WO2018164161A1 - Propylene-based polymer, and elastic body - Google Patents

Propylene-based polymer, and elastic body Download PDF

Info

Publication number
WO2018164161A1
WO2018164161A1 PCT/JP2018/008686 JP2018008686W WO2018164161A1 WO 2018164161 A1 WO2018164161 A1 WO 2018164161A1 JP 2018008686 W JP2018008686 W JP 2018008686W WO 2018164161 A1 WO2018164161 A1 WO 2018164161A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
propylene
dimethylsilylene
bis
mol
Prior art date
Application number
PCT/JP2018/008686
Other languages
French (fr)
Japanese (ja)
Inventor
望 藤井
智明 武部
金丸 正実
岡本 卓治
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2019504624A priority Critical patent/JPWO2018164161A1/en
Publication of WO2018164161A1 publication Critical patent/WO2018164161A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a propylene polymer and an elastic body comprising the propylene polymer.
  • Patent Documents 1 to 3 disclose propylene polymers having a mesopentad fraction [mmmm] of 20 to 60 mol%.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a propylene-based polymer having a high elastic recovery rate and an elastic body made of the propylene-based polymer.
  • Intrinsic viscosity [ ⁇ ] measured in a tetralin solvent at 135 ° C. is 0.3 to 5.0 dL / g
  • DSC differential scanning calorimeter
  • Heat quantity ( ⁇ HD) is 3-30J / g
  • DSC differential scanning calorimeter
  • One or more melting points (Tm-D) defined as the top are in the range of 20 to 65 ° C. (4) Using a differential scanning calorimeter (DSC), hold the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min.
  • the melting endotherm ( ⁇ HD) in the range is 30% or more with respect to the melting endotherm ( ⁇ HD) of (2).
  • the melting point (Tm-D) is one or more in the range of 20 to 65 ° C.
  • the melting endotherm ( ⁇ HD) in the range of 20 to 65 ° C. is 3 to 30 J / g. 1].
  • Tm-D melting point
  • ⁇ HD melting endotherm
  • the term “A to B” relating to the description of numerical values means “A to B or less” (when A ⁇ B) or “A or less to B or more” (when A> B). .
  • the combination of a preferable aspect is a more preferable aspect.
  • the propylene polymer of the present invention is characterized by satisfying the following (1) to (4).
  • Intrinsic viscosity [ ⁇ ] measured in a tetralin solvent at 135 ° C. is 0.3 to 5.0 dL / g
  • DSC differential scanning calorimeter
  • Heat quantity ( ⁇ HD) is 3-30J / g
  • DSC differential scanning calorimeter
  • One or more melting points (Tm-D) defined as the top are in the range of 20 to 65 ° C. (4) Using a differential scanning calorimeter (DSC), hold the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min.
  • the melting endotherm ( ⁇ HD) in the range is 30% or more with respect to the melting endotherm ( ⁇ HD) of (2).
  • the propylene-based polymer of the present invention becomes an elastic body (elastomer) having an excellent elastic recovery rate.
  • the mechanism is not clear, but can be considered as follows.
  • An isotactic propylene-based polymer forms a lamellar structure in a form in which 3/1 helical chains are packed, and generally forms a lamellar structure having a different melting point depending on stereoregularity.
  • a tufted micelle structure formed by self-assembly of the 3/1 helical chain like a smectic phase may be formed.
  • This tufted micelle structure does not have a long-range order like a lamellar structure, and has a low stereoregularity and a low crystallinity, the amorphous part 3/1 helix that did not become a lamellar structure. Since the chain is formed by gathering together, unlike a lamellar structure, it has a melting point in a specific temperature range without depending on stereoregularity.
  • the lamella structure is a regular packing in which each 3/1 spiral chain forms a crystal lattice, and the structure to be formed has a long-range order and is a strong structure, so that external strain On the other hand, the structure is destroyed because the energy cannot be dispersed.
  • the polymer chain is restrained without being able to move freely by incorporating a part of it, and is low in stereoregularity and low in crystallinity.
  • the polymer apparently forms a state like a three-dimensional network structure in which the tufted micelle structure functions as a physical cross-linking point.
  • the entire mesh absorbs energy against strain from the outside, the strain is not applied, and a force to restore the original structure works. That is, it is considered that a propylene-based polymer having a high elastic recovery property can be obtained by forming a tufted micelle structure and reducing the amount of the lamellar structure that causes permanent deformation.
  • the crystallinity is thereby lowered, and the tufted micelle structure is formed in such an amount that the elastic recovery is good.
  • the amount of tufted micelle structures formed is reduced. In that case, the amount of the tufted micelle structure that acts as a physical cross-linking point of the three-dimensional network structure is insufficient, and the entanglement of the polymer chain with respect to external strain is unraveled, so that the elastic recovery property is deteriorated. It is done.
  • the isotactic chain is shortened, whereby the 3/1 helical chain is shortened, so that the melting point of the lamellar structure is lowered and the tufted micelle structure is formed, thereby improving the elastic recovery.
  • good elastic recovery can be achieved by appropriately adjusting the amount of the comonomer to be copolymerized so that a tufted micelle structure is formed.
  • the propylene polymer of the present invention has an intrinsic viscosity [ ⁇ ] measured in a tetralin solvent at 135 ° C. of 0.3 to 5.0 dL / g, preferably 0.33 to 5.0 dL / g, more preferably Is 0.35 to 2.0 dL / g.
  • the intrinsic viscosity [ ⁇ ] is less than 0.3 dL / g, the frequency of molecular entanglement decreases without depending on stereoregularity, and elastic recovery is not caused.
  • the intrinsic viscosity [ ⁇ ] is calculated by measuring the reduced viscosity ( ⁇ SP / c) in tetralin at 135 ° C. with an Ubbelohde viscometer and using the following equation (Haggins equation).
  • the propylene polymer of the present invention has a melting endotherm ( ⁇ HD) of 3 to 30 J / g, preferably 5 to 27 J / g, more preferably 7 to 25 J / g. If the melting endotherm ( ⁇ H ⁇ D) is less than 3 J / g, the crystallinity of the propylene polymer is too low, so that the physical crosslinking points necessary for elastic recovery are not formed, and the elastic recovery rate is low. On the other hand, if the melting endotherm ( ⁇ HD) exceeds 30 J / g, the crystallinity of the propylene-based polymer is too high, so that the lamellar structure causing permanent distortion increases and the elastic recovery rate decreases.
  • ⁇ HD melting endotherm
  • the melting endotherm ( ⁇ H ⁇ D) is the highest temperature in the melting endotherm curve obtained by DSC measurement, with the line connecting the point on the low temperature side where there is no change in heat quantity and the point on the high temperature side where there is no change in heat quantity as the baseline. It is calculated by calculating the area surrounded by the line portion including the peak observed on the side and the base line. Note that the melting endotherm ( ⁇ HD) can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
  • the propylene-based polymer of the present invention is a melting endotherm obtained by using a differential scanning calorimeter (DSC) and holding the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min.
  • the melting endotherm ( ⁇ H ⁇ D) in the range of 20 to 65 ° C. of the curve is 10 ° C./min after holding the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter (DSC). It is 30% or more, preferably 50 to 100%, more preferably 75 to 100% with respect to the melting endotherm ( ⁇ HD) obtained from the melting endotherm curve obtained by raising the temperature. If it is less than 30%, the number of tufted micelle structures that act as physical cross-linking points necessary for elastic recovery is small, and the number of lamellar structures that cause permanent deformation increases, so the elastic recovery rate is low.
  • the propylene-based polymer of the present invention has one or more melting points (Tm-D) in the range of 20 to 65 ° C., preferably 25 to 60 ° C., more preferably 30 to 60 ° C. D) One or more. If one or more melting points (Tm-D) are not higher than 20 ° C., the physical recovery point will be lower than the standard room temperature, and a physical cross-linking point necessary for elastic recovery will not be formed, and the elastic recovery rate will be low. If the melting point (Tm-D) is not more than one at 65 ° C. or lower, the crystal component does not follow the deformation and becomes a factor of permanent strain, so the elastic recovery rate is lowered.
  • Tm-D melting points
  • a differential scanning calorimeter manufactured by Perkin Elmer, “DSC-7”
  • 10 mg of a sample is held at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min.
  • Tm-D melting point
  • each peak top is defined as the melting point (Tm-D) of the propylene-based polymer.
  • the melting point can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
  • the propylene-based polymer of the present invention has one or more melting points (Tm-D) in the range of 20 to 65 ° C., and the melting endotherm ( ⁇ HD) at 20 to 65 ° C. is preferably Is 3 to 30 J / g, more preferably 5 to 27 J / g, still more preferably 7 to 25 J / g. If the melting endotherm ( ⁇ HD) is within the above range, the propylene-based polymer has an appropriate degree of crystallinity, and more sufficient physical cross-linking points necessary for elastic recovery are formed. There are not too many lamella structures, and the elastic recovery rate is higher.
  • the propylene-based polymer of the present invention may further have a melting point (Tm-D) in the range of more than 65 ° C. and 180 ° C. or less, and the melting endotherm ( ⁇ H ⁇ D) is preferably 1 to 20 J / g, more preferably 2 to 15 J / g, still more preferably 3 to 10 J / g. If the melting endotherm ( ⁇ H ⁇ D) is within the above range, the degree of crystallinity of the propylene-based polymer is appropriate, the physical cross-linking points necessary for elastic recovery are sufficiently formed, and the cause of permanent distortion There are not too many lamella structures, and the elastic recovery rate is higher.
  • Tm-D melting point in the range of more than 65 ° C. and 180 ° C. or less
  • the melting endotherm ( ⁇ H ⁇ D) is preferably 1 to 20 J / g, more preferably 2 to 15 J / g, still more preferably 3 to 10 J / g. If the melting endotherm (
  • the mesotriad fraction [mm] is preferably 40 to 60 mol%, more preferably 42 to 59 mol%, still more preferably 44 to 58 mol%. is there.
  • the mesotriad fraction [mm] is a stereoregularity index indicating isotacticity. If the mesotriad fraction [mm] is within the above range, the crystallinity is lowered and the elastic recovery property is improved. A suitable amount of physical cross-linking points.
  • the propylene polymer is a copolymer of propylene with one or more structural units selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 30 carbon atoms
  • the propylene, ethylene, and carbon number are From the viewpoint of polymerizability of 4 to 30 ⁇ -olefin, the mesotriad fraction [mm] is preferably 50 to 95 mol%, more preferably 52 to 85 mol%, still more preferably 54 to 80 mol%.
  • the mesopentad fraction [mmmm] of the propylene-based polymer of the present invention is preferably 22 to 44 mol%, more preferably 25 to 43 mol%, still more preferably 28 to 42 mol, from the viewpoint of obtaining a higher elastic recovery rate. %.
  • the mesopentad fraction [mmmm] is an index representing the stereoregularity of the propylene-based polymer, and the stereoregularity increases as the mesopentad fraction [mmmm] increases.
  • the mesopentad fraction [mmmm] can be controlled by selecting the type of catalyst and adjusting the polymerization conditions.
  • mesotriad fraction [mm], the mesopentad fraction [mmmm], and the racemic pentad fraction [rrrr], which will be described later, are described in “Macromolecules, 6, 925 (1973)” by A. Zambelli et al.
  • the meso fraction of triad units in the polypropylene molecular chain and the meso fraction and racemic fraction of pentad units measured by the signal of the methyl group in the 13 C-NMR spectrum, in accordance with the method proposed in . [Rr] and [mr] described later are also calculated by the above method.
  • the molecular weight distribution (Mw / Mn) of the propylene-based polymer of the present invention is preferably 3. from the viewpoint of the balance between the amount of low molecular weight components causing stickiness and bleeding and the amount of high molecular weight components preventing crystallization. It is 0 or less, more preferably 2.8 or less, and still more preferably 2.6 or less.
  • the molecular weight distribution (Mw / Mn) is a value calculated from the polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography (GPC).
  • the propylene polymer of the present invention preferably further satisfies at least one of the following (5) and (6).
  • [rrrr] / (100- [mmmm]) The value of [rrrr] / (100- [mmmm]) is obtained from the mesopentad fraction [mmmm] and the racemic pentad fraction [rrrr] and is an index indicating the uniformity of the regularity distribution of polypropylene. If the value of [rrrr] / (100- [mmmm]) is small, the ratio of the mixture of highly stereoregular polypropylene and atactic polypropylene is low, and stickiness of the polypropylene molded product after molding is suppressed.
  • the unit of [rrrr] and [mmmm] in the above is mol%.
  • the value of [rrrr] / (100- [mmmm]) in the propylene-based polymer is preferably 0.1 or less, more preferably 0.025 to 0.075, still more preferably from the viewpoint of suppressing stickiness. 0.035 to 0.05.
  • the propylene polymer of the present invention preferably satisfies the following (7) and (8) from the viewpoint of thermal stability.
  • (7) 2,1-bond fraction is less than 1.0 mol%
  • 1,3-bond fraction is less than 0.5 mol%
  • the 2,1-bond fraction of the propylene-based polymer is preferably It is less than 1.0 mol%, more preferably 0.7 mol% or less, still more preferably 0.5 mol% or less.
  • the 1,3-bond fraction of the propylene-based polymer is preferably less than 0.5 mol%, more preferably 0.4 mol% or less, still more preferably 0.3 mol% or less.
  • the propylene-based polymer of the present invention is not particularly limited as long as the above conditions (1) to (4) are satisfied.
  • a propylene-based polymer selected from propylene- ⁇ -olefin graft copolymers and the like is preferable.
  • Propylene homopolymer propylene-ethylene random copolymer, propylene-butene random copolymer, propylene- ⁇ -olefin Random copolymer, propylene-ethylene- More preferably a propylene-based polymer selected from the ten ternary random copolymer, more preferably a propylene homopolymer.
  • the content of one or more structural units selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 30 carbon atoms exceeds 0 mol% and is 20 mol%. It is more preferable to include the following.
  • the constituent unit of the olefin having 2 carbon atoms is preferably 0 mol%. More than 20 mol%, more preferably more than 0 mol% and 18 mol% or less, still more preferably more than 0 mol% and 16 mol% or less, still more preferably more than 0 mol% and 14 mol% or less.
  • the content of the ⁇ -olefin having 4 or more carbon atoms is preferably more than 0 mol% and 30 mol% or less, more preferably 0 More than mol% and 25 mol% or less, more preferably more than 0 mol% and 20 mol% or less.
  • the propylene-based polymer of the present invention can have a tensile modulus of preferably 5 to 65 MPa, more preferably 7 to 60 MPa, and still more preferably 10 to 55 MPa.
  • the propylene polymer of the present invention can have an elastic recovery rate of preferably 80% or more, more preferably 84% or more, and still more preferably 88% or more.
  • a tensile elasticity modulus and an elastic recovery rate can be measured by the method as described in an Example.
  • a polymerization catalyst for example, a metallocene catalyst or a Ziegler catalyst
  • a metallocene catalyst or a Ziegler catalyst containing a transition metal compound and a promoter component
  • the molded body made of the propylene-based polymer has a poor heat stability, nozzle clogging, and generation of fish eyes during film formation. May occur.
  • reduction of catalyst residues has not been sufficient.
  • the ash content derived from the catalyst and the cocatalyst can be preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
  • the ash content refers to the amount of non-combustible mineral remaining after the organic matter has been ashed.
  • the approximate amount of catalyst residue contained in the propylene polymer can be known from the ash.
  • the catalyst residue contained in the propylene polymer can be reduced, and when the molded body made of the propylene polymer is a film or sheet, The generation of fish eyes can be suppressed, and nozzle clogging can be suppressed in the case of spinning fibers or nonwoven fabrics.
  • the said ash content can be measured by the method as described in an Example.
  • the method for producing the propylene-based polymer of the present invention is not particularly limited.
  • a bi-bridged metallocene complex (component (A)) and boron that can react with the bi-bridged metallocene complex to form an ionic complex A method of polymerizing propylene in the presence of a polymerization catalyst containing a compound (component (B)) can be mentioned.
  • the bibridged metallocene complex is not particularly limited, but a transition metal compound of Group 3 to 10 of the periodic table represented by the following general formula (I) or a lanthanoid series is preferable.
  • a combination of a transition metal compound having a structure represented by the following general formula (I) and the above specific boron compound has a high catalytic activity and is more steric.
  • a propylene polymer having a low regularity and a high elastic recovery rate can be synthesized.
  • the catalyst residue contained in the obtained propylene polymer can be reduced.
  • a double bridged group 3 to 10 or lanthanoid series transition metal compound having a structure represented by the following general formula (I) is preferably used.
  • a 1 and A 2 each independently represent a bridging group consisting of Group 14 (C, Si, Ge, Sn), and they may be the same or different from each other.
  • X is ⁇ -bonding or ⁇ Represents a binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, Y represents a Lewis base, and when there are a plurality of Y, a plurality of Y may be the same or different Y may be cross-linked with other Y or X.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group, wherein R 3 to R 10 are R 3 combinations all ⁇ R 10 is a hydrogen atom, R 4, R 5, R 8 and R 9 is substituted if Is a straight-chain or branched alkyl group unsubstituted 1-8 carbon atoms, and combinations R 3, R 6, R 7 and R 10 are hydrogen atoms, or R 4, R 5, R 8 and R 9 is a hydrogen atom, and R 3, R 6, R 7 and R 10 are combined a linear or branched alkyl group having 1 to 8 carbon atoms substituted or unsubstituted.
  • R 4 and R 5 and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms, where M is a group 3-10 of the periodic table or a lanthanoid series metal Element.
  • a 1 and A 2 each represent a bridging group consisting of Group 14 (C, Si, Ge, Sn), which may be the same or different.
  • Examples of A 1 and A 2 include a crosslinking group represented by the following general formula (II).
  • E represents C, Si, Ge, Sn, and R 11 and R 12 are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. And they may be the same or different from each other, and may be bonded to each other to form a ring.
  • E represents an integer of 1 to 4.
  • halogen atom in the general formula (II) examples include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group, and an octyl group, a vinyl group, a propenyl group, and a cyclo group.
  • Alkenyl groups such as hexenyl group; arylalkyl groups such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group And aryl groups such as a methylnaphthyl group, anthracenyl group, and phenanthryl group.
  • alkyl groups such as methyl group, ethyl group, and propyl group, and aryl groups such as phenyl group are preferable.
  • halogenated hydrocarbon group having 1 to 20 carbon atoms examples include a halogenated hydrocarbon group in which a halogen atom is substituted on the hydrocarbon group.
  • halogenated alkyl groups such as a trifluoromethyl group and a trichloromethyl group are preferred.
  • bridging group consisting of carbon atoms in the general formula (II) include alkylidene groups such as methylene group, ethylidene group, propylidene group, isopropylidene group, cyclohexylidene group; 1,1-cyclohexylene group, vinylidene group Is mentioned.
  • Specific examples of the bridging group comprising a silicon atom include alkylsilylene groups such as methylsilylene group, dimethylsilylene group, diethylsilylene group, di (n-propyl) silylene group, di (i-propyl) silylene group, and di (cyclohexyl) silylene.
  • Silylene groups alkylarylsilylene groups such as methylphenylsilylene groups and ethylphenylsilylene groups; arylsilylene groups such as diphenylsilylene groups, di (p-tolyl) silylene groups, and di (p-chlorophenyl) silylene groups.
  • Specific examples of the bridging group comprising a germanium atom include a germanylene group in which the silicon atom of the bridging group comprising the silicon atom is replaced with a germanium atom.
  • the bridging group comprising a tin atom include a stannylene group in which the silicon atom of the bridging group comprising the silicon atom is substituted with a tin atom.
  • a 1 and A 2 a bridging group consisting of carbon atoms or a bridging group consisting of silicon atoms is preferable.
  • X is a ⁇ bond or ⁇ bond ligand, and when there are a plurality of X, the plurality of X may be the same or different.
  • ⁇ bondable ligands include halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, and amide groups having 1 to 20 carbon atoms.
  • a halogen atom and a hydrocarbon group having 1 to 20 carbon atoms are preferred. Specific examples of the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms are the same as described above.
  • alkoxy group having 1 to 20 carbon atoms examples include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group, phenylmethoxy group, phenylethoxy group and the like.
  • aryloxy group having 6 to 20 carbon atoms examples include phenoxy group, methylphenoxy group, and dimethylphenoxy group.
  • amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group.
  • Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
  • Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group Examples thereof include substituted silyl ether groups; silicon-substituted alkyl groups such as trimethylsilylmethyl group and phenyldimethylsilylethyl group; silicon-substit
  • Examples of the phosphide group having 1 to 20 carbon atoms include alkyl phosphide groups such as dimethyl phosphide group, diethyl phosphide group, dipropyl phosphide group, dibutyl phosphide group, dihexyl phosphide group, dicyclohexyl phosphide group, and dioctyl phosphide group.
  • alkenyl phosphide group such as divinyl phosphide group, dipropenyl phosphide group, dicyclohexenyl phosphide group; arylalkyl phosphide such as dibenzyl phosphide group, phenylethyl phosphide group, phenylpropyl phosphide group Group: diphenylphosphide group, ditolylphosphide group, bis (dimethylphenyl) phosphide group, bis (trimethylphenyl) phosphide group, bis (ethylphenyl) phosphide group, bis (propylphenyl) phosphide group, bis (bif Yl) phosphide group, dinaphthyl sulfo Sufi de group, bis (methylnaphthyl) phosphide group, Jian tiger Se sulfonyl
  • Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group, vinyl sulfide group, and propenyl.
  • alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group, vinyl sulfide group, and propenyl.
  • Alkenyl sulfide groups such as sulfide groups and cyclohexenyl sulfide groups; arylalkyl sulfide groups such as benzyl sulfide groups, phenylethyl sulfide groups and phenylpropyl sulfide groups; phenyl sulfide groups, tolyl sulfide groups, dimethylphenyl sulfide groups, trimethylphenyl sulfide groups Ethyl phenyl sulfide group, propyl phenyl sulfide group, biphenyl sulfide group, naphthyl sulfide group, methyl naphthyl sulfide De group, anthracenyl Nils sulfide group, an aryl sulfide groups such phenanthryl sulfide group.
  • arylalkyl sulfide groups such as benz
  • Examples of the sulfoxide group having 1 to 20 carbon atoms include methyl sulfoxide group, ethyl sulfoxide group, propyl sulfoxide group, butyl sulfoxide group, hexyl sulfoxide group, cyclohexyl sulfoxide group, octyl sulfoxide group and the like, vinyl sulfoxide group, propenyl Alkenyl sulfoxide groups such as sulfoxide group, cyclohexenyl sulfoxide group; arylalkyl sulfoxide groups such as benzyl sulfoxide group, phenylethyl sulfoxide group, phenylpropyl sulfoxide group; phenyl sulfoxide group, tolyl sulfoxide group, dimethylphenyl sulfoxide group, trimethylphenyl sulfoxide group , Ethylphenyl
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
  • the ⁇ -bonding ligand include compounds having a conjugated diene bond having 4 to 20 carbon atoms and compounds having a non-conjugated diene bond having 5 to 20 carbon atoms.
  • the compound having a conjugated diene bond having 4 to 20 carbon atoms include 1,3-butadiene, isoprene, chloroprene, 1,3-heptadiene, 1,3-hexadiene, 1,3,5-hexatriene, 1,3,5 Examples thereof include 6-heptatriene and diphenylbutadiene.
  • the compound having a non-conjugated diene bond having 5 to 20 carbon atoms include 1,4-pentadiene and 1,5-hexadiene.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. Y may be cross-linked with other Y or X. In some cases, Y may be bridged with the cyclopentadienyl ring of the general formula (I). Examples of Y include amine, ether, phosphine, thioether and the like.
  • amines having 1 to 20 carbon atoms examples include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine.
  • Alkylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine, etc .; arylalkylamines such as phenylethylamine, phenylpropylamine; phenylamine, diphenylamine, dinaphthylamine, etc. Of the arylamine.
  • ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, methyl -Aliphatic mixed ether compounds such as n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl vinyl ether Aliphatic unsaturated ether compounds such as methyl allyl ether, ethyl vinyl ether and e
  • phosphine examples include phosphine having 1 to 20 carbon atoms.
  • monohydrocarbon substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkylphosphines such as trihydrocarbon-substituted phosphines such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine,
  • Q is an integer of 1 to 5 and represents [(M valence) -2], and r is an integer of 0 to 3.
  • R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group.
  • the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an octyl group.
  • alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an octyl group.
  • aryl groups such as phenyl and naphthyl groups
  • arylalkyl groups such as benzyl, phenylethyl and phenylpropyl
  • Examples of the substituent that the hydrocarbon group having 1 to 20 carbon atoms may have include a t-butyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the silicon-containing group include a silicon-containing group having 1 to 20 carbon atoms, and specific examples include a trimethylsilyl group, a trimethylsilylmethyl group, and a triphenylsilyl group.
  • Examples of the heteroatom-containing group include C1-C20 heteroatom-containing groups, and specifically include nitrogen-containing groups such as dimethylamino group, diethylamino group, and diphenylamino group, phenylsulfide group, and methylsulfide group.
  • Sulfur-containing groups such as: phosphorus-containing groups such as dimethylphosphino group and diphenylphosphino group; oxygen-containing groups such as methoxy group, ethoxy group and phenoxy group.
  • a group containing a heteroatom such as halogen, oxygen, or silicon is preferable because of high polymerization activity.
  • R 3 to R 10 are combinations in which all of R 3 to R 10 are hydrogen atoms, and R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear or branched alkyl having 1 to 8 carbon atoms. Or a combination in which R 3 , R 6 , R 7 and R 10 are hydrogen atoms, or R 4 , R 5 , R 8 and R 9 are hydrogen atoms and R 3 , R 6 , R 7 And R 10 is a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms.
  • R 3 to R 10 may be R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear alkyl groups having 1 to 8 carbon atoms. More preferred. R 4 and R 5 , and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms.
  • Examples of the substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t- Examples include butyl group, t-pentyl group, hexyl group, cyclohexyl group, isooctyl group, t-octyl group, 2-ethylhexyl and the like.
  • Examples of the substituent that the linear or branched alkyl group having 1 to 8 carbon atoms may have include a methyl group, an ethyl group, and a butyl group.
  • R 4 , R 5 , R 8 and R 9 are each independently a substituted or unsubstituted straight chain having 1 to 8 carbon atoms from the viewpoint of increasing catalytic activity and decreasing regularity. Or, it is preferably a branched alkyl group, more preferably a substituted or unsubstituted linear alkyl group having 1 to 8 carbon atoms, and a substituted or unsubstituted linear alkyl group having 1 to 4 carbon atoms. More preferably, it is a substituted or unsubstituted alkyl group having 1 to 2 carbon atoms. Moreover, it is preferable from a viewpoint of improving a catalyst activity that at least one of R ⁇ 4 >, R ⁇ 5 >, R ⁇ 8 > and R ⁇ 9 > is a methyl group.
  • R 4 and R 5 and / or R 8 and R 9 are preferably the same group from the viewpoint of uniformly controlling regularity.
  • the transition metal compound in which R 4 , R 5 , R 8 , and R 9 are methyl groups, and R 3 , R 6 , R 7 , and R 10 are hydrogen atoms is When used in combination with a cocatalyst, a propylene polymer having high catalytic activity and lower stereoregularity can be synthesized, which is preferable.
  • M represents a metal element of Group 3 to 10 of the periodic table or a lanthanoid series. Specific examples include titanium, zirconium, hafnium, vanadium, chromium, manganese, nickel, cobalt, palladium, and a lanthanoid metal. It is done. As M, a metal element belonging to Group 4 of the periodic table is preferable because of its high activity.
  • a 1 and A 2 each represent a bridging group composed of a carbon atom or a silicon atom, May be the same as or different from each other.
  • X represents a ⁇ bond or ⁇ bond ligand, and when there are a plurality of X, the plurality of X may be the same or different.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different.
  • Y may be cross-linked with other Y or X.
  • q is an integer of 1 to 5 and represents [(valence of M) -2]
  • r is an integer of 0 to 3.
  • R 1 and R 2 each represent a group containing a hetero atom such as halogen, oxygen, or silicon.
  • R 3 to R 10 are combinations in which all of R 3 to R 10 are hydrogen atoms, and R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear or branched alkyl having 1 to 8 carbon atoms. Or a combination in which R 3 , R 6 , R 7 and R 10 are hydrogen atoms, or R 4 , R 5 , R 8 and R 9 are hydrogen atoms and R 3 , R 6 , R 7 And R 10 is a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms.
  • R 4 and R 5 , and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms.
  • M is a transition metal compound which is a metal element of Group 4 of the periodic table.
  • transition metal compound represented by the general formula (I) an example of Group 4 of the periodic table is shown as (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (4 , 7-dimethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-4,7-dimethylindenyl) zirconium dichloride, (1,2 '-Dimethylsilylene) (2,1'-dimethylsilylene) bis (5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-trimethylsilyl) Methyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilyl) (2,1'-
  • Examples of the boron compound that can react with the aforementioned transition metal compound to form an ionic complex include coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to boron.
  • a compound represented by the general formula (III) or (IV) can be preferably used.
  • L 2 is M 1 , R 13 R 14 M 2 or R 15 3 C described later, L 1 is a Lewis base, M 1 is Group 1 of the periodic table and 8 Metal selected from Group 12 to Group 12, M 2 is a metal selected from Group 8 to Group 10 of the Periodic Table, Z 1 to Z 4 are each a hydrogen atom, dialkylamino group, alkoxy group, aryloxy group, carbon number 1 Represents an alkyl group having ⁇ 20, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, an arylalkyl group, a substituted alkyl group, an organic metalloid group, or a halogen atom.
  • R 13 and R 14 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, and R 15 represents an alkyl group.
  • s is an integer of 1 to 7 in terms of the ionic valence of L 1 -H and L 2
  • t is an integer of 1 or more
  • l t ⁇ s ]
  • M 1 is a metal selected from groups 1 and 8 to 12 of the periodic table, specific examples are Ag, Cu, Na, Li and other atoms, and M 2 is selected from groups 8 to 10 of the periodic table Specific examples of metals that can be used include atoms such as Fe, Co, and Ni.
  • Z 1 to Z 4 include, for example, a dimethylamino group as a dialkylamino group, a diethylamino group, a methoxy group, an ethoxy group, an n-butoxy group as an alkoxy group, a phenoxy group as an aryloxy group, 2, 6 -As a C1-C20 alkyl group such as dimethylphenoxy group and naphthyloxy group, carbon such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-octyl group and 2-ethylhexyl group A phenyl group, p-tolyl group, benzyl group, pentafluorophenyl group, 3,5-di (trifluoromethyl) phenyl group, 4-tertiary-butyl as an aryl group, alkylaryl group or arylalkyl group of formula 6-20
  • substituted cyclopentadienyl group represented by each of R 13 and R 14 include a methylcyclopentadienyl group, a butylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
  • anions in which a plurality of groups are bonded to boron include B (C 6 F 5 ) 4 ⁇ , B (C 6 HF 4 ) 4 ⁇ , and B (C 6 H 2 F 3 ). 4 ⁇ , B (C 6 H 3 F 2 ) 4 ⁇ , B (C 6 H 4 F) 4 ⁇ , B (C 6 CF 3 F 4 ) 4 ⁇ , B (C 6 H 5 ) 4 ⁇ , BF 4 -And the like.
  • the metal cation Cp 2 Fe +, (MeCp ) 2 Fe +, (tBuCp) 2 Fe +, (Me 2 Cp) 2 Fe +, (Me 3 Cp) 2 Fe +, (Me 4 Cp) 2 Fe + , (Me 5 Cp) 2 Fe + , Ag + , Na + , Li + and the like can be mentioned, and other cations include pyridinium, 2,4-dinitro-N, N-diethylanilinium, diphenylammonium.
  • Nitrogen-containing compounds such as p-nitroanilinium, 2,5-dichloroanilinium, p-nitro-N, N-dimethylanilinium, quinolinium, N, N-dimethylanilinium, N, N-diethylanilinium,
  • triphenylcarbenium tri (4-methylphenyl) carbenium, tri (4-methoxyphenyl) carbenium Rubeniumu compound, CH 3 PH 3 +, C 2 H 5 PH 3 +, C 3 H 7 PH 3 +, (CH 3) 2 PH 2 +, (C 2 H 5) 2 PH 2 +, (C 3 H 7 ) 2 PH 2 +, (CH 3) 3 PH +, (C 2 H 5) 3 PH +, (C 3 H 7) 3 PH +, (CF 3) 3 PH +, (CH 3) 4 P +, Alkylphosphonium ions such as (C 2 H 5 ) 4 P + , (C 3 H 7 ) 4 P + , and C
  • Examples of the compound of the general formula (III) include triethylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetraphenylborate, triethylammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) ) Tri (n-butyl) ammonium borate, triethylammonium hexafluoroarsenate, pyridinium tetrakis (pentafluorophenyl) borate, pyrrolium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, Examples include
  • examples of the compound of the general formula (IV) include, for example, ferrocenium tetraphenylborate, dimethylferrocenium tetrakis (pentafluorophenyl) borate, ferrocenium tetrakis (pentafluorophenyl) borate, decamethylferrous tetrakis (pentafluorophenyl) borate.
  • a preferred coordination complex compound is composed of a non-coordinating anion and a substituted triarylcarbenium, and the non-coordinating anion includes, for example, the general formula (V) (BZ 1 Z 2 Z 3 Z 4) - ⁇ (V) [Wherein Z 1 to Z 4 are each a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms (including a halogen-substituted aryl group) , An alkylaryl group, an arylalkyl group, a substituted alkyl group and an organic metalloid group or a halogen atom. ] The compound represented by these can be mentioned.
  • examples of the substituted triarylcarbenium include, for example, the general formula (VI) [CR 16 R 17 R 18 ] + ... (VI)
  • R 16 , R 17 and R 18 in the general formula (VI) are each an aryl group such as a phenyl group, a substituted phenyl group, a naphthyl group and an anthracenyl group, and they may be the same or different from each other. However, at least one of them is a substituted phenyl group, a naphthyl group or an anthracenyl group.
  • the substituted phenyl group is, for example, represented by the general formula (VII) C 6 H 5-k R 19 k (VII) It can be expressed as R 19 in the general formula (VII) represents a hydrocarbyl group having 1 to 10 carbon atoms, an alkoxy group, an aryloxy group, a thioalkoxy group, a thioaryloxy group, an amino group, an amide group, a carboxyl group, and a halogen atom, and k is It is an integer from 1 to 5. When k is 2 or more, the plurality of R 19 may be the same or different.
  • non-coordinating anion represented by the general formula (V) include tetra (fluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, Tetrakis (pentafluorophenyl) borate, tetrakis (trifluoromethylphenyl) borate, tetra (toluyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate And tridecahydride-7,8-dicarboundeborate.
  • substituted triarylcarbenium represented by the general formula (VI) include tri (toluyl) carbenium, tri (methoxyphenyl) carbenium, tri (chlorophenyl) carbenium, tri (fluorophenyl) carbenium, tri ( Xylyl) carbenium, [di (toluyl), phenyl] carbenium, [di (methoxyphenyl), phenyl] carbenium, [di (chlorophenyl), phenyl] carbenium, [toluyl, di (phenyl)] carbenium, [methoxyphenyl, di (Phenyl)] carbenium, [chlorophenyl, di (phenyl)] carbenium and the like.
  • the use ratio (molar ratio) of the component (A) / component (B) is preferably 1/100 to 1/1, more preferably 1/10 to 1/1.
  • the method for preparing the polymerization catalyst is not particularly limited, and a conventionally known method can be used.
  • the component (A) and the component (B) may be added to the polymerization solvent at the same time and mixed, or after the component (A) is added to the polymerization solvent, the component (B) is added and mixed. May be.
  • the polymerization catalyst may be prepared by adding each component in a polymerization reaction vessel, or preparing a catalyst solution by mixing each component in another vessel in advance, and polymerizing the obtained catalyst solution. A polymerization reaction may be performed in addition to the reaction vessel.
  • the polymerization solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, decalin, and tetralin, pentane, hexane, and heptane. And aliphatic hydrocarbons such as octane, halogenated hydrocarbons such as chloroform and dichloromethane, etc., and toluene, xylene and decalin are preferred. These solvents may be used alone or in combination of two or more.
  • the method for polymerizing propylene is not particularly limited, and any polymerization method such as a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, a bulk polymerization method, or a suspension polymerization method can be employed.
  • the polymerization temperature is usually ⁇ 100 to 250 ° C., preferably ⁇ 50 to 200 ° C., more preferably 0 to 130 ° C.
  • the polymerization pressure is preferably from normal pressure to 20 MPa (gauge), more preferably from normal pressure to 10 MPa (gauge).
  • the polymerization time is preferably 5 minutes to 15 hours.
  • examples of the method for adjusting the molecular weight of the propylene polymer include selection of the type of each component, the amount used and the polymerization temperature, and further polymerization in the presence of hydrogen.
  • the concentration of the component (A) is preferably 0.001 to 500 ⁇ mol / L. Good activity is obtained by being in this range. From this viewpoint, the concentration of the component (A) is more preferably 0.005 to 250 ⁇ mol / L, and further preferably 0.01 to 100 ⁇ mol / L.
  • concentration of (A) component here means the density
  • prepolymerization using the above-mentioned polymerization catalyst or in the process of preparing the catalyst.
  • This prepolymerization can be carried out by bringing a small amount of olefin into contact with the catalyst or the catalyst being prepared, but the method is not particularly limited, and a known method can be used.
  • the olefin used for the prepolymerization is not particularly limited, and examples thereof include ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, or a mixture thereof.
  • the reaction temperature for the prepolymerization is preferably ⁇ 20 to 100 ° C., more preferably ⁇ 10 to 70 ° C., and further preferably 0 to 50 ° C.
  • a solvent selected from the polymerization solvents is preferably used, and an aliphatic hydrocarbon or an aromatic hydrocarbon is more preferable.
  • This prepolymerization can also be carried out without a solvent.
  • the amount of the prepolymerized product per millimole of the transition metal component in the catalyst is preferably 1 to 10000 g, and more preferably the conditions are adjusted to 10 to 1000 g.
  • the elastic body of the present invention is composed of the above-mentioned propylene-based polymer, it has an excellent elastic recovery rate and is suitably used for applications such as molded articles such as films, sheets, fibers, and nonwoven fabrics, and hot melt adhesives. .
  • the melting endotherm ( ⁇ HD) is a differential scanning calorimeter (manufactured by Perkin Elmer Co., Ltd.) with a line connecting the point on the low temperature side where there is no change in calorie and the point on the high temperature side where there is no change in calorie as the baseline. , “DSC-7”), and calculating the area surrounded by the line portion including the peak of the melting endothermic curve obtained by DSC measurement and the base line.
  • the melting endotherm ( ⁇ HD) at 20 to 65 ° C. is 20 ° C. and 65 ° C. obtained by DSC measurement. It is calculated by determining the area surrounded by the line portion including the peak of the melting endothermic curve between ° C and the baseline between 20 ° C and 65 ° C.
  • ⁇ GPC measurement device Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation Detector: RI detection for liquid chromatogram "WATERS 150C” manufactured by Waters Corporation ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • 1,3-bond fraction (D / 2) / (A + B + C + D) ⁇ 100 (mol%)
  • 2,1-bond fraction [(A + B) / 2] / (A + B + C + D) ⁇ 100 (mol%)
  • the ash content is measured according to ISO3451-1 (1997). That is, 200 g of the sample was heated at 600 ° C. for 1 hour in a muffle furnace and then weighed.
  • a mixed solution of 48.50 g (278 mmol) of 1,2,3,5-tetrahydro-s-indacene, 11.6 mL of water and 275 mL of DMSO was prepared in a 1 L three-necked flask.
  • the mixed solution was cooled in an ice bath, and 49.5 g (278 mmol) of N-bromosuccinimide was slowly added so that the temperature of the reaction system was 15 ° C. or lower.
  • the obtained dark brown solution was returned to room temperature (25 ° C.) and stirred for 10 hours.
  • the mixture was cooled again to 0 ° C. and quenched with 750 mL of water.
  • a dropping funnel and a Dimroth condenser were installed in a 300 mL three-necked flask, and 9.3 g (384 mmol) of magnesium pieces were suspended in 100 mL of tetrahydrofuran (THF) on the flask side.
  • THF tetrahydrofuran
  • a small amount of 1,2-dibromoethane (0.1 mL) was added to a magnesium suspension in THF, stirred for 15 minutes, and then 35.60 g (151.6- (6) -bromo-1,2,3,5-tetrahydro-s-indacene). 4 mmol) in THF (150 mL) was added dropwise from a dropping funnel.
  • Dimethylbis (1,5,6,7-tetrahydro-s-indasen-2-yl) silane (27.35 g, 74.20 mmol) is dissolved in 300 mL of diethyl ether, and n-butyllithium (2. 65M, 67.3 mL, 178.4 mmol) was added dropwise. After completion of dropping, the mixture was stirred overnight at room temperature (25 ° C.). The supernatant was removed and the residue was washed with 100 mL of hexane. The resulting white powder was dried under reduced pressure.
  • This lithium salt was dissolved in 200 mL of THF, cooled using an ice bath, and 7.40 mL (61.9 mmol) of dichlorodimethylsilane was added dropwise. After the reaction mixture was stirred for 2 hours at room temperature (25 ° C.), a Dimroth condenser was attached to the reaction vessel, and the reaction mixture was stirred at 50 ° C. for 4 hours. The reaction mixture was cooled to room temperature (25 ° C.) and filtered.
  • dilithium salt (6.50 g, yield 83%).
  • Dilithium salt (6.50 g, 8.58 mmol) was suspended in 100 mL of hexane and cooled in a dry ice / ethanol bath.
  • Zirconium tetrachloride (2.00 g, 8.58 mmol) was suspended in hexane (50 mL) and added dropwise to the cooled hexane suspension of the ligand dilithium salt using a cannula. After completion of the dropwise addition, the temperature was gradually returned to room temperature (25 ° C.) and stirred overnight at room temperature (25 ° C.).
  • reaction mixture was cooled and then poured into 1000 g of ice water.
  • the reaction mixture was extracted with 500 mL of toluene, washed with saturated aqueous sodium hydrogen carbonate solution, water and brine, and then dried over anhydrous magnesium sulfate. It was then filtered and the solvent was removed under reduced pressure.
  • the obtained crude product was dissolved in 2500 mL of hexane, filtered, and crystallized at 4 ° C. to obtain 14.2 g of 5,6-dimethyl-1-indanone (yield 19%). This operation was repeated three times to obtain 51.3 g of 5,6-dimethyl-1-indanone.
  • Synthesis was performed in the same manner as in Production Example 2 except that zirconium tetraiodide was used instead of zirconium tetrachloride in (2-5) of Production Example 2, and (1,2′-dimethylsilylene) (2,1 '-Dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide was obtained as a yellow solid (yield 40%).
  • the white precipitate was filtered off, then the mother liquor was evaporated and 31.5 g of lithium salt was isolated by washing with hexane.
  • the lithium salt was dissolved in 200 mL of THF, and methyltrimethylsilane iodide (16.0 mL, 108 mmol) was added dropwise at 0 ° C. After completion of the addition, the mixture was stirred for 1 hour after raising to 25 ° C. Then, 30 mL of water was added.
  • This lithium salt was suspended in 60 mL of hexane, and 5.9 g (25.0 mmol) of zirconium tetrachloride suspended in 20 mL of hexane was added at ⁇ 20 ° C. After raising to 25 ° C. and stirring overnight, the produced yellow solid was filtered off and washed with 100 mL of hexane. The obtained solid was recrystallized from 100 mL of dichloromethane to give (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) bis (3- 7.35 g of trimethylsilylmethylindenyl) zirconium dichloride was obtained (yield 37%).
  • Example 1 To a heat-dried 1 liter autoclave, 400 mL of heptane and 0.4 mmol of triisobutylaluminum were added at room temperature in a nitrogen atmosphere and stirred, and then (1,2'-dimethylsilylene) (2,1'-dimethyl) was used as a catalyst species.
  • Example 2 In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide [1] is used as a catalyst species. 110 g of a propylene polymer was obtained in the same manner as in Example 1 except that the transition metal compound a3] was changed.
  • Example 3 In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition] is used as a catalyst species. 128 g of a propylene polymer was obtained in the same manner as in Example 1 except that the metal compound a2] was changed.
  • Example 4 Into a stainless steel reactor with an internal volume of 20 L equipped with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakis (pentafluorophenyl) borate, (1,2'-dimethyl) A catalyst component obtained by pre-contacting silylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in a mass ratio of 1: 2: 20 in advance with propylene, It was continuously supplied at 6 ⁇ mol / hr in terms of zirconium.
  • a polymerization solution having a desired molecular weight maintaining the total pressure in the reactor at 1.0 MPa ⁇ G, continuously supplying hydrogen and propylene so that the hydrogen / propylene ratio is 0.05, setting the polymerization temperature to 72 ° C. Got.
  • an antioxidant was added so that the content thereof was 1000 ppm by mass, and then n-heptane as a solvent was removed to obtain a propylene polymer.
  • Example 5 In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-methyl-5,6-dimethylindenyl) zirconium dichloride [transition metal] is used as the catalyst species. 74g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 70 ° C.
  • Example 6 In Example 1, 145 g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was set to 70 ° C.
  • Example 7 In Example 3, 115 g of a propylene polymer was obtained in the same manner as in Example 3 except that the polymerization temperature was set to 70 ° C.
  • Example 8 In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclopentylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition] is used as a catalyst species. 121 g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 70 ° C. and the polymerization time was 30 minutes.
  • Example 9 In Example 1, 0.5 ⁇ m of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a7] was used as a catalyst species. 154 g of a propylene polymer was obtained in the same manner as in Example 1, except that 2 micromole of dimethylanilinium tetrakis (pentafluorophenyl) borate was used as a promoter, the reaction temperature was 69 ° C., and the reaction time was 13 minutes. It was.
  • Example 10 (Example 10) In Example 3, 76 g of a propylene polymer was obtained in the same manner as in Example 3 except that the reaction temperature was 80 ° C.
  • Example 11 In Example 5, 81 g of a propylene polymer was obtained in the same manner as in Example 5 except that the polymerization temperature was 80 ° C.
  • Example 12 In Example 9, 197 g of a propylene polymer was obtained in the same manner as in Example 9 except that the polymerization temperature was 72 ° C. and the polymerization time was 15 minutes.
  • Example 13 111 g of a propylene polymer was obtained in the same manner as in Example 8 except that the polymerization temperature was 80 ° C.
  • Example 14 In Example 9, the transition metal compound a7 was converted to (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-n-butylindenyl) zirconium dichloride [transition metal compound a8] as a catalyst species. 157 g of a propylene polymer was obtained in the same manner as in Example 9, except that the polymerization temperature was 67 ° C. and the polymerization time was 25 minutes.
  • Propylene and hydrogen were continuously supplied at a polymerization temperature of 65 ° C. so that the gas phase hydrogen concentration was 8 mol% and the total pressure in the reactor was maintained at 1.0 MPa ⁇ G.
  • n-heptane which is a solvent of the obtained polymerization solution, a propylene polymer was obtained.
  • Propylene and hydrogen were continuously supplied at a polymerization temperature of 75 ° C. so that the gas phase hydrogen concentration was 1 mol% and the total pressure in the reactor was kept at 1.0 MPa ⁇ G.
  • n-heptane which is a solvent of the obtained polymerization solution, a propylene polymer was obtained.
  • Propylene and hydrogen were continuously supplied at a polymerization temperature of 70 ° C. so that the gas phase hydrogen concentration was 15 mol% and the total pressure in the reactor was maintained at 1.0 MPa ⁇ G.
  • n-heptane as a solvent of the obtained polymerization solution, a propylene-based polymer was obtained.
  • Propylene and hydrogen were continuously supplied at a polymerization temperature of 85 ° C. so that the gas phase hydrogen concentration was 15 mol% and the total pressure in the reactor was kept at 1.0 MPa ⁇ G.
  • n-heptane as a solvent of the obtained polymerization solution, a propylene-based polymer was obtained.
  • Example 5 (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclohexylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a10] was used as a catalyst species. 1 micromole, 4 micromole of dimethylanilinium tetrakis (pentafluorophenyl) borate as cocatalyst, total pressure 0.68 MPa, hydrogen partial pressure 0.03 MPa, polymerization temperature 83 ° C., polymerization time 90 minutes Except that, 114 g of a propylene polymer was obtained in the same manner as in Example 1.
  • Example 9 (Comparative Example 6) In Example 9, 186 g of a propylene polymer was obtained in the same manner as in Example 9 except that the polymerization temperature was 80 ° C. and the polymerization time was 15 minutes.
  • Comparative Example 7 In Comparative Example 6, 0.5 ⁇ m of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a11] was used as a catalyst species. 65 g of a propylene polymer was obtained in the same manner as in Comparative Example 6 except that 500 ⁇ mol of methylaluminoxane and 0.2 mmol of triisobutylaluminum were used as promoters and the polymerization time was 30 minutes.
  • Example 8 In Example 1, the transition metal compound a1 was changed to (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a12] as the catalyst species. Then, 128 g of a propylene polymer was obtained in the same manner as in Example 1 except that the total pressure was 0.85 MPa, the polymerization temperature was 40 ° C., and the polymerization time was 19 minutes.
  • the tensile elastic modulus was in the range of 5 to 65 MPa, and the elastic recovery rate was as high as 80% or more. It was.
  • the propylene-based polymer of the present invention becomes an elastic body having an excellent elastic recovery rate, it is suitably used as a raw material for molded articles such as films, sheets, fibers, and nonwoven fabrics, and hot melt adhesives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Provided is a propylene-based polymer which satisfies (1)-(4) below: (1) the intrinsic viscosity [η] measured at 135˚C in a tetralin solvent is 0.3-5.0 dL/g; (2) the melting endotherm (ΔH-D), which is obtained from a melting endotherm curve acquired using a differential scanning calorimeter (DSC) as a result of holding a sample at -10˚C for 5 minutes in a nitrogen atmosphere, and subsequently increasing the temperature by 10˚C/min, is 3-30 J/g; (3) at least one melting point (Tm-D), of which the peak top is defined as the maximum point of the melting endotherm curve acquired using the DSC as a result of holding the sample at -10˚C for 5 minutes in the nitrogen atmosphere, and subsequently raising the temperature by 10˚C/min, is present in the range 20-65˚C; and (4) the melting endotherm (ΔH-D) in the range of 20-65˚C in the melting endotherm curve acquired using the DSC as a result of holding the sample at -10˚C for 5 minutes in the nitrogen atmosphere, and subsequently raising the temperature by 10˚C/minute, is at least 30% of the melting endotherm (ΔH-D) in (2).

Description

プロピレン系重合体及び弾性体Propylene polymer and elastic body
 本発明は、プロピレン系重合体及び該プロピレン系重合体からなる弾性体に関する。 The present invention relates to a propylene polymer and an elastic body comprising the propylene polymer.
 プロピレン系重合体は、軽量であり、かつ機械的強度、耐化学薬品性及び耐候性等に優れているので、各種の分野に広く利用されている。中でも、弾性回復率の高いプロピレン系重合体の需要が高まっている。例えば、特許文献1乃至3には、メソペンタッド分率[mmmm]が20~60モル%であるプロピレン系重合体が開示されている。 Propylene polymers are widely used in various fields because they are lightweight and have excellent mechanical strength, chemical resistance, weather resistance, and the like. Among them, the demand for propylene polymers having a high elastic recovery rate is increasing. For example, Patent Documents 1 to 3 disclose propylene polymers having a mesopentad fraction [mmmm] of 20 to 60 mol%.
特開2001-172325号公報JP 2001-172325 A 特開2001-226498号公報JP 2001-226498 A 特開2016-65170号公報Japanese Unexamined Patent Publication No. 2016-65170
 しかしながら、特許文献1乃至3に記載のプロピレン系重合体では、立体規則性をある程度低くすることはできるが、弾性回復率は十分なものではなかった。 However, in the propylene-based polymers described in Patent Documents 1 to 3, the stereoregularity can be lowered to some extent, but the elastic recovery rate is not sufficient.
 本発明は、このような実情に鑑みてなされたものであり、弾性回復率の高いプロピレン系重合体、及び該プロピレン系重合体からなる弾性体を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a propylene-based polymer having a high elastic recovery rate and an elastic body made of the propylene-based polymer.
 本発明者らは、上記の課題を解決するべく鋭意検討した結果、下記の発明により当該課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by the following invention.
 すなわち、本願開示は、以下に関する。
[1]以下の(1)~(4)を満たすプロピレン系重合体。
 (1)テトラリン溶媒中135℃にて測定した極限粘度[η]が0.3~5.0dL/g
 (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が3~30J/g
 (3)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの極大点をピークトップとして定義される融点(Tm-D)が20~65℃の範囲に一つ以上存在する。
 (4)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの20~65℃の範囲の融解吸熱量(ΔH-D)が、前記(2)の融解吸熱量(ΔH-D)に対して30%以上である。
[2]前記融点(Tm-D)が20~65℃の範囲に一つ以上存在し、20~65℃の範囲における前記融解吸熱量(ΔH-D)が3~30J/gである上記[1]に記載のプロピレン系重合体。
[3]さらに、65℃を超え180℃以下の範囲に融点(Tm-D)を有し、65℃を超え180℃以下における前記融解吸熱量(ΔH-D)が1~20J/gである上記[1]又は[2]に記載のプロピレン系重合体。
[4]プロピレン単独重合体である上記[1]~[3]のいずれかに記載のプロピレン系重合体。
[5]メソトリアッド分率[mm]が40~60モル%である上記[4]に記載のプロピレン系重合体。
[6]メソペンタッド分率[mmmm]が22~44モル%である上記[4]又は[5]に記載のプロピレン系重合体。
[7]下記(6)を満たす上記[4]~[6]のいずれかに記載のプロピレン系重合体。
 (6)0.7 ≦ [mm]×[rr]/[mr] ≦ 1.3
[8]エチレンおよび炭素数が4~30のα-オレフィンからなる群より選ばれる一つ以上の構成単位が0モル%を超えて20モル%以下含む上記[1]~[3]のいずれかに記載のプロピレン系重合体。
[9]メソトリアッド分率[mm]が50~95モル%である上記[8]に記載のプロピレン系重合体。
[10]下記(7)及び(8)を満たす上記[1]~[9]のいずれかに記載のプロピレン系重合体。
 (7)2,1-結合分率が1.0モル%未満
 (8)1,3-結合分率が0.5モル%未満
[11]分子量分布(Mw/Mn)が3.0以下である上記[1]~[10]のいずれかに記載のプロピレン系重合体。
[12]引張弾性率が5MPa以上65MPa以下である上記[1]~[11]のいずれかに記載のプロピレン系重合体。
[13]弾性回復率が80%以上である上記[1]~[12]のいずれかに記載のプロピレン系重合体。
[14]触媒および助触媒に由来する灰分が300ppm以下である上記[1]~[13]のいずれかに記載のプロピレン系重合体。
[15]上記[1]~[14]のいずれかに記載のプロピレン系重合体からなる弾性体。
That is, the present disclosure relates to the following.
[1] A propylene-based polymer satisfying the following (1) to (4).
(1) Intrinsic viscosity [η] measured in a tetralin solvent at 135 ° C. is 0.3 to 5.0 dL / g
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Heat quantity (ΔHD) is 3-30J / g
(3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. One or more melting points (Tm-D) defined as the top are in the range of 20 to 65 ° C.
(4) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. The melting endotherm (ΔHD) in the range is 30% or more with respect to the melting endotherm (ΔHD) of (2).
[2] The melting point (Tm-D) is one or more in the range of 20 to 65 ° C., and the melting endotherm (ΔHD) in the range of 20 to 65 ° C. is 3 to 30 J / g. 1].
[3] Further, it has a melting point (Tm-D) in the range of more than 65 ° C. and less than 180 ° C., and the melting endotherm (ΔHD) in the range of more than 65 ° C. and less than 180 ° C. The propylene polymer according to the above [1] or [2].
[4] The propylene polymer according to any one of [1] to [3], which is a propylene homopolymer.
[5] The propylene polymer as described in [4] above, wherein the mesotriad fraction [mm] is 40 to 60 mol%.
[6] The propylene polymer as described in [4] or [5] above, wherein the mesopentad fraction [mmmm] is 22 to 44 mol%.
[7] The propylene polymer according to any one of [4] to [6], which satisfies the following (6).
(6) 0.7 ≦ [mm] × [rr] / [mr] 2 ≦ 1.3
[8] Any one of the above [1] to [3], wherein one or more structural units selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms include more than 0 mol% and 20 mol% or less The propylene-based polymer described in 1.
[9] The propylene polymer according to the above [8], wherein the mesotriad fraction [mm] is 50 to 95 mol%.
[10] The propylene polymer according to any one of [1] to [9], which satisfies the following (7) and (8).
(7) 2,1-bond fraction is less than 1.0 mol% (8) 1,3-bond fraction is less than 0.5 mol% [11] Molecular weight distribution (Mw / Mn) is 3.0 or less The propylene polymer according to any one of the above [1] to [10].
[12] The propylene polymer according to any one of the above [1] to [11], which has a tensile elastic modulus of 5 MPa to 65 MPa.
[13] The propylene polymer as described in any one of [1] to [12], which has an elastic recovery rate of 80% or more.
[14] The propylene polymer according to any one of [1] to [13] above, wherein the ash derived from the catalyst and the cocatalyst is 300 ppm or less.
[15] An elastic body comprising the propylene polymer according to any one of [1] to [14].
 本発明によれば、弾性回復率の高いプロピレン系重合体、及び該プロピレン系重合体からなる弾性体を提供することができる。 According to the present invention, it is possible to provide a propylene polymer having a high elastic recovery rate and an elastic body made of the propylene polymer.
 以下、本発明について詳細に説明する。なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。 Hereinafter, the present invention will be described in detail. In this specification, the term “A to B” relating to the description of numerical values means “A to B or less” (when A <B) or “A or less to B or more” (when A> B). . Moreover, in this invention, the combination of a preferable aspect is a more preferable aspect.
<プロピレン系重合体>
 本発明のプロピレン系重合体は、以下の(1)~(4)を満たすことを特徴とする。
 (1)テトラリン溶媒中135℃にて測定した極限粘度[η]が0.3~5.0dL/g
 (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が3~30J/g
 (3)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの極大点をピークトップとして定義される融点(Tm-D)が20~65℃の範囲に一つ以上存在する。
 (4)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの20~65℃の範囲の融解吸熱量(ΔH-D)が、前記(2)の融解吸熱量(ΔH-D)に対して30%以上である。
<Propylene polymer>
The propylene polymer of the present invention is characterized by satisfying the following (1) to (4).
(1) Intrinsic viscosity [η] measured in a tetralin solvent at 135 ° C. is 0.3 to 5.0 dL / g
(2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Heat quantity (ΔHD) is 3-30J / g
(3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. One or more melting points (Tm-D) defined as the top are in the range of 20 to 65 ° C.
(4) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. The melting endotherm (ΔHD) in the range is 30% or more with respect to the melting endotherm (ΔHD) of (2).
 本発明のプロピレン系重合体は、弾性回復率に優れた弾性体(エラストマー)となる。そのメカニズムは定かではないが、次のように考えられる。
 アイソタクチック性のプロピレン系重合体は、3/1螺旋鎖がパッキングする形でラメラ構造を形成し、一般的に立体規則性に応じて融点の異なるラメラ構造を形成する。中でも、立体規則性が低い場合には、形成されるラメラ構造の他に3/1螺旋鎖がスメクチック相のように自己集合して出来る房状ミセル構造が形成される場合がある。この房状ミセル構造はラメラ構造のような長距離秩序性を持たない構造であり、立体規則性が低く、結晶化度が低い場合に、ラメラ構造になれなかった非晶部の3/1螺旋鎖が寄り集まることで形成されるため、ラメラ構造と違い、立体規則性に依存せずにある特定の温度域に融点を有する。
 ラメラ構造はそれぞれの3/1螺旋鎖が結晶格子を組む形で、規則的にパッキングしており、形成する構造は長距離秩序性が有り、かつ、強固な構造であるため、外部からの歪みに対して、そのエネルギーを分散できずに構造が破壊されてしまう。これが永久歪みとなるため、ラメラ構造を多く含むプロピレン系重合体の弾性回復性は低くなると考えられる。これに対して、立体規則性が低く、結晶化度の低いプロピレン系重合体は、形成するラメラ構造の量が少ないもしくは無く、代わりに房状ミセル構造が一定量形成される。房状ミセル構造は完全な結晶格子を形成しているわけでは無いため、長距離秩序性に乏しい。それによって、外部から歪みが掛かっても、房状ミセル構造自体に応力が集中することなく、絡み合っている周囲の非晶鎖にも応力が分散する。一方、房状ミセル構造が形成されることによって高分子鎖はその一部が取り込まれることにより自由に運動できずに拘束されることになり、立体規則性が低く、結晶化度の低いプロピレン系重合体は、見かけ上、房状ミセル構造が物理的な架橋点の役割を果たした三次元網目構造のような状態を形成する。そのような構造では、外部からの歪みに対して、網目全体でエネルギーを吸収し、歪みが掛からなくなると共に、元の構造に復元しようとする力が働く。つまり、房状ミセル構造が形成され、永久歪みの原因となるラメラ構造の量が少ないことで、弾性回復性の高いプロピレン系重合体が得られると考えられる。プロピレン系重合体の立体規則性が特定の領域にある場合、それにより結晶化度が低くなり、房状ミセル構造が、弾性回復性が良好になるような量形成されるが、さらに立体規則性が低い領域では、形成される房状ミセル構造の量が低下する。その場合、三次元網目構造の物理的架橋点として働く房状ミセル構造の量が足らなくなり、外部からの歪みに対して、高分子鎖の絡み合いがほどけてしまうため、弾性回復性が悪化すると考えられる。
The propylene-based polymer of the present invention becomes an elastic body (elastomer) having an excellent elastic recovery rate. The mechanism is not clear, but can be considered as follows.
An isotactic propylene-based polymer forms a lamellar structure in a form in which 3/1 helical chains are packed, and generally forms a lamellar structure having a different melting point depending on stereoregularity. In particular, when the stereoregularity is low, in addition to the lamellar structure to be formed, a tufted micelle structure formed by self-assembly of the 3/1 helical chain like a smectic phase may be formed. This tufted micelle structure does not have a long-range order like a lamellar structure, and has a low stereoregularity and a low crystallinity, the amorphous part 3/1 helix that did not become a lamellar structure. Since the chain is formed by gathering together, unlike a lamellar structure, it has a melting point in a specific temperature range without depending on stereoregularity.
The lamella structure is a regular packing in which each 3/1 spiral chain forms a crystal lattice, and the structure to be formed has a long-range order and is a strong structure, so that external strain On the other hand, the structure is destroyed because the energy cannot be dispersed. Since this becomes a permanent strain, it is considered that the elastic recoverability of the propylene polymer containing a large amount of lamellar structure is lowered. On the other hand, a propylene polymer having low stereoregularity and low crystallinity has little or no amount of lamellar structure to be formed, and instead, a certain amount of tufted micelle structure is formed. Since the tufted micelle structure does not form a complete crystal lattice, it has poor long-range order. As a result, even if a strain is applied from the outside, the stress is not concentrated on the tufted micelle structure itself, and the stress is also distributed to the surrounding amorphous chains. On the other hand, by forming a tufted micelle structure, the polymer chain is restrained without being able to move freely by incorporating a part of it, and is low in stereoregularity and low in crystallinity. The polymer apparently forms a state like a three-dimensional network structure in which the tufted micelle structure functions as a physical cross-linking point. In such a structure, the entire mesh absorbs energy against strain from the outside, the strain is not applied, and a force to restore the original structure works. That is, it is considered that a propylene-based polymer having a high elastic recovery property can be obtained by forming a tufted micelle structure and reducing the amount of the lamellar structure that causes permanent deformation. When the stereoregularity of the propylene polymer is in a specific region, the crystallinity is thereby lowered, and the tufted micelle structure is formed in such an amount that the elastic recovery is good. In regions with low, the amount of tufted micelle structures formed is reduced. In that case, the amount of the tufted micelle structure that acts as a physical cross-linking point of the three-dimensional network structure is insufficient, and the entanglement of the polymer chain with respect to external strain is unraveled, so that the elastic recovery property is deteriorated. It is done.
 良好な弾性回復性を示すためには、房状ミセル構造のような特定の構造が一定量必要であり、それにはプロピレン系重合体の立体規則性が特定の領域にあることが必要となる。アイソタクチック性のプロピレン系重合体の立体規則性が下がることは、アイソタクチック連鎖が短くなることを意味している。アイソタクチック連鎖を短くする方法としては、立体規則性を低くする方法以外に、コモノマーを共重合させる方法もある。いずれもアイソタクチック連鎖は短くなり、それによって3/1螺旋鎖は短くなるため、ラメラ構造の融点の低下や房状ミセル構造の形成がなされ、弾性回復性を高めることができる。
 なお、コモノマーとの共重合体の場合、房状ミセル構造が形成されるよう共重合させるコモノマーの量を適切に調整することで、良好な弾性回復性を示すものとすることができる。
In order to exhibit good elastic recovery, a certain amount of a specific structure such as a tufted micelle structure is required, and this requires that the tacticity of the propylene polymer is in a specific region. Decreasing the stereoregularity of the isotactic propylene polymer means that the isotactic chain is shortened. As a method of shortening the isotactic chain, there is a method of copolymerizing a comonomer in addition to a method of reducing stereoregularity. In either case, the isotactic chain is shortened, whereby the 3/1 helical chain is shortened, so that the melting point of the lamellar structure is lowered and the tufted micelle structure is formed, thereby improving the elastic recovery.
In the case of a copolymer with a comonomer, good elastic recovery can be achieved by appropriately adjusting the amount of the comonomer to be copolymerized so that a tufted micelle structure is formed.
 本発明のプロピレン系重合体は、テトラリン溶媒中135℃にて測定した極限粘度[η]が0.3~5.0dL/gであり、好ましくは0.33~5.0dL/g、より好ましくは0.35~2.0dL/gである。極限粘度[η]が0.3dL/g未満であると、立体規則性に依存せず分子の絡み合いの頻度が減少し、弾性回復性を生じない。また、極限粘度[η]が5.0dL/gを超えると、分子の絡み合い頻度が増加し、弾性回復に必要な物理架橋点である結晶化が生じにくくなる。
 上記極限粘度[η]は、135℃のテトラリン中、ウベローデ型粘度計で還元粘度(ηSP/c)を測定し、下記式(ハギンスの式)を用いて算出される。
  ηSP/c=[η]+K[η]
  ηSP/c(dL/g):還元粘度
  [η](dL/g):極限粘度
  c(g/dL):ポリマー粘度
  K=0.35(ハギンス定数)
The propylene polymer of the present invention has an intrinsic viscosity [η] measured in a tetralin solvent at 135 ° C. of 0.3 to 5.0 dL / g, preferably 0.33 to 5.0 dL / g, more preferably Is 0.35 to 2.0 dL / g. When the intrinsic viscosity [η] is less than 0.3 dL / g, the frequency of molecular entanglement decreases without depending on stereoregularity, and elastic recovery is not caused. In addition, when the intrinsic viscosity [η] exceeds 5.0 dL / g, the molecular entanglement frequency increases and crystallization, which is a physical cross-linking point necessary for elastic recovery, hardly occurs.
The intrinsic viscosity [η] is calculated by measuring the reduced viscosity (η SP / c) in tetralin at 135 ° C. with an Ubbelohde viscometer and using the following equation (Haggins equation).
η SP / c = [η] + K [η] 2 c
η SP / c (dL / g): Reduced viscosity [η] (dL / g): Intrinsic viscosity c (g / dL): Polymer viscosity K = 0.35 (Haggins constant)
 本発明のプロピレン系重合体は、前記融解吸熱量(ΔH-D)が3~30J/gであり、好ましくは5~27J/g、より好ましくは7~25J/gである。融解吸熱量(ΔH-D)が3J/g未満であると、プロピレン系重合体の結晶化度が低過ぎるため、弾性回復に必要な物理架橋点が形成されなくなり、弾性回復率が低くなる。また、融解吸熱量(ΔH-D)が30J/gを超えると、プロピレン系重合体の結晶化度が高過ぎるため、永久歪みの原因となるラメラ構造が多くなり、弾性回復率が低くなる。
 上記融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、DSC測定により得られた融解吸熱カーブの最も高温側に観測されるピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
 なお、融解吸熱量(ΔH-D)は、モノマー濃度や反応圧力を適宜調整することで制御することができる。
The propylene polymer of the present invention has a melting endotherm (ΔHD) of 3 to 30 J / g, preferably 5 to 27 J / g, more preferably 7 to 25 J / g. If the melting endotherm (ΔH−D) is less than 3 J / g, the crystallinity of the propylene polymer is too low, so that the physical crosslinking points necessary for elastic recovery are not formed, and the elastic recovery rate is low. On the other hand, if the melting endotherm (ΔHD) exceeds 30 J / g, the crystallinity of the propylene-based polymer is too high, so that the lamellar structure causing permanent distortion increases and the elastic recovery rate decreases.
The melting endotherm (ΔH−D) is the highest temperature in the melting endotherm curve obtained by DSC measurement, with the line connecting the point on the low temperature side where there is no change in heat quantity and the point on the high temperature side where there is no change in heat quantity as the baseline. It is calculated by calculating the area surrounded by the line portion including the peak observed on the side and the base line.
Note that the melting endotherm (ΔHD) can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
 本発明のプロピレン系重合体は、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの20~65℃の範囲の融解吸熱量(ΔH-D)が、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)に対して30%以上であり、好ましくは50~100%、より好ましくは75~100%である。30%未満では、弾性回復に必要な物理的架橋点として作用する房状ミセル構造が少なく、永久歪みの原因となるラメラ構造が多くなるため、弾性回復率が低くなる。 The propylene-based polymer of the present invention is a melting endotherm obtained by using a differential scanning calorimeter (DSC) and holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting endotherm (ΔH−D) in the range of 20 to 65 ° C. of the curve is 10 ° C./min after holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter (DSC). It is 30% or more, preferably 50 to 100%, more preferably 75 to 100% with respect to the melting endotherm (ΔHD) obtained from the melting endotherm curve obtained by raising the temperature. If it is less than 30%, the number of tufted micelle structures that act as physical cross-linking points necessary for elastic recovery is small, and the number of lamellar structures that cause permanent deformation increases, so the elastic recovery rate is low.
 本発明のプロピレン系重合体は、20~65℃の範囲に融点(Tm-D)を一つ以上有し、好ましくは25~60℃、より好ましくは30~60℃の範囲に融点(Tm-D)を一つ以上有する。融点(Tm-D)が20℃以上に一つ以上無いと、標準的な室温を下回り、弾性回復に必要な物理架橋点が形成されなくなるため、弾性回復率が低くなる。また、融点(Tm-D)が65℃以下に一つ以上無いと、結晶成分が変形に対して追随せず、永久歪みの要因となってしまうため、弾性回復率が低くなる。
 なお、本発明では、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブより観測されたピークのピークトップ(極大点)を融点(Tm-D)とする。また、ピークトップが複数ある場合、それぞれのピークトップをプロピレン系重合体の融点(Tm-D)と定義する。
 融点は、モノマー濃度や反応圧力を適宜調整することで制御可能である。
The propylene-based polymer of the present invention has one or more melting points (Tm-D) in the range of 20 to 65 ° C., preferably 25 to 60 ° C., more preferably 30 to 60 ° C. D) One or more. If one or more melting points (Tm-D) are not higher than 20 ° C., the physical recovery point will be lower than the standard room temperature, and a physical cross-linking point necessary for elastic recovery will not be formed, and the elastic recovery rate will be low. If the melting point (Tm-D) is not more than one at 65 ° C. or lower, the crystal component does not follow the deformation and becomes a factor of permanent strain, so the elastic recovery rate is lowered.
In the present invention, a differential scanning calorimeter (manufactured by Perkin Elmer, “DSC-7”) is used, and 10 mg of a sample is held at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min. Let the peak top (maximum point) of the peak observed from the melting endotherm curve obtained by setting be the melting point (Tm-D). When there are a plurality of peak tops, each peak top is defined as the melting point (Tm-D) of the propylene-based polymer.
The melting point can be controlled by appropriately adjusting the monomer concentration and reaction pressure.
 また、本発明のプロピレン系重合体は、前記融点(Tm-D)が20~65℃の範囲に一つ以上存在し、該20~65℃における前記融解吸熱量(ΔH-D)が、好ましくは3~30J/g、より好ましくは5~27J/g、さらに好ましくは7~25J/gである。融解吸熱量(ΔH-D)が上記範囲内であれば、プロピレン系重合体の結晶化度が適度であり、弾性回復に必要な物理架橋点がより十分に形成されると共に、永久歪みの原因となるラメラ構造が多過ぎず、弾性回復率がより高くなる。 The propylene-based polymer of the present invention has one or more melting points (Tm-D) in the range of 20 to 65 ° C., and the melting endotherm (ΔHD) at 20 to 65 ° C. is preferably Is 3 to 30 J / g, more preferably 5 to 27 J / g, still more preferably 7 to 25 J / g. If the melting endotherm (ΔHD) is within the above range, the propylene-based polymer has an appropriate degree of crystallinity, and more sufficient physical cross-linking points necessary for elastic recovery are formed. There are not too many lamella structures, and the elastic recovery rate is higher.
 本発明のプロピレン系重合体は、さらに、65℃を超え180℃以下の範囲に融点(Tm-D)を有していてもよく、65℃を超え180℃以下における前記融解吸熱量(ΔH-D)が、好ましくは1~20J/g、より好ましくは2~15J/g、さらに好ましくは3~10J/gである。融解吸熱量(ΔH-D)が上記範囲内であれば、プロピレン系重合体の結晶化度が適度であり、弾性回復に必要な物理架橋点が十分に形成されると共に、永久歪みの原因となるラメラ構造が多過ぎず、弾性回復率がより高くなる。 The propylene-based polymer of the present invention may further have a melting point (Tm-D) in the range of more than 65 ° C. and 180 ° C. or less, and the melting endotherm (ΔH− D) is preferably 1 to 20 J / g, more preferably 2 to 15 J / g, still more preferably 3 to 10 J / g. If the melting endotherm (ΔH−D) is within the above range, the degree of crystallinity of the propylene-based polymer is appropriate, the physical cross-linking points necessary for elastic recovery are sufficiently formed, and the cause of permanent distortion There are not too many lamella structures, and the elastic recovery rate is higher.
 本発明のプロピレン系重合体がプロピレン単独重合体である場合のメソトリアッド分率[mm]は、好ましくは40~60モル%、より好ましくは42~59モル%、更に好ましくは44~58モル%である。
 メソトリアッド分率[mm]は、アイソタクティック性を表す立体規則性指標であり、メソトリアッド分率[mm]が上記範囲内であれば、結晶化度が低くなり、弾性回復性を向上させるのに適した物理架橋点の量となる。
 また、前記プロピレン系重合体が、エチレンおよび炭素数が4~30のα-オレフィンからなる群より選ばれる一つ以上の構成単位とプロピレンの共重合体である場合、プロピレンとエチレンおよび炭素数が4~30のα-オレフィンの重合性の観点から、メソトリアッド分率[mm]は、好ましくは50~95モル%、より好ましくは52~85モル%、更に好ましくは54~80モル%である。
When the propylene-based polymer of the present invention is a propylene homopolymer, the mesotriad fraction [mm] is preferably 40 to 60 mol%, more preferably 42 to 59 mol%, still more preferably 44 to 58 mol%. is there.
The mesotriad fraction [mm] is a stereoregularity index indicating isotacticity. If the mesotriad fraction [mm] is within the above range, the crystallinity is lowered and the elastic recovery property is improved. A suitable amount of physical cross-linking points.
Further, when the propylene polymer is a copolymer of propylene with one or more structural units selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms, the propylene, ethylene, and carbon number are From the viewpoint of polymerizability of 4 to 30 α-olefin, the mesotriad fraction [mm] is preferably 50 to 95 mol%, more preferably 52 to 85 mol%, still more preferably 54 to 80 mol%.
 本発明のプロピレン系重合体のメソペンタッド分率[mmmm]は、より高い弾性回復率を得る観点から、好ましくは22~44モル%、より好ましくは25~43モル%、更に好ましくは28~42モル%である。
 メソペンタッド分率[mmmm]は、プロピレン系重合体の立体規則性を表す指標であり、メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。
 なお、メソペンタッド分率[mmmm]は、触媒の種類の選択や重合条件を調整することで制御することが可能である。
The mesopentad fraction [mmmm] of the propylene-based polymer of the present invention is preferably 22 to 44 mol%, more preferably 25 to 43 mol%, still more preferably 28 to 42 mol, from the viewpoint of obtaining a higher elastic recovery rate. %.
The mesopentad fraction [mmmm] is an index representing the stereoregularity of the propylene-based polymer, and the stereoregularity increases as the mesopentad fraction [mmmm] increases.
The mesopentad fraction [mmmm] can be controlled by selecting the type of catalyst and adjusting the polymerization conditions.
 ここで、メソトリアッド分率[mm]、メソペンタッド分率[mmmm]、及び後述するラセミペンタッド分率[rrrr]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠し、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のトリアッド単位でのメソ分率、並びにペンタッド単位でのメソ分率及びラセミ分率である。また、後述する[rr]及び[mr]も上記方法により算出される。 Here, the mesotriad fraction [mm], the mesopentad fraction [mmmm], and the racemic pentad fraction [rrrr], which will be described later, are described in “Macromolecules, 6, 925 (1973)” by A. Zambelli et al. The meso fraction of triad units in the polypropylene molecular chain and the meso fraction and racemic fraction of pentad units measured by the signal of the methyl group in the 13 C-NMR spectrum, in accordance with the method proposed in . [Rr] and [mr] described later are also calculated by the above method.
 本発明のプロピレン系重合体の分子量分布(Mw/Mn)は、べた付きやブリードの原因となる低分子量成分や結晶化の妨げとなる高分子量成分の量のバランスの観点から、好ましくは3.0以下、より好ましくは2.8以下、更に好ましくは2.6以下である。
 本発明において、分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定したポリスチレン換算の重量平均分子量Mw及び数平均分子量Mnより算出した値である。
The molecular weight distribution (Mw / Mn) of the propylene-based polymer of the present invention is preferably 3. from the viewpoint of the balance between the amount of low molecular weight components causing stickiness and bleeding and the amount of high molecular weight components preventing crystallization. It is 0 or less, more preferably 2.8 or less, and still more preferably 2.6 or less.
In the present invention, the molecular weight distribution (Mw / Mn) is a value calculated from the polystyrene-equivalent weight average molecular weight Mw and number average molecular weight Mn measured by gel permeation chromatography (GPC).
 また、本発明のプロピレン系重合体は、さらに下記(5)及び(6)の少なくとも1つを満たすことが好ましい。
 (5)[rrrr]/(100-[mmmm])≦0.1
 (6)0.7≦[mm]×[rr]/[mr]≦1.3
The propylene polymer of the present invention preferably further satisfies at least one of the following (5) and (6).
(5) [rrrr] / (100− [mmmm]) ≦ 0.1
(6) 0.7 ≦ [mm] × [rr] / [mr] 2 ≦ 1.3
(5)[rrrr]/(100-[mmmm])
 [rrrr]/(100-[mmmm])の値は、メソペンタッド分率[mmmm]及びラセミペンタッド分率[rrrr]から求められ、ポリプロピレンの規則性分布の均一さを示す指標である。[rrrr]/(100-[mmmm])の値が小さければ高立体規則性ポリプロピレンとアタクチックポリプロピレンの混合物の割合が低くなり、成形後のポリプロピレン成形物のべたつきが抑制される。なお、上記における[rrrr]及び[mmmm]の単位は、モル%である。
 プロピレン系重合体における[rrrr]/(100-[mmmm])の値は、べたつきを抑制する観点から、好ましくは0.1以下であり、より好ましくは0.025~0.075、更に好ましくは0.035~0.05である。
(5) [rrrr] / (100- [mmmm])
The value of [rrrr] / (100- [mmmm]) is obtained from the mesopentad fraction [mmmm] and the racemic pentad fraction [rrrr] and is an index indicating the uniformity of the regularity distribution of polypropylene. If the value of [rrrr] / (100- [mmmm]) is small, the ratio of the mixture of highly stereoregular polypropylene and atactic polypropylene is low, and stickiness of the polypropylene molded product after molding is suppressed. The unit of [rrrr] and [mmmm] in the above is mol%.
The value of [rrrr] / (100- [mmmm]) in the propylene-based polymer is preferably 0.1 or less, more preferably 0.025 to 0.075, still more preferably from the viewpoint of suppressing stickiness. 0.035 to 0.05.
 (6)[mm]×[rr]/[mr]
 トリアッド分率[mm]、[rr]及び[mr]から算出される[mm]×[rr]/[mr]の値は、重合体のランダム性の指標を表し、1に近いほど均一な結晶を低い結晶化度で形成するようになり、弾性回復に必要な物理架橋点を均一に形成できるようになる。プロピレン系重合体は、上式の値が好ましくは1.3以下、より好ましくは1.2以下である。下限値は、好ましくは0.7以上、より好ましくは0.8以上である。なお、上記における[mm]及び[rr]、[mr]の単位は、モル%である。
(6) [mm] × [rr] / [mr] 2
Triad fraction [mm], the [mm] × [rr] / [mr] 2 values calculated from [rr] and [mr], represents the randomness index of the polymer, such as close to 1 uniformly Crystals are formed with a low crystallinity, and physical cross-linking points necessary for elastic recovery can be formed uniformly. The value of the above formula of the propylene polymer is preferably 1.3 or less, more preferably 1.2 or less. The lower limit is preferably 0.7 or more, more preferably 0.8 or more. The units of [mm], [rr], and [mr] in the above are mol%.
 本発明のプロピレン系重合体は、さらに下記(7)及び(8)を満たすことが熱安定性の観点から好ましい。
 (7)2,1-結合分率が1.0モル%未満
 (8)1,3-結合分率が0.5モル%未満
 プロピレン系重合体の2,1-結合分率は、好ましくは1.0モル%未満、より好ましくは0.7モル%以下、さらに好ましくは0.5モル%以下である。また、プロピレン系重合体の1,3-結合分率は、好ましくは0.5モル%未満、より好ましくは0.4モル%以下、さらに好ましくは0.3モル%以下である。
The propylene polymer of the present invention preferably satisfies the following (7) and (8) from the viewpoint of thermal stability.
(7) 2,1-bond fraction is less than 1.0 mol% (8) 1,3-bond fraction is less than 0.5 mol% The 2,1-bond fraction of the propylene-based polymer is preferably It is less than 1.0 mol%, more preferably 0.7 mol% or less, still more preferably 0.5 mol% or less. Further, the 1,3-bond fraction of the propylene-based polymer is preferably less than 0.5 mol%, more preferably 0.4 mol% or less, still more preferably 0.3 mol% or less.
 本発明のプロピレン系重合体は、上記(1)~(4)の条件を満たせば、特に限定されないが、例えば、プロピレン単独重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンブロック共重合体、プロピレン-α-オレフィンブロック共重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-エチレン-ブテン三元ランダム共重合体、プロピレン-α-オレフィンランダム共重合体、又はプロピレン-α-オレフィングラフト共重合体等から選択されるプロピレン系重合体であることが好ましく、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-エチレン-ブテン三元ランダム共重合体から選択されるプロピレン系重合体であることがより好ましく、プロピレン単独重合体であることがさらに好ましい。 The propylene-based polymer of the present invention is not particularly limited as long as the above conditions (1) to (4) are satisfied. For example, propylene homopolymer, propylene-ethylene block copolymer, propylene-butene block copolymer , Propylene-α-olefin block copolymer, propylene-ethylene random copolymer, propylene-butene random copolymer, propylene-ethylene-butene ternary random copolymer, propylene-α-olefin random copolymer, or A propylene-based polymer selected from propylene-α-olefin graft copolymers and the like is preferable. Propylene homopolymer, propylene-ethylene random copolymer, propylene-butene random copolymer, propylene-α-olefin Random copolymer, propylene-ethylene- More preferably a propylene-based polymer selected from the ten ternary random copolymer, more preferably a propylene homopolymer.
 本発明のプロピレン系重合体が共重合体である場合は、エチレンおよび炭素数が4~30のα-オレフィンからなる群より選ばれる一つ以上の構成単位が0モル%を超えて20モル%以下含むことがより好ましい。 When the propylene-based polymer of the present invention is a copolymer, the content of one or more structural units selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms exceeds 0 mol% and is 20 mol%. It is more preferable to include the following.
 また、本発明のプロピレン系重合体は、炭素数が2のオレフィンを含有する共重合体の場合には、炭素数が2のオレフィン(すなわち、エチレンモノマー)の構成単位が、好ましくは0モル%を超え20モル%以下、より好ましくは0モル%を超え18モル%以下、更に好ましくは0モル%を超え16モル%以下、より更に好ましくは0モル%を超え14モル%以下である。また、炭素数が4以上のαオレフィンを含有する共重合体の場合には、炭素数が4以上のα-オレフィン含有量が、好ましくは0モル%を超え30モル%以下、より好ましくは0モル%を超え25モル%以下、更に好ましくは0モル%を超え20モル%以下である。 In the case where the propylene polymer of the present invention is a copolymer containing an olefin having 2 carbon atoms, the constituent unit of the olefin having 2 carbon atoms (that is, ethylene monomer) is preferably 0 mol%. More than 20 mol%, more preferably more than 0 mol% and 18 mol% or less, still more preferably more than 0 mol% and 16 mol% or less, still more preferably more than 0 mol% and 14 mol% or less. In the case of a copolymer containing an α-olefin having 4 or more carbon atoms, the content of the α-olefin having 4 or more carbon atoms is preferably more than 0 mol% and 30 mol% or less, more preferably 0 More than mol% and 25 mol% or less, more preferably more than 0 mol% and 20 mol% or less.
 本発明のプロピレン系重合体は、引張弾性率を好ましくは5~65MPa、より好ましくは7~60MPa、さらに好ましくは10~55MPaとすることができる。
 また、本発明のプロピレン系重合体は、弾性回復率を好ましくは80%以上、より好ましくは84%以上、更に好ましくは88%以上とすることができる。
 なお、引張弾性率及び弾性回復率は、実施例に記載の方法により測定することができる。
The propylene-based polymer of the present invention can have a tensile modulus of preferably 5 to 65 MPa, more preferably 7 to 60 MPa, and still more preferably 10 to 55 MPa.
The propylene polymer of the present invention can have an elastic recovery rate of preferably 80% or more, more preferably 84% or more, and still more preferably 88% or more.
In addition, a tensile elasticity modulus and an elastic recovery rate can be measured by the method as described in an Example.
 プロピレン系重合体の製造では、通常、遷移金属化合物および助触媒成分等を含有する重合触媒(例えばメタロセン触媒やチーグラー触媒等)が用いられる。しかし、該プロピレン系重合体中に触媒残渣が多く含まれると、該プロピレン系重合体からなる成形体は、熱安定性の低下やノズルの目詰まり、フィルム成形時のフィッシュアイの発生等の不良を起こす場合がある。上述の特許文献1乃至3に記載のプロピレン系重合体では、触媒残渣の低減は十分なものではなかった。
 これに対し、本発明のプロピレン系重合体は、触媒および助触媒に由来する灰分が好ましくは300ppm以下、より好ましくは250ppm以下、更に好ましくは200ppm以下とすることができる。
 ここで、灰分とは、有機質が灰化されて後に残った不燃性の鉱物質の量をいう。本発明では、灰分からプロピレン系重合体中に含まれる触媒残渣の大略の量を知ることができる。
 触媒および助触媒に由来する灰分が300ppm以下とすることで、プロピレン系重合体中に含まれる触媒残渣を少なくすることができ、該プロピレン系重合体からなる成形体が、フィルム又はシートの場合、フィッシュアイの発生を抑制することができ、繊維又は不織布などの紡糸の場合、ノズルの目詰まりを抑制することができる。
 なお、上記灰分は、実施例に記載の方法により測定できる。
In the production of a propylene polymer, a polymerization catalyst (for example, a metallocene catalyst or a Ziegler catalyst) containing a transition metal compound and a promoter component is usually used. However, when a large amount of catalyst residue is contained in the propylene-based polymer, the molded body made of the propylene-based polymer has a poor heat stability, nozzle clogging, and generation of fish eyes during film formation. May occur. In the propylene-based polymers described in Patent Documents 1 to 3 described above, reduction of catalyst residues has not been sufficient.
On the other hand, in the propylene-based polymer of the present invention, the ash content derived from the catalyst and the cocatalyst can be preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
Here, the ash content refers to the amount of non-combustible mineral remaining after the organic matter has been ashed. In the present invention, the approximate amount of catalyst residue contained in the propylene polymer can be known from the ash.
By making the ash derived from the catalyst and the co-catalyst 300 ppm or less, the catalyst residue contained in the propylene polymer can be reduced, and when the molded body made of the propylene polymer is a film or sheet, The generation of fish eyes can be suppressed, and nozzle clogging can be suppressed in the case of spinning fibers or nonwoven fabrics.
In addition, the said ash content can be measured by the method as described in an Example.
[プロピレン系重合体の製造方法]
 本発明のプロピレン系重合体の製造方法としては、特に制限されないが、例えば、二架橋メタロセン錯体((A)成分)、及び該二架橋メタロセン錯体と反応してイオン性の錯体を形成しうるホウ素化合物((B)成分)を含有する重合用触媒の存在下、プロピレンを重合させる方法が挙げられる。上記二架橋メタロセン錯体としては、特に限定されないが、下記一般式(I)で表される周期律表第3~10族またはランタノイド系列の遷移金属化合物が好ましい。
 本発明のプロピレン系重合体の製造方法では、下記一般式(I)で表される構造を有する遷移金属化合物と、上記特定のホウ素化合物とを組み合わせて用いることにより、触媒活性が高く、より立体規則性が低く、弾性回復率の高いプロピレン系重合体を合成することができる。また、得られるプロピレン系重合体中に含まれる触媒残渣を低減することができる。
[Propylene-based polymer production method]
The method for producing the propylene-based polymer of the present invention is not particularly limited. For example, a bi-bridged metallocene complex (component (A)) and boron that can react with the bi-bridged metallocene complex to form an ionic complex. A method of polymerizing propylene in the presence of a polymerization catalyst containing a compound (component (B)) can be mentioned. The bibridged metallocene complex is not particularly limited, but a transition metal compound of Group 3 to 10 of the periodic table represented by the following general formula (I) or a lanthanoid series is preferable.
In the method for producing a propylene-based polymer of the present invention, a combination of a transition metal compound having a structure represented by the following general formula (I) and the above specific boron compound has a high catalytic activity and is more steric. A propylene polymer having a low regularity and a high elastic recovery rate can be synthesized. Moreover, the catalyst residue contained in the obtained propylene polymer can be reduced.
 (A)成分の二架橋メタロセン錯体としては、下記一般式(I)で表される構造を有する二重架橋型の周期律表第3~10族またはランタノイド系列の遷移金属化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001

(式中、A、Aはそれぞれ独立に第14族(C、Si、Ge、Sn)からなる架橋基を示し、それらは互いに同一でも異なっていてもよい。Xはσ結合性またはπ結合性の配位子を示し、Xが複数ある場合には複数のXは同じでも異なっていてもよい。Yはルイス塩基を示しYが複数ある場合、複数のYは同一でも異なっていてもよい。また、Yは他のYやXと架橋していてもよい。qは1~5の整数で[(Mの原子価)-2]を示し、rは0~3の整数である。R及びRはそれぞれ独立に水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20の炭化水素基、珪素含有基またはヘテロ原子含有基である。R~R10は、R~R10の全てが水素原子である組み合わせ、R、R、R及びRが置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基であり、かつR、R、R及びR10が水素原子である組み合わせ、又はR、R、R及びRが水素原子であり、かつR、R、R及びR10が置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基である組み合わせである。なお、RとR、及びRとRは、それぞれ互いに結合して炭素数5~8の置換もしくは無置換の環状構造を形成してもよい。Mは周期律表第3~10族またはランタノイド系列の金属元素である。)
As the bibridged metallocene complex of component (A), a double bridged group 3 to 10 or lanthanoid series transition metal compound having a structure represented by the following general formula (I) is preferably used.
Figure JPOXMLDOC01-appb-C000001

(In the formula, A 1 and A 2 each independently represent a bridging group consisting of Group 14 (C, Si, Ge, Sn), and they may be the same or different from each other. X is σ-bonding or π Represents a binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, Y represents a Lewis base, and when there are a plurality of Y, a plurality of Y may be the same or different Y may be cross-linked with other Y or X. q is an integer of 1 to 5 and represents [(valence of M) -2], and r is an integer of 0 to 3. R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group, wherein R 3 to R 10 are R 3 combinations all ~ R 10 is a hydrogen atom, R 4, R 5, R 8 and R 9 is substituted if Is a straight-chain or branched alkyl group unsubstituted 1-8 carbon atoms, and combinations R 3, R 6, R 7 and R 10 are hydrogen atoms, or R 4, R 5, R 8 and R 9 is a hydrogen atom, and R 3, R 6, R 7 and R 10 are combined a linear or branched alkyl group having 1 to 8 carbon atoms substituted or unsubstituted. in addition, R 4 and R 5 and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms, where M is a group 3-10 of the periodic table or a lanthanoid series metal Element.)
 前記一般式(I)においてA、Aはそれぞれ第14族(C,Si,Ge,Sn)からなる架橋基を示しそれらは互いに同一でも異なっていてもよい。A、Aとしては、例えば、下記一般式(II)で表される架橋基が挙げられる。 In the general formula (I), A 1 and A 2 each represent a bridging group consisting of Group 14 (C, Si, Ge, Sn), which may be the same or different. Examples of A 1 and A 2 include a crosslinking group represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000002

 (式中、EはC、Si、Ge、Snを示し、R11及びR12はそれぞれ水素原子、ハロゲン原子、炭素数1~20の炭化水素基または炭素数1~20のハロゲン化炭化水素基でそれらは互いに同一でも異なっていてもよく、また互いに結合して環を形成していてもよい。eは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000002

(In the formula, E represents C, Si, Ge, Sn, and R 11 and R 12 are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. And they may be the same or different from each other, and may be bonded to each other to form a ring. E represents an integer of 1 to 4.)
 一般式(II)におけるハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~20の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基などのアルキル基や、ビニル基、プロペニル基、シクロヘキセニル基などのアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントリル基などのアリール基が挙げられる。なかでもメチル基、エチル基、プロピル基などのアルキル基やフェニル基などのアリール基が好ましい。炭素数1~20のハロゲン化炭化水素基としては、前記炭化水素基にハロゲン原子が置換したハロゲン化炭化水素基が挙げられる。なかでもトリフルオロメチル基、トリクロロメチル基などハロゲン化アルキル基が好ましい。 Examples of the halogen atom in the general formula (II) include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom. Specific examples of the hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group, and an octyl group, a vinyl group, a propenyl group, and a cyclo group. Alkenyl groups such as hexenyl group; arylalkyl groups such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group And aryl groups such as a methylnaphthyl group, anthracenyl group, and phenanthryl group. Of these, alkyl groups such as methyl group, ethyl group, and propyl group, and aryl groups such as phenyl group are preferable. Examples of the halogenated hydrocarbon group having 1 to 20 carbon atoms include a halogenated hydrocarbon group in which a halogen atom is substituted on the hydrocarbon group. Of these, halogenated alkyl groups such as a trifluoromethyl group and a trichloromethyl group are preferred.
 一般式(II)における炭素原子からなる架橋基の具体例としては、メチレン基、エチリデン基、プロピリデン基、イソプロピリデン基、シクロヘキシリデン基等のアルキリデン基;1,1-シクロヘキシレン基、ビニリデン基が挙げられる。珪素原子からなる架橋基の具体例としては、メチルシリレン基、ジメチルシリレン基、ジエチルシリレン基、ジ(n-プロピル)シリレン基、ジ(i-プロピル)シリレン基、ジ(シクロヘキシル)シリレン等のアルキルシリレン基;メチルフェニルシリレン基、エチルフェニルシリレン基等のアルキルアリールシリレン基;ジフェニルシリレン基、ジ(p-トリル)シリレン基、ジ(p-クロロフェニル)シリレン基等のアリールシリレン基が挙げられる。ゲルマニウム原子からなる架橋基の具体例としては、前記珪素原子からなる架橋基の珪素原子をゲルマニウム原子に置換したゲルミレン基が挙げられる。錫原子からなる架橋基の具体例としては、前記珪素原子からなる架橋基の珪素原子を錫原子に置換したスタニレン基が挙げられる。A、Aとしては、炭素原子からなる架橋基または珪素原子からなる架橋基が好ましい。 Specific examples of the bridging group consisting of carbon atoms in the general formula (II) include alkylidene groups such as methylene group, ethylidene group, propylidene group, isopropylidene group, cyclohexylidene group; 1,1-cyclohexylene group, vinylidene group Is mentioned. Specific examples of the bridging group comprising a silicon atom include alkylsilylene groups such as methylsilylene group, dimethylsilylene group, diethylsilylene group, di (n-propyl) silylene group, di (i-propyl) silylene group, and di (cyclohexyl) silylene. Silylene groups; alkylarylsilylene groups such as methylphenylsilylene groups and ethylphenylsilylene groups; arylsilylene groups such as diphenylsilylene groups, di (p-tolyl) silylene groups, and di (p-chlorophenyl) silylene groups. Specific examples of the bridging group comprising a germanium atom include a germanylene group in which the silicon atom of the bridging group comprising the silicon atom is replaced with a germanium atom. Specific examples of the bridging group comprising a tin atom include a stannylene group in which the silicon atom of the bridging group comprising the silicon atom is substituted with a tin atom. As A 1 and A 2 , a bridging group consisting of carbon atoms or a bridging group consisting of silicon atoms is preferable.
 Xはσ結合性またはπ結合性の配位子であり、Xが複数ある場合には複数のXは同じでも異なっていてもよい。
 σ結合性の配位子としては、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のアミド基、炭素数1~20の珪素含有基、炭素数1~20のホスフィド基、炭素数1~20のスルフィド基、炭素数1~20のスルホキシド基及び炭素数1~20のアシル基などが挙げられる。なかでもハロゲン原子、炭素数1~20の炭化水素基が好ましい。ハロゲン原子、炭素数1~20の炭化水素基の具体例としては、前記と同様である。
X is a σ bond or π bond ligand, and when there are a plurality of X, the plurality of X may be the same or different.
σ bondable ligands include halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, and amide groups having 1 to 20 carbon atoms. A silicon-containing group having 1 to 20 carbon atoms, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, a sulfoxide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms. . Of these, a halogen atom and a hydrocarbon group having 1 to 20 carbon atoms are preferred. Specific examples of the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms are the same as described above.
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、フェニルメトキシ基、フェニルエトキシ基等が挙げられる。炭素数6~20のアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基等が挙げられる。炭素数1~20のアミド基としては、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジブチルアミド基、ジシクロヘキシルアミド基、メチルエチルアミド基等のアルキルアミド基や、ジビニルアミド基、ジプロペニルアミド基、ジシクロヘキセニルアミド基などのアルケニルアミド基;ジベンジルアミド基、フェニルエチルアミド基、フェニルプロピルアミド基などのアリールアルキルアミド基;ジフェニルアミド基、ジナフチルアミド基などのアリールアミド基が挙げられる。 Examples of the alkoxy group having 1 to 20 carbon atoms include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group, phenylmethoxy group, phenylethoxy group and the like. Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, methylphenoxy group, and dimethylphenoxy group. Examples of the amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group. Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
 炭素数1~20の珪素含有基としては、メチルシリル基、フェニルシリル基などのモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基などのジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基などのトリ炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基、フェニルジメチルシリルエチル基などのケイ素置換アルキル基;トリメチルシリルフェニル基などのケイ素置換アリール基などが挙げられる。なかでもトリメチルシリルメチル基、フェニルジメチルシリルエチル基などが好ましい。 Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group Examples thereof include substituted silyl ether groups; silicon-substituted alkyl groups such as trimethylsilylmethyl group and phenyldimethylsilylethyl group; silicon-substituted aryl groups such as trimethylsilylphenyl group. Of these, a trimethylsilylmethyl group, a phenyldimethylsilylethyl group, and the like are preferable.
 炭素数1~20のホスフィド基としては、ジメチルホスフィド基、ジエチルホスフィド基、ジプロピルホスフィド基、ジブチルホスフィド基、ジヘキシルホスフィド基、ジシクロヘキシルホスフィド基、ジオクチルホスフィド基などのアルキルホスフィド基;ジビニルホスフィド基、ジプロペニルホスフィド基、ジシクロヘキセニルホスフィド基などのアルケニルホスフィド基;ジベンジルホスフィド基、フェニルエチルホスフィド基、フェニルプロピルホスフィド基などのアリールアルキルホスフィド基;ジフェニルホスフィド基、ジトリルホスフィド基、ビス(ジメチルフェニル)ホスフィド基、ビス(トリメチルフェニル)ホスフィド基、ビス(エチルフェニル)ホスフィド基、ビス(プロピルフェニル)ホスフィド基、ビス(ビフェニル)ホスフィド基、ジナフチルホスフィド基、ビス(メチルナフチル)ホスフィド基、ジアントラセニルホスフィド基、ジフェナントリルホスフィド基などのアリールホスフィド基が挙げられる。 Examples of the phosphide group having 1 to 20 carbon atoms include alkyl phosphide groups such as dimethyl phosphide group, diethyl phosphide group, dipropyl phosphide group, dibutyl phosphide group, dihexyl phosphide group, dicyclohexyl phosphide group, and dioctyl phosphide group. Fido group; alkenyl phosphide group such as divinyl phosphide group, dipropenyl phosphide group, dicyclohexenyl phosphide group; arylalkyl phosphide such as dibenzyl phosphide group, phenylethyl phosphide group, phenylpropyl phosphide group Group: diphenylphosphide group, ditolylphosphide group, bis (dimethylphenyl) phosphide group, bis (trimethylphenyl) phosphide group, bis (ethylphenyl) phosphide group, bis (propylphenyl) phosphide group, bis (bif Yl) phosphide group, dinaphthyl sulfo Sufi de group, bis (methylnaphthyl) phosphide group, Jian tiger Se sulfonyl phosphide group, an aryl phosphide group such as di-phenanthryl phosphide group.
 炭素数1~20のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基などのアルキルスルフィド基や、ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基などのアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基などのアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントリルスルフィド基などのアリールスルフィド基が挙げられる。 Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group, vinyl sulfide group, and propenyl. Alkenyl sulfide groups such as sulfide groups and cyclohexenyl sulfide groups; arylalkyl sulfide groups such as benzyl sulfide groups, phenylethyl sulfide groups and phenylpropyl sulfide groups; phenyl sulfide groups, tolyl sulfide groups, dimethylphenyl sulfide groups, trimethylphenyl sulfide groups Ethyl phenyl sulfide group, propyl phenyl sulfide group, biphenyl sulfide group, naphthyl sulfide group, methyl naphthyl sulfide De group, anthracenyl Nils sulfide group, an aryl sulfide groups such phenanthryl sulfide group.
 炭素数1~20のスルホキシド基としては、メチルスルホキシド基、エチルスルホキシド基、プロピルスルホキシド基、ブチルスルホキシド基、ヘキシルスルホキシド基、シクロヘキシルスルホキシド基、オクチルスルホキシド基などのアルキルスルホキシド基や、ビニルスルホキシド基、プロペニルスルホキシド基、シクロヘキセニルスルホキシド基などのアルケニルスルホキシド基;ベンジルスルホキシド基、フェニルエチルスルホキシド基、フェニルプロピルスルホキシド基などのアリールアルキルスルホキシド基;フェニルスルホキシド基、トリルスルホキシド基、ジメチルフェニルスルホキシド基、トリメチルフェニルスルホキシド基、エチルフェニルスルホキシド基、プロピルフェニルスルホキシド基、ビフェニルスルホキシド基、ナフチルスルホキシド基、メチルナフチルスルホキシド基、アントラセニルスルホキシド基、フェナントリルスルホキシド基などのアリールスルホキシド基が挙げられる。 Examples of the sulfoxide group having 1 to 20 carbon atoms include methyl sulfoxide group, ethyl sulfoxide group, propyl sulfoxide group, butyl sulfoxide group, hexyl sulfoxide group, cyclohexyl sulfoxide group, octyl sulfoxide group and the like, vinyl sulfoxide group, propenyl Alkenyl sulfoxide groups such as sulfoxide group, cyclohexenyl sulfoxide group; arylalkyl sulfoxide groups such as benzyl sulfoxide group, phenylethyl sulfoxide group, phenylpropyl sulfoxide group; phenyl sulfoxide group, tolyl sulfoxide group, dimethylphenyl sulfoxide group, trimethylphenyl sulfoxide group , Ethylphenyl sulfoxide group, propylphenyl sulfoxide group, biphenyl sulfoxy group Group, naphthyl sulfoxide group, methyl naphthyl sulfoxide group, anthracenyl sulfoxide group, an aryl sulfoxide group such as a phenanthryl sulfoxide group.
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、パルミトイル基、ステアロイル基、オレオイル基等のアルキルアシル基、ベンゾイル基、トルオイル基、サリチロイル基、シンナモイル基、ナフトイル基、フタロイル基等のアリールアシル基、シュウ酸、マロン酸、コハク酸等のジカルボン酸からそれぞれ誘導されるオキサリル基、マロニル基、スクシニル基等が挙げられる。 Examples of the acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
 π結合性の配位子の具体例としては、炭素数4~20の共役ジエン結合を有する化合物、炭素数5~20の非共役ジエン結合を有する化合物などが挙げられる。炭素数4~20の共役ジエン結合を有する化合物としては、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ヘプタジエン、1,3-ヘキサジエン、1,3,5-ヘキサトリエン、1,3,6-ヘプタトリエン、ジフェニルブタジエン等が挙げられる。炭素数5~20の非共役ジエン結合を有する化合物としては、1,4-ペンタジエン、1,5-ヘキサジエン等が挙げられる。 Specific examples of the π-bonding ligand include compounds having a conjugated diene bond having 4 to 20 carbon atoms and compounds having a non-conjugated diene bond having 5 to 20 carbon atoms. Examples of the compound having a conjugated diene bond having 4 to 20 carbon atoms include 1,3-butadiene, isoprene, chloroprene, 1,3-heptadiene, 1,3-hexadiene, 1,3,5-hexatriene, 1,3,5 Examples thereof include 6-heptatriene and diphenylbutadiene. Examples of the compound having a non-conjugated diene bond having 5 to 20 carbon atoms include 1,4-pentadiene and 1,5-hexadiene.
 Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよい。また、Yは他のYやXと架橋していてもよい。また場合によっては、Yは前記一般式(I)のシクロペンタジエニル環と架橋していてもよい。Yとしてはアミン、エーテル、ホスフィン、チオエーテルなどが挙げられる。
 アミンとしては、炭素数1~20のアミンが挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン等のアルキルアミンや、ビニルアミン、プロペニルアミン、シクロヘキセニルアミン、ジビニルアミン、ジプロペニルアミン、ジシクロヘキセニルアミンなどのアルケニルアミン;フェニルエチルアミン、フェニルプロピルアミンなどのアリールアルキルアミン;フェニルアミン、ジフェニルアミン、ジナフチルアミンなどのアリールアミンが挙げられる。
Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. Y may be cross-linked with other Y or X. In some cases, Y may be bridged with the cyclopentadienyl ring of the general formula (I). Examples of Y include amine, ether, phosphine, thioether and the like.
Examples of the amine include amines having 1 to 20 carbon atoms, and specifically include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine. Alkylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, dicyclohexenylamine, etc .; arylalkylamines such as phenylethylamine, phenylpropylamine; phenylamine, diphenylamine, dinaphthylamine, etc. Of the arylamine.
 エーテルとしては、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、ブチルエーテル、イソブチルエーテル、n-アミルエーテル、イソアミルエーテル等の脂肪族単一エーテル化合物;メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチル-n-アミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチル-n-アミルエーテル、エチルイソアミルエーテル等の脂肪族混成エーテル化合物;ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテル等の脂肪族不飽和エーテル化合物;アニソール、フェネトール、フェニルエーテル、ベンジルエーテル、フェニルベンジルエーテル、α-ナフチルエーテル、β-ナフチルエーテル等の芳香族エーテル化合物、酸化エチレン、酸化プロピレン、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環式エーテル化合物が挙げられる。 Examples of ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, methyl -Aliphatic mixed ether compounds such as n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl vinyl ether Aliphatic unsaturated ether compounds such as methyl allyl ether, ethyl vinyl ether and ethyl allyl ether; anisole Aromatic ether compounds such as phenetol, phenyl ether, benzyl ether, phenyl benzyl ether, α-naphthyl ether, β-naphthyl ether, and cyclic ether compounds such as ethylene oxide, propylene oxide, trimethylene oxide, tetrahydrofuran, tetrahydropyran, and dioxane. Can be mentioned.
 ホスフィンとしては、炭素数1~20のホスフィンが挙げられる。具体的には、メチルホスフィン、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、ヘキシルホスフィン、シクロヘキシルホスフィン、オクチルホスフィンなどのモノ炭化水素置換ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジブチルホスフィン、ジヘキシルホスフィン、ジシクロヘキシルホスフィン、ジオクチルホスフィンなどのジ炭化水素置換ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィンなどのトリ炭化水素置換ホスフィン等のアルキルホスフィンや、ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィンなどのモノアルケニルホスフィンやホスフィンの水素原子をアルケニルが2個置換したジアルケニルホスフィン;ホスフィンの水素原子をアルケニルが3個置換したトリアルケニルホスフィン;ベンジルホスフィン、フェニルエチルホスフィン、フェニルプロピルホスフィンなどのアリールアルキルホスフィン;ホスフィンの水素原子をアリールまたはアルケニルが3個置換したジアリールアルキルホスフィンまたはアリールジアルキルホスフィン;フェニルホスフィン、トリルホスフィン、ジメチルフェニルホスフィン、トリメチルフェニルホスフィン、エチルフェニルホスフィン、プロピルフェニルホスフィン、ビフェニルホスフィン、ナフチルホスフィン、メチルナフチルホスフィン、アントラセニルホスフィン、フェナントリルホスフィン;ホスフィンの水素原子をアルキルアリールが2個置換したジ(アルキルアリール)ホスフィン;ホスフィンの水素原子をアルキルアリールが3個置換したトリ(アルキルアリール)ホスフィンなどのアリールホスフィンが挙げられる。チオエーテルとしては、前記のスルフィドが挙げられる。 Examples of phosphine include phosphine having 1 to 20 carbon atoms. Specifically, monohydrocarbon substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkylphosphines such as trihydrocarbon-substituted phosphines such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphine, trihexylphosphine, tricyclohexylphosphine, and trioctylphosphine; vinyl Such as phosphine, propenyl phosphine, cyclohexenyl phosphine, etc. Dialkenyl phosphine in which two alkenyls are substituted with alkenyl phosphine or phosphine hydrogen atom; Trialkenyl phosphine in which alkenyl is substituted with three alkenyl hydrogen atoms; Aryl alkyl phosphine such as benzyl phosphine, phenylethyl phosphine, phenylpropyl phosphine; Diarylalkylphosphine or aryldialkylphosphine in which three hydrogen atoms are substituted with aryl or alkenyl; phenylphosphine, tolylphosphine, dimethylphenylphosphine, trimethylphenylphosphine, ethylphenylphosphine, propylphenylphosphine, biphenylphosphine, naphthylphosphine, methylnaphthyl Phosphine, anthracenylphosphine, phenanthrylphosphine; And an aryl phosphines such as substituted tri (alkylaryl) alkyl aryl three hydrogen atoms of the phosphine phosphine; alkylaryl hydrogen atoms Sufin are two substituted di (alkylaryl) phosphines. Examples of the thioether include the sulfides described above.
 qは1~5の整数で[(Mの原子価)-2]を示し、rは0~3の整数である。 Q is an integer of 1 to 5 and represents [(M valence) -2], and r is an integer of 0 to 3.
 R及びRはそれぞれ独立に水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20の炭化水素基、珪素含有基またはヘテロ原子含有基を示す。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~20の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、オクチル基などのアルキル基や、フェニル基、ナフチル基などのアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;トリル基、キシリル基などのアルキルアリール基などが挙げられる。
 炭素数1~20の炭化水素基が有することのある置換基としては、t-ブチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
R 1 and R 2 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group.
Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom. Specific examples of the hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an octyl group. Groups, aryl groups such as phenyl and naphthyl groups; arylalkyl groups such as benzyl, phenylethyl and phenylpropyl; alkylaryl groups such as tolyl and xylyl.
Examples of the substituent that the hydrocarbon group having 1 to 20 carbon atoms may have include a t-butyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 珪素含有基としては、炭素数1~20の珪素含有基が挙げられ、具体的には、トリメチルシリル基、トリメチルシリルメチル基、トリフェニルシリル基等が挙げられる。ヘテロ原子含有基としては、炭素数1~20のヘテロ原子含有基が挙げられ、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基などの窒素含有基や、フェニルスルフィド基、メチルスルフィド基等の硫黄含有基;ジメチルホスフィノ基、ジフェニルホスフィノ基などの燐含有基;メトキシ基、エトキシ基、フェノキシ基などの酸素含有基などが挙げられる。なかでも、ハロゲン、酸素、珪素等のヘテロ原子を含有する基が、重合活性が高く好ましい。 Examples of the silicon-containing group include a silicon-containing group having 1 to 20 carbon atoms, and specific examples include a trimethylsilyl group, a trimethylsilylmethyl group, and a triphenylsilyl group. Examples of the heteroatom-containing group include C1-C20 heteroatom-containing groups, and specifically include nitrogen-containing groups such as dimethylamino group, diethylamino group, and diphenylamino group, phenylsulfide group, and methylsulfide group. Sulfur-containing groups such as: phosphorus-containing groups such as dimethylphosphino group and diphenylphosphino group; oxygen-containing groups such as methoxy group, ethoxy group and phenoxy group. Of these, a group containing a heteroatom such as halogen, oxygen, or silicon is preferable because of high polymerization activity.
 R~R10は、R~R10の全てが水素原子である組み合わせ、R、R、R及びRが置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基であり、かつR、R、R及びR10が水素原子である組み合わせ、又はR、R、R及びRが水素原子であり、かつR、R、R及びR10が置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基である組み合わせである。
 なお、活性と規則性制御の観点から、R~R10は、R、R、R及びRが置換もしくは無置換の炭素数1~8の直鎖のアルキル基であることがより好ましい。
 また、RとR、及びRとRは、それぞれ互いに結合して炭素数5~8の置換もしくは無置換の環状構造を形成してもよい。
R 3 to R 10 are combinations in which all of R 3 to R 10 are hydrogen atoms, and R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear or branched alkyl having 1 to 8 carbon atoms. Or a combination in which R 3 , R 6 , R 7 and R 10 are hydrogen atoms, or R 4 , R 5 , R 8 and R 9 are hydrogen atoms and R 3 , R 6 , R 7 And R 10 is a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms.
From the viewpoint of activity and regularity control, R 3 to R 10 may be R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear alkyl groups having 1 to 8 carbon atoms. More preferred.
R 4 and R 5 , and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms.
 置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基、ヘキシル基、シクロヘキシル基、イソオクチル基、t-オクチル基、2-エチルヘキシル等が挙げられる。
 炭素数1~8の直鎖または分岐のアルキル基が有することのある置換基としては、メチル基、エチル基、ブチル基等が挙げられる。
Examples of the substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t- Examples include butyl group, t-pentyl group, hexyl group, cyclohexyl group, isooctyl group, t-octyl group, 2-ethylhexyl and the like.
Examples of the substituent that the linear or branched alkyl group having 1 to 8 carbon atoms may have include a methyl group, an ethyl group, and a butyl group.
 前記一般式(I)において、R、R、R及びRは、触媒活性を高め、規則性を低下させる観点から、それぞれ独立に置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基であることが好ましく、置換もしくは無置換の炭素数1~8の直鎖のアルキル基であることがより好ましく、置換もしくは無置換の炭素数1~4の直鎖のアルキル基であることが更に好ましく、置換もしくは無置換の炭素数1~2のアルキル基であることがより更に好ましい。
 また、R、R、R及びRの少なくとも1つがメチル基であることが触媒活性を高める観点から好ましい。
In the general formula (I), R 4 , R 5 , R 8 and R 9 are each independently a substituted or unsubstituted straight chain having 1 to 8 carbon atoms from the viewpoint of increasing catalytic activity and decreasing regularity. Or, it is preferably a branched alkyl group, more preferably a substituted or unsubstituted linear alkyl group having 1 to 8 carbon atoms, and a substituted or unsubstituted linear alkyl group having 1 to 4 carbon atoms. More preferably, it is a substituted or unsubstituted alkyl group having 1 to 2 carbon atoms.
Moreover, it is preferable from a viewpoint of improving a catalyst activity that at least one of R < 4 >, R < 5 >, R < 8 > and R < 9 > is a methyl group.
 また、RとR、及び/又はRとRが同一の基であることが規則性を均一に制御する観点から好ましい。 Further, R 4 and R 5 and / or R 8 and R 9 are preferably the same group from the viewpoint of uniformly controlling regularity.
 前記一般式(I)において、R、R、R、及びRがメチル基であり、R、R、R、及びR10が水素原子である遷移金属化合物は、特定の助触媒と組み合わせて用いた場合、触媒活性が高く、より立体規則性の低いプロピレン系重合体を合成することができ好ましい。 In the general formula (I), the transition metal compound in which R 4 , R 5 , R 8 , and R 9 are methyl groups, and R 3 , R 6 , R 7 , and R 10 are hydrogen atoms is When used in combination with a cocatalyst, a propylene polymer having high catalytic activity and lower stereoregularity can be synthesized, which is preferable.
 Mは周期律表第3~10族またはランタノイド系列の金属元素を示し、具体例を例示すれば、チタニウム、ジルコニウム、ハフニウム、バナジウム、クロム、マンガン、ニッケル、コバルト、パラジウムおよびランタノイド系金属などが挙げられる。Mとしては、周期律表第4族の金属元素が、活性が高くなるので好ましい。 M represents a metal element of Group 3 to 10 of the periodic table or a lanthanoid series. Specific examples include titanium, zirconium, hafnium, vanadium, chromium, manganese, nickel, cobalt, palladium, and a lanthanoid metal. It is done. As M, a metal element belonging to Group 4 of the periodic table is preferable because of its high activity.
 前記一般式(I)で表される遷移金属化合物の好ましい一典型例を挙げれば、前記一般式(I)中、A、Aはそれぞれ炭素原子または珪素原子からなる架橋基を示し、それらは互いに同一でも異なっていてもよい。Xはσ結合性またはπ結合性の配位子を示し、Xが複数ある場合には複数のXは同じでも異なっていてもよい。Yはルイス塩基を示しYが複数ある場合、複数のYは同じでも異なっていてもよい。またYは他のYやXと架橋していてもよい。qは1~5の整数で[(Mの原子価)-2]を示し、rは0~3の整数である。R及びRはハロゲン、酸素、珪素等のヘテロ原子を含有する基を示す。R~R10は、R~R10の全てが水素原子である組み合わせ、R、R、R及びRが置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基であり、かつR、R、R及びR10が水素原子である組み合わせ、又はR、R、R及びRが水素原子であり、かつR、R、R及びR10が置換もしくは無置換の炭素数1~8の直鎖または分岐のアルキル基である組み合わせである。なお、RとR、及びRとRは、それぞれ互いに結合して炭素数5~8の置換もしくは無置換の環状構造を形成してもよい。Mは周期律表第4族の金属元素である、遷移金属化合物が挙げられる。 If one typical example of the transition metal compound represented by the general formula (I) is given, in the general formula (I), A 1 and A 2 each represent a bridging group composed of a carbon atom or a silicon atom, May be the same as or different from each other. X represents a σ bond or π bond ligand, and when there are a plurality of X, the plurality of X may be the same or different. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different. Y may be cross-linked with other Y or X. q is an integer of 1 to 5 and represents [(valence of M) -2], and r is an integer of 0 to 3. R 1 and R 2 each represent a group containing a hetero atom such as halogen, oxygen, or silicon. R 3 to R 10 are combinations in which all of R 3 to R 10 are hydrogen atoms, and R 4 , R 5 , R 8 and R 9 are substituted or unsubstituted linear or branched alkyl having 1 to 8 carbon atoms. Or a combination in which R 3 , R 6 , R 7 and R 10 are hydrogen atoms, or R 4 , R 5 , R 8 and R 9 are hydrogen atoms and R 3 , R 6 , R 7 And R 10 is a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms. R 4 and R 5 , and R 8 and R 9 may be bonded to each other to form a substituted or unsubstituted cyclic structure having 5 to 8 carbon atoms. M is a transition metal compound which is a metal element of Group 4 of the periodic table.
 前記一般式(I)で表される遷移金属化合物の具体例として周期律表第4族の例を示せば、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(4,7-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-4,7-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジヨージド、(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-プロピル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-ネオペンチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロプロピルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロプロピル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロブチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロブチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリド等が挙げられる。中でも、触媒活性を高める観点から、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロブチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリドが好ましく、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドがより好ましい。 As a specific example of the transition metal compound represented by the general formula (I), an example of Group 4 of the periodic table is shown as (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (4 , 7-dimethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-4,7-dimethylindenyl) zirconium dichloride, (1,2 '-Dimethylsilylene) (2,1'-dimethylsilylene) bis (5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-trimethylsilyl) Methyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilyl) ) Bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide, (1,2'-dimethylsilylene) (2,1'-diphenylsilylene) bis (3-methylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride, (1,2′-dimethylsilylene) ( 2,1'-dimethylsilylene) bis (3-ethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-ethyl-6 , 7-Dihydro-5H-s-indacenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'- Methylsilylene) bis (3-n-propyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n-butyl-5, 6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n-butyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-neopentyl-5,6-dimethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′- Dimethylsilylene) bis (3-methyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2 , 1'-dimethylsilylene) bis (3-methyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3- (Cyclohexylmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclohexyl-5,6-dimethylindenyl) zirconium dichloride, ( 1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclopropylmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1 ′ -Dimethylsilylene) bis (3-cyclopropyl-5,6-dimethylindenyl) zirconium dimethyl (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclobutylmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2 , 1'-dimethylsilylene) bis (3-cyclobutyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclopentylmethyl-5 , 6-Dimethylindenyl) zirconium dichloride, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclopentyl-5,6-dimethylindenyl) zirconium dichloride, (1,2 ′ -Methylphenylsilylene) (2,1'-methylphenylsilylene) bis (3-trimethylsilyl) Chiruindeniru) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-diphenyl silylene) bis (3-n-butyl-indenyl) zirconium dichloride, and the like. Among them, from the viewpoint of enhancing the catalytic activity, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-ethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2′- Dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n-butyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-Trimethylsilylmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclohexylmethyl-5,6-dimethylindenyl) Zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclope Tilmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-cyclobutylmethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-ethyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride is preferred, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-ethyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n- Butyl-5,6-dimethylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethyl) Silylene) bis (3-trimethylsilyl-5,6-dimethyl indenyl) zirconium dichloride is more preferable.
 前述の遷移金属化合物と反応してイオン性の錯体を形成しうるホウ素化合物としては、複数の基がホウ素に結合したアニオンとカチオンとからなる配位錯化合物を挙げることができる。
 複数の基がホウ素に結合したアニオンとカチオンとからなる配位錯化合物としては様々なものがあるが、例えば、一般式(III)又は(IV)で表される化合物を好ましく用いることができる。
 ([L-H]s+([BZ・・・(III)
 ([Ls+([BZ・・・(IV)
〔式(III)又は(IV)中、Lは後述のM、R1314又はR15 Cであり、Lはルイス塩基、Mは周期律表の1族及び8族~12族から選ばれる金属、Mは周期律表の8族~10族から選ばれる金属、Z~Zはそれぞれ水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基、アルキルアリール基、アリールアルキル基、置換アルキル基、有機メタロイド基又はハロゲン原子を示す。
 R13及びR14は、それぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基、R15はアルキル基を示す。
 sはL-H、Lのイオン価数で1~7の整数、tは1以上の整数、l=t×s)である。〕
Examples of the boron compound that can react with the aforementioned transition metal compound to form an ionic complex include coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to boron.
There are various coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to boron. For example, a compound represented by the general formula (III) or (IV) can be preferably used.
([L 1 −H] s + ) t ([BZ 1 Z 2 Z 3 Z 4 ] ) l (III)
([L 2 ] s + ) t ([BZ 1 Z 2 Z 3 Z 4 ] ) l (IV)
[In Formula (III) or (IV), L 2 is M 1 , R 13 R 14 M 2 or R 15 3 C described later, L 1 is a Lewis base, M 1 is Group 1 of the periodic table and 8 Metal selected from Group 12 to Group 12, M 2 is a metal selected from Group 8 to Group 10 of the Periodic Table, Z 1 to Z 4 are each a hydrogen atom, dialkylamino group, alkoxy group, aryloxy group, carbon number 1 Represents an alkyl group having ˜20, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, an arylalkyl group, a substituted alkyl group, an organic metalloid group, or a halogen atom.
R 13 and R 14 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, and R 15 represents an alkyl group.
s is an integer of 1 to 7 in terms of the ionic valence of L 1 -H and L 2 , t is an integer of 1 or more, and l = t × s ]
 Mは周期律表の1族及び8族~12族から選ばれる金属、具体例としてはAg、Cu、Na、Liなどの各原子、Mは周期律表の8族~10族から選ばれる金属、具体例としては、Fe、Co、Niなどの各原子が挙げられる。
 Z~Zの具体例としては、例えば、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基など、アルコキシ基としてメトキシ基、エトキシ基、n-ブトキシ基など、アリールオキシ基としてフェノキシ基、2,6-ジメチルフェノキシ基、ナフチルオキシ基など、炭素数1~20のアルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、2-エチルヘキシル基など、炭素数6~20のアリール基、アルキルアリール基若しくはアリールアルキル基としてフェニル基、p-トリル基、ベンジル基、ペンタフルオロフェニル基、3,5-ジ(トリフルオロメチル)フェニル基、4-ターシャリ-ブチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4-ジメチルフェニル基、1,2-ジメチルフェニル基など、ハロゲンとしてF、Cl、Br、I、有機メタロイド基としてテトラメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニル硼素基などが挙げられる。
 R13及びR14のそれぞれで表される置換シクロペンタジエニル基の具体例としては、メチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などが挙げられる。
M 1 is a metal selected from groups 1 and 8 to 12 of the periodic table, specific examples are Ag, Cu, Na, Li and other atoms, and M 2 is selected from groups 8 to 10 of the periodic table Specific examples of metals that can be used include atoms such as Fe, Co, and Ni.
Specific examples of Z 1 to Z 4 include, for example, a dimethylamino group as a dialkylamino group, a diethylamino group, a methoxy group, an ethoxy group, an n-butoxy group as an alkoxy group, a phenoxy group as an aryloxy group, 2, 6 -As a C1-C20 alkyl group such as dimethylphenoxy group and naphthyloxy group, carbon such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-octyl group and 2-ethylhexyl group A phenyl group, p-tolyl group, benzyl group, pentafluorophenyl group, 3,5-di (trifluoromethyl) phenyl group, 4-tertiary-butyl as an aryl group, alkylaryl group or arylalkyl group of formula 6-20 Phenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group 2,4-dimethylphenyl group, 1,2-dimethylphenyl group, etc., halogen as F, Cl, Br, I, organic metalloid group as tetramethylantimony group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, dicyclohexylantimony group And diphenylboron group.
Specific examples of the substituted cyclopentadienyl group represented by each of R 13 and R 14 include a methylcyclopentadienyl group, a butylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
 本発明において、複数の基がホウ素に結合したアニオンとしては、具体的には、B(C 、B(CHF 、B(C 、B(C 、B(CF) 、B(CCF 、B(C 、BF などが挙げられる。
 また、金属カチオンとしては、CpFe、(MeCp)Fe、(tBuCp)Fe、(MeCp)Fe、(MeCp)Fe、(MeCp)Fe、(MeCp)Fe、Ag、Na、Liなどが挙げられ、又、その他カチオンとしては、ピリジニウム、2,4-ジニトロ-N,N-ジエチルアニリニウム、ジフェニルアンモニウム、p-ニトロアニリニウム、2,5-ジクロロアニリニウム、p-ニトロ-N,N-ジメチルアニリニウム、キノリニウム、N,N-ジメチルアニリニウム、N,N-ジエチルアニリニウムなどの窒素含有化合物、トリフェニルカルベニウム、トリ(4-メチルフェニル)カルベニウム、トリ(4-メトキシフェニル)カルベニウムなどのカルベニウム化合物、CHPH 、CPH 、CPH 、(CHPH 、(CPH 、(CPH 、(CHPH、(CPH、(CPH、(CFPH、(CH、(C、(Cなどのアルキルフォスフォニウムイオン、及びCPH 、(CPH 、(CPH、(C、(C(C)PH、(CH)(C)PH 、(CH(C)PH、(C(Cなどのアリールフォスフォニウムイオンなどが挙げられる。
 本発明においては、上記金属カチオンとアニオンの任意の組み合わせによる配位錯化合物が挙げられる。
In the present invention, specific examples of anions in which a plurality of groups are bonded to boron include B (C 6 F 5 ) 4 , B (C 6 HF 4 ) 4 , and B (C 6 H 2 F 3 ). 4 , B (C 6 H 3 F 2 ) 4 , B (C 6 H 4 F) 4 , B (C 6 CF 3 F 4 ) 4 , B (C 6 H 5 ) 4 , BF 4 -And the like.
The metal cation, Cp 2 Fe +, (MeCp ) 2 Fe +, (tBuCp) 2 Fe +, (Me 2 Cp) 2 Fe +, (Me 3 Cp) 2 Fe +, (Me 4 Cp) 2 Fe + , (Me 5 Cp) 2 Fe + , Ag + , Na + , Li + and the like can be mentioned, and other cations include pyridinium, 2,4-dinitro-N, N-diethylanilinium, diphenylammonium. Nitrogen-containing compounds such as p-nitroanilinium, 2,5-dichloroanilinium, p-nitro-N, N-dimethylanilinium, quinolinium, N, N-dimethylanilinium, N, N-diethylanilinium, Such as triphenylcarbenium, tri (4-methylphenyl) carbenium, tri (4-methoxyphenyl) carbenium Rubeniumu compound, CH 3 PH 3 +, C 2 H 5 PH 3 +, C 3 H 7 PH 3 +, (CH 3) 2 PH 2 +, (C 2 H 5) 2 PH 2 +, (C 3 H 7 ) 2 PH 2 +, (CH 3) 3 PH +, (C 2 H 5) 3 PH +, (C 3 H 7) 3 PH +, (CF 3) 3 PH +, (CH 3) 4 P +, Alkylphosphonium ions such as (C 2 H 5 ) 4 P + , (C 3 H 7 ) 4 P + , and C 6 H 5 PH 3 + , (C 6 H 5 ) 2 PH 2 + , (C 6 H 5 ) 3 PH + , (C 6 H 5 ) 4 P + , (C 2 H 5 ) 2 (C 6 H 5 ) PH + , (CH 3 ) (C 6 H 5 ) PH 2 + , (CH 3 ) 2 (C 6 H 5) PH +, (C 2 H 5) 2 (C 6 H 5) 2 P + , etc. Arirufu of Such as scan sulfonium ion, and the like.
In the present invention, a coordination complex compound comprising any combination of the above metal cation and anion is exemplified.
 一般式(III)及び(IV)の化合物の中で、具体的には、下記のものを特に好ましく用いることができる。
 一般式(III)の化合物としては、例えば、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ(n-ブチル)アンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリ(n-ブチル)アンモニウム、ヘキサフルオロ砒素酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸ピロリニウム、テトラキス(ペンタフルオロフェニル)硼酸N,N-ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウムなどが挙げられる。
 一方、一般式(IV)の化合物としては、例えば、テトラフェニル硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸ジメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸アセチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸ホルミルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸シアノフェロセニウム、テトラフェニル硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸銀、テトラフェニル硼酸トリチル、テトラキス(ペンタフルオロフェニル)硼酸トリチル、テトラフルオロ硼酸銀などが挙げられる。
 好ましい配位錯化合物としては、非配位性アニオンと置換トリアリールカルベニウムとからなるものであって、該非配位性アニオンとしては、例えば、一般式(V)
 (BZ   ・・・(V)
[式中、Z~Zはそれぞれ水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基(ハロゲン置換アリール基を含む)、アルキルアリール基、アリールアルキル基、置換アルキル基及び有機メタロイド基又はハロゲン原子を示す。]
で表される化合物を挙げることができる。
Among the compounds of the general formulas (III) and (IV), specifically, the following can be used particularly preferably.
Examples of the compound of the general formula (III) include triethylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetraphenylborate, triethylammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) ) Tri (n-butyl) ammonium borate, triethylammonium hexafluoroarsenate, pyridinium tetrakis (pentafluorophenyl) borate, pyrrolium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, Examples include tetrakis (pentafluorophenyl) methyldiphenylammonium borate.
On the other hand, examples of the compound of the general formula (IV) include, for example, ferrocenium tetraphenylborate, dimethylferrocenium tetrakis (pentafluorophenyl) borate, ferrocenium tetrakis (pentafluorophenyl) borate, decamethylferrous tetrakis (pentafluorophenyl) borate. Cenium, tetrakis (pentafluorophenyl) acetylferrocenium borate, tetrakis (pentafluorophenyl) formylferrocenium borate, tetrakis (pentafluorophenyl) cyanoferrocenium borate, silver tetraphenylborate, tetrakis (pentafluorophenyl) Examples thereof include silver borate, trityl tetraphenylborate, tetrakis (pentafluorophenyl) trityl borate, and silver tetrafluoroborate.
A preferred coordination complex compound is composed of a non-coordinating anion and a substituted triarylcarbenium, and the non-coordinating anion includes, for example, the general formula (V)
(BZ 1 Z 2 Z 3 Z 4) - ··· (V)
[Wherein Z 1 to Z 4 are each a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms (including a halogen-substituted aryl group) , An alkylaryl group, an arylalkyl group, a substituted alkyl group and an organic metalloid group or a halogen atom. ]
The compound represented by these can be mentioned.
 一方、置換トリアリールカルベニウムとしては、例えば一般式(VI)
 〔CR161718・・・(VI)
で表わされる化合物を挙げることができる。
 一般式(VI)におけるR16、R17及びR18は、それぞれフェニル基、置換フェニル基、ナフチル基及びアントラセニル基などのアリール基であって、それらは互いに同一であっても、異なっていてもよいが、その中の少なくとも一つは、置換フェニル基、ナフチル基又はアントラセニル基である。
On the other hand, examples of the substituted triarylcarbenium include, for example, the general formula (VI)
[CR 16 R 17 R 18 ] + ... (VI)
The compound represented by these can be mentioned.
R 16 , R 17 and R 18 in the general formula (VI) are each an aryl group such as a phenyl group, a substituted phenyl group, a naphthyl group and an anthracenyl group, and they may be the same or different from each other. However, at least one of them is a substituted phenyl group, a naphthyl group or an anthracenyl group.
 該置換フェニル基は、例えば、一般式(VII)
 C5-k19 ・・・(VII)
で表わすことができる。
 一般式(VII)におけるR19は、炭素数1~10のヒドロカルビル基、アルコキシ基、アリーロキシ基、チオアルコキシ基、チオアリーロキシ基、アミノ基、アミド基、カルボキシル基及びハロゲン原子を示し、kは1~5の整数である。
 kが2以上の場合、複数のR19は同一であってもよく、異なっていてもよい。
The substituted phenyl group is, for example, represented by the general formula (VII)
C 6 H 5-k R 19 k (VII)
It can be expressed as
R 19 in the general formula (VII) represents a hydrocarbyl group having 1 to 10 carbon atoms, an alkoxy group, an aryloxy group, a thioalkoxy group, a thioaryloxy group, an amino group, an amide group, a carboxyl group, and a halogen atom, and k is It is an integer from 1 to 5.
When k is 2 or more, the plurality of R 19 may be the same or different.
 一般式(V)で表される非配位性アニオンの具体例としては、テトラ(フルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(トリフルオロメチルフェニル)ボレート、テトラ(トルイル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、〔トリス(ペンタフルオロフェニル),フェニル〕ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレートなどを挙げることができる。 Specific examples of the non-coordinating anion represented by the general formula (V) include tetra (fluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, Tetrakis (pentafluorophenyl) borate, tetrakis (trifluoromethylphenyl) borate, tetra (toluyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate And tridecahydride-7,8-dicarboundeborate.
 また、一般式(VI)で表される置換トリアリールカルベニウムの具体例としては、トリ(トルイル)カルベニウム、トリ(メトキシフェニル)カルベニウム、トリ(クロロフェニル)カルベニウム、トリ(フルオロフェニル)カルベニウム、トリ(キシリル)カルベニウム、〔ジ(トルイル),フェニル〕カルベニウム、〔ジ(メトキシフェニル),フェニル〕カルベニウム、〔ジ(クロロフェニル),フェニル〕カルベニウム、〔トルイル,ジ(フェニル)〕カルベニウム、〔メトキシフェニル,ジ(フェニル)〕カルベニウム、〔クロロフェニル,ジ(フェニル)〕カルベニウムなどが挙げられる。
 前記(A)成分/(B)成分の使用割合(モル比)は、好ましくは1/100~1/1、より好ましくは1/10~1/1である。
Specific examples of the substituted triarylcarbenium represented by the general formula (VI) include tri (toluyl) carbenium, tri (methoxyphenyl) carbenium, tri (chlorophenyl) carbenium, tri (fluorophenyl) carbenium, tri ( Xylyl) carbenium, [di (toluyl), phenyl] carbenium, [di (methoxyphenyl), phenyl] carbenium, [di (chlorophenyl), phenyl] carbenium, [toluyl, di (phenyl)] carbenium, [methoxyphenyl, di (Phenyl)] carbenium, [chlorophenyl, di (phenyl)] carbenium and the like.
The use ratio (molar ratio) of the component (A) / component (B) is preferably 1/100 to 1/1, more preferably 1/10 to 1/1.
 重合用触媒の調製方法としては、特に制限はなく、従来公知の方法を利用することができる。例えば、重合溶媒に前記(A)成分及び前記(B)成分を同時に加えて混合してもよいし、重合溶媒に前記(A)成分を加えた後、前記(B)成分を加えて混合してもよい。また、上記重合用触媒は、重合反応容器中に各成分を加えてそこで調製してもよく、あらかじめ別の容器中で各成分を混合して触媒溶液を調製し、得られた触媒溶液を重合反応容器に加えて重合反応を行ってもよい。 The method for preparing the polymerization catalyst is not particularly limited, and a conventionally known method can be used. For example, the component (A) and the component (B) may be added to the polymerization solvent at the same time and mixed, or after the component (A) is added to the polymerization solvent, the component (B) is added and mixed. May be. The polymerization catalyst may be prepared by adding each component in a polymerization reaction vessel, or preparing a catalyst solution by mixing each component in another vessel in advance, and polymerizing the obtained catalyst solution. A polymerization reaction may be performed in addition to the reaction vessel.
 重合溶媒としては、特に制限はなく、例えば、ベンゼン、トルエン、キシレン及びエチルベンゼンなどの芳香族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、デカリン、テトラリンなどの脂環式炭化水素、ペンタン、ヘキサン、ヘプタン及びオクタンなどの脂肪族炭化水素、クロロホルム及びジクロロメタン等のハロゲン化炭化水素などが挙げられ、トルエン、キシレン、デカリンが好ましい。
 これらの溶媒は単独で用いてもよく、2種以上を組み合わせてもよい。
The polymerization solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, decalin, and tetralin, pentane, hexane, and heptane. And aliphatic hydrocarbons such as octane, halogenated hydrocarbons such as chloroform and dichloromethane, etc., and toluene, xylene and decalin are preferred.
These solvents may be used alone or in combination of two or more.
 プロピレンを重合させる方法については特に制限はなく、スラリー重合法、溶液重合法、気相重合法、塊状重合法、懸濁重合法など、任意の重合法を採用することができる。 The method for polymerizing propylene is not particularly limited, and any polymerization method such as a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, a bulk polymerization method, or a suspension polymerization method can be employed.
 重合温度は、通常、-100~250℃であり、-50~200℃が好ましく、0~130℃がより好ましい。
 重合圧力は、常圧~20MPa(gauge)が好ましく、常圧~10MPa(gauge)がより好ましい。
 重合時間は、5分~15時間が好ましい。
The polymerization temperature is usually −100 to 250 ° C., preferably −50 to 200 ° C., more preferably 0 to 130 ° C.
The polymerization pressure is preferably from normal pressure to 20 MPa (gauge), more preferably from normal pressure to 10 MPa (gauge).
The polymerization time is preferably 5 minutes to 15 hours.
 さらに、プロピレン系重合体の分子量の調節方法としては、各成分の種類、使用量及び重合温度の選択、更には、水素存在下での重合などが挙げられる。 Furthermore, examples of the method for adjusting the molecular weight of the propylene polymer include selection of the type of each component, the amount used and the polymerization temperature, and further polymerization in the presence of hydrogen.
 上記プロピレン系重合体の製造方法では、前記(A)成分の濃度は0.001~500μmol/Lであることが好ましい。この範囲内であることで良好な活性が得られる。当該観点から(A)成分の濃度は0.005~250μmol/Lがより好ましく、0.01~100μmol/Lがさらに好ましい。なお、ここで(A)成分の濃度とは、重合液中の(A)成分の濃度のことをいう。したがって、溶媒と液体の単量体を用いる反応系の場合はこれらの合計量に対する(A)成分の量であり、溶媒を用いずに液体の単量体を反応させるときは液体の単量体に対する(A)成分の量であり、溶媒を用いて気体の単量体を反応させるときは溶媒に対する(A)成分の量を表す。 In the method for producing a propylene polymer, the concentration of the component (A) is preferably 0.001 to 500 μmol / L. Good activity is obtained by being in this range. From this viewpoint, the concentration of the component (A) is more preferably 0.005 to 250 μmol / L, and further preferably 0.01 to 100 μmol / L. In addition, the density | concentration of (A) component here means the density | concentration of (A) component in a polymerization liquid. Therefore, in the case of a reaction system using a solvent and a liquid monomer, it is the amount of the component (A) relative to the total amount of these. When reacting a liquid monomer without using a solvent, the liquid monomer The amount of the component (A) relative to the solvent when the gaseous monomer is reacted using the solvent.
 さらに、上記重合用触媒を用いた予備重合又は該触媒を調製する過程で予備重合を行うことが好ましい。この予備重合は、該触媒又は調製中の該触媒に少量のオレフィンを接触させて行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、例えば、エチレン、炭素数3~20のα-オレフィン、あるいはこれらの混合物などを挙げることができる。
 上記予備重合の反応温度は、-20~100℃が好ましく、-10~70℃がより好ましく、0~50℃が更に好ましい。また、この予備重合に際して用いる溶媒としては、前記重合溶媒から選ばれる溶媒を用いるのが好ましく、脂肪族炭化水素又は芳香族炭化水素がより好ましい。この予備重合を無溶媒で行うこともできる。該触媒中の遷移金属成分1ミリモルあたり予備重合生成物の量が、1~10000gが好ましく、10~1000gとなるように条件を調整することがより好ましい。
Furthermore, it is preferable to perform prepolymerization using the above-mentioned polymerization catalyst or in the process of preparing the catalyst. This prepolymerization can be carried out by bringing a small amount of olefin into contact with the catalyst or the catalyst being prepared, but the method is not particularly limited, and a known method can be used. The olefin used for the prepolymerization is not particularly limited, and examples thereof include ethylene, an α-olefin having 3 to 20 carbon atoms, or a mixture thereof.
The reaction temperature for the prepolymerization is preferably −20 to 100 ° C., more preferably −10 to 70 ° C., and further preferably 0 to 50 ° C. In addition, as the solvent used in the preliminary polymerization, a solvent selected from the polymerization solvents is preferably used, and an aliphatic hydrocarbon or an aromatic hydrocarbon is more preferable. This prepolymerization can also be carried out without a solvent. The amount of the prepolymerized product per millimole of the transition metal component in the catalyst is preferably 1 to 10000 g, and more preferably the conditions are adjusted to 10 to 1000 g.
 本発明の弾性体は、上述のプロピレン系重合体からなるため、優れた弾性回復率を有し、フィルム、シート、繊維、不織布等の成形体やホットメルト接着剤等の用途に好適に用いられる。 Since the elastic body of the present invention is composed of the above-mentioned propylene-based polymer, it has an excellent elastic recovery rate and is suitably used for applications such as molded articles such as films, sheets, fibers, and nonwoven fabrics, and hot melt adhesives. .
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[測定方法]
 下記実施例及び比較例における各測定値は、下記の方法を用いて測定した。なお、結果を表1に示す。
[Measuring method]
Each measured value in the following Examples and Comparative Examples was measured using the following method. The results are shown in Table 1.
〔DSC測定〕
 示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから融解吸熱量(ΔH-D)として求めた。また、得られた融解吸熱カーブより観測されたピークのピークトップから融点(Tm-D)を求めた。なお、ピークトップが複数ある場合、それぞれのピークトップをプロピレン系重合体の融点(Tm-D)として求めた。
 また、融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用いた、DSC測定により得られた融解吸熱カーブのピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
 なお、前記融点(Tm-D)が20~65℃の範囲に一つ以上存在する場合、20~65℃における前記融解吸熱量(ΔH-D)は、DSC測定により得られた20℃と65℃の間の融解吸熱カーブのピークを含むライン部分と当該ベースラインの20℃と65℃の間とで囲まれる面積を求めることで算出される。
[DSC measurement]
Using a differential scanning calorimeter (“DSC-7” manufactured by Perkin Elmer Co., Ltd.), 10 mg of a sample was held at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min. The melting endotherm was obtained from the melting endothermic curve (ΔHD). Further, the melting point (Tm-D) was determined from the peak top of the peak observed from the obtained melting endothermic curve. When there were a plurality of peak tops, each peak top was determined as the melting point (Tm-D) of the propylene polymer.
In addition, the melting endotherm (ΔHD) is a differential scanning calorimeter (manufactured by Perkin Elmer Co., Ltd.) with a line connecting the point on the low temperature side where there is no change in calorie and the point on the high temperature side where there is no change in calorie as the baseline. , “DSC-7”), and calculating the area surrounded by the line portion including the peak of the melting endothermic curve obtained by DSC measurement and the base line.
When one or more of the melting points (Tm-D) are in the range of 20 to 65 ° C., the melting endotherm (ΔHD) at 20 to 65 ° C. is 20 ° C. and 65 ° C. obtained by DSC measurement. It is calculated by determining the area surrounded by the line portion including the peak of the melting endothermic curve between ° C and the baseline between 20 ° C and 65 ° C.
〔GPC測定〕
 ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。測定には、下記の装置および条件を使用し、ポリスチレン換算の重量平均分子量および数平均分子量を得た。分子量分布(Mw/Mn)は、これらの重量平均分子量(Mw)及び数平均分子量(Mn)より算出した値である。
<GPC測定装置>
カラム     :東ソー(株)製「TOSO GMHHR-H(S)HT」
検出器     :液体クロマトグラム用RI検出 ウォーターズ・コーポレーション製「WATERS 150C」
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0mL/分
 試料濃度   :2.2mg/mL
 注入量    :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
[GPC measurement]
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) method to determine the molecular weight distribution (Mw / Mn). For the measurement, the following equipment and conditions were used, and polystyrene-reduced weight average molecular weight and number average molecular weight were obtained. The molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
<GPC measurement device>
Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation
Detector: RI detection for liquid chromatogram "WATERS 150C" manufactured by Waters Corporation
<Measurement conditions>
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL
Injection volume: 160 μl
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
〔極限粘度(η)〕
 粘度計((株)離合社製、商品名:「VMR-053U-PC・F01」)、ウベローデ型粘度管(測時球容積:2~3mL、毛細管直径:0.44~0.48mm)、溶媒としてテトラリンを用いて、0.02~0.16g/dLの溶液を135℃にて測定した。
[Intrinsic viscosity (η)]
Viscometer (trade name: “VMR-053U-PC • F01”, manufactured by Kogyo Co., Ltd.), Ubbelohde type viscosity tube (time volume: 2-3 mL, capillary diameter: 0.44-0.48 mm), A solution of 0.02 to 0.16 g / dL was measured at 135 ° C. using tetralin as a solvent.
〔NMR測定〕
 以下に示す装置および条件で、13C-NMRスペクトルの測定を行い、[mm]及び[mmmm]を求めた。なお、ピークの帰属は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案された方法に従った。
 装置:日本電子(株)製、「JNM-EX400型13C-NMR装置」
 方法:プロトン完全デカップリング法
 濃度:220mg/mL
 溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
 温度:130℃
 パルス幅:45°
 パルス繰り返し時間:4秒
 積算:10000回
[NMR measurement]
The 13 C-NMR spectrum was measured with the apparatus and conditions shown below to obtain [mm] and [mmmm]. In addition, the attribution of the peak followed the method proposed by A. Zambelli et al. In “Macromolecules, 8, 687 (1975)”.
Apparatus: “JNM-EX400 type 13 C-NMR apparatus” manufactured by JEOL Ltd.
Method: Proton complete decoupling method Concentration: 220 mg / mL
Solvent: 90:10 (volume ratio) mixed solvent of 1,2,4-trichlorobenzene and heavy benzene Temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds Integration: 10,000 times
<計算式>
 M=m/S×100
 R=γ/S×100
 S=Pββ+Pαβ+Pαγ
 S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
 Pββ:19.8~22.5ppm
 Pαβ:18.0~17.5ppm
 Pαγ:17.5~17.1ppm
 γ:ラセミペンタッド連鎖:20.7~20.3ppm
 m:メソペンタッド連鎖:21.7~22.5ppm
<Calculation formula>
M = m / S × 100
R = γ / S × 100
S = Pββ + Pαβ + Pαγ
S: Signal intensity of side chain methyl carbon atoms of all propylene units Pββ: 19.8 to 22.5 ppm
Pαβ: 18.0 to 17.5 ppm
Pαγ: 17.5 to 17.1 ppm
γ: Racemic pentad chain: 20.7 to 20.3 ppm
m: Mesopentad chain: 21.7-22.5 ppm
 さらに、上記の13C-NMRスペクトルの測定結果から、下記式にて1,3-結合分率及び2,1-結合分率を算出した。
 1,3-結合分率=(D/2)/(A+B+C+D)×100(モル%)
 2,1-結合分率=[(A+B)/2]/(A+B+C+D)×100(モル%)
  A:15~15.5ppmの積分値
  B:17~18ppmの積分値
  C:19.5~22.5ppmの積分値
  D:27.6~27.8ppmの積分値
Further, from the above 13 C-NMR spectrum measurement results, the 1,3-bond fraction and the 2,1-bond fraction were calculated by the following formulas.
1,3-bond fraction = (D / 2) / (A + B + C + D) × 100 (mol%)
2,1-bond fraction = [(A + B) / 2] / (A + B + C + D) × 100 (mol%)
A: Integrated value of 15 to 15.5 ppm B: Integrated value of 17 to 18 ppm C: Integrated value of 19.5 to 22.5 ppm D: Integrated value of 27.6 to 27.8 ppm
〔灰分〕
 灰分含有量は、ISO3451-1(1997)に準じて測定する。すなわち、試料200gをマッフル炉にて600℃で1時間加熱した後、秤量することで求めた。
〔ash〕
The ash content is measured according to ISO3451-1 (1997). That is, 200 g of the sample was heated at 600 ° C. for 1 hour in a muffle furnace and then weighed.
〔プレスシート作製〕
 得られたプロピレン系重合体を、下記の条件でプレス成形して1mm厚みのシート状の試験片(プレスシート)を作製した。作製したプロピレン系重合体のプレスシートを、室温で14日間保管して、状態調節した。
プレス成形条件:成形温度200℃、予熱時間10分、加圧時間5分、冷却時間5分(水冷)
[Press sheet production]
The obtained propylene polymer was press-molded under the following conditions to produce a 1 mm thick sheet-like test piece (press sheet). The produced propylene polymer press sheet was stored at room temperature for 14 days to adjust the state.
Press molding conditions: molding temperature 200 ° C., preheating time 10 minutes, pressurization time 5 minutes, cooling time 5 minutes (water cooling)
〔引張弾性率の測定〕
 JIS K 7113に準拠して、下記条件にて引張弾性率を測定した。
・試験片(2号ダンベル)厚み:1mm
・クロスヘッド速度:100mm/分
・ロードセル:100N
・測定温度:23℃
(Measurement of tensile modulus)
Based on JIS K7113, the tensile modulus was measured under the following conditions.
-Test piece (No. 2 dumbbell) thickness: 1mm
・ Crosshead speed: 100mm / min ・ Load cell: 100N
・ Measurement temperature: 23 ℃
〔弾性回復率〕
 作製したプレスシートから、JIS K-7113-2号 1/2試験片を、サンプリングした。引張試験機((株)島津製作所製、製品名:「オートグラフAG-I」)を用いて、初期長Lを40mmに設定し、速度100mm/分にて、伸度(ひずみ)が0%から100%となるよう80mmまで伸長し、その後、伸度(ひずみ)が100%から0%となるよう40mmまで収縮する伸縮サイクルを3サイクル行った。3サイクル目の伸長の際、応力が発生した時のサンプルの長さをL(mm)とした。弾性回復率(%)は、下記式から算出した。なお、弾性回復率は80%以上を合格とした。
  弾性回復率(%)=(2-L/L)×100
[Elastic recovery rate]
JIS K-7113-2 1/2 test piece was sampled from the produced press sheet. Using a tensile tester (manufactured by Shimadzu Corporation, product name: “Autograph AG-I”), the initial length L 0 is set to 40 mm, the elongation (strain) is 0 at a speed of 100 mm / min. Stretching cycles that stretched from 80% to 80 mm so as to be 100% and then shrunk from 40% to 100% so that the elongation (strain) was 100% to 0% were performed. The length of the sample when stress was generated during the third cycle elongation was defined as L (mm). The elastic recovery rate (%) was calculated from the following formula. The elastic recovery rate was 80% or more.
Elastic recovery rate (%) = (2-L / L 0 ) × 100
[製造例1:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド〔遷移金属化合物a1、下記式(a1)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000003

 3,5,6,7-テトラヒドロ-2H-s-インダセン-1-オンは文献(Synth. Commun. 2003, 33, 2029-2043)に従って合成した。
 1Lの三口フラスコに3,5,6,7-テトラヒドロ-2H-s-インダセン-1-オン52.56g(305mmol)を投入し、乾燥メタノール450mLを加えた。この混合物に、40℃で水素化ホウ素ナトリウム11.5g(305mmol)を1時間かけて添加した後、60℃に温め、2時間撹拌した。次いで、上記混合物を冷却し、5%希塩酸750mLでクエンチした後、ジエチルエーテル750mLで抽出した。有機層を分離し、水500mLで3回洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去し、白色固体として1,2,3,5,6,7-ヘキサヒドロ-s-インダセン-1-オール53.48g(307mmol)を得た。
[Production Example 1: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-ethyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride [transition metal compound a1, Synthesis of Transition Metal Compound Represented by Formula (a1)]
Figure JPOXMLDOC01-appb-C000003

3,5,6,7-Tetrahydro-2H-s-indasen-1-one was synthesized according to the literature (Synth. Commun. 2003, 33, 2029-2043).
To a 1 L three-necked flask, 52,56 g (305 mmol) of 3,5,6,7-tetrahydro-2H-s-indasen-1-one was added, and 450 mL of dry methanol was added. To this mixture, 11.5 g (305 mmol) of sodium borohydride was added at 40 ° C. over 1 hour, then warmed to 60 ° C. and stirred for 2 hours. The mixture was then cooled, quenched with 750 mL of 5% dilute hydrochloric acid and extracted with 750 mL of diethyl ether. The organic layer was separated, washed 3 times with 500 mL of water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to give 1,2,3,5,6,7-hexahydro-s- as a white solid. 53.48 g (307 mmol) of indacene-1-ol was obtained.
 1Lの三口フラスコに1,2,3,5,6,7-ヘキサヒドロ-s-インダセン-1-オール53.48g(307mmol)、トルエン500mL、p-トルエンスルホン酸ピリジニウム塩3.0gを投入した。混合物を2時間加熱還流後、冷却し、水100mLで2回洗浄し、無水硫酸マグネシウムで乾燥した。次いで、減圧下で溶媒を留去し、1,2,3,5-テトラヒドロ-s-インダセン(48.50g,278mmol,収率91%)を淡黄色固体として得た。 A 1 L three-necked flask was charged with 53.48 g (307 mmol) of 1,2,3,5,6,7-hexahydro-s-indacene-1-ol, 500 mL of toluene, and 3.0 g of p-toluenesulfonic acid pyridinium salt. The mixture was heated under reflux for 2 hours, cooled, washed twice with 100 mL of water, and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off under reduced pressure to obtain 1,2,3,5-tetrahydro-s-indacene (48.50 g, 278 mmol, yield 91%) as a pale yellow solid.
 1Lの三口フラスコに1,2,3,5-テトラヒドロ-s-インダセン48.50g(278mmol)と水11.6mL、DMSO275mLの混合溶液を調製した。該混合溶液を氷浴で冷却し、N-ブロモスクシンイミド49.5g(278mmol)を反応系の温度が15℃以下になるようにゆっくり添加した。得られた暗褐色溶液を室温(25℃)に戻し、10時間撹拌した。再び0℃に冷却し、水750mLで反応を停止した。反応混合物を、ジエチルエーテル700mLを用いて3回抽出し、無水硫酸マグネシウムで乾燥した。溶媒を濃縮し、2-ブロモ-1,2,3,5,6,7-ヘキサヒドロ-s-インダセン-1-オールを黄褐色固体として得た(収量73.0g、288mmol)。
 次いで、ディーン・スターク装置を組み込んだ1L三口フラスコに、2-ブロモ-1,2,3,5,6,7-ヘキサヒドロ-s-インダセン-1-オール73.0g(288mmol)のトルエン懸濁溶液600mLを調製した。該懸濁溶液にp-トルエンスルホン酸4.0gを窒素下で加え、3時間加熱還流した。次いで、暗褐色の懸濁液をろ過し、ろ液を濃縮し、得られた残渣をシリカゲルクロマトグラフィー(展開溶媒:ヘプタン)で精製し、6-ブロモ-1,2,3,5-テトラヒドロ-s-インダセン45.17g(192mmol)を得た。
A mixed solution of 48.50 g (278 mmol) of 1,2,3,5-tetrahydro-s-indacene, 11.6 mL of water and 275 mL of DMSO was prepared in a 1 L three-necked flask. The mixed solution was cooled in an ice bath, and 49.5 g (278 mmol) of N-bromosuccinimide was slowly added so that the temperature of the reaction system was 15 ° C. or lower. The obtained dark brown solution was returned to room temperature (25 ° C.) and stirred for 10 hours. The mixture was cooled again to 0 ° C. and quenched with 750 mL of water. The reaction mixture was extracted three times with 700 mL of diethyl ether and dried over anhydrous magnesium sulfate. The solvent was concentrated to give 2-bromo-1,2,3,5,6,7-hexahydro-s-indasen-1-ol as a tan solid (yield 73.0 g, 288 mmol).
Subsequently, a toluene suspension solution of 73.0 g (288 mmol) of 2-bromo-1,2,3,5,6,7-hexahydro-s-indasen-1-ol was placed in a 1 L three-necked flask incorporating a Dean-Stark apparatus. 600 mL was prepared. To the suspension solution, 4.0 g of p-toluenesulfonic acid was added under nitrogen and heated to reflux for 3 hours. Next, the dark brown suspension is filtered, the filtrate is concentrated, and the resulting residue is purified by silica gel chromatography (developing solvent: heptane) to give 6-bromo-1,2,3,5-tetrahydro- 45.17 g (192 mmol) of s-indacene was obtained.
 300mLの三口フラスコに滴下漏斗及びジムロート冷却管を設置し、フラスコ側にマグネシウム片9.3g(384mmol)をテトラヒドロフラン(THF)100mLに懸濁させた。マグネシウムのTHF懸濁液に少量の1,2-ジブロモエタン0.1mLを投入し、15分撹拌後、6-ブロモ-1,2,3,5-テトラヒドロ-s-インダセン35.60g(151.4mmol)のTHF溶液150mLを滴下漏斗から滴下した。滴下終了後1時間室温(25℃)下で撹拌し、上澄み液を、カニュラーを用いて採取した。この溶液を、氷浴を用いて冷却し、ジクロロジメチルシラン8.96mL(75.0mmol)を滴下した。滴下終了後、室温(25℃)下で2時間撹拌した。反応溶液に水300mLを加えてクエンチし、次いで、トルエン500mLを加えた後、水100mLを用いて3回洗浄した。得られた溶液を減圧下で溶媒を留去し、ジメチルビス(1,5,6,7-テトラヒドロ-s-インダセン-2-イル)シラン(27.35g、収率99%)を得た。 A dropping funnel and a Dimroth condenser were installed in a 300 mL three-necked flask, and 9.3 g (384 mmol) of magnesium pieces were suspended in 100 mL of tetrahydrofuran (THF) on the flask side. A small amount of 1,2-dibromoethane (0.1 mL) was added to a magnesium suspension in THF, stirred for 15 minutes, and then 35.60 g (151.6- (6) -bromo-1,2,3,5-tetrahydro-s-indacene). 4 mmol) in THF (150 mL) was added dropwise from a dropping funnel. After completion of dropping, the mixture was stirred at room temperature (25 ° C.) for 1 hour, and the supernatant was collected using a cannula. The solution was cooled using an ice bath, and 8.96 mL (75.0 mmol) of dichlorodimethylsilane was added dropwise. After completion of dropping, the mixture was stirred at room temperature (25 ° C.) for 2 hours. The reaction solution was quenched by adding 300 mL of water, and then 500 mL of toluene was added, followed by washing with 100 mL of water three times. The solvent of the obtained solution was distilled off under reduced pressure to obtain dimethylbis (1,5,6,7-tetrahydro-s-indasen-2-yl) silane (27.35 g, yield 99%).
 ジメチルビス(1,5,6,7-テトラヒドロ-s-インダセン-2-イル)シラン(27.35g、74.20mmol)をジエチルエーテル300mLに溶解し、-20℃でn-ブチルリチウム(2.65M、67.3mL、178.4mmol)を滴下した。滴下終了後、一晩室温(25℃)下で撹拌した。上澄みを除去し、残渣をヘキサン100mLで洗浄した。得られた白色粉末を減圧下で乾燥した。このリチウム塩をTHF200mLに溶解させ、氷浴を用いて冷却し、ジクロロジメチルシラン7.40mL(61.9mmol)を滴下した。反応混合物を2時間室温(25℃)下で撹拌した後、反応容器にジムロート冷却管を取り付け、反応混合物を50℃で4時間撹拌した。該反応混合物を室温(25℃)まで冷却し、濾過した。得られた白色固体を、ヘキサン50mLを用いて洗浄し、真空下で乾燥させることで(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3,5,6,7-テトラヒドロ-s-インダセン)(19.82g、収率75%)を得た。 Dimethylbis (1,5,6,7-tetrahydro-s-indasen-2-yl) silane (27.35 g, 74.20 mmol) is dissolved in 300 mL of diethyl ether, and n-butyllithium (2. 65M, 67.3 mL, 178.4 mmol) was added dropwise. After completion of dropping, the mixture was stirred overnight at room temperature (25 ° C.). The supernatant was removed and the residue was washed with 100 mL of hexane. The resulting white powder was dried under reduced pressure. This lithium salt was dissolved in 200 mL of THF, cooled using an ice bath, and 7.40 mL (61.9 mmol) of dichlorodimethylsilane was added dropwise. After the reaction mixture was stirred for 2 hours at room temperature (25 ° C.), a Dimroth condenser was attached to the reaction vessel, and the reaction mixture was stirred at 50 ° C. for 4 hours. The reaction mixture was cooled to room temperature (25 ° C.) and filtered. The obtained white solid was washed with 50 mL of hexane and dried under vacuum to obtain (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3,5,6,7- Tetrahydro-s-indacene) (19.82 g, 75% yield) was obtained.
 (1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3,5,6,7-テトラヒドロ-s-インダセン)19.82g(46.7mmol)をジエチルエーテル200mLに懸濁させ、-20℃に冷却した。次いで、n-ブチルリチウム(2.65M、35.2mL、93.4mmol)を滴下した後、室温(25℃)に戻し、一晩撹拌した。減圧下で溶媒を留去し、得られた残渣をヘキサンで洗浄することによりリチウム塩を得た。このリチウム塩6.32g(10.8mmol)をTHF100mLに溶解させ、次いで、-20℃で臭化エチル(1.8mL、23.1mmol)を滴下した。反応混合物を2時間室温(25℃)下で撹拌した後、水を投入してクエンチし、さらに有機層を飽和塩化アンモニウム水溶液で洗浄し、得られた有機層を硫酸マグネシウムで乾燥した。その後、減圧下で有機層から溶媒を留去することで(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセン)(5.05g、10.5mmol、収率97%)を得た。これをジエチルエーテル100mLに溶解させ、-78℃に冷却し、n-ブチルリチウム(2.65M、7.85mL、20.8mmol)を滴下した後、室温(25℃)に戻し、一晩撹拌した。この反応混合物から溶媒を留去し、ヘキサンで洗浄しジリチウム塩(6.50g、収率83%)を得た。ジリチウム塩(6.50g、8.58mmol)をヘキサン100mLに懸濁させ、ドライアイス/エタノールバスで冷却した。四塩化ジルコニウム2.00g(8.58mmol)をヘキサン50mLに懸濁させ、キャヌラーを用いて上記の配位子ジリチウム塩の冷却ヘキサン懸濁液へ滴下した。滴下終了後、徐々に室温(25℃)に戻し、一晩室温(25℃)下で撹拌した。反応混合物を、ヘキサンから再結晶することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド1.65gを得た(収率30%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ1.08(t,-CH CH ,6H);0.91,1.01(s,Si(CH,12H);1.99,2.83,2.93(m,-CHCHCH-,12H);2.05,2.60(m,-CH CH,4H);7.11,7.25(s,Ar-H,4H)であった。
19.82 g (46.7 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3,5,6,7-tetrahydro-s-indacene) was suspended in 200 mL of diethyl ether. , Cooled to -20 ° C. Then, n-butyllithium (2.65M, 35.2 mL, 93.4 mmol) was added dropwise, and the mixture was returned to room temperature (25 ° C.) and stirred overnight. The solvent was distilled off under reduced pressure, and the resulting residue was washed with hexane to obtain a lithium salt. 6.32 g (10.8 mmol) of this lithium salt was dissolved in 100 mL of THF, and then ethyl bromide (1.8 mL, 23.1 mmol) was added dropwise at −20 ° C. The reaction mixture was stirred at room temperature (25 ° C.) for 2 hours, quenched by adding water, and the organic layer was washed with a saturated aqueous ammonium chloride solution, and the obtained organic layer was dried over magnesium sulfate. Thereafter, the solvent is distilled off from the organic layer under reduced pressure to obtain (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-ethyl-6,7-dihydro-5H-s-indacene). ) (5.05 g, 10.5 mmol, 97% yield). This was dissolved in 100 mL of diethyl ether, cooled to −78 ° C., n-butyllithium (2.65 M, 7.85 mL, 20.8 mmol) was added dropwise, and the mixture was returned to room temperature (25 ° C.) and stirred overnight. . The solvent was distilled off from the reaction mixture and washed with hexane to obtain a dilithium salt (6.50 g, yield 83%). Dilithium salt (6.50 g, 8.58 mmol) was suspended in 100 mL of hexane and cooled in a dry ice / ethanol bath. Zirconium tetrachloride (2.00 g, 8.58 mmol) was suspended in hexane (50 mL) and added dropwise to the cooled hexane suspension of the ligand dilithium salt using a cannula. After completion of the dropwise addition, the temperature was gradually returned to room temperature (25 ° C.) and stirred overnight at room temperature (25 ° C.). The reaction mixture is recrystallized from hexane to give (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-ethyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride 1 0.65 g was obtained (yield 30%).
The result of measurement by 1 H-NMR (500 MHz, CDCl 3 ) is δ 1.08 (t, —CH 2 CH 3 , 6H); 0.91, 1.01 (s, Si (CH 3 ) 2 , 12H) 1.99, 2.83, 2.93 (m, —CH 2 CH 2 CH 2 —, 12H); 2.05, 2.60 (m, —CH 2 CH 3 , 4H); 7.11; 7.25 (s, Ar—H, 4H).
[製造例2:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a2、下記式(a2)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000004
[Production Example 2: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a2, represented by the following formula (a2 Synthesis of transition metal compound represented by
Figure JPOXMLDOC01-appb-C000004
(2-1)5,6-ジメチル-1-インダノンの合成
 500mL三口フラスコに塩化アルミニウム150g(1125mmol)とジクロロメタン450mLを入れ、次いで、o-キシレン60.3mL(500mmol)と3-クロロプロピオニルクロリド47.7mL(500mmol)の混合物を25℃で1時間かけて滴下した。反応混合物を25℃で3時間撹拌した後、該反応混合物を氷水500gと濃塩酸50mLの混合液に投入した。次いで、反応混合物をジクロロメタン500mLで抽出し、水、ブラインで洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去し、3-クロロ-1-(3,4-ジメチルフェニル)-プロパン-1-オン(94.4g,480mmol)を得た(収率96%)。
 三口フラスコに濃硫酸480mLをとり、25℃で3-クロロ-1-(3,4-ジメチルフェニル)-プロパン-1-オン(94.4g,480mmol)を滴下した。90℃で4時間撹拌した後、反応混合物を冷却し、次いで、氷水1000gに投入した。反応混合物をトルエン500mLで抽出し、飽和炭酸水素ナトリウム水溶液、水、ブラインで洗浄後、無水硫酸マグネシウムで乾燥した。次いで、濾過し、減圧下で溶媒を留去した。得られた粗生成物をヘキサン2500mLに溶解、濾過し、4℃で結晶化することにより5,6-ジメチル-1-インダノン14.2gを得た(収率19%)。この操作を3回繰り返し5,6-ジメチル-1-インダノン51.3gを得た。
(2-1) Synthesis of 5,6-dimethyl-1-indanone A 500 mL three-necked flask was charged with 150 g (1125 mmol) of aluminum chloride and 450 mL of dichloromethane, and then 60.3 mL (500 mmol) of o-xylene and 3-chloropropionyl chloride 47 0.7 mL (500 mmol) of the mixture was added dropwise at 25 ° C. over 1 hour. After the reaction mixture was stirred at 25 ° C. for 3 hours, the reaction mixture was poured into a mixture of 500 g of ice water and 50 mL of concentrated hydrochloric acid. Next, the reaction mixture was extracted with 500 mL of dichloromethane, washed with water and brine, dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to give 3-chloro-1- (3,4-dimethylphenyl)- Propan-1-one (94.4 g, 480 mmol) was obtained (yield 96%).
Concentrated sulfuric acid (480 mL) was placed in a three-necked flask, and 3-chloro-1- (3,4-dimethylphenyl) -propan-1-one (94.4 g, 480 mmol) was added dropwise at 25 ° C. After stirring at 90 ° C. for 4 hours, the reaction mixture was cooled and then poured into 1000 g of ice water. The reaction mixture was extracted with 500 mL of toluene, washed with saturated aqueous sodium hydrogen carbonate solution, water and brine, and then dried over anhydrous magnesium sulfate. It was then filtered and the solvent was removed under reduced pressure. The obtained crude product was dissolved in 2500 mL of hexane, filtered, and crystallized at 4 ° C. to obtain 14.2 g of 5,6-dimethyl-1-indanone (yield 19%). This operation was repeated three times to obtain 51.3 g of 5,6-dimethyl-1-indanone.
(2-2)5,6-ジメチルインデンの合成
 5,6-ジメチル-1-インダノン51.3g(320.1mmol)を脱水メタノール400mLに溶解させ、ウォーターバスで35℃に温めた後、ここに水素化ホウ素ナトリウム12.1g(320.1mmol)を固体のまま少しずつ添加した。添加終了後、60℃で2時間撹拌し、25℃まで冷却した後5%塩酸700mLを加え加水分解した。次いで、反応混合物をジエチルエーテル1000mLで抽出後、分液し有機層を無水硫酸マグネシウムで乾燥し、さらに、溶媒を留去することにより、5,6-ジメチル-1-インダノールをベージュ色固体として51.41g得た(収率99%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ1.91,2.44,2.74,2.98(m,-CHCH-,4H);2.26(s,-CH,6H);5.18(s,-CH-,1H),7.03,7.18(s,Ar-H,2H)であった。
 得られた5,6-ジメチル-1-インダノール51.41gにトルエン450mLを加え、p-トルエンスルホン酸・ピリジニウム塩3.2gを加え、この混合物を2.5時間加熱還流し、放冷後、水洗し有機層を無水硫酸マグネシウムで乾燥後、トルエンを留去することで、5,6-ジメチルインデンを褐色オイルとして37.02g得た(収率81%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ2.30(s,-CH,6H);3.33(s,-CH-,2H),6.46,6.81(m,-CH=,2H),7.19,7.24(s,Ar-H,2H)であった。
(2-2) Synthesis of 5,6-dimethylindene After 51.3 g (320.1 mmol) of 5,6-dimethyl-1-indanone was dissolved in 400 mL of dehydrated methanol and heated to 35 ° C. in a water bath, 12.1 g (320.1 mmol) of sodium borohydride was added little by little as a solid. After completion of the addition, the mixture was stirred at 60 ° C. for 2 hours, cooled to 25 ° C., and then hydrolyzed by adding 700 mL of 5% hydrochloric acid. Next, the reaction mixture was extracted with 1000 mL of diethyl ether, and the phases were separated, the organic layer was dried over anhydrous magnesium sulfate, and further the solvent was distilled off to give 5,6-dimethyl-1-indanol as a beige solid. .41 g was obtained (99% yield).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ1.91, 2.44, 2.74, 2.98 (m, —CH 2 CH 2 —, 4H); 2.26 (s, -CH 3 , 6H); 5.18 (s, -CH-, 1H), 7.03, 7.18 (s, Ar-H, 2H).
To 51.41 g of the obtained 5,6-dimethyl-1-indanol, 450 mL of toluene was added, 3.2 g of p-toluenesulfonic acid / pyridinium salt was added, and the mixture was heated to reflux for 2.5 hours, allowed to cool, After washing with water and drying the organic layer over anhydrous magnesium sulfate, toluene was distilled off to obtain 37.02 g of 5,6-dimethylindene as a brown oil (yield 81%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 2.30 (s, —CH 3 , 6H); 3.33 (s, —CH 2 —, 2H), 6.46, 6.81. (M, -CH =, 2H), 7.19, 7.24 (s, Ar-H, 2H).
(2-3)5,6-ジメチル-2-ブロモインデンの合成
 5,6-ジメチルインデン37.02g(256.7mmol)にジメチルスルホキシド(DMSO)200mLと水9.4mLを加えた。この混合物にN-ブロモスクシンイミド45.8gを固体のまま少しずつ添加し、終夜撹拌した後、水200mLを加えジエチルエーテル500mLで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ジエチルエーテルを留去することで5,6-ジメチル-2-ブロモ-1-インダノールを褐色固体として56.04g(232.4mmol)得た(収率91%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ2.28(s,-CH,6H);3.14,3.49(m,-CHCH-,4H),4.24(m,-CH(Br)-,1H);5.25(m,-CH-,1H),6.99,7.11(s,Ar-H,2H)であった。
 得られた5,6-ジメチル-2-ブロモ-1-インダノール56.04g(232.4mmol)をトルエン600mLに溶解し、p-トルエンスルホン酸4.5gを加えて加熱還流し、次いで、3時間加熱後トルエンを減圧下で留去すると、黒褐色の固体が得られた。この固体をヘキサンから再結晶化することにより5,6-ジメチル-2-ブロモインデンを褐色粉末として23.8g得た(収率46%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ2.26(s,-CH,6H);3.52(s,-CH-,2H),6.83(s,-CH=,1H),7.07,7.13(s,Ar-H,2H)であった。
(2-3) Synthesis of 5,6-dimethyl-2-bromoindene To 37.02 g (256.7 mmol) of 5,6-dimethylindene, 200 mL of dimethyl sulfoxide (DMSO) and 9.4 mL of water were added. To this mixture, 45.8 g of N-bromosuccinimide was added little by little as a solid, stirred overnight, 200 mL of water was added, and the mixture was extracted with 500 mL of diethyl ether. The organic layer was dried over anhydrous magnesium sulfate, and diethyl ether was distilled off to obtain 56.04 g (232.4 mmol) of 5,6-dimethyl-2-bromo-1-indanol as a brown solid (yield 91%). ).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 2.28 (s, —CH 3 , 6H); 3.14, 3.49 (m, —CH 2 CH 2 —, 4H), 4 .24 (m, —CH (Br) —, 1H); 5.25 (m, —CH—, 1H), 6.99, 7.11 (s, Ar—H, 2H).
The obtained 5,6-dimethyl-2-bromo-1-indanol (56.04 g, 232.4 mmol) was dissolved in toluene (600 mL), p-toluenesulfonic acid (4.5 g) was added, and the mixture was heated to reflux, and then 3 hours. After heating, toluene was distilled off under reduced pressure to obtain a blackish brown solid. This solid was recrystallized from hexane to obtain 23.8 g of 5,6-dimethyl-2-bromoindene as a brown powder (yield 46%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 2.26 (s, —CH 3 , 6H); 3.52 (s, —CH 2 —, 2H), 6.83 (s, − CH =, 1H), 7.07, 7.13 (s, Ar—H, 2H).
(2-4)(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)の合成
 THF100mLに懸濁させたマグネシウム片5.3gを1,2-ジブロモエタン0.1mLで活性化した。ここに5,6-ジメチル-2-ブロモインデン23.8g(106.8mmol)のTHF100mL溶液をゆっくり添加し、25℃で2時間撹拌後、0℃でジクロロジメチルシラン6.4mL(53.4mmol)を加えた。さらに25℃で4時間撹拌後、減圧下でTHFを留去した。次いで、反応混合物を、ヘキサン150mLを用いて4回抽出し、溶媒を留去することにより、ジメチルビス(5,6-ジメチルインデン-2-イル)シランを白色固体として18.4g得た。
 H-NMR(500MHz,CDCl)による測定の結果は、δ0.44(s,Si―CH,6H);2.32(s,-CH,12H);3.41(m,-CH-,4H);7.21,7.24,7.30(m,-CH=,Ar-H,6H)であった。
(2-4) Synthesis of (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (5,6-dimethylindene) 5.3 g of magnesium suspended in 100 mL of THF was added to 1,2- Activated with 0.1 mL dibromoethane. To this was slowly added a solution of 2,3.8 g (106.8 mmol) of 5,6-dimethyl-2-bromoindene in 100 mL of THF, stirred at 25 ° C. for 2 hours, and then 6.4 mL (53.4 mmol) of dichlorodimethylsilane at 0 ° C. Was added. Further, after stirring at 25 ° C. for 4 hours, THF was distilled off under reduced pressure. Next, the reaction mixture was extracted four times with 150 mL of hexane, and the solvent was distilled off to obtain 18.4 g of dimethylbis (5,6-dimethylinden-2-yl) silane as a white solid.
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are as follows: δ0.44 (s, Si—CH 3 , 6H); 2.32 (s, —CH 3 , 12H); 3.41 (m, − CH 2 -, 4H); 7.21,7.24,7.30 (m, -CH =, Ar-H, was 6H).
 得られたジメチルビス(5,6-ジメチルインデン-2-イル)シラン18.4g(53.4mmol)にジエチルエーテル120mLを加え-20℃でn-ブチルリチウム(2.66M)のヘキサン溶液を42.2mL滴下し、次いで、25℃で2時間撹拌後静置した。上澄みを濾別し、沈殿部を減圧乾燥した。ここにTHF150mLを加えると黄褐色均一溶液となった。0℃でジクロロジメチルシラン6.4mL(53.4mmol)を加えて55℃で6時間加熱撹拌した。生成した白色沈殿を濾別し、減圧下で乾燥すると(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)が15.6g得られた(収率73%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.71,0.67(s,Si-CH,12H);2.31(s,-CH,12H);3.53(2,-CH-,2H);7.18,7.24,7.27(s,-CH=,Ar-H,6H)であった。
To 18.4 g (53.4 mmol) of the obtained dimethylbis (5,6-dimethylinden-2-yl) silane was added 120 mL of diethyl ether, and a hexane solution of n-butyllithium (2.66 M) was added at −20 ° C. 2 mL was added dropwise, and the mixture was stirred at 25 ° C. for 2 hours and then allowed to stand. The supernatant was filtered off and the precipitate was dried under reduced pressure. When 150 mL of THF was added thereto, a yellowish brown uniform solution was obtained. Dichlorodimethylsilane (6.4 mL, 53.4 mmol) was added at 0 ° C., and the mixture was heated and stirred at 55 ° C. for 6 hours. The resulting white precipitate was filtered off and dried under reduced pressure to obtain 15.6 g of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (5,6-dimethylindene) (yield). 73%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.71, 0.67 (s, Si—CH 3 , 12H); 2.31 (s, —CH 3 , 12H); 3 .53 (2, —CH—, 2H); 7.18, 7.24, 7.27 (s, —CH═, Ar—H, 6H).
(2-5)(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドの合成
(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)3.34g(8.3mmol)をジエチルエーテル50mLに懸濁させ、-78℃でn-ブチルリチウム(2.65M)6.6mLを滴下し、次いで、25℃まで上げ5時間撹拌後、生成した黄白色沈殿を濾別・乾燥し、THF50mLに溶解させた。-78℃でヨウ化メチルトリメチルシラン2.6mL(17.4mmol)を滴下し、25℃で4時間撹拌後、水50mLを加えて加水分解した。反応混合物をジエチルエーテル100mLで抽出し分液後、無水硫酸マグネシウムで乾燥し、次いで、溶媒を留去すると薄黄色固体が4.71g得られた。この固体をジエチルエーテル50mLに溶解し、-78℃でn-ブチルリチウム(2.65M)6.5mLを滴下し、25℃で3時間撹拌後、生成した沈殿を濾別し、乾燥させた。この固体をトルエン30mLに懸濁し、トルエン15mLに懸濁させた四塩化ジルコニウム1.4g(6.0mmol)を-78℃で添加し、25℃で終夜撹拌すると黄色懸濁液となった。沈殿部を濾別後、ジクロロメタン60mLで抽出し、濾過し、溶媒を留去することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として1.76g得た(収率40%)。
H-NMR(500MHz,CDCl)による測定の結果は、δ-0.11(s,Si(CH,18H);0.88,0.96(s,Si(CH,12H);2.24,2.28(s,-CH,12H);2.15,2.53(d,-CH-Si,4H);7.04,7.09(s,Ar-H,4H)であった。
(2-5) Synthesis of (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium dichloride
(1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (5,6-dimethylindene) (3.34 g, 8.3 mmol) was suspended in diethyl ether (50 mL), and n- 6.6 mL of butyllithium (2.65 M) was added dropwise, and then the mixture was raised to 25 ° C. and stirred for 5 hours. The produced yellowish white precipitate was separated by filtration, dried and dissolved in 50 mL of THF. 2.6 mL (17.4 mmol) of methyltrimethylsilane iodide was added dropwise at −78 ° C., and the mixture was stirred at 25 ° C. for 4 hours, and then hydrolyzed by adding 50 mL of water. The reaction mixture was extracted with 100 mL of diethyl ether, separated, dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain 4.71 g of a pale yellow solid. This solid was dissolved in 50 mL of diethyl ether, 6.5 mL of n-butyllithium (2.65M) was added dropwise at −78 ° C., and the mixture was stirred at 25 ° C. for 3 hours. The resulting precipitate was filtered off and dried. This solid was suspended in 30 mL of toluene, and 1.4 g (6.0 mmol) of zirconium tetrachloride suspended in 15 mL of toluene was added at −78 ° C. and stirred overnight at 25 ° C. to obtain a yellow suspension. The precipitate was filtered off, extracted with 60 mL of dichloromethane, filtered, and the solvent was distilled off to remove (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-trimethylsilylmethyl-5, 1.76 g of 6-dimethylindenyl) zirconium dichloride was obtained as a yellow solid (yield 40%).
The result of measurement by 1 H-NMR (500 MHz, CDCl 3 ) is δ-0.11 (s, Si (CH 3 ) 3 , 18H); 0.88, 0.96 (s, Si (CH 3 ) 2 , 12H); 2.24, 2.28 (s, —CH 3 , 12H); 2.15, 2.53 (d, —CH 2 —Si, 4H); 7.04, 7.09 (s, Ar-H, 4H).
[製造例3:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジヨージド〔遷移金属化合物a3、下記式(a3)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000005
[Production Example 3: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide [transition metal compound a3, represented by the following formula ( Synthesis of transition metal compound represented by a3)]
Figure JPOXMLDOC01-appb-C000005
 製造例2の(2-5)で、四塩化ジルコニウムの代わりに、四沃化ジルコニウムを使った以外は製造例2と同様に合成したところ、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジヨージドを黄色固体として得た(収率40%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.09(s,Si(CH,18H);0.87,0.94(s,Si(CH,12H);2.29,2.32(s,-CH3,12H);2.39,3.03(d,-CH-Si,4H);7.07,7.27(s,Ar-H,4H)であった。
Synthesis was performed in the same manner as in Production Example 2 except that zirconium tetraiodide was used instead of zirconium tetrachloride in (2-5) of Production Example 2, and (1,2′-dimethylsilylene) (2,1 '-Dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide was obtained as a yellow solid (yield 40%).
The result of measurement by 1 H-NMR (500 MHz, CDCl 3 ) is δ-0.09 (s, Si (CH 3 ) 3 , 18H); 0.87, 0.94 (s, Si (CH 3 ) 2 , 12H); 2.29,2.32 (s, -CH3,12H); 2.39,3.03 (d, -CH 2 -Si, 4H); 7.07,7.27 (s, Ar -H, 4H).
[製造例4:(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a4、下記式(a4)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000006
[Production Example 4: (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-methylindenyl) zirconium dichloride [transition metal compound a4, transition metal represented by the following formula (a4) Synthesis of Compound]
Figure JPOXMLDOC01-appb-C000006
(4-1)(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)の合成
 500mL三口フラスコにマグネシウム片12.7g(522.0mmol)及びテトラヒドロフラン(THF)120mLを投入し、次いで1,2-ジブロモエタン0.1mLを滴下し、5分間撹拌してマグネシウム表面を活性化させた。ここにTHF120mLに溶解させた2-ブロモインデン25.0g(128.0mmol)を滴下漏斗から滴下した。反応混合物を25℃で4時間撹拌した後、ジクロロジメチルシラン7.7mL(64mmol)を滴下し終夜撹拌した。溶媒を留去し、ヘキサン200mLで2回抽出することでジメチルビス(2-インデニル)シランを黄色油状物として16.6g得た(収率90%)。
(4-1) Synthesis of (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (indene) 12.7 g (522.0 mmol) of magnesium pieces and 120 mL of tetrahydrofuran (THF) were added to a 500 mL three-necked flask. Then, 0.1 mL of 1,2-dibromoethane was added dropwise and stirred for 5 minutes to activate the magnesium surface. Here, 25.0 g (128.0 mmol) of 2-bromoindene dissolved in 120 mL of THF was dropped from a dropping funnel. After the reaction mixture was stirred at 25 ° C. for 4 hours, 7.7 mL (64 mmol) of dichlorodimethylsilane was added dropwise and stirred overnight. The solvent was distilled off and extracted twice with 200 mL of hexane to obtain 16.6 g of dimethylbis (2-indenyl) silane as a yellow oil (yield 90%).
 ジメチルビス(2-インデニル)シラン16.6g(57.4mmol)をジエチルエーテル90mLに溶解させ、-20℃でn-ブチルリチウム(ヘキサン溶液2.65M,45.5mL,120.6mmol)を滴下した。25℃で4時間撹拌後、沈殿物を濾別し、減圧乾燥した。得られた黄白色固体にTHF100mLを加え氷浴で冷却し、ジクロロジフェニルシラン10.0mL(48.2mmol)を滴下、25℃で4時間撹拌した。減圧下で溶媒を留去した後、ヘキサン150mL、ジクロロメタン15mLで抽出を行い、濾別後溶媒を留去して明橙色固体を得た。ここへトルエン80mLを加えて、122℃で20分間加熱撹拌を行った。放冷後トルエンを留去しエーテル100mLを加えて一晩静置すると白色固体が生成した。この固体を濾別しジクロロメタン140mL、ヘキサン50mLで抽出することにより、(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)6.7gを白色固体として得た(収率25%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.54、0.70(6H,-Si(CH),4.31,3.90(2H,-CH-),6.56,7.00(4H,-ArH),7.10-7.73(16H,-ArH)であった。
16.6 g (57.4 mmol) of dimethylbis (2-indenyl) silane was dissolved in 90 mL of diethyl ether, and n-butyllithium (hexane solution 2.65 M, 45.5 mL, 120.6 mmol) was added dropwise at −20 ° C. . After stirring at 25 ° C. for 4 hours, the precipitate was filtered off and dried under reduced pressure. To the obtained yellowish white solid, 100 mL of THF was added and cooled in an ice bath, and 10.0 mL (48.2 mmol) of dichlorodiphenylsilane was added dropwise, followed by stirring at 25 ° C. for 4 hours. After the solvent was distilled off under reduced pressure, extraction was performed with 150 mL of hexane and 15 mL of dichloromethane, and after filtration, the solvent was distilled off to obtain a bright orange solid. Toluene 80mL was added here, and it heat-stirred at 122 degreeC for 20 minute (s). After standing to cool, toluene was distilled off, 100 mL of ether was added, and the mixture was allowed to stand overnight to produce a white solid. This solid was separated by filtration and extracted with dichloromethane (140 mL) and hexane (50 mL) to obtain 6.7 g of (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (indene) as a white solid (yield). Rate 25%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.54, 0.70 (6H, —Si (CH 3 ) 2 ), 4.31, 3.90 (2H, —CH— ), 6.56, 7.00 (4H, -ArH), 7.10-7.73 (16H, -ArH).
(4-2)(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリドの合成
 (1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)5.07g(10.8mmol)にジエチルエーテル50mLを加え、氷浴で冷却し、n-ブチルリチウム(2.65M,8.6mL,22.8mmol)を滴下した。生成した黄白色沈殿を濾別し、THF50mLに溶解した。氷浴中でヨウ化メチル1.4mL(22.4mmol)を添加し、25℃で5時間撹拌した。水50mLで加水分解後、分液し乾燥後、溶媒を除去すると白色固体として(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-メチルインデン)4.72gが得られた。この固体をエーテル50mLに溶解し、-20℃でn-ブチルリチウム(2.65M,7.5mL,19.9mmol)を滴下した。25℃まで上げて3時間撹拌し、黄白色のリチウム塩の沈殿を濾別、乾燥した。このリチウム塩をトルエン40mLに溶解し、トルエン20mLに懸濁させた四塩化ジルコニウム1.9g(8.0mmol)を0℃で添加した。25℃で4時間撹拌後、黄色沈殿を濾別し、ジクロロメタンから再結晶化することにより黄色固体として(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-メチルインデニル)ジルコニウムジクロリドを1.67g得た。(収率32%)
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.18,0.80(6H,-Si(CH),2.33,2.50(6H,-CH),7.03-8.06(18H,-ArH)であった。
(4-2) Synthesis of (1,2'-dimethylsilylene) (2,1'-diphenylsilylene) bis (3-methylindenyl) zirconium dichloride (1,2'-dimethylsilylene) (2,1'- Diethylsilylene) bis (indene) (5.07 g, 10.8 mmol) was added with 50 mL of diethyl ether, cooled in an ice bath, and n-butyllithium (2.65 M, 8.6 mL, 22.8 mmol) was added dropwise. The produced yellowish white precipitate was filtered off and dissolved in 50 mL of THF. In an ice bath, 1.4 mL (22.4 mmol) of methyl iodide was added and stirred at 25 ° C. for 5 hours. After hydrolysis with 50 mL of water, liquid separation, drying, and removal of the solvent, 4.72 g of (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-methylindene) is obtained as a white solid. It was. This solid was dissolved in 50 mL of ether, and n-butyllithium (2.65 M, 7.5 mL, 19.9 mmol) was added dropwise at −20 ° C. The mixture was raised to 25 ° C. and stirred for 3 hours, and a yellowish white lithium salt precipitate was separated by filtration and dried. This lithium salt was dissolved in 40 mL of toluene, and 1.9 g (8.0 mmol) of zirconium tetrachloride suspended in 20 mL of toluene was added at 0 ° C. After stirring at 25 ° C. for 4 hours, the yellow precipitate was filtered off and recrystallized from dichloromethane to give (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-methylindene as a yellow solid. 1.67 g of (nyl) zirconium dichloride were obtained. (Yield 32%)
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.18, 0.80 (6H, —Si (CH 3 ) 2 ), 2.33, 2.50 (6H, —CH 3 ), 7.03-8.06 (18H, -ArH).
[製造例5:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a5、下記式(a5)で示される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000007
[Production Example 5: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-methyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a5, represented by the following formula (a5) Of transition metal compounds represented by
Figure JPOXMLDOC01-appb-C000007
 製造例2の(2-5)でヨウ化メチルトリメチルシランの代わりにヨウ化メチルを添加した以外は製造例2と同様に合成したところ(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として得た(収率33%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ0.91,1.00(s,Si(CH,12H);2.26,2.29(s,Ar-CH,12H);1.10,1.26,1.50,1.63(m,-シクロヘキシル基,22H);2.44,2.89(d,-CH-,4H);7.08,7.20(s,Ar-H,4H)であった。
Synthesis was performed in the same manner as in Production Example 2 except that methyl iodide was added instead of methyltrimethylsilane in (2-5) of Production Example 2, and (1,2'-dimethylsilylene) (2,1'- Dimethylsilylene) bis (3-methyl-5,6-dimethylindenyl) zirconium dichloride was obtained as a yellow solid (yield 33%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 0.91, 1.00 (s, Si (CH 3 ) 2 , 12H); 2.26, 2.29 (s, Ar—CH 3 , 12H); 1.10,1.26,1.50,1.63 (m, - cyclohexyl, 22H); 2.44,2.89 (d, -CH 2 -, 4H); 7.08 7.20 (s, Ar—H, 4H).
[製造例6:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a6、下記式(a6)で示される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000008
[Production Example 6: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclopentylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a6, represented by the following formula (a6 Synthesis of transition metal compound represented by
Figure JPOXMLDOC01-appb-C000008
 製造例2の(2-5)でヨウ化メチルトリメチルシランの代わりにブロモメチルシクロペンタンを添加した以外は製造例2と同様に合成したところ(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として得た(収率22%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ0.92,1.02(s,Si(CH,12H);2.28,2.30(s,Ar-CH,12H);1.14,1.47,1.58,1.85(m,-シクロペンチル基,18H);2.53,3.04(m,-CH-,4H);7.08,7.22(s,Ar-H,4H)であった。
Synthesis was performed in the same manner as in Production Example 2 except that bromomethylcyclopentane was added instead of methyltrimethylsilane iodide in (2-5) of Production Example 2, and (1,2'-dimethylsilylene) (2,1 ' -Dimethylsilylene) bis (3-cyclopentylmethyl-5,6-dimethylindenyl) zirconium dichloride was obtained as a yellow solid (yield 22%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 0.92, 1.02 (s, Si (CH 3 ) 2 , 12H); 2.28, 2.30 (s, Ar—CH 3 , 12H); 1.14,1.47,1.58,1.85 (m, - cyclopentyl, 18H); 2.53,3.04 (m, -CH 2 -, 4H); 7.08 7.22 (s, Ar—H, 4H).
[製造例7:(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a7、下記式(a7)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000009
[Production Example 7: (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a7, represented by the following formula (a7) Of transition metal compounds]
Figure JPOXMLDOC01-appb-C000009
(7-1)(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(インデン)の合成
 2L三口フラスコにマグネシウム20.0g(823mmol)を加え、THF250mLを添加した。1,2-ジブロモエタン0.1mLでマグネシウムを活性化させた後、2-ブロモインデン(78.3g,401mmol)のTHF250mL溶液を滴下漏斗から滴下し、滴下終了後25℃で1時間撹拌した。この溶液を0℃に冷やしジクロロメチルフェニルシラン(65.0mL,400mmol)を投入し、25℃で30分間撹拌した。溶媒を留去し減圧下で乾燥させた後、得られた残渣をヘキサン1Lで抽出した。ヘキサン溶液から溶媒を留去することで淡黄色油状物101gを得た。これを減圧蒸留することによりクロロ(2-インデニル)メチルフェニルシラン66.3g(245mmol)を得た(収率61%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ0.92(s,3H,-Si(CH)),3.60(2H,-CH-),7.3-7.7(9H,-ArH)であった。
(7-1) Synthesis of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (indene) 20.0 g (823 mmol) of magnesium was added to a 2 L three-necked flask, and 250 mL of THF was added. After activating magnesium with 0.1 mL of 1,2-dibromoethane, a solution of 2-bromoindene (78.3 g, 401 mmol) in 250 mL of THF was added dropwise from the dropping funnel, and the mixture was stirred at 25 ° C. for 1 hour. The solution was cooled to 0 ° C., dichloromethylphenylsilane (65.0 mL, 400 mmol) was added, and the mixture was stirred at 25 ° C. for 30 minutes. After the solvent was distilled off and dried under reduced pressure, the obtained residue was extracted with 1 L of hexane. The solvent was distilled off from the hexane solution to obtain 101 g of a pale yellow oil. This was distilled under reduced pressure to obtain 66.3 g (245 mmol) of chloro (2-indenyl) methylphenylsilane (yield 61%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ 0.92 (s, 3H, —Si (CH 3 )), 3.60 (2H, —CH 2 —), 7.3-7. 7 (9H, -ArH).
 クロロ(2-インデニル)メチルフェニルシラン66.3gをTHF180mLに溶解し、氷浴中でリチウムジイソプロピルアミド(245mmol)のTHF溶液を滴下漏斗から滴下した。反応混合物を氷浴中で終夜撹拌し、その後25℃まで上げた。減圧下に溶媒を留去した後、ヘキサン500mLで2回抽出することで、(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(インデン)を白色固体として40.0g得た。(収率70%) 66.3 g of chloro (2-indenyl) methylphenylsilane was dissolved in 180 mL of THF, and a THF solution of lithium diisopropylamide (245 mmol) was added dropwise from an addition funnel in an ice bath. The reaction mixture was stirred overnight in an ice bath and then raised to 25 ° C. After the solvent was distilled off under reduced pressure, extraction was performed twice with 500 mL of hexane to give (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (indene) as a white solid. 0 g was obtained. (Yield 70%)
(7-2)(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)の合成
(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(インデン)40.0g(85mmol)をエーテル220mLに溶解し、0℃でn-ブチルリチウム(2.65M,68.3mL,181mmol)を滴下し、25℃まで昇温後15分間撹拌したところ白色沈殿が生成した。白色沈殿物を濾別し、次いで母液の溶媒を留去し、ヘキサンで洗浄することによりリチウム塩31.5gを単離した。
 リチウム塩をTHF200mLに溶解し、0℃でヨウ化メチルトリメチルシラン(16.0mL、108mmol)を滴下、滴下終了後25℃に上げ1時間撹拌した後、水30mLを投入した。有機層を分液、乾燥後溶媒を留去することにより黄褐色固体として、下記式(a7-1)で表される(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)を32.4g得た(収率99%)。
(7-2) Synthesis of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindene) (1,2′-methylphenylsilylene) (2,1 ′ -Methylphenylsilylene) bis (indene) 40.0 g (85 mmol) was dissolved in 220 mL of ether, n-butyllithium (2.65 M, 68.3 mL, 181 mmol) was added dropwise at 0 ° C., and the temperature was raised to 25 ° C. A white precipitate formed upon stirring for 15 minutes. The white precipitate was filtered off, then the mother liquor was evaporated and 31.5 g of lithium salt was isolated by washing with hexane.
The lithium salt was dissolved in 200 mL of THF, and methyltrimethylsilane iodide (16.0 mL, 108 mmol) was added dropwise at 0 ° C. After completion of the addition, the mixture was stirred for 1 hour after raising to 25 ° C. Then, 30 mL of water was added. The organic layer was separated, dried, and the solvent was distilled off to give a yellowish brown solid (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) represented by the following formula (a7-1): ) 32.4 g of bis (3-trimethylsilylmethylindene) was obtained (99% yield).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(7-3)(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドの合成
 (1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)32.4g(51mmol)をエーテル80mLに溶解し、0℃でn-ブチルリチウム(40.0mL、106mmol)を滴下し、25℃で3時間撹拌すると淡黄色固体が生成した。これを濾別、乾燥することによりリチウム塩19.3gを得た。
 このリチウム塩をヘキサン60mLに懸濁させ、-20℃でヘキサン20mLに懸濁した四塩化ジルコニウム5.9g(25.0mmol)を添加した。25℃まで上げ終夜撹拌した後、生成した黄色固体を濾別し、ヘキサン100mLで洗浄した。得られた固体をジクロロメタン100mLから再結晶化することにより、黄色粉末として式(a7)で表される(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを7.35g得た(収率37%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.07(18H,-Si(CH),0.92(6H,Si-CH),2.29,2.75(4H,-CH-Si),6.93-7.50(18H,-ArH,Ph-Si)であった。
(7-3) Synthesis of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride (1,2′-methylphenylsilylene) (2 , 1′-methylphenylsilylene) bis (3-trimethylsilylmethylindene) 32.4 g (51 mmol) was dissolved in 80 mL of ether, n-butyllithium (40.0 mL, 106 mmol) was added dropwise at 0 ° C., and 25 ° C. After stirring for 3 hours, a pale yellow solid was formed. This was filtered and dried to obtain 19.3 g of a lithium salt.
This lithium salt was suspended in 60 mL of hexane, and 5.9 g (25.0 mmol) of zirconium tetrachloride suspended in 20 mL of hexane was added at −20 ° C. After raising to 25 ° C. and stirring overnight, the produced yellow solid was filtered off and washed with 100 mL of hexane. The obtained solid was recrystallized from 100 mL of dichloromethane to give (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) bis (3- 7.35 g of trimethylsilylmethylindenyl) zirconium dichloride was obtained (yield 37%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.07 (18H, —Si (CH 3 ) 3 ), 0.92 (6H, Si—CH 3 ), 2.29, 2 .75 (4H, —CH 2 —Si), 6.93-7.50 (18H, —ArH, Ph—Si).
[製造例8:(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a8、下記式(a8)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000011
[Production Example 8: (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-n-butylindenyl) zirconium dichloride [transition metal compound a8, represented by the following formula (a8) Synthesis of transition metal compounds]
Figure JPOXMLDOC01-appb-C000011
 製造例4の(4-2)でヨウ化メチルの代わりに臭化n-ブチルを加えた以外は製造例4と同様に合成したところ、(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリドを黄色固体として1.84g得た(収率31%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.17,0.83(s,Si(CH,12H);0.89,0.50(s,-CH,6H);1.27,1.49(m,-CH-,8H);2.67-3.10(m,-CH-,4H);7.02-8.09(m,Ar-H,18H)であった。
Synthesis was performed in the same manner as in Production Example 4 except that n-butyl bromide was added in place of methyl iodide in (4-2) of Production Example 4. As a result, (1,2′-dimethylsilylene) (2,1 ′ 1.84 g of (diphenylsilylene) bis (3-n-butylindenyl) zirconium dichloride was obtained as a yellow solid (yield 31%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.17, 0.83 (s, Si (CH 3 ) 2 , 12H); 0.89, 0.50 (s, —CH 3 , 6H); 1.27, 1.49 (m, —CH 2 —, 8H); 2.67-3.10 (m, —CH 2 —, 4H); 7.02-8.09 (m , Ar-H, 18H).
[製造例9:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a9、下記式(a9)で示される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000012
[Production Example 9: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a9, transition metal represented by the following formula (a9) Synthesis of Compound]
Figure JPOXMLDOC01-appb-C000012
 特開2000-256411号公報の実施例9に記載の方法によって、式(a9)で表される(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを合成した。 (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindene) represented by the formula (a9) by the method described in Example 9 of JP-A-2000-256411 Nyl) zirconium dichloride was synthesized.
[製造例10:(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a10、下記式(a10)で示される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000013
[Production Example 10: (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclohexylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a10, represented by the following formula (a10 Synthesis of transition metal compound represented by
Figure JPOXMLDOC01-appb-C000013
 製造例2の(2-5)でヨウ化メチルトリメチルシランの代わりにブロモメチルシクロヘキサンを添加した以外は製造例2と同様に合成したところ、式(a10)で表される(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として得た(収率29%)。 Synthesis was carried out in the same manner as in Production Example 2 except that bromomethylcyclohexane was added instead of methyltrimethylsilane iodide in (2-5) of Production Example 2, and the compound represented by the formula (a10) (1,2′- Dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclohexylmethyl-5,6-dimethylindenyl) zirconium dichloride was obtained as a yellow solid (yield 29%).
[製造例11:(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a11、下記式(a11)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000014
[Production Example 11: (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a11, represented by the following formula (a11) Of transition metal compounds]
Figure JPOXMLDOC01-appb-C000014
 製造例7の(7-2)で得られた白色沈殿物17.3gをエーテル100mLで2回洗浄した。得られた白色固体8.60gにTHF100mLを加え、氷浴中でヨウ化メチルトリメチルシラン4.5mL(29.9mmol)を滴下し、25℃で1時間撹拌した後、水30mLを投入した。有機層を分液、乾燥後溶媒を留去することで下記式(a11-1)で表される(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)を黄褐色固体として9.70g得た(収率99%)。 17.3 g of the white precipitate obtained in (7-2) of Production Example 7 was washed twice with 100 mL of ether. 100 mL of THF was added to 8.60 g of the obtained white solid, methyltrimethylsilane iodide 4.5 mL (29.9 mmol) was added dropwise in an ice bath, and the mixture was stirred at 25 ° C. for 1 hour, and then 30 mL of water was added. The organic layer was separated and dried, and then the solvent was distilled off to remove (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3- 9.70 g of trimethylsilylmethylindene) was obtained as a tan solid (99% yield).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 この固体をエーテル60mLに溶解し、0℃でn-ブチルリチウム12.2mL(32.0mmol)を滴下し、25℃で1時間撹拌した。反応混合物の溶媒を留去し、得られた固体をヘキサン50mLで洗浄することによりリチウム塩9.30gを得た(収率80%)。
 これをヘキサン60mLに懸濁させ、-20℃でヘキサン20mLに懸濁させた四塩化ジルコニウム2.8g(12.0mmol)を添加した。添加後、25℃で、終夜撹拌を行った。沈殿物を濾別し、ヘキサン1200mLで抽出することで、式(a11)で表される(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを4.1g(5.1mmol)得た(収率43%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.45,-0.02(s,Si(CH,18H);0.50,1.04(s,Si(CH),6H);2.30,2.38,2.45,2.79(d,-CHSi,4H);7.08-8.00(m,Ar-H,Si-Ph,18H)であった。
This solid was dissolved in 60 mL of ether, and 12.2 mL (32.0 mmol) of n-butyllithium was added dropwise at 0 ° C., followed by stirring at 25 ° C. for 1 hour. The solvent of the reaction mixture was distilled off, and the resulting solid was washed with 50 mL of hexane to obtain 9.30 g of a lithium salt (yield 80%).
This was suspended in 60 mL of hexane, and 2.8 g (12.0 mmol) of zirconium tetrachloride suspended in 20 mL of hexane at −20 ° C. was added. After the addition, the mixture was stirred at 25 ° C. overnight. The precipitate was filtered off and extracted with 1200 mL of hexane, whereby (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindene represented by the formula (a11) was expressed. 4.1 g (5.1 mmol) of (nyl) zirconium dichloride were obtained (43% yield).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ-0.45, -0.02 (s, Si (CH 3 ) 3 , 18H); 0.50, 1.04 (s, Si (CH 3 ), 6H); 2.30, 2.38, 2.45, 2.79 (d, —CH 2 Si, 4H); 7.08-8.00 (m, Ar—H, Si—) Ph, 18H).
[製造例12:(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a12、下記式(a12)で表される遷移金属化合物〕の合成]
Figure JPOXMLDOC01-appb-C000016
[Production Example 12: (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a12, transition represented by the following formula (a12) Synthesis of metal compounds]
Figure JPOXMLDOC01-appb-C000016
(12-1)(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)の合成
 2-ブロモインデン15.0g(76.9mmol)をエーテル200mLに溶解し、0℃でn-ブチルリチウムのヘキサン溶液(2.65M,29.0mL,76.9mmol)を滴下した。25℃に上げ3時間撹拌後、0℃でt-ブチルリチウム(1.69M,91.0mL,153.8mmol)を滴下した。25℃で3時間撹拌後、-78℃でジクロロジフェニルシラン8.0mL(38.5mmol)を添加し、25℃に上げて終夜撹拌した。この反応溶液にTHF80mLを加え、-78℃でジクロロジフェニルシラン8.0mL(38.5mmol)を添加し、25℃に上げて終夜撹拌した。反応混合物に水100mLを加え撹拌すると、白色沈殿が生成した。この沈殿物を濾別し、減圧乾燥することにより(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)4.95gを得た(収率22%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ4.44(2H,-CH-),6.64-7.64(30H,-CH=,Si-Ph,Ar-H)であった。
(12-1) Synthesis of (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (indene) 15.0 g (76.9 mmol) of 2-bromoindene was dissolved in 200 mL of ether, and 0 ° C. The n-butyllithium solution in hexane (2.65M, 29.0 mL, 76.9 mmol) was added dropwise. After raising to 25 ° C. and stirring for 3 hours, t-butyllithium (1.69 M, 91.0 mL, 153.8 mmol) was added dropwise at 0 ° C. After stirring at 25 ° C. for 3 hours, 8.0 mL (38.5 mmol) of dichlorodiphenylsilane was added at −78 ° C., and the mixture was raised to 25 ° C. and stirred overnight. 80 mL of THF was added to the reaction solution, and 8.0 mL (38.5 mmol) of dichlorodiphenylsilane was added at −78 ° C., and the mixture was raised to 25 ° C. and stirred overnight. When 100 mL of water was added to the reaction mixture and stirred, a white precipitate was formed. The precipitate was separated by filtration and dried under reduced pressure to obtain 4.95 g of (1,2'-diphenylsilylene) (2,1'-diphenylsilylene) bis (indene) (yield 22%).
The result of measurement by 1 H-NMR (500 MHz, CDCl 3 ) is δ 4.44 (2H, —CH—), 6.64-7.64 (30H, —CH═, Si—Ph, Ar—H). there were.
(12-2)(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドの合成
 (1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(インデン)4.95g(8.3mmol)にTHF50mL、エーテル90mLを加え、-20℃でn-ブチルリチウム(2.65M,6.6mL,17.5mmol)を添加した。25℃で4時間撹拌後、生成した黄白色固体を濾別し乾燥した。この固体をTHF40mLに溶解し、0℃でヨウ化メチルトリメチルシラン2.4mL(16.2mmol)を添加し、25℃で3時間撹拌後、70℃で3時間加熱撹拌した。反応溶液を放冷後、水25mLを加え分液後、溶液を乾燥し溶媒を留去することにより黄白色固体として(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)を4.28g得た(収率67%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ0.88,1.20(4H,-CH-Si),4.08(2H,-CH-)7.02-7.80(28H,Si-Ph,Ar-H)であった。
(12-2) Synthesis of (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride (1,2′-diphenylsilylene) (2,1 ′ -Diphenylsilylene) bis (indene) (4.95 g, 8.3 mmol) was added with 50 mL of THF and 90 mL of ether, and n-butyllithium (2.65 M, 6.6 mL, 17.5 mmol) was added at -20 ° C. After stirring at 25 ° C. for 4 hours, the produced yellowish white solid was filtered off and dried. This solid was dissolved in 40 mL of THF, 2.4 mL (16.2 mmol) of methyltrimethylsilane iodide was added at 0 ° C., and the mixture was stirred at 25 ° C. for 3 hours and then heated and stirred at 70 ° C. for 3 hours. After allowing the reaction solution to cool, 25 mL of water was added for liquid separation, and the solution was dried and the solvent was distilled off to obtain (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (2,1′-diphenylsilylene) bis ( 4.28 g of 3-trimethylsilylmethylindene) was obtained (yield 67%).
The results of measurement by 1 H-NMR (500 MHz, CDCl 3 ) are δ0.88, 1.20 (4H, —CH 2 —Si), 4.08 (2H, —CH—) 7.02-7.80. (28H, Si—Ph, Ar—H).
 (1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデン)1.49g(1.9mmol)にTHF15mL、エーテル20mLを加え-20℃でn-ブチルリチウム(2.65M)1.5mLを添加した。25℃で6時間撹拌後、生成した黄白色沈殿を濾別乾燥した。この固体をジクロロメタン25mLに溶解し、0℃でジクロロメタン10mLに懸濁した四塩化ジルコニウム0.37g(1.6mmol)を添加した。25℃で終夜撹拌後、濾過し母液を濃縮することにより(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを0.85g得た(収率57%)。
 H-NMR(500MHz,CDCl)による測定の結果は、δ-0.42(s,Si(CH,18H);2.16,2.46(d,-CH-Si,4H);6.9-7.6(m,Ar-H,Ph-Si,26H)であった。
To 1.49 g (1.9 mmol) of (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindene) was added 15 mL of THF and 20 mL of ether, and n-butyllithium (-20 ° C.) was added. 2.65M) 1.5 mL was added. After stirring at 25 ° C. for 6 hours, the produced yellowish white precipitate was separated by filtration and dried. This solid was dissolved in 25 mL of dichloromethane, and 0.37 g (1.6 mmol) of zirconium tetrachloride suspended in 10 mL of dichloromethane at 0 ° C. was added. After stirring at 25 ° C. overnight, filtration and concentration of the mother liquor yielded 0.85 g of (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride. (Yield 57%).
1 H-NMR (500MHz, CDCl 3) results of measurement by the, δ-0.42 (s, Si (CH 3) 3, 18H); 2.16,2.46 (d, -CH 2 -Si, 4H); 6.9-7.6 (m, Ar—H, Ph—Si, 26H).
(実施例1)
 加熱乾燥した1リットルオートクレーブに、窒素雰囲気下、室温でヘプタン400mL及びトリイソブチルアルミニウム0.4ミリモルを加え、撹拌した後、触媒種として(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-エチル-6,7-ジヒドロ-5H-s-インダセニル)ジルコニウムジクロリド〔遷移金属化合物a1〕を0.2マイクロモル、助触媒としてジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを0.8マイクロモル、それぞれ加えた。続いて水素を0.05MPa張り込んだ後、60℃に昇温しながら、プロピレンで圧力を0.7MPaに保ちながら60分間重合した。重合反応終了後、オートクレーブ内に反応生成物とメタノールを投入し、充分撹拌した後、内容物を乾燥しプロピレン系重合体を151g得た。
Example 1
To a heat-dried 1 liter autoclave, 400 mL of heptane and 0.4 mmol of triisobutylaluminum were added at room temperature in a nitrogen atmosphere and stirred, and then (1,2'-dimethylsilylene) (2,1'-dimethyl) was used as a catalyst species. 0.2 μmol of silylene) bis (3-ethyl-6,7-dihydro-5H-s-indacenyl) zirconium dichloride [transition metal compound a1] and 0 as dimethylanilinium tetrakis (pentafluorophenyl) borate as cocatalyst .8 micromole of each was added. Subsequently, 0.05 MPa of hydrogen was introduced, and then polymerization was performed for 60 minutes while maintaining the pressure at 0.7 MPa with propylene while raising the temperature to 60 ° C. After the completion of the polymerization reaction, the reaction product and methanol were put into an autoclave, and after sufficiently stirring, the contents were dried to obtain 151 g of a propylene polymer.
(実施例2)
 実施例1において、触媒種として遷移金属化合物a1を(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジヨージド〔遷移金属化合物a3〕に変更した以外は実施例1と同様にしてプロピレン系重合体を110g得た。
(Example 2)
In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium diiodide [1] is used as a catalyst species. 110 g of a propylene polymer was obtained in the same manner as in Example 1 except that the transition metal compound a3] was changed.
(実施例3)
 実施例1において、触媒種として遷移金属化合物a1を(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a2〕に変更した以外は実施例1と同様にしてプロピレン系重合体を128g得た。
(Example 3)
In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition] is used as a catalyst species. 128 g of a propylene polymer was obtained in the same manner as in Example 1 except that the metal compound a2] was changed.
(実施例4)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 反応器内の全圧を1.0MPa・Gに保ち、かつ、水素/プロピレン比が0.05となるよう水素とプロピレンを連続供給し、重合温度を72℃とし、所望の分子量を有する重合溶液を得た。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、プロピレン系重合体を得た。
Example 4
Into a stainless steel reactor with an internal volume of 20 L equipped with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakis (pentafluorophenyl) borate, (1,2'-dimethyl) A catalyst component obtained by pre-contacting silylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in a mass ratio of 1: 2: 20 in advance with propylene, It was continuously supplied at 6 μmol / hr in terms of zirconium.
A polymerization solution having a desired molecular weight, maintaining the total pressure in the reactor at 1.0 MPa · G, continuously supplying hydrogen and propylene so that the hydrogen / propylene ratio is 0.05, setting the polymerization temperature to 72 ° C. Got. To the resulting polymerization solution, an antioxidant was added so that the content thereof was 1000 ppm by mass, and then n-heptane as a solvent was removed to obtain a propylene polymer.
(実施例5)
 実施例1において、触媒種として遷移金属化合物a1を(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-メチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a5〕に変更し、重合温度を70℃とした以外は実施例1と同様にしてプロピレン系重合体を74g得た。
(Example 5)
In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-methyl-5,6-dimethylindenyl) zirconium dichloride [transition metal] is used as the catalyst species. 74g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 70 ° C.
(実施例6)
 実施例1において、重合温度を70℃とした以外は実施例1と同様にしてプロピレン系重合体を145g得た。
(Example 6)
In Example 1, 145 g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was set to 70 ° C.
(実施例7)
 実施例3において、重合温度を70℃とした以外は実施例3と同様にしてプロピレン系重合体を115g得た。
(Example 7)
In Example 3, 115 g of a propylene polymer was obtained in the same manner as in Example 3 except that the polymerization temperature was set to 70 ° C.
(実施例8)
 実施例1において、触媒種として遷移金属化合物a1を(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a6〕に変更し、重合温度を70℃、重合時間を30分間にした以外は実施例1と同様にしてプロピレン系重合体を121g得た。
(Example 8)
In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclopentylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition] is used as a catalyst species. 121 g of a propylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 70 ° C. and the polymerization time was 30 minutes.
(実施例9)
 実施例1において、触媒種として(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a7〕を0.5マイクロモル、助触媒としてジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを2マイクロモル用い、反応温度を69℃、反応時間を13分間とした以外は実施例1と同様にしてプロピレン系重合体を154g得た。
Example 9
In Example 1, 0.5 μm of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a7] was used as a catalyst species. 154 g of a propylene polymer was obtained in the same manner as in Example 1, except that 2 micromole of dimethylanilinium tetrakis (pentafluorophenyl) borate was used as a promoter, the reaction temperature was 69 ° C., and the reaction time was 13 minutes. It was.
(実施例10)
 実施例3において、反応温度を80℃とした以外は実施例3と同様にしてプロピレン系重合体を76g得た。
(Example 10)
In Example 3, 76 g of a propylene polymer was obtained in the same manner as in Example 3 except that the reaction temperature was 80 ° C.
(実施例11)
 実施例5において、重合温度を80℃とした以外は実施例5と同様にしてプロピレン系重合体を81g得た。
(Example 11)
In Example 5, 81 g of a propylene polymer was obtained in the same manner as in Example 5 except that the polymerization temperature was 80 ° C.
(実施例12)
 実施例9において、重合温度を72℃、重合時間を15分間とした以外は実施例9と同様にしてプロピレン系重合体を197g得た。
(Example 12)
In Example 9, 197 g of a propylene polymer was obtained in the same manner as in Example 9 except that the polymerization temperature was 72 ° C. and the polymerization time was 15 minutes.
(実施例13)
 実施例8において、重合温度を80℃とした以外は実施例8と同様にしてプロピレン系重合体を111g得た。
(Example 13)
In Example 8, 111 g of a propylene polymer was obtained in the same manner as in Example 8 except that the polymerization temperature was 80 ° C.
(実施例14)
 実施例9において、触媒種として遷移金属化合物a7を(1,2’-ジメチルシリレン)(2,1’-ジフェニルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a8〕に変更し、重合温度を67℃、重合時間を25分間とした以外は実施例9と同様にしてプロピレン系重合体を157g得た。
(Example 14)
In Example 9, the transition metal compound a7 was converted to (1,2′-dimethylsilylene) (2,1′-diphenylsilylene) bis (3-n-butylindenyl) zirconium dichloride [transition metal compound a8] as a catalyst species. 157 g of a propylene polymer was obtained in the same manner as in Example 9, except that the polymerization temperature was 67 ° C. and the polymerization time was 25 minutes.
(比較例1)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 重合温度65℃で気相部水素濃度を8mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液の溶媒であるn-ヘプタンを除去することによりプロピレン系重合体を得た。
(Comparative Example 1)
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakispentafluorophenylborate, (1,2'-dimethylsilylene) The catalyst component obtained by contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in advance with propylene at a mass ratio of 1: 2: 20 is converted into zirconium. At 6 μmol / hr.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 65 ° C. so that the gas phase hydrogen concentration was 8 mol% and the total pressure in the reactor was maintained at 1.0 MPa · G. By removing n-heptane which is a solvent of the obtained polymerization solution, a propylene polymer was obtained.
(比較例2)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 重合温度75℃で気相部水素濃度を1mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液の溶媒であるn-ヘプタンを除去することによりプロピレン系重合体を得た。
(Comparative Example 2)
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakispentafluorophenylborate, (1,2'-dimethylsilylene) The catalyst component obtained by contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in advance with propylene at a mass ratio of 1: 2: 20 is converted into zirconium. At 6 μmol / hr.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 75 ° C. so that the gas phase hydrogen concentration was 1 mol% and the total pressure in the reactor was kept at 1.0 MPa · G. By removing n-heptane which is a solvent of the obtained polymerization solution, a propylene polymer was obtained.
(比較例3)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 重合温度70℃で気相部水素濃度を15mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液の溶媒であるn-ヘプタンを除去することにより、プロピレン系重合体を得た。
(Comparative Example 3)
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakispentafluorophenylborate, (1,2'-dimethylsilylene) The catalyst component obtained by contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in advance with propylene at a mass ratio of 1: 2: 20 is converted into zirconium. At 6 μmol / hr.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 70 ° C. so that the gas phase hydrogen concentration was 15 mol% and the total pressure in the reactor was maintained at 1.0 MPa · G. By removing n-heptane as a solvent of the obtained polymerization solution, a propylene-based polymer was obtained.
(比較例4)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
重合温度85℃で気相部水素濃度を15mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液の溶媒であるn-ヘプタンを除去することにより、プロピレン系重合体を得た。
(Comparative Example 4)
Into a stainless steel reactor with an internal volume of 20 L equipped with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakis (pentafluorophenyl) borate, (1,2'-dimethyl) A catalyst component obtained by pre-contacting silylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum in a mass ratio of 1: 2: 20 in advance with propylene, It was continuously supplied at 6 μmol / hr in terms of zirconium.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 85 ° C. so that the gas phase hydrogen concentration was 15 mol% and the total pressure in the reactor was kept at 1.0 MPa · G. By removing n-heptane as a solvent of the obtained polymerization solution, a propylene-based polymer was obtained.
(比較例5)
 実施例1において、触媒種として(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロヘキシルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a10〕を1マイクロモル、助触媒としてジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを4マイクロモル用い、全圧を0.68MPa、水素分圧を0.03MPaとし、重合温度を83℃、重合時間を90分間とした以外は実施例1と同様にしてプロピレン系重合体を114g得た。
(Comparative Example 5)
In Example 1, (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-cyclohexylmethyl-5,6-dimethylindenyl) zirconium dichloride [transition metal compound a10] was used as a catalyst species. 1 micromole, 4 micromole of dimethylanilinium tetrakis (pentafluorophenyl) borate as cocatalyst, total pressure 0.68 MPa, hydrogen partial pressure 0.03 MPa, polymerization temperature 83 ° C., polymerization time 90 minutes Except that, 114 g of a propylene polymer was obtained in the same manner as in Example 1.
(比較例6)
 実施例9において、重合温度を80℃、重合時間を15分間とした以外は実施例9と同様にしてプロピレン系重合体を186g得た。
(Comparative Example 6)
In Example 9, 186 g of a propylene polymer was obtained in the same manner as in Example 9 except that the polymerization temperature was 80 ° C. and the polymerization time was 15 minutes.
(比較例7)
 比較例6において、触媒種として(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a11〕を0.5マイクロモル、助触媒としてメチルアルミノキサン500マイクロモル、トリイソブチルアルミニウム0.2ミリモル用い、重合時間を30分間とした以外は比較例6と同様にしてプロピレン系重合体を65g得た。
(Comparative Example 7)
In Comparative Example 6, 0.5 μm of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a11] was used as a catalyst species. 65 g of a propylene polymer was obtained in the same manner as in Comparative Example 6 except that 500 μmol of methylaluminoxane and 0.2 mmol of triisobutylaluminum were used as promoters and the polymerization time was 30 minutes.
(比較例8)
 実施例1において、触媒種として遷移金属化合物a1を(1,2’-ジフェニルシリレン)(2,1’-ジフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物a12〕に変更し、全圧を0.85MPa、重合温度を40℃、重合時間を19分間とした以外は実施例1と同様にしてプロピレン系重合体を128g得た。
(Comparative Example 8)
In Example 1, the transition metal compound a1 was changed to (1,2′-diphenylsilylene) (2,1′-diphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride [transition metal compound a12] as the catalyst species. Then, 128 g of a propylene polymer was obtained in the same manner as in Example 1 except that the total pressure was 0.85 MPa, the polymerization temperature was 40 ° C., and the polymerization time was 19 minutes.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 条件(1)~(4)を満たすプロピレン系重合体を用いた実施例1~14では、いずれも引張弾性率が5~65MPaの範囲であり、弾性回復率が80%以上と高い結果が得られた。 In Examples 1 to 14 using propylene polymers satisfying the conditions (1) to (4), the tensile elastic modulus was in the range of 5 to 65 MPa, and the elastic recovery rate was as high as 80% or more. It was.
 本発明のプロピレン系重合体は、優れた弾性回復率を有する弾性体となるため、フィルム、シート、繊維、不織布等の成形体やホットメルト接着剤の原料として好適に用いられる。
 
Since the propylene-based polymer of the present invention becomes an elastic body having an excellent elastic recovery rate, it is suitably used as a raw material for molded articles such as films, sheets, fibers, and nonwoven fabrics, and hot melt adhesives.

Claims (15)

  1.  以下の(1)~(4)を満たすプロピレン系重合体。
     (1)テトラリン溶媒中135℃にて測定した極限粘度[η]が0.3~5.0dL/g
     (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が3~30J/g
     (3)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの極大点をピークトップとして定義される融点(Tm-D)が20~65℃の範囲に一つ以上存在する。
     (4)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの20~65℃の範囲の融解吸熱量(ΔH-D)が、前記(2)の融解吸熱量(ΔH-D)に対して30%以上である。
    A propylene polymer satisfying the following (1) to (4).
    (1) Intrinsic viscosity [η] measured in a tetralin solvent at 135 ° C. is 0.3 to 5.0 dL / g
    (2) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. Heat quantity (ΔHD) is 3-30J / g
    (3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. One or more melting points (Tm-D) defined as the top are in the range of 20 to 65 ° C.
    (4) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raise the temperature at 10 ° C./min. The melting endotherm (ΔHD) in the range is 30% or more with respect to the melting endotherm (ΔHD) of (2).
  2.  前記融点(Tm-D)が20~65℃の範囲に一つ以上存在し、20~65℃の範囲における前記融解吸熱量(ΔH-D)が3~30J/gである請求項1に記載のプロピレン系重合体。 The one or more melting points (Tm-D) exist in a range of 20 to 65 ° C, and the melting endotherm (ΔHD) in a range of 20 to 65 ° C is 3 to 30 J / g. Propylene polymer.
  3.  さらに、65℃を超え180℃以下の範囲に融点(Tm-D)を有し、65℃を超え180℃以下における前記融解吸熱量(ΔH-D)が1~20J/gである請求項1又は2に記載のプロピレン系重合体。 The melting endotherm (ΔHD) at 65 ° C to 180 ° C is 1 to 20 J / g, further having a melting point (Tm-D) in the range of 65 ° C to 180 ° C. Or the propylene-type polymer of 2.
  4.  プロピレン単独重合体である請求項1~3のいずれか一項に記載のプロピレン系重合体。 The propylene polymer according to any one of claims 1 to 3, which is a propylene homopolymer.
  5.  メソトリアッド分率[mm]が40~60モル%である請求項4に記載のプロピレン系重合体。 The propylene-based polymer according to claim 4, wherein the mesotriad fraction [mm] is 40 to 60 mol%.
  6.  メソペンタッド分率[mmmm]が22~44モル%である請求項4又は5に記載のプロピレン系重合体。 6. The propylene polymer according to claim 4, wherein the mesopentad fraction [mmmm] is 22 to 44 mol%.
  7.  下記(6)を満たす請求項4~6のいずれか一項に記載のプロピレン系重合体。
     (6)0.7 ≦ [mm]×[rr]/[mr] ≦ 1.3
    The propylene polymer according to any one of claims 4 to 6, which satisfies the following (6).
    (6) 0.7 ≦ [mm] × [rr] / [mr] 2 ≦ 1.3
  8.  エチレンおよび炭素数が4~30のα-オレフィンからなる群より選ばれる一つ以上の構成単位が0モル%を超えて20モル%以下含む請求項1~3のいずれか一項に記載のプロピレン系重合体。 The propylene according to any one of claims 1 to 3, wherein one or more structural units selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms contain more than 0 mol% and 20 mol% or less. Polymer.
  9.  メソトリアッド分率[mm]が50~95モル%である請求項8に記載のプロピレン系重合体。 The propylene-based polymer according to claim 8, wherein the mesotriad fraction [mm] is 50 to 95 mol%.
  10.  下記(7)及び(8)を満たす請求項1~9のいずれか一項に記載のプロピレン系重合体。
     (7)2,1-結合分率が1.0モル%未満
     (8)1,3-結合分率が0.5モル%未満
    The propylene polymer according to any one of claims 1 to 9, which satisfies the following (7) and (8).
    (7) 2,1-bond fraction is less than 1.0 mol% (8) 1,3-bond fraction is less than 0.5 mol%
  11.  分子量分布(Mw/Mn)が3.0以下である請求項1~10のいずれか一項に記載のプロピレン系重合体。 The propylene-based polymer according to any one of claims 1 to 10, which has a molecular weight distribution (Mw / Mn) of 3.0 or less.
  12.  引張弾性率が5MPa以上65MPa以下である請求項1~11のいずれか一項に記載のプロピレン系重合体。 The propylene-based polymer according to any one of claims 1 to 11, which has a tensile elastic modulus of 5 MPa or more and 65 MPa or less.
  13.  弾性回復率が80%以上である請求項1~12のいずれか一項に記載のプロピレン系重合体。 The propylene polymer according to any one of claims 1 to 12, which has an elastic recovery rate of 80% or more.
  14.  触媒および助触媒に由来する灰分が300ppm以下である請求項1~13のいずれか一項に記載のプロピレン系重合体。 The propylene-based polymer according to any one of claims 1 to 13, wherein the ash derived from the catalyst and the cocatalyst is 300 ppm or less.
  15.  請求項1~14のいずれか一項に記載のプロピレン系重合体からなる弾性体。
     
    An elastic body comprising the propylene-based polymer according to any one of claims 1 to 14.
PCT/JP2018/008686 2017-03-07 2018-03-07 Propylene-based polymer, and elastic body WO2018164161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504624A JPWO2018164161A1 (en) 2017-03-07 2018-03-07 Propylene polymer and elastic body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042889 2017-03-07
JP2017042889 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164161A1 true WO2018164161A1 (en) 2018-09-13

Family

ID=63447826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008686 WO2018164161A1 (en) 2017-03-07 2018-03-07 Propylene-based polymer, and elastic body

Country Status (2)

Country Link
JP (1) JPWO2018164161A1 (en)
WO (1) WO2018164161A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048030A1 (en) 2019-09-10 2021-03-18 Sabic Global Technologies B.V. Compounds for use in catalyst compositions for the production of polyolefins
WO2022024687A1 (en) * 2020-07-31 2022-02-03 出光興産株式会社 Plasticizer for resins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344833A (en) * 1999-03-31 2000-12-12 Idemitsu Petrochem Co Ltd Propylene resin composition, its production, and molding
JP2001226498A (en) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd Polypropylene-based film
JP2002327016A (en) * 1991-07-26 2002-11-15 Idemitsu Kosan Co Ltd Olefinic copolymer
WO2010018789A1 (en) * 2008-08-12 2010-02-18 出光興産株式会社 Method for producing polypropylene elastic fiber and polypropylene elastic fiber
JP2010265473A (en) * 1999-03-24 2010-11-25 Idemitsu Kosan Co Ltd Propylene-based copolymer, resin composition consisting of the propylene-based copolymer, and molded article
WO2016047699A1 (en) * 2014-09-25 2016-03-31 出光興産株式会社 Olefin-based polymer and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327016A (en) * 1991-07-26 2002-11-15 Idemitsu Kosan Co Ltd Olefinic copolymer
JP2010265473A (en) * 1999-03-24 2010-11-25 Idemitsu Kosan Co Ltd Propylene-based copolymer, resin composition consisting of the propylene-based copolymer, and molded article
JP2000344833A (en) * 1999-03-31 2000-12-12 Idemitsu Petrochem Co Ltd Propylene resin composition, its production, and molding
JP2001226498A (en) * 2000-02-16 2001-08-21 Idemitsu Petrochem Co Ltd Polypropylene-based film
WO2010018789A1 (en) * 2008-08-12 2010-02-18 出光興産株式会社 Method for producing polypropylene elastic fiber and polypropylene elastic fiber
WO2016047699A1 (en) * 2014-09-25 2016-03-31 出光興産株式会社 Olefin-based polymer and process for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048030A1 (en) 2019-09-10 2021-03-18 Sabic Global Technologies B.V. Compounds for use in catalyst compositions for the production of polyolefins
WO2022024687A1 (en) * 2020-07-31 2022-02-03 出光興産株式会社 Plasticizer for resins
DE112021003081T5 (en) 2020-07-31 2023-03-23 Idemitsu Kosan Co., Ltd. Plasticizers for resins

Also Published As

Publication number Publication date
JPWO2018164161A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
RU2186073C2 (en) Metal chelates comprising ligands of 3-aryl-substituted indenyl, catalyst of olefin polymerization and method of polymerization
EP1865007B1 (en) Propylene polymer and composition containing the same, molded object and laminate comprising these, and processes for producing propylene polymer and composition containing the same
JP2001516761A (en) Cyclopentaphenanthrenyl metal complex and polymerization method
US20100324242A1 (en) Highly pure, terminal-unsaturated olefin polymer and process for production thereof
WO2009054832A1 (en) Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo-and copolymers
WO1995009172A1 (en) Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer by using said catalyst
JP2010189396A (en) Substituted indenyl metal complex, and method of polymerization by using the same
JP2006526042A (en) 1-butene polymerization method
JP3955573B2 (en) Crystalline higher α-olefin polymer and process for producing the same
JP2005511751A (en) Metallocenes and catalyst compositions derived therefrom
EP0994885A1 (en) New metallocene compounds for the polymerization of ethylenically unsaturated monomers
JP4927078B2 (en) Transition metal compound, catalyst composition containing the same, and olefin polymerization using the same
WO2009054833A2 (en) Metallocene compounds, catalysts comprising them, process for producing an olefin polymer by use of the catalysts, and olefin homo and copolymers
WO2018164161A1 (en) Propylene-based polymer, and elastic body
JPH11315089A (en) Organic metallic compound
JP2000344833A (en) Propylene resin composition, its production, and molding
JPH06287257A (en) Production of propylene-ethylene copolymer
KR101734427B1 (en) Supported catalyst and method for preparing of olefin based polymer using the same
JP4834964B2 (en) Novel transition metal compound, method for producing propylene polymer using the transition metal compound, and propylene polymer having a vinyl group at the terminal
JP4252691B2 (en) PROPYLENE POLYMER, PROCESS FOR PRODUCING THE SAME, AND MOLDED BODY
JP4521092B2 (en) Transition metal compound, olefin polymerization catalyst, and process for producing olefin polymer
JP2006523753A (en) Catalyst for propylene copolymer
JP6921563B2 (en) Method for Producing Transition Metal Compounds and Olefin Polymers
KR20180006319A (en) Preparation method of metallocene catalyst for preparing polyolefin
JP7311955B2 (en) Method for producing transition metal compound and olefin polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764548

Country of ref document: EP

Kind code of ref document: A1