20包括一个数据采集仪,用于对电池在工作过程中的温度、电压降、以及各个温度值所对应的时间值进行采样,也即用于采集不同的时间值并采集在不同的时间值所对应的温度值。所述数据采集仪里还可以集成有计算机。该计算机用于执行所述温度时间采集模块30与温升速率计算模块40的计算指令。当然可以想到的是,所述计算机还可以与所述数据采集仪单独分离设置。在本实施例中,所述数据采集仪里集成了所述计算机。
所述温度时间采集模块30用于在两个相邻的采样时间点的时间差小于所述初始值设置模块10所设定的采样时间间隔最大值时采集不同时间点的温度值,并当两个相邻时间点的温度差大于所述初始值设置模块10所设定的温度间隔最小值时的温度值。为了充分说明该温度时间采集模块30的工作原理,现以某LFP电池因工作被加热到热失控时T-t曲线为例,请参阅图2,可以看到该电池的工作温度分为两个阶段,在第一阶段(阶段1),电池刚刚开始被触发,由于电池内部还未产生剧烈的化学反应,电芯的温升将非常缓慢。这时采样的时间间隔应当尽量长一点,但不能大于1秒,否则将不符合《电动客车安全技术条件》的规定。而在第二阶段性(阶段2),当电芯因工作被加热到接近热失控时,温度会急剧上升,这时应当当采样的时间间隔短一点,如何量化该时间间隔,就是根据所述初始值设置模块10所设定的温度间隔最小值,只要当采集两个时间点的温度差大于所述温度间隔最小值时,即对该两个相邻时间点的温度差进行采集。从而可以让采集时间差变成一个动态的过程,既能保证效率以可以确保精确度,从而提升该电池防失效切断***100的性能。
所述温升速率计算模块40用于根据所述温度时间采集模块30所采集的温 度差与该温度差对应的时间差来计算温升速率,该温升速率的计算公式为:
dT/dt=(Ti+1-Ti)/(ti+1-ti)(i=1,2,......)
其中:dT/dt为某一个时间段内的温升速率值,
T为温度值,
t为时间值,
i为采集点;。
通过上述的计算,即可以算出温升速率的值。
所述数据计算比较模块50用于根据所述采样模块20所采集到的温度值和时间值进行计算相应的温度差与时间差,并将该温度差与时间差分别和温度间隔最小值以及采样时间间隔最大值进行比较。所述数据计算比较模块50与采样模块20电性连接,并接收所述采样模块20的采样并回传的数据,并将回传的数据包括时间与温度进行求差计算,然后再将求差后的时间差和温度差与温度间隔最小值以及采样时间间隔最大值进行比较。最后将该比较后的结果传输给所述温度时间采集模块30。
所述电池切断模块60用于当dT/dt大于所设定的温升速率参数M时,输出切断所述电池的输出的命令,即当温升速率大于所术温升速率参数M时,所述电池切断模块60将输出命令,所述控制器根据该命令通过所述开关模块切断该电池的输出,避免共热失控。同时由于所述数据采集仪也采集任一时刻的电压降和温度值,因此所述电池切断模块60还不仅用于当所述采样模块20所采集的任一时刻的温度值大于所初始设定的温度参考参数时切断所述电池的输出,而且当任一时刻的电压降大于所初始设定的电压参考参数时也输出切断所述电池的输出的命令。
与现有技术相比,本发明的电池防失效切断***通过所述初始值设定模块10,采样模块20,温度时间采集模块30,温升速率计算模块40,电池切断模块60的相互配合工作,特别是所述温度时间采集模块30的工作模式,使得温度差的采集不是在相同的时间间隔内完成,而是一个动态的时间间隔内采集完成,因此即可以保证效率又可以确保精确度。同时由于上述的采集、计算皆可以由计算机完成,不再依赖人员自身的经验,从而可以确保电池的稳定工作状态。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护 范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种应用于电动客车的电池防失效切断***,其特征在于:所述电池防失效切断***包括一个初始值设定模块,一个采样模块,一个温度时间采集模块,一个温升速率计算模块,一个电池切断模块,所述初始值设定模块用于初始设置所述电池的失效参考参数、温度间隔最小值、以及采样时间间隔最大值,所述失效参数包括温升速率参数M;所述采样模块用于采集不同的时间值并采集在不同的时间值所对应的温度值;所述温度时间采集模块用于在两个相邻的采样时间点的时间差小于所采样时间间隔最大值时采集不同时间点的温度值,并当两个相邻时间点的温度差大于所设定的温度间隔最小值时,采集该温度间隔的时间差;所述温升速率计算模块用于根据所述采集的温度差与该温度差对应的时间差来计算温升速率,该温升速率的计算公式为:
    dT/dt=(Ti+1-Ti)/(ti+1-ti)(i=1,2,......),
    其中:dT/dt为某一个时间段内的温升速率值,
    T为温度值,
    t为时间值,
    i为采集点;
    所述电池切断模块用于当dT/dt大于所设定的温升速率参数M时,输出切断所述电池的输出的命令。
  2. 如权利要求1所述的应用于电动客车的电池防失效切断***,其特征在于:所述采样时间间隔最大值为1秒。
  3. 如权利要求1所述的应用于电动客车的电池防失效切断***,其特征在于:所述初始值设定模块还用于初始设置电压降参考参数和温度参考参数。
  4. 如权利要求3所述的应用于电动客车的电池防失效切断***,其特征在于:所述采样模块还用于采集所述电池在任一时刻的电压降与温度值。
  5. 如权利要求4所述的应用于电动客车的电池防失效切断***,其特征在于:所述电池切断模块还用于当所述采样模块所采集的任一时刻的电压降大于所初始设定的电压参考参数时切断所述电池的输出。
  6. 如权利要求4所述的应用于电动客车的电池防失效切断***,其特征在于:所述电池切断模块还用于当所述采样模块所采集的任一时刻的温度值大于所初始设定的温度参考参数时切断所述电池的输出。
  7. 如权利要求1所述的应用于电动客车的电池防失效切断***,其特征在于: 所述电池防失效切断***还包括一个数据计算比较模块,所述数据计算比较模块用于根据所述采样模块所采集到的温度值和时间值进行计算相应的温度差与时间差,并将该温度差与时间差分别和温度间隔最小值以及采样时间间隔最大值进行比较。
  8. 如权利要求1所述的应用于电动客车的电池防失效切断***,其特征在于:所述采样模块包括一个数据采集仪。
  9. 如权利要求8所述的应用于电动客车的电池防失效切断***,其特征在于:所述数据采集仪里集成有计算机,所述计算机用于执行所述温度时间采集模块与温升速率计算模块的计算指令。
  10. 如权利要求1所述的应用于电动客车的电池防失效切断***,其特征在于:所述电池防失效切断***还包括一个计算机,所述计算机用于执行所述温度时间采集模块与温升速率计算模块的计算指令。
PCT/CN2017/092326 2017-03-13 2017-07-09 应用于电动客车的电池防失效切断*** WO2018166122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710145890.9 2017-03-13
CN201710145890.9A CN108569144B (zh) 2017-03-13 2017-03-13 应用于电动客车的电池防失效切断***

Publications (1)

Publication Number Publication Date
WO2018166122A1 true WO2018166122A1 (zh) 2018-09-20

Family

ID=63523758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092326 WO2018166122A1 (zh) 2017-03-13 2017-07-09 应用于电动客车的电池防失效切断***

Country Status (2)

Country Link
CN (1) CN108569144B (zh)
WO (1) WO2018166122A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116859246B (zh) * 2023-07-25 2024-05-07 上海思格源智能科技有限公司 一种电池电芯自动识别方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604423A (zh) * 1998-06-17 2005-04-06 布莱克和戴克公司 对电池充电的方法
CN102122735A (zh) * 2010-12-21 2011-07-13 奇瑞汽车股份有限公司 电池热管理方法、***和装置
CN202474140U (zh) * 2012-02-17 2012-10-03 中国检验检疫科学研究院 动力电池热稳定控制装置
US20130093399A1 (en) * 2011-10-17 2013-04-18 Sony Mobile Communications Ab Method for charging a battery by current or temperature control
CN104730464A (zh) * 2013-12-18 2015-06-24 中国电子科技集团公司第十八研究所 一种电池绝热温升速率测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
DE102007051051A1 (de) * 2007-10-16 2009-04-23 C. & E. Fein Gmbh Akkumulator-Gerät-Kombination und Akkumulator
US10059222B2 (en) * 2014-04-15 2018-08-28 Ford Global Technologies, Llc Battery temperature estimation system
US9193273B1 (en) * 2014-06-15 2015-11-24 Efficient Drivetrains, Inc. Vehicle with AC-to-DC inverter system for vehicle-to-grid power integration
CN105489964B (zh) * 2015-12-22 2018-04-06 重庆科鑫三佳车辆技术有限公司 一种动力电池动态温升控制方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604423A (zh) * 1998-06-17 2005-04-06 布莱克和戴克公司 对电池充电的方法
CN102122735A (zh) * 2010-12-21 2011-07-13 奇瑞汽车股份有限公司 电池热管理方法、***和装置
US20130093399A1 (en) * 2011-10-17 2013-04-18 Sony Mobile Communications Ab Method for charging a battery by current or temperature control
CN202474140U (zh) * 2012-02-17 2012-10-03 中国检验检疫科学研究院 动力电池热稳定控制装置
CN104730464A (zh) * 2013-12-18 2015-06-24 中国电子科技集团公司第十八研究所 一种电池绝热温升速率测试方法

Also Published As

Publication number Publication date
CN108569144B (zh) 2020-06-02
CN108569144A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN105356528A (zh) 电池管理***
WO2022143668A1 (zh) 电池加热***检测方法、装置、车辆及存储介质
CN202049222U (zh) 一种具有继电器状态监测功能的电力仪表
CN105353792B (zh) 一种具有电容器温度检测及保护功能的无功补偿装置
WO2018166122A1 (zh) 应用于电动客车的电池防失效切断***
WO2015067088A1 (zh) 终端电池温度检测装置,终端与过温保护方法
CN203397351U (zh) 一种计算机部件监控模块
WO2023028934A1 (zh) 故障检测方法、装置、电池管理***和存储介质
CN103364723A (zh) 基于电压电流平衡性的风力发电机运行状态分析方法
CN104422541A (zh) 移动终端的电池检测电路、方法及移动终端
CN203967779U (zh) 充电电池保护电路及电子设备
KR20200035424A (ko) 유리판 강화 공정을 위한 수행 수단 제어 방법
JP2016009352A (ja) プラントの異常予兆診断装置及び方法
CN105628251A (zh) 多温度探头恒温检测装置及其检测方法
RU160950U1 (ru) Устройство для контроля неисправностей системы управления клапанами перепуска воздуха газотурбинного двигателя
CN203310645U (zh) 一种基于CANoe的PTC加热器测试***
CN103195504A (zh) 一种避免汽轮发电机组温度测点误判的方法
CN105183040A (zh) 一种小卫星热控分***在轨故障复现预报方法
CN204128705U (zh) 一种避雷器测温***
CN107562092A (zh) 一种可编程可受控的温控电路、方法和介质
CN202928821U (zh) 一种测试狭小舱内制冷***性能的装置
CN209691533U (zh) 变压器安全控制***
CN104979801A (zh) 一种数字式电动机保护装置
CN202406055U (zh) 光伏并网逆变器pwm控制器
CN102437598B (zh) 一种电池电压及温度采样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900994

Country of ref document: EP

Kind code of ref document: A1