WO2018161797A1 - 一种实现目标跟踪的方法、云台摄像机和监控平台 - Google Patents

一种实现目标跟踪的方法、云台摄像机和监控平台 Download PDF

Info

Publication number
WO2018161797A1
WO2018161797A1 PCT/CN2018/076764 CN2018076764W WO2018161797A1 WO 2018161797 A1 WO2018161797 A1 WO 2018161797A1 CN 2018076764 W CN2018076764 W CN 2018076764W WO 2018161797 A1 WO2018161797 A1 WO 2018161797A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
target
tilt camera
camera
tilt
Prior art date
Application number
PCT/CN2018/076764
Other languages
English (en)
French (fr)
Inventor
陈县
高翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018161797A1 publication Critical patent/WO2018161797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • Embodiments of the present invention relate to the field of video surveillance, and in particular, to a method for implementing target tracking, a PTZ camera, and a monitoring platform.
  • the PTZ camera is a camera in the field of video surveillance that supports adjusting the shooting direction and zooming the lens. It can be a dome camera or a camera that can be connected to the PTZ.
  • the main advantage of the PTZ camera is that it supports the vertical direction up and down, the horizontal direction to adjust the shooting direction and the zooming of the lens along the optical axis direction, so that the user can observe the surrounding objects in all directions, and the field of view is not affected by the camera installation position and installation. Angle and lens viewing angle limitations. Therefore, in the actual monitoring scenario, multiple PTZ cameras can be used to track the moving targets.
  • the prior art for achieving target tracking it is necessary to first acquire images captured by each pan/tilt camera, and calculate a field of view dividing line of each pan/tilt camera according to images captured by each pan/tilt camera, and when the detected target moves past the view dividing line, When the field of view of the next PTZ camera is taken, the initial shooting angle of the PTZ camera is calculated according to the coordinates of the target in the field of view of the PTZ camera.
  • target tracking is performed, and the acquisition of the tracking related information (such as the calculation of the initial shooting angle, the selection of the next pan/tilt camera, etc.) depends on the analysis of the images taken by the pan/tilt cameras. Due to the different angles of the cameras captured by the PTZ cameras, the results of the analysis are often inaccurate, resulting in inaccurate tracking of the target.
  • the embodiment of the invention provides a method for implementing target tracking, a pan-tilt camera and a monitoring platform, which are used to solve the problem that the accuracy of target tracking existing in the prior art is not high.
  • the first aspect of the present application provides a PTZ camera
  • the PTZ camera includes an electronic compass for acquiring a lens orientation of the PTZ camera, and acquiring location information of the PTZ camera (including the cloud)
  • the processor is configured to receive a tracking instruction sent by the monitoring platform, where the tracking instruction includes location information of the target, the location information of the target includes a latitude and longitude of the target, and is used to: according to the location information of the target, the Position information of the PTZ camera acquired by the GPS chip, and a lens orientation of the PTZ camera acquired by the electronic compass to adjust a shooting angle of the PTZ camera to capture the target, such as according to the PTZ camera
  • the position information, the lens orientation, and the positional information of the target determine a target shooting angle corresponding to the target, and adjust a shooting angle of the pan/tilt camera to the target shooting angle to capture the target.
  • the shooting angle of the PTZ camera can be adjusted according to the actual geographical position (latitude and longitude, etc.) of the target and the PTZ camera, and the current lens orientation of the PTZ camera, so that the target can be accurately Tracking shots.
  • the target shooting angle includes a target horizontal shooting angle and a destination vertical shooting angle, and correspondingly, the processor according to the latitude and longitude of the target and the pan-tilt camera
  • the orientation of the target relative to the pan/tilt camera is calculated by latitude and longitude
  • the target horizontal shooting angle is calculated according to the following formula:
  • Pgoal is the angle of the target level of the pan/tilt camera
  • Pcur is the current horizontal shooting angle of the pan/tilt camera
  • A is the orientation of the target relative to the pan-tilt camera
  • R is the pan-tilt camera The lens is facing.
  • the processor further calculates a target vertical shooting angle of the pan/tilt camera according to a latitude and longitude of the target, a latitude and longitude of the pan-tilt camera, and a height difference between the target and the pan-tilt camera.
  • the processor may specifically calculate the height difference based on an altitude of the self obtained by the GPS chip and an altitude of the target acquired from the tracking instruction.
  • the horizontal shooting angle and the vertical shooting angle to which the pan/tilt camera is to be adjusted can be accurately calculated, thereby accurately achieving target tracking.
  • a second aspect of the present application provides a PTZ camera, the PTZ camera including a transceiver and a processor;
  • the processor is configured to receive, by the transceiver, a tracking instruction sent by the monitoring platform, and adjust a shooting angle of the PTZ camera to a preset starting shooting angle; and further configured to determine the PTZ camera And transmitting, by the transceiver, a switching instruction to the monitoring platform when the shooting angle reaches a preset ending shooting angle, where the switching instruction is used to instruct the monitoring platform to select another PTZ camera that takes over the PTZ camera shooting target.
  • the start shooting angle and the end shooting position may be specifically set according to the distance between the cameras and the range that each camera can monitor.
  • the target can be tracked according to the preset starting shooting angle and the ending shooting angle, and the starting shooting angle and the ending shooting angle may be specifically according to the distance between the cameras and the cameras can be monitored.
  • the range is set so that the target can be tracked accurately.
  • the third aspect of the present application provides a monitoring platform, where the monitoring platform includes a processing unit and a sending unit, and the processing unit is configured to: when determining that a second pan-tilt camera that needs to select a target of the first pan-tilt camera is selected, Selecting a pan-tilt camera that satisfies the tracking condition as the second pan-tilt camera according to the location information of the target, the first pan-tilt camera is a pan-tilt camera that is capturing the target; and is further configured to pass the sending unit And transmitting, to the second pan-tilt camera, a tracking instruction, where the tracking instruction is used to instruct the second pan-tilt camera to capture the target.
  • the second pan-tilt camera that takes over the target of the first pan-tilt camera can be selected according to the actual geographic location (latitude, longitude, etc.) of the target, so that the second pan-tilt camera pair with the appropriate position can be selected.
  • the target is tracked and shot to achieve accurate tracking.
  • the second pan-tilt camera that meets the tracking condition may be a pan/tilt head having a distance from the target that is less than or equal to a preset second distance threshold.
  • the camera may also be a PTZ camera with the smallest distance from the target among the plurality of PTZ cameras.
  • the processing unit may specifically calculate, according to the latitude and longitude of the target and the latitude and longitude of the PTZ camera adjacent to the first PTZ camera, each PTZ camera adjacent to the first PTZ camera and the target And a distance between the pan/tilt camera adjacent to the first pan-tilt camera and the target, and selecting a pan-tilt camera with a distance between the target that is less than or equal to the distance threshold or A PTZ camera with the smallest distance from the target.
  • the selection can be made only in the PTZ camera adjacent to the first PTZ camera, the calculation amount is relatively small, and the computing resources of the monitoring platform can be saved.
  • a fourth aspect of the present application provides a method for implementing target tracking, the method comprising: receiving, by a PTZ camera, a tracking instruction sent by a monitoring platform, where the tracking instruction includes location information of a target, and the location information of the target includes the The latitude and longitude of the target, acquiring the lens orientation of the pan/tilt camera, and adjusting the shooting angle of the pan-tilt camera according to the position information of the pan-tilt camera, the lens orientation, and the position information of the target to capture the target.
  • the position information of the PTZ camera includes the latitude and longitude of the PTZ camera, and the target shooting angle corresponding to the target is determined according to the position information of the PTZ camera, the lens orientation, and the position information of the target, and the The shooting angle of the pan/tilt camera is adjusted to the target shooting angle to capture the target.
  • the shooting angle of the PTZ camera can be adjusted according to the actual geographical position (latitude and longitude, etc.) of the target and the PTZ camera, and the current lens orientation of the PTZ camera, so that the target can be accurately Tracking shots.
  • the target shooting angle includes a target horizontal shooting angle and a destination vertical shooting angle; correspondingly, the pan/tilt camera according to the latitude and longitude of the target and the pan/tilt camera The latitude and longitude calculates the orientation of the target relative to the pan-tilt camera, and calculates the target horizontal shooting angle according to the following formula:
  • Pgoal is the angle of the target level of the pan/tilt camera
  • Pcur is the current horizontal shooting angle of the pan/tilt camera
  • Q is the orientation of the target relative to the pan/tilt camera
  • A is the pan/tilt camera The lens is facing.
  • the pan-tilt camera further calculates a target vertical shooting angle of the pan-tilt camera according to a latitude and longitude of the target, a latitude and longitude of the pan-tilt camera, and a height difference between the target and the pan-tilt camera.
  • the processor may specifically calculate the height difference based on an altitude of the self obtained by the GPS chip and an altitude of the target acquired from the tracking instruction.
  • the horizontal shooting angle and the vertical shooting angle to which the pan/tilt camera is to be adjusted can be accurately calculated, thereby accurately achieving target tracking.
  • a fifth aspect of the present application provides a method for implementing target tracking, the method comprising: adjusting a shooting angle of the PTZ camera to a preset starting shooting angle when receiving a tracking instruction sent by a monitoring platform;
  • the pan/tilt camera sends a switching instruction to the monitoring platform when determining that the shooting angle of the pan-tilt camera reaches a preset ending shooting angle, the switching instruction is used to instruct the monitoring platform to select to replace the pan/tilt Other PTZ cameras that the camera is shooting at.
  • the start shooting angle and the end shooting position may be specifically set according to the distance between the cameras and the range that each camera can monitor.
  • the target can be tracked according to the preset starting shooting angle and the ending shooting angle, and the starting shooting angle and the ending shooting angle may be specifically according to the distance between the cameras and the cameras can be monitored.
  • the range is set so that the target can be tracked accurately.
  • a sixth aspect of the present application provides a method for implementing target tracking, the method comprising: selecting, according to location information of the target, a monitoring platform to determine a second pan-tilt camera that needs to select a target of the first pan-tilt camera a pan-tilt camera that satisfies the tracking condition as the second pan-tilt camera, the first pan-tilt camera is a pan-tilt camera that is capturing the target, and the location information of the target includes the latitude and longitude of the target, and The second pan-tilt camera sends a tracking instruction, and the tracking instruction is used to instruct the second pan-tilt camera to capture the target.
  • the second pan-tilt camera that takes over the target of the first pan-tilt camera can be selected according to the actual geographic location (latitude, longitude, etc.) of the target, so that the second pan-tilt camera pair with the appropriate position can be selected.
  • the target is tracked and shot to achieve accurate tracking.
  • the second pan-tilt camera that meets the tracking condition may be a gimbal that is less than or equal to a preset second distance threshold.
  • the camera may also be a PTZ camera with the smallest distance from the target among the plurality of PTZ cameras.
  • the monitoring platform may specifically calculate, according to the latitude and longitude of the target and the latitude and longitude of the PTZ camera adjacent to the first PTZ camera, each PTZ camera adjacent to the first PTZ camera and the target And a distance between the pan/tilt camera adjacent to the first pan-tilt camera and the target, and selecting a pan-tilt camera with a distance between the target that is less than or equal to the distance threshold or A PTZ camera with the smallest distance from the target.
  • the selection can be performed only in the PTZ camera adjacent to the first PTZ camera, the calculation amount is relatively small, and the computing resources of the monitoring platform can be saved.
  • a seventh aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • An eighth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic structural diagram of a network of a target tracking system 100 according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method 100 according to an embodiment of the present invention.
  • 3 to 5 are schematic views showing the positional relationship between the pan-tilt camera and the target
  • FIG. 6a and 6b are schematic structural views of a pan-tilt camera 200 according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a pan-tilt camera 300 according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a monitoring platform 400 according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a monitoring platform 500 according to Embodiment 5 of the present invention.
  • FIG. 1 is a schematic structural diagram of a network of a target tracking system 100 according to an embodiment of the present invention.
  • the target tracking system 100 includes a PTZ camera 110 and a monitoring platform 120.
  • the PTZ camera and the monitoring platform 120 communicate via a network.
  • the pan/tilt camera 110 may specifically be a dome camera or a camera that can be externally connected to the pan/tilt.
  • the monitoring platform 120 determines that the target (such as a moving car) is to start tracking, it can determine a PTZ camera A (such as the PTZ camera 111) that is closest to the target and instruct the PTZ camera A to track the target. Shooting.
  • the target such as a moving car
  • a PTZ camera A such as the PTZ camera 111
  • the monitoring platform 120 determines that it is necessary to select another PTZ camera that takes over the PTZ camera A shooting target, for example, when it is determined that the distance between the target and the PTZ camera A exceeds a preset distance threshold, a succession is determined.
  • PTZ camera A captures the target PTZ camera B (such as PTZ camera 112) and instructs PTZ camera B to track the target.
  • PTZ camera C such as the PTZ camera 113 that takes over the PTZ camera B and instructs the PTZ camera.
  • C Tracking the target. The target is subjected to relay tracking shooting in sequence.
  • method 100 includes the following steps.
  • the monitoring platform determines that a second pan-tilt camera that needs to select a target of the first pan-tilt camera (such as the pan-tilt camera 112 shown in FIG. 1) to capture the target, the first cloud
  • the camera is the PTZ camera that is shooting the target.
  • the monitoring platform may specifically determine that the first pan/tilt camera needs to be replaced when determining that the distance between the target and the first pan-tilt camera (hereinafter referred to as the first distance) is greater than a preset distance threshold.
  • the second PTZ camera that shoots the target. This determination is subsequently referred to as implementation A.
  • the monitoring platform needs to acquire location information of the target in real time.
  • the positioning device on the target reports the located location information to the monitoring platform, for example, the target is a car, and the positioning device may specifically be a global positioning system on the vehicle ( GPS, Global Positioning System) devices such as mobile phones and navigation devices.
  • the monitoring platform acquires location information of the target by using a location server.
  • the monitoring platform can periodically acquire current location information of the target.
  • the location information of the target includes a latitude and longitude of the target, and may also include an altitude of the target.
  • the monitoring platform also needs to obtain the location information of each of the PTZ cameras.
  • the PTZ camera reports the location information of the GPS chips of each PTZ camera to the monitoring platform.
  • each PTZ camera reports its location information when it is installed at its respective monitoring location.
  • the location information of the pan-tilt camera includes the latitude and longitude of the pan-tilt camera, and may further include an altitude of the pan-tilt camera.
  • the monitoring platform may calculate the first distance according to a latitude and longitude of the target and a latitude and longitude of the first pan-tilt camera. Specifically, the first distance may be calculated according to the following formula:
  • d is the first distance
  • (Aw, Aj) is the latitude and longitude of the target
  • (Bw, Bj) is the latitude and longitude of the first pan-tilt camera
  • R is the radius of the earth.
  • the latitude and longitude uses a decimal angle number, such as DDD.DDDD°.
  • the monitoring platform determines whether the first distance is greater than a preset distance threshold (hereinafter referred to as a first distance threshold). If it is greater than the first distance threshold, it may be determined that a second pan-tilt camera that needs to succeed the first pan-tilt camera shooting target needs to be selected, and step S102 is performed; otherwise, according to the latitude and longitude corresponding to the position after the target is moved The latitude and longitude of the first pan-tilt camera recalculates the first distance, and further determines whether the first distance is greater than the first distance threshold until the first distance is greater than the first distance threshold.
  • a preset distance threshold hereinafter referred to as a first distance threshold
  • the monitoring platform selects a PTZ camera that meets the tracking condition as the second PTZ camera according to the location information of the target.
  • the second pan-tilt camera that meets the tracking condition may specifically be a pan-tilt camera with a distance from the target that is less than or equal to a preset distance threshold (hereinafter referred to as a second distance threshold), or may be multiple clouds.
  • a second distance threshold may be equal to the first distance threshold.
  • the monitoring platform may calculate a distance between each pan-tilt camera and the target according to the latitude and longitude of the target and the pre-recorded latitude and longitude of each pan-tilt camera, and according to each pan-tilt camera and the target The distance between the distance selects a pan-tilt camera with a distance between the target that is less than or equal to the distance threshold or a pan-tilt camera with the smallest distance from the target.
  • the monitoring platform may also pre-record the positional relationship between the pan/tilt cameras. For example, from the south to the north, the pan-tilt camera 111, the pan-tilt camera 112, the pan-tilt camera 113, and the pan-tilt camera 114 are sequentially arranged.
  • the pan-tilt camera that normally takes over the first pan-tilt camera to capture the target is one of the pan-tilt cameras adjacent to the first pan-tilt camera, for example, the pan-tilt camera that is currently capturing the target is a pan-tilt
  • the camera 112 the next pan-tilt camera that needs to take over the pan-tilt camera 112 to capture the target is generally a pan-tilt camera 111 or 113, and the monitoring platform can be based on the latitude and longitude of the target and the first pan-tilt camera
  • the latitude and longitude of the adjacent pan-tilt camera calculates the distance between each pan-tilt camera adjacent to the first pan-tilt camera and the target, and according to each pan-tilt camera adjacent to the first pan-tilt camera
  • the distance from the target selects a pan-tilt camera with a distance between the target that is less than or equal to the distance threshold or a pan-tilt camera with the smallest
  • the method for calculating the distance between the target and the first PTZ camera in step S101 may be specifically omitted.
  • the monitoring platform sends a tracking instruction to the second PTZ camera, where the tracking instruction is used to instruct the second PTZ camera to capture the target.
  • the second pan/tilt camera adjusts a shooting angle of the second pan/tilt camera according to the tracking instruction to capture the target.
  • step S104 can be implemented by implementing mode M and implementing mode N.
  • the tracking instruction includes location information of the target.
  • the second pan/tilt camera After receiving the tracking instruction, acquires a lens orientation of the second pan-tilt camera, and adjusts according to position information, a lens orientation, and position information of the target of the second pan-tilt camera.
  • the shooting angle of the second pan/tilt camera is to capture the target.
  • the second pan/tilt camera may determine, according to location information of the second pan-tilt camera, a lens orientation, and location information of the target, a target shooting angle corresponding to the target, and the first pan-tilt camera The shooting angle is adjusted to the target shooting angle to capture the target.
  • the shooting angle of the PTZ camera includes a horizontal shooting angle and a vertical shooting angle.
  • the target shooting angle includes a target horizontal shooting angle and a target vertical shooting angle.
  • the second pan-tilt camera may calculate the target horizontal shooting angle (ie, the target P value of the second pan-tilt camera) according to the following manner.
  • the second pan-tilt camera calculates an orientation of the target relative to the second pan-tilt camera according to a latitude and longitude of the target and a latitude and longitude of the second pan-tilt camera.
  • A is the position of the target
  • the latitude and longitude is (Aw, Aj)
  • B is the position of the second pan-tilt camera
  • the latitude and longitude is (Bw, Bj)
  • O is the center point of the earth
  • C For the North Pole.
  • Cos(c) cos(a) ⁇ cos(b)+sin(a) ⁇ sin(b) ⁇ cos(C)
  • ⁇ C is the angle between the face AOC and the face BOC, that is, Bj-Aj
  • Cos(c) cos(90-Bw) ⁇ cos(90-Aw)+sin(90-Bw) ⁇ sin(90-Aw) ⁇ cos(Bj-Aj)
  • ⁇ A is the angle between the face AOB and the AOC
  • ⁇ B is the angle between the face AOB and the BOC
  • ⁇ C is the angle between the face AOC and the face BOC.
  • ⁇ A The value of ⁇ A is used to characterize the orientation of the target relative to the second pan-tilt camera.
  • S104B The second pan/tilt camera calculates the target horizontal shooting angle according to the following formula:
  • Pgoal is the target horizontal shooting angle of the second pan/tilt camera
  • Pcur is the current horizontal shooting angle of the second pan/tilt camera (ie, the current P value of the second pan/tilt camera)
  • ⁇ A indicates the orientation of the target relative to the second pan-tilt camera
  • ⁇ R indicates the lens orientation of the second pan-tilt camera.
  • the second pan-tilt camera may calculate the second according to a latitude and longitude of the target, a latitude and longitude of the pan-tilt second pan-tilt camera, and a height difference between the target and the second pan-tilt camera.
  • the target vertical shooting angle of the pan/tilt camera ie, the target T value of the second pan/tilt camera.
  • the second pan/tilt camera may specifically calculate the height difference according to an altitude of the second pan-tilt camera obtained by using the GPS chip and an altitude of the target acquired from the tracking instruction. .
  • the second pan-tilt camera may further determine a target magnification of the second pan-tilt camera according to a distance between the target and the second pan-tilt camera (hereinafter referred to as a second distance) (ie, the The target Z value of the second pan/tilt camera), and adjusting the shooting magnification of the pan/tilt camera to the target magnification.
  • a second distance ie, the The target Z value of the second pan/tilt camera
  • the correspondence between multiple distance ranges and magnifications may be preset, such as:
  • the second pan/tilt camera may determine a magnification value corresponding to the distance range in which the second distance is located according to a preset relationship between the plurality of distance ranges and the magnification as the target magnification.
  • the starting shooting angle is preset in each pan/tilt camera, and the starting shooting angle can be set by setting a preset position.
  • the starting shooting angle may be specifically set according to the distance between the cameras and the range that each camera can monitor.
  • the second pan-tilt camera can adjust the shooting angle of the second pan-tilt camera to a preset starting shooting angle when receiving the tracking instruction.
  • the monitoring platform may further send, to the first pan-tilt camera, a tracking instruction for instructing the first pan-tilt camera to capture the target.
  • the first pan-tilt camera captures the target after receiving the tracking instruction.
  • the monitoring platform may perform step S101 by using the foregoing implementation manner A, or may perform step S101 by using the following implementation manner B to determine that the first selection needs to be replaced.
  • the PTZ camera captures the target's second PTZ camera.
  • Embodiment B The monitoring platform may determine, according to a switching instruction sent by the first PTZ camera, a second PTZ camera that needs to select a target of the first PTZ camera, the switching instruction is used to indicate the The monitoring platform selects a second pan-tilt camera that takes over the target of the first pan-tilt camera.
  • the first pan-tilt camera can transmit the switching instruction by using the following implementation modes B1 and B2.
  • the first pan-tilt camera may send the switching instruction to the monitoring platform when determining that a shooting angle of the first pan-tilt camera reaches a preset shooting angle.
  • the end shooting angle is preset in each pan/tilt camera.
  • the first pan-tilt camera determines the shooting angle of the first pan-tilt camera.
  • the switching instruction is sent to the monitoring platform when a preset end shooting angle is reached.
  • the ending shooting angle can also be set by setting a preset position. The ending shooting angle may be specifically set according to the distance between the cameras and the range that each camera can monitor.
  • the first PTZ camera may further determine, when determining that the second angle is greater than or equal to the first angle, that the monitoring platform selects another PTZ camera that takes over the PTZ camera shooting target; the second angle An angle between a ray from the pan-tilt camera to a current position of the target and a first line, the first angle being a ray from the pan-tilt camera to an initial position of the target and the An angle between the first straight lines, the first straight line being a perpendicular to a straight line of the moving path of the pan-tilt camera to the target.
  • the dome 1 is an example of the first pan-tilt camera
  • the dome 2 is an example of the second pan-tilt camera
  • the thick line is an example of a moving route of the target, if the target is In an exercising vehicle, the moving route of the target is usually a straight line where the road the vehicle is exercising
  • the straight line L is an example of the first straight line.
  • a position corresponding to the position information included in the tracking instruction (hereinafter referred to as an initial position of the target) and a straight line where the current position of the target are located may be used as a straight line of the moving route of the target. .
  • the first pan-tilt camera After receiving the tracking instruction, the first pan-tilt camera turns to a start tracking position (corresponding to the initial position of the target) as shown in FIG. 5 to start tracking shooting, assuming that the first pan-tilt camera at this time
  • the center line of the field of view range ie, the line between the first pan-tilt camera and the target
  • the line L are ⁇ , when the center line of the field of view of the first pan-tilt camera is turned to
  • the angle of the line L is also the position of ⁇ (the end tracking position as shown in FIG. 5)
  • the first pan/tilt camera may transmit the switching instruction to the monitoring platform.
  • the monitoring platform may further determine, according to one of the foregoing implementation manners A or B, that another PTZ camera that needs to select the second PTZ camera to capture the target is selected (as shown in FIG. 1).
  • the pan/tilt camera 113) is shown to perform tracking shooting on the target in sequence.
  • the second pan-tilt camera may send a switching instruction to the monitoring platform according to one of the implementation manners B1 or B2.
  • the monitoring platform may send a stop tracking instruction to the first pan-tilt camera after sending the tracking instruction to the second pan-tilt camera, and correspondingly, the first
  • the pan-tilt camera receives the stop tracking command, the tracking shooting of the target is stopped, specifically, the current shooting direction may be kept, or the shooting direction may be adjusted to a preset default shooting angle.
  • step S101 in mode B that is, the first pan-tilt camera sends a switching instruction to the monitoring platform before step S101
  • the first pan-tilt camera may also send the switching instruction.
  • the tracking of the target is stopped after a preset length of time.
  • each pan-tilt camera determines the target shooting angle and adjusts the shooting angle to the target shooting angle to capture the target
  • the tracking of the target may be performed by performing target detection on the captured image, or the current location information of the target may be acquired from the monitoring platform in real time, and the target may be tracked according to the location information.
  • the second PTZ camera may adjust the second according to the actual geographical position (latitude and longitude, etc.) of the target and the PTZ camera, and the current lens orientation of the PTZ camera.
  • the shooting angle of the PTZ camera makes it possible to accurately track the target.
  • the monitoring platform may select a second pan-tilt camera to take over the target from the first pan-tilt camera according to the actual geographic location (latitude, longitude, etc.) of the target, so that the second pan-tilt camera with the appropriate position may be selected to perform the target Track shots for even more precise tracking.
  • Embodiment 2 of the present invention proposes a PTZ camera 200.
  • the pan-tilt camera 200 can include an electronic compass 210, a GPS chip 220, and a processor 230.
  • the electronic compass 210 is used to acquire the lens orientation of the pan-tilt camera 200
  • the GPS chip 220 is used to acquire the location information of the pan-tilt camera 200
  • the processor 230 is configured to execute the cloud in the method 100 of the first embodiment.
  • the operations performed by the camera (such as the first pan-tilt camera, the second pan-tilt camera) are adjusted in a manner of implementing mode M when adjusting the shooting angle.
  • the processor 230 may specifically be a central processing unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the pan-tilt camera 200 may further include a transceiver 240, when the processor 230 performs the operations performed by the pan-tilt camera (such as the first pan-tilt camera, the second pan-tilt camera) in the method 100 of the first embodiment Receiving, by the transceiver, a tracking instruction sent by the monitoring platform, and sending a switching instruction to the monitoring platform by using the transceiver.
  • the processor 230 adjusts in a manner of implementing the mode N when adjusting the shooting angle, the pan/tilt camera 200 may not include the electronic compass 210 and the GPS chip 220.
  • the pan/tilt camera 200 may specifically be a dome camera.
  • the dome includes a movement, a dome main board, a pan/tilt control board, an interface board, and a GPS chip.
  • the electronic compass is built in the movement; the processor 230 is specifically the 8127 main chip on the main board of the dome; the movement and the main board of the dome are communicated through a Universal Asynchronous Receiver/Transmitter port (UART).
  • the GPS chip interacts with the dome interface board through the 485 interface; the STM32 microcontroller on the interface board receives the position information transmitted by the GPS chip and transmits it to the 8127 main chip of the dome of the dome; the transceiver 240 is located on the interface board.
  • the 8127 main chip of the dome of the dome controls the pan/tilt of the dome through the pan/tilt control panel to adjust the shooting direction of the dome.
  • the PTZ camera 300 may further be a camera that can be externally connected to the PTZ (hereinafter referred to as the camera 300').
  • the PTZ camera 300' does not have a built-in PTZ component, and communicates with the PTZ through the 485 interface.
  • the PTZ camera 300' includes an electronic compass 210, a GPS chip 220, a processor 230, and a transceiver 240.
  • a PTZ camera 300 is proposed. As shown in FIG. 7, the PTZ camera 300 includes a receiving unit 310 and a processing unit 320, and may further include a sending unit 330.
  • the functional unit described in Embodiment 3 of the present invention can be used to implement the operations performed by the pan-tilt camera (such as the first pan-tilt camera and the second pan-tilt camera) in the method 100 described in the above embodiment 1.
  • the receiving unit 310 is configured to receive a tracking instruction from the monitoring platform
  • the processing unit 320 is configured to adjust a shooting angle of the PTZ camera 300 according to the tracking instruction
  • the sending unit 330 is configured to The monitoring platform sends a switching instruction.
  • the shooting angle of the PTZ camera can be adjusted according to the actual geographical position (latitude and longitude, etc.) of the target and the PTZ camera, and the current lens orientation of the PTZ camera. Tracking the target accurately.
  • Embodiment 4 of the present invention provides a monitoring platform 400.
  • the monitoring platform 400 includes a processing unit 410 and a sending unit 420, and may further include a receiving unit 430.
  • the functional unit described in Embodiment 3 of the present invention can be used to implement the operations performed by the monitoring platform in the method described in Embodiment 1 above.
  • the processing unit 410 is configured to: when determining that the second PTZ camera that needs to succeed the first PTZ camera shooting target is selected, select a PTZ camera that meets the tracking condition according to the location information of the target as the a pan/tilt camera, and sending a tracking instruction to the second pan-tilt camera through the sending unit 420; the sending unit 420 is configured to send a tracking instruction to the pan-tilt camera (such as the second pan-tilt camera).
  • the receiving unit 410 is configured to receive a switching instruction sent by the PTZ camera (such as the first PTZ camera).
  • the processing unit 410 is configured to determine, according to the switching instruction, that the selection needs to be succeeded.
  • the first PTZ camera captures the target's second PTZ camera.
  • Embodiment 5 of the present invention provides a monitoring platform 500.
  • the monitoring platform 500 includes a processor 510 and a memory 520, wherein the processor 510 and the memory 520 are completed by using a bus. Communication with each other.
  • the memory 520 is configured to store computer operation instructions. Specifically, it may be a high speed RAM memory or a non-volatile memory.
  • the processor 510 is configured to execute computer operation instructions stored in the memory 520.
  • Processor 510 may be, in particular, a CPU, or an ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the processor 510 executes the computer operation instructions to cause the monitoring platform 500 to perform the operations performed by the monitoring platform in the method described in Embodiment 1 above.
  • the second PTZ camera that takes over the target of the first PTZ camera can be selected according to the actual geographical position (latitude, longitude, etc.) of the target, so that the position corresponding to the position can be selected.
  • the second PTZ camera tracks and shoots the target to achieve accurate tracking.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)

Abstract

本发明实施例公开了一种实现目标跟踪的方法、云台摄像机和监控平台。所述云台摄像机包括用于获取所述云台摄像机的镜头朝向的电子罗盘、用于获取所述云台摄像机的位置信息的GPS芯片和处理器。所述处理器,用于接收监控平台发送的包括目标的位置信息的跟踪指令,并根据所述目标的位置信息、所述GPS芯片获取的所述云台摄像机的位置信息、以及所述电子罗盘获取的所述云台摄像机的镜头朝向调整所述云台摄像机的拍摄角度以拍摄所述目标。根据本发明实施例,可以根据目标和云台摄像机的实际地理位置、以及所述云台摄像机当前的镜头朝向调整该云台摄像机的拍摄角度,因此可以准确地对目标进行跟踪拍摄。

Description

一种实现目标跟踪的方法、云台摄像机和监控平台
本申请要求于2017年3月8日提交中国专利局、申请号为201710135104.7、发明名称为“一种实现目标跟踪的方法、云台摄像机和监控平台”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及视频监控领域,尤其涉及实现目标跟踪的方法、云台摄像机和监控平台。
背景技术
云台摄像机是视频监控领域的一种支持调整拍摄方向并进行镜头变倍的摄像机,具体可以是球机或可外接云台的摄像机。
云台摄像机的主要优势在于其支持垂直方向上下、水平方向左右调整拍摄方向以及沿光轴方向的镜头变倍,从而可以使用户全方位地观察四周的物体,其视野不受相机安装位置、安装角度及镜头视角的限制。因此在实际监控场景中可以利用多个云台摄像机对移动的目标进行跟踪。
在实现目标跟踪的现有技术中,需要先获取各个云台摄像机拍摄的图像,并根据各个云台摄像机拍摄的图像计算各个云台摄像机的视野分割线,当检测到目标移动过视野分割线进入下一云台摄像机的视野时,根据目标在该云台摄像机的视野中的坐标计算该云台摄像机的初始拍摄角度。根据该方法实现目标跟踪,跟踪交接相关信息的获取(如初始拍摄角度的计算、下一云台摄像机的选择等)依赖于对各云台摄像机拍摄的图像的分析。由于各个云台摄像机拍摄的角度不同,因此分析的结果往往并不准确,导致无法准确地对目标进行跟踪拍摄。
发明内容
本发明实施例提供一种实现目标跟踪的方法、云台摄像机和监控平台,用于解决现有技术中存在的目标跟踪的准确度不高的问题。
本申请第一方面提供了一种云台摄像机,所述云台摄像机包括用于获取所述云台摄像机的镜头朝向的电子罗盘、用于获取所述云台摄像机的位置信息(包括所述云台摄像机的经纬度)的GPS芯片和处理器。
所述处理器,用于接收监控平台发送的跟踪指令,所述跟踪指令包括目标的位置信息,所述目标的位置信息包括所述目标的经纬度;并用于根据所述目标的位置信息、所述GPS芯片获取的所述云台摄像机的位置信息、所述电子罗盘获取的所述云台摄像机的镜头朝向调整所述云台摄像机的拍摄角度以拍摄所述目标,如根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度,并将所述云台摄像机的拍摄角度调整至所述目的拍摄角度以拍摄所述目标。
根据第一方面的实现方式,可以根据目标和云台摄像机的实际地理位置(经纬度等)、以及所述云台摄像机当前的镜头朝向调整该云台摄像机的拍摄角度,因此可以准确地对目标进行跟踪拍摄。
在第一方面的第一种可能的实现方式中,所述目的拍摄角度包括目的水平拍摄角度和目的垂直拍摄角度,相应地,所述处理器根据所述目标的经纬度和所述云台摄像机的经纬度计算所述目标相对于所述云台摄像机的方位,并根据如下公式计算所述目的水平拍摄角度:
Pgoal=Pcur+(A-R)
其中,Pgoal为所述云台摄像机的目的水平拍摄角度,Pcur为所述云台摄像机的当前水平拍摄角度,A为所述目标相对于所述云台摄像机的方位,R为所述云台摄像机的镜头朝向。所述处理器还根据所述目标的经纬度、所述云台摄像机的经纬度、以及所述目标和所述云台摄像机之间的高度差计算所述云台摄像机的的目的垂直拍摄角度。
在具体实现时,可以根据公式T=arcs in(h/d)计算所述目的垂直拍摄角度,其中,T为所述目的垂直拍摄角度,h为所述高度差,d为所述目标和所述云台摄像机之间的距离。所述处理器具体可以根据通过所述GPS芯片获得的自身的海拔高度和从所述跟踪指令获取的所述目标的海拔高度计算所述高度差。
根据第一方面的第一种可能的实现方式,可以精确地计算所述云台摄像机要调整到的水平拍摄角度和垂直拍摄角度,从而精确地实现目标跟踪。
本申请第二方面提供了一种云台摄像机,所述云台摄像机包括收发器和处理器;
所述处理器,用于通过所述收发器接收监控平台发送的跟踪指令,并将所述云台摄像机的拍摄角度调整至预设的开始拍摄角度;还用于在确定所述云台摄像机的拍摄角度到达预设的结束拍摄角度时通过所述收发器向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机。
所述开始拍摄角度和所述结束拍摄位置具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围设置的。
根据第二方面的实现方式,可以根据预设的开始拍摄角度和结束拍摄角度对目标进行跟踪拍摄,而该开始拍摄角度和结束拍摄角度具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围设置的,因此可以准确地对目标进行跟踪拍摄。
本申请第三方面提供了一种监控平台,所述监控平台包括处理单元和发送单元;所述处理单元,用于在确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机时,根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机,所述第一云台摄像机为正在拍摄所述目标的云台摄像机;还用于通过所述发送单元向所述第二云台摄像机发送跟踪指令,所述跟踪指令用于指示所述第二云台摄像机对所述目标进行拍摄。
根据第三方面的实现方式,可以根据目标的实际地理位置(经纬度等)选择要接替第一云台摄像机拍摄所述目标的第二云台摄像机,因此可以选择位置合适的第二云台摄像机对所述目标进行跟踪拍摄,从而实现精准跟踪。
在第三方面的第一种可能的实现方式中,所述满足跟踪条件的第二云台摄像机,具体可以是与所述目标之间的距离小于或等于预设的第二距离阈值的云台摄像机,也可以是多 个云台摄像机中的与所述目标之间的距离最小的云台摄像机。
所述处理单元具体可以根据所述目标的经纬度和与所述第一云台摄像机相邻的云台摄像机的经纬度计算与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离,并根据与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离选择与所述目标之间的距离小于或等于所述距离阈值的云台摄像机或与所述目标之间的距离最小的云台摄像机。
根据第三方面的第一种可能的实现方式,由于可以仅在与所述第一云台摄像机相邻的云台摄像机中进行选择,计算量比较小,可以节省所述监控平台的计算资源。
本申请第四方面提供了一种实现目标跟踪的方法,所述方法包括:云台摄像机接收监控平台发送的跟踪指令,所述跟踪指令包括目标的位置信息,所述目标的位置信息包括所述目标的经纬度,获取所述云台摄像机的镜头朝向,并根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息调整所述云台摄像机的拍摄角度以拍摄所述目标,所述云台摄像机的位置信息包括所述云台摄像机的经纬度,如根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度,并将所述云台摄像机的拍摄角度调整至所述目的拍摄角度以拍摄所述目标。
根据第四方面的实现方式,可以根据目标和云台摄像机的实际地理位置(经纬度等)、以及所述云台摄像机当前的镜头朝向调整该云台摄像机的拍摄角度,因此可以准确地对目标进行跟踪拍摄。
在第四方面的第一种可能的实现方式中,所述目的拍摄角度包括目的水平拍摄角度和目的垂直拍摄角度;相应地,所述云台摄像机根据所述目标的经纬度和所述云台摄像机的经纬度计算所述目标相对于所述云台摄像机的方位,并根据如下公式计算所述目的水平拍摄角度:
Pgoal=Pcur+(A-R)
其中,Pgoal为所述云台摄像机的目的水平拍摄角度,Pcur为所述云台摄像机的当前水平拍摄角度,Q为所述目标相对于所述云台摄像机的方位,A为所述云台摄像机的镜头朝向。
所述云台摄像机还根据所述目标的经纬度、所述云台摄像机的经纬度、以及所述目标和所述云台摄像机之间的高度差计算所述云台摄像机的的目的垂直拍摄角度。
在具体实现时,可以根据公式T=arcs in(h/d)计算所述目的垂直拍摄角度,其中,T为所述目的垂直拍摄角度,h为所述高度差,d为所述目标和所述云台摄像机之间的距离。所述处理器具体可以根据通过所述GPS芯片获得的自身的海拔高度和从所述跟踪指令获取的所述目标的海拔高度计算所述高度差。
根据第四方面的第一种可能的实现方式,可以精确地计算所述云台摄像机要调整到的水平拍摄角度和垂直拍摄角度,从而精确地实现目标跟踪。
本申请第五方面提供了一种实现目标跟踪的方法,所述方法包括:云台摄像机在接收到监控平台发送的跟踪指令时将所述云台摄像机的拍摄角度调整至预设的开始拍摄角度;所述云台摄像机在确定所述云台摄像机的拍摄角度到达预设的结束拍摄角度时向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄 目标的其它云台摄像机。所述开始拍摄角度和所述结束拍摄位置具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围设置的。
根据第二方面的实现方式,可以根据预设的开始拍摄角度和结束拍摄角度对目标进行跟踪拍摄,而该开始拍摄角度和结束拍摄角度具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围设置的,因此可以准确地对目标进行跟踪拍摄。
本申请第六方面提供了一种实现目标跟踪的方法,所述方法包括:监控平台在确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机时,根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机,所述第一云台摄像机为正在拍摄所述目标的云台摄像机,所述目标的位置信息包括所述目标的经纬度,并向所述第二云台摄像机发送跟踪指令,所述跟踪指令用于指示所述第二云台摄像机对所述目标进行拍摄。
根据第六方面的实现方式,可以根据目标的实际地理位置(经纬度等)选择要接替第一云台摄像机拍摄所述目标的第二云台摄像机,因此可以选择位置合适的第二云台摄像机对所述目标进行跟踪拍摄,从而实现精准跟踪。
在第六方面的第一种可能的实现方式中,所述满足跟踪条件的第二云台摄像机,具体可以是与所述目标之间的距离小于或等于预设的第二距离阈值的云台摄像机,也可以是多个云台摄像机中的与所述目标之间的距离最小的云台摄像机。
所述监控平台具体可以根据所述目标的经纬度和与所述第一云台摄像机相邻的云台摄像机的经纬度计算与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离,并根据与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离选择与所述目标之间的距离小于或等于所述距离阈值的云台摄像机或与所述目标之间的距离最小的云台摄像机。
根据第六方面的第一种可能的实现方式,由于可以仅在与所述第一云台摄像机相邻的云台摄像机中进行选择,计算量比较小,可以节省所述监控平台的计算资源。
本申请第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请第八方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本发明实施例提供的目标跟踪***100的组网结构示意图;
图2为本发明实施例提供的方法100的流程示意图;
图3-图5表示云台摄像机和目标之间的位置关系的示意图;
图6a和图6b是本发明实施例2提供的云台摄像机200的结构示意图;
图7是本发明实施例3提供的云台摄像机300的结构示意图;
图8是本发明实施例4提供的监控平台400的结构示意图;
图9是本发明实施例5提供的监控平台500的结构示意图;
具体实施方式
下面结合附图,对本发明的实施例进行描述。
图1为本发明实施例提供的一种目标跟踪***100的组网结构示意图,目标跟踪***100包括云台摄像机110和监控平台120。云台摄像机和监控平台120之间通过网络通信。所述云台摄像机110具体可以是球机,也可以是可外接云台的摄像机。
监控平台120在确定要对目标(如一辆行驶中的车)开始跟踪时,可以确定一个离该目标最近的云台摄像机A(如云台摄像机111)并指示云台摄像机A对该目标进行跟踪拍摄。
在跟踪过程中,当监控平台120在确定需要选择接替云台摄像机A拍摄目标的其它云台摄像机时,例如,在确定目标与云台摄像机A的距离超过预设的距离阈值时,确定一个接替云台摄像机A拍摄该目标的云台摄像机B(如云台摄像机112)并指示云台摄像机B对该目标进行跟踪拍摄。进一步,当监控平台在确定需要选择接替云台摄像机B拍摄目标的其它云台摄像机时,确定一个接替云台摄像机B拍摄该目标的云台摄像机C(如云台摄像机113)并指示云台摄像机C对该目标进行跟踪拍摄。依次对所述目标进行接力跟踪拍摄。
下面结合图1和图2介绍本发明实施例一提供的方法100。如图2所示,方法100包括如下步骤。
S101:监控平台(如图1所示的监控平台120)确定需要选择接替第一云台摄像机(如图1所示的云台摄像机112)拍摄目标的第二云台摄像机,所述第一云台摄像机为正在拍摄所述目标的云台摄像机。
所述监控平台具体可以在判断出所述目标和所述第一云台摄像机之间的距离(后续称为第一距离)大于预设的距离阈值时确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。后续将这种确定方式称为实现方式A。
所述监控平台需要实时获取所述目标的位置信息。具体可以是所述目标上的定位装置将定位出的位置信息上报给所述监控平台,如,所述目标为一辆车,所述定位装置具体可以是这辆车上的具有全球定位***(GPS,Global Positioning System)功能的设备,如手机、导航设备等。具体还可以是所述监控平台通过位置服务器获取所述目标的位置信息。通常所述监控平台可以周期性地获取所述目标当前的位置信息。所述目标的位置信息包括所述目标的经纬度,还可以包括所述目标的海拔高度。
所述监控平台还需要获取各云台摄像机的位置信息,具体可以是由各云台摄像机将各云台摄像机的GPS芯片定位出的位置信息上报给所述监控平台。通常,各云台摄像机在安装到各自的监控地点时上报各自的位置信息。所述云台摄像机的位置信息包括所述云台摄像机的经纬度,还可以包括所述云台摄像机的海拔高度。
在实现方式A中,所述监控平台可以根据所述目标的经纬度和所述第一云台摄像机的经纬度计算所述第一距离。具体可以根据如下公式计算所述第一距离:
Figure PCTCN2018076764-appb-000001
其中,d为所述第一距离,(Aw,Aj)为所述目标的经纬度,(Bw,Bj)为所述第一云台摄像机的经纬度,R为地球的半径。经纬度使用十进制角度数,如DDD.DDDD°。
进而,所述监控平台判断所述第一距离是否大于预设的距离阈值(后续称为第一距离阈值)。如果大于所述第一距离阈值,则可以确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机,并执行步骤S102;否则,根据所述目标移动后的位置对应的经纬度和所述第一云台摄像机的经纬度重新计算所述第一距离,并进而判断所述第一距离是否大于所述第一距离阈值,直至所述第一距离大于所述第一距离阈值。
S102:所述监控平台根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机。
所述满足跟踪条件的第二云台摄像机具体可以是与所述目标之间的距离小于或等于预设的距离阈值(后续称为第二距离阈值)的云台摄像机,也可以是多个云台摄像机中的与所述目标之间的距离最小的云台摄像机。所述第二距离阈值,可以与所述第一距离阈值相等。
在具体实现时,所述监控平台可以根据所述目标的经纬度和预先记录的各云台摄像机的经纬度计算各云台摄像机与所述目标之间的距离,并根据各云台摄像机与所述目标之间的距离选择与所述目标之间的距离小于或等于所述距离阈值的云台摄像机或与所述目标之间的距离最小的云台摄像机。
所述监控平台还可以预先记录各云台摄像机之间的位置关系,如,从南到北依次为云台摄像机111、云台摄像机112、云台摄像机113和云台摄像机114。通常要接替第一云台摄像机拍摄所述目标的云台摄像机是与所述第一云台摄像机相邻的云台摄像机中的一个,如,当前正在拍摄所述目标的云台摄像机是云台摄像机112,则下一个需要接替云台摄像机112拍摄所述目标的云台摄像机一般为云台摄像机111或113,则所述监控平台可以根据所述目标的经纬度和与所述第一云台摄像机相邻的云台摄像机的经纬度计算与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离,并根据与所述第一云台摄像机相邻的各云台摄像机与所述目标之间的距离选择与所述目标之间的距离小于或等于所述距离阈值的云台摄像机或与所述目标之间的距离最小的云台摄像机。由于仅在与所述第一云台摄像机相邻的云台摄像机中进行选择,计算量比较小,可以节省所述监控平台的计算资源。
在计算所述目标和某一云台摄像机之间的距离时,具体可以根据步骤S101中计算所述目标和所述第一云台摄像机之间的距离的方法,不再赘述。
S103:所述监控平台向所述第二云台摄像机发送跟踪指令,所述跟踪指令用于指示所述第二云台摄像机对所述目标进行拍摄。
S104:所述第二云台摄像机根据所述跟踪指令调整所述第二云台摄像机的拍摄角度以拍摄所述目标。
具体可以通过实现方式M和实现方式N实现步骤S104。
实现方式M:
所述跟踪指令包括所述目标的位置信息。
所述第二云台摄像机收到所述跟踪指令后,获取所述第二云台摄像机的镜头朝向,并根据所述第二云台摄像机的位置信息、镜头朝向和所述目标的位置信息调整所述第二云台摄像机的拍摄角度以拍摄所述目标。
所述第二云台摄像机具体可以根据所述第二云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度,并将所述第一云台摄像机的拍摄角度调整至所述目的拍摄角度以拍摄所述目标。
云台摄像机的拍摄角度包括水平拍摄角度和垂直拍摄角度。相应地,所述目的拍摄角度包括目的水平拍摄角度和目标垂直拍摄角度。
所述第二云台摄像机可以根据如下方式计算所述目的水平拍摄角度(即所述第二云台摄像机的目的P值)。
S104A:所述第二云台摄像机根据所述目标的经纬度和所述第二云台摄像机的经纬度计算所述目标相对于所述第二云台摄像机的方位。
如图3所示,A为所述目标的位置,经纬度为(Aw,Aj),B为所述第二云台摄像机的位置,经纬度为(Bw,Bj),O为地球的中心点,C为北极点。
根据球面余弦公式,
cos(c)=cos(a)×cos(b)+sin(a)×sin(b)×cos(C)
其中,∠C是面AOC和面BOC之间的夹角,也就是Bj-Aj
将已知数据代入,得出公式:
cos(c)=cos(90-Bw)×cos(90-Aw)+sin(90-Bw)×sin(90-Aw)×cos(Bj-Aj)
则,c=arccos(cos(90-Bw)×cos(90-Aw)+sin(90-Bw)×sin(90-Aw)×cos(Bj-Aj))
根据球面正弦公式,
Figure PCTCN2018076764-appb-000002
其中,∠A为面AOB和AOC之间的夹角,∠B为面AOB和BOC之间的夹角,∠C为面AOC和面BOC之间的夹角。
Figure PCTCN2018076764-appb-000003
所以,得到∠A的值
Figure PCTCN2018076764-appb-000004
∠A的值用于表征所述目标相对于所述第二云台摄像机的方位。
S104B:所述第二云台摄像机根据如下公式计算所述目的水平拍摄角度:
Pgoal=Pcur+(A-R)
其中,Pgoal为所述第二云台摄像机的目的水平拍摄角度,Pcur为所述第二云台摄像机的当前水平拍摄角度(即所述第二云台摄像机当前的P值),如图4所示,∠A表示所述目标相对于所述第二云台摄像机的方位,∠R表示所述第二云台摄像机的镜头朝向。
所述第二云台摄像机具体可以根据所述目标的经纬度、所述云台第二云台摄像机的经纬度、以及所述目标和所述第二云台摄像机之间的高度差计算所述第二云台摄像机的的目的垂直拍摄角度(即所述第二云台摄像机的目的T值)。具体可以根据公式T=arcs in(h/d)计算所述目的垂直拍摄角度,其中,T为所述目的垂直拍摄角度,h为所述高度差,d为所述目标和所述第二云台摄像机之间的距离。
在具体实现时,所述第二云台摄像机具体可以根据所述第二云台摄像机利用GPS芯片获得的自身的海拔高度和从所述跟踪指令获取的所述目标的海拔高度计算所述高度差。
另外,所述第二云台摄像机还可以根据所述目标和所述第二云台摄像机之间的距离(后续称为第二距离)确定所述第二云台摄像机的目的倍率(即所述第二云台摄像机的目的Z值),并调整所述云台摄像机的拍摄倍率至所述目的倍率。
在具体实现时,可以预先设置多个距离范围与倍率的对应关系,如:
距离范围 Z值(倍率)
(0,20m] 1
(20,30m] 1.3
(30,40m] 1.9
(40,50m] 2.5
(50,100m] 4.5
所述第二云台摄像机可以根据预先设置的多个距离范围与倍率的对应关系确定所述第二距离所在的距离范围所对应的倍率值作为所述目的倍率。
实现方式N:
在每个云台摄像机中都预设开始拍摄角度,所述开始拍摄角度可以采用设置预置位的方式进行设置。所述开始拍摄角度具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围设置的。
相应地,所述第二云台摄像机可以在接收到所述跟踪指令时将所述第二云台摄像机的拍摄角度调整至预设的开始拍摄角度。
需要说明的是,在步骤S101之前,所述监控平台还可以向所述第一云台摄像机发送用于指示所述第一云台摄像机对所述目标进行拍摄的跟踪指令。相应地,所述第一云台摄像机收到所述跟踪指令后对所述目标进行拍摄。具体实现方式同步骤S103和S104,不再赘述。
在所述第一云台摄像机对所述目标进行跟踪拍摄的过程中,所述监控平台可以采用上述实现方式A执行步骤S101,也可以采用如下实现方式B执行步骤S101以确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机。
实现方式B:所述监控平台可以根据所述第一云台摄像机发送的切换指令确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机,所述切换指令用于指示所述监控平台选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。
相应地,所述第一云台摄像机可以采用如下实现方式B1和B2发送所述切换指令。
实现方式B1:所述第一云台摄像机可以在确定所述第一云台摄像机的拍摄角度到达预设的拍摄角度时向所述监控平台发送所述切换指令。如,对应于上述实现方式N,在每个云台摄像机中都预设结束拍摄角度,相应地,在步骤S101中,所述第一云台摄像机在确定所述第一云台摄像机的拍摄角度到达预设的结束拍摄角度时向所述监控平台发送所述切换指令。所述结束拍摄角度也可以采用设置预置位的方式进行设置。所述结束拍摄角度具体可以是根据各摄像机之间的距离以及各摄像机可监控的范围进行设置的。
实现方式B2:所述第一云台摄像机还可以在判断出第二角度大于或等于第一角度时确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机;所述第二角度从所述云台摄像机到所述目标的当前位置的射线与第一直线之间的夹角,所述第一角度为从所述云台摄像机到所述目标的初始位置的射线和所述第一直线之间的夹角,所述第一直线为所述云台摄像机到所述目标的移动路线所在直线的垂线。
如图5所示,球机1为所述第一云台摄像机的示例;球机2为所述第二云台摄像机的示例;粗线为所述目标的移动路线示例,如果所述目标为一辆行使中的车辆,则所述目标的移动路线通常为所述车辆行使的道路所在的直线;直线L为所述第一直线的示例。
在具体实现时,可以将所述跟踪指令中包括的位置信息对应的位置(后续称为所述目标的初始位置)和所述目标的当前位置所在的直线作为所述目标的移动路线所在的直线。
所述第一云台摄像机收到所述跟踪指令后,转到如图5所示的开始跟踪位置(与所述目标的初始位置对应)开始跟踪拍摄,假定此时所述第一云台摄像机的视场范围的中心线(即所述第一云台摄像机与所述目标所在的直线)与直线L的夹角为α,则当第一云台摄像机的视场范围的中心线转到与直线L的夹角也为α的位置(如图5所示的结束跟踪位置)时,所述第一云台摄像机可以向所述监控平台发送所述切换指令。
可以理解的是,在步骤S104之后,所述监控平台还可以根据上述实现方式A或B中的一种确定需要选择接替第二云台摄像机拍摄所述目标的其它云台摄像机(如图1所示的云台摄像机113),依次对所述目标进行跟踪拍摄。相应地,当所述监控平台根据上述实现方式B执行确定操作时,所述第二云台摄像机可以根据上述实现方式B1或B2中的一种向所述监控平台发送切换指令。
另外,在本发明实施例一中,所述监控平台可以在向所述第二云台摄像机发送所述跟踪指令后向所述第一云台摄像机发送停止跟踪指令,相应地,所述第一云台摄像机收到所述停止跟踪指令时停止对所述目标的跟踪拍摄,具体可以保持当前的拍摄方向不动,也可以将拍摄方向调整至预先设置的默认拍摄角度。
如果所述监控平台通过方式B实现步骤S101,即在步骤S101之前所述第一云台摄像机向所述监控平台发送切换指令,则所述第一云台摄像机也可以在发送所述切换指令后再经过预设时间长度停止对所述目标的跟踪拍摄。
需要说明的是,在各云台摄像机(如所述第二云台摄像机)确定所述目的拍摄角度并 将拍摄角度调整至所述目的拍摄角度对所述目标进行拍摄后,当所述目标移动时,还需要对所述目标进行跟踪拍摄。具体可以通过对拍摄的图像进行目标检测的方式实现对所述目标的跟踪拍摄,也可以实时从所述监控平台获取所述目标当前的位置信息,并根据该位置信息对所述目标进行跟踪拍摄。
根据本发明实施例1,所述第二云台摄像机可以根据所述目标和所述云台摄像机的实际地理位置(经纬度等)、以及所述第二云台摄像机当前的镜头朝向调整该第二云台摄像机的拍摄角度,因此可以准确地对所述目标进行跟踪拍摄。所述监控平台可以根据目标的实际地理位置(经纬度等)选择要接替第一云台摄像机拍摄所述目标的第二云台摄像机,因此可以选择位置合适的第二云台摄像机对所述目标进行跟踪拍摄,从而进一步实现精准跟踪。
根据本发明实施例1,本发明实施例2提出了一种云台摄像机200。
如图6a所示,云台摄像机200可以包括:电子罗盘210、GPS芯片220和处理器230。其中,电子罗盘210用于获取所述云台摄像机200的镜头朝向,GPS芯片220用于获取所述云台摄像机200的位置信息,处理器230用于执行实施例一所述方法100中的云台摄像机(如所述第一云台摄像机、所述第二云台摄像机)执行的操作,并且在调整拍摄角度时具体通过实现方式M的方式进行调整。
处理器230具体可以是中央处理器(central processing unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
云台摄像机200还可以包括收发器240,处理器230在执行实施例一所述方法100中的云台摄像机(如所述第一云台摄像机、所述第二云台摄像机)执行的操作时,具体通过所述收发器接收监控平台发送的跟踪指令,以及通过所述收发器向所述监控平台发送切换指令。另外,如果处理器230在调整拍摄角度时具体通过实现方式N的方式进行调整,则云台摄像机200可以不用包括电子罗盘210和GPS芯片220。
所述云台摄像机200具体可以是球机。
如图6b所示,所述球机包括机芯、球机主板、云台控制板、接口板和GPS芯片。其中,电子罗盘内置在机芯中;处理器230具体为球机主板上的8127主芯片;机芯和球机主板通过同轴线异步收发传输器(UART,Universal Asynchronous Receiver/Transmitter)口进行通信;GPS芯片通过485接口与球机接口板进行交互;接口板上的STM32单片机接收GPS芯片传输过来的位置信息并传送给球机主板的8127主芯片;收发器240位于所述接口板。球机主板的8127主芯片通过云台控制板控制所述球机的云台以调整所述球机的拍摄方向。
所述云台摄像机300具体还可以是可外接云台的摄像机(后续称为摄像机300’),所述云台摄像机300’没有内置云台部件,通过485接口与所述云台通信,且所述云台摄像机300’包括电子罗盘210、GPS芯片220、处理器230和收发器240。
根据本发明实施例1,本发明实施例3提出了一种云台摄像机300,如图7所示,所述云台摄像机300包括:接收单元310和处理单元320,还可以包括发送单元330。
本发明实施例3中描述的功能单元可以用来实施上述实施例1所述的方法100中的云 台摄像机(如所述第一云台摄像机、所述第二云台摄像机)执行的操作。具体地,所述接收单元310用于从监控平台接收跟踪指令,所述处理单元320用于根据所述跟踪指令调整所述云台摄像机300的拍摄角度,所述发送单元330用于向所述监控平台发送切换指令。
根据本发明实施例1或2提供的云台摄像机,可以根据目标和云台摄像机的实际地理位置(经纬度等)、以及所述云台摄像机当前的镜头朝向调整该云台摄像机的拍摄角度,因此可以准确地对目标进行跟踪拍摄。
根据本发明实施例1,本发明实施例4提出了一种监控平台400,如图8所示,所述监控平台400包括:处理单元410和发送单元420,还可以包括接收单元430。
本发明实施例3中描述的功能单元可以用来实施上述实施例1所述的方法中的监控平台执行的操作。具体地,所述处理单元410,用于在确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机时,根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机,并通过所述发送单元420向所述第二云台摄像机发送跟踪指令;发送单元420用于向云台摄像机(如所述第二云台摄像机)发送跟踪指令。所述接收单元410,用于接收云台摄像机(如所述第一云台摄像机)发送的切换指令;相应地,所述处理单元410,具体用于根据所述切换指令确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。
根据本发明实施例1,本发明实施例5提供了一种监控平台500,如图9所示,监控平台500包括处理器510和存储器520,其中,处理器510和存储器520之间通过总线完成相互间的通信。
存储器520,用于存放计算机操作指令。具体可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory)。
处理器510,用于执行存储器520中存放的计算机操作指令。处理器510具体可以是CPU,或者是ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
其中,处理器510执行所述计算机操作指令使得监控平台500执行上述实施例1所述的方法中监控平台所执行的操作。
根据本发明实施例4或5提供的监控平台,可以根据目标的实际地理位置(经纬度等)选择要接替第一云台摄像机拍摄所述目标的第二云台摄像机,因此可以选择位置合适的第二云台摄像机对所述目标进行跟踪拍摄,从而实现精准跟踪。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (28)

  1. 一种云台摄像机,其特征在于,所述云台摄像机包括电子罗盘、全球定位***GPS芯片和处理器;
    所述电子罗盘,用于获取所述云台摄像机的镜头朝向;
    所述GPS芯片,用于获取所述云台摄像机的位置信息,所述云台摄像机的位置信息包括所述云台摄像机的经纬度;
    所述处理器,用于接收监控平台发送的跟踪指令,所述跟踪指令包括目标的位置信息,所述目标的位置信息包括所述目标的经纬度;并用于根据所述目标的位置信息、所述GPS芯片获取的所述云台摄像机的位置信息、所述电子罗盘获取的所述云台摄像机的镜头朝向调整所述云台摄像机的拍摄角度以拍摄所述目标。
  2. 如权利要求1所述的云台摄像机,其特征在于,所述处理器用于根据所述目标的位置信息、所述GPS芯片获取的所述云台摄像机的位置信息、所述电子罗盘获取的所述云台摄像机的镜头朝向调整所述云台摄像机的拍摄角度以拍摄所述目标具体包括:
    根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度;
    将所述云台摄像机的拍摄角度调整至所述目的拍摄角度以拍摄所述目标。
  3. 如权利要求2所述的云台摄像机,其特征在于,所述目的拍摄角度包括目的水平拍摄角度和目的垂直拍摄角度;
    所述处理器用于根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度具体包括:
    根据所述目标的经纬度和所述云台摄像机的经纬度计算所述目标相对于所述云台摄像机的方位;
    根据如下公式计算所述目的水平拍摄角度:
    Pgoal=Pcur+(A-R)
    其中,Pgoal为所述云台摄像机的目的水平拍摄角度,Pcur为所述云台摄像机的当前水平拍摄角度,A为所述目标相对于所述云台摄像机的方位,R为所述云台摄像机的镜头朝向;
    根据所述目标的经纬度、所述云台摄像机的经纬度、以及所述目标和所述云台摄像机之间的高度差计算所述云台摄像机的的目的垂直拍摄角度。
  4. 如权利要求2或3所述的云台摄像机,其特征在于,所述处理器还用于:
    根据第一距离确定所述云台摄像机的目的倍率,所述第一距离具体为所述目标和所述云台摄像机之间的距离;
    调整所述云台摄像机的拍摄倍率至所述目的倍率。
  5. 如权利要求4所述的云台摄像机,其特征在于,所述处理器用于根据所述第一距离确定所述云台摄像机的目的倍率具体包括:根据预先设置的多个距离范围与倍率的对应关系确定所述第一距离所在的距离范围所对应的倍率作为所述目的倍率。
  6. 如权利要求1-5任一所述的云台摄像机,其特征在于,所述处理器还用于:
    对所述目标进行跟踪以拍摄移动后的所述目标;
    在确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机时,向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机。
  7. 如权利要求6所述的云台摄像机,其特征在于,所述处理器用于确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机具体包括:在判断出第二角度大于或等于第一角度时确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机;所述第二角度从所述云台摄像机到所述目标的当前位置的射线与第一直线之间的夹角,所述第一角度为从所述云台摄像机到所述目标的初始位置的射线和所述第一直线之间的夹角,所述第一直线为所述云台摄像机到所述目标的移动路线所在直线的垂线。
  8. 如权利要求6所述的云台摄像机,其特征在于,所述处理器用于确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机具体包括:确定所述云台摄像机的拍摄角度到达预设的拍摄角度。
  9. 一种云台摄像机,其特征在于,所述云台摄像机包括收发器和处理器;
    所述处理器,用于通过所述收发器接收监控平台发送的跟踪指令,并将所述云台摄像机的拍摄角度调整至预设的开始拍摄角度;还用于在确定所述云台摄像机的拍摄角度到达预设的结束拍摄角度时通过所述收发器向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机。
  10. 一种监控平台,其特征在于,所述监控平台包括处理单元和发送单元;
    所述处理单元,用于在确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机时,根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机,所述第一云台摄像机为正在拍摄所述目标的云台摄像机;还用于通过所述发送单元向所述第二云台摄像机发送跟踪指令,所述跟踪指令用于指示所述第二云台摄像机对所述目标进行拍摄。
  11. 如权利要求10所述的监控平台,其特征在于,所述处理单元用于确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机具体包括:
    根据所述目标的位置信息和所述第一云台摄像机的位置信息计算第一距离,所述第一距离为所述目标和所述第一云台摄像机之间的距离,所述云台摄像机的位置信息包括所述云台摄像机的经纬度;
    在判断出所述第一距离大于预设的第一距离阈值时确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。
  12. 如权利要求10所述的监控平台,其特征在于,所述监控平台还包括接收单元;
    所述处理单元用于确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机具体包括:
    通过所述接收单元接收所述第一云台摄像机发送的切换指令,所述切换指令用于指示所述监控平台选择接替所述第一云台摄像机拍摄目标的第二云台摄像机;
    根据所述切换指令确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。
  13. 如权利要求10-12任一所述的监控平台,其特征在于,所述满足跟踪条件的第二云台摄像机,具体包括:
    与所述目标之间的距离小于或等于预设的第二距离阈值的云台摄像机;或者,
    多个云台摄像机中的与所述目标之间的距离最小的云台摄像机。
  14. 如权利要求10-13任一所述的方法,其特征在于,所述跟踪指令包括所述目标的位置信息,所述目标的位置信息用于所述第二云台摄像机调整所述第二云台摄像机的拍摄角度以拍摄所述目标。
  15. 一种实现目标跟踪的方法,其特征在于,所述方法包括:
    云台摄像机接收监控平台发送的跟踪指令,所述跟踪指令包括目标的位置信息,所述目标的位置信息包括所述目标的经纬度;
    所述云台摄像机获取所述云台摄像机的镜头朝向,并根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息调整所述云台摄像机的拍摄角度以拍摄所述目标,所述云台摄像机的位置信息包括所述云台摄像机的经纬度。
  16. 如权利要求15所述的方法,其特征在于,所述根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息调整所述云台摄像机的拍摄角度以拍摄所述目标具体包括:
    所述云台摄像机根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度;
    所述云台摄像机将所述云台摄像机的拍摄角度调整至所述目的拍摄角度以拍摄所述目标。
  17. 如权利要求16所述的方法,其特征在于,所述目的拍摄角度包括目的水平拍摄角度和目的垂直拍摄角度;
    所述云台摄像机根据所述云台摄像机的位置信息、镜头朝向和所述目标的位置信息确定对应所述目标的目的拍摄角度具体包括:
    所述云台摄像机根据所述目标的经纬度和所述云台摄像机的经纬度计算所述目标相对于所述云台摄像机的方位;
    所述云台摄像机根据如下公式计算所述目的水平拍摄角度:
    Pgoal=Pcur+(A-R)
    其中,Pgoal为所述云台摄像机的目的水平拍摄角度,Pcur为所述云台摄像机的当前水平拍摄角度,Q为所述目标相对于所述云台摄像机的方位,A为所述云台摄像机的镜头朝向;
    所述云台摄像机根据所述目标的经纬度、所述云台摄像机的经纬度、以及所述目标和所述云台摄像机之间的高度差计算所述云台摄像机的的目的垂直拍摄角度。
  18. 如权利要求16或17所述的方法,其特征在于,云台摄像机接收监控平台发送的跟踪指令之后还包括:
    所述云台摄像机根据第一距离确定所述云台摄像机的目的倍率,所述第一距离具体为所述目标和所述云台摄像机之间的距离;
    所述云台摄像机调整所述云台摄像机的拍摄倍率至所述目的倍率。
  19. 如权利要求18所述的方法,其特征在于,所述云台摄像机根据所述第一距离确定所述云台摄像机的目的倍率具体包括:
    所述云台摄像机根据预先设置的多个距离范围与倍率的对应关系确定所述第一距离所在的距离范围所对应的倍率作为所述目的倍率。
  20. 如权利要求15-19任一所述的方法,其特征在于,所述云台摄像机将所述云台摄像机的拍摄角度调整至所述目的拍摄角度之后,还包括:
    所述云台摄像机对所述目标进行跟踪以拍摄移动后的所述目标;
    所述云台摄像机在确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机时,向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机。
  21. 如权利要求20所述的方法,其特征在于,所述确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机具体包括:
    所述云台摄像机在判断出第二角度大于或等于第一角度时确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机;所述第二角度从所述云台摄像机到所述目标的当前位置的射线与第一直线之间的夹角,所述第一角度为从所述云台摄像机到所述目标的初始位置的射线和所述第一直线之间的夹角,所述第一直线为所述云台摄像机到所述目标的移动路线所在直线的垂线。
  22. 如权利要求20所述的方法,其特征在于,所述确定需要监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机具体包括:
    所述云台摄像机确定所述云台摄像机的拍摄角度到达预设的拍摄角度。
  23. 一种实现目标跟踪的方法,其特征在于,所述方法包括:
    云台摄像机在接收到监控平台发送的跟踪指令时将所述云台摄像机的拍摄角度调整至预设的开始拍摄角度;
    所述云台摄像机在确定所述云台摄像机的拍摄角度到达预设的结束拍摄角度时向所述监控平台发送切换指令,所述切换指令用于指示所述监控平台选择接替所述云台摄像机拍摄目标的其它云台摄像机。
  24. 一种实现目标跟踪的方法,其特征在于,所述方法包括:
    监控平台在确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机时,根据所述目标的位置信息选择满足跟踪条件的云台摄像机作为所述第二云台摄像机,所述第一云台摄像机为正在拍摄所述目标的云台摄像机,所述目标的位置信息包括所述目标的经纬度;
    所述监控平台向所述第二云台摄像机发送跟踪指令,所述跟踪指令用于指示所述第二云台摄像机对所述目标进行拍摄。
  25. 如权利要求24所述的方法,其特征在于,所述监控平台确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机具体包括:
    所述监控平台根据所述目标的位置信息和所述第一云台摄像机的位置信息计算第一距离,所述第一距离为所述目标和所述第一云台摄像机之间的距离,所述云台摄像机的位置信息包括所述云台摄像机的经纬度;
    所述监控平台在判断出所述第一距离大于预设的第一距离阈值时确定需要选择接替 所述第一云台摄像机拍摄目标的第二云台摄像机。
  26. 如权利要求24所述的方法,其特征在于,所述监控平台确定需要选择接替第一云台摄像机拍摄目标的第二云台摄像机具体包括:
    所述监控平台接收所述第一云台摄像机发送的切换指令,所述切换指令用于指示所述监控平台选择接替所述第一云台摄像机拍摄目标的第二云台摄像机;
    所述监控平台根据所述切换指令确定需要选择接替所述第一云台摄像机拍摄目标的第二云台摄像机。
  27. 如权利要求24-26任一所述的方法,其特征在于,所述满足跟踪条件的第二云台摄像机,具体包括:
    与所述目标之间的距离小于或等于预设的第二距离阈值的云台摄像机;或者,
    多个云台摄像机中的与所述目标之间的距离最小的云台摄像机。
  28. 如权利要求24-27任一所述的方法,其特征在于,所述跟踪指令包括所述目标的位置信息,所述目标的位置信息用于所述第二云台摄像机调整所述第二云台摄像机的拍摄角度以拍摄所述目标。
PCT/CN2018/076764 2017-03-08 2018-02-13 一种实现目标跟踪的方法、云台摄像机和监控平台 WO2018161797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710135104.7 2017-03-08
CN201710135104.7A CN108574822B (zh) 2017-03-08 2017-03-08 一种实现目标跟踪的方法、云台摄像机和监控平台

Publications (1)

Publication Number Publication Date
WO2018161797A1 true WO2018161797A1 (zh) 2018-09-13

Family

ID=63447760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076764 WO2018161797A1 (zh) 2017-03-08 2018-02-13 一种实现目标跟踪的方法、云台摄像机和监控平台

Country Status (2)

Country Link
CN (1) CN108574822B (zh)
WO (1) WO2018161797A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291585A (zh) * 2018-12-06 2020-06-16 杭州海康威视数字技术股份有限公司 一种基于gps的目标跟踪***、方法、装置及球机
CN112286235A (zh) * 2020-10-30 2021-01-29 广东利元亨智能装备股份有限公司 基于轨迹的控制方法
CN113223156A (zh) * 2021-05-25 2021-08-06 杭州晟冠科技有限公司 一种测算和纠正云台初始角度的方法
CN113485465A (zh) * 2021-06-01 2021-10-08 浙江大华技术股份有限公司 一种摄像机云台控制方法、装置、设备及存储介质
CN114556904A (zh) * 2020-12-30 2022-05-27 深圳市大疆创新科技有限公司 云台***的控制方法、控制设备、云台***和存储介质
CN115190238A (zh) * 2022-06-20 2022-10-14 中国人民解放军战略支援部队航天工程大学 一种星载动目标检测跟踪地面演示验证***

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460077B (zh) * 2018-11-19 2022-05-17 深圳博为教育科技有限公司 一种自动跟踪方法、自动跟踪设备及自动跟踪***
JP7442078B2 (ja) * 2019-07-09 2024-03-04 パナソニックIpマネジメント株式会社 画像処理装置および画像処理方法
CN112468765B (zh) * 2019-09-06 2022-04-15 杭州海康威视***技术有限公司 跟踪目标对象的方法、装置、***、设备及存储介质
CN110730333A (zh) * 2019-10-23 2020-01-24 深圳震有科技股份有限公司 监控视频切换处理方法及装置、计算机设备、介质
CN111091584B (zh) * 2019-12-23 2024-03-08 浙江宇视科技有限公司 一种目标跟踪方法、装置、设备和存储介质
CN111240617B (zh) * 2019-12-31 2020-09-25 飞燕航空遥感技术有限公司 基于三维地图的视频投放方法、***和环境监控方法、***
CN111526280A (zh) * 2020-03-23 2020-08-11 深圳市大拿科技有限公司 一种摄像头装置的控制方法、装置、电子设备及存储介质
CN111510624A (zh) * 2020-04-10 2020-08-07 瞬联软件科技(北京)有限公司 目标跟踪***及目标跟踪方法
CN113676700B (zh) * 2021-08-11 2024-05-31 郑州优美智能科技有限公司 一种安全可视化管理方法和管理装置
CN113869231B (zh) * 2021-09-29 2023-01-31 亮风台(上海)信息科技有限公司 一种用于获取目标对象的实时图像信息的方法与设备
CN114339027A (zh) * 2021-11-16 2022-04-12 浙江大华技术股份有限公司 船舶监控方法、电子装置和存储介质
CN114509049B (zh) * 2021-11-17 2023-06-16 中国民用航空总局第二研究所 基于图像处理的云台重复定位精度测量方法及其***
CN115439948A (zh) * 2022-07-22 2022-12-06 大连莱立佰信息技术有限公司 基于图像识别和工艺视频联动的泵站智能巡检方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101408A (ja) * 2000-09-22 2002-04-05 Asahi Precision Co Ltd 監視カメラシステム
CN101404757A (zh) * 2007-10-04 2009-04-08 三星Techwin株式会社 监视摄像机***
CN103607569A (zh) * 2013-11-22 2014-02-26 广东威创视讯科技股份有限公司 视频监控中的监控目标跟踪方法和***
CN103702030A (zh) * 2013-12-25 2014-04-02 浙江宇视科技有限公司 一种基于gis地图的场景监控方法和移动目标追踪方法
CN104184995A (zh) * 2014-08-26 2014-12-03 天津市亚安科技股份有限公司 一种实现联网视频监控***实时联动监控的方法及***
CN104796612A (zh) * 2015-04-20 2015-07-22 河南弘金电子科技有限公司 高清雷达联动跟踪控制摄像***及联动跟踪方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572804B (zh) * 2009-03-30 2012-03-21 浙江大学 多摄像机智能控制方法及装置
US9019349B2 (en) * 2009-07-31 2015-04-28 Naturalpoint, Inc. Automated collective camera calibration for motion capture
CN203722704U (zh) * 2014-02-17 2014-07-16 北京尚易德科技有限公司 可判别地理位置及监控方向的智能化监控摄像机
CN106034230A (zh) * 2016-07-18 2016-10-19 西安建筑科技大学 一种基于soc芯片的安全型视频监控***及监控方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101408A (ja) * 2000-09-22 2002-04-05 Asahi Precision Co Ltd 監視カメラシステム
CN101404757A (zh) * 2007-10-04 2009-04-08 三星Techwin株式会社 监视摄像机***
CN103607569A (zh) * 2013-11-22 2014-02-26 广东威创视讯科技股份有限公司 视频监控中的监控目标跟踪方法和***
CN103702030A (zh) * 2013-12-25 2014-04-02 浙江宇视科技有限公司 一种基于gis地图的场景监控方法和移动目标追踪方法
CN104184995A (zh) * 2014-08-26 2014-12-03 天津市亚安科技股份有限公司 一种实现联网视频监控***实时联动监控的方法及***
CN104796612A (zh) * 2015-04-20 2015-07-22 河南弘金电子科技有限公司 高清雷达联动跟踪控制摄像***及联动跟踪方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291585A (zh) * 2018-12-06 2020-06-16 杭州海康威视数字技术股份有限公司 一种基于gps的目标跟踪***、方法、装置及球机
CN111291585B (zh) * 2018-12-06 2023-12-08 杭州海康威视数字技术股份有限公司 一种基于gps的目标跟踪***、方法、装置及球机
CN112286235A (zh) * 2020-10-30 2021-01-29 广东利元亨智能装备股份有限公司 基于轨迹的控制方法
CN114556904A (zh) * 2020-12-30 2022-05-27 深圳市大疆创新科技有限公司 云台***的控制方法、控制设备、云台***和存储介质
CN113223156A (zh) * 2021-05-25 2021-08-06 杭州晟冠科技有限公司 一种测算和纠正云台初始角度的方法
CN113485465A (zh) * 2021-06-01 2021-10-08 浙江大华技术股份有限公司 一种摄像机云台控制方法、装置、设备及存储介质
CN115190238A (zh) * 2022-06-20 2022-10-14 中国人民解放军战略支援部队航天工程大学 一种星载动目标检测跟踪地面演示验证***

Also Published As

Publication number Publication date
CN108574822B (zh) 2021-01-29
CN108574822A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2018161797A1 (zh) 一种实现目标跟踪的方法、云台摄像机和监控平台
EP2879371B1 (en) System for following an object marked by a tag device with a camera
EP3559596B1 (en) Enhanced remote surveying systems and methods
WO2020114231A1 (zh) 一种基于gps的目标跟踪***、方法及球机
TW201328344A (zh) 控制無人飛行載具進行影像採集的系統及方法
CN110278382B (zh) 一种聚焦方法、装置、电子设备及存储介质
US9826151B2 (en) Image capture system and image capture method
CN110706447B (zh) 灾情位置的确定方法、装置、存储介质及电子装置
CN103702030A (zh) 一种基于gis地图的场景监控方法和移动目标追踪方法
CN104184995A (zh) 一种实现联网视频监控***实时联动监控的方法及***
WO2020114235A1 (zh) 一种pt坐标与gps坐标的转换方法及球机
TW200930098A (en) Camera control system capable of positioning and tracking object in space and method thereof
US20200267309A1 (en) Focusing method and device, and readable storage medium
CN103188431A (zh) 控制无人飞行载具进行影像采集的***及方法
CN106371114A (zh) 用于车辆的定位设备和方法
CN103017740A (zh) 一种利用视频监控装置对监控目标的定位方法及定位***
KR101270145B1 (ko) 위치정보를 이용한 감시카메라 영상 취득 장치 및 방법
CN111046121A (zh) 环境监控方法、装置和***
CN110896331A (zh) 一种测量天线工程参数的方法和装置
KR20100060472A (ko) 위치 측정 방법 및 이를 이용한 휴대 단말기
KR20120067479A (ko) 촬영 영상을 이용한 길 안내 시스템 및 방법
CN113014658B (zh) 设备控制及装置、电子设备、存储介质
CN111862197B (zh) 视频监控中的目标跟踪方法、***及球机
CN113906362A (zh) 测绘相机的控制方法、测绘相机、无人机以及测绘***
KR20130136311A (ko) 긴급구조 관제서버, 긴급구조 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764309

Country of ref document: EP

Kind code of ref document: A1