WO2018161649A1 - 一种斜井井壁混凝土底板预应力加载装置 - Google Patents

一种斜井井壁混凝土底板预应力加载装置 Download PDF

Info

Publication number
WO2018161649A1
WO2018161649A1 PCT/CN2017/114231 CN2017114231W WO2018161649A1 WO 2018161649 A1 WO2018161649 A1 WO 2018161649A1 CN 2017114231 W CN2017114231 W CN 2017114231W WO 2018161649 A1 WO2018161649 A1 WO 2018161649A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
loading
inclined shaft
tensile
shaft wall
Prior art date
Application number
PCT/CN2017/114231
Other languages
English (en)
French (fr)
Inventor
王衍森
孟陈祥
杨维好
杨然
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2017402485A priority Critical patent/AU2017402485B2/en
Priority to US16/301,413 priority patent/US10612241B2/en
Priority to CA3022754A priority patent/CA3022754C/en
Publication of WO2018161649A1 publication Critical patent/WO2018161649A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/10Ducts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/122Anchoring devices the tensile members are anchored by wedge-action
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/107Reinforcing elements therefor; Holders for the reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the invention relates to a prestressed loading device for concrete floor of inclined shaft wall, which is suitable for supporting inclined shaft, tunnel, roadway and diverticulum in high water pressure and strong expansion stratum in mine construction, water conservancy, transportation, municipal and other fields. engineering.
  • the design and construction of the inclined shaft wall face the waterproof requirement, and the bottom wall of the well wall must be able to be under high water pressure to ensure that the upper surface does not suffer from tensile damage.
  • the characteristics of concrete withstand voltage and tension resistance determine that the design thickness of the inclined shaft wall is often large and the steel content is very high. It must even be designed as a small curvature radius and the arch is greatly increased. Even so, the concrete in the bottom wall of the shaft wall has repeatedly induced sudden water or even flooding accidents due to cracking of the top surface.
  • the inclined shaft wall of the water-bearing stratum is mostly designed as a flat bottom plate or a "upper flat curved" concrete slab structure with a certain curvature on the bottom. Due to the limitation of the construction process, it is difficult for the bottom plate to be an inverted arch structure with a small radius of curvature. This makes it difficult for the bottom wall structure of the well wall to meet the need of resisting the high water pressure at the bottom, thus leaving the bottom of the bottom plate bulging and causing bending and tearing. risks of. Therefore, for the inclined shaft wall of the non-circular interface in the water-bearing formation, measures to prevent the bottom plate from being damaged by the floor are urgently needed.
  • the technical problem to be solved by the present invention is that, in order to overcome the defects of the prior art, based on the concept of prestressed concrete structure and the existing inclined shaft wall construction technology, a prestressed concrete floor of inclined shaft wall is proposed.
  • the loading device is used for prestressed loading of the concrete wall of the shaft wall, and the tensile strength of the bottom wall of the shaft wall is greatly improved, and the thickness of the bottom wall of the shaft wall and the amount of steel used thereof are effectively and effectively reduced, thereby ensuring the safety of the project and reducing The purpose of project cost.
  • the invention discloses a prestressed loading device for a concrete floor of a inclined shaft wall, comprising two end bearing members, a bellows, a tensile member and two anchor heads.
  • the tensile rod member is composed of a left tensile rod, a right tensile rod and a loading mechanism; the left tensile rod and the right tensile rod are integrally connected by a loading mechanism, penetrate into the bellows, and both ends are exposed to a set length, and the two end supports
  • the members are respectively sleeved on the left and right ends of the tensile rod member, and the two anchor heads respectively lock the left and right end support members.
  • the further optimization scheme is as follows: further comprising a loading box, the loading cassette is sealed with a cover, the bellows is divided into two sections, and is connected to the loading box on both sides of the loading box, and the loading mechanism is located in the loading box.
  • the loading box is provided with a grouting hole for connecting with the grouting pipe (10) and grouting and sealing after the prestressing is applied, and the outer end of the bellows is provided with a venting hole, and when grouting in the corrugated pipe For exhaust.
  • the end bearing member is channel steel, I-beam or steel plate.
  • the loading mechanism can select the following structural types for prestress loading:
  • the first type of loading mechanism is an internally threaded sleeve, and the internal thread is divided into two parts, the thread of the two parts is opposite; the ends of the left and right rods respectively have a line matching the thread of the internal thread sleeve. Thread the screws into the internally threaded sleeve. Tensioning is performed by screwing the internally threaded sleeve to apply tensile stress to the tension rods on both sides.
  • the second loading mechanism is composed of a U-shaped coupling, a baffle and two nuts.
  • the bow back of the U-shaped coupling is connected with the left tensile rod, the baffle is fixed at the end of the right tensile rod, and the two ends of the baffle are respectively inserted into the two legs of the U-shaped coupling, the U-shaped coupling
  • the two legs are provided with male threads, and the two nuts are respectively screwed on the two legs of the U-shaped coupling. By screwing the nut
  • the tie rods are prestressed.
  • the third loading mechanism consists of a working anchor, a tool anchor and two jacks.
  • the left bearing rods are two, and the ends thereof are symmetrically fixed on both sides of the working anchor; the other end of the left bearing rod is connected with the anchor head in one of two forms:
  • the middle portion of the working anchor is provided with a tapered hole, and the head of the right tensile rod first passes through the middle tapered hole of the working anchor, and then passes through a preset tapered hole on the tool anchor, and the right tensile rod is self-supported by the clip Lock on the work anchor and tool anchor.
  • the two jacks are placed between the working anchor (14) and the tool anchor (15) and placed symmetrically.
  • the prestressed loading device of the concrete floor of the inclined shaft wall of the invention is used for loading prestress of the bottom wall of the inclined shaft, and solves the problem of implementing prestress loading in the narrow space of the bottom wall of the well wall.
  • Figure 1 is a schematic cross-sectional view of a inclined shaft wall of a flat bottom plate type bottom plate.
  • Figure 2 is a schematic cross-sectional view of the inclined shaft wall of the "top flat-bottom inverted arch” type bottom plate.
  • FIG 3 is a longitudinal cross-sectional view of a prestressed loading device for a concrete floor of a inclined shaft wall of the present invention (the end bearing member is a channel steel, and the loading mechanism is an internally threaded sleeve).
  • Fig. 4 is a cross-sectional view taken along line I-I of Fig. 3;
  • Figure 5 is a cross-sectional view taken along line II-II of Figure 4.
  • FIG. 6 is a longitudinal cross-sectional view of a prestressed loading device for a concrete floor of a inclined shaft wall of the present invention (a loading mechanism is a U-shaped coupling).
  • Figure 7 is a schematic view of the baffle 131 associated with the U-shaped coupling.
  • Figure 8 is a partial structural view of the prestressed loading device of the concrete floor of the inclined shaft wall of the present invention (the loading mechanism is composed of a working anchor, a tool anchor and an anchor structure composed of two jacks).
  • FIG. 9 is a schematic structural view of a prestressed loading device for a concrete floor of a inclined shaft wall of the present invention. After loading the prestress, the tool anchor and the two jacks of the loading mechanism have been removed, and the two left bearing rods are passed through and fixed from the same hole in the anchor head. ).
  • FIG. 10 is a schematic structural view of a prestressed loading device for a concrete floor of a inclined shaft wall of the present invention. After loading the prestress, the tool anchor and the two jacks of the loading mechanism have been removed, and the two left bearing rods are respectively pierced from two holes in the anchor head. Over and fixed).
  • Figure 11 is a front elevational view of the working anchor 14.
  • Fig. 12 is a sectional view taken along line IV-IV of Fig. 11;
  • Figure 13 is a longitudinal cross-sectional view of the clip of the working anchor kit.
  • Figure 14 is an end view of the clip of the working anchor kit.
  • Figure 15 is a schematic view showing the arrangement of the prestressed loading device of the concrete floor of the inclined shaft wall along the axial direction of the wellbore according to the present invention.
  • the prestressed floor structure of the inclined shaft wall is as shown in Figs. 1 and 2, which is a prestressed loading device 1 (hereinafter referred to as a loading device), a steel frame 2 and a package of the inclined floor of the inclined shaft wall of the present invention.
  • a prestressed loading device 1 hereinafter referred to as a loading device
  • the end bearing member and the tensile rod member of the loading device 1 can be directly combined with the original steel skeleton 2, so that the loading device 1 and the original steel skeleton 2 form a new space system, and the loading device 1 can be used to replace part of the tension device as needed.
  • Side reinforcement is a prestressed loading device 1 (hereinafter referred to as a loading device), a steel frame 2 and a package of the inclined floor of the inclined shaft wall of the present invention.
  • the concrete 3 wrapped around is the concrete required for pouring the ordinary shaft wall.
  • the steel skeleton 2 is a metal skeleton such as steel bars or steel sections bundled before the concrete of the shaft wall is poured.
  • the prestressed loading device 1 for the concrete floor of the inclined shaft wall of the invention comprises two end bearing members 4, a bellows 5, a tensile rod member 6, and two anchor heads 7.
  • the tensile rod member 6 is composed of a left tensile rod, a right tensile rod and a loading mechanism.
  • the left and right tensile rods are integrally connected by a loading mechanism, penetrate into the bellows, and both ends are exposed to a set length, both ends
  • the bearing members 4 are respectively sleeved on the left and right ends of the tensile rod member, and the two anchoring heads 7 respectively lock the left and right end bearing members.
  • the utility model further comprises a loading box 8 which is sealed, and the top cover is openable and provided with a grouting hole 17 for connecting with the grouting pipe 10 and grouting and sealing after the prestressing is applied.
  • the bellows 5 is divided into two sections, which are on both sides of the loading box and penetrate with the loading box, and the loading mechanism is located in the loading box. Vents 11 are provided at the ends of the left and right ends of the bellows, and are used for exhausting when grouting in the bellows.
  • the prestressed loading device 1 for the inclined floor of the inclined shaft wall of the invention is arranged perpendicularly to the axial direction of the inclined wellbore, and can be arranged at equal or non-equal intervals along the axial direction of the inclined wellbore.
  • the loading mechanism of the loading device 1 of the present invention may be selected from, but not limited to, the following types, which are described in detail below with reference to the accompanying drawings.
  • the concrete floor bottom prestressing loading device 1 of the inclined shaft wall and the two end bearing members 4 are channel steels respectively disposed at the left and right ends of the tensile rod member 6.
  • the tensile rod member 6 is composed of a left tensile rod, a right tensile rod and a loading mechanism.
  • the loading mechanism is an internally threaded sleeve 12, and the internal thread is divided into left and right parts, and the thread lines of the two parts are opposite.
  • the heads of the left and right tensile rods respectively have male threads matched with the internal threaded sleeves and are screwed into the internal threaded sleeves.
  • Tensioning is performed by screwing the internally threaded sleeve to apply tensile stress to the tension rods on both sides.
  • the tensile rod member 6 penetrates into the bellows 5, and both ends are exposed to a set length, and the two anchor heads 7 respectively lock the left and right end support members.
  • the loading mechanism is placed just inside the loading box 8.
  • the inclined shaft wall adopts a flat bottom plate (see Fig. 1); the end bearing member 4 is a channel steel, and the loading mechanism is an internally threaded sleeve (see Fig. 3).
  • the loading box 8 In the middle position of the two-stage bellows 5, the loading box 8 is installed, and the loading mechanism (internal threaded sleeve 12) is located in the loading box 8, and the surface of the loading box cover should be flush with the upper surface of the bottom wall of the well wall.
  • a tensile stress is applied to the tensile rod member 6 by a screwing loading mechanism, that is, the internally threaded sleeve 12, and a pre-compression stress is applied to the floor concrete by the dispersion of the end bearing member 4.
  • the bottom plate In order to ensure the uniformity of the prestressing of the bottom plate, it can be loaded continuously or intermittently along the axial direction of the wellbore (see figure 15). If the loading device 1 of the number 1357 is loaded first, then the loading device 1 of the number 246 is loaded; in addition, the grading loading is performed for each set of the tensile members 6 to achieve the same segment by reducing the size of each load and increasing the number of loading stages. Uniform loading of the bottom wall of the well wall. When loading, the torque of each stage and final load should be controlled by a torque wrench or other tools to ensure uniform pre-stress.
  • the structure of the inclined shaft wall of the embodiment is basically the same as that of the first embodiment, and a flat bottom plate is also used (see Fig. 1).
  • the loading mechanism consists of a U-shaped coupling 13, a baffle 131 and three nuts (see Figure 6).
  • the bow back of the U-shaped coupling member 13 is connected with the left tensile rod; as shown in Fig. 7, the shutter 131 has three through holes, one through hole is located at the centroid, and the other two are symmetrically arranged along the long axis of the baffle.
  • the head of the right tensile rod has a male thread, and after the right tensile rod passes through the middle through hole, a nut is screwed on the head of the tensile rod to fix it.
  • Two holes at the two ends of the baffle are respectively inserted into the two legs of the U-shaped coupling member 13.
  • the two legs of the U-shaped coupling member are provided with male threads, and the two nuts are respectively screwed on the two legs of the U-shaped coupling member.
  • Pre-stress the tension rod by screwing the nut on the two feet of the U-shaped part or the nut at the center of the baffle.
  • the entire structure can be exchanged left and right, which is exactly the same as this embodiment, and is not repeated here.
  • the construction method involved in this embodiment is basically the same as that in the first embodiment.
  • the difference is that in the fifth step, the tension member is gradually tightened by screwing the two nuts on the U-shaped coupling member 13 or the nut at the center of the baffle.
  • the application of the prestressing force is applied to apply tensile stress to the tensile rod member 6, and pre-compression stress is applied to the floor concrete by the dispersion of the end bearing member 4.
  • the structure of the inclined shaft wall of the embodiment is basically the same as that of the first embodiment, but the "top flat bottom bottom arch" bottom plate is used (see Fig. 2).
  • the end bearing member 4 is an I-beam
  • the loading mechanism is composed of a working anchor 14, a tool anchor 15, and two jacks 16 (see Fig. 8).
  • the working anchor is provided with three tapered holes, one tapered hole is at the centroid of the working anchor (central tapered hole), and the other two are symmetrically arranged on both sides of the central hole.
  • the tapered holes are opposite to the holes of the tapered holes on both sides.
  • the left tension bar has two legs, and the heads respectively pass through the tapered holes on both sides and are self-locked to the working anchor 14 by the clips 18.
  • the right tensile rod head passes through the tapered hole at the center of the working anchor and then passes through the central tapered hole of the tool anchor, and is self-locked to the working anchor 14 and the tool anchor 15 by two clamps 18, respectively.
  • the clip 18 is illustrated in Figures 13 and 14.
  • the other end of the left tensile rod is connected to the anchor head 7 in one of two forms:
  • one of the two left-handed drawbars passes through the same hole in the anchor head 7 and is fixed.
  • the other is that the two left bearing rods are respectively passed through and fixed from the two holes in the anchor head 7.
  • a jack 16 is installed between the tool anchor and the working anchor, and prestressing is applied through the jack. After the prestressing is applied, the tool anchor and jack can be disassembled.
  • the construction method involved in this embodiment is basically the same as that in the first embodiment.
  • the difference is that in the fifth step, two jacks 16 are placed between the tool anchor 15 and the working anchor 14 by the cooperation of a tool anchor 15, and the force applied by the jack is applied.
  • the working anchor 14 is pushed forward, and after the pre-stress is applied to the predetermined value, the jack 16 is unloaded, and the working anchor 14 is self-locked by its clip 18 to maintain the applied pre-stress, thereby causing the tensile member 6 to be pulled.
  • pre-compressive stress is applied to the floor concrete by the dispersion of the end bearing members 4.
  • the selection of the jack considering the limited space of the metal box, it can be used.
  • the compact screw jack replaces the traditional hydraulic jack and considers the magnitude of the top thrust to be placed symmetrically two times. After the prestressing is applied, the tool anchor and jack can be disassembled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

一种斜井井壁混凝土底板预应力加载装置(1),包括两个端承构件(4)、波纹管(5)、承拉杆件(6)、两个锚头(7),所述承拉杆件(6)由左承拉杆、右承拉杆和加载机构构成,左承拉杆和右承拉杆由加载机构连为一体,穿入波纹管(5)中,两个端承构件(4)分别穿套在承拉杆件(6)左右两端,两个锚头(7)分别将左、右两个端承构件(4)锁定位置。井壁底板浇筑前,预埋加载装置(1)。底板混凝土(3)达到一定强度后,利用加载机构给底板混凝土(3)施加横向预压应力。最后注浆封堵加载装置(1)的内部空间,使加载装置(1)与底板混凝土(3)融为一体。该加载装置(1)可大幅提高底板混凝土结构在外部高水压、高围岩压力下的抗弯拉性能。

Description

一种斜井井壁混凝土底板预应力加载装置 技术领域
本发明涉及一种斜井井壁混凝土底板预应力加载装置,适用于矿山建设、水利、交通、市政等领域里高水压、强膨胀地层中斜井、隧道、巷道、硐室等的支护工程。
背景技术
大埋深、高水压地层中,斜井井壁设计与施工面临着防水要求,井壁底板必须能在高水压下,确保上表面不发生受拉破坏。然而,混凝土耐压不耐拉的特性决定了斜井井壁底板设计厚度往往很大且含钢量很高,甚至必须设计成小曲率半径仰拱,极大地增加了施工难度。即便如此,井壁底板混凝土仍屡屡因顶面开裂而诱发突涌水甚至淹井事故。
目前,含水地层中斜井井壁多设计成平直底板或底面为一定弧度的“上平下曲”混凝土板结构。受施工工艺限制,底板很难做成曲率半径很小的仰拱结构,这造成了井壁底板结构往往难以满足抵抗下部高水压的需要,从而留下了底板中部鼓起,发生弯拉破坏的风险。因此,对于含水地层中的非圆形界面的斜井井壁,急需采取防止底板弯拉破坏的措施。
发明内容
本发明所要解决的技术问题在于,为了克服现有技术存在的缺陷,基于预应力混凝土结构的理念,并针对现有的斜井井壁施工工艺,提出了一种斜井井壁混凝土底板预应力加载装置,用于井壁混凝土底板预应力加载,在大幅提高井壁底板的抗拉性能的同时,切实有效地减小井壁底板厚度及其用钢量,从而达到既保证工程安全,又降低工程造价的目的。
本发明一种斜井井壁混凝土底板预应力加载装置,包括两个端承构件、波纹管、承拉杆件、两个锚头。所述承拉杆件由左承拉杆、右承拉杆和加载机构构成;左承拉杆和右承拉杆由加载机构连为一体,穿入波纹管中,两端露出设定的长度,两个端承构件分别穿套在承拉杆件左右两端,两个锚头分别将左、右两个端承构件锁定位置。
进一步优化方案是:还包括一个加载盒,加载盒带盖密闭,所述波纹管分为两段,在加载盒两侧并与加载盒贯通,所述加载机构位于加载盒内。
所述加载盒上设有注浆孔,以便在预应力施加完毕,与注浆管(10)相连并开展注浆封堵,波纹管外端部设有排气孔,在波纹管内注浆时用于排气。
所述端承构件为槽钢、工字钢或钢板。
所述加载机构,可以选择以下几种结构型式,用于预应力加载:
第一种加载机构是内螺纹套筒,其内螺纹分为左右两部分,两部分的螺纹纹路相逆;左承拉杆、右承拉杆的端部分别带有与内螺纹套筒纹路相配的公螺纹,分别旋拧在内螺纹套筒内。通过旋拧内螺纹套筒,实施张拉,给两侧的承拉杆施加拉应力。
第二种加载机构,由U型联接件、挡板和两个螺母构成。U型联接件的弓背与左承拉杆连接,挡板固定在右承拉杆的端部,挡板两端带有两个孔,分别套入U型联接件的两脚中,U型联接件的两脚带公螺纹,两个螺母分别旋拧在U型联接件的两脚上。通过旋拧螺母,给承 拉杆施加预应力。
第三种加载机构,由工作锚、工具锚和两个千斤顶构成。所述左承拉杆为两根,其端部对称固定在工作锚两侧;左承拉杆另一端与锚头采用以下两种形式之一连接:
一种是两根左承拉杆从锚头上同一孔洞穿过并固定,另一种是两根左承拉杆分别从锚头上的两个孔洞穿过并固定。
所述工作锚中部设有锥形孔,所述右承拉杆头部先穿过工作锚的中部锥形孔,然后穿过工具锚上预设的锥型孔,并通过夹子将右承拉杆自锁在工作锚和工具锚上。
所述两个千斤顶放置于工作锚(14)与工具锚(15)之间,对称放置。
本发明斜井井壁混凝土底板预应力加载装置,用于斜井井壁底板加载预应力,解决了在井壁底板的狭小空间内,实施预应力加载的难题。通过施加预压应力,可大幅提高井壁底板结构在外部高水压、高围岩压力下的抗弯拉性能,提高安全性,大幅降低工程造价。
附图说明
图1是平直底板型底板的斜井井壁横截面示意图。
图2是“顶面平直-底面仰拱”型底板的斜井井壁横截面示意图。
图3是本发明斜井井壁混凝土底板预应力加载装置(端承构件为槽钢,加载机构为内螺纹套筒)纵剖面示意图。
图4是图3的I-I剖面图。
图5是图4中II-II剖面图。
图6是本发明斜井井壁混凝土底板预应力加载装置(加载机构为U型联接件)纵剖面示意图。
图7是与U型联接件配套的挡板131示意图。
图8是本发明斜井井壁混凝土底板预应力加载装置局部结构示意图(加载机构由工作锚、工具锚和两个千斤顶构成的锚具结构)。
图9是本发明斜井井壁混凝土底板预应力加载装置结构示意图(加载预应力后,加载机构的工具锚和两个千斤顶已拆除,两根左承拉杆从锚头上同一孔洞穿过并固定)。
图10是本发明斜井井壁混凝土底板预应力加载装置结构示意图(加载预应力后,加载机构的工具锚和两个千斤顶已拆除,两根左承拉杆分别从锚头上的两个孔洞穿过并固定)。
图11是工作锚14的正视图。
图12是图11的IV-IV剖面图。
图13是工作锚配套组件夹子的纵剖图。
图14是工作锚配套组件夹子的端面图。
图15是本发明斜井井壁混凝土底板预应力加载装置沿井筒轴向的排列示意图。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细说明。
本发明中,所涉及的斜井井壁预应力底板结构,如图1、2所示,是由本发明斜井井壁混凝土底板预应力加载装置1(以下简称加载装置)、钢骨架2以及包裹在周围的混凝土3 组成。其中,加载装置1的端承构件和承拉杆件可与原钢骨架2直接组合,使加载装置1和原钢骨架2形成一个新的空间体系,也可根据需要用加载装置1替代部分受拉侧钢筋。
所述的包裹在周围的混凝土3即为普通井壁浇筑所需的混凝土。
所述的钢骨架2即在井壁混凝土浇筑前绑扎的钢筋或型钢等金属骨架。
本发明斜井井壁混凝土底板预应力加载装置1,包括两个端承构件4、波纹管5、承拉杆件6、两个锚头7。所述承拉杆件6由左承拉杆、右承拉杆和加载机构构成,左承拉杆和右承拉杆由加载机构连为一体,穿入波纹管中,两端露出设定的长度,两个端承构件4分别穿套在承拉杆件左右两端,两个锚头7分别将左、右两个端承构件锁定位置。还包括一个加载盒8,加载盒带盖密闭,其顶面盒盖可开启并设有注浆孔17,以便在预应力施加完毕,与注浆管10相连并开展注浆封堵。所述波纹管5分为两段,在加载盒两侧并与加载盒贯通,所述加载机构位于加载盒内。波纹管左右两端端部设有排气孔11,在波纹管内注浆时用于排气。
本发明斜井井壁混凝土底板预应力加载装置1垂直于斜井井筒的轴向灵活布置,沿着斜井井筒的轴向既可等间距也可不等间距布置。安装完毕后,浇注混凝土底板,待混凝土凝固后,打开加载盒盖,根据设定的参数值,通过加载机对底板加载预应力。盖上加载盒盖,接上注浆管10,对螺纹管内加注混凝土。
本发明中加载装置1的加载机构可以选用(但不限于)以下几种型式,下面结合附图具体详细描述。
实施例1
如图3、4、5所示,斜井井壁混凝土底板预应力加载装置1,两个端承构件4为槽钢,分别设置在承拉杆件6的左右两端。所述承拉杆件6由左承拉杆、右承拉杆和加载机构构成。加载机构是内螺纹套筒12,其内螺纹分为左右两部分,两部分的螺纹纹路相逆。左承拉杆、右承拉杆的头部分别带有与内螺纹套筒纹路相配的公螺纹,旋拧在内螺纹套筒内。通过旋拧内螺纹套筒,实施张拉,给两侧的承拉杆施加拉应力。承拉杆件6穿入波纹管5中,两端露出设定的长度,两个锚头7分别将左、右两个端承构件锁定位置。加载机构刚好置于加载盒8内。
本实施例中,斜井井壁采用平直底板(见图1);端承构件4为槽钢,加载机构为内螺纹套筒(见图3)。
应用本发明斜井井壁混凝土底板预应力加载装置1的具体施工方法:
(1)斜井井筒开挖完毕,拟开展井壁底板浇筑前,首先开展钢筋或型钢的绑扎,以形成空间金属骨架结构。
(2)在空间金属骨架绑扎固定过程中,按照设计位置,依次安装固定端承构件4、波纹管5、承拉杆件6;其中承拉杆件6从波纹管5内穿过,通过锚头7与端承构件4联接。位于波纹管5上排气管11应略高于井壁底板顶面,并封闭。
(3)在两段波纹管5的中间位置,安设加载盒8,加载机构(内螺纹套筒12)位于加载盒8内,加载盒盖表面应与井壁底板上表面平齐。
(4)安设井壁底板模板(如需要)并浇筑底板混凝土;待混凝土达到一定强度后拆除模板,凿露并开启加载盒8顶盖。
(5)通过旋拧加载机构即内螺纹套筒12,对承拉杆件6施加拉应力,通过端承构件4的分散作用,对底板混凝土施加预压应力。
(6)为保证底板预应力施加的均匀性,首先可沿井筒轴向连续或间隔加载(见图 15)。如先加载编号①③⑤⑦的加载装置1,再加载编号②④⑥的加载装置1;另外,对每组承拉杆件6开展分级加载,通过减小每级荷载的大小并增加加载级数,实现对同一段井壁底板的均匀加载。加载时,应通过扭力扳手或其他工具,控制每级及最终荷载的大小,确保预应力均匀。
(7)井壁底板预应力施加完毕,开启排气管11,关闭加载盒8顶盖并联接注浆管10,对波纹管5及加载盒8的内部空间开展注浆充填,以使承拉杆件、加载装置等与底板混凝土融为一体,避免构件锈蚀及预应力损失。
实施例2:
本实施例的斜井井壁底板结构与实施例1基本相同,也采用平直底板(见图1)。区别在于:加载机构,由U型联接件13、挡板131和三个螺母构成(见图6)。U型联接件13的弓背与左承拉杆连接;如图7所示,挡板131上共有3个通孔,一个通孔位于形心处,其余两个沿挡板长轴对称布置。右承拉杆头部有公螺纹,右承拉杆通过中间的通孔后,在承拉杆头部拧上螺母将其固定。挡板两端两孔,分别套入U型联接件13的两脚中,U型联接件的两脚带公螺纹,两个螺母分别旋拧在U型联接件的两脚上。通过旋拧U型件两个脚上的螺母或者挡板中心处的螺母,给承拉杆施加预应力。该实施例中,整个结构可以左右调换,与本实施例是完全一样的,在此不重复。
应用本发明斜井井壁混凝土底板预应力加载装置1的具体施工方法:
本实施例涉及的施工方法与实施例1基本相同,区别在于:第5步,通过旋拧U型联接件13上的两个螺母或挡板形心处的螺母,逐渐让承拉杆件收紧进行预应力的施加,从而对承拉杆件6施加拉应力,并通过端承构件4的分散作用,对底板混凝土施加预压应力。
实施例3:
本实施例的斜井井壁底板结构与实施例1基本相同,但采用“顶面平直底面仰拱”底板(见图2)。区别在于:端承构件4为工字钢,加载机构由工作锚14、工具锚15和两个千斤顶16构成(见图8)。如图11、12所示,工作锚上设有3个锥型孔,一锥形孔在工作锚的形心处(中部锥形孔),另两个在中心孔的两侧对称布置,中部锥形孔与两侧锥形孔的孔向相反。所述左承拉杆有两根,其头部分别穿过两侧的锥型孔并通过夹子18自锁在工作锚14上。右承拉杆头部穿过工作锚形心处的锥形孔,再穿过工具锚的中部锥形孔,通过两个夹子18分别自锁在工作锚14和工具锚15上。图13和图14所示意的是夹子18。
左承拉杆另一端与锚头7采用以下两种形式之一连接:
如图9所示,一种是两根左承拉杆从锚头7上同一孔洞穿过并固定
如图10所示,另一种是两根左承拉杆分别从锚头7上的两个孔洞穿过并固定。
工具锚和工作锚之间安装千斤顶16,通过千斤顶施加预应力。预应力施加完成后工具锚与千斤顶可进行拆卸。
应用本发明斜井井壁混凝土底板预应力加载装置1的具体施工方法:
本实施例涉及的施工方法与实施例1基本相同,区别在于:第5步,通过一个工具锚15的配合,在工具锚15以及工作锚14之间放置两个千斤顶16,通过千斤顶施加的力使得工作锚14向前推移,待预应力施加到预定值后,将千斤顶16卸力,工作锚14通过其夹片18完成自锁,维持施加的预应力,进而使承拉杆件6承受拉状态,并通过端承构件4的分散作用,对底板混凝土施加预压应力。在该实施过程中对于千斤顶的选用,考虑金属盒空间有限,可使用 小巧的螺杆千斤顶代替处传统的液压千斤顶,并考虑其顶推力的大小一次对称安放两个。在预应力施加完成后,工具锚与千斤顶可进行拆卸。

Claims (6)

  1. 一种斜井井壁混凝土底板预应力加载装置,包括两个端承构件(4)、波纹管(5)、承拉杆件(6)、两个锚头(7);其特征是:所述承拉杆件由左承拉杆、右承拉杆和加载机构构成,左承拉杆和右承拉杆由加载机构连为一体,穿入波纹管中,两端露出设定的长度,两个端承构件分别穿套在承拉杆件左右两端,两个锚头分别将左、右两个端承构件锁定位置。
  2. 根据权利要求1所述一种斜井井壁混凝土底板预应力加载装置,其特征是:包括一个加载盒(8),加载盒带盖密闭,所述波纹管分为两段,在加载盒两侧并与加载盒贯通,所述加载机构位于加载盒内;
    所述加载盒上设有注浆孔(17),波纹管外端部设有排气孔(11)。
  3. 根据权利要求1所述一种斜井井壁混凝土底板预应力加载装置,其特征是:所述端承构件为槽钢、工字钢或钢板。
  4. 根据权利要求1所述一种斜井井壁混凝土底板预应力加载装置,其特征是:所述加载机构是内螺纹套筒(12),其内螺纹分为左右两部分,两部分的螺纹纹路相逆;左承拉杆、右承拉杆的端部分别带有与内螺纹套筒纹路相配的公螺纹,分别旋拧在内螺纹套筒内。
  5. 根据权利要求1所述一种斜井井壁混凝土底板预应力加载装置,其特征是:所述加载机构由U型联接件(13)、挡板(131)和两个螺母构成;U型联接件的弓背与左承拉杆连接,挡板固定在右承拉杆的端部,挡板上共有二个通孔,U型联接件的两脚分别套入二个通孔中;U型联接件的两脚带公螺纹,两个螺母分别旋拧在U型联接件的两脚上。
  6. 根据权利要求1所述一种斜井井壁混凝土底板预应力加载装置,其特征是:所述加载机构由工作锚(14)、工具锚(15)和两个千斤顶(16)构成;
    所述左承拉杆为两根,其端部对称固定在工作锚两侧;左承拉杆另一端与锚头(7)采用以下两种形式之一连接:
    一种是两根左承拉杆从锚头(7)上同一孔洞穿过并固定,另一种是两根左承拉杆分别从锚头(7)上的两个孔洞穿过并固定;
    所述工作锚中部设有锥形孔,所述右承拉杆头部先穿过工作锚的中部锥形孔,然后穿过工具锚上预设的锥型孔,并通过夹子将右承拉杆自锁在工作锚和工具锚上;
    所述两个千斤顶放置于工作锚(14)与工具锚(15)之间,对称放置。
PCT/CN2017/114231 2017-03-07 2017-12-01 一种斜井井壁混凝土底板预应力加载装置 WO2018161649A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017402485A AU2017402485B2 (en) 2017-03-07 2017-12-01 Apparatus for prestressing Concrete Floor of Inclined Shaft Wall
US16/301,413 US10612241B2 (en) 2017-03-07 2017-12-01 Apparatus for prestressing concrete floor of inclined shaft wall
CA3022754A CA3022754C (en) 2017-03-07 2017-12-01 Apparatus for prestressing concrete floor of inclined shaft wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710129849.2 2017-03-07
CN201710129849.2A CN106884651B (zh) 2017-03-07 2017-03-07 一种斜井井壁混凝土底板预应力加载装置

Publications (1)

Publication Number Publication Date
WO2018161649A1 true WO2018161649A1 (zh) 2018-09-13

Family

ID=59179474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114231 WO2018161649A1 (zh) 2017-03-07 2017-12-01 一种斜井井壁混凝土底板预应力加载装置

Country Status (5)

Country Link
US (1) US10612241B2 (zh)
CN (1) CN106884651B (zh)
AU (1) AU2017402485B2 (zh)
CA (1) CA3022754C (zh)
WO (1) WO2018161649A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117145523A (zh) * 2023-10-31 2023-12-01 煤炭工业太原设计研究院集团有限公司 一种钾盐矿斜井泥岩段冒顶处理加固结构及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884651B (zh) * 2017-03-07 2018-09-25 中国矿业大学 一种斜井井壁混凝土底板预应力加载装置
CN108387334A (zh) * 2018-02-09 2018-08-10 西安科技大学 一种斜井冻结施工井壁受力特性监测装置
CN109163977A (zh) * 2018-08-28 2019-01-08 中国矿业大学 地压与水压联合加载斜井井壁受力模拟试验***与方法
CN109339828B (zh) * 2018-11-29 2024-01-30 中南大学 一种隧道预应力仰拱结构及其施工方法
CN110318372B (zh) * 2019-07-02 2021-03-12 上海外高桥造船有限公司 锚拉杆对接方法
CN110863837B (zh) * 2019-11-27 2021-07-27 长安大学 一种弓形自稳式高速铁路隧道仰拱结构及施工方法
CN111693367A (zh) * 2020-06-12 2020-09-22 华北水利水电大学 一种模拟围岩层状破坏的测试装置及试验方法
CN112483127B (zh) * 2020-11-16 2022-08-26 东南大学 基于压电材料的智能预应力隧道混凝土衬砌***
WO2023192035A1 (en) * 2022-03-31 2023-10-05 Rutgers, The State University Of New Jersey Anchorage system for prestressing non-metallic tendons
CN114856542B (zh) * 2022-05-09 2024-06-21 西南石油大学 一种模拟预应力作用下水泥环完整性测试装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863891A (en) * 1971-12-15 1975-02-04 Inst Politehnic Iasi Concrete prestressing device
CN1594834A (zh) * 2004-07-12 2005-03-16 中国矿业大学 一种控制煤岩顶帮变形的桁架支护技术
CN101737069A (zh) * 2008-11-27 2010-06-16 陈居礼 筋固岩体结构
CN102777197A (zh) * 2012-08-22 2012-11-14 鞍钢集团矿业公司 带张紧拉杆的全面胶结型锚杆
CN105201514A (zh) * 2015-09-15 2015-12-30 中国矿业大学 一种含水岩层井壁结构及施工方法
CN106884651A (zh) * 2017-03-07 2017-06-23 中国矿业大学 一种斜井井壁混凝土底板预应力加载装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089215A (en) * 1960-07-12 1963-05-14 Allan H Stubbs Apparatus for prestressed concrete construction
FR2124729A5 (zh) * 1972-01-04 1972-09-22 Soum Rene
AU768704B2 (en) * 2000-03-02 2004-01-08 Anderson Technology Corporation PC steel stranded wire connection structure and construction method thereof
JP5217054B2 (ja) * 2007-03-02 2013-06-19 住友電工スチールワイヤー株式会社 ストランド
US9644369B2 (en) * 2013-12-24 2017-05-09 Reigstad & Associates, Inc. Post-tension concrete leave out splicing system and method
US20150176276A1 (en) * 2013-12-24 2015-06-25 Reigstad & Associates, Inc. Post-tension concrete leave out splicing system and method
US9404254B2 (en) * 2013-12-24 2016-08-02 Reigstad & Associates, Inc. Post-tension concrete leave out splicing system and method
US9410316B2 (en) * 2013-12-24 2016-08-09 Reigstad & Associates, Inc. Post-tension concrete leave out splicing system and method
CN103741672B (zh) * 2014-01-24 2016-01-13 俞向阳 一种具有钢绞线的先张法离心混凝土桩及制造方法
US10024047B2 (en) * 2015-08-17 2018-07-17 Tindall Corporation Method and apparatus for constructing a concrete structure
US10619342B2 (en) * 2017-02-15 2020-04-14 Tindall Corporation Methods and apparatuses for constructing a concrete structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863891A (en) * 1971-12-15 1975-02-04 Inst Politehnic Iasi Concrete prestressing device
CN1594834A (zh) * 2004-07-12 2005-03-16 中国矿业大学 一种控制煤岩顶帮变形的桁架支护技术
CN101737069A (zh) * 2008-11-27 2010-06-16 陈居礼 筋固岩体结构
CN102777197A (zh) * 2012-08-22 2012-11-14 鞍钢集团矿业公司 带张紧拉杆的全面胶结型锚杆
CN105201514A (zh) * 2015-09-15 2015-12-30 中国矿业大学 一种含水岩层井壁结构及施工方法
CN106884651A (zh) * 2017-03-07 2017-06-23 中国矿业大学 一种斜井井壁混凝土底板预应力加载装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117145523A (zh) * 2023-10-31 2023-12-01 煤炭工业太原设计研究院集团有限公司 一种钾盐矿斜井泥岩段冒顶处理加固结构及方法
CN117145523B (zh) * 2023-10-31 2023-12-26 煤炭工业太原设计研究院集团有限公司 一种钾盐矿斜井泥岩段冒顶处理加固结构及方法

Also Published As

Publication number Publication date
CA3022754A1 (en) 2018-09-13
AU2017402485A1 (en) 2018-11-29
US20190383016A1 (en) 2019-12-19
CN106884651B (zh) 2018-09-25
CN106884651A (zh) 2017-06-23
US10612241B2 (en) 2020-04-07
AU2017402485B2 (en) 2019-12-12
CA3022754C (en) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2018161649A1 (zh) 一种斜井井壁混凝土底板预应力加载装置
WO2018006558A1 (zh) 一种适用于地下隧洞的高强约束混凝土支护体系
CN202391019U (zh) 钢筋端部加粗灌浆接头
WO2012155727A1 (zh) 盾构隧洞预应力复合衬砌输水隧洞
KR20110111907A (ko) 사장교 주탑쪽의 사장 케이블용 새들 구조체
CN210562163U (zh) 一种预制预应力锚杆杆件
CN110905198B (zh) 一种钢绞线对拉加固模板的施工方法及加固锚具装置
CN114215090B (zh) 一种封闭空间内筏板与压桩的施工方法
CN106838463B (zh) 提高矩形顶管工后纵向整体刚度的预埋组件及用法
CN206233579U (zh) 一种剪力墙模板对拉连接件及其模板加固结构
WO2024120158A1 (zh) 预制式隧道预应力锚杆及其制作方法和使用方法
CN113914891B (zh) 一种预空软岩巷道支护结构及其施工方法
CN107542086B (zh) 一种用于填方边坡的锚索施工方法
CN212642773U (zh) 一种中空注浆矿用锚索
CN206408611U (zh) 一种自适应可回收锚索体系
JPS5916621B2 (ja) 地下タンクの側壁構築方法
CN105952045A (zh) 一种预应力后浇楼板施工方法
CN205875202U (zh) 高含水量超软土箱型多室现浇框架隧道支模体系
CN209100066U (zh) 一种快速张拉锚索结构
CN111719888B (zh) 一种既有砌体建筑体内增设圈梁和构造柱的方法
CN208816155U (zh) 破碎围岩巷道支护用的预应力注浆锚索
CN114427224B (zh) 一种既有地下结构抗浮补强锚杆及施工方法
CN103114723B (zh) 一种固定模板用装置的使用方法
CN216640570U (zh) 一种冠梁预应力锚索的套管
CN215170084U (zh) 一种用于隧道矮边墙中埋式止水带固定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3022754

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017402485

Country of ref document: AU

Date of ref document: 20171201

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899855

Country of ref document: EP

Kind code of ref document: A1