WO2018163747A1 - Plasma torch, plasma torch forward end electrode, and molten metal heating device - Google Patents

Plasma torch, plasma torch forward end electrode, and molten metal heating device Download PDF

Info

Publication number
WO2018163747A1
WO2018163747A1 PCT/JP2018/005289 JP2018005289W WO2018163747A1 WO 2018163747 A1 WO2018163747 A1 WO 2018163747A1 JP 2018005289 W JP2018005289 W JP 2018005289W WO 2018163747 A1 WO2018163747 A1 WO 2018163747A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma torch
tip
main body
molten metal
plasma
Prior art date
Application number
PCT/JP2018/005289
Other languages
French (fr)
Japanese (ja)
Inventor
浩規 前川
三浦 康彰
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to KR1020197013087A priority Critical patent/KR102212239B1/en
Priority to CN201880004248.1A priority patent/CN109952815A/en
Publication of WO2018163747A1 publication Critical patent/WO2018163747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3431Coaxial cylindrical electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0031Plasma-torch heating

Definitions

  • the present disclosure relates to a plasma torch, a tip electrode for the plasma torch, and a molten metal heating device.
  • Patent Document 1 discloses a plasma torch made of graphite.
  • the plasma torch is used to effectively heat the molten slag in the melting furnace body.
  • the plasma torch is inserted into a through-hole of a lid arranged to cover the upper opening of the melting furnace main body.
  • the lower end portion of the plasma torch is located in the internal space surrounded by the melting furnace main body and the lid, and the upper end portion of the plasma torch is located outside the internal space.
  • the interior space is usually filled with an inert gas. That is, almost no oxygen is present in the internal space. Therefore, although the molten metal exists and is in a high temperature environment, the amount of oxygen that reacts with graphite is small, and the plasma torch (lower end portion of the torch) located in the internal space is less likely to be worn. On the other hand, although a large amount of oxygen exists outside the internal space, the temperature outside the internal space is low, so that the plasma torch (the torch upper end portion) located outside the internal space is not easily worn out.
  • the present disclosure describes a plasma torch capable of extending the life, a tip electrode for the plasma torch, and a molten metal heating apparatus capable of extending the life of the plasma torch.
  • a plasma torch generates plasma between molten metal in a container including a storage tank that stores molten metal and a lid that covers an opening of the storage tank that is opened upward.
  • a metal main body configured to be able to be inserted into a through-hole provided in the lid so that a tip portion toward the molten metal is located in the container at the time of heat treatment of the molten metal by plasma, And a tip electrode made of graphite attached to the tip of each.
  • the metal main body can be inserted into the through hole so that the tip of the main body facing the molten metal is located in the container during the heat treatment of the molten metal (molten liquid metal) by plasma. It is configured. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch.
  • the tip electrode made of graphite is used, it is possible to generate plasma with a probability of 100% by immersing the tip electrode in the molten metal when generating plasma and pulling the tip electrode out of the molten metal. . Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
  • the plasma torch of Example 1 may further include an insulating coating provided so as to cover the outer peripheral surface of the main body.
  • the main body is inserted into the through-hole during the heat treatment of the molten metal with plasma, and even if the distance between the main body and the lid is close, the insulating coating material prevents discharge (plasma generation) between the main body and the lid. Can be removed. Therefore, it becomes possible to perform the heat treatment of the molten metal using a plasma torch safely and stably.
  • an insulating coating is provided on the outer peripheral surface of a plasma torch made entirely of graphite, although the discharge between the plasma torch and the lid can be prevented, the graphite itself becomes hot during the heat treatment of the molten metal by plasma.
  • the insulating coating material having a large difference in thermal expansion coefficient from graphite is peeled off from the outer peripheral surface of graphite. Although it may be possible to suppress the peeling of the insulating coating material from the graphite by cooling the graphite, the graphite is structurally brittle, so it is difficult to provide a flow path for the coolant in the graphite plasma torch. .
  • a plasma torch according to another example of the present disclosure includes a metal main body, a graphite tip electrode attached to a tip portion of the main body, and an insulating coating provided to cover the outer peripheral surface of the main body. .
  • the insulating coating material is provided so as to cover the outer peripheral surface of the main body, the main body is inserted into the through-hole during the heat treatment of the molten metal by plasma, and even if the distance between the main body and the lid is close, insulation is provided.
  • the covering material prevents discharge (plasma generation) between the main body and the lid. Therefore, it becomes possible to perform the heat treatment of the molten metal using a plasma torch safely and stably.
  • the tip electrode may be configured to be detachable from the tip portion.
  • a new tip electrode may be attached to the main body. Therefore, the main body can be reused. Therefore, the running cost of the plasma torch can be reduced.
  • the tip electrode may be configured to be screwable with the tip portion. In this case, it is possible to exchange the tip electrode very easily.
  • Example 6 In the plasma torch of Example 4 or Example 5, the tip portion is provided with a concave portion having an inclined surface that increases in diameter toward the tip, and the tip electrode has a convex portion having an outer peripheral surface corresponding to the inclined surface. It is provided and the convex part of the tip electrode may be comprised so that fitting to the recessed part of a tip part is possible. In this case, the contact area between the tip electrode and the tip (main body) is increased. Therefore, when the plasma torch is energized for plasma generation and current flows between the main body and the tip electrode, Joule heat is hardly generated at the contact portion between the main body and the tip electrode. Therefore, since wear due to heat generation of the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
  • Example 7 In the plasma torch of Examples 1 to 6, the distal end portion of the main body may be configured to be detachable from the proximal end portion of the main body. In this case, when the tip of the main body is damaged, a new tip may be attached to the base end of the main body. Therefore, the base end portion of the main body can be reused. Therefore, the running cost of the plasma torch can be reduced.
  • Example 8 In any of the plasma torches of Examples 1 to 7, a coolant flow path may be provided in the main body.
  • the tip electrode attached to the tip of the main body is also cooled by cooling the main body with the coolant. For this reason, since wear due to heat generation of the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
  • Example 9 The plasma torch of any of Examples 1 to 8 may be provided with a through hole that functions as a flow path for the working gas for generating plasma extending along the longitudinal direction. In this case, since the operating gas flows from the plasma torch toward the molten metal, stable plasma can be generated.
  • Example 10 In the plasma torch of Example 9, the main body has an outer tube portion extending along the longitudinal direction, and a center portion inserted through the outer tube portion, and the tip electrode is attached to the tip portion of the center portion.
  • the through hole may be formed by an annular gap formed between the tube portion and the center portion.
  • the peripheral edge of the tip electrode receives heat.
  • the heat receiving region (heat receiving portion) of the tip electrode is relatively wide, so that heat is easily dispersed. Therefore, the maximum temperature on the tip surface of the tip electrode is lowered, and the temperature distribution on the tip surface of the tip electrode becomes gentle. As a result, since wear due to heat generation at the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
  • Example 11 In the plasma torch of Example 9, the main body has an outer tube portion extending along the longitudinal direction, and a central portion inserted into the outer tube portion, and the tip electrode is disposed on the inner side of the annular outer portion and the outer portion.
  • An inner portion that can be arranged, the inner portion is attached to the distal end portion of the center portion, and the outer portion is attached to the outer tube portion, and the outer tube portion and the outer portion are connected to the center portion and the inner portion.
  • the through hole may be formed by an annular gap formed between them. In this case, when plasma is generated between the plasma torch (tip electrode) and the molten metal, the vicinity of the through hole in the tip electrode is particularly heated.
  • the heat receiving region (heat receiving portion) of the tip electrode is relatively wide, so that heat is easily dispersed. Therefore, the maximum temperature on the tip surface of the tip electrode is lowered, and the temperature distribution on the tip surface of the tip electrode becomes gentle. As a result, since wear due to heat generation at the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
  • Example 12 In the plasma torch of Example 11, the outer tube portion and the outer portion, and the center portion and the inner portion may be electrically insulated from each other. In this case, the outer tube portion and the outer portion, and the center portion and the inner portion can be connected to power sources having different polarities. Thereby, plasma is generated by discharging between the outer portion and the inner portion. In this state, by increasing the output of the power source, plasma generated between the outer side and the inner side grows. When the grown plasma reaches the molten metal, the plasma can be generated between the plasma torch and the molten metal by connecting the outer and inner parts and the molten metal to power sources having different polarities. Accordingly, even when the distance between the tip of the plasma torch and the molten metal is large, it is possible to stably generate plasma between the tip of the plasma torch and the molten metal.
  • Example 13 The plasma torch of any of Examples 1 to 12 may further include an annular insulating member that covers a region exposed to the outside of the contact portion between the tip electrode and the tip portion. In this case, it is possible to prevent discharge from occurring in the vicinity of the contact portion of the tip electrode. Therefore, it can suppress that a front-end
  • a tip electrode for a plasma torch has a metal main body in which a tip portion toward a molten metal is located in the container when the molten metal in the container is heated by plasma.
  • This is a graphite tip electrode for a plasma torch in which a main body is configured to be inserted into a through-hole provided in a lid, and is configured to be detachable from a tip portion of the main body.
  • the tip electrode for a plasma torch according to Example 14 has a metal main body in which a tip portion toward the molten metal is located in the container when the molten metal in the container is heated by plasma, and is provided on the lid of the container. It is used for a plasma torch in which a main body is configured to be inserted into a through hole. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch.
  • the tip electrode for the plasma torch according to Example 14 is made of graphite, when the plasma is generated, the tip electrode is immersed in the molten metal, and the tip electrode is pulled out of the molten metal to generate plasma with a probability of 100%. It becomes possible to make it. Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
  • a tip electrode for a plasma torch according to another example of the present disclosure is configured to be attachable to and detachable from a tip portion of a metal main body provided with an insulating coating material so as to cover an outer peripheral surface.
  • the tip electrode for a plasma torch according to Example 15 when the molten metal (molten liquid metal) in the container is heat-treated with plasma, the tip of the metal main body facing the molten metal is positioned in the container. The main body is inserted into the through hole. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. Moreover, since the tip electrode for the plasma torch according to Example 15 is made of graphite, plasma is generated with a probability of 100% by immersing the tip electrode in the molten metal when the plasma is generated and pulling the tip electrode out of the molten metal. It becomes possible to make it.
  • the insulating coating material is provided so as to cover the outer peripheral surface of the main body, the main body is inserted into the through-hole during the heat treatment of the molten metal by plasma, and even if the distance between the main body and the lid is close, insulation is provided.
  • the covering material prevents discharge (plasma generation) between the main body and the lid. Therefore, the heat treatment of the molten metal using the plasma torch to which the tip electrode according to Example 15 is attached can be performed safely and stably.
  • a molten metal heating apparatus includes a container including a storage tank that stores the molten metal, a lid that covers an opening of the storage tank that is opened upward, and the molten metal in the container.
  • a plasma torch that generates plasma, and the plasma torch is configured to be able to be inserted into a through-hole provided in the lid so that a tip portion toward the molten metal is located in the container when the molten metal is heated by the plasma. It has a metal main body and a graphite tip electrode attached to the tip of the main body.
  • the metal main body is inserted into the through hole so that the tip of the main body facing the molten metal is located in the container. It is configured to be possible. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch.
  • the tip electrode made of graphite is used, it is possible to generate plasma with a probability of 100% by immersing the tip electrode in the molten metal when generating plasma and pulling the tip electrode out of the molten metal. . Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
  • the plasma torch according to the present disclosure, the tip electrode for the plasma torch, and the molten metal heating measure can extend the life of the plasma torch.
  • FIG. 1 is a diagram illustrating an example of a continuous casting apparatus.
  • FIG. 2 shows a cross section of the plasma torch of FIG.
  • FIG. 3 shows a cross section of a conventional plasma torch.
  • FIG. 4 shows a cross section of a conventional plasma torch.
  • FIG. 5 shows a cross section of a plasma torch according to another example.
  • FIG. 6 shows a cross section of a plasma torch according to another example.
  • FIG. 7 shows a cross section of a plasma torch according to another example.
  • FIG. 8 shows a cross section of a plasma torch according to another example.
  • FIG. 9 shows a cross section of a plasma torch according to another example.
  • FIG. 10 shows a cross section of a plasma torch according to another example.
  • FIG. 11 shows a cross section of a plasma torch according to another example.
  • the continuous casting apparatus 100 includes a ladle 101, a tundish 102 (a molten metal heating apparatus), a mold 103, a cast piece support roll 104, and a plasma generator 1 (a molten metal heating apparatus).
  • the ladle 101 is a container for storing molten metal (molten steel) M.
  • the tundish 102 is disposed below the ladle 101.
  • the tundish 102 (container) has a main body 102a (storage tank) and a lid 102b.
  • the main body 102 a stores the molten metal M that has flowed out from the nozzle 101 a provided on the bottom wall of the ladle 101.
  • the lid 102b covers the opening 102c of the main body 102a opened upward.
  • the lid 102b is provided with a through hole 102d that communicates the inside and outside of the tundish 102.
  • the mold 103 is disposed below the tundish 102.
  • the mold 103 is molded into a predetermined shape while cooling the molten metal flowing out from the nozzle 102e provided on the bottom wall of the tundish 102.
  • the slab support roll 104 conveys the slab S drawn out from the mold 103 while cooling it.
  • the plasma generator 1 is a device for controlling the temperature of the molten metal M in the tundish 102. Therefore, the plasma generator 1 constitutes a molten metal heating device together with the tundish 102.
  • the plasma generator 1 includes a plasma torch 10, a torch holder 12, an elevator 14, and an operating gas source 16.
  • the plasma torch 10 is, for example, a round bar (straight bar) extending linearly.
  • the diameter of the plasma torch 10 may be about 50 mm to 200 mm, for example.
  • the length of the plasma torch 10 may be about 1000 mm to 2500 mm, for example.
  • the shape of the plasma torch 10 may be a shape other than a round shape, or may not necessarily extend linearly but may be bent.
  • the plasma torch 10 is connected to a power source (not shown), and a predetermined voltage (for example, about 100 V to 500 V) is applied.
  • the plasma torch 10 includes a metal main body 18, a graphite tip electrode 20, and an insulating coating material 22.
  • the main body 18 is provided with a through hole H1.
  • the through hole H1 has, for example, a circular shape, and extends along the axial direction of the main body 18 (longitudinal direction of the plasma torch 10).
  • the diameter of the through hole H1 may be about 10 mm, for example.
  • the main body 18 is provided with a flow path F of a coolant (for example, water) so as to surround the through hole H1.
  • the coolant is supplied to the flow path F from a coolant source (not shown).
  • the coolant is discharged after flowing through the flow path F, cooled by, for example, a heat exchanger, and supplied to the flow path F again. As the coolant circulates through the flow path F, the entire plasma torch 10 (the main body 18 and the tip electrode 20) is cooled.
  • the tip electrode 20 is attached to the lower end portion 18 a (tip portion) of the main body 18. More specifically, the tip electrode 20 is attached to the tip surface T1 of the lower end 18a.
  • the contact area between the tip electrode 20 and the main body 18 is large, the Joule heat generated at the contact portion between the tip electrode 20 and the main body 18 when the plasma torch 10 is energized becomes small, and the plasma torch 10 (the main body 18 and the tip electrode 20). ) Wear can be suppressed.
  • the contact area between the tip electrode 20 and the main body 18 is X and the current flowing through the plasma torch 10 is Y
  • the contact area X may satisfy X / Y ⁇ 1.0 [A / mm 2 ].
  • the value obtained by dividing the current Y by the contact area X represents the density of current passing through the contact portion (passing current density).
  • the tip electrode 20 is provided with a through hole H2.
  • the through hole H2 extends along the axial direction of the tip electrode 20 (plasma torch 10).
  • the through hole H ⁇ b> 2 communicates with the through hole H ⁇ b> 1 in a state where the tip electrode 20 is attached to the tip surface T ⁇ b> 1 of the main body 18.
  • the insulating coating material 22 is provided on the entire outer peripheral surface of the main body 18.
  • the insulating coating material 22 is obtained, for example, by spraying alumina (Al 2 O 3 ) on the outer peripheral surface of the main body 18.
  • the torch holder 12 holds the base end portion 18b of the main body 18 (plasma torch 10).
  • the torch holder 12 can hold the plasma torch 10 such that the plasma torch 10 is inclined by about 0 ° to 30 ° with respect to the vertical axis, for example.
  • the elevator 14 moves the torch holder 12 up and down. Therefore, the plasma torch 10 held by the torch holder 12 is also raised and lowered in the vertical direction by the elevator 14, and approaches and separates from the molten metal M in the tundish 102.
  • the plasma torch 10 is raised by the elevator 14 when the lower end (tip) of the plasma torch 10 is located in the tundish 102, the plasma torch 10 passes through the through-hole 102d of the lid 102b and the Move out.
  • the lower end portion of the plasma torch 10 moves into the tundish 102 through the through hole 102d of the lid 102b.
  • the working gas source 16 supplies a working gas (for example, an inert gas such as argon or nitrogen) for generating plasma to the through holes H1 and H2. Therefore, the through holes H1 and H2 function as operating gas flow paths.
  • the working gas source 16 is connected to the through holes H ⁇ b> 1 and H ⁇ b> 2 via the pipe 24.
  • the pipe 24 is provided with a valve 26. According to opening / closing of the valve 26, the supply state of the working gas from the working gas source 16 to the through holes H1, H2 and the non-supply state are switched.
  • the operating gas source 16, the pipe 24, and the valve 26 function as supply means for supplying the operating gas to the through holes H1 and H2 (plasma torch 10).
  • the periphery of the tip electrode 20 (near the molten metal surface of the molten metal M) is set as an operating gas atmosphere. Specifically, the valve 26 is opened, and the working gas is supplied from the working gas source 16 into the tundish 102 through the through holes H1 and H2. Further, a predetermined voltage is applied to the plasma torch 10.
  • the elevator 14 lowers the plasma torch 10 toward the molten metal M.
  • the entire tip electrode 20 is located in the tundish 102 (in the internal space between the main body 102 a and the lid 102 b), and the main body 18 and the insulating coating material 22 face the through hole 102 d.
  • the plasma torch 10 is positioned with respect to the tundish 102 and the surface of the molten metal M so as to be in a state. Thereby, the tip electrode 20 is brought close to the melt M until the distance (gap) between the tip electrode 20 (plasma torch 10) and the melt M becomes a predetermined size.
  • the upper end of the part is also difficult to wear.
  • the low temperature outside air containing oxygen and the hot air in the tundish 102 are mixed.
  • the portion of the plasma torch 50 that is inserted through the through hole 102d (the intermediate portion of the plasma torch 50) is easily worn out by the reaction of graphite and oxygen. Therefore, as shown in FIG. 3, the middle portion of the plasma torch 50 may be thinned, which may affect the life of the plasma torch 50. It is also conceivable to use a metal plasma torch for the occurrence of such wrinkles.
  • the distance between the intermediate portion of the plasma torch 50 and the through hole 102d is relatively short. Therefore, when the atmosphere around the plasma torch 50 becomes unstable, as shown in FIG. 4, there is a possibility that plasma P1 is generated due to discharge between the outer peripheral surface of the plasma torch 50 and the through hole 102d. In order to prevent such discharge, an insulating coating material may be provided on the outer peripheral surface of the plasma torch 50.
  • the plasma torch 50 is made of graphite, the graphite itself becomes a high temperature and thermally expands during the heat treatment of the molten metal M by the plasma torch 50.
  • the thermal expansion coefficient of graphite is larger than the thermal expansion coefficient of the insulating coating material, the insulating coating material is peeled off from the outer surface of the plasma torch 50. Although it is conceivable to suppress peeling of the insulating coating material by cooling the graphite, it is difficult to provide a flow path for the coolant in the graphite plasma torch 50 because graphite is structurally brittle.
  • the metal main body 18 is a through-hole so that the lower end portion 18a of the main body 18 facing the molten metal M is positioned in the tundish 102 during the heat treatment of the molten metal M with the plasma P. It is configured to be able to be inserted into 102d. For this reason, the graphite tip electrode 20 does not exist in the vicinity of the through hole 102d of the lid 102b. Therefore, wear of the tip electrode 20 is extremely suppressed. As a result, the life of the plasma torch 10 can be extended.
  • the tip electrode 20 is immersed in the molten metal, and the tip electrode 20 is pulled up from the molten metal M, thereby generating the plasma P with a probability of 100%. It becomes possible to make it.
  • the insulating coating material 22 is provided so as to cover the outer peripheral surface of the main body 18. Therefore, even when the main body 18 is inserted into the through-hole 102d during the heat treatment of the molten metal M by the plasma P and the distance between the main body 18 and the lid 102b is close, the insulating coating material 22 causes the gap between the main body 18 and the lid 102b. Discharge (plasma generation) is prevented. Therefore, the heat treatment of the molten metal M using the plasma torch 10 can be performed safely and stably.
  • a coolant flow path F is provided in the main body 18. Therefore, the tip electrode 20 attached to the lower end portion 18a of the main body 18 is also cooled by cooling the main body 18 with the coolant. Therefore, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
  • the through holes H1 and H2 that function as flow paths for the working gas for generating the plasma P in the main body 18 and the tip electrode 20 extend along the longitudinal direction (axial direction) of the plasma torch 10, respectively. Is provided. Therefore, the operating gas flows from the plasma torch 10 toward the molten metal M, so that stable plasma P can be generated.
  • the tip electrode 20 may be configured to be attachable to and detachable from the lower end portion 18a (tip surface T1) of the main body 18.
  • the tip electrode 20 when the tip electrode 20 is worn with the generation of the plasma P, a new tip electrode 20 may be attached to the main body 18. Therefore, the main body 18 can be reused. Therefore, the running cost of the plasma torch 10 can be reduced.
  • the internal thread portion 18 c formed on the lower end portion 18 a of the main body 18 and the external thread portion 20 a provided on the tip electrode 20 may be configured to be screwable.
  • the male screw portion 18 d formed on the lower end portion 18 a of the main body 18 and the female screw portion 20 b provided on the tip electrode 20 may be configured to be screwable.
  • the tip electrode 20 can be replaced very simply.
  • the tip electrode 20 side has a female screw portion 20b, the tip electrode 20 has a large diameter, so that the tip electrode 20 can be increased in strength.
  • the main body 18 may have an outer tube portion 18A extending along the axial direction (longitudinal direction) and a center portion 18B inserted into the outer tube portion 18A.
  • the outer tube portion 18A is separate from the center portion 18B.
  • an insulating coating material 22 is provided as a whole.
  • the inner diameter of the outer tube portion 18A is larger than the outer diameter of the center portion 18B. Therefore, an annular through hole H3 extending in the axial direction (longitudinal direction) of the main body 18 is provided between the outer tube portion 18A and the center portion 18B. That is, the through hole H3 surrounds the central portion 18B.
  • the through hole H3 is connected to the operating gas source 16, and the operating gas is supplied from the operating gas source 16.
  • Flow paths FA and FB through which a coolant flows are provided inside the outer pipe portion 18A and the center portion 18B, respectively.
  • An internal thread portion 18c is formed at the lower end portion 18a of the center portion 18B.
  • the female screw portion 18 c is configured to be screwable with a male screw portion 20 a provided on the tip electrode 20. Therefore, the tip electrode 20 can be attached to and detached from the center portion 18B.
  • the periphery of the tip electrode 20 is particularly heated.
  • the heat receiving region (heat receiving portion) of the tip electrode 20 is relatively wide, so that heat is easily dispersed. Accordingly, the maximum temperature on the tip surface T2 of the tip electrode 20 is lowered, and the temperature distribution on the tip surface T2 of the tip electrode 20 is gentle. As a result, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
  • the main body 18 has an outer tube portion 18A extending along the axial direction (longitudinal direction) thereof, and a center portion 18B inserted through the outer tube portion 18A.
  • 20 may have an annular outer portion 20A and an inner portion 20B that can be disposed inside the outer portion.
  • the outer pipe portion 18A is separate from the center portion 18B.
  • Each of the outer peripheral surface of the outer tube portion 18A and the outer peripheral surface of the center portion 18B is provided with an insulating coating material 22 as a whole.
  • the inner diameter of the outer tube portion 18A is larger than the outer diameter of the center portion 18B. Therefore, an annular through hole H3 extending in the axial direction (longitudinal direction) of the main body 18 is provided between the outer tube portion 18A and the center portion 18B. That is, the through hole H3 surrounds the central portion 18B.
  • the through hole H3 is connected to the operating gas source 16, and the operating gas is supplied from the operating gas source 16.
  • Flow paths FA and FB through which a coolant flows are provided inside the outer pipe portion 18A and the center portion 18B, respectively.
  • the inner diameter of the outer portion 20A is larger than the outer diameter of the inner portion 20B.
  • a male screw portion 20a is provided on the outer peripheral surface of the outer portion 20A.
  • the external thread part 20A of the outer side part 20A is configured to be screwable with an internal thread part 18c provided at the lower end part 18a of the outer pipe part 18A. Therefore, the outer portion 20A can be attached to and detached from the outer tube portion 18A.
  • a male screw portion 20a is provided on the outer peripheral surface of the inner portion 20B.
  • the male screw portion 20a of the inner portion 20B is provided at the lower end portion 18a of the center portion 18B and is configured to be screwable with the female screw portion 18c. Therefore, the inner side part 20B is detachable with respect to the center part 18B.
  • an annular penetration extending in the axial direction of the tip electrode 20 is provided between the outer portion 20A and the inner portion 20B.
  • a hole H4 is provided. The through hole H4 communicates with the through hole H3, and the working gas flows through the through hole H3.
  • the plasma torch 10 shown in FIG. 8 when the plasma P is generated between the plasma torch 10 (tip electrode 20) and the molten metal M, the vicinity of the through hole H4 in the tip electrode 20 is particularly heated. For this reason, the heat receiving region (heat receiving portion) of the tip electrode 20 is relatively wide, so that heat is easily dispersed. Accordingly, the maximum temperature on the tip surface T2 of the tip electrode 20 is lowered, and the temperature distribution on the tip surface T2 of the tip electrode 20 is gentle. As a result, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
  • the outer tube portion 18A and the outer portion. 20A and the central portion 18B and the inner portion 20B are electrically insulated from each other. Therefore, the outer tube portion 18A and the outer portion 20A, and the center portion 18B and the inner portion 20B can be connected to power supplies having different polarities. As a result, discharge occurs between the outer portion 20A and the inner portion 20B, and plasma P is generated. By increasing the power output in this state, the plasma P generated between the outer portion 20A and the inner portion 20B grows.
  • the plasma torch 10 tip electrode 20
  • the molten metal M are connected by connecting the outer portion 20A and the inner portion 20B and the molten metal M to different power sources.
  • Plasma P can be generated between the two. Therefore, even when the distance between the tip of the plasma torch 10 and the molten metal M is large, it is possible to stably generate the plasma P between the tip of the plasma torch 10 and the molten metal.
  • the lower end portion 18 a may be configured to be detachable from the base end portion 18 e of the main body 18. Specifically, the internal thread part 18f formed in the lower end part 18a and the external thread part 18g formed in the base end part 18e can be screwed together.
  • An insulating coating material 22 is provided on each of the outer peripheral surface of the lower end portion 18a and the outer peripheral surface of the base end portion 18e.
  • a tip electrode 20 is attached to the tip surface T1 of the lower end 18a. In this case, when the lower end 18 a of the main body 18 is damaged, a new lower end 18 a may be attached to the base end 18 e of the main body 18. Therefore, the base end portion 18e of the main body 18 can be reused. Therefore, the running cost of the plasma torch 10 can be reduced.
  • the plasma torch 10 may further include an insulating member 25.
  • the insulating member 25 has an annular shape and covers a region exposed to the outside in the contact portion between the tip electrode 20 and the lower end portion 18a.
  • a concave groove corresponding to the outer shape of the insulating member 25 is formed in the contact portion. Therefore, when attaching the insulating member 25 to the contact portion, first, the insulating member 25 is fitted into the concave groove on the lower end portion 18a side with the tip electrode 20 and the lower end portion 18a removed. Next, the male screw portion 20a of the tip electrode 20 is screwed into the female screw portion 18c of the lower end portion 18a.
  • the insulating member 25 is held in the recessed grooves of the tip electrode 20 and the lower end portion 18a. In this case, it is possible to prevent discharge from occurring in the vicinity of the contact portion of the tip electrode 20. Therefore, it is possible to prevent the lower end portion 18a from being excessively heated and deformed.
  • the lower end portion 18a may be provided with a recess having an inclined surface (tip surface T1) whose diameter increases toward the lower end.
  • the inclined surface may be, for example, a conical surface.
  • the tip electrode 20 may be provided with a convex portion having an outer peripheral surface corresponding to the inclined surface (tip surface T1). That is, the convex portion of the tip electrode 20 has a conical shape or a truncated cone shape.
  • the convex portion of the tip electrode 20 may be configured to be fitted to the concave portion of the lower end portion 18a, or may be configured to be detachable from the concave portion of the lower end portion 18a.
  • the external thread part 20a formed in the outer peripheral surface of a convex part and the internal thread part 18c formed in the internal peripheral surface of a recessed part are comprised so that screwing is possible.
  • the contact area between the tip electrode 20 and the lower end 18a (main body 18) is increased. Therefore, when the plasma torch 10 is energized for plasma generation and current flows between the main body 18 and the tip electrode 20, Joule heat is hardly generated at the contact portion between the main body 18 and the tip electrode 20. Therefore, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
  • SYMBOLS 1 Plasma generating apparatus (molten metal heating apparatus) 10,50 ... Plasma torch, 12 ... Torch holder, 14 ... Elevator, 16 ... Operating gas source, 18 ... Main body, 18A ... Outer pipe part, 18B ... Center part, 18a ... lower end (tip), 18b ... proximal end, 18c ... female screw, 18d ... male screw, 18e ... base end, 18f ... female screw, 18g ... male screw, 20 ... tip electrode, 20A ... outer part, 20B ... Inner part, 20a ... Male thread part, 20b ... Female thread part, 22 ... Insulation coating material, 24 ... Piping, 25 ... Insulating member, 26 ...
  • Valve, 100 ... Continuous casting apparatus 101 ... Ladle, 102 ... Tundish ( (Molten metal heating device), 103 ... mold, 104 ... slab support roll, 101a ... nozzle, 102a ... storage tank, 102b ... lid, 102c ... opening, 102d ... through hole, 102e ... nozzle, F, FA, B ... flow path, H1 ⁇ H4 ... through hole, M ... melt (molten steel), P, P1 ... plasma, S ... slab, T1, T2 ... tip surface.
  • Molten metal heating device (Molten metal heating device)
  • 103 ... mold 104 ... slab support roll

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

The present invention relates to a plasma torch, a plasma torch forward end electrode, and a molten metal heating device. The plasma torch 10 is used to generate a plasma P between the plasma torch 10 and a molten metal M, inside a tundish comprising a storage tank for storing the molten metal M, and a lid 102b opened upward and covering an opening of the storage tank. The plasma torch 10 comprises: a main body 18 produced from metal, so constituted as to be insertable into a through-hole 102d provided in the lid 102b, in such a manner that a lower end section 18a thereof, which is to face the molten metal M when the molten metal M is to be heat-processed by the plasma P, becomes positioned inside the tundish; and a forward end electrode 20 produced from graphite, attached to the lower end section 18a of the main body 18.

Description

プラズマトーチ、プラズマトーチ用の先端電極、及び溶湯加熱装置Plasma torch, tip electrode for plasma torch, and molten metal heating device
 本開示は、プラズマトーチ、プラズマトーチ用の先端電極、及び溶湯加熱装置に関する。 The present disclosure relates to a plasma torch, a tip electrode for the plasma torch, and a molten metal heating device.
 特許文献1は、黒鉛製のプラズマトーチを開示している。プラズマトーチは、溶融炉本体内の溶融スラグを効果的に加熱するために用いられる。プラズマトーチは、溶融炉本体の上部開口を覆うように配置された蓋の貫通孔内に挿通されている。プラズマトーチによる溶融スラグの加熱時には、プラズマトーチの下端部は溶融炉本体と蓋とで囲まれた内部空間内に位置しており、プラズマトーチの上端部は内部空間外に位置している。 Patent Document 1 discloses a plasma torch made of graphite. The plasma torch is used to effectively heat the molten slag in the melting furnace body. The plasma torch is inserted into a through-hole of a lid arranged to cover the upper opening of the melting furnace main body. When the molten slag is heated by the plasma torch, the lower end portion of the plasma torch is located in the internal space surrounded by the melting furnace main body and the lid, and the upper end portion of the plasma torch is located outside the internal space.
特開平9-115663号公報JP-A-9-115663
 プラズマを効果的に発生させるため、通常、内部空間内には不活性ガスが充填されている。すなわち、内部空間内には酸素がほとんど存在していない。そのため、溶湯が存在し高温の環境にあるものの、黒鉛と反応する酸素の量が少なく、内部空間内に位置するプラズマトーチ(トーチ下端部)は損耗し難い。一方、内部空間外には酸素が多量に存在するものの、内部空間外の温度は低いので、内部空間外に位置するプラズマトーチ(トーチ上端部)も損耗し難い。 In order to generate plasma effectively, the interior space is usually filled with an inert gas. That is, almost no oxygen is present in the internal space. Therefore, although the molten metal exists and is in a high temperature environment, the amount of oxygen that reacts with graphite is small, and the plasma torch (lower end portion of the torch) located in the internal space is less likely to be worn. On the other hand, although a large amount of oxygen exists outside the internal space, the temperature outside the internal space is low, so that the plasma torch (the torch upper end portion) located outside the internal space is not easily worn out.
 ところが、蓋の貫通孔近傍では、酸素を含む低温の外気と内部空間内の熱風とが混ざり合う。そのため、プラズマトーチのうち貫通孔に挿通されている部分は、黒鉛が酸素と反応して損耗し易い。従って、プラズマトーチの当該部分が細く抉れてしまい、プラズマトーチの寿命に影響を与える虞がある。 However, in the vicinity of the through-hole of the lid, low-temperature outside air containing oxygen and hot air in the internal space mix. Therefore, the portion of the plasma torch that is inserted through the through hole is easily worn out by the reaction of graphite with oxygen. Therefore, the portion of the plasma torch is thinned and there is a risk of affecting the life of the plasma torch.
 そのため、本開示は、長寿命化を図ることが可能なプラズマトーチ及びプラズマトーチ用の先端電極、並びにプラズマトーチの長寿命化を図ることが可能な溶湯加熱装置を説明する。 Therefore, the present disclosure describes a plasma torch capable of extending the life, a tip electrode for the plasma torch, and a molten metal heating apparatus capable of extending the life of the plasma torch.
 例1.本開示の一つの例に係るプラズマトーチは、溶湯を貯留する貯留槽と、上方に向けて開放された貯留槽の開口部を覆う蓋とを備える容器内で、溶湯との間でプラズマを発生させるプラズマトーチであって、プラズマによる溶湯の加熱処理時に溶湯に向かう先端部が容器内に位置するように、蓋に設けられた貫通孔内に挿通可能に構成された金属製の本体と、本体の先端部に取り付けられた黒鉛製の先端電極とを備える。 Example 1. A plasma torch according to an example of the present disclosure generates plasma between molten metal in a container including a storage tank that stores molten metal and a lid that covers an opening of the storage tank that is opened upward. A metal main body configured to be able to be inserted into a through-hole provided in the lid so that a tip portion toward the molten metal is located in the container at the time of heat treatment of the molten metal by plasma, And a tip electrode made of graphite attached to the tip of each.
 例1に係るプラズマトーチは、プラズマによる溶湯(溶融した液状の金属)の加熱処理時に、溶湯に向かう本体の先端部が容器内に位置するように、金属製の本体が貫通孔内に挿通可能に構成されている。そのため、蓋の貫通孔近傍に黒鉛製の先端電極が存在していない。従って、先端電極の損耗が極めて抑制される。その結果、プラズマトーチの長寿命化を図ることが可能となる。しかも、黒鉛製の先端電極を用いているので、プラズマを発生させる際に先端電極を溶湯に浸漬し、先端電極を溶湯から引き上げることにより、100%の確率でプラズマを発生させることが可能となる。なお、全体が金属製のプラズマトーチを用いる場合、黒鉛の損耗は生じないが、当該プラズマトーチを溶湯に浸漬すると当該プラズマトーチが溶損し、溶湯の温度制御が困難となる。 In the plasma torch according to Example 1, the metal main body can be inserted into the through hole so that the tip of the main body facing the molten metal is located in the container during the heat treatment of the molten metal (molten liquid metal) by plasma. It is configured. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. In addition, since the tip electrode made of graphite is used, it is possible to generate plasma with a probability of 100% by immersing the tip electrode in the molten metal when generating plasma and pulling the tip electrode out of the molten metal. . Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
 例2.例1のプラズマトーチは、本体の外周面を覆うように設けられた絶縁被覆材をさらに備えてもよい。この場合、プラズマによる溶湯の加熱処理時に本体が貫通孔内に挿通され、本体と蓋との距離が近接しても、絶縁被覆材により本体と蓋との間における放電(プラズマの発生)が防がれる。そのため、プラズマトーチを用いた溶湯の加熱処理を安全且つ安定して行うことが可能となる。なお、全体が黒鉛製のプラズマトーチの外周面に絶縁被覆材を設ける場合には、プラズマトーチと蓋との間における放電を防ぐことはできるものの、プラズマによる溶湯の加熱処理時に黒鉛自体が高温となり熱膨張するため、黒鉛との熱膨張率の差が大きい絶縁被覆材は黒鉛の外周面から剥がれてしまう。黒鉛を冷却することにより黒鉛からの絶縁被覆材の剥がれを抑制することも考えられるが、黒鉛は構造的に脆いので、黒鉛製のプラズマトーチに冷却液用の流路を設けることも困難である。 Example 2. The plasma torch of Example 1 may further include an insulating coating provided so as to cover the outer peripheral surface of the main body. In this case, the main body is inserted into the through-hole during the heat treatment of the molten metal with plasma, and even if the distance between the main body and the lid is close, the insulating coating material prevents discharge (plasma generation) between the main body and the lid. Can be removed. Therefore, it becomes possible to perform the heat treatment of the molten metal using a plasma torch safely and stably. Note that when an insulating coating is provided on the outer peripheral surface of a plasma torch made entirely of graphite, although the discharge between the plasma torch and the lid can be prevented, the graphite itself becomes hot during the heat treatment of the molten metal by plasma. Because of thermal expansion, the insulating coating material having a large difference in thermal expansion coefficient from graphite is peeled off from the outer peripheral surface of graphite. Although it may be possible to suppress the peeling of the insulating coating material from the graphite by cooling the graphite, the graphite is structurally brittle, so it is difficult to provide a flow path for the coolant in the graphite plasma torch. .
 例3.本開示の他の例に係るプラズマトーチは、金属製の本体と、本体の先端部に取り付けられた黒鉛製の先端電極と、本体の外周面を覆うように設けられた絶縁被覆材とを備える。 Example 3. A plasma torch according to another example of the present disclosure includes a metal main body, a graphite tip electrode attached to a tip portion of the main body, and an insulating coating provided to cover the outer peripheral surface of the main body. .
 例3に係るプラズマトーチでは、プラズマによる溶湯(溶融した液状の金属)の加熱処理時に、金属製の本体のうち溶湯に向かう先端部が容器内に位置するように、本体が貫通孔内に挿通された状態とすることにより、蓋の貫通孔近傍に黒鉛製の先端電極が存在しなくなる。そのため、先端電極の損耗が極めて抑制される。その結果、プラズマトーチの長寿命化を図ることが可能となる。しかも、黒鉛製の先端電極を用いているので、プラズマを発生させる際に先端電極を溶湯に浸漬し、先端電極を溶湯から引き上げることにより、100%の確率でプラズマを発生させることが可能となる。加えて、絶縁被覆材が本体の外周面を覆うように設けられているので、プラズマによる溶湯の加熱処理時に本体が貫通孔内に挿通され、本体と蓋との距離が近接しても、絶縁被覆材により本体と蓋との間における放電(プラズマの発生)が防がれる。そのため、プラズマトーチを用いた溶湯の加熱処理を安全且つ安定して行うことが可能となる。 In the plasma torch according to Example 3, when the molten metal (molten liquid metal) is heated by plasma, the main body is inserted into the through-hole so that the tip of the metal main body facing the molten metal is located in the container. With this state, the tip electrode made of graphite does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. In addition, since the tip electrode made of graphite is used, it is possible to generate plasma with a probability of 100% by immersing the tip electrode in the molten metal when generating plasma and pulling the tip electrode out of the molten metal. . In addition, since the insulating coating material is provided so as to cover the outer peripheral surface of the main body, the main body is inserted into the through-hole during the heat treatment of the molten metal by plasma, and even if the distance between the main body and the lid is close, insulation is provided. The covering material prevents discharge (plasma generation) between the main body and the lid. Therefore, it becomes possible to perform the heat treatment of the molten metal using a plasma torch safely and stably.
 例4.例1~例3のいずれかのプラズマトーチにおいて、先端電極は、先端部に対して着脱可能に構成されていてもよい。この場合、プラズマの生成に伴い先端電極が損耗したときには、新たな先端電極を本体に取り付ければよい。そのため、本体を再利用することができる。従って、プラズマトーチのランニングコストを軽減することが可能となる。 Example 4. In the plasma torch of any of Examples 1 to 3, the tip electrode may be configured to be detachable from the tip portion. In this case, when the tip electrode is worn with plasma generation, a new tip electrode may be attached to the main body. Therefore, the main body can be reused. Therefore, the running cost of the plasma torch can be reduced.
 例5.例4のプラズマトーチにおいて、先端電極は、先端部に対して螺合可能に構成されていてもよい。この場合、先端電極の交換を極めて簡便に行うことが可能となる。 Example 5. In the plasma torch of Example 4, the tip electrode may be configured to be screwable with the tip portion. In this case, it is possible to exchange the tip electrode very easily.
 例6.例4又は例5のプラズマトーチにおいて、先端部には、先端に向かうにつれて拡径する傾斜面を有する凹部が設けられており、先端電極には、傾斜面に対応する外周面を有する凸部が設けられており、先端電極の凸部は、先端部の凹部に嵌合可能に構成されていてもよい。この場合、先端電極と先端部(本体)との接触面積が大きくなる。そのため、プラズマ生成のためにプラズマトーチに通電し、本体と先端電極との間に電流が流れる際に、本体と先端電極との当接部においてジュール熱が発生し難くなる。従って、先端電極の発熱に伴う損耗がより抑制されるので、プラズマトーチの長寿命化をより図ることが可能となる。 Example 6. In the plasma torch of Example 4 or Example 5, the tip portion is provided with a concave portion having an inclined surface that increases in diameter toward the tip, and the tip electrode has a convex portion having an outer peripheral surface corresponding to the inclined surface. It is provided and the convex part of the tip electrode may be comprised so that fitting to the recessed part of a tip part is possible. In this case, the contact area between the tip electrode and the tip (main body) is increased. Therefore, when the plasma torch is energized for plasma generation and current flows between the main body and the tip electrode, Joule heat is hardly generated at the contact portion between the main body and the tip electrode. Therefore, since wear due to heat generation of the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
 例7.例1~例6のプラズマトーチにおいて、本体の先端部は、本体の基端部に対して着脱可能に構成されていてもよい。この場合、本体の先端部が損傷等したときには、新たな先端部を本体の基端部に取り付ければよい。そのため、本体の基端部を再利用することができる。従って、プラズマトーチのランニングコストを軽減することが可能となる。 Example 7. In the plasma torch of Examples 1 to 6, the distal end portion of the main body may be configured to be detachable from the proximal end portion of the main body. In this case, when the tip of the main body is damaged, a new tip may be attached to the base end of the main body. Therefore, the base end portion of the main body can be reused. Therefore, the running cost of the plasma torch can be reduced.
 例8.例1~例7のいずれかのプラズマトーチにおいて、本体内には冷却液の流路が設けられていてもよい。この場合、本体が冷却液によって冷却されることで、本体の先端部に取り付けられている先端電極の冷却も行われる。そのため、先端電極の発熱に伴う損耗がさらに抑制されるので、プラズマトーチの更なる長寿命化を図ることが可能となる。 Example 8. In any of the plasma torches of Examples 1 to 7, a coolant flow path may be provided in the main body. In this case, the tip electrode attached to the tip of the main body is also cooled by cooling the main body with the coolant. For this reason, since wear due to heat generation of the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
 例9.例1~例8のいずれかのプラズマトーチには、プラズマを発生させるための動作ガスの流路として機能する貫通孔が長手方向に沿って延びるように設けられていてもよい。この場合、動作ガスがプラズマトーチから溶湯に向けて流れるので、安定したプラズマを生成することが可能となる。 Example 9. The plasma torch of any of Examples 1 to 8 may be provided with a through hole that functions as a flow path for the working gas for generating plasma extending along the longitudinal direction. In this case, since the operating gas flows from the plasma torch toward the molten metal, stable plasma can be generated.
 例10.例9のプラズマトーチにおいて、本体は、長手方向に沿って延びる外管部と、外管部内に挿通された中心部とを有し、先端電極は中心部の先端部に取り付けられており、外管部と中心部との間に構成される環状の間隙により貫通孔が構成されていてもよい。この場合、プラズマトーチ(先端電極)と溶湯との間にプラズマが生じた際に、先端電極の周縁が特に熱を受ける。そのため、先端電極のうち熱を受ける領域(受熱部)が比較的広くなるので、熱が分散しやすくなる。従って、先端電極の先端面における最高温度が低くなると共に、先端電極の先端面における温度分布がなだらかとなる。その結果、先端電極の発熱に伴う損耗がいっそう抑制されるので、プラズマトーチのいっそうの長寿命化を図ることが可能となる。 Example 10. In the plasma torch of Example 9, the main body has an outer tube portion extending along the longitudinal direction, and a center portion inserted through the outer tube portion, and the tip electrode is attached to the tip portion of the center portion. The through hole may be formed by an annular gap formed between the tube portion and the center portion. In this case, especially when the plasma is generated between the plasma torch (tip electrode) and the molten metal, the peripheral edge of the tip electrode receives heat. For this reason, the heat receiving region (heat receiving portion) of the tip electrode is relatively wide, so that heat is easily dispersed. Therefore, the maximum temperature on the tip surface of the tip electrode is lowered, and the temperature distribution on the tip surface of the tip electrode becomes gentle. As a result, since wear due to heat generation at the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
 例11.例9のプラズマトーチにおいて、本体は、長手方向に沿って延びる外管部と、外管部内に挿通された中心部とを有し、先端電極は、環状の外側部と、外側部の内側に配置可能な内側部とを有し、内側部は中心部の先端部に取り付けられており、外側部は外管部に取り付けられており、外管部及び外側部と中心部及び内側部との間に構成される環状の間隙により貫通孔が構成されていてもよい。この場合、プラズマトーチ(先端電極)と溶湯との間にプラズマが生じた際に、先端電極のうち貫通孔近傍が特に熱を受ける。そのため、先端電極のうち熱を受ける領域(受熱部)が比較的広くなるので、熱が分散しやすくなる。従って、先端電極の先端面における最高温度が低くなると共に、先端電極の先端面における温度分布がなだらかとなる。その結果、先端電極の発熱に伴う損耗がいっそう抑制されるので、プラズマトーチのいっそうの長寿命化を図ることが可能となる。 Example 11. In the plasma torch of Example 9, the main body has an outer tube portion extending along the longitudinal direction, and a central portion inserted into the outer tube portion, and the tip electrode is disposed on the inner side of the annular outer portion and the outer portion. An inner portion that can be arranged, the inner portion is attached to the distal end portion of the center portion, and the outer portion is attached to the outer tube portion, and the outer tube portion and the outer portion are connected to the center portion and the inner portion. The through hole may be formed by an annular gap formed between them. In this case, when plasma is generated between the plasma torch (tip electrode) and the molten metal, the vicinity of the through hole in the tip electrode is particularly heated. For this reason, the heat receiving region (heat receiving portion) of the tip electrode is relatively wide, so that heat is easily dispersed. Therefore, the maximum temperature on the tip surface of the tip electrode is lowered, and the temperature distribution on the tip surface of the tip electrode becomes gentle. As a result, since wear due to heat generation at the tip electrode is further suppressed, it is possible to further extend the life of the plasma torch.
 例12.例11のプラズマトーチにおいて、外管部及び外側部と中心部及び内側部とは、互いに電気的に絶縁されていてもよい。この場合、外管部及び外側部と中心部及び内側部とを互いに異極の電源に接続することができる。これにより、外側部と内側部との間で放電しプラズマが発生する。この状態で電源の出力を大きくしていくことにより、外側部と内側部との間で生じているプラズマが成長していく。そして、成長したプラズマが溶湯に到達したときに、外側部及び内側部と、溶湯とを互いに異極の電源に接続することにより、プラズマトーチと溶湯との間にプラズマを生成することができる。従って、プラズマトーチの先端と溶湯との距離が大きい場合でも、プラズマトーチの先端と溶湯との間にプラズマを安定して生じさせることが可能となる。 Example 12. In the plasma torch of Example 11, the outer tube portion and the outer portion, and the center portion and the inner portion may be electrically insulated from each other. In this case, the outer tube portion and the outer portion, and the center portion and the inner portion can be connected to power sources having different polarities. Thereby, plasma is generated by discharging between the outer portion and the inner portion. In this state, by increasing the output of the power source, plasma generated between the outer side and the inner side grows. When the grown plasma reaches the molten metal, the plasma can be generated between the plasma torch and the molten metal by connecting the outer and inner parts and the molten metal to power sources having different polarities. Accordingly, even when the distance between the tip of the plasma torch and the molten metal is large, it is possible to stably generate plasma between the tip of the plasma torch and the molten metal.
 例13.例1~12のいずれかのプラズマトーチにおいて、先端電極と先端部との当接部のうち外部に露出している領域を覆う環状の絶縁部材をさらに備えてもよい。この場合、先端電極のうち当接部の近傍において放電が生ずることが防がれる。そのため、先端部が過剰に加熱され変形等してしまうことを抑制することができる。 Example 13. The plasma torch of any of Examples 1 to 12 may further include an annular insulating member that covers a region exposed to the outside of the contact portion between the tip electrode and the tip portion. In this case, it is possible to prevent discharge from occurring in the vicinity of the contact portion of the tip electrode. Therefore, it can suppress that a front-end | tip part is heated too much and deform | transforms.
 例14.本開示の他の例に係るプラズマトーチ用の先端電極は、容器内の溶湯をプラズマによりの加熱処理する時に、溶湯に向かう先端部が容器内に位置する金属製の本体を有し、容器の蓋に設けられた貫通孔内に挿通可能に本体が構成されているプラズマトーチ用の、黒鉛製の先端電極であって、本体の先端部に対して着脱可能に構成されている。 Example 14. A tip electrode for a plasma torch according to another example of the present disclosure has a metal main body in which a tip portion toward a molten metal is located in the container when the molten metal in the container is heated by plasma. This is a graphite tip electrode for a plasma torch in which a main body is configured to be inserted into a through-hole provided in a lid, and is configured to be detachable from a tip portion of the main body.
 例14に係るプラズマトーチ用の先端電極は、容器内の溶湯をプラズマによる加熱処理する時に、溶湯に向かう先端部が容器内に位置する金属製の本体を有し、容器の蓋に設けられた貫通孔内に挿通可能に本体が構成されているプラズマトーチに用いられる。そのため、蓋の貫通孔近傍に黒鉛製の先端電極が存在していない。従って、先端電極の損耗が極めて抑制される。その結果、プラズマトーチの長寿命化を図ることが可能となる。しかも、例14に係るプラズマトーチ用の先端電極は黒鉛製であるので、プラズマを発生させる際に先端電極を溶湯に浸漬し、先端電極を溶湯から引き上げることにより、100%の確率でプラズマを発生させることが可能となる。なお、全体が金属製のプラズマトーチを用いる場合、黒鉛の損耗は生じないが、当該プラズマトーチを溶湯に浸漬すると当該プラズマトーチが溶損し、溶湯の温度制御が困難となる。 The tip electrode for a plasma torch according to Example 14 has a metal main body in which a tip portion toward the molten metal is located in the container when the molten metal in the container is heated by plasma, and is provided on the lid of the container. It is used for a plasma torch in which a main body is configured to be inserted into a through hole. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. In addition, since the tip electrode for the plasma torch according to Example 14 is made of graphite, when the plasma is generated, the tip electrode is immersed in the molten metal, and the tip electrode is pulled out of the molten metal to generate plasma with a probability of 100%. It becomes possible to make it. Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
 例15.本開示の他の例に係るプラズマトーチ用の先端電極は、外周面を覆うように絶縁被覆材が設けられた金属製の本体の先端部に対して着脱可能に構成されている。 Example 15. A tip electrode for a plasma torch according to another example of the present disclosure is configured to be attachable to and detachable from a tip portion of a metal main body provided with an insulating coating material so as to cover an outer peripheral surface.
 例15に係るプラズマトーチ用の先端電極では、容器内の溶湯(溶融した液状の金属)をプラズマにより加熱処理する時に、金属製の本体のうち溶湯に向かう先端部が容器内に位置するように、本体が貫通孔内に挿通された状態とされる。そのため、蓋の貫通孔近傍に黒鉛製の先端電極が存在しなくなる。従って、先端電極の損耗が極めて抑制される。その結果、プラズマトーチの長寿命化を図ることが可能となる。しかも、例15に係るプラズマトーチ用の先端電極は黒鉛製であるので、プラズマを発生させる際に先端電極を溶湯に浸漬し、先端電極を溶湯から引き上げることにより、100%の確率でプラズマを発生させることが可能となる。加えて、絶縁被覆材が本体の外周面を覆うように設けられているので、プラズマによる溶湯の加熱処理時に本体が貫通孔内に挿通され、本体と蓋との距離が近接しても、絶縁被覆材により本体と蓋との間における放電(プラズマの発生)が防がれる。そのため、例15に係る先端電極が取り付けられるプラズマトーチを用いた溶湯の加熱処理を安全且つ安定して行うことが可能となる。 In the tip electrode for a plasma torch according to Example 15, when the molten metal (molten liquid metal) in the container is heat-treated with plasma, the tip of the metal main body facing the molten metal is positioned in the container. The main body is inserted into the through hole. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. Moreover, since the tip electrode for the plasma torch according to Example 15 is made of graphite, plasma is generated with a probability of 100% by immersing the tip electrode in the molten metal when the plasma is generated and pulling the tip electrode out of the molten metal. It becomes possible to make it. In addition, since the insulating coating material is provided so as to cover the outer peripheral surface of the main body, the main body is inserted into the through-hole during the heat treatment of the molten metal by plasma, and even if the distance between the main body and the lid is close, insulation is provided. The covering material prevents discharge (plasma generation) between the main body and the lid. Therefore, the heat treatment of the molten metal using the plasma torch to which the tip electrode according to Example 15 is attached can be performed safely and stably.
 例16.本開示の他の例に係る溶湯加熱装置は、溶湯を貯留する貯留槽と、上方に向けて開放された貯留槽の開口部を覆う蓋とを備える容器と、容器内で溶湯との間でプラズマを発生させるプラズマトーチとを備え、プラズマトーチは、プラズマによる溶湯の加熱処理時に溶湯に向かう先端部が容器内に位置するように、蓋に設けられた貫通孔内に挿通可能に構成された金属製の本体と、本体の先端部に取り付けられた黒鉛製の先端電極とを有する。 Example 16. A molten metal heating apparatus according to another example of the present disclosure includes a container including a storage tank that stores the molten metal, a lid that covers an opening of the storage tank that is opened upward, and the molten metal in the container. A plasma torch that generates plasma, and the plasma torch is configured to be able to be inserted into a through-hole provided in the lid so that a tip portion toward the molten metal is located in the container when the molten metal is heated by the plasma. It has a metal main body and a graphite tip electrode attached to the tip of the main body.
 例16に係る溶湯加熱装置では、プラズマによる溶湯(溶融した液状の金属)の加熱処理時に、溶湯に向かう本体の先端部が容器内に位置するように、金属製の本体が貫通孔内に挿通可能に構成されている。そのため、蓋の貫通孔近傍に黒鉛製の先端電極が存在していない。従って、先端電極の損耗が極めて抑制される。その結果、プラズマトーチの長寿命化を図ることが可能となる。しかも、黒鉛製の先端電極を用いているので、プラズマを発生させる際に先端電極を溶湯に浸漬し、先端電極を溶湯から引き上げることにより、100%の確率でプラズマを発生させることが可能となる。なお、全体が金属製のプラズマトーチを用いる場合、黒鉛の損耗は生じないが、当該プラズマトーチを溶湯に浸漬すると当該プラズマトーチが溶損し、溶湯の温度制御が困難となる。 In the molten metal heating apparatus according to Example 16, during the heat treatment of the molten metal (molten liquid metal) by plasma, the metal main body is inserted into the through hole so that the tip of the main body facing the molten metal is located in the container. It is configured to be possible. Therefore, the graphite tip electrode does not exist in the vicinity of the through hole of the lid. Therefore, wear of the tip electrode is extremely suppressed. As a result, it is possible to extend the life of the plasma torch. In addition, since the tip electrode made of graphite is used, it is possible to generate plasma with a probability of 100% by immersing the tip electrode in the molten metal when generating plasma and pulling the tip electrode out of the molten metal. . Note that when a metal plasma torch is used as a whole, the graphite is not worn, but if the plasma torch is immersed in the molten metal, the plasma torch is melted and it becomes difficult to control the temperature of the molten metal.
 本開示に係るプラズマトーチ、プラズマトーチ用の先端電極、及び溶湯加熱措置によれば、プラズマトーチの長寿命化を図ることが可能となる。 The plasma torch according to the present disclosure, the tip electrode for the plasma torch, and the molten metal heating measure can extend the life of the plasma torch.
図1は、連続鋳造装置の一つの例を示す図である。FIG. 1 is a diagram illustrating an example of a continuous casting apparatus. 図2は、図1のプラズマトーチの断面を示す。FIG. 2 shows a cross section of the plasma torch of FIG. 図3は、従来のプラズマトーチの断面を示す。FIG. 3 shows a cross section of a conventional plasma torch. 図4は、従来のプラズマトーチの断面を示す。FIG. 4 shows a cross section of a conventional plasma torch. 図5は、他の例に係るプラズマトーチの断面を示す。FIG. 5 shows a cross section of a plasma torch according to another example. 図6は、他の例に係るプラズマトーチの断面を示す。FIG. 6 shows a cross section of a plasma torch according to another example. 図7は、他の例に係るプラズマトーチの断面を示す。FIG. 7 shows a cross section of a plasma torch according to another example. 図8は、他の例に係るプラズマトーチの断面を示す。FIG. 8 shows a cross section of a plasma torch according to another example. 図9は、他の例に係るプラズマトーチの断面を示す。FIG. 9 shows a cross section of a plasma torch according to another example. 図10は、他の例に係るプラズマトーチの断面を示す。FIG. 10 shows a cross section of a plasma torch according to another example. 図11は、他の例に係るプラズマトーチの断面を示す。FIG. 11 shows a cross section of a plasma torch according to another example.
 以下に説明される本開示に係る実施形態は本発明を説明するための例示であるので、本発明は以下の内容に限定されるべきではない。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 The embodiments according to the present disclosure described below are examples for explaining the present invention, and the present invention should not be limited to the following contents. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 まず、図1を参照して、連続鋳造装置100の構成について説明する。連続鋳造装置100は、取鍋101と、タンディッシュ102(溶湯加熱装置)と、鋳型103と、鋳片支持ロール104と、プラズマ発生装置1(溶湯加熱装置)を備える。 First, the configuration of the continuous casting apparatus 100 will be described with reference to FIG. The continuous casting apparatus 100 includes a ladle 101, a tundish 102 (a molten metal heating apparatus), a mold 103, a cast piece support roll 104, and a plasma generator 1 (a molten metal heating apparatus).
 取鍋101は、溶湯(溶鋼)Mを貯留する容器である。タンディッシュ102は、取鍋101の下方に配置されている。タンディッシュ102(容器)は、本体102a(貯留槽)と、蓋102bとを有する。本体102aは、取鍋101の底壁に設けられたノズル101aから流出した溶湯Mを貯留する。蓋102bは、上方に向けて開放された本体102aの開口部102cを覆っている。蓋102bには、タンディッシュ102の内外を連通する貫通孔102dが設けられている。 The ladle 101 is a container for storing molten metal (molten steel) M. The tundish 102 is disposed below the ladle 101. The tundish 102 (container) has a main body 102a (storage tank) and a lid 102b. The main body 102 a stores the molten metal M that has flowed out from the nozzle 101 a provided on the bottom wall of the ladle 101. The lid 102b covers the opening 102c of the main body 102a opened upward. The lid 102b is provided with a through hole 102d that communicates the inside and outside of the tundish 102.
 鋳型103は、タンディッシュ102の下方に配置されている。鋳型103は、タンディッシュ102の底壁に設けられたノズル102eから流出した溶湯を冷却しながら所定形状に成形する。鋳片支持ロール104は、鋳型103から引き抜かれた鋳片Sを冷却しつつ搬送する。 The mold 103 is disposed below the tundish 102. The mold 103 is molded into a predetermined shape while cooling the molten metal flowing out from the nozzle 102e provided on the bottom wall of the tundish 102. The slab support roll 104 conveys the slab S drawn out from the mold 103 while cooling it.
 プラズマ発生装置1は、タンディッシュ102内の溶湯Mの温度を制御するための装置である。そのため、プラズマ発生装置1は、タンディッシュ102と共に、溶湯加熱装置を構成している。プラズマ発生装置1は、プラズマトーチ10と、トーチ保持具12と、昇降機14と、動作ガス源16とを備える。 The plasma generator 1 is a device for controlling the temperature of the molten metal M in the tundish 102. Therefore, the plasma generator 1 constitutes a molten metal heating device together with the tundish 102. The plasma generator 1 includes a plasma torch 10, a torch holder 12, an elevator 14, and an operating gas source 16.
 プラズマトーチ10は、例えば直線状に延びる丸棒(直棒)である。プラズマトーチ10の直径は、例えば50mm~200mm程度であってもよい。プラズマトーチ10の長さは、例えば1000mm~2500mm程度であってもよい。プラズマトーチ10の形状は、丸形以外の他の形状であってもよいし、必ずしも直線状に延びておらず屈曲していてもよい。プラズマトーチ10は、図示しない電源に接続されており、所定の電圧(例えば100V~500V程度)が印加される。 The plasma torch 10 is, for example, a round bar (straight bar) extending linearly. The diameter of the plasma torch 10 may be about 50 mm to 200 mm, for example. The length of the plasma torch 10 may be about 1000 mm to 2500 mm, for example. The shape of the plasma torch 10 may be a shape other than a round shape, or may not necessarily extend linearly but may be bent. The plasma torch 10 is connected to a power source (not shown), and a predetermined voltage (for example, about 100 V to 500 V) is applied.
 プラズマトーチ10は、図1及び図2に示されるように、金属製の本体18と、黒鉛製の先端電極20と、絶縁被覆材22とを有する。本体18には、図2に示されるように、貫通孔H1が設けられている。貫通孔H1は、例えば円形状を呈し、本体18の軸方向(プラズマトーチ10の長手方向)に沿って延びている。貫通孔H1の直径は、例えば10mm程度であってもよい。本体18には、貫通孔H1を取り囲むように、冷却液(例えば、水)の流路Fが設けられている。流路Fには、図示しない冷却液源から冷却液が供給される。冷却液は、流路F内を流通した後に排出され、例えば熱交換器によって冷却され、再び流路Fに供給される。冷却液が流路Fを循環することにより、プラズマトーチ10全体(本体18及び先端電極20)が冷却される。 As shown in FIGS. 1 and 2, the plasma torch 10 includes a metal main body 18, a graphite tip electrode 20, and an insulating coating material 22. As shown in FIG. 2, the main body 18 is provided with a through hole H1. The through hole H1 has, for example, a circular shape, and extends along the axial direction of the main body 18 (longitudinal direction of the plasma torch 10). The diameter of the through hole H1 may be about 10 mm, for example. The main body 18 is provided with a flow path F of a coolant (for example, water) so as to surround the through hole H1. The coolant is supplied to the flow path F from a coolant source (not shown). The coolant is discharged after flowing through the flow path F, cooled by, for example, a heat exchanger, and supplied to the flow path F again. As the coolant circulates through the flow path F, the entire plasma torch 10 (the main body 18 and the tip electrode 20) is cooled.
 先端電極20は、本体18の下端部18a(先端部)に取り付けられている。より詳しくは、先端電極20は、下端部18aの先端面T1に取り付けられている。先端電極20と本体18との接触面積が大きいと、プラズマトーチ10への通電時に先端電極20と本体18との当接部に生ずるジュール熱が小さくなり、プラズマトーチ10(本体18及び先端電極20)の損耗を抑制できる傾向にある。先端電極20と本体18との接触面積をXとし、プラズマトーチ10を流れる電流をYとした場合、接触面積XはX/Y≦1.0[A/mm]を満たしていてもよい。なお、接触面積Xで電流Yを除算した値は、当接部を通過する電流の密度(通過電流密度)を表わしている。 The tip electrode 20 is attached to the lower end portion 18 a (tip portion) of the main body 18. More specifically, the tip electrode 20 is attached to the tip surface T1 of the lower end 18a. When the contact area between the tip electrode 20 and the main body 18 is large, the Joule heat generated at the contact portion between the tip electrode 20 and the main body 18 when the plasma torch 10 is energized becomes small, and the plasma torch 10 (the main body 18 and the tip electrode 20). ) Wear can be suppressed. When the contact area between the tip electrode 20 and the main body 18 is X and the current flowing through the plasma torch 10 is Y, the contact area X may satisfy X / Y ≦ 1.0 [A / mm 2 ]. The value obtained by dividing the current Y by the contact area X represents the density of current passing through the contact portion (passing current density).
 先端電極20には、貫通孔H2が設けられている。貫通孔H2は、先端電極20(プラズマトーチ10)の軸方向に沿って延びている。貫通孔H2は、先端電極20が本体18の先端面T1に取り付けられた状態において、貫通孔H1と連通している。 The tip electrode 20 is provided with a through hole H2. The through hole H2 extends along the axial direction of the tip electrode 20 (plasma torch 10). The through hole H <b> 2 communicates with the through hole H <b> 1 in a state where the tip electrode 20 is attached to the tip surface T <b> 1 of the main body 18.
 絶縁被覆材22は、本体18の外周面の全体に設けられている。絶縁被覆材22は、例えば、アルミナ(Al)を本体18の外周面に溶射することによって得られる。 The insulating coating material 22 is provided on the entire outer peripheral surface of the main body 18. The insulating coating material 22 is obtained, for example, by spraying alumina (Al 2 O 3 ) on the outer peripheral surface of the main body 18.
 図1に戻って、トーチ保持具12は、本体18(プラズマトーチ10)の基端部18bを保持する。トーチ保持具12は、例えば、プラズマトーチ10が鉛直軸に対して0°~30°程度傾くようにプラズマトーチ10を保持可能である。昇降機14は、トーチ保持具12を上下方向に昇降させる。そのため、トーチ保持具12によって保持されているプラズマトーチ10も、昇降機14によって上下方向に昇降され、タンディッシュ102内の溶湯Mに対して近接及び離間する。プラズマトーチ10の下端部(先端部)がタンディッシュ102内に位置するときにプラズマトーチ10が昇降機14によって上昇されると、プラズマトーチ10は、蓋102bの貫通孔102dを通ってタンディッシュ102の外に移動する。プラズマトーチ10がタンディッシュ102外にあるときに昇降機14によって下降されると、プラズマトーチ10の下端部は、蓋102bの貫通孔102dを通ってタンディッシュ102内に移動する。 Referring back to FIG. 1, the torch holder 12 holds the base end portion 18b of the main body 18 (plasma torch 10). The torch holder 12 can hold the plasma torch 10 such that the plasma torch 10 is inclined by about 0 ° to 30 ° with respect to the vertical axis, for example. The elevator 14 moves the torch holder 12 up and down. Therefore, the plasma torch 10 held by the torch holder 12 is also raised and lowered in the vertical direction by the elevator 14, and approaches and separates from the molten metal M in the tundish 102. When the plasma torch 10 is raised by the elevator 14 when the lower end (tip) of the plasma torch 10 is located in the tundish 102, the plasma torch 10 passes through the through-hole 102d of the lid 102b and the Move out. When the plasma torch 10 is lowered by the elevator 14 when it is outside the tundish 102, the lower end portion of the plasma torch 10 moves into the tundish 102 through the through hole 102d of the lid 102b.
 動作ガス源16は、図1及び図2に示されるように、プラズマを発生させるための動作ガス(例えば、アルゴン、窒素等の不活性ガス)を貫通孔H1,H2に供給する。そのため、貫通孔H1,H2は、動作ガスの流路として機能する。動作ガス源16は、配管24を介して貫通孔H1,H2と接続されている。配管24には、バルブ26が設けられている。バルブ26の開閉に応じて、動作ガス源16からの動作ガスの貫通孔H1,H2への供給状態と非供給状態とが切り替わる。本実施形態では、動作ガス源16、配管24及びバルブ26が、動作ガスを貫通孔H1,H2(プラズマトーチ10)に供給する供給手段として機能する。 As shown in FIGS. 1 and 2, the working gas source 16 supplies a working gas (for example, an inert gas such as argon or nitrogen) for generating plasma to the through holes H1 and H2. Therefore, the through holes H1 and H2 function as operating gas flow paths. The working gas source 16 is connected to the through holes H <b> 1 and H <b> 2 via the pipe 24. The pipe 24 is provided with a valve 26. According to opening / closing of the valve 26, the supply state of the working gas from the working gas source 16 to the through holes H1, H2 and the non-supply state are switched. In the present embodiment, the operating gas source 16, the pipe 24, and the valve 26 function as supply means for supplying the operating gas to the through holes H1 and H2 (plasma torch 10).
 プラズマ発生装置1によってプラズマを発生させる場合には、まず、先端電極20の周囲(溶湯Mの湯面近傍)を動作ガス雰囲気とする。具体的には、バルブ26を開放して、動作ガス源16から貫通孔H1,H2を介して動作ガスをタンディッシュ102内に供給する。また、プラズマトーチ10に所定の電圧を印加させる。 When plasma is generated by the plasma generator 1, first, the periphery of the tip electrode 20 (near the molten metal surface of the molten metal M) is set as an operating gas atmosphere. Specifically, the valve 26 is opened, and the working gas is supplied from the working gas source 16 into the tundish 102 through the through holes H1 and H2. Further, a predetermined voltage is applied to the plasma torch 10.
 次に、この状態で、昇降機14によってプラズマトーチ10を溶湯Mに向けて降下させる。このとき、昇降機14は、先端電極20の全体がタンディッシュ102内(本体102aと蓋102bとの間の内部空間内)に位置すると共に、本体18及び絶縁被覆材22が貫通孔102dに対向した状態となるように、プラズマトーチ10をタンディッシュ102及び溶湯Mの湯面に対して位置決めする。これにより、先端電極20(プラズマトーチ10)と溶湯Mとの距離(ギャップ)が所定の大きさとなるまで先端電極20を溶湯Mに近づける。そうすると、先端電極20と溶湯Mとの間で絶縁破壊が生じ、先端電極20と溶湯Mとの間に電流が流れる。これにより、図2に示されるように、先端電極20と溶湯Mとの間にプラズマPが発生する。なお、先端電極20は、熱を受けることにより徐々に消耗(損耗)していく。 Next, in this state, the elevator 14 lowers the plasma torch 10 toward the molten metal M. At this time, in the elevator 14, the entire tip electrode 20 is located in the tundish 102 (in the internal space between the main body 102 a and the lid 102 b), and the main body 18 and the insulating coating material 22 face the through hole 102 d. The plasma torch 10 is positioned with respect to the tundish 102 and the surface of the molten metal M so as to be in a state. Thereby, the tip electrode 20 is brought close to the melt M until the distance (gap) between the tip electrode 20 (plasma torch 10) and the melt M becomes a predetermined size. Then, dielectric breakdown occurs between the tip electrode 20 and the molten metal M, and a current flows between the tip electrode 20 and the molten metal M. Thereby, as shown in FIG. 2, plasma P is generated between the tip electrode 20 and the molten metal M. The tip electrode 20 is gradually consumed (worn) by receiving heat.
 ところで、図3に示されるような全体が黒鉛製のプラズマトーチ50を用いて、溶湯Mとの間にプラズマPを発生させる場合を考える。タンディッシュ102内には、不活性ガスが充填されているので、タンディッシュ102には酸素がほとんど存在していない。そのため、溶湯Mが存在し高温の環境にあるものの、黒鉛と反応する酸素の量が少なく、タンディッシュ102内に位置するプラズマトーチ50(プラズマトーチ50の下端部)は損耗し難い。一方、タンディッシュ102外の温度は低いので、タンディッシュ102外には酸素が多量に存在するものの、タンディッシュ102外の温度は低いので、タンディッシュ102外に位置するプラズマトーチ50(プラズマトーチ50の上端部)も損耗し難い。しかしながら、蓋102bの貫通孔102d近傍では、酸素を含む低温の外気とタンディッシュ102内の熱風とが混ざり合う。そのため、プラズマトーチ50のうち貫通孔102dに挿通されている部分(プラズマトーチ50の中間部分)は、黒鉛と酸素とが反応して損耗しやすい。従って、図3に示されるように、プラズマトーチ50の中間部分が細く抉れてしまい、プラズマトーチ50の寿命に影響を与える虞がある。このような抉れの発生に対して、全体が金属製のプラズマトーチを用いることも考えられる。しかしながら、金属製のプラズマトーチを用いる場合には、プラズマを発生させるためにプラズマトーチを溶湯Mに浸漬することができないので、プラズマの発生率が低下してしまう。金属製のプラズマトーチを溶湯に浸漬すると、溶湯Mの温度がプラズマトーチが溶損してしまい、溶湯Mの温度制御が困難となる。 Now, consider the case where plasma P is generated between the molten metal M and the entire plasma graphite torch 50 as shown in FIG. Since the tundish 102 is filled with an inert gas, oxygen is hardly present in the tundish 102. Therefore, although the molten metal M exists and is in a high temperature environment, the amount of oxygen that reacts with the graphite is small, and the plasma torch 50 (the lower end portion of the plasma torch 50) located in the tundish 102 is not easily worn. On the other hand, since the temperature outside the tundish 102 is low, a large amount of oxygen is present outside the tundish 102, but the temperature outside the tundish 102 is low, so that the plasma torch 50 (plasma torch 50 located outside the tundish 102). The upper end of the part is also difficult to wear. However, in the vicinity of the through hole 102d of the lid 102b, the low temperature outside air containing oxygen and the hot air in the tundish 102 are mixed. For this reason, the portion of the plasma torch 50 that is inserted through the through hole 102d (the intermediate portion of the plasma torch 50) is easily worn out by the reaction of graphite and oxygen. Therefore, as shown in FIG. 3, the middle portion of the plasma torch 50 may be thinned, which may affect the life of the plasma torch 50. It is also conceivable to use a metal plasma torch for the occurrence of such wrinkles. However, when a metal plasma torch is used, since the plasma torch cannot be immersed in the molten metal M in order to generate plasma, the plasma generation rate decreases. When a metal plasma torch is immersed in the molten metal, the temperature of the molten metal M is melted and the temperature control of the molten metal M becomes difficult.
 また、プラズマトーチ50の中間部分と貫通孔102dとの距離は比較的短い。そのため、プラズマトーチ50の周囲の雰囲気が不安定になると、図4に示されるように、プラズマトーチ50の外周面と貫通孔102dとの間で放電してプラズマP1が生ずる虞がある。このような放電を防ぐために、プラズマトーチ50の外周面に絶縁被覆材を設けることも考えられる。しかしながら、プラズマトーチ50は黒鉛製であるので、プラズマトーチ50による溶湯Mの加熱処理時に黒鉛自体が高温となり熱膨張する。黒鉛の熱膨張率は絶縁被覆材の熱膨張率よりも大きいので、絶縁被覆材はプラズマトーチ50の外表面から剥がれてしまう。黒鉛を冷却することにより絶縁被覆材の剥がれを抑制することも考えられるが、黒鉛は構造的に脆いので、黒鉛製のプラズマトーチ50に冷却液用の流路を設けることも困難である。 In addition, the distance between the intermediate portion of the plasma torch 50 and the through hole 102d is relatively short. Therefore, when the atmosphere around the plasma torch 50 becomes unstable, as shown in FIG. 4, there is a possibility that plasma P1 is generated due to discharge between the outer peripheral surface of the plasma torch 50 and the through hole 102d. In order to prevent such discharge, an insulating coating material may be provided on the outer peripheral surface of the plasma torch 50. However, since the plasma torch 50 is made of graphite, the graphite itself becomes a high temperature and thermally expands during the heat treatment of the molten metal M by the plasma torch 50. Since the thermal expansion coefficient of graphite is larger than the thermal expansion coefficient of the insulating coating material, the insulating coating material is peeled off from the outer surface of the plasma torch 50. Although it is conceivable to suppress peeling of the insulating coating material by cooling the graphite, it is difficult to provide a flow path for the coolant in the graphite plasma torch 50 because graphite is structurally brittle.
 しかしながら、以上のような本実施形態では、プラズマPによる溶湯Mの加熱処理時に、溶湯Mに向かう本体18の下端部18aがタンディッシュ102内に位置するように、金属製の本体18が貫通孔102d内に挿通可能に構成されている。そのため、蓋102bの貫通孔102d近傍に黒鉛製の先端電極20が存在していない。従って、先端電極20の損耗が極めて抑制される。その結果、プラズマトーチ10の長寿命化を図ることが可能となる。しかも、黒鉛製の先端電極20を用いているので、プラズマPを発生させる際に先端電極20を溶湯に浸漬し、先端電極20を溶湯Mから引き上げることにより、100%の確率でプラズマPを発生させることが可能となる。 However, in the present embodiment as described above, the metal main body 18 is a through-hole so that the lower end portion 18a of the main body 18 facing the molten metal M is positioned in the tundish 102 during the heat treatment of the molten metal M with the plasma P. It is configured to be able to be inserted into 102d. For this reason, the graphite tip electrode 20 does not exist in the vicinity of the through hole 102d of the lid 102b. Therefore, wear of the tip electrode 20 is extremely suppressed. As a result, the life of the plasma torch 10 can be extended. Moreover, since the graphite tip electrode 20 is used, when the plasma P is generated, the tip electrode 20 is immersed in the molten metal, and the tip electrode 20 is pulled up from the molten metal M, thereby generating the plasma P with a probability of 100%. It becomes possible to make it.
 本実施形態では、絶縁被覆材22が、本体18の外周面を覆うように設けられている。そのため、プラズマPによる溶湯Mの加熱処理時に本体18が貫通孔102d内に挿通され、本体18と蓋102bとの距離が近接しても、絶縁被覆材22により本体18と蓋102bとの間における放電(プラズマの発生)が防がれる。そのため、プラズマトーチ10を用いた溶湯Mの加熱処理を安全且つ安定して行うことが可能となる。 In this embodiment, the insulating coating material 22 is provided so as to cover the outer peripheral surface of the main body 18. Therefore, even when the main body 18 is inserted into the through-hole 102d during the heat treatment of the molten metal M by the plasma P and the distance between the main body 18 and the lid 102b is close, the insulating coating material 22 causes the gap between the main body 18 and the lid 102b. Discharge (plasma generation) is prevented. Therefore, the heat treatment of the molten metal M using the plasma torch 10 can be performed safely and stably.
 本実施形態では、本体18内に冷却液の流路Fが設けられている。そのため、本体18が冷却液によって冷却されることで、本体18の下端部18aに取り付けられている先端電極20の冷却も行われる。従って、先端電極20の発熱に伴う損耗がさらに抑制されるので、プラズマトーチ10の更なる長寿命化を図ることが可能となる。 In the present embodiment, a coolant flow path F is provided in the main body 18. Therefore, the tip electrode 20 attached to the lower end portion 18a of the main body 18 is also cooled by cooling the main body 18 with the coolant. Therefore, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
 本実施形態では、本体18及び先端電極20にそれぞれ、プラズマPを発生させるための動作ガスの流路として機能する貫通孔H1,H2がプラズマトーチ10の長手方向(軸方向)に沿って延びるように設けられている。そのため、動作ガスがプラズマトーチ10から溶湯Mに向けて流れるので、安定したプラズマPを生成することが可能となる。 In the present embodiment, the through holes H1 and H2 that function as flow paths for the working gas for generating the plasma P in the main body 18 and the tip electrode 20 extend along the longitudinal direction (axial direction) of the plasma torch 10, respectively. Is provided. Therefore, the operating gas flows from the plasma torch 10 toward the molten metal M, so that stable plasma P can be generated.
 以上、本開示に係る実施形態について詳細に説明したが、本発明の要旨の範囲内で種々の変形を上記の実施形態に加えてもよい。例えば、先端電極20は、本体18の下端部18a(先端面T1)に対して着脱可能に構成されていてもよい。この場合、プラズマPの生成に伴い先端電極20が損耗したときには、新たな先端電極20を本体18に取り付ければよい。そのため、本体18を再利用することができる。従って、プラズマトーチ10のランニングコストを軽減することが可能となる。 As mentioned above, although embodiment concerning this indication was described in detail, you may add various deformation | transformation to said embodiment within the range of the summary of this invention. For example, the tip electrode 20 may be configured to be attachable to and detachable from the lower end portion 18a (tip surface T1) of the main body 18. In this case, when the tip electrode 20 is worn with the generation of the plasma P, a new tip electrode 20 may be attached to the main body 18. Therefore, the main body 18 can be reused. Therefore, the running cost of the plasma torch 10 can be reduced.
 具体的には、図5に示されるように、本体18の下端部18aに形成された雌ねじ部18cと、先端電極20に設けられた雄ねじ部20aとが螺合可能に構成されていてもよい。また、図6に示されるように、本体18の下端部18aに形成された雄ねじ部18dと、先端電極20に設けられた雌ねじ部20bとが螺合可能に構成されていてもよい。これらの場合、先端電極20の交換を極めて簡便に行うことが可能となる。特に、図6に示されるように、先端電極20側が雌ねじ部20bを有する場合、先端電極20が大径化するので、先端電極20の高強度化が図られる。 Specifically, as shown in FIG. 5, the internal thread portion 18 c formed on the lower end portion 18 a of the main body 18 and the external thread portion 20 a provided on the tip electrode 20 may be configured to be screwable. . Further, as shown in FIG. 6, the male screw portion 18 d formed on the lower end portion 18 a of the main body 18 and the female screw portion 20 b provided on the tip electrode 20 may be configured to be screwable. In these cases, the tip electrode 20 can be replaced very simply. In particular, as shown in FIG. 6, when the tip electrode 20 side has a female screw portion 20b, the tip electrode 20 has a large diameter, so that the tip electrode 20 can be increased in strength.
 図7に示されるように、本体18は、その軸方向(長手方向)に沿って延びる外管部18Aと、外管部18A内に挿通された中心部18Bとを有していてもよい。外管部18Aは、中心部18Bとは別体である。外管部18Aの外周面には、絶縁被覆材22が全体的に設けられている。外管部18Aの内径は、中心部18Bの外径よりも大きい。そのため、外管部18Aと中心部18Bとの間には、本体18の軸方向(長手方向)に延びる環状の貫通孔H3が設けられている。すなわち、貫通孔H3は、中心部18Bを取り囲んでいる。貫通孔H3は、動作ガス源16に接続されており、動作ガス源16から動作ガスが供給される。外管部18Aの内部及び中心部18Bの内部にはそれぞれ、冷却液が流通する流路FA,FBが設けられている。中心部18Bの下端部18aには、雌ねじ部18cが形成されている。雌ねじ部18cは、先端電極20に設けられた雄ねじ部20aと螺合可能に構成されている。そのため、先端電極20は、中心部18Bに対して着脱可能である。 7, the main body 18 may have an outer tube portion 18A extending along the axial direction (longitudinal direction) and a center portion 18B inserted into the outer tube portion 18A. The outer tube portion 18A is separate from the center portion 18B. On the outer peripheral surface of the outer tube portion 18A, an insulating coating material 22 is provided as a whole. The inner diameter of the outer tube portion 18A is larger than the outer diameter of the center portion 18B. Therefore, an annular through hole H3 extending in the axial direction (longitudinal direction) of the main body 18 is provided between the outer tube portion 18A and the center portion 18B. That is, the through hole H3 surrounds the central portion 18B. The through hole H3 is connected to the operating gas source 16, and the operating gas is supplied from the operating gas source 16. Flow paths FA and FB through which a coolant flows are provided inside the outer pipe portion 18A and the center portion 18B, respectively. An internal thread portion 18c is formed at the lower end portion 18a of the center portion 18B. The female screw portion 18 c is configured to be screwable with a male screw portion 20 a provided on the tip electrode 20. Therefore, the tip electrode 20 can be attached to and detached from the center portion 18B.
 図7に示されるプラズマトーチ10の場合、プラズマトーチ10(先端電極20)と溶湯Mとの間にプラズマPが生じた際に、先端電極20の周縁が特に熱を受ける。そのため、先端電極20のうち熱を受ける領域(受熱部)が比較的広くなるので、熱が分散しやすくなる。従って、先端電極20の先端面T2における最高温度が低くなると共に、先端電極20の先端面T2における温度分布がなだらかとなる。その結果、先端電極20の発熱に伴う損耗がいっそう抑制されるので、プラズマトーチ10のいっそうの長寿命化を図ることが可能となる。 In the case of the plasma torch 10 shown in FIG. 7, when the plasma P is generated between the plasma torch 10 (tip electrode 20) and the molten metal M, the periphery of the tip electrode 20 is particularly heated. For this reason, the heat receiving region (heat receiving portion) of the tip electrode 20 is relatively wide, so that heat is easily dispersed. Accordingly, the maximum temperature on the tip surface T2 of the tip electrode 20 is lowered, and the temperature distribution on the tip surface T2 of the tip electrode 20 is gentle. As a result, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
 図8に示されるように、本体18は、その軸方向(長手方向)に沿って延びる外管部18Aと、外管部18A内に挿通された中心部18Bとを有しており、先端電極20は、環状の外側部20Aと、外側部の内側に配置可能な内側部20Bとを有していてもよい。 As shown in FIG. 8, the main body 18 has an outer tube portion 18A extending along the axial direction (longitudinal direction) thereof, and a center portion 18B inserted through the outer tube portion 18A. 20 may have an annular outer portion 20A and an inner portion 20B that can be disposed inside the outer portion.
 外管部18Aは、中心部18Bとは別体である。外管部18Aの外周面及び中心部18Bの外周面にはそれぞれ、絶縁被覆材22が全体的に設けられている。外管部18Aの内径は、中心部18Bの外径よりも大きい。そのため、外管部18Aと中心部18Bとの間には、本体18の軸方向(長手方向)に延びる環状の貫通孔H3が設けられている。すなわち、貫通孔H3は、中心部18Bを取り囲んでいる。貫通孔H3は、動作ガス源16に接続されており、動作ガス源16から動作ガスが供給される。外管部18Aの内部及び中心部18Bの内部にはそれぞれ、冷却液が流通する流路FA,FBが設けられている。 The outer pipe portion 18A is separate from the center portion 18B. Each of the outer peripheral surface of the outer tube portion 18A and the outer peripheral surface of the center portion 18B is provided with an insulating coating material 22 as a whole. The inner diameter of the outer tube portion 18A is larger than the outer diameter of the center portion 18B. Therefore, an annular through hole H3 extending in the axial direction (longitudinal direction) of the main body 18 is provided between the outer tube portion 18A and the center portion 18B. That is, the through hole H3 surrounds the central portion 18B. The through hole H3 is connected to the operating gas source 16, and the operating gas is supplied from the operating gas source 16. Flow paths FA and FB through which a coolant flows are provided inside the outer pipe portion 18A and the center portion 18B, respectively.
 外側部20Aの内径は、内側部20Bの外径よりも大きい。外側部20Aの外周面には、雄ねじ部20aが設けられている。外側部20Aの雄ねじ部20aは、外管部18Aの下端部18aに設けられた雌ねじ部18cと螺合可能に構成されている。そのため、外側部20Aは、外管部18Aに対して着脱可能である。内側部20Bの外周面には、雄ねじ部20aが設けられている。内側部20Bの雄ねじ部20aは、中心部18Bの下端部18aに設けられて雌ねじ部18cと螺合可能に構成されている。そのため、内側部20Bは、中心部18Bに対して着脱可能である。外側部20A及び内側部20Bがそれぞれ外管部18A及び中心部18Bに対して取り付けられた状態において、外側部20Aと内側部20Bとの間には、先端電極20の軸方向に延びる環状の貫通孔H4が設けられる。貫通孔H4は、貫通孔H3と連通しており、貫通孔H3を通じて動作ガスが流通する。 The inner diameter of the outer portion 20A is larger than the outer diameter of the inner portion 20B. A male screw portion 20a is provided on the outer peripheral surface of the outer portion 20A. The external thread part 20A of the outer side part 20A is configured to be screwable with an internal thread part 18c provided at the lower end part 18a of the outer pipe part 18A. Therefore, the outer portion 20A can be attached to and detached from the outer tube portion 18A. A male screw portion 20a is provided on the outer peripheral surface of the inner portion 20B. The male screw portion 20a of the inner portion 20B is provided at the lower end portion 18a of the center portion 18B and is configured to be screwable with the female screw portion 18c. Therefore, the inner side part 20B is detachable with respect to the center part 18B. In a state where the outer portion 20A and the inner portion 20B are attached to the outer tube portion 18A and the center portion 18B, respectively, an annular penetration extending in the axial direction of the tip electrode 20 is provided between the outer portion 20A and the inner portion 20B. A hole H4 is provided. The through hole H4 communicates with the through hole H3, and the working gas flows through the through hole H3.
 図8に示されるプラズマトーチ10の場合、プラズマトーチ10(先端電極20)と溶湯Mとの間にプラズマPが生じた際に、先端電極20のうち貫通孔H4近傍が特に熱を受ける。そのため、先端電極20のうち熱を受ける領域(受熱部)が比較的広くなるので、熱が分散しやすくなる。従って、先端電極20の先端面T2における最高温度が低くなると共に、先端電極20の先端面T2における温度分布がなだらかとなる。その結果、先端電極20の発熱に伴う損耗がいっそう抑制されるので、プラズマトーチ10のいっそうの長寿命化を図ることが可能となる。 In the case of the plasma torch 10 shown in FIG. 8, when the plasma P is generated between the plasma torch 10 (tip electrode 20) and the molten metal M, the vicinity of the through hole H4 in the tip electrode 20 is particularly heated. For this reason, the heat receiving region (heat receiving portion) of the tip electrode 20 is relatively wide, so that heat is easily dispersed. Accordingly, the maximum temperature on the tip surface T2 of the tip electrode 20 is lowered, and the temperature distribution on the tip surface T2 of the tip electrode 20 is gentle. As a result, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
 図8に示されるプラズマトーチ10の場合、外管部18Aの外周面及び中心部18Bの外周面にはそれぞれ、絶縁被覆材22が全体的に設けられているので、外管部18A及び外側部20Aと中心部18B及び内側部20Bとは互いに電気的に絶縁されている。そのため、外管部18A及び外側部20Aと中心部18B及び内側部20Bとを互いに異極の電源に接続することができる。これにより、外側部20Aと内側部20Bとの間で放電しプラズマPが発生する。この状態で電源の出力を大きくしていくことにより、外側部20Aと内側部20Bとの間で生じているプラズマPが成長していく。そして、成長したプラズマPが溶湯Mに到達したときに、外側部20A及び内側部20Bと、溶湯Mとを互いに異極の電源に接続することにより、プラズマトーチ10(先端電極20)と溶湯Mとの間にプラズマPを生成することができる。従って、プラズマトーチ10の先端と溶湯Mとの距離が大きい場合でも、プラズマトーチ10の先端と溶湯との間にプラズマPを安定して生じさせることが可能となる。 In the case of the plasma torch 10 shown in FIG. 8, since the insulation coating material 22 is entirely provided on the outer peripheral surface of the outer tube portion 18A and the outer peripheral surface of the center portion 18B, the outer tube portion 18A and the outer portion. 20A and the central portion 18B and the inner portion 20B are electrically insulated from each other. Therefore, the outer tube portion 18A and the outer portion 20A, and the center portion 18B and the inner portion 20B can be connected to power supplies having different polarities. As a result, discharge occurs between the outer portion 20A and the inner portion 20B, and plasma P is generated. By increasing the power output in this state, the plasma P generated between the outer portion 20A and the inner portion 20B grows. When the grown plasma P reaches the molten metal M, the plasma torch 10 (tip electrode 20) and the molten metal M are connected by connecting the outer portion 20A and the inner portion 20B and the molten metal M to different power sources. Plasma P can be generated between the two. Therefore, even when the distance between the tip of the plasma torch 10 and the molten metal M is large, it is possible to stably generate the plasma P between the tip of the plasma torch 10 and the molten metal.
 図9に示されるように、下端部18aが本体18の基端部18eに対して着脱可能に構成されていてもよい。具体的には、下端部18aに形成された雌ねじ部18fと、基端部18eに形成された雄ねじ部18gとが螺合可能に構成されている。下端部18aの外周面及び基端部18eの外周面にはそれぞれ、絶縁被覆材22が設けられている。下端部18aの先端面T1には、先端電極20が取り付けられている。この場合、本体18の下端部18aが損傷等したときには、新たな下端部18aを本体18の基端部18eに取り付ければよい。そのため、本体18の基端部18eを再利用することができる。従って、プラズマトーチ10のランニングコストを軽減することが可能となる。 As shown in FIG. 9, the lower end portion 18 a may be configured to be detachable from the base end portion 18 e of the main body 18. Specifically, the internal thread part 18f formed in the lower end part 18a and the external thread part 18g formed in the base end part 18e can be screwed together. An insulating coating material 22 is provided on each of the outer peripheral surface of the lower end portion 18a and the outer peripheral surface of the base end portion 18e. A tip electrode 20 is attached to the tip surface T1 of the lower end 18a. In this case, when the lower end 18 a of the main body 18 is damaged, a new lower end 18 a may be attached to the base end 18 e of the main body 18. Therefore, the base end portion 18e of the main body 18 can be reused. Therefore, the running cost of the plasma torch 10 can be reduced.
 図10に示されるように、プラズマトーチ10は、絶縁部材25をさらに備えていてもよい。絶縁部材25は、円環状を呈しており、先端電極20と下端部18aとの当接部のうち外部に露出している領域を覆っている。当接部には、絶縁部材25の外形に対応した凹溝が形成されている。そのため、絶縁部材25を当接部に取り付ける際には、まず、先端電極20と下端部18aとが取り外されている状態で、下端部18a側の凹溝に絶縁部材25を嵌め込む。次に、先端電極20の雄ねじ部20aを下端部18aの雌ねじ部18cに螺合する。これにより、絶縁部材25は、先端電極20及び下端部18aの凹溝内において保持される。この場合、先端電極20のうち当接部の近傍において放電が生ずることが防がれる。そのため、下端部18aが過剰に加熱され変形等してしまうことを抑制することができる。 As shown in FIG. 10, the plasma torch 10 may further include an insulating member 25. The insulating member 25 has an annular shape and covers a region exposed to the outside in the contact portion between the tip electrode 20 and the lower end portion 18a. A concave groove corresponding to the outer shape of the insulating member 25 is formed in the contact portion. Therefore, when attaching the insulating member 25 to the contact portion, first, the insulating member 25 is fitted into the concave groove on the lower end portion 18a side with the tip electrode 20 and the lower end portion 18a removed. Next, the male screw portion 20a of the tip electrode 20 is screwed into the female screw portion 18c of the lower end portion 18a. Thereby, the insulating member 25 is held in the recessed grooves of the tip electrode 20 and the lower end portion 18a. In this case, it is possible to prevent discharge from occurring in the vicinity of the contact portion of the tip electrode 20. Therefore, it is possible to prevent the lower end portion 18a from being excessively heated and deformed.
 図11に示されるように、下端部18aには、下端に向かうにつれて拡径する傾斜面(先端面T1)を有する凹部が設けられていてもよい。傾斜面は、例えば円錐面であってもよい。先端電極20には、傾斜面(先端面T1)に対応する外周面を有する凸部が設けられていてもよい。すなわち、先端電極20の凸部は、円錐状又は円錐台状を呈している。先端電極20の凸部は、下端部18aの凹部に対して嵌合可能に構成されていてもよく、下端部18aの凹部に対して着脱可能に構成されていてもよい。図11においては、凸部の外周面に形成された雄ねじ部20aと、凹部の内周面に形成された雌ねじ部18cとが螺合可能に構成されている。この場合、先端電極20と下端部18a(本体18)との接触面積が大きくなる。そのため、プラズマ生成のためにプラズマトーチ10に通電し、本体18と先端電極20との間に電流が流れる際に、本体18と先端電極20との当接部においてジュール熱が発生し難くなる。従って、先端電極20の発熱に伴う損耗がより抑制されるので、プラズマトーチ10の長寿命化をより図ることが可能となる。 As shown in FIG. 11, the lower end portion 18a may be provided with a recess having an inclined surface (tip surface T1) whose diameter increases toward the lower end. The inclined surface may be, for example, a conical surface. The tip electrode 20 may be provided with a convex portion having an outer peripheral surface corresponding to the inclined surface (tip surface T1). That is, the convex portion of the tip electrode 20 has a conical shape or a truncated cone shape. The convex portion of the tip electrode 20 may be configured to be fitted to the concave portion of the lower end portion 18a, or may be configured to be detachable from the concave portion of the lower end portion 18a. In FIG. 11, the external thread part 20a formed in the outer peripheral surface of a convex part and the internal thread part 18c formed in the internal peripheral surface of a recessed part are comprised so that screwing is possible. In this case, the contact area between the tip electrode 20 and the lower end 18a (main body 18) is increased. Therefore, when the plasma torch 10 is energized for plasma generation and current flows between the main body 18 and the tip electrode 20, Joule heat is hardly generated at the contact portion between the main body 18 and the tip electrode 20. Therefore, since wear due to heat generation of the tip electrode 20 is further suppressed, the life of the plasma torch 10 can be further extended.
 1…プラズマ発生装置(溶湯加熱装置)、10,50…プラズマトーチ、12…トーチ保持具、14…昇降機、16…動作ガス源、18…本体、18A…外管部、18B…中心部、18a…下端部(先端部)、18b…基端部、18c…雌ねじ部、18d…雄ねじ部、18e…基端部、18f…雌ねじ部、18g…雄ねじ部、20…先端電極、20A…外側部、20B…内側部、20a…雄ねじ部、20b…雌ねじ部、22…絶縁被覆材、24…配管、25…絶縁部材、26…バルブ、100…連続鋳造装置、101…取鍋、102…タンディッシュ(溶湯加熱装置)、103…鋳型、104…鋳片支持ロール、101a…ノズル、102a…貯留槽、102b…蓋、102c…開口部、102d…貫通孔、102e…ノズル、F,FA,FB…流路、H1~H4…貫通孔、M…溶湯(溶鋼)、P,P1…プラズマ、S…鋳片、T1,T2…先端面。 DESCRIPTION OF SYMBOLS 1 ... Plasma generating apparatus (molten metal heating apparatus) 10,50 ... Plasma torch, 12 ... Torch holder, 14 ... Elevator, 16 ... Operating gas source, 18 ... Main body, 18A ... Outer pipe part, 18B ... Center part, 18a ... lower end (tip), 18b ... proximal end, 18c ... female screw, 18d ... male screw, 18e ... base end, 18f ... female screw, 18g ... male screw, 20 ... tip electrode, 20A ... outer part, 20B ... Inner part, 20a ... Male thread part, 20b ... Female thread part, 22 ... Insulation coating material, 24 ... Piping, 25 ... Insulating member, 26 ... Valve, 100 ... Continuous casting apparatus, 101 ... Ladle, 102 ... Tundish ( (Molten metal heating device), 103 ... mold, 104 ... slab support roll, 101a ... nozzle, 102a ... storage tank, 102b ... lid, 102c ... opening, 102d ... through hole, 102e ... nozzle, F, FA, B ... flow path, H1 ~ H4 ... through hole, M ... melt (molten steel), P, P1 ... plasma, S ... slab, T1, T2 ... tip surface.

Claims (16)

  1.  溶湯を貯留する貯留槽と、上方に向けて開放された前記貯留槽の開口部を覆う蓋とを備える容器内で、溶湯との間でプラズマを発生させるプラズマトーチであって、
     プラズマによる溶湯の加熱処理時に溶湯に向かう先端部が前記容器内に位置するように、前記蓋に設けられた貫通孔内に挿通可能に構成された金属製の本体と、
     前記本体の前記先端部に取り付けられた黒鉛製の先端電極とを備える、プラズマトーチ。
    A plasma torch for generating plasma between the molten metal in a container including a storage tank for storing the molten metal and a lid covering the opening of the storage tank opened upward.
    A metal main body configured to be able to be inserted into a through-hole provided in the lid, so that a tip portion directed to the molten metal at the time of the heat treatment of the molten metal by plasma is located in the container;
    A plasma torch comprising a graphite tip electrode attached to the tip of the main body.
  2.  前記本体の外周面を覆うように設けられた絶縁被覆材をさらに備える、請求項1に記載のプラズマトーチ。 The plasma torch according to claim 1, further comprising an insulating coating provided so as to cover an outer peripheral surface of the main body.
  3.  金属製の本体と、
     前記本体の先端部に取り付けられた黒鉛製の先端電極と、
     前記本体の外周面を覆うように設けられた絶縁被覆材とを備える、プラズマトーチ。
    A metal body,
    A graphite tip electrode attached to the tip of the body;
    A plasma torch comprising an insulating coating provided to cover the outer peripheral surface of the main body.
  4.  前記先端電極は、前記先端部に対して着脱可能に構成されている、請求項1~3のいずれか一項に記載のプラズマトーチ。 The plasma torch according to any one of claims 1 to 3, wherein the tip electrode is configured to be detachable from the tip portion.
  5.  前記先端電極は、前記先端部に対して螺合可能に構成されている、請求項4に記載のプラズマトーチ。 The plasma torch according to claim 4, wherein the tip electrode is configured to be screwable with the tip portion.
  6.  前記先端部には、先端に向かうにつれて拡径する傾斜面を有する凹部が設けられており、
     前記先端電極には、前記傾斜面に対応する外周面を有する凸部が設けられており、
     前記先端電極の前記凸部は、前記先端部の前記凹部に嵌合可能に構成されている、請求項4又は5に記載のプラズマトーチ。
    The tip is provided with a recess having an inclined surface that increases in diameter toward the tip,
    The tip electrode is provided with a convex portion having an outer peripheral surface corresponding to the inclined surface,
    The plasma torch according to claim 4 or 5, wherein the convex portion of the tip electrode is configured to be fitted into the concave portion of the tip portion.
  7.  前記本体の前記先端部は、前記本体の基端部に対して着脱可能に構成されている、請求項1~6のいずれか一項に記載のプラズマトーチ。 The plasma torch according to any one of claims 1 to 6, wherein the distal end portion of the main body is configured to be detachable from a proximal end portion of the main body.
  8.  前記本体内には冷却液の流路が設けられている、請求項1~7のいずれか一項に記載のプラズマトーチ。 The plasma torch according to any one of claims 1 to 7, wherein a cooling fluid flow path is provided in the main body.
  9.  プラズマを発生させるための動作ガスの流路として機能する貫通孔が長手方向に沿って延びるように設けられている、請求項1~8のいずれか一項に記載のプラズマトーチ。 The plasma torch according to any one of claims 1 to 8, wherein a through hole functioning as a flow path of a working gas for generating plasma extends along the longitudinal direction.
  10.  前記本体は、長手方向に沿って延びる外管部と、前記外管部内に挿通された中心部とを有し、
     前記先端電極は前記中心部の先端部に取り付けられており、
     前記外管部と前記中心部との間に構成される環状の間隙により前記貫通孔が構成されている、請求項9に記載のプラズマトーチ。
    The main body has an outer tube portion extending along a longitudinal direction, and a central portion inserted into the outer tube portion,
    The tip electrode is attached to the tip of the central portion;
    The plasma torch according to claim 9, wherein the through-hole is configured by an annular gap configured between the outer tube portion and the center portion.
  11.  前記本体は、長手方向に沿って延びる外管部と、前記外管部内に挿通された中心部とを有し、
     前記先端電極は、環状の外側部と、前記外側部の内側に配置可能な内側部とを有し、
     前記内側部は前記中心部の先端部に取り付けられており、
     前記外側部は前記外管部に取り付けられており、
     前記外管部及び前記外側部と前記中心部及び前記内側部との間に構成される環状の間隙により前記貫通孔が構成されている、請求項9に記載のプラズマトーチ。
    The main body has an outer tube portion extending along a longitudinal direction, and a central portion inserted into the outer tube portion,
    The tip electrode has an annular outer portion and an inner portion that can be disposed inside the outer portion,
    The inner part is attached to the tip of the central part;
    The outer portion is attached to the outer tube portion;
    The plasma torch according to claim 9, wherein the through hole is configured by an annular gap formed between the outer tube portion and the outer portion, and the center portion and the inner portion.
  12.  前記外管部及び前記外側部と前記中心部及び前記内側部とは、互いに電気的に絶縁されている、請求項11に記載のプラズマトーチ。 The plasma torch according to claim 11, wherein the outer tube portion, the outer portion, the center portion, and the inner portion are electrically insulated from each other.
  13.  前記先端電極と前記先端部との当接部のうち外部に露出している領域を覆う環状の絶縁部材をさらに備える、請求項1~12のいずれか一項に記載のプラズマトーチ。 The plasma torch according to any one of claims 1 to 12, further comprising an annular insulating member that covers a region exposed to the outside of a contact portion between the tip electrode and the tip portion.
  14.  容器内の溶湯をプラズマにより加熱処理する時に、溶湯に向かう先端部が前記容器内に位置する金属製の本体を有し、前記容器の蓋に設けられた貫通孔内に挿通可能に前記本体が構成されているプラズマトーチ用の、黒鉛製の先端電極であって、
     前記本体の前記先端部に対して着脱可能に構成された、先端電極。
    When the molten metal in the container is heat-treated with plasma, the tip part toward the molten metal has a metal main body located in the container, and the main body is capable of being inserted into a through hole provided in the lid of the container. A tip electrode made of graphite for a plasma torch,
    A tip electrode configured to be detachable from the tip portion of the main body.
  15.  外周面を覆うように絶縁被覆材が設けられた金属製の本体の先端部に対して着脱可能に構成された、プラズマトーチ用の黒鉛製の先端電極。 A graphite tip electrode for a plasma torch configured to be detachable from the tip of a metal main body provided with an insulating coating so as to cover the outer peripheral surface.
  16.  溶湯を貯留する貯留槽と、上方に向けて開放された前記貯留槽の開口部を覆う蓋とを備える容器と、
     前記容器内で溶湯との間でプラズマを発生させるプラズマトーチとを備え、
     前記プラズマトーチは、
      プラズマによる溶湯の加熱処理時に溶湯に向かう先端部が前記容器内に位置するように、前記蓋に設けられた貫通孔内に挿通可能に構成された金属製の本体と、
      前記本体の前記先端部に取り付けられた黒鉛製の先端電極とを有する、溶湯加熱装置。
    A container comprising a storage tank for storing molten metal, and a lid that covers the opening of the storage tank opened upward;
    A plasma torch for generating plasma between the molten metal in the container,
    The plasma torch is
    A metal main body configured to be able to be inserted into a through-hole provided in the lid, so that a tip portion directed to the molten metal at the time of the heat treatment of the molten metal by plasma is located in the container;
    A molten metal heating device having a graphite tip electrode attached to the tip of the main body.
PCT/JP2018/005289 2017-03-07 2018-02-15 Plasma torch, plasma torch forward end electrode, and molten metal heating device WO2018163747A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197013087A KR102212239B1 (en) 2017-03-07 2018-02-15 Plasma torch, plasma torch tip electrode, and molten metal heating device
CN201880004248.1A CN109952815A (en) 2017-03-07 2018-02-15 Plasmatorch, the apex electrode of plasmatorch and melt heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042968A JP6800780B2 (en) 2017-03-07 2017-03-07 Plasma torch, molten metal heating device and molten metal heating method
JP2017-042968 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163747A1 true WO2018163747A1 (en) 2018-09-13

Family

ID=63447775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005289 WO2018163747A1 (en) 2017-03-07 2018-02-15 Plasma torch, plasma torch forward end electrode, and molten metal heating device

Country Status (4)

Country Link
JP (1) JP6800780B2 (en)
KR (1) KR102212239B1 (en)
CN (1) CN109952815A (en)
WO (1) WO2018163747A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140636A (en) * 1974-10-02 1976-04-05 Roken Kogyo Kk PURAZUMAJETSUTOYOKAISOCHI
JPS51135859A (en) * 1975-04-17 1976-11-25 Gen Atomic Co Orifice tip end for plasma arc welding or cutting torch
JPS55107877A (en) * 1979-02-15 1980-08-19 Nat Res Inst Metals Electric arc furnace for directly melting halffreduced iron powder or reduced iron powder
JPS59117091A (en) * 1982-09-13 1984-07-06 ア−ク・テクノロジイズ・システムズ・リミテツド Electrode for arc furnace
JPH07220894A (en) * 1994-02-03 1995-08-18 Nippon Steel Corp Cooling structure for plasma torch
JPH08185972A (en) * 1994-12-27 1996-07-16 Nippon Steel Corp Plasma heating method of fused metal and device therefor
JPH1027687A (en) * 1996-07-09 1998-01-27 Kobe Steel Ltd Plasma melting furnace
JP2015076395A (en) * 2013-10-10 2015-04-20 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Plasma torch nozzle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202352A1 (en) * 1985-05-22 1986-11-26 C. CONRADTY NÜRNBERG GmbH & Co. KG Plasma torch
CN1011376B (en) * 1985-05-31 1991-01-23 曼内斯曼股份公司 Directional electric arc heating device
JP3041568B2 (en) * 1994-01-05 2000-05-15 新日本製鐵株式会社 Power control method of transfer type arc plasma
US5798497A (en) * 1995-02-02 1998-08-25 Battelle Memorial Institute Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery
JPH0915663A (en) 1995-06-28 1997-01-17 Hitachi Cable Ltd Optical fiber amplifier
JPH11291023A (en) * 1998-04-10 1999-10-26 Nippon Steel Corp Plasma torch for heating molten steel in tundish
FR2838117B1 (en) * 2002-04-08 2005-02-04 Commissariat Energie Atomique DOUBLE MEDIUM HEATED VITRIFICATION FURNACE AND METHOD
CN1614308A (en) * 2003-11-07 2005-05-11 中国科学院力学研究所 AC plasma refuse cracking apparatus
CA2652428A1 (en) * 2006-05-18 2007-11-29 Valerian Pershin Highly ordered structure pyrolitic graphite or carbon-carbon composite cathodes for plasma generation in carbon containing gases
CN101648200A (en) * 2009-07-15 2010-02-17 徐州市润博等离子体环保设备有限公司 Method and device for heating, melting and cracking waste plasma arc in auxiliary mode
CN201663725U (en) * 2010-04-15 2010-12-01 新郑市东升炭素有限公司 Hollow female and male buckle carbon graphite electrode
JP3169241U (en) * 2011-05-11 2011-07-21 株式会社神戸製鋼所 Welding torch
KR101664866B1 (en) * 2015-08-12 2016-10-13 한국수력원자력 주식회사 Plasma melter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140636A (en) * 1974-10-02 1976-04-05 Roken Kogyo Kk PURAZUMAJETSUTOYOKAISOCHI
JPS51135859A (en) * 1975-04-17 1976-11-25 Gen Atomic Co Orifice tip end for plasma arc welding or cutting torch
JPS55107877A (en) * 1979-02-15 1980-08-19 Nat Res Inst Metals Electric arc furnace for directly melting halffreduced iron powder or reduced iron powder
JPS59117091A (en) * 1982-09-13 1984-07-06 ア−ク・テクノロジイズ・システムズ・リミテツド Electrode for arc furnace
JPH07220894A (en) * 1994-02-03 1995-08-18 Nippon Steel Corp Cooling structure for plasma torch
JPH08185972A (en) * 1994-12-27 1996-07-16 Nippon Steel Corp Plasma heating method of fused metal and device therefor
JPH1027687A (en) * 1996-07-09 1998-01-27 Kobe Steel Ltd Plasma melting furnace
JP2015076395A (en) * 2013-10-10 2015-04-20 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Plasma torch nozzle

Also Published As

Publication number Publication date
JP6800780B2 (en) 2020-12-16
CN109952815A (en) 2019-06-28
JP2018147786A (en) 2018-09-20
KR20190061059A (en) 2019-06-04
KR102212239B1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US9743504B2 (en) Cooling pipes, electrode holders and electrode for an arc plasma torch
US5103072A (en) Submersible plasma torch
WO2018163747A1 (en) Plasma torch, plasma torch forward end electrode, and molten metal heating device
US2600823A (en) Hot top electrode tip
JPH06504157A (en) Plasma torch for melting and maintaining temperature of materials to be processed in the container
JPS60188789A (en) Method of dissolving material and direct current arc furnace
US5963579A (en) Method of heating a molten metal in a continuous casting tundish using a plasma torch, and tundish for its implementation
JP5764015B2 (en) Supply device for supplying molten metal to die casting machine
JPS5841939B2 (en) Heating device and heating method
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
WO1997016051A1 (en) Electric heating element
JPH1128554A (en) Plasma torch and molten steel heating tundish utilizing the same
JP6528992B2 (en) Casting equipment
JP2007163031A (en) Induction heating melting furnace
JP2019184191A (en) Tapping method in induction heating melting device and induction heating melting device
CN214350187U (en) Welding porcelain nozzle structure
JP2002248576A (en) Cooling structure of plasma torch
JPH05114479A (en) Ring for jetting electrode cooling water in electric furnace for steel mill
US7028868B2 (en) Refractory nozzle
JPH09190881A (en) Cooling method and device for graphite electrode for use in refining electric arc
KR910003358Y1 (en) Device for cooling electrode of furnace
CZ301430B6 (en) Device for preventing slag from flowing along when tapping a molten metal out of a metallurgical vessel
JP2018144081A (en) Plasma torch and plasma generation method
JP2018147787A (en) Plasma generation device and plasma torch
JPH07263138A (en) Cooling device for graphite electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197013087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763681

Country of ref document: EP

Kind code of ref document: A1