WO2018161227A1 - 一种被用于动态调度的用户设备、基站中的方法和装置 - Google Patents

一种被用于动态调度的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2018161227A1
WO2018161227A1 PCT/CN2017/075798 CN2017075798W WO2018161227A1 WO 2018161227 A1 WO2018161227 A1 WO 2018161227A1 CN 2017075798 W CN2017075798 W CN 2017075798W WO 2018161227 A1 WO2018161227 A1 WO 2018161227A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
pool
sub
pools
Prior art date
Application number
PCT/CN2017/075798
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201780069275.2A priority Critical patent/CN109952727B/zh
Priority to PCT/CN2017/075798 priority patent/WO2018161227A1/zh
Priority to CN202111147303.2A priority patent/CN113891483B/zh
Priority to CN202111113609.6A priority patent/CN113839764A/zh
Publication of WO2018161227A1 publication Critical patent/WO2018161227A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to a transmission method and apparatus in a wireless communication system, and more particularly to a method and apparatus for transmission of a control channel in wireless communication used for dynamic scheduling.
  • the UE searches for the corresponding DCI (Downlink Control Information) in the downlink subframe.
  • the PDCCH Physical Downlink Control Channel
  • the Enhanced Physical Downlink Control Channel (EPDCCH) of the DCI often passes through the robustness (Dublicity Control Channel) or the EPDCCH (Enhanced Physical Downlink Control Channel). Transmission in the form of Diversity or Precoder Cycling.
  • a simple control signaling transmission method is to indicate the direction or index of the transmission beam used by the control signaling to the UE before the UE receives.
  • the control signaling is transmitted on two beams respectively, and the base station informs the UE before the UE performs blind detection (Blind Decoding) on the control signaling.
  • this method has a significant problem in that additional signaling overhead is added, especially when the beam transmitting the control signaling is dynamically changed, which leads to additional control signaling overhead.
  • this information needs to be received before receiving the control signaling. According to the characteristics of the existing LTE system, this information is often non-UE-specific (Non UE-Specific), and non-UE-specific information will further bring additional Physical layer control signaling overhead and implementation complexity.
  • the present invention provides a solution. It should be noted that there is no conflict In the case, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa.
  • the invention discloses a method used in a dynamically scheduled UE, which comprises the following steps:
  • Step A receiving the first RS set in the first time-frequency resource pool
  • Step B Search for the first signaling.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the method is characterized in that the X2 time-frequency resource sub-pools correspond to X2 search spaces of the UE, or the X2 time-frequency resource sub-pools correspond to X2 control resource sets of the UE. (Control Resource Set).
  • the X2 time-frequency resource sub-pools correspond to X2 different transmission modes.
  • the UE by detecting the first RS set, implicitly obtains a sending manner corresponding to the X2 time-frequency resource sub-pools, thereby reducing the number of blind detections and saving control signaling overhead.
  • the X2 different transmission modes include single beam transmission and multiple beam transmission, so that the transmission of the first signaling is more flexible.
  • another feature of the foregoing method is that the X2 different transmission modes correspond to the X2 different receiving modes of the UE.
  • the transmit beam of the base station control signaling is associated with the UE's receive beam for control signaling.
  • the transmission efficiency of the control signaling is further improved without adding additional explicit signaling.
  • the first signaling is a DCI.
  • the first time-frequency resource pool and the time-frequency resource sub-pool respectively comprise a positive integer number of REs (Resource Element).
  • the first time-frequency resource pool occupies a first time interval in the time domain, and at least one time-frequency resource resource sub-pool exists in the X2 time-frequency resource sub-pools, and the given time-frequency resource sub-pool The first time interval is also occupied in the time domain.
  • the first time interval occupies one multi-carrier symbol in the time domain.
  • the first time interval occupies a plurality of multi-carrier symbols in the time domain.
  • the given time-frequency resource sub-pool also occupies time domain resources outside the first time interval in the time domain.
  • the X2 time-frequency resource sub-pools respectively include X2 search spaces of the UE.
  • the X2 time-frequency resource sub-pools respectively correspond to X2 control resource sets of the UE.
  • the X3 detections are evenly distributed into the X2 time-frequency resource sub-pools.
  • the number of times the UE detects the first signaling in the sub-frequency resource sub-pool is Xk.
  • the given time-frequency resource sub-pool is any one of the X2 time-frequency resource sub-pools, and the Xk is equal to the X3 divided by the quotient of the X2, and the X3 is A positive integer multiple of X2.
  • the detection times of the X2 time-frequency resource sub-pools are respectively configured by the high-level signaling, and the sum of the detection times of the X2 time-frequency resource sub-pools is not greater than the X3.
  • the time-frequency resource sub-pool occupies a positive integer number of PRBs in the frequency domain and a positive integer multi-carrier symbol in the time domain.
  • the first RS set includes Q1 RS ports, and the Q1 RS ports are respectively sent by Q1 antenna ports (Antenna Port).
  • the Q1 is a positive integer.
  • the Q1 RS ports are antenna ports occupied by the first RS set in the first time interval, and the Q1 is equal to 1.
  • the Q1 RS ports are antenna port groups occupied by the first RS set in the first time interval, and the Q1 is greater than 1.
  • the pattern of the RS port in the two multi-carrier symbols reuses a pattern of DMRS (Demodulation Reference Signal) corresponding to one antenna port in two multi-carrier symbols.
  • DMRS Demodulation Reference Signal
  • the wireless signals in one time-frequency resource sub-pool are sent by the same antenna port group, and the antenna port group includes a positive integer number of antenna ports.
  • the positive integer is equal to one.
  • the receiving beam direction used by the UE to detect the first signaling is independent of the frequency domain resource occupied by the first time-frequency resource pool.
  • the receiving beam direction used by the UE to detect the first signaling is independent of the first RS sequence.
  • the receiving beam direction used by the UE to detect the first signaling is related to the time-frequency resource sub-pool.
  • the X2 is greater than 1, and at least two receive beam directions in the receive beam direction used by the UE to search for the X2 time-frequency resource sub-pools are different.
  • the RE in the present invention occupies one subcarrier in the frequency domain and occupies one multicarrier symbol in the time domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an FBMC (Filtering Bank Multile Carrier) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the first time-frequency resource pool and the first RS sequence are used together to determine the X2 time-frequency resource sub-pools.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A0 Blind detection in the Y first class candidate resource pools to determine the first time-frequency resource pool.
  • the first time-frequency resource pool is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the method is characterized in that: the Y first type candidate resource pools correspond to the positions of the Y frequency domain resources occupied by the first RS set.
  • the UE determines the X2 time-frequency resource sub-pools by detecting the first RS sequence on Y different frequency domain resource locations.
  • the foregoing method has the following advantages: the UE implicitly obtains the indication information required by the X2 time-frequency resource sub-pools, and reduces the overhead of system control signaling.
  • the blind detection is based on energy detection.
  • the blind detection is based on detection of the first RS sequence.
  • the Y first type candidate resource pools are respectively directed to Y kinds of RE sets.
  • the subcarriers occupied by the RE set in the frequency domain are discontinuous.
  • the set of REs occupy a positive integer number of subcarriers in the frequency domain.
  • the RE set occupies part of the subcarriers in the subcarriers occupied by one PRB.
  • the number of subcarriers corresponding to the partial subcarriers is fixed, or the number of subcarriers corresponding to the partial subcarriers is configurable.
  • the first type of candidate resource pool is all REs corresponding to the RE set on multiple PRBs.
  • the REs occupied by any two of the Y RE sets are non-overlapping.
  • the Y RE sets are orthogonal in the frequency domain.
  • the first time-frequency resource pool is a set of REs occupied by a corresponding first-class candidate resource pool in a positive integer multi-carrier symbol.
  • the frequency domain resources occupied by the first type of candidate resource pool belong to the frequency domain resources occupied by the X2 time-frequency resource sub-pools.
  • the method is characterized in that the X2 is greater than 1, and the wireless signals in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools correspond to
  • the transmit antenna port group is independently configured by high layer signaling, and the transmit antenna port group includes a positive integer number of antenna ports.
  • the foregoing method is characterized in that: the transmit antenna port group corresponding to the X2 time-frequency resource sub-pools is configured by high-layer signaling to increase transmission flexibility. And detecting, by the receiving antenna port group, the X2 time-frequency resource sub-pools, by using at least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ , further Improve the flexibility of reception.
  • the high layer signaling is UE-specific.
  • the high layer signaling is RRC (Radio Resource Control) signaling.
  • At least one of the first time-frequency resource pool, the first RS sequence is used to determine any one of the X2 time-frequency resource sub-pools.
  • the receive antenna port group includes a positive integer number of antenna ports.
  • the method is characterized in that one time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the foregoing method is characterized in that: the RS resources included in one time-frequency resource sub-pool are used for channel estimation of the first signaling.
  • the foregoing method has the following advantages: a signal in the time-frequency resource sub-pool is sent by using the same transmit antenna port group to ensure consistency of reception; or a signal in the time-frequency resource sub-pool Both are transmitted with the same beam to ensure the consistency of reception.
  • the location of the time-frequency resource occupied by the RS resource in the associated time-frequency resource sub-pool is default (that is, the downlink signaling is not explicitly configured).
  • the location of the time-frequency resource occupied by the RS resource in the associated time-frequency resource sub-pool is configured by high-layer signaling, and the high-level signaling is common to the cell or specific to the terminal group.
  • the terminal group includes a plurality of UEs.
  • the RS resource is an antenna port or an antenna port group occupied by the DMRS for the first signaling channel estimation in the associated time-frequency resource sub-pool.
  • the RS resource further includes a positive integer number of REs occupied by the antenna port or the antenna port group.
  • the RS resource further includes an RS sequence transmitted on the antenna port or on the antenna port group.
  • the foregoing method is characterized in that the physical layer signaling manner of resource mapping in the time-frequency resource sub-pool and the time-frequency resource sub-pool
  • the length of the occupied time domain resource is related.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ ,
  • the second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the method is characterized in that: the time-frequency resource sub-pool occupies more time resources, and the time-frequency resource sub-pool has a large probability of using a diversity transmission mode, and the first candidate mode is used to obtain more Large performance gain.
  • the time-frequency resource sub-pool occupies less time resources, and the time-frequency resource sub-pool has a frequency probability of using a frequency selective (Frequency Selective) transmission mode, and the second candidate mode is used to obtain a larger performance gain.
  • the length of the time domain resource is the number of multi-carrier symbols included in the time domain resource.
  • the length of the time domain resource is a plurality of the multi-carrier symbols, and the time-frequency resource sub-pool adopts the first candidate mode.
  • the length of the time domain resource is a single multi-carrier symbol
  • the time-frequency resource sub-pool adopts the second candidate mode
  • the length of the time domain resource is the number of time intervals included in the time domain resource.
  • the length of the time domain resource is a plurality of the time intervals, and the time-frequency resource sub-pool adopts the first candidate mode.
  • the length of the time domain resource is a single time interval, and the time-frequency resource sub-pool adopts the second candidate mode.
  • the length of the time interval is equal to the length of time occupied by a positive integer number of multi-carrier symbols.
  • the X4 is equal to the X3.
  • the X4 is smaller than the X3.
  • the UE first performs the X4 detections and then performs the remaining ones of the X3 detections.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A10 Receive second signaling.
  • the second signaling is used to determine a second time-frequency resource pool, and at least one of the first time-frequency resource pool, the first RS sequence is used to learn from the second time.
  • Frequency resource pool Determining the X2 time-frequency resource sub-pools.
  • the second time-frequency resource pool includes Z time-frequency resource sub-pools, and the X2 time-frequency resource sub-pools belong to the Z time-frequency resource sub-pools.
  • the time domain resource occupied by the first time-frequency resource pool belongs to a time domain resource occupied by the second time-frequency resource pool.
  • the time domain resource occupied by the first time-frequency resource pool and the time domain resource occupied by the second time-frequency resource pool are the same.
  • the method is characterized in that: the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or the first RS sequence and the The X2 time-frequency resource sub-pools are related.
  • the subcarriers occupied by the first time-frequency resource pool implicitly indicate the X2 time-frequency resource sub-pools.
  • the Y is equal to one of ⁇ 2, 3, 4 ⁇ .
  • the Y is equal to two.
  • the Y first type candidate resource pools respectively correspond to the candidate resource pool #1 and the candidate resource pool #2.
  • the candidate resource pool #1 and the candidate resource pool #2 occupy different subcarriers in one PRB.
  • the first time-frequency resource pool is the candidate resource pool #1, and the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource The sub-pool #2 ⁇ ; the first time-frequency resource pool is the candidate resource pool #2, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #3.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #3 is equal to the sum of the time-frequency resources occupied by the time-frequency resource sub-pool #1 and the time-frequency resource sub-pool #2.
  • the Y is equal to three.
  • the Y first type candidate resource pools respectively correspond to the candidate resource pool #1, the candidate resource pool #2, and the candidate resource pool #3.
  • the candidate resource pool #1, the candidate resource pool #2 and the candidate resource pool #3 occupy different subcarriers in one PRB.
  • the first time-frequency resource pool is the candidate resource pool #1, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #1;
  • the time-frequency resource pool is the candidate resource pool #2, and the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool #2 ⁇ ;
  • the first time-frequency resource pool is The candidate resource pool #3, the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #3.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #3 is equal to the time-frequency resource sub-pool #1 and the time-frequency resource sub-pool #2. The sum of time-frequency resources.
  • the Y is equal to four.
  • the Y first type candidate resource pools respectively correspond to candidate resource pool #1, candidate resource pool #2, candidate resource pool #3, and candidate resource pool #4.
  • the candidate resource pool #1, the candidate resource pool #2, the candidate resource pool #3, and the candidate resource pool #4 occupy different subcarriers in one PRB.
  • the first time-frequency resource pool is the candidate resource pool #1, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #1;
  • the time-frequency resource pool is the candidate resource pool #2, and the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool #2 ⁇ ;
  • the first time-frequency resource pool is The candidate resource pool #3, the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool #2, time-frequency resource sub-pool #3 ⁇ ;
  • the first time-frequency The resource pool is the candidate resource pool #4, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #4.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #4 is equal to the time-frequency resource sub-pool #1, and the time-frequency resource sub-pool #2 and the time-frequency resource sub-pool #3 occupy the time-frequency The sum of resources.
  • the first RS sequence implicitly indicates the X2 time-frequency resource sub-pools.
  • the first RS sequence belongs to an RS sequence set, and the RS sequence set includes M candidate sequences.
  • the X2 time-frequency resource sub-pools belong to the second time-frequency resource pool.
  • the M is equal to two.
  • the M candidate sequences correspond to candidate sequence #1 and candidate sequence #2, respectively.
  • the first RS sequence is the candidate sequence #1, and the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool# 2); the first RS sequence is the candidate sequence #2, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #3.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #3 is equal to the sum of the time-frequency resources occupied by the time-frequency resource sub-pool #1 and the time-frequency resource sub-pool #2.
  • the M is equal to three.
  • the M candidate sequences correspond to candidate sequence #1, candidate sequence #2, and candidate sequence #3, respectively.
  • the first RS sequence is the candidate sequence #1, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #1; the first RS sequence is The candidate sequence #2, the X2 time-frequency resource sub-pool is ⁇ time-frequency resource sub-pool #1, time-frequency Resource sub-pool #2 ⁇ ; the first RS sequence is the candidate sequence #3, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #3.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #3 is equal to the sum of the time-frequency resources occupied by the time-frequency resource sub-pool #1 and the time-frequency resource sub-pool #2.
  • the M is equal to four.
  • the M candidate sequences correspond to candidate sequence #1, candidate sequence #2, candidate sequence #3, and candidate sequence #4, respectively.
  • the first RS sequence is the candidate sequence #1, and the X2 time-frequency resource sub-pools are time-frequency resource sub-pools #1; the first RS sequence is The candidate sequence #2, the X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool #2 ⁇ ; the first RS sequence is the candidate sequence #3, The X2 time-frequency resource sub-pools are ⁇ time-frequency resource sub-pool #1, time-frequency resource sub-pool #2, time-frequency resource sub-pool #3 ⁇ ; the first RS sequence is the candidate sequence #4, The X2 time-frequency resource sub-pools are time-frequency resource sub-pools #4.
  • the time-frequency resource occupied by the time-frequency resource sub-pool #4 is equal to the time-frequency resource sub-pool #1, and the time-frequency resource sub-pool #2 and the time-frequency resource sub-pool #3 occupy the time-frequency The sum of resources.
  • the above method is characterized by further comprising the steps of:
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS (Modulation and Coding Status), and the corresponding NDI (New Data Indicator (new data indication), at least one of RV (Redundancy Version), corresponding HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • the first signaling is a downlink grant, and the operation is receiving.
  • the first signaling is an uplink grant
  • the operation is a sending.
  • the invention discloses a method used in a base station for dynamic scheduling, which comprises the following steps:
  • Step A transmitting the first RS set in the first time-frequency resource pool
  • Step B Send the first signaling.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the The first RS set.
  • At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A0 Determine the first time-frequency resource pool in the Y first-class candidate resource pools.
  • the first time-frequency resource is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the method is characterized in that the X2 is greater than 1, and the wireless signals in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools correspond to
  • the transmit antenna port group is independently configured by high layer signaling, and the transmit antenna port group includes a positive integer number of antenna ports.
  • the method is characterized in that one time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the foregoing method is characterized in that the physical layer signaling manner of resource mapping in the time-frequency resource sub-pool and the time-domain resource occupied by the time-frequency resource sub-pool The length is related.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the method is characterized in that the step A further comprises the following steps:
  • the second signaling is used to determine a second time-frequency resource pool, and at least one of the first time-frequency resource pool, the first RS sequence is used to learn from the second time.
  • the X2 time-frequency resource sub-pools are determined in the frequency resource pool.
  • the method is characterized in that: the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or The first RS sequence is associated with the X2 time-frequency resource subpools.
  • the above method is characterized by further comprising the steps of:
  • Step C Execute the first wireless signal.
  • the execution is a transmission or the execution is a reception.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the invention discloses a user equipment used for dynamic scheduling, which comprises the following modules:
  • a first receiving module configured to receive the first RS set in the first time-frequency resource pool
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the foregoing user equipment that is used for dynamic scheduling is characterized in that the first receiving module is further configured to perform blind detection in the Y first type candidate resource pools to determine the first time-frequency resource pool.
  • the first time-frequency resource pool is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the user equipment used for dynamic scheduling is characterized in that the first receiving module is further configured to receive the second signaling.
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the foregoing user equipment used for dynamic scheduling is characterized in that the X2 is greater than 1, and the wireless signals in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools are
  • the corresponding transmit antenna port group is independently configured by high layer signaling, and the transmit antenna port group includes a positive integer number of antenna ports.
  • the foregoing user equipment used for dynamic scheduling is characterized in that:
  • the time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the foregoing user equipment used for dynamic scheduling is characterized in that the physical layer signaling is in a manner of resource mapping in the time-frequency resource sub-pool and the time occupied by the time-frequency resource sub-pool
  • the length of the domain resource is related.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the user equipment used for dynamic scheduling is characterized in that: the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or the first RS sequence Corresponding to the X2 time-frequency resource subpools.
  • the foregoing user equipment used for dynamic scheduling is characterized in that:
  • a first processing module for operating the first wireless signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the invention discloses a base station device used for dynamic scheduling, which comprises the following modules:
  • a first sending module configured to send the first RS set in the first time-frequency resource pool
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the foregoing base station device used for dynamic scheduling is characterized in that the first sending module is further configured to determine the first time-frequency resource pool in the Y first-class candidate resource pools.
  • the first time-frequency resource pool is one of the first one of the Y first-class candidate resource pools Class candidate resource pool.
  • the foregoing base station device used for dynamic scheduling is characterized in that the first sending module is further configured to send the second signaling.
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the foregoing base station device used for dynamic scheduling is characterized in that the X2 is greater than 1, and the wireless signals in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools are
  • the corresponding transmit antenna port group is independently configured by high layer signaling, and the transmit antenna port group includes a positive integer number of antenna ports.
  • the base station device used for dynamic scheduling is characterized in that one time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for the associated channel of the time-frequency resource sub-pool. estimate.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the foregoing base station device used for dynamic scheduling is characterized in that the physical layer signaling is in a manner of resource mapping in the time-frequency resource sub-pool and the time occupied by the time-frequency resource sub-pool
  • the length of the domain resource is related.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the base station device used for dynamic scheduling is characterized in that: the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or the first RS sequence Corresponding to the X2 time-frequency resource subpools.
  • the foregoing base station device used for dynamic scheduling is characterized in that:
  • a second processing module for executing the first wireless signal.
  • the execution is a transmission or the execution is a reception.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the present invention has the following technical advantages:
  • the UE implicitly obtains the X2 time-frequency resource sub-pools by determining the first time-frequency resource pool or detecting the first RS set.
  • the transmission mode reduces the number of blind detections and saves control signaling overhead.
  • the sending mode establishes a connection with the receiving mode of the UE, and reduces the complexity of UE receiving while ensuring transmission flexibility.
  • the manner of transmitting the X2 time-frequency resource sub-pools is related to the mapping manner of the first signaling, further reducing the number of blind detections and reducing implementation complexity.
  • Figure 1 shows a flow chart of a first signaling transmission in accordance with one embodiment of the present invention
  • FIG. 2 shows a flow chart of a first signaling transmission in accordance with another embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a time-frequency resource subpool according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of a first type of candidate resource pools in accordance with one embodiment of the present invention
  • FIG. 5 shows a schematic diagram of RS resources according to an embodiment of the present invention
  • Figure 6 shows a schematic diagram of a first candidate mode in accordance with one embodiment of the present invention
  • Figure 7 shows a schematic diagram of a second candidate mode in accordance with one embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • Figure 9 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of a first signaling transmission in accordance with the present invention, as shown in FIG.
  • a base station N1 is a maintenance base station of a serving cell of UE U2.
  • the second signaling is sent in step S10, the first time-frequency resource pool is determined in step S11, the first RS set is transmitted in the first time-frequency resource pool in step S12, and the first RS-set is sent in step S13.
  • the first wireless signal is transmitted in step S14.
  • the second signaling is received in step S20, and the first time-frequency resource pool is blindly detected in the Y first-class candidate resource pools in step S21, and the first time-frequency resource pool is in step S22.
  • the first RS set is received, the first signaling is searched in step S23, and the first wireless signal is received in step S24.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the first time-frequency resource pool is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the X2 is greater than 1, and the transmit antenna port group corresponding to the wireless signal in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools is independently configured by high-layer signaling, and the sending
  • the antenna port group includes a positive integer number of antenna ports.
  • One time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the manner in which the physical layer signaling allocates resources in the time-frequency resource sub-pool is related to the length of the time-domain resource occupied by the time-frequency resource sub-pool.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the subcarriers occupied by the first time-frequency resource pool are related to the X2 time-frequency resource sub-pools; or the first RS sequence is related to the X2 time-frequency resource sub-pools.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first wireless signal is transmitted on a physical layer data channel (a physical layer channel that can be used to carry physical layer data).
  • the physical layer data channel is ⁇ PDSCH (Physical Downlink Shared Channel), sPDSCH (Short Latency-PDSCH), and NB-PDSCH (Narrowband-PDSCH (Narrowband Physical Downlink Shared Channel) , NR-PDSCH (New Radio-PDSCH, New Radio Physical Downlink Shared Channel) ⁇ .
  • the transport channel corresponding to the first radio signal is a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second signaling is transmitted through RRC layer signaling.
  • the RRC layer signaling is cell-specific.
  • the RRC layer signaling is beam-specific.
  • the RRC layer signaling is beam group-specific.
  • the RRC layer signaling is specific to the UE group.
  • the RRC layer signaling is UE-specific.
  • the second signaling is transmitted by broadcast signaling.
  • Embodiment 2 illustrates a flow chart of another first signaling transmission in accordance with the present invention, as shown in FIG.
  • the base station N3 is a maintenance base station of the serving cell of the UE U4.
  • the second signaling is sent in step S30, the first time-frequency resource pool is determined in the Y first-class candidate resource pools in step S31, and the first time-frequency resource pool is sent in the first time-frequency resource pool in step S32.
  • An RS set the first signaling is sent in step S33, and the first wireless signal is received in step S34.
  • the second signaling is received in step S40, and the first time-frequency resource pool is blindly detected in the Y first-class candidate resource pools in step S41, and the first time-frequency resource pool is in step S42.
  • the first RS set is received, the first signaling is searched in step S43, and the first wireless signal is transmitted in step S44.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the first time-frequency resource pool is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the X2 is greater than 1, and the transmit antenna port group corresponding to the wireless signal in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools is independently configured by high-layer signaling, and the sending
  • the antenna port group includes a positive integer number of antenna ports.
  • One time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the manner in which the physical layer signaling allocates resources in the time-frequency resource sub-pool is related to the length of the time-domain resource occupied by the time-frequency resource sub-pool.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the subcarriers occupied by the first time-frequency resource pool are related to the X2 time-frequency resource sub-pools; or the first RS sequence is related to the X2 time-frequency resource sub-pools.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first wireless signal is transmitted on a physical layer data channel (a physical layer channel that can be used to carry physical layer data).
  • the physical layer data channel is ⁇ PUSCH (Physical Uplink Shared Channel), sPUSCH (Short Latency-PUSCH), NB-PUSCH (Narrowband-PUSCH, narrowband physical uplink shared channel) , NR-PUSCH (New Radio-PUSCH, new radio physical uplink shared channel) ⁇ .
  • the transport channel corresponding to the first wireless signal is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the second signaling is transmitted through RRC layer signaling.
  • the RRC layer signaling is cell-specific.
  • the RRC layer signaling is beam-specific.
  • the RRC layer signaling is beam group-specific.
  • the RRC layer signaling is specific to the UE group.
  • the RRC layer signaling is UE-specific.
  • the second signaling is transmitted by broadcast signaling.
  • Embodiment 3 illustrates a schematic diagram of a time-frequency resource sub-pool according to the present invention.
  • the time-frequency resource set is composed of R time-frequency resource subsets, and a thick-line frame rectangle in the figure corresponds to one of the time-frequency resource subsets.
  • the time-frequency resource subset occupies a frequency bandwidth corresponding to one PRB in the frequency domain, and occupies a time window in the time domain.
  • the time-frequency resource sub-pool occupies a positive integer number of the time-frequency resource sets.
  • Scheme 1 The frequency domain resources occupied by the time-frequency resource sub-pool are discrete, and the frequency domain resources occupied by the scheme 2 in the figure for the time-frequency resource sub-pool are continuous.
  • the R is a positive integer.
  • the time window corresponds to a time domain resource occupied by T multi-carrier symbols.
  • the T is equal to one.
  • the R time-frequency resource subsets are discrete in the frequency domain.
  • the R time-frequency resource subsets are continuous in the frequency domain.
  • the time-frequency resource sub-pool #1 in the present invention corresponds to the time-frequency resource occupied by the time-frequency resource set #1
  • the time-frequency resource sub-pool #2 in the present invention corresponds to the time-frequency resource set. #2 Occupied time-frequency resources.
  • the time-frequency resource sub-pool #1 corresponds to a first transmit antenna port group
  • the time-frequency resource sub-pool #2 corresponds to a second transmit antenna port group.
  • the time-frequency resource sub-pool #1 in the present invention corresponds to the time-frequency resource occupied by the time-frequency resource set #1
  • the time-frequency resource sub-pool #2 in the present invention corresponds to the time-frequency resource set.
  • the time-frequency resource sub-pool #3 in the present invention corresponds to the time-frequency resource jointly occupied by the time-frequency resource set #1 and the time-frequency resource set #2.
  • the time-frequency resource sub-pool #1 corresponds to a first transmit antenna port group
  • the time-frequency resource sub-pool #2 corresponds to a second transmit antenna port group
  • the time-frequency resource Subpool #3 corresponds to the first transmit antenna port group.
  • the time-frequency resource sub-pool #1 in the present invention corresponds to the time-frequency resource occupied by the time-frequency resource set #1
  • the time-frequency resource sub-pool #2 in the present invention corresponds to the time-frequency resource set.
  • the time-frequency resource sub-pool #3 in the present invention corresponds to the time-frequency resource occupied by the time-frequency resource set #3
  • the time-frequency resource sub-pool #4 in the present invention corresponds to the time-frequency The time-frequency resource occupied by the resource set #1 to the time-frequency resource set #3
  • the time-frequency resource sub-pool #1 corresponds to a first transmit antenna port group
  • the time-frequency resource sub-pool #2 corresponds to a second transmit antenna port group
  • the time-frequency resource The sub-pool #3 corresponds to the third transmit antenna port group
  • the time-frequency resource sub-pool #4 corresponds to the first transmit antenna port group.
  • Embodiment 4 illustrates a schematic diagram of a first type of candidate resource pool in accordance with the present invention.
  • the thick line frame shown in the figure corresponds to one RE.
  • the first class of candidates shown in the figure The resource pool occupies one multi-carrier symbol in the time domain and occupies a bandwidth corresponding to a positive integer number of PRBs in the frequency domain.
  • the first type of candidate resource pool corresponds to a pattern of a given RE set of bandwidths corresponding to one PRB.
  • 12 PR carriers occupy 12 subcarriers in the frequency domain
  • the first type of candidate resource pools occupy S REs of the 12 REs shown.
  • Scheme 1 in Figure 4 corresponds to S being equal to 4
  • Scheme 2 in Figure 4 corresponds to S being equal to 3.
  • the Y first-class candidate resource pools in the present invention correspond to ⁇ RE set #1, RE set #2, RE set #3 ⁇ , Y is equal to 3; corresponding to the scheme 2, in a multi-carrier symbol corresponding to one PRB band, the Y first-class candidate resource pools in the present invention correspond to ⁇ RE set #A, RE set #B, RE set #C , RE collection #D ⁇ , the Y is equal to 4.
  • T1 shown in the figure corresponds to a time domain resource occupied by a multi-carrier symbol.
  • the first type of candidate resource pool is all REs corresponding to the RE set corresponding to the bandwidth corresponding to the multiple PRBs.
  • the bandwidth corresponding to the multiple PRBs corresponds to the system bandwidth.
  • the plurality of PRBs are configurable or fixed.
  • the Y first-class candidate resource pools are configurable, or the Y first-class candidate resource pools are fixed.
  • Embodiment 5 illustrates a schematic diagram of an RS resource in accordance with the present invention.
  • a time-frequency resource sub-pool is associated with one of the RS resources.
  • FIG. 5 is a schematic diagram showing the RS resources of the time-frequency resource sub-pool in a frequency bandwidth corresponding to one PRB. Among them, one square in the figure corresponds to one RE.
  • Scenario 1 is a scenario in which the time-frequency resource sub-pool occupies only one multi-carrier symbol
  • scenario 2 is a scenario in which the time-frequency resource sub-pool occupies multiple multi-carrier symbols.
  • the location of the time-frequency resource occupied by the RS resource in the associated time-frequency resource sub-pool is default.
  • the location of the time-frequency resource occupied by the RS resource in the associated time-frequency resource sub-pool is configured by high-layer signaling, where the high-level signaling is common to the cell or is specific to the terminal group. of.
  • the terminal group includes a plurality of UEs.
  • the RS resource corresponds to the associated time-frequency resource sub-pool An antenna port or an antenna port group occupied by the DMRS for the first signaling channel estimation.
  • Embodiment 6 illustrates a schematic diagram of a first candidate mode in accordance with the present invention.
  • the first signaling in the present invention includes L1 control signaling units, the control signaling unit includes L2 resource groups, and the resource group includes L2 REs.
  • the first candidate manner corresponds to a mapping manner of the resource group to the control signaling unit.
  • the control signaling unit is a minimum unit for transmitting the first signaling.
  • the L1, the L2 and the L3 are each a positive integer.
  • the first candidate mode is ⁇ time domain first, frequency domain second ⁇ .
  • the L2 is equal to four.
  • the figure shows the mapping of four resource groups to the first candidate mode employed by a given control signaling unit.
  • a rectangular box in the figure corresponds to one of the resource groups.
  • T1 is shown to correspond to the duration of one multi-carrier symbol.
  • the L3 is equal to 12.
  • control signaling unit is a CCE (Control Channel Element), or the control signaling unit is an NCCA (New Radio Control Channel Element).
  • the resource group is a REG (Resource Element Group), or the resource group is a NREG (New Radio Resource Element Group).
  • Embodiment 7 illustrates a schematic diagram of a second candidate mode in accordance with the present invention.
  • the first signaling in the present invention includes L1 control signaling units, the control signaling unit includes L2 resource groups, and the resource group includes L2 REs.
  • the second candidate manner corresponds to a mapping manner of the resource group to the control signaling unit.
  • the control signaling unit is a minimum unit for transmitting the first signaling.
  • the L1, the L2 and the L3 are each a positive integer.
  • the first candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the L2 is equal to four.
  • the figure shows the mapping of four resource groups to the second candidate mode employed by a given control signaling unit.
  • a rectangular box in the figure corresponds to one of the resource groups.
  • T1 is shown to correspond to the duration of one multi-carrier symbol.
  • the L3 is equal to 12.
  • control signaling unit is a CCE, or the control signaling The unit is NCCE.
  • the resource group is an REG, or the resource group is NREG.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 100 is mainly composed of a first receiving module 101, a second receiving module 102, and a first processing module 103.
  • a first receiving module 101 configured to receive the first RS set in the first time-frequency resource pool
  • a second receiving module 102 for searching for the first signaling
  • a first processing module 103 for operating the first wireless signal.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the operation is to receive, or the operation is to send.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first receiving module 101 is further configured to perform blind detection in the Y first-class candidate resource pools to determine the first time-frequency resource pool.
  • the first time-frequency resource pool is one of the first candidate resource pools of the Y first-class candidate resource pools.
  • the first receiving module 101 is further configured to receive the second signaling.
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the X2 is greater than 1, and the transmit antenna port group corresponding to the wireless signal in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools is independent of high-layer signaling.
  • the configured transmit antenna port group includes a positive integer number of antenna ports.
  • one time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the manner in which the physical layer signaling allocates resources in the time-frequency resource sub-pool is related to the length of the time-domain resource occupied by the time-frequency resource sub-pool.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or the first RS sequence is related to the X2 time-frequency resource sub-pool.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 200 is mainly composed of a first sending module 201, a second sending module 202, and a second processing module 203.
  • a first sending module 201 configured to send the first RS set in the first time-frequency resource pool
  • a second sending module 202 configured to send the first signaling
  • a second processing module 203 for performing the first wireless signal.
  • the first signaling is physical layer signaling.
  • a first RS sequence is used to determine the first set of RSs. At least one of ⁇ the first time-frequency resource pool, the first RS sequence ⁇ is used to determine X2 time-frequency resource sub-pools.
  • a maximum of X3 detections are performed for the first signaling, and the X3 is a positive integer not less than the X2.
  • the subset of X3 detections is X4 detections. The detection of any of the X4 detections is performed in one of the time-frequency resource sub-pools.
  • the X2, the X3 and the X4 are positive integers, respectively.
  • the operation is to receive, or the operation is to send.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first sending module 201 is further configured to determine the first time-frequency resource pool in the Y first-class candidate resource pools.
  • the first time-frequency resource pool is one of the Y first-class candidate resource pools.
  • the first sending module 201 is further configured to send the second signaling.
  • the second signaling is used to determine a second time-frequency resource pool, at least one of the first time-frequency resource pool, the first RS sequence, is used to learn from the second time-frequency resource
  • the X2 time-frequency resource sub-pools are determined in the pool.
  • the X2 is greater than 1, and the transmit antenna port group corresponding to the wireless signal in any two of the time-frequency resource sub-pools of the X2 of the time-frequency resource sub-pools is independent of high-layer signaling.
  • the configured transmit antenna port group includes a positive integer number of antenna ports.
  • one time-frequency resource sub-pool is associated with one RS resource, and the RS resource is used for channel estimation of the associated time-frequency resource sub-pool.
  • the RS resources are transmitted by a positive integer number of antenna ports.
  • the manner in which the physical layer signaling allocates resources in the time-frequency resource sub-pool is related to the length of the time-domain resource occupied by the time-frequency resource sub-pool.
  • the resource mapping mode is one of a candidate mode set, where the candidate mode set includes a first candidate mode and a second candidate mode, where the first candidate mode is ⁇ time domain first, frequency domain second ⁇ , The second candidate mode is ⁇ frequency domain first, time domain second ⁇ .
  • the subcarrier occupied by the first time-frequency resource pool is related to the X2 time-frequency resource sub-pool; or the first RS sequence is related to the X2 time-frequency resource sub-pool.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • the base station in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种被用于动态调度的用户设备、基站中的方法和装置。UE在第一时频资源池中接收第一RS集合,随后搜索第一信令。所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。本发明能有效降低物理层动态信令开销,进而提高***频谱效率。

Description

一种被用于动态调度的用户设备、基站中的方法和装置 技术领域
本发明涉及无线通信***中的传输方法和装置,尤其涉及被用于动态调度的无线通信中控制信道的传输方法和装置。
背景技术
现有的LTE(Long Term Evolution,长期演进)***中,对于一个下行子帧而言,UE会在所述下行子帧中搜索对应的DCI(Downlink Control Information,下行控制信息)。考虑到DCI传输的鲁棒性(Robustness)以及高覆盖性需求,DCI对应的PDCCH(Physical Downlink Control Channel,物理下行控制信道)或者EPDCCH(Enhanced Physical Downlink Control Channel,增强的物理下行控制信道)往往通过分集(Diversity)或者预编码循环(Precoder Cycling)的方式传输。
未来移动通信***中,由于波束赋型(Beamforming)和大规模多天线***的引入(Massive-MIMO)。控制信令将会以波束赋型的方式传输,相应的,控制信令的传输方式以及对应的搜索空间(Search Space)将会被重新考虑。
发明内容
一种简单的控制信令的传输方式就是将控制信令采用的发送波束的方向或者索引在UE接收之前指示UE。比如控制信令分别在两个波束上传输,基站就将此信息在UE对所述控制信令进行盲检测(Blind Decoding)之前告诉UE。然而,此种方法存在一个显著的问题,即增加了额外的信令开销,特别是当发送所述控制信令的波束是动态变化时,此种方式会带来额外的控制信令的开销。同时考虑到此信息需要在接收控制信令之前被完成接收,以现有LTE***的特点,此信息往往是非UE专属的(Non UE-Specific),而非UE专属的信息会进一步带来额外的物理层控制信令的开销和实现复杂度。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突 的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本发明公开了一种被用于动态调度的UE中的方法,其中,包括如下步骤:
-步骤A.在第一时频资源池中接收第一RS集合;
-步骤B.搜索第一信令。
其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
作为一个实施例,上述方法的特质在于:所述X2个时频资源子池对应所述UE的X2个搜索空间,或者所述X2个时频资源子池对应所述UE的X2个控制资源集合(Control Resource Set)。所述X2个时频资源子池对应X2种不同的发送方式。所述UE通过检测所述第一RS集合,隐性获得所述X2个时频资源子池对应的发送方式,进而降低盲检测次数,节约控制信令开销。
作为一个实施例,上述方法的另一个特质在于:所述X2种不同的发送方式中包含单波束发送以及多波束发送,以使得所述第一信令的发送更为灵活。
作为一个实施例,上述方法的再一个特质在于:所述X2种不同的发送方式一一对应所述UE的X2种不同的接收方式。通过此方法,将基站控制信令的发送波束与UE对于控制信令的接收波束建立联系。在不增额外显式信令的条件下,进一步提高控制信令的传输效率。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一时频资源池和所述时频资源子池分别包括正整数个RE(Resource Element,资源单元)。
作为一个实施例,所述第一时频资源池在时域占用第一时间间隔,所述X2个时频资源子池中至少存在一个给定时频资源子池,所述给定时频资源子池在时域也占用所述第一时间间隔。
作为该实施例的一个子实施例,所述第一时间间隔在时域占用一个多载波符号。
作为该实施例的一个子实施例,或者所述第一时间间隔在时域占用多个多载波符号。
作为该实施例的一个子实施例,所述给定时频资源子池在时域还占用所述第一时间间隔之外的时域资源。
作为一个实施例,所述X2个时频资源子池分别包括X2个所述UE的搜索空间。
作为一个实施例,所述X2个时频资源子池分别对应所述UE的X2个控制资源集合(Control Resource Set)。
作为一个实施例,所述X3次检测被平均分配到所述X2个时频资源子池中。所述UE在给定时频资源子池中针对所述第一信令的检测次数是Xk。所述给定时频资源子池是所述X2个时频资源子池中的任意一个所述时频资源子池,所述Xk等于所述X3除以所述X2的商,所述X3是所述X2的正整数倍。
作为一个实施例,所述X2个时频资源子池分别对应的检测次数是高层信令配置的,且所述X2个时频资源子池分别对应的检测次数的和不大于所述X3。
作为一个实施例,所述时频资源子池在频域占用正整数个PRB,在时域占用正整数个多载波符号。
作为一个实施例,所述第一RS集合包括Q1个RS端口,所述Q1个RS端口分别被Q1个天线端口(Antenna Port)发送。所述Q1是正整数。
作为该实施例的一个子实施例,所述Q1个RS端口是在所述第一时间间隔中所述第一RS集合所占用的天线端口,所述Q1等于1。
作为该实施例的一个子实施例,所述Q1个RS端口是在所述第一时间间隔中所述第一RS集合所占用的天线端口组,所述Q1大于1。
作为该实施例的一个子实施例,所述RS端口在两个多载波符号中的图案重用对应一个天线端口的DMRS(Demodulation Reference Signal,解调参考信号)在两个多载波符号中的图案。
作为一个实施例,一个所述时频资源子池中无线信号是由相同的天线端口组发送的,所述天线端口组中包括正整数个天线端口。
作为该实施例的一个子实施例,所述正整数等于1。
作为一个实施例,被所述UE用于检测所述第一信令的接收波束方向和所述第一时频资源池所占用的频域资源无关。
作为一个实施例,被所述UE用于检测所述第一信令的接收波束方向和所述第一RS序列无关。
作为一个实施例,被所述UE用于检测所述第一信令的接收波束方向和所述时频资源子池有关。
作为一个实施例,所述X2大于1,所述UE用于搜索所述X2个时频资源子池的接收波束方向中至少有两个接收波束方向是不同的。
作为一个实施例,本发明中的所述RE在频域占用一个子载波,在时域占用一个多载波符号。
作为该实施例的一个子实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为该实施例的一个子实施例,所述多载波符号是FBMC(Filtering Bank Multile Carrier,滤波器组多载波)符号。
作为该实施例的一个子实施例,所述多载波符号是SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述第一时频资源池和所述第一RS序列被共同用于确定所述X2个时频资源子池。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.在Y个第一类候选资源池中盲检测以确定所述第一时频资源池。
其中,所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。
作为一个实施例,上述方法的特质在于:所述Y个第一类候选资源池对应Y种所述第一RS集合所占用的频域资源的位置。所述UE通过在Y种不同的频域资源位置上检测所述第一RS序列,以确定所述X2个时频资源子池。
作为一个实施例,上述方法的好处在于:所述UE隐性获得所述X2个时频资源子池所需要的指示信息,降低***控制信令的开销。
作为一个实施例,所述盲检测基于能量检测。
作为一个实施例,所述盲检测基于针对所述第一RS序列的检测。
作为一个实施例,所述Y个第一类候选资源池分别针对Y种RE集合。
作为该实施例的一个子实施例,所述RE集合在频域所占据的子载波是不连续的。
作为该实施例的一个子实施例,所述RE集合在频域占据正整数个子载波。
作为该实施例的一个子实施例,所述RE集合在一个PRB所占据的子载波中占据部分的子载波。
作为该子实施例的一个附属实施例,所述部分的子载波所对应的子载波数是固定的,或者所述部分的子载波所对应的子载波数是可配置的。
作为该子实施例的一个附属实施例,一种所述第一类候选资源池是一种所述RE集合在多个PRB上对应的所有RE。
作为该实施例的一个子实施例,所述Y种RE集合中的任意两个所述RE集合所占用的RE是不重叠的。
作为该实施例的一个子实施例,所述Y种RE集合在频域是正交的。
作为一个实施例,所述第一时频资源池是对应的所述第一类候选资源池在正整数个多载波符号中所占据的RE集合。
作为一个实施例,所述第一类候选资源池所占用的频域资源属于所述X2个时频资源子池所占用的频域资源。
具体的,根据本发明的一个方面,上述方法的特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
作为一个实施例,上述方法的特质在于:所述X2个所述时频资源子池对应的发送天线端口组由高层信令配置,以增加传输的灵活性。而所述UE通过哪个接收天线端口组检测所述X2个时频资源子池,则通过{所述第一时频资源池,所述第一RS序列}中的至少之一确定,进一步 提高接收的灵活性。
作为一个实施例,所述高层信令是UE专属的。
作为一个实施例,所述高层信令是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定所述X2个时频资源子池中任意一个所述时频资源子池所对应的接收天线端口组。
作为该实施例的一个子实施例,所述接收天线端口组包含正整数个天线端口。
具体的,根据本发明的一个方面,上述方法的特征在于,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
作为一个实施例,上述方法的特质在于:一个所述时频资源子池中所包含的所述RS资源均用于所述第一信令的信道估计。
作为一个实施例,上述方法的好处在于:一个所述时频资源子池中的信号均采用同一发送天线端口组发送,以保证接收的一致性;或者一个所述时频资源子池中的信号均采用同一波束发送,以保证接收的一致性。
作为一个实施例,所述RS资源占用的时频资源在关联的所述时频资源子池中的位置是缺省的(即不需要下行信令显式配置的)。
作为一个实施例,所述RS资源占用的时频资源在关联的所述时频资源子池中的位置是由高层信令配置的,所述高层信令是小区公共的或者是终端组特定的。所述终端组中包括多个UE。
作为一个实施例,所述RS资源是关联的所述时频资源子池中用于所述第一信令信道估计的DMRS所占用的天线端口或者天线端口组。
作为该实施例的一个子实施例,所述RS资源还包含所述天线端口或者所述天线端口组所占用的正整数个RE。
作为该实施例的一个子实施例,所述RS资源还包含在所述天线端口或者在所述天线端口组上传输的RS序列。
具体的,根据本发明的一个方面,上述方法的特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池 所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
作为一个实施例,上述方法的特质在于:所述时频资源子池占用较多时间资源,所述时频资源子池大概率采用分集的传输方式,进而采用所述第一候选方式将获得更大性能增益。所述时频资源子池占用较少时间资源,所述时频资源子池大概率采用频选(Frequency Selective)的传输方式,进而采用所述第二候选方式将获得更大性能增益。
作为一个实施例,所述时域资源的长度是所述时域资源所包括的多载波符号的数量。
作为该实施例的一个子实施例,所述时域资源的长度是多个所述多载波符号,所述时频资源子池采用所述第一候选方式。
作为该实施例的一个子实施例,所述时域资源的长度是单个所述多载波符号,所述时频资源子池采用所述第二候选方式。
作为一个实施例,所述时域资源的长度是所述时域资源所包括的时间间隔的数量。
作为该实施例的一个子实施例,所述时域资源的长度是多个所述时间间隔,所述时频资源子池采用所述第一候选方式。
作为该实施例的一个子实施例,所述时域资源的长度是单个所述时间间隔,所述时频资源子池采用所述第二候选方式。
作为该实施例的一个子实施例,所述时间间隔的长度等于正整数个多载波符号所占据的时间长度。
作为一个实施例,所述X4等于所述X3。
作为一个实施例,所述X4小于所述X3。所述UE首先执行所述X4次检测,然后执行所述X3次检测中的其余的所述检测。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A10.接收第二信令。
其中,所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池 中确定所述X2个时频资源子池。
作为一个实施例,所述第二时频资源池包含Z个时频资源子池,所述X2个时频资源子池属于所述Z个时频资源子池。
作为一个实施例,所述第一时频资源池所占用的时域资源属于所述第二时频资源池所占用的时域资源。
作为一个实施例,所述第一时频资源池所占用的时域资源和所述第二时频资源池所占用的时域资源相同。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
作为一个实施例,所述第一时频资源池所占用的子载波隐式的指示了所述X2个时频资源子池。
作为一个实施例,所述Y等于{2,3,4}中的之一。
作为该实施例的一个子实施例,所述Y等于2。所述Y个第一类候选资源池分别对应候选资源池#1和候选资源池#2。所述候选资源池#1和所述候选资源池#2在一个PRB中所占用的子载波是不同的。
作为该子实施例的一个附属实施例,所述第一时频资源池是所述候选资源池#1,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2};所述第一时频资源池是所述候选资源池#2,所述X2个时频资源子池是时频资源子池#3。所述时频资源子池#3所占用的时频资源等于所述时频资源子池#1和所述时频资源子池#2所占用的时频资源的和。
作为该实施例的一个子实施例,所述Y等于3。所述Y个第一类候选资源池分别对应候选资源池#1,候选资源池#2和候选资源池#3。所述候选资源池#1,所述候选资源池#2和所述候选资源池#3在一个PRB中所占用的子载波是不同的。
作为该子实施例的一个附属实施例,所述第一时频资源池是所述候选资源池#1,所述X2个时频资源子池是时频资源子池#1;所述第一时频资源池是所述候选资源池#2,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2};所述第一时频资源池是所述候选资源池#3,所述X2个时频资源子池是时频资源子池#3。所述时频资源子池#3所占用的时频资源等于所述时频资源子池#1和所述时频资源子池#2所占用的 时频资源的和。
作为该实施例的一个子实施例,所述Y等于4。所述Y个第一类候选资源池分别对应候选资源池#1,候选资源池#2,候选资源池#3和候选资源池#4。所述候选资源池#1,所述候选资源池#2,所述候选资源池#3和所述候选资源池#4在一个PRB中所占用的子载波是不同的。
作为该子实施例的一个附属实施例,所述第一时频资源池是所述候选资源池#1,所述X2个时频资源子池是时频资源子池#1;所述第一时频资源池是所述候选资源池#2,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2};所述第一时频资源池是所述候选资源池#3,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2,时频资源子池#3};所述第一时频资源池是所述候选资源池#4,所述X2个时频资源子池是时频资源子池#4。所述时频资源子池#4所占用的时频资源等于所述时频资源子池#1,所述时频资源子池#2和所述时频资源子池#3所占用的时频资源的和。
作为一个实施例,所述第一RS序列隐式的指示了所述X2个时频资源子池。
作为一个实施例,所述第一RS序列属于RS序列集合,所述RS序列集合包含M个候选序列。所述X2个时频资源子池属于所述第二时频资源池。
作为该实施例的一个子实施例,所述M等于2。所述M个候选序列分别对应候选序列#1和候选序列#2。
作为该子实施例的一个附属实施例,所述第一RS序列是所述候选序列#1,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2};所述第一RS序列是所述候选序列#2,所述X2个时频资源子池是时频资源子池#3。所述时频资源子池#3所占用的时频资源等于所述时频资源子池#1和所述时频资源子池#2所占用的时频资源的和。
作为该实施例的一个子实施例,所述M等于3。所述M个候选序列分别对应候选序列#1,候选序列#2,候选序列#3。
作为该子实施例的一个附属实施例,所述第一RS序列是所述候选序列#1,所述X2个时频资源子池是时频资源子池#1;所述第一RS序列是所述候选序列#2,所述X2个时频资源子池是{时频资源子池#1,时频 资源子池#2};所述第一RS序列是所述候选序列#3,所述X2个时频资源子池是时频资源子池#3。所述时频资源子池#3所占用的时频资源等于所述时频资源子池#1和所述时频资源子池#2所占用的时频资源的和。
作为该实施例的一个子实施例,所述M等于4。所述M个候选序列分别对应候选序列#1,候选序列#2,候选序列#3,候选序列#4。
作为该子实施例的一个附属实施例,所述第一RS序列是所述候选序列#1,所述X2个时频资源子池是时频资源子池#1;所述第一RS序列是所述候选序列#2,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2};所述第一RS序列是所述候选序列#3,所述X2个时频资源子池是{时频资源子池#1,时频资源子池#2,时频资源子池#3};所述第一RS序列是所述候选序列#4,所述X2个时频资源子池是时频资源子池#4。所述时频资源子池#4所占用的时频资源等于所述时频资源子池#1,所述时频资源子池#2和所述时频资源子池#3所占用的时频资源的和。
具体的,根据本发明的一个方面,上述方法的特征在于,还包括如下步骤:
-步骤C.操作第一无线信号。
其中,所述操作是接收,或者所述操作是发送。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS(Modulation and Coding Status,调制编码状态),对应的NDI(New Data Indicator,新数据指示),采用的RV(Redundancy Version,冗余版本),对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。
作为一个实施例,所述第一信令是下行授权(Grant),所述操作是接收。
作为一个实施例,所述第一信令是上行授权,所述操作是发送。
本发明公开了一种被用于动态调度的基站中的方法,其中,包括如下步骤:
-步骤A.在第一时频资源池中发送第一RS集合;
-步骤B.发送第一信令。
其中,所述第一信令是物理层信令。第一RS序列被用于确定所述 第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.在Y个第一类候选资源池中确定所述第一时频资源池。
其中,所述第一时频资源是Y个第一类候选资源池中的一个所述第一类候选资源池。
具体的,根据本发明的一个方面,上述方法的特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
具体的,根据本发明的一个方面,上述方法的特征在于,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
具体的,根据本发明的一个方面,上述方法的特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A10.发送第二信令。
其中,所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述 第一RS序列和所述X2个时频资源子池相关。
具体的,根据本发明的一个方面,上述方法的特征在于,还包括如下步骤:
-步骤C.执行第一无线信号。
其中,所述执行是发送,或者所述执行是接收。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
本发明公开了一种被用于动态调度的用户设备,其中,包括如下模块:
-第一接收模块:用于在第一时频资源池中接收第一RS集合;
-第二接收模块:用于搜索第一信令。
其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一接收模块还用于在Y个第一类候选资源池中盲检测以确定所述第一时频资源池。所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一接收模块还用于接收第二信令。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,一 个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,还包括:
-第一处理模块:用于操作第一无线信号。
其中,所述操作是接收,或者所述操作是发送。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
本发明公开了一种被用于动态调度的基站设备,其中,包括如下模块:
-第一发送模块:用于在第一时频资源池中发送第一RS集合;
-第二发送模块:用于发送第一信令。
其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一发送模块还用于在Y个第一类候选资源池中确定所述第一时频资源池。所述第一时频资源池是Y个第一类候选资源池中的一个所述第一 类候选资源池。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一发送模块还用于发送第二信令。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,还包括:
-第二处理模块:用于执行第一无线信号。
其中,所述执行是发送,或者所述执行是接收。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
相比现有公开技术,本发明具有如下技术优势:
-.当控制信令采用动态的发送波束选择时,所述UE通过确定所述第一时频资源池,或者检测所述第一RS集合,隐性获得所述X2个时频资源子池对应的发送方式,进而降低盲检测次数,节约控制信令开销。
-.所述发送方式和所述UE的接收方式建立联系,在保证传输灵活性的同时,降低UE接收的复杂度
-.所述X2个时频资源子池的发送方式与所述第一信令的映射方式有关,进一步降低盲检测次数,降低实现复杂度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一信令传输的流程图;
图2示出了根据本发明的另一个实施例的第一信令传输的流程图;
图3示出了根据本发明的一个实施例的时频资源子池的示意图;
图4示出了根据本发明的一个实施例的第一类候选资源池的示意图;
图5示出了根据本发明的一个实施例的RS资源的示意图;
图6示出了根据本发明的一个实施例的第一候选方式的示意图;
图7示出了根据本发明的一个实施例的第二候选方式的示意图;
图8示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图9示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本发明的一个第一信令传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站。
对于基站N1,在步骤S10中发送第二信令,在步骤S11中确定第一时频资源池,在步骤S12中在第一时频资源池中发送第一RS集合,在步骤S13中发送第一信令,在步骤S14中发送第一无线信号。
对于UE U2,在步骤S20中接收第二信令,在步骤S21中在Y个第一类候选资源池中盲检测以确定第一时频资源池,在步骤S22中在第一时频资源池中接收第一RS集合,在步骤S23中搜索第一信令,在步骤S24中 接收第一无线信号。
实施例1中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
作为一个子实施例,所述第一无线信号在物理层数据信道(能用于承载物理层数据的物理层信道)上传输。所述物理层数据信道是{PDSCH(Physical Downlink Shared Channel,物理下行共享信道),sPDSCH(Short Latency-PDSCH,短延迟物理下行共享信道),NB-PDSCH(NarrowBand-PDSCH,窄带物理下行共享信道),NR-PDSCH(NewRadio-PDSCH,新无线电物理下行共享信道)}中的一种。
作为一个子实施例,所述第一无线信号对应的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个子实施例,所述第二信令通过RRC层信令传输。
作为该子实施例的一个附属实施例,所述RRC层信令是小区专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE专属的。
作为一个子实施例,所述第二信令通过广播信令传输。
实施例2
实施例2示例了根据本发明的另一个第一信令传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区的维持基站。
对于基站N3,在步骤S30中发送第二信令,在步骤S31中在Y个第一类候选资源池中确定第一时频资源池,在步骤S32中在第一时频资源池中发送第一RS集合,在步骤S33中发送第一信令,在步骤S34中接收第一无线信号。
对于UE U4,在步骤S40中接收第二信令,在步骤S41中在Y个第一类候选资源池中盲检测以确定第一时频资源池,在步骤S42中在第一时频资源池中接收第一RS集合,在步骤S43中搜索第一信令,在步骤S44中发送第一无线信号。
实施例2中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所 述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
作为一个子实施例,所述第一无线信号在物理层数据信道(能用于承载物理层数据的物理层信道)上传输。所述物理层数据信道是{PUSCH(Physical Uplink Shared Channel,物理上行共享信道),sPUSCH(Short Latency-PUSCH,短延迟物理上行共享信道),NB-PUSCH(NarrowBand-PUSCH,窄带物理上行共享信道),NR-PUSCH(NewRadio-PUSCH,新无线电物理上行共享信道)}中的一种。
作为一个子实施例,所述第一无线信号对应的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个子实施例,所述第二信令通过RRC层信令传输。
作为该子实施例的一个附属实施例,所述RRC层信令是小区专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE专属的。
作为一个子实施例,所述第二信令通过广播信令传输。
实施例3
实施例3示例了根据本发明的一个时频资源子池的示意图。如附图3所示,图中共示出3个时频资源集合。所述时频资源集合由R个时频资源子集组成,图中一个粗线框的矩形对应一个所述时频资源子集。所述时频资源子集在频域占用一个PRB对应的频带宽度,在时域占用一个时间窗。所述时频资源子池占用正整数个所述时频资源集合。图中方案1 针对所述时频资源子池所占据的频域资源是离散的,图中方案2针对所述时频资源子池所占据的频域资源是连续的。所述R是正整数。
作为一个子实施例,所述时间窗对应T个多载波符号所占据的时域资源。
作为该子实施例的一个附属实施例,所述T等于1。
作为一个子实施例,所述R个时频资源子集在频域是离散的。
作为一个子实施例,所述R个时频资源子集在频域是连续的。
作为一个子实施例,本发明中的时频资源子池#1对应所述时频资源集合#1占用的时频资源,本发明中的时频资源子池#2对应所述时频资源集合#2占用的时频资源。
作为该子实施例的一个附属实施例,所述时频资源子池#1对应第一发送天线端口组,所述时频资源子池#2对应第二发送天线端口组。
作为一个子实施例,本发明中的时频资源子池#1对应所述时频资源集合#1占用的时频资源,本发明中的时频资源子池#2对应所述时频资源集合#2占用的时频资源,本发明中的时频资源子池#3对应所述时频资源集合#1和所述时频资源集合#2共同占用的时频资源。
作为该子实施例的一个附属实施例,所述时频资源子池#1对应第一发送天线端口组,所述时频资源子池#2对应第二发送天线端口组,所述时频资源子池#3对应第一发送天线端口组。
作为一个子实施例,本发明中的时频资源子池#1对应所述时频资源集合#1占用的时频资源,本发明中的时频资源子池#2对应所述时频资源集合#2占用的时频资源,本发明中的时频资源子池#3对应所述时频资源集合#3占用的时频资源,本发明中的时频资源子池#4对应所述时频资源集合#1至所述时频资源集合#3共同占用的时频资源,
作为该子实施例的一个附属实施例,所述时频资源子池#1对应第一发送天线端口组,所述时频资源子池#2对应第二发送天线端口组,所述时频资源子池#3对应第三发送天线端口组,所述时频资源子池#4对应第一发送天线端口组。
实施例4
实施例4示例了根据本发明的一个第一类候选资源池的示意图。如附图4所示,图中所示的粗线框对应一个RE。图中所示的所述第一类候选 资源池在时域占用一个多载波符号,在频域占用正整数个PRB对应的带宽。所述第一类候选资源池对应一个PRB所对应的频带宽度中的一个给定RE集合的图样。图中在一个PRB在频域占用12个子载波,所述第一类候选资源池占用所示12个RE中的S个RE。图4中的方案1对应所述S等于4,图4中的方案2对应所述S等于3。对应方案1,在一个PRB频带对应的一个多载波符号中,本发明中的所述Y个第一类候选资源池对应{RE集合#1,RE集合#2,RE集合#3},所述Y等于3;对应方案2,在一个PRB频带对应的一个多载波符号中,本发明中的所述Y个第一类候选资源池对应{RE集合#A,RE集合#B,RE集合#C,RE集合#D},所述Y等于4。图中所示T1对应一个多载波符号所占据的时域资源。
作为一个子实施例,所述第一类候选资源池是对应的所述RE集合在多个PRB所对应的带宽中所对应的所有RE。
作为该子实施例的一个附属实施例,所述多个PRB所对应的带宽对应***带宽。
作为该子实施例的一个附属实施例,所述多个PRB是可配置的或者固定的。
作为一个子实施例,所述Y个第一类候选资源池是可配置的,或者所述Y个第一类候选资源池是固定的。
实施例5
实施例5示例了根据本发明的一个RS资源的示意图。如附图5所示,一个时频资源子池与一个所述RS资源相关联。图5示出了所述时频资源子池在一个PRB所对应的频带宽度下所述RS资源的示意图。其中,图中一个方格对应一个RE。场景1针对所述时频资源子池仅占用一个多载波符号的场景,场景2针对所述时频资源子池占用多个多载波符号的场景。
作为一个子实施例,所述RS资源占用的时频资源在关联的所述时频资源子池中的位置是缺省的。
作为一个子实施例,所述RS资源占用的时频资源在关联的所述时频资源子池中的位置是由高层信令配置的,所述高层信令是小区公共的或者是终端组特定的。所述终端组中包括多个UE。
作为一个子实施例,所述RS资源对应在关联的所述时频资源子池 中用于所述第一信令信道估计的DMRS所占用的天线端口或者天线端口组。
实施例6
实施例6示例了根据本发明的一个第一候选方式的示意图。本发明中所述第一信令包含L1个控制信令单元,所述控制信令单元包含L2个资源组,所述资源组包含L2个RE。所述第一候选方式对应所述资源组到所述控制信令单元的映射方式。所述控制信令单元是传输所述第一信令的最小单位。所述L1,所述L2和所述L3均是正整数。如附图6所示,所述第一候选方式是{时域第一,频域第二}。所述L2等于4。图中示出了4个资源组映射到一个给定控制信令单元采用的所述第一候选方式。图中一个矩形框对应一个所述资源组。所示T1对应一个多载波符号的持续时间。
作为一个子实施例,所述L3等于12。
作为一个子实施例,所述控制信令单元是CCE(Control Channel Element,控制信道单元),或者所述控制信令单元是NCCE(NewRadio Control Channel Element,新无线控制信道单元)。
作为一个子实施例,所述资源组是REG(Resource Element Group,资源单元组),或者所述资源组是NREG(NewRadio Resource Element Group,新无线资源单元组)。
实施例7
实施例7示例了根据本发明的一个第二候选方式的示意图。本发明中所述第一信令包含L1个控制信令单元,所述控制信令单元包含L2个资源组,所述资源组包含L2个RE。所述第二候选方式对应所述资源组到所述控制信令单元的映射方式。所述控制信令单元是传输所述第一信令的最小单位。所述L1,所述L2和所述L3均是正整数。如附图7所示,所述第一候选方式是{频域第一,时域第二}。所述L2等于4。图中示出了4个资源组映射到一个给定控制信令单元采用的所述第二候选方式。图中一个矩形框对应一个所述资源组。所示T1对应一个多载波符号的持续时间。
作为一个子实施例,所述L3等于12。
作为一个子实施例,所述控制信令单元是CCE,或者所述控制信令 单元是NCCE。
作为一个子实施例,所述资源组是REG,或者所述资源组是NREG。
实施例8
实施例8示例了一个UE中的处理装置的结构框图,如附图8所示。附图8中,UE处理装置100主要由第一接收模块101,第二接收模块102和第一处理模块103组成。
-第一接收模块101:用于在第一时频资源池中接收第一RS集合;
-第二接收模块102:用于搜索第一信令;
-第一处理模块103:用于操作第一无线信号。
实施例8中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。所述操作是接收,或者所述操作是发送。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
作为一个子实施例,所述第一接收模块101还用于在Y个第一类候选资源池中盲检测以确定所述第一时频资源池。所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。
作为一个子实施例,所述第一接收模块101还用于接收第二信令。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
作为一个子实施例,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
作为一个子实施例,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
作为一个子实施例,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
作为一个子实施例,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
实施例9
实施例9示例了一个基站设备中的处理装置的结构框图,如附图9所示。附图9中,基站设备处理装置200主要由第一发送模块201,第二发送模块202和第二处理模块203组成。
-第一发送模块201:用于在第一时频资源池中发送第一RS集合;
-第二发送模块202:用于发送第一信令;
-第二处理模块203:用于执行第一无线信号。
实施例9中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。所述操作是接收,或者所述操作是发送。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
作为一个子实施例,所述第一发送模块201还用于在Y个第一类候选资源池中确定所述第一时频资源池。所述第一时频资源池是Y个第一类候选资源池中的一个所述第一类候选资源池。
作为一个子实施例,所述第一发送模块201还用于发送第二信令。所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
作为一个子实施例,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
作为一个子实施例,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
作为一个子实施例,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
作为一个子实施例,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本发明中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种被用于动态调度的UE中的方法,其中,包括如下步骤:
    -步骤A.在第一时频资源池中接收第一RS集合;
    -步骤B.搜索第一信令。
    其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.在Y个第一类候选资源池中盲检测以确定所述第一时频资源池。
    其中,所述第一时频资源池是所述Y个第一类候选资源池中的一个所述第一类候选资源池。
  3. 根据权利要求1,2所述的方法,其特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
  4. 根据权利要求1-3所述的方法,其特征在于,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
  5. 根据权利要求1-4所述的方法,其特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
  6. 根据权利要求1-5所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A10.接收第二信令。
    其中,所述第二信令被用于确定第二时频资源池,{所述第一时频资 源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
  7. 根据权利要求1-6所述的方法,其特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
  8. 根据权利要求1-7所述的方法,其特征在于,还包括如下步骤:
    -步骤C.操作第一无线信号。
    其中,所述操作是接收,或者所述操作是发送。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
  9. 一种被用于动态调度的基站中的方法,其中,包括如下步骤:
    -步骤A.在第一时频资源池中发送第一RS集合;
    -步骤B.发送第一信令。
    其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.确定所述第一时频资源池。
    其中,所述第一时频资源池是Y个第一类候选资源池中的一个所述第一类候选资源池。
  11. 根据权利要求9,10所述的方法,其特征在于,所述X2大于1,所述X2个所述时频资源子池中任意两个所述时频资源子池中的无线信号对应的发送天线端口组是由高层信令独立配置的,所述发送天线端口组中包括正整数个天线端口。
  12. 根据权利要求9-11所述的方法,其特征在于,一个所述时频资源子池和一个RS资源关联,所述RS资源被用于关联的所述时频资源子池的信道估计。所述RS资源被正整数个天线端口发送。
  13. 根据权利要求9-12所述的方法,其特征在于,所述物理层信令在所述时频资源子池中的资源映射的方式和所述时频资源子池所占用的时域资源的长度有关。所述资源映射方式是候选方式集合中的一种,所述候选方式集合包括第一候选方式和第二候选方式,所述第一候选方式是{时域第一,频域第二},所述第二候选方式是{频域第一,时域第二}。
  14. 根据权利要求9-13所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A10.发送第二信令。
    其中,所述第二信令被用于确定第二时频资源池,{所述第一时频资源池,所述第一RS序列}中的至少之一被用于从所述第二时频资源池中确定所述X2个时频资源子池。
  15. 根据权利要求9-14所述的方法,其特征在于,所述第一时频资源池所占用的子载波和所述X2个时频资源子池相关;或者所述第一RS序列和所述X2个时频资源子池相关。
  16. 根据权利要求9-15所述的方法,其特征在于,还包括如下步骤:
    -步骤C.执行第一无线信号。
    其中,所述执行是发送,或者所述执行是接收。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。
  17. 一种被用于动态调度的用户设备,其中,包括如下模块:
    -第一接收模块:用于在第一时频资源池中接收第一RS集合;
    -第二接收模块:用于搜索第一信令。
    其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
  18. 一种被用于动态调度的基站设备,其中,包括如下模块:
    -第一发送模块:用于在第一时频资源池中发送第一RS集合;
    -第二发送模块:用于发送第一信令。
    其中,所述第一信令是物理层信令。第一RS序列被用于确定所述第一RS集合。{所述第一时频资源池,所述第一RS序列}中的至少之一被用于确定X2个时频资源子池。针对所述第一信令最多执行X3次检测,所述X3是不小于所述X2的正整数。所述X3次检测的子集是X4次检测。所述X4次检测中的任意一次所述检测在一个所述时频资源子池中被执行。所述X2,所述X3和所述X4分别是正整数。
PCT/CN2017/075798 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置 WO2018161227A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780069275.2A CN109952727B (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置
PCT/CN2017/075798 WO2018161227A1 (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置
CN202111147303.2A CN113891483B (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置
CN202111113609.6A CN113839764A (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075798 WO2018161227A1 (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2018161227A1 true WO2018161227A1 (zh) 2018-09-13

Family

ID=63447101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075798 WO2018161227A1 (zh) 2017-03-06 2017-03-06 一种被用于动态调度的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (3) CN113891483B (zh)
WO (1) WO2018161227A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055411A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112235870A (zh) * 2019-07-15 2021-01-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285786A (zh) * 2020-02-19 2021-08-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285787A (zh) * 2020-02-20 2021-08-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115225240A (zh) * 2019-10-23 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116391435A (zh) * 2021-09-17 2023-07-04 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915370B (zh) * 2021-02-10 2024-05-31 维沃移动通信有限公司 盲检测、信息发送方法、装置、通信设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327610A (zh) * 2012-03-19 2013-09-25 华为技术有限公司 一种控制信道的资源信息的通知、确定方法、基站及用户设备
CN103391151A (zh) * 2012-05-10 2013-11-13 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
EP2819477A1 (en) * 2012-03-14 2014-12-31 Huawei Device Co., Ltd. Method, base station, and user equipment for transmitting and receiving control information
WO2017044142A1 (en) * 2015-09-11 2017-03-16 Intel Corporation Device and method for enhanced seamless mobility

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483820B (zh) * 2008-01-09 2012-06-06 中兴通讯股份有限公司 数据传输方法
CN103067327B (zh) * 2011-10-24 2016-09-07 华为技术有限公司 信号传输方法和信号传输装置
CN104105203B (zh) * 2013-04-03 2019-06-25 中兴通讯股份有限公司 上下行资源配置信息处理方法及装置
WO2014171888A1 (en) * 2013-04-16 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Method and radio node for transmitting downlink signals
KR102241077B1 (ko) * 2013-07-19 2021-04-16 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 탐색 신호 검출방법 및 이를 위한 장치
CN105898869B (zh) * 2014-05-07 2019-10-15 上海朗帛通信技术有限公司 一种d2d通信中的传输方法和装置
CN105208663B (zh) * 2014-06-10 2020-01-31 上海朗帛通信技术有限公司 一种非授权频谱通信的调度方法和装置
US10575325B2 (en) * 2014-10-09 2020-02-25 Acer Incorporated Device and method of handling service in unlicensed cell
CN105992331A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 通信处理方法、装置及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2819477A1 (en) * 2012-03-14 2014-12-31 Huawei Device Co., Ltd. Method, base station, and user equipment for transmitting and receiving control information
CN103327610A (zh) * 2012-03-19 2013-09-25 华为技术有限公司 一种控制信道的资源信息的通知、确定方法、基站及用户设备
CN103391151A (zh) * 2012-05-10 2013-11-13 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
WO2017044142A1 (en) * 2015-09-11 2017-03-16 Intel Corporation Device and method for enhanced seamless mobility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, TSG-RAN WG1 NR ADHOC R1-1701036, 13 January 2017 (2017-01-13), XP051203380 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055411A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112055411B (zh) * 2019-06-06 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112235870A (zh) * 2019-07-15 2021-01-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112235870B (zh) * 2019-07-15 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115225240A (zh) * 2019-10-23 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285786A (zh) * 2020-02-19 2021-08-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285786B (zh) * 2020-02-19 2022-07-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285787A (zh) * 2020-02-20 2021-08-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113285787B (zh) * 2020-02-20 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116391435A (zh) * 2021-09-17 2023-07-04 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN109952727B (zh) 2021-11-23
CN113891483A (zh) 2022-01-04
CN113891483B (zh) 2024-04-16
CN109952727A (zh) 2019-06-28
CN113839764A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2018161227A1 (zh) 一种被用于动态调度的用户设备、基站中的方法和装置
KR102668286B1 (ko) 신호 송신을 위한 방법 및 장치
US11582726B2 (en) Method and apparatus of operation considering bandwidth part in next generation wireless communication system
CN107483166B (zh) 一种无线通信中的方法和装置
CN110740519B (zh) 一种无线传输中的方法和装置
CN111182641B (zh) 一种被用于用户和基站中的方法和设备
CN108123738B (zh) 一种用于动态调度的ue、基站中的方法和设备
CN107801247B (zh) 一种支持可变的子载波间距的ue、基站中的方法和设备
CN108270710A (zh) 一种信号传输方法、装置及***
CN108270535B (zh) 信道检测方法及装置
CN107819714B (zh) 一种支持可变的子载波间距的ue、基站中的方法和设备
WO2017211228A1 (zh) 一种无线通信中的方法和装置
WO2018152821A1 (zh) 一种用户设备、基站中的用于动态调度的方法和装置
CN107645777B (zh) 一种无线传输中的方法和装置
KR20240093776A (ko) 신호 송신을 위한 방법 및 장치
CN110324898B (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2017167139A1 (zh) 一种上行控制信号传输方法及装置、用户终端、存储介质
EP2582193A1 (en) Method and device for transmitting reference signals
WO2018228610A1 (zh) 信息发送、数据解调方法及装置、通信节点、网络侧设备
CN107809306B (zh) 一种无线传输中的ue、基站中的方法和装置
CN111865527B (zh) 一种通信方法及装置
US9313006B2 (en) Methods and apparatus for resource element mapping
CN110972318B (zh) 免调度资源的激活、去激活方法及装置、存储介质、基站、用户设备
CN108124311B (zh) 一种用于动态调度的ue和基站中的方法和设备
CN107896135B (zh) 一种支持精简的控制信息的ue、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17900225

Country of ref document: EP

Kind code of ref document: A1