WO2018163416A1 - Hydrogen energy utilization system and method for operating same - Google Patents

Hydrogen energy utilization system and method for operating same Download PDF

Info

Publication number
WO2018163416A1
WO2018163416A1 PCT/JP2017/009753 JP2017009753W WO2018163416A1 WO 2018163416 A1 WO2018163416 A1 WO 2018163416A1 JP 2017009753 W JP2017009753 W JP 2017009753W WO 2018163416 A1 WO2018163416 A1 WO 2018163416A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
period
fuel cell
energy utilization
unit
Prior art date
Application number
PCT/JP2017/009753
Other languages
French (fr)
Japanese (ja)
Inventor
敏幸 井貝
坂上 英一
吉野 正人
斉二 藤原
量自 友清
正洋 辻
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/009753 priority Critical patent/WO2018163416A1/en
Publication of WO2018163416A1 publication Critical patent/WO2018163416A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This embodiment relates to a hydrogen energy utilization system and its operation method.
  • renewable energy such as sunlight, wind power, and geothermal heat is used for power generation as energy that does not depend on fossil fuels.
  • renewable energy has been actively introduced in Europe.
  • in Scotland a plan to cover 100% of renewable electricity by 2020 has been formulated.
  • the problem to be solved by the present invention is to provide a hydrogen energy utilization system capable of reducing the amount of fossil fuel used and reducing CO 2 and an operation method thereof.
  • the hydrogen energy utilization system includes an electrolysis unit that electrolyzes water to generate hydrogen gas and oxygen gas, a hydrogen storage device that stores the hydrogen gas, and a hydrogen gas stored in the hydrogen storage device. And a control device for controlling the power generation of the fuel cell unit according to heat demand.
  • the effect of the present invention can reduce the amount of fossil fuel used and reduce CO 2 .
  • the hydrogen energy utilization system stores hydrogen generated using renewable energy when heat demand is low, and generates power for the fuel cell unit using hydrogen stored when heat demand is high In this way, the amount of fossil fuel such as natural gas used during periods of high heat demand is reduced to reduce CO 2 . More detailed description will be given below.
  • FIG. 1 is a diagram showing a configuration of a hydrogen energy utilization system 1 according to the first embodiment.
  • a hydrogen energy utilization system 1 according to the present embodiment is a system that performs power generation using hydrogen gas according to heat demand, and includes a power generation device 100, an electrolysis system 200, a hydrogen storage
  • the apparatus 300, the energy supply system 400, and the control apparatus 500 are provided and comprised.
  • the power generation device 100 generates power using renewable energy.
  • PV solar power generation device
  • the electrolysis system 200 is electrically connected to the power generation device 100 in this embodiment. As a result, the electrolysis system 200 electrolyzes water or water vapor using the power supplied from the power generation apparatus 100 to generate hydrogen gas and oxygen gas.
  • the electrolysis system 200 according to the present embodiment is supplied with electric power from the power generation apparatus 100.
  • the electrolysis system 200 is not limited thereto, and the electrolysis system 200 is supplied with electric power from a commercial power system, for example. Also good.
  • the electrolysis system 200 may be supplied with power from both the power generation apparatus 100 and a commercial power system.
  • the hydrogen storage device 300 is connected to the electrolysis system 200 via a pipe and stores hydrogen gas supplied from the electrolysis system 200.
  • the hydrogen storage device 300 is constituted by a tank, for example.
  • the energy supply system 400 is connected to the hydrogen storage device 300 via a pipe, and generates power using the hydrogen gas supplied from the hydrogen storage device 300 according to the heat demand.
  • the energy supply system 400 also generates water vapor using heat generated by power generation.
  • the energy supply system 400 supplies the generated power and the generated water vapor to the load facility L and the like. Details of the electrolysis system 200 and the energy supply system 400 will be described later.
  • the control device 500 is, for example, a CPU and is connected to the electrolysis system 200, the hydrogen storage device 300, and the energy supply system 400, and controls the entire hydrogen energy utilization system 1. That is, the control device 500 controls at least one of the electrolysis system 200 and the energy supply system 400 according to the heat demand.
  • FIG. 2 is a diagram showing a detailed configuration of the electrolysis system 200.
  • the detailed configuration of the electrolysis system 200 will be described with reference to FIG.
  • the electrolysis system 200 according to this embodiment includes a water vapor generator 202, a heat exchanger 204, an electrolysis unit 206, and a hydrogen separator 208.
  • the steam generator 202 is connected to the heat exchanger 204 through a pipe, and supplies the steam generated by heating the raw water to the heat exchanger 204.
  • the heat exchanger 204 is connected to the steam generator 202, the electrolysis unit 206, and the hydrogen separator 208 via a pipe.
  • the heat exchanger 204 is connected to the hydrogen separator 208 via a pipe. That is, the heat exchanger 204 performs heat exchange between the steam supplied from the steam generator 202 to the electrolysis unit 206 and the hydrogen gas supplied from the electrolysis unit 206 to the hydrogen separator 208.
  • the water vapor supplied from the water vapor generator 202 has a higher temperature and is supplied to the electrolysis unit 206.
  • the hydrogen gas supplied from the electrolysis unit 206 has a lower temperature and is supplied to the hydrogen separator 208.
  • the electrolysis unit 206 is connected to the heat exchanger 204 via a pipe and is electrically connected to the power generation apparatus 100.
  • the electrolysis unit 206 is, for example, a solid oxide electrolysis cell (SOEC), and electrolyzes water vapor supplied from the water vapor generator 202 using electric power supplied from the power generation apparatus 100.
  • SOEC solid oxide electrolysis cell
  • the electrolysis unit 206 decomposes water or water vapor by electrolysis in accordance with the following chemical formula 1 to generate, for example, hydrogen gas and oxygen gas pressurized to a pressure higher than atmospheric gas.
  • hydrogen gas and oxygen gas are simultaneously generated at a ratio of 2: 1. 2H 2 0 ⁇ 2H 2 +0 2 (Formula 1)
  • the electrolysis unit 206 includes, for example, a plurality of solid oxide electrolysis cells connected in series.
  • This solid oxide electrolytic cell has an electrolyte membrane as a diaphragm, an anode provided on one surface thereof, and a cathode provided on the other surface.
  • the electrolyte membrane of this embodiment is a solid oxide electrolyte membrane, it is not limited to this, For example, you may use a solid polymer electrolyte membrane etc.
  • oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side.
  • the hydrogen gas generated by the electrolysis unit 206 is supplied to the heat exchanger 204 and supplied to the hydrogen separator 208 after heat exchange with water vapor.
  • the hydrogen separator 208 is disposed between the heat exchanger 204 and the hydrogen storage device 300, and is connected to the heat exchanger 204 and the hydrogen storage device 300 via a pipe. That is, the hydrogen separator 208 separates hydrogen gas containing water vapor supplied from the heat exchanger 204 into hydrogen gas and water vapor, and supplies the hydrogen gas excluding water vapor to the hydrogen storage device 300.
  • FIG. 3 is a diagram showing a detailed configuration of the energy supply system 400, and the detailed configuration of the energy supply system 400 will be described based on FIG.
  • the energy supply system 400 according to this embodiment includes a heat exchanger 402, a steam generator 404, and a fuel cell unit 406.
  • the heat exchanger 402 is connected to the hydrogen storage device 300, the water vapor generator 404, and the fuel cell unit 406 via piping.
  • the heat exchanger 402 performs heat exchange between the water vapor supplied from the hydrogen storage device 300 and the gas discharged from the fuel cell unit 406. That is, the hydrogen gas supplied from the hydrogen storage device 300 is heated to a higher temperature by heat exchange and supplied to the fuel cell unit 406. On the other hand, the gas supplied from the fuel cell unit 406 is deprived of heat by heat exchange and becomes lower in temperature.
  • the steam generator 404 generates steam using surplus heat in the heat exchanger 402 and supplies it to the demand facility L and the like. That is, the water vapor generator 404 supplies heat generated during power generation of the fuel cell unit 406 to the outside as water vapor for heating.
  • steam is supplied to the demand facility L etc., it is not limited to this.
  • a hot water supply device may be provided instead of the steam generator 404.
  • the fuel cell unit 406 is connected to the heat exchanger 402 via a pipe.
  • the electrofuel cell unit 406 is electrically connected to the demand facility L and the like.
  • the fuel cell unit 406 is, for example, a solid oxide fuel cell (SOFC), and generates power using hydrogen gas and oxygen gas supplied from the heat exchanger 402.
  • SOFC solid oxide fuel cell
  • the electrofuel cell unit 406 may be configured by, for example, connecting a plurality of solid oxide electrolytic cells in series.
  • the solid oxide electrolytic cell uses an oxidizing gas (O 2 ) supplied to the oxygen electrode side and a reducing gas (H 2 ) supplied to the hydrogen electrode side under a high temperature condition of 600 to 1000 ° C. Generate electricity. The generated power is supplied to the demand facility L and the like.
  • the electrolysis unit 206 (FIG. 2) and the fuel cell unit 406 are described as different units.
  • the electrolysis unit 206 and the fuel cell unit 406 are a common electrolysis cell, for example, a solid oxide electrolysis cell. May be configured as a single common unit. That is, in this case, the solid oxide electrolytic cell also functions as a solid oxide fuel cell.
  • FIG. 4 is a diagram showing a simplified heat demand profile in a general household in the UK.
  • the vertical axis indicates the heat demand, and the horizontal axis indicates the month.
  • 90% of the heat demand is concentrated from October to April.
  • the average value for several years may be used for the heat demand profile shown in FIG.
  • the heat demand profile of the target year may be predicted from the demand profiles for the past several years as the heat demand profile.
  • the control device 500 controls the operation of the fuel cell unit 406 in accordance with, for example, such a heat demand. Specifically, the control device 500 divides the first period, which is a cycle of climate change, into a second period and a third period in which the heat demand is less than the second period, and the electrolysis unit 206 and the fuel cell unit. The operation ratio of 406 is changed between the second period and the third period.
  • the control apparatus 500 acquires the information which shows a 2nd and 3rd period using the information of the past heat demand in the 1st period.
  • control device 500 controls the electrolysis unit 206 to generate hydrogen gas corresponding to the heat demand in the second period in the third period.
  • the control device 500 performs control for causing the fuel cell unit 406 to generate power in the third period.
  • the steam generator 202 uses the excess heat in the heat exchanger 204 to generate steam and supply it to the demand facility L and the like.
  • the control device 500 controls the operation of the fuel cell in accordance with the heat demand for the steam generator 202.
  • the control device 500 controls the operation of the fuel cell unit 406 according to the heat demand.
  • heat energy can be supplied in accordance with the heat demand, and the amount of fossil fuel such as natural gas used during periods of high heat demand can be reduced, thereby reducing CO 2 .
  • the hydrogen energy utilization system 1 performs electrolysis by the electrolysis unit 206 and generates power by the fuel cell unit 406.
  • the hydrogen energy utilization system 1 according to the second embodiment It differs by performing electrolysis and power generation by a plurality of common units 602A, 602B. The points different from the first embodiment will be described below.
  • FIG. 5 is a diagram showing a configuration of the hydrogen energy utilization system 1 according to the second embodiment.
  • the same number is attached
  • the hydrogen energy utilization system 1 according to the second embodiment includes a common system 600. That is, the common system 600 is composed of a plurality of common units 602A and 602B. As described above, each of the common unit 602A and the common unit 602B includes an electrolytic unit and a fuel cell unit that use a common electrolytic cell, for example, a solid oxide electrolytic cell.
  • each of the common unit 602A and the common unit 602B the operation for performing electrolysis and the operation for generating power are exclusively switched.
  • the electrolysis unit 206 and the fuel cell unit 406 are configured by a common electrolysis cell, the common system 600 is simplified and the size can be reduced.
  • the water vapor generator 202 of the hydrogen energy utilization system 1 can use geothermal heat and generates water vapor using geothermal heat. For this reason, the electric power for generating water vapor
  • FIG. 1
  • natural gas is supplied to the demand facility L via the gas pipe GP.
  • natural gas supply networks are in place, and piping networks that supply natural gas to many facilities have been established.
  • a gas storage device 604 for natural gas can be connected to the hydrogen storage device 300.
  • the hydrogen gas can be stored in the gas storage device 604. It is also possible to supply hydrogen gas via a natural gas supply network.
  • FIG. 6 is a diagram illustrating an operation example of the common unit 1 and the common unit 2 in the common system 600.
  • indicates electrolysis, that is, an operation for generating hydrogen gas, and ⁇ indicates an operation for generating power.
  • the common unit 602A according to the present embodiment corresponds to the common unit 1
  • the common unit 602B corresponds to the common unit 2.
  • the control device 500 differs from the other common unit 602B to at least one common unit 602A in the common system 600 in April and September, which are switching periods. Let's drive. Thereby, both the operation of electrolysis and the operation of power generation can be performed, and it becomes possible to cope with climate change.
  • the control device 500 is different from the other common unit 602B in at least one common unit 602A in the common system 600 in the operation switching period of the common system 600. It was decided to drive. This makes it possible to supply thermal energy in response to climate change, reduce the amount of fossil fuel used such as natural gas during periods of high heat demand, and reduce CO 2 .
  • FIG. 7 is a diagram showing a configuration of the hydrogen energy utilization system 1 according to the third embodiment.
  • the same number is attached
  • the hydrogen energy utilization system 1 according to the third embodiment is also connected to a hydrogen station 700 via a pipe.
  • the hydrogen station 700 is a facility for supplying hydrogen to a fuel cell vehicle, for example, and has a tank for storing hydrogen gas.
  • the control device 500 controls the electrolysis system 200 to store, for example, hydrogen gas for winter season with higher heat demand in the summer season when there is less heat demand.
  • the controller 500 generates the electrolysis unit 400 in the hydrogen station 700 when the hydrogen gas generated in the electrolysis system 200 exceeds the winter demand, that is, a predetermined value in summer when the heat demand is low. Control to supply hydrogen gas.
  • the winter season according to the present embodiment corresponds to the second period
  • the summer season corresponds to the third period.
  • the hydrogen energy utilization system 1 also includes the hydrogen station 700 when the hydrogen gas generated by the electrolysis system 200 in the season when the heat demand is low exceeds the predetermined value. It was decided to supply. As a result, hydrogen can be supplied via the hydrogen gas station, and thermal energy can be supplied in response to climate change. In addition, it is possible to reduce the amount of CO 2 by reducing the amount of fossil fuel used in the winter when there is a great demand for heat.

Abstract

The hydrogen energy utilization system according to the present embodiment is provided with an electrolysis unit for electrolyzing water and generating hydrogen gas and oxygen gas, a hydrogen storage device for storing the hydrogen gas, a fuel cell unit for generating power using the hydrogen gas stored in the hydrogen storage device, and a control device for controlling the operation of the fuel cell unit in accordance with the heat demand.

Description

水素エネルギー利用システム及びその運転方法Hydrogen energy utilization system and operation method thereof
 本実施形態は、水素エネルギー利用システム及びその運転方法に関する。 This embodiment relates to a hydrogen energy utilization system and its operation method.
 太陽光、風力、及び地熱などに代表される再生可能エネルギーが、化石燃料によらないエネルギーとして発電に利用されている。例えば欧州では再生可能エネルギーの導入が積極的に行われており、特に英国スコットランドにおいては2020年までに国内電力需要を100%再生可能エネルギーによって賄う計画が策定されている。 Renewable energy such as sunlight, wind power, and geothermal heat is used for power generation as energy that does not depend on fossil fuels. For example, renewable energy has been actively introduced in Europe. In particular, in Scotland, a plan to cover 100% of renewable electricity by 2020 has been formulated.
 また、英国などでは、熱エネルギーのグリーン(Green)化にも積極的に取り組んでおり、COの削減も求められている。ところが、熱需要が冬季に集中するので、その期間における熱需要を天然ガスなどの化石燃料による暖房により補う必要があり、COの削減が困難になってしまう恐れがある。 In the UK and other countries, efforts are being made to make green heat energy, and CO 2 reduction is also required. However, since heat demand is concentrated in winter, it is necessary to supplement the heat demand during that period by heating with fossil fuel such as natural gas, which may make it difficult to reduce CO 2 .
特開2016-187281号公報JP 2016-187281 A
 本発明が解決しようとする課題は、化石燃料の使用量を低減させ、COを削減することが可能な水素エネルギー利用システム及びその運転方法を提供することである。 The problem to be solved by the present invention is to provide a hydrogen energy utilization system capable of reducing the amount of fossil fuel used and reducing CO 2 and an operation method thereof.
 本実施形態に係る水素エネルギー利用システムは、水を電気分解し、水素ガス及び酸素ガスを生成する電解ユニットと、前記水素ガスを貯蔵する水素貯蔵装置と、前記水素貯蔵装置に貯蔵された水素ガスを用いて発電する燃料電池ユニットと、前記燃料電池ユニットの発電を熱需要に応じて制御する制御装置と、を備える。 The hydrogen energy utilization system according to the present embodiment includes an electrolysis unit that electrolyzes water to generate hydrogen gas and oxygen gas, a hydrogen storage device that stores the hydrogen gas, and a hydrogen gas stored in the hydrogen storage device. And a control device for controlling the power generation of the fuel cell unit according to heat demand.
 本発明の効果は、化石燃料の使用量の低減をさせ、COを削減することができる。 The effect of the present invention can reduce the amount of fossil fuel used and reduce CO 2 .
第1実施形態に係る水素エネルギー利用システムの構成を示す図。The figure which shows the structure of the hydrogen energy utilization system which concerns on 1st Embodiment. 電気分解システムの詳細な構成を示す図。The figure which shows the detailed structure of an electrolysis system. エネルギー供給システムの詳細な構成を示す図。The figure which shows the detailed structure of an energy supply system. 英国の一般家庭における簡略化した熱需要プロファイルを示す図。The figure which shows the simplified heat demand profile in a British common household. 第2実施形態に係る水素エネルギー利用システムの構成を示す図。The figure which shows the structure of the hydrogen energy utilization system which concerns on 2nd Embodiment. 共通システム内の共通ユニットの運定例を示す図。The figure which shows the example of operation of the common unit in a common system. 第3実施形態に係る水素エネルギー利用システムの構成を示す図。The figure which shows the structure of the hydrogen energy utilization system which concerns on 3rd Embodiment.
 以下、図面を参照して、本発明の実施形態について説明する。本実施形態は、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment does not limit the present invention.
(第1実施形態)
 第1実施形態に係る水素エネルギー利用システムは、熱需要の少ない時期に再生可能エネルギーを用いて生成した水素を貯蔵し、熱需要の多い時期に貯蔵した水素を用いて燃料電池ユニットの発電を行うことで、熱需要の多い時期における天然ガスなどの化石燃料の使用量を低減させ、COの削減を図ったものである。より詳しく、以下に説明する。
(First embodiment)
The hydrogen energy utilization system according to the first embodiment stores hydrogen generated using renewable energy when heat demand is low, and generates power for the fuel cell unit using hydrogen stored when heat demand is high In this way, the amount of fossil fuel such as natural gas used during periods of high heat demand is reduced to reduce CO 2 . More detailed description will be given below.
 まず、図1に基づき第1実施形態に係る水素エネルギー利用システム1の全体構成を説明する。図1は、第1実施形態に係る水素エネルギー利用システム1の構成を示す図である。この図1に示すように、本実施形態に係る水素エネルギー利用システム1は、水素ガスを用いた発電を熱需要に応じて行うシステムであり、発電装置100と、電気分解システム200と、水素貯蔵装置300と、エネルギー供給システム400と、制御装置500とを、備えて構成されている。 First, the overall configuration of the hydrogen energy utilization system 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a hydrogen energy utilization system 1 according to the first embodiment. As shown in FIG. 1, a hydrogen energy utilization system 1 according to the present embodiment is a system that performs power generation using hydrogen gas according to heat demand, and includes a power generation device 100, an electrolysis system 200, a hydrogen storage The apparatus 300, the energy supply system 400, and the control apparatus 500 are provided and comprised.
 発電装置100は、再生可能エネルギーを用いて発電する。例えば、発電装置100は、太陽光を用いた太陽光発電装置(PV: Photovoltaics)で構成してもよい。或いは、発電装置100は、風力を用いた風力発電装置などで構成してもよい。 The power generation device 100 generates power using renewable energy. For example, you may comprise the electric power generating apparatus 100 with the solar power generation device (PV: Photovoltaics) using sunlight. Or you may comprise the electric power generating apparatus 100 with the wind power generator using a wind force.
 電気分解システム200は、本実施形態では発電装置100と電気的に接続されている。これにより、電気分解システム200は、発電装置100から供給された電力を用いて水または水蒸気を電気分解し、水素ガスと酸素ガスとを生成する。なお、本実施形態に係る電気分解システム200は、発電装置100から電力の供給を受けているが、これに限らず、電気分解システム200は、例えば商用の電力系統などから電力の供給を受けてもよい。或いは、電気分解システム200は、発電装置100及び商用の電力系統などの双方から電力の供給を受けてもよい。 The electrolysis system 200 is electrically connected to the power generation device 100 in this embodiment. As a result, the electrolysis system 200 electrolyzes water or water vapor using the power supplied from the power generation apparatus 100 to generate hydrogen gas and oxygen gas. The electrolysis system 200 according to the present embodiment is supplied with electric power from the power generation apparatus 100. However, the electrolysis system 200 is not limited thereto, and the electrolysis system 200 is supplied with electric power from a commercial power system, for example. Also good. Alternatively, the electrolysis system 200 may be supplied with power from both the power generation apparatus 100 and a commercial power system.
 水素貯蔵装置300は、電気分解システム200と配管を介して接続され、電気分解システム200から供給される水素ガスを貯蔵する。この水素貯蔵装置300は、例えばタンクで構成されている。 The hydrogen storage device 300 is connected to the electrolysis system 200 via a pipe and stores hydrogen gas supplied from the electrolysis system 200. The hydrogen storage device 300 is constituted by a tank, for example.
 エネルギー供給システム400は、水素貯蔵装置300と配管を介して接続され、熱需要に応じて水素貯蔵装置300から供給された水素ガスを用いて発電する。このエネルギー供給システム400は、発電により発生した熱を用いて水蒸気も生成する。また、エネルギー供給システム400は、発電した電力と生成した水蒸気とを負荷施設Lなどに供給する。これら電気分解システム200とエネルギー供給システム400の詳細は後述する。 The energy supply system 400 is connected to the hydrogen storage device 300 via a pipe, and generates power using the hydrogen gas supplied from the hydrogen storage device 300 according to the heat demand. The energy supply system 400 also generates water vapor using heat generated by power generation. In addition, the energy supply system 400 supplies the generated power and the generated water vapor to the load facility L and the like. Details of the electrolysis system 200 and the energy supply system 400 will be described later.
 制御装置500は、例えばCPUであり、電気分解システム200と、水素貯蔵装置300と、エネルギー供給システム400とに接続され、水素エネルギー利用システム1の全体の制御を行う。すなわち、この制御装置500は、熱需要に応じて電気分解システム200及びエネルギー供給システム400の内の少なくとも一方の制御を行う。 The control device 500 is, for example, a CPU and is connected to the electrolysis system 200, the hydrogen storage device 300, and the energy supply system 400, and controls the entire hydrogen energy utilization system 1. That is, the control device 500 controls at least one of the electrolysis system 200 and the energy supply system 400 according to the heat demand.
 図2は、電気分解システム200の詳細な構成を示す図であり、図2に基づき電気分解システム200の詳細な構成を説明する。この図に示すように、本実施形態に係る電気分解システム200は、水蒸気発生器202と、熱交換器204と、電解ユニット206と、水素分離器208とを、備えて構成されている。 FIG. 2 is a diagram showing a detailed configuration of the electrolysis system 200. The detailed configuration of the electrolysis system 200 will be described with reference to FIG. As shown in this figure, the electrolysis system 200 according to this embodiment includes a water vapor generator 202, a heat exchanger 204, an electrolysis unit 206, and a hydrogen separator 208.
 水蒸気発生器202は、熱交換器204と配管を介して接続され、原料水を加熱して生成した水蒸気を熱交換器204に供給する。熱交換器204は、水蒸気発生器202と電解ユニット206と水素分離器208とに配管を介して接続されている。また、熱交換器204は、配管を介して水素分離器208と接続されている。すなわち、この熱交換器204は、水蒸気発生器202から電解ユニット206に供給される水蒸気と、電解ユニット206から水素分離器208に供給される水素ガスとの熱交換を行う。これにより、水蒸気発生器202から供給された水蒸気は、より高温となり、電解ユニット206に供給される。そして、電解ユニット206から供給された水素ガスは、より低温となり、水素分離器208に供給される。 The steam generator 202 is connected to the heat exchanger 204 through a pipe, and supplies the steam generated by heating the raw water to the heat exchanger 204. The heat exchanger 204 is connected to the steam generator 202, the electrolysis unit 206, and the hydrogen separator 208 via a pipe. Moreover, the heat exchanger 204 is connected to the hydrogen separator 208 via a pipe. That is, the heat exchanger 204 performs heat exchange between the steam supplied from the steam generator 202 to the electrolysis unit 206 and the hydrogen gas supplied from the electrolysis unit 206 to the hydrogen separator 208. As a result, the water vapor supplied from the water vapor generator 202 has a higher temperature and is supplied to the electrolysis unit 206. Then, the hydrogen gas supplied from the electrolysis unit 206 has a lower temperature and is supplied to the hydrogen separator 208.
 電解ユニット206は、熱交換器204と配管を介して接続され、発電装置100と電気的に接続されている。電解ユニット206は、例えば固体酸化物形電解セル(Solid Oxide Electrolysis Cell:SOEC)であり、発電装置100から供給された電力を用いて、水蒸気発生器202から供給された水蒸気の電気分解を行う。 The electrolysis unit 206 is connected to the heat exchanger 204 via a pipe and is electrically connected to the power generation apparatus 100. The electrolysis unit 206 is, for example, a solid oxide electrolysis cell (SOEC), and electrolyzes water vapor supplied from the water vapor generator 202 using electric power supplied from the power generation apparatus 100.
 具体的には、電解ユニット206は、下記の化学式1に従い、水または水蒸気を電気分解により分解し、例えば大気ガスよりも高い圧力に加圧された水素ガスと酸素ガスとを生成する。この電気分解では、水素ガスと酸素ガスは2対1の比で同時に生成される。
 2H0 → 2H +0             (化学式1)
Specifically, the electrolysis unit 206 decomposes water or water vapor by electrolysis in accordance with the following chemical formula 1 to generate, for example, hydrogen gas and oxygen gas pressurized to a pressure higher than atmospheric gas. In this electrolysis, hydrogen gas and oxygen gas are simultaneously generated at a ratio of 2: 1.
2H 2 0 → 2H 2 +0 2 (Formula 1)
 また、電解ユニット206は、例えば、直列接続された複数の固体酸化物形電解セルを備えている。この固体酸化物形電解セルは、隔膜としての電解質膜と、その一方の面に設けられた陽極と、他方の面に設けられた陰極とを有している。本実施形態の電解質膜は、固体酸化物電解質膜であるが、これに限定されず、例えば固体高分子電解質膜などを用いてもよい。各固体酸化物形電解セルの陽極と陰極との間に、電源である発電装置100から電気エネルギーを加えると、陽極側に酸素ガスが発生し、陰極側に水素ガスが発生する。上述のように、電解ユニット206が生成した水素ガスは、熱交換器204に供給され、水蒸気との熱交換の後に水素分離器208に供給される。 The electrolysis unit 206 includes, for example, a plurality of solid oxide electrolysis cells connected in series. This solid oxide electrolytic cell has an electrolyte membrane as a diaphragm, an anode provided on one surface thereof, and a cathode provided on the other surface. Although the electrolyte membrane of this embodiment is a solid oxide electrolyte membrane, it is not limited to this, For example, you may use a solid polymer electrolyte membrane etc. When electric energy is applied from the power generation device 100 as a power source between the anode and cathode of each solid oxide electrolytic cell, oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side. As described above, the hydrogen gas generated by the electrolysis unit 206 is supplied to the heat exchanger 204 and supplied to the hydrogen separator 208 after heat exchange with water vapor.
 水素分離器208は、熱交換器204と水素貯蔵装置300との間に配置され、配管を介して熱交換器204と水素貯蔵装置300とに接続されている。すなわち、水素分離器208は、熱交換器204から供給される水蒸気を含む水素ガスを水素ガスと水蒸気とに分離し、水蒸気を除いた水素ガスを水素貯蔵装置300に供給する。 The hydrogen separator 208 is disposed between the heat exchanger 204 and the hydrogen storage device 300, and is connected to the heat exchanger 204 and the hydrogen storage device 300 via a pipe. That is, the hydrogen separator 208 separates hydrogen gas containing water vapor supplied from the heat exchanger 204 into hydrogen gas and water vapor, and supplies the hydrogen gas excluding water vapor to the hydrogen storage device 300.
 図3は、エネルギー供給システム400の詳細な構成を示す図であり、図3に基づきエネルギー供給システム400の詳細な構成を説明する。この図3に示すように、本実施形態に係るエネルギー供給システム400は、熱交換器402と、水蒸気発生器404と、燃料電池ユニット406とを、備えて構成されている。 FIG. 3 is a diagram showing a detailed configuration of the energy supply system 400, and the detailed configuration of the energy supply system 400 will be described based on FIG. As shown in FIG. 3, the energy supply system 400 according to this embodiment includes a heat exchanger 402, a steam generator 404, and a fuel cell unit 406.
 熱交換器402は、水素貯蔵装置300と、水蒸気発生器404と、燃料電池ユニット406とに配管を介して接続されている。この熱交換器402は、水素貯蔵装置300から供給される水蒸気と、燃料電池ユニット406が排出するガスとの熱交換を行う。すなわち、水素貯蔵装置300から供給された水素ガスは、熱交換により、より高温となり燃料電池ユニット406に供給される。一方で、燃料電池ユニット406から供給されたガスは、熱交換により熱を奪われ、より低温となる。 The heat exchanger 402 is connected to the hydrogen storage device 300, the water vapor generator 404, and the fuel cell unit 406 via piping. The heat exchanger 402 performs heat exchange between the water vapor supplied from the hydrogen storage device 300 and the gas discharged from the fuel cell unit 406. That is, the hydrogen gas supplied from the hydrogen storage device 300 is heated to a higher temperature by heat exchange and supplied to the fuel cell unit 406. On the other hand, the gas supplied from the fuel cell unit 406 is deprived of heat by heat exchange and becomes lower in temperature.
 水蒸気発生器404は、熱交換器402における余剰の熱を利用して、水蒸気を生成し、需要施設Lなどに供給する。すなわち、この水蒸気発生器404は、燃料電池ユニット406の発電時に発生した熱を暖房用の水蒸気として外部へ供給する。本実施形態では、水蒸気を需要施設Lなどに供給するが、これに限定されない。例えば、燃料電池ユニット406の発電時に発生した熱を温水として外部へ供給する温水供給器を更に備えてもよい。或いは、水蒸気発生器404の替わりに温水供給器を備えてもよい。 The steam generator 404 generates steam using surplus heat in the heat exchanger 402 and supplies it to the demand facility L and the like. That is, the water vapor generator 404 supplies heat generated during power generation of the fuel cell unit 406 to the outside as water vapor for heating. In this embodiment, although water vapor | steam is supplied to the demand facility L etc., it is not limited to this. For example, you may further provide the warm water supply device which supplies the heat | fever generated at the time of the electric power generation of the fuel cell unit 406 as warm water to the exterior. Alternatively, a hot water supply device may be provided instead of the steam generator 404.
 燃料電池ユニット406は、熱交換器402と配管を介して接続されている。また、電燃料電池ユニット406は、需要施設Lなどと電気的に接続されている。燃料電池ユニット406は、例えば固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)であり、熱交換器402から供給された水素ガスと酸素ガスとを用いて発電する。電燃料電池ユニット406は、例えば複数の固体酸化物形電解セルを直列接続して構成してもよい。 The fuel cell unit 406 is connected to the heat exchanger 402 via a pipe. The electrofuel cell unit 406 is electrically connected to the demand facility L and the like. The fuel cell unit 406 is, for example, a solid oxide fuel cell (SOFC), and generates power using hydrogen gas and oxygen gas supplied from the heat exchanger 402. The electrofuel cell unit 406 may be configured by, for example, connecting a plurality of solid oxide electrolytic cells in series.
 固体酸化物形電解セルは、600~1000℃の高温条件下において、酸素極側に供給される酸化剤ガス(O)と水素極側に供給される還元剤ガス(H)を用いて発電する。発電した電力は需要施設Lなどに供給される。なお、本実施形態では、電解ユニット206(図2)と燃料電池ユニット406とを異なるユニットとして説明したが、電解ユニット206と燃料電池ユニット406とを共通の電解セル、例えば固体酸化物形電解セルを用いて、単一の共通ユニットとして構成してもよい。すなわち、この場合には、固体酸化物形電解セルは、固体酸化物形燃料電池としても機能する。 The solid oxide electrolytic cell uses an oxidizing gas (O 2 ) supplied to the oxygen electrode side and a reducing gas (H 2 ) supplied to the hydrogen electrode side under a high temperature condition of 600 to 1000 ° C. Generate electricity. The generated power is supplied to the demand facility L and the like. In the present embodiment, the electrolysis unit 206 (FIG. 2) and the fuel cell unit 406 are described as different units. However, the electrolysis unit 206 and the fuel cell unit 406 are a common electrolysis cell, for example, a solid oxide electrolysis cell. May be configured as a single common unit. That is, in this case, the solid oxide electrolytic cell also functions as a solid oxide fuel cell.
 次に図4に基づき制御装置500のより詳細な制御例を説明する。図4は、英国の一般家庭における簡略化した熱需要プロファイルを示す図である。縦軸は熱需要量を示し、横軸は月を示している。この図4に示すように、熱需要の90%は10月から4月に集中している。一方で、夏場は寒冷な気候から空調の需要は殆ど存在しない。なお、図4に示す熱需要プロファイルは、数年分の平均値を用いてもよい。或いは、熱需要プロファイルとして、過去数年分の需要プロファイルから対象年度の熱需要プロファイルを予測してもよい。 Next, a more detailed control example of the control device 500 will be described with reference to FIG. FIG. 4 is a diagram showing a simplified heat demand profile in a general household in the UK. The vertical axis indicates the heat demand, and the horizontal axis indicates the month. As shown in FIG. 4, 90% of the heat demand is concentrated from October to April. On the other hand, in summer, there is almost no demand for air conditioning due to the cold climate. In addition, the average value for several years may be used for the heat demand profile shown in FIG. Alternatively, the heat demand profile of the target year may be predicted from the demand profiles for the past several years as the heat demand profile.
 制御装置500は、例えばこのような熱需要量に応じて燃料電池ユニット406の運転を制御する。具体的には、制御装置500は、気候変動の周期である第1期間内を第2期間と、この第2期間よりも熱需要の少ない第3期間とに分け、電解ユニット206及び燃料電池ユニット406の運転割合を第2期間と第3期間とで変更する。ここでは、1年間を第1期間とし、熱需要が閾値Th1以上の期間を第2期間とし、熱需要が閾値Th1未満の期間を第3期間とする。このように、制御装置500は、第1期間内の過去の熱需要量の情報を用いて第2及び第3の期間を示す情報を取得する。 The control device 500 controls the operation of the fuel cell unit 406 in accordance with, for example, such a heat demand. Specifically, the control device 500 divides the first period, which is a cycle of climate change, into a second period and a third period in which the heat demand is less than the second period, and the electrolysis unit 206 and the fuel cell unit. The operation ratio of 406 is changed between the second period and the third period. Here, one year is defined as the first period, a period in which the heat demand is equal to or greater than the threshold Th1 is defined as the second period, and a period in which the heat demand is less than the threshold Th1 is defined as the third period. Thus, the control apparatus 500 acquires the information which shows a 2nd and 3rd period using the information of the past heat demand in the 1st period.
 より詳細には、制御装置500は、第3期間において第2期間の熱需要に応じた水素ガスを生成させる制御を電解ユニット206に行う。また、制御装置500は、第3期間おいて燃料電池ユニット406に発電を行わせる制御を行う。この第3期間では、水蒸気発生器202は、熱交換器204における余剰の熱を利用し、水蒸気を生成して、需要施設Lなどに供給する。換言すると、制御装置500は、水蒸気発生器202に対する熱需要に応じて燃料電池の運転を制御する。 More specifically, the control device 500 controls the electrolysis unit 206 to generate hydrogen gas corresponding to the heat demand in the second period in the third period. In addition, the control device 500 performs control for causing the fuel cell unit 406 to generate power in the third period. In this third period, the steam generator 202 uses the excess heat in the heat exchanger 204 to generate steam and supply it to the demand facility L and the like. In other words, the control device 500 controls the operation of the fuel cell in accordance with the heat demand for the steam generator 202.
 以上のように本実施形態に係る水素エネルギー利用システム1は、制御装置500が、熱需要に応じて燃料電池ユニット406の運転を制御することとした。これにより、熱需要に合わせて熱エネルギーの供給ができ、熱需要の多い時期における天然ガスなどの化石燃料の使用量を低減させ、COの削減を図ことができる。 As described above, in the hydrogen energy utilization system 1 according to the present embodiment, the control device 500 controls the operation of the fuel cell unit 406 according to the heat demand. As a result, heat energy can be supplied in accordance with the heat demand, and the amount of fossil fuel such as natural gas used during periods of high heat demand can be reduced, thereby reducing CO 2 .
(第2実施形態)
 上述した第1実施形態においては、水素エネルギー利用システム1は、電解ユニット206により電気分解を行い、燃料電池ユニット406により発電を行っていたが、第2実施形態に係る水素エネルギー利用システム1は、複数の共通ユニット602A、602Bにより電気分解及び発電を行うことで相違する。以下に第1実施形態と相違する点を説明する。
(Second Embodiment)
In the first embodiment described above, the hydrogen energy utilization system 1 performs electrolysis by the electrolysis unit 206 and generates power by the fuel cell unit 406. However, the hydrogen energy utilization system 1 according to the second embodiment It differs by performing electrolysis and power generation by a plurality of common units 602A, 602B. The points different from the first embodiment will be described below.
 図5は、第2実施形態に係る水素エネルギー利用システム1の構成を示す図である。ここでは、上述した第1実施形態と同等の構成には、同一の番号を付して説明を省略する。この図5に示すように、第2実施形態に係る水素エネルギー利用システム1は共通システム600を備える。すなわち、この共通システム600は複数の共通ユニット602A、602Bで構成されている。共通ユニット602A、及び共通ユニット602Bのそれぞれは、上述のように、電解ユニット及び燃料電池ユニットが共通の電解セル、例えば固体酸化物形電解セルを用いて構成されている。これにより、共通ユニット602A、及び共通ユニット602Bのそれぞれでは、電気分解を行う運転と、発電を行う運転が排他的に切り換えられる。一方で、電解ユニット206と燃料電池ユニット406とを共通の電解セルで構成するため、共通システム600が簡略され、小型化が可能である。 FIG. 5 is a diagram showing a configuration of the hydrogen energy utilization system 1 according to the second embodiment. Here, the same number is attached | subjected to the structure equivalent to 1st Embodiment mentioned above, and description is abbreviate | omitted. As shown in FIG. 5, the hydrogen energy utilization system 1 according to the second embodiment includes a common system 600. That is, the common system 600 is composed of a plurality of common units 602A and 602B. As described above, each of the common unit 602A and the common unit 602B includes an electrolytic unit and a fuel cell unit that use a common electrolytic cell, for example, a solid oxide electrolytic cell. Thereby, in each of the common unit 602A and the common unit 602B, the operation for performing electrolysis and the operation for generating power are exclusively switched. On the other hand, since the electrolysis unit 206 and the fuel cell unit 406 are configured by a common electrolysis cell, the common system 600 is simplified and the size can be reduced.
 また、本実施形態に係る水素エネルギー利用システム1の水蒸気発生器202は、地熱を利用可能であり、地熱を利用して水蒸気を発生する。このため、水蒸気を発生するための電力が不要となり、水素エネルギー利用システム1のエネルギー効率を上げることが可能である。 Moreover, the water vapor generator 202 of the hydrogen energy utilization system 1 according to the present embodiment can use geothermal heat and generates water vapor using geothermal heat. For this reason, the electric power for generating water vapor | steam becomes unnecessary, and it is possible to raise the energy efficiency of the hydrogen energy utilization system 1. FIG.
 さらにまた、需要施設Lには、ガス配管GPを介して天然ガスが供給されている。例えば英国では、天然ガスの供給網が整っており、多くの施設に天然ガスを供給する配管網が構築されている。本実施形態に係る水素エネルギー利用システム1では、水素貯蔵装置300に天然ガス用のガス貯蔵装置604も接続可能に構成されている。これにより、水素貯蔵装置300に加えて、ガス貯蔵装置604にも水素ガスを貯蔵することが可能になる。また、天然ガスの供給網を介して水素ガスを供給することも可能である。 Furthermore, natural gas is supplied to the demand facility L via the gas pipe GP. For example, in the UK, natural gas supply networks are in place, and piping networks that supply natural gas to many facilities have been established. In the hydrogen energy utilization system 1 according to the present embodiment, a gas storage device 604 for natural gas can be connected to the hydrogen storage device 300. Thereby, in addition to the hydrogen storage device 300, the hydrogen gas can be stored in the gas storage device 604. It is also possible to supply hydrogen gas via a natural gas supply network.
 図6は、共通システム600内の共通ユニット1、共通ユニット2の運定例を示す図である。○が電気分解、すなわち水素ガスを生成する運転を示し、□が発電を行う運転を示している。なお、本実施形態に係る共通ユニット602Aが共通ユニット1に対応し、共通ユニット602Bが共通ユニット2に対応する。 FIG. 6 is a diagram illustrating an operation example of the common unit 1 and the common unit 2 in the common system 600. ○ indicates electrolysis, that is, an operation for generating hydrogen gas, and □ indicates an operation for generating power. Note that the common unit 602A according to the present embodiment corresponds to the common unit 1, and the common unit 602B corresponds to the common unit 2.
 上述の第2期間と第3期間との切り換え期である4月と9月では、気候の変動により、電気分解の運転に切り換えた後に熱需要が生じる場合がある。逆に、発電の運転に切り換えた後に、電気分解の運転が必要とされる場合がある。ところが、共通ユニットでは、電気分解を行う運転と、発電を行う運転が排他的に切り換えられ、さらに運転の切り換えに数日を要してしまう場合がある。このため、切り換え期における気候の変動に対応することが困難になってしまう恐れがある。そこで、図6に示すように、本実施形態に係る制御装置500は、切り換え期である4月と9月では、共通システム600内の少なくとも一つの共通ユニット602Aに、他の共通ユニット602Bと異なる運転を行わせる。これにより、電気分解の運転及び発電の運転の双方を行うことができ、気候の変動に対応が可能になる。 In April and September, which are the switching period between the second period and the third period, heat demand may occur after switching to electrolysis operation due to climate change. Conversely, electrolysis operation may be required after switching to power generation operation. However, in the common unit, the operation for performing electrolysis and the operation for generating power are exclusively switched, and it may take several days to switch the operation. This can make it difficult to respond to climate change during the transition period. Therefore, as shown in FIG. 6, the control device 500 according to the present embodiment differs from the other common unit 602B to at least one common unit 602A in the common system 600 in April and September, which are switching periods. Let's drive. Thereby, both the operation of electrolysis and the operation of power generation can be performed, and it becomes possible to cope with climate change.
 以上のように本実施形態に係る水素エネルギー利用システム1は、制御装置500が、共通システム600の運転切り換え期において、共通システム600内の少なくとも一つの共通ユニット602Aに、他の共通ユニット602Bと異なる運転を行わせることとした。これにより、気候の変動に対応させて熱エネルギーの供給ができ、熱需要の多い時期における天然ガスなどの化石燃料の使用量を低減させ、COの削減を図ことができる。 As described above, in the hydrogen energy utilization system 1 according to the present embodiment, the control device 500 is different from the other common unit 602B in at least one common unit 602A in the common system 600 in the operation switching period of the common system 600. It was decided to drive. This makes it possible to supply thermal energy in response to climate change, reduce the amount of fossil fuel used such as natural gas during periods of high heat demand, and reduce CO 2 .
(第3実施形態)
 上述した第1実施形態においては、電気分解システム200が生成した水素ガスは水素貯蔵装置300に蓄えられていたが、第3実施形態に係る水素エネルギー利用システム1は、電気分解システム200が生成した水素ガスを水素ステーション700にも供給することで相違する。以下に第1実施形態と相違する点を説明する。
(Third embodiment)
In the first embodiment described above, the hydrogen gas generated by the electrolysis system 200 is stored in the hydrogen storage device 300, but the hydrogen energy utilization system 1 according to the third embodiment is generated by the electrolysis system 200. The difference is that hydrogen gas is also supplied to the hydrogen station 700. The points different from the first embodiment will be described below.
 図7は、第3実施形態に係る水素エネルギー利用システム1の構成を示す図である。ここでは、上述した第1実施形態と同等の構成には、同一の番号を付して説明を省略する。この図7に示すように、第3実施形態に係る水素エネルギー利用システム1は水素ステーション700にも配管を介して接続されている。水素ステーション700は、例えば燃料電池車に水素を供給する施設であり、水素ガスを蓄えるタンクを有している。 FIG. 7 is a diagram showing a configuration of the hydrogen energy utilization system 1 according to the third embodiment. Here, the same number is attached | subjected to the structure equivalent to 1st Embodiment mentioned above, and description is abbreviate | omitted. As shown in FIG. 7, the hydrogen energy utilization system 1 according to the third embodiment is also connected to a hydrogen station 700 via a pipe. The hydrogen station 700 is a facility for supplying hydrogen to a fuel cell vehicle, for example, and has a tank for storing hydrogen gas.
 制御装置500は、例えば熱需要の少ない夏季に、熱需要のより多い冬季用の水素ガスを貯蔵させる制御を電気分解システム200に行う。また、制御装置500は、熱需要の少ない夏季に、電気分解システム200に生成させた水素ガスが、冬季の需要量、すなわち所定値を超えた場合に、水素ステーション700に電解ユニット400が生成した水素ガスを供給する制御を行う。なお、本実施形態に係る冬季が第2期間に対応し、夏季が第3期間に対応する。 The control device 500 controls the electrolysis system 200 to store, for example, hydrogen gas for winter season with higher heat demand in the summer season when there is less heat demand. In addition, the controller 500 generates the electrolysis unit 400 in the hydrogen station 700 when the hydrogen gas generated in the electrolysis system 200 exceeds the winter demand, that is, a predetermined value in summer when the heat demand is low. Control to supply hydrogen gas. Note that the winter season according to the present embodiment corresponds to the second period, and the summer season corresponds to the third period.
 以上のように本実施形態に係る水素エネルギー利用システム1は、制御装置500が、熱需要の少ない季節に電気分解システム200に生成させた水素ガスが所定値を超える場合に、水素ステーション700にも供給することとした。これにより、水素ガスステーションを介して水素供給が可能になると共に、気候の変動に対応させて熱エネルギーの供給もできる。また、熱需要の多い冬季における化石燃料の使用量を低減させ、COの削減を図こともできる。 As described above, the hydrogen energy utilization system 1 according to the present embodiment also includes the hydrogen station 700 when the hydrogen gas generated by the electrolysis system 200 in the season when the heat demand is low exceeds the predetermined value. It was decided to supply. As a result, hydrogen can be supplied via the hydrogen gas station, and thermal energy can be supplied in response to climate change. In addition, it is possible to reduce the amount of CO 2 by reducing the amount of fossil fuel used in the winter when there is a great demand for heat.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (13)

  1.  水を電気分解し、水素ガスを生成する電解ユニットと、
     前記水素ガスを貯蔵する水素貯蔵装置と、
     前記水素貯蔵装置に貯蔵された水素ガスを用いて発電する燃料電池ユニットと、
     前記燃料電池ユニットの発電を熱需要に応じて制御する制御装置と、
     を備える水素エネルギー利用システム。
    An electrolysis unit that electrolyzes water to produce hydrogen gas;
    A hydrogen storage device for storing the hydrogen gas;
    A fuel cell unit for generating electricity using hydrogen gas stored in the hydrogen storage device;
    A control device for controlling power generation of the fuel cell unit according to heat demand;
    A hydrogen energy utilization system.
  2.  前記制御装置は、気候変動の周期である第1期間内を第2期間と当該第2期間よりも熱需要の少ない第3期間とに分け、前記電解ユニット及び前記燃料電池ユニットの運転割合を当該第2期間と当該第3期間とで異ならせる制御を行う請求項1に記載の水素エネルギー利用システム。 The control device divides the first period, which is a cycle of climate change, into a second period and a third period with less heat demand than the second period, and sets the operation ratio of the electrolysis unit and the fuel cell unit to the second period. The hydrogen energy utilization system according to claim 1, wherein control is performed so that the second period is different from the third period.
  3.  前記制御装置は、前記第3期間において前記第2期間の熱需要に応じた水素ガスを生成させる制御を前記電解ユニットに行い、前記第2期間において前記第3期間に前記第2期間の熱需要に応じて生成させた水素ガスで前記燃料電池ユニットに発電を行わせる制御を行う請求項2に記載の水素エネルギー利用システム。 The control device controls the electrolysis unit to generate hydrogen gas according to the heat demand in the second period in the third period, and heat demand in the second period in the third period in the second period. The hydrogen energy utilization system according to claim 2, wherein control is performed to cause the fuel cell unit to generate power with hydrogen gas generated according to the conditions.
  4.  前記制御装置は、前記第1期間内の過去における熱需要量の情報を用いて前記第2期間及び前記第3期間を示す情報を取得する請求項2又は3のいずれか一項に記載の水素エネルギー利用システム。 The said control apparatus acquires the information which shows the said 2nd period and the said 3rd period using the information of the heat demand in the past in the said 1st period, The hydrogen as described in any one of Claim 2 or 3 Energy utilization system.
  5.  前記燃料電池ユニットの発電時に発生した熱を用いて生成した水蒸気を外部へ供給する水蒸気発生器を更に備え、
     前記制御装置は前記水蒸気発生器に対する熱需要に応じて前記燃料電池ユニットの運転を制御する請求項2乃至4のいずれか一項に記載の水素エネルギー利用システム。
    A water vapor generator for supplying water vapor generated using heat generated during power generation of the fuel cell unit to the outside;
    The hydrogen energy utilization system according to any one of claims 2 to 4, wherein the control device controls the operation of the fuel cell unit in accordance with a heat demand for the steam generator.
  6.  前記燃料電池ユニットの発電時に発生した熱を用いて生成した温水を外部へ供給する温水供給器を更に備え、
     前記制御装置は前記温水供給器に対する熱需要に応じて前記燃料電池ユニットの運転を制御する請求項2乃至4のいずれか一項に記載の水素エネルギー利用システム。
    A hot water supply device for supplying hot water generated using heat generated during power generation of the fuel cell unit to the outside;
    The hydrogen energy utilization system according to any one of claims 2 to 4, wherein the control device controls the operation of the fuel cell unit in accordance with a heat demand for the hot water supply device.
  7.  前記電解ユニット及び前記燃料電池ユニットは、共通の電解セルを用いて、前記水素ガス及び前記酸素ガスを生成する運転と、前記発電をする運転とを行う共通ユニットである請求項2乃至6のいずれか一項に記載の水素エネルギー利用システム。 7. The electrolysis unit and the fuel cell unit are common units that perform an operation of generating the hydrogen gas and the oxygen gas and an operation of generating the electric power using a common electrolysis cell. The hydrogen energy utilization system according to claim 1.
  8.  前記電解ユニット及び前記燃料電池ユニットは、複数の前記共通ユニットで構成され、
     前記制御装置は、前記第2期間と前記第3期間との切り換え期間において、前記複数の前記共通ユニットの内の少なくとも一つの前記共通ユニットに、他の前記共通ユニットと異なる運転を行わせる請求項7に記載の水素エネルギー利用システム。
    The electrolysis unit and the fuel cell unit are composed of a plurality of the common units,
    The control device causes at least one common unit of the plurality of common units to perform an operation different from that of the other common units in a switching period between the second period and the third period. 8. The hydrogen energy utilization system according to 7.
  9.  地熱を利用して発生した水蒸気を前記電解ユニットに供給する水蒸気発生器を更に備える請求項1乃至8のいずれか一項に記載の水素エネルギー利用システム。 The hydrogen energy utilization system according to any one of claims 1 to 8, further comprising a water vapor generator that supplies water vapor generated using geothermal heat to the electrolysis unit.
  10.  前記電解ユニットには、天然ガス用のガス貯蔵装置も接続可能であり、当該ガス貯蔵装置に前記水素ガスを貯蔵する請求項1乃至9のいずれか一項に記載の水素エネルギー利用システム。 The hydrogen storage system according to any one of claims 1 to 9, wherein a gas storage device for natural gas can be connected to the electrolysis unit, and the hydrogen gas is stored in the gas storage device.
  11.  前記電解ユニットは、燃料電池車に水素を供給する水素ステーションにも接続可能であり、
     前記制御装置は、前記電解ユニットが熱需要の多い第2期間用に、第2期間よりも熱需要の少ない第3期間に生成した水素ガスの量が所定値を超えた場合に、当該電解ユニットが当該第3期間に生成した水素ガスを前記水素ステーションに供給する制御を行う請求項1乃至10のいずれか一項に記載の水素エネルギー利用システム。
    The electrolysis unit can be connected to a hydrogen station that supplies hydrogen to the fuel cell vehicle,
    When the amount of hydrogen gas generated in the third period with less heat demand than the second period exceeds a predetermined value for the second period in which the electrolysis unit has a large heat demand, the control unit The hydrogen energy utilization system according to any one of claims 1 to 10, wherein control for supplying hydrogen gas generated in the third period to the hydrogen station is performed.
  12.  前記電解ユニットに電力を供給する再生可能エネルギー発電装置を更に備え、
     前記制御装置は、前記発電装置の発電に応じて前記電解ユニットの運転を制御する請求項1乃至11のいずれか一項に記載の水素エネルギー利用システム。
    Further comprising a renewable energy power generator for supplying power to the electrolysis unit;
    The hydrogen energy utilization system according to any one of claims 1 to 11, wherein the control device controls the operation of the electrolysis unit in accordance with power generation of the power generation device.
  13.  水を電気分解し、水素ガスを生成する電解ユニットと、前記水素ガスを貯蔵する水素貯蔵装置と、前記水素貯蔵装置に貯蔵された水素ガスを用いて発電する燃料電池ユニットと、前記燃料電池ユニットの発電を制御する制御装置とを備える水素エネルギー利用システムの運転方法において、
     前記制御装置は、前記燃料電池ユニットの発電を熱需要に応じて制御する水素エネルギー利用システムの運転方法。
    An electrolysis unit that electrolyzes water to generate hydrogen gas, a hydrogen storage device that stores the hydrogen gas, a fuel cell unit that generates power using the hydrogen gas stored in the hydrogen storage device, and the fuel cell unit A method of operating a hydrogen energy utilization system comprising a control device for controlling power generation of
    The control device is an operation method of a hydrogen energy utilization system that controls power generation of the fuel cell unit according to heat demand.
PCT/JP2017/009753 2017-03-10 2017-03-10 Hydrogen energy utilization system and method for operating same WO2018163416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009753 WO2018163416A1 (en) 2017-03-10 2017-03-10 Hydrogen energy utilization system and method for operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009753 WO2018163416A1 (en) 2017-03-10 2017-03-10 Hydrogen energy utilization system and method for operating same

Publications (1)

Publication Number Publication Date
WO2018163416A1 true WO2018163416A1 (en) 2018-09-13

Family

ID=63448717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009753 WO2018163416A1 (en) 2017-03-10 2017-03-10 Hydrogen energy utilization system and method for operating same

Country Status (1)

Country Link
WO (1) WO2018163416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687914A (en) * 2019-10-18 2021-04-20 丰田自动车株式会社 Energy management system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259582A (en) * 2000-03-16 2001-09-25 Kubota Corp Method for simultaneous treatment of garbage and wastewater
JP2004176740A (en) * 2002-11-25 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> Hydrogen storage system and portable power supply
JP2007323843A (en) * 2006-05-30 2007-12-13 Ebara Ballard Corp Operation method of fuel cell and fuel cell system
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2013224242A (en) * 2012-04-23 2013-10-31 Panasonic Corp Hydrogen generator and fuel cell system
JP2017002345A (en) * 2015-06-08 2017-01-05 株式会社フォーエス Water electrolyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259582A (en) * 2000-03-16 2001-09-25 Kubota Corp Method for simultaneous treatment of garbage and wastewater
JP2004176740A (en) * 2002-11-25 2004-06-24 Nippon Telegr & Teleph Corp <Ntt> Hydrogen storage system and portable power supply
JP2007323843A (en) * 2006-05-30 2007-12-13 Ebara Ballard Corp Operation method of fuel cell and fuel cell system
JP2009071959A (en) * 2007-09-12 2009-04-02 Takasago Thermal Eng Co Ltd Power supply system
JP2013224242A (en) * 2012-04-23 2013-10-31 Panasonic Corp Hydrogen generator and fuel cell system
JP2017002345A (en) * 2015-06-08 2017-01-05 株式会社フォーエス Water electrolyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687914A (en) * 2019-10-18 2021-04-20 丰田自动车株式会社 Energy management system
CN112687914B (en) * 2019-10-18 2023-11-24 丰田自动车株式会社 energy management system

Similar Documents

Publication Publication Date Title
CN108496288B (en) Household energy device and operation method for operating household energy device
CN109004665A (en) Wind-powered electricity generation, photoelectricity off-grid grid-connected hydrogen production process and system
CN106817067A (en) A kind of provide multiple forms of energy to complement each other co-generation unit and method of work based on fuel cell
AU2011244435B2 (en) Device for storing and restoring electrical energy
CN103199561A (en) Wind-light-hydrogen complementary grid-connection power station based on fuel cells, wind energy and solar energy
US20160248137A1 (en) Power Generation System
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
JP2015176675A (en) Distributed power supply system, and method of operating the same
US20160372775A1 (en) Method for Temporarily Storing the Electric Energy of an Energy Supply System and Regenerative Energy Storage Device
US20230043491A1 (en) Off-grid electrolysis control method and device thereof independent of grid
JP7351708B2 (en) energy management system
KR101314238B1 (en) Hydrogen production system using high temperature steam electrolysis connected with nuclear power plant, electrolyzer of water and fuel cell power generation system
JP2011208242A (en) Hydrogen production apparatus using waste heat and method for producing hydrogen using waste heat
WO2018163416A1 (en) Hydrogen energy utilization system and method for operating same
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
CN112910009A (en) Hybrid renewable energy source coupling hydrogen production method and system
CN217922341U (en) Container type integrated electricity-hydrogen co-production device with heat management
CN203180547U (en) Wind, light and hydrogen complementation grid connection type power station based on fuel cell, wind energy and solar energy
JP5855955B2 (en) Energy management equipment
Faizan et al. An overview of fuel cell based distribution generation integration
CN114024333A (en) Combined operation system for electrolytic hydrogen production by utilizing wind power, photovoltaic and solid oxide
KR102258808B1 (en) An electric power generating system
CN219513803U (en) Hydrogen and multi-energy combined supply system for compound hydrogen production
McVay et al. Dynamic sub-thermoneutral voltage operation of solid oxide electrolysis with alternative heat addition
Al-Badi Hybrid energy systems for applications in eco-houses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP