WO2018159776A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2018159776A1
WO2018159776A1 PCT/JP2018/007876 JP2018007876W WO2018159776A1 WO 2018159776 A1 WO2018159776 A1 WO 2018159776A1 JP 2018007876 W JP2018007876 W JP 2018007876W WO 2018159776 A1 WO2018159776 A1 WO 2018159776A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
magnetoresistive
detection unit
operational amplifier
Prior art date
Application number
PCT/JP2018/007876
Other languages
French (fr)
Japanese (ja)
Inventor
圭 田邊
笠島 多聞
晶裕 海野
将司 ▲高▼橋
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018159776A1 publication Critical patent/WO2018159776A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor that converts a negative feedback current corresponding to a magnetic field to be detected into a voltage and outputs the voltage.
  • Patent Document 1 discloses a magnetic field detection sensor capable of detecting a minute magnetic field.
  • the magnetic field detection sensor includes a bridge circuit configured to connect a plurality of magnetoresistive effect elements whose resistance values change according to the direction of a magnetic field to be detected, and to output a differential voltage between predetermined connection points.
  • a magnetic body that collects the magnetic field to be detected and changes the direction of the magnetic field to be detected is disposed near the center of the bridge circuit, and the direction of the magnetic field to be detected is opposite to the direction of the magnetic field to be detected.
  • a magnetic field generating conductor that provides a magnetic field and a differential voltage of the bridge circuit are input, and a feedback current that causes the magnetic field generating conductor to generate the magnetic field that is opposite to the direction of the detection target magnetic field is supplied to the magnetic field generating conductor.
  • the magnetic field detection sensor disclosed in Patent Document 1 has a configuration in which a feedback current is converted into a voltage by a resistor and outputs the voltage.
  • the frequency characteristics of the output voltage may not be sufficient. That is, in the configuration of Patent Document 1, when the frequency of the magnetic field to be detected is increased, the output voltage is reduced, and an error in the detected magnetic field occurs.
  • the present invention has been made in recognition of such a situation, and an object of the present invention is to provide a magnetic sensor capable of improving the frequency characteristics of the output voltage.
  • One embodiment of the present invention is a magnetic sensor.
  • This magnetic sensor A magnetic detection unit including at least one magnetic detection element to which a first magnetic field to be detected is applied; A first differential amplifier to which an output voltage of the magnetic detection unit is input; A magnetic field generating conductor that generates a second magnetic field that cancels the first magnetic field in the magnetic detection unit by flowing a negative feedback current output from the first differential amplifier; A detection resistor through which the negative feedback current flows; A second differential having an inverting input terminal connected to one end of the detection resistor on the magnetic field generating conductor side, an output terminal connected to the other end of the detection resistor, and a non-inverting input terminal connected to a fixed voltage terminal And an amplifier.
  • the magnetic detection unit may include a plurality of magnetoresistive elements that are bridge-connected.
  • FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and its vicinity in the magnetic sensor.
  • the schematic plan view. The wiring pattern explanatory drawing of the magnetic field generating conductor in the said magnetic sensor.
  • the schematic diagram which shows the modification of FIG. 1 is a schematic circuit diagram of a magnetic sensor according to an embodiment.
  • the schematic circuit diagram of the magnetic sensor which concerns on a comparative example. 9 is a simplified graph comparing frequency characteristics of output voltages Vout shown in FIGS. 7 and 8.
  • FIG. The simple graph which compared the frequency characteristic of the magnetic resolution of the sensor in each sensor structure of FIG.7 and FIG.8.
  • FIG. 1 is a schematic circuit diagram of a bridge circuit constituting a magnetic detection unit of a magnetic sensor according to an embodiment of the present invention.
  • the bridge circuit includes a first magnetoresistive effect element 10, a second magnetoresistive effect element 20, a third magnetoresistive effect element 30, and a fourth magnetoresistive effect element 40.
  • the fixed layer magnetization directions of the first to fourth magnetoresistive elements (10, 20, 30, 40) are the same.
  • One end of the first magnetoresistance effect element 10 and one end of the second magnetoresistance effect element 20 are connected to a first power supply line to which a first power supply voltage Vcc is supplied.
  • the other end of the first magnetoresistance effect element 10 is connected to one end of the fourth magnetoresistance effect element 40.
  • the other end of the second magnetoresistive element 20 is connected to one end of the third magnetoresistive element 30.
  • the other end of the third magnetoresistive effect element 30 and the other end of the fourth magnetoresistive effect element 40 are connected to a second power supply line to which a second power supply voltage ⁇ Vcc is supplied.
  • the voltage output to the interconnection point between the first magnetoresistance effect element 10 and the fourth magnetoresistance effect element 40 is output to Va, and the voltage output to the interconnection point between the second magnetoresistance effect element 20 and the third magnetoresistance effect element 30.
  • the voltage is Vb.
  • FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and its vicinity in the magnetic sensor according to the embodiment.
  • FIG. 3 is a schematic plan view of the same. 2 and 3, the XYZ axes that are orthogonal three axes are defined. 2 and 3 also show the lines of magnetic force of the magnetic field to be detected.
  • the first to fourth magnetoresistive elements (10, 20, 30, 40) are provided in the multilayer body 5 together with the magnetic field generating conductor 70, and on the surface of the multilayer body 5 A magnetic body 80 is provided. As shown in FIG. 3, the first magnetoresistive element 10 and the third magnetoresistive element 30 have the same position in the X direction.
  • the second magnetoresistive element 20 and the fourth magnetoresistive element 40 have the same position in the X direction. Further, the first magnetoresistive element 10 and the second magnetoresistive element 20 have the same position in the Y direction. Similarly, the third magnetoresistive element 30 and the fourth magnetoresistive element 40 have the same position in the Y direction.
  • the arrangement of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 and the arrangement of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 are axisymmetric in the X direction.
  • A be the center line.
  • the magnetic body 80 is preferably disposed at a position where the center line in the X direction and the center line in the Y direction of the magnetic body 80 match A and B, respectively.
  • the magnetic body 80 extends to the Y direction side of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20, and ⁇ of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40. It is preferable to extend in the Y direction side. Furthermore, the magnetic body 80 is arranged such that the end face on the laminated body 5 side is closest to the first to fourth magnetoresistive elements (10, 20, 30, 40) in the Z direction, that is, the end face on the laminated body 5 side is laminated. It is preferable to be in contact with the surface of the body 5. By arranging in this way, the resistance change of the first to fourth magnetoresistance effect elements (10, 20, 30, 40) according to the change of the magnetic field to be detected is efficiently and evenly generated.
  • the layer forming the magnetic field generating conductor 70 in the multilayer body 5 is lower than the layer where the first to fourth magnetoresistance effect elements (10, 20, 30, 40) are formed (on the ⁇ Z direction side). Layer).
  • the magnetic body 80 and the first to fourth magnetoresistive elements ( 10, 20, 30, 40) can be made closer to each other in the Z direction, so that the first to fourth magnetoresistive elements (10, 20, 30, 40) can respond efficiently to changes in the detection target magnetic field. become.
  • the magnetic body 80 may be a soft magnetic body.
  • the magnetic body 80 collects the magnetic field to be detected in the Z direction, and the magnetic field to be detected is approximately the same as the fixed layer magnetization direction of the first to fourth magnetoresistive elements (10, 20, 30, 40). Change to parallel direction.
  • FIG. 4 is an explanatory diagram of a wiring pattern of the magnetic field generating conductor 70 in the magnetic sensor of the embodiment.
  • the wiring pattern of the magnetic field generating conductor 70 in the multilayer body 5 is indicated by a solid line.
  • the magnetic field generating conductor 70 is preferably formed in a single layer in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40).
  • the magnetic field generating conductor 70 is a U-shaped planar coil that is less than one turn, but may be a planar coil that circulates a plurality of turns in a spiral shape. Both ends of the magnetic field generating conductor 70 are electrically connected to terminal portions (terminals) 71 and 72 such as through holes, respectively.
  • the magnetic field generating conductor 70 generates a second magnetic field that cancels the detection target magnetic field (first magnetic field) in each magnetoresistive effect element.
  • FIG. 5 is a schematic diagram showing the direction of the magnetic field to be detected at the position of each magnetoresistive element of the bridge circuit shown in FIG. 1 and the change in resistance value of each magnetoresistive element due to this.
  • the magnetic field to be detected is a magnetic field that is entirely parallel to the ⁇ Z direction when the magnetic body 80 is not present, and is partially bent by the presence of the magnetic body 80, so that the first to fourth magnetoresistances At the position of the effect element (10, 20, 30, 40), it has a component in the direction shown in FIG.
  • the direction of the magnetic field to be detected has a component that is the same as the magnetization direction of the fixed layer.
  • the magnetization direction of the free layer coincides with the magnetization direction of the fixed layer.
  • the resistance value changes by ⁇ R from the resistance value R0 in the absence of a magnetic field.
  • the second magnetoresistance effect element 20 since the direction of the magnetic field to be detected has a component opposite to the fixed layer magnetization direction, the free layer magnetization direction is opposite to the fixed layer magnetization direction.
  • the resistance value of the effect element 20 changes by + ⁇ R from the resistance value R0 when there is no magnetic field.
  • the resistance value of the third magnetoresistive effect element 30 changes by - ⁇ R compared to when no magnetic field is applied
  • the resistance value of the fourth magnetoresistive effect element 40 changes by + ⁇ R compared with that when no magnetic field is applied.
  • the bridge circuit of the first to fourth magnetoresistive elements (10, 20, 30, 40) has a differential output, that is, a voltage Va and a voltage Vb that change in opposite directions according to the change in the detection target magnetic field. Output is possible.
  • the differential output can be similarly performed. is there.
  • FIG. 7 is a schematic circuit diagram of the magnetic sensor according to the embodiment.
  • the first to fourth magnetoresistance effect elements (10, 20, 30, 40) connected in a bridge form a magnetic detection unit to which a first magnetic field to be detected is applied.
  • the inverting input terminal is connected to the interconnection point of the first magnetoresistive effect element 10 and the fourth magnetoresistive effect element 40, and the non-inverting input terminal is the second magnetoresistive.
  • the effect element 20 and the third magnetoresistive effect element 30 are connected to the interconnection point, and the output terminal is connected to one end of the magnetic field generating conductor 70.
  • the first operational amplifier 50 receives the output voltage (voltage Va, Vb) of the magnetic detection unit and supplies a negative feedback current to the magnetic field generating conductor 70.
  • the magnetic field generating conductor 70 generates a second magnetic field that cancels out the first magnetic field in the magnetic detection section when a negative feedback current output from the first operational amplifier 50 flows.
  • the first operational amplifier 50 is configured so that the magnetic field generating conductor 70 generates a second magnetic field that cancels the first magnetic field in the magnetic detection unit, that is, a magnetic equilibrium state is established in the magnetic detection unit.
  • a negative feedback current is supplied to the magnetic field generating conductor 70.
  • the detection resistor Rs is provided in the negative feedback current path (connected in series with the magnetic field generating conductor 70).
  • the second operational amplifier 60 as the second differential amplifier has an inverting input terminal connected to one end of the detection resistor Rs on the magnetic field generating conductor 70 side, an output terminal connected to the other end of the detection resistor Rs, and a non-inverting input. The terminal is connected to the ground as a fixed voltage terminal. Both the first operational amplifier 50 and the second operational amplifier 60 are driven by both power sources, and the first power supply line to which the first power supply voltage Vcc is supplied and the second power supply line to which the second power supply voltage ⁇ Vcc is supplied. , Respectively.
  • the voltage at the output terminal of the second operational amplifier 60 becomes the output voltage Vout as the magnetic sensor.
  • FIG. 8 is a schematic circuit diagram of a magnetic sensor according to a comparative example. Compared with the circuit shown in FIG. 7, the circuit shown in FIG. 8 eliminates the second operational amplifier 60, the other end of the detection resistor Rs is connected to the ground, and the voltage at one end of the detection resistor Rs becomes the output voltage Vout. Are different, and are otherwise identical.
  • the output voltage Vout in FIG. 8 is the same as the output voltage Vout in FIG. 7 except that the plus and minus are inverted, but the frequency characteristics are different.
  • FIG. 9 is a simplified graph comparing the frequency characteristics of the output voltages Vout shown in FIGS. This graph represents the magnitude of each output voltage Vout when the magnitude of the detection target magnetic field is constant and the frequency is changed.
  • the current-voltage conversion circuit that converts the negative feedback current into a voltage includes the second operational amplifier 60 in addition to the detection resistor Rs, so that the current-voltage conversion is performed only by the detection resistor Rs.
  • the circuit shown in FIG. 7 is configured to supply the negative feedback current by the first operational amplifier 50 and the second operational amplifier 60, and therefore the circuit of FIG. This is because the burden on the first operational amplifier 50 is reduced as compared with FIG.
  • FIG. 10 is a simplified graph comparing the frequency characteristics of the magnetic resolution of the sensors in the sensor configurations of FIGS. Due to the presence of noise called 1 / f noise whose energy is inversely proportional to the frequency, the resolution of the magnetoresistive element generally becomes better as the frequency of the magnetic field to be detected becomes higher.
  • the frequency characteristic of the first operational amplifier 50 becomes a bottleneck, and the improvement in the resolution when the frequency becomes higher is slowed above a certain frequency.
  • the frequency characteristic of the first operational amplifier 50 becomes a bottleneck when the frequency becomes high even in the high frequency region. By being reduced, the resolution becomes higher in the high frequency region, so that even higher frequency magnetic fields can be detected.
  • the current-voltage conversion circuit for converting negative feedback current into voltage has the second operational amplifier 60 in addition to the detection resistor Rs, the frequency characteristic of the output voltage Vout (for example, frequency characteristic of 100 KHz or more) can be improved. it can. This makes it possible to detect a sudden magnetic field change that could not be detected in the past.
  • the negative magnetic field generating conductor 70 is formed in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40), it is more product than using a separate solenoid coil. In addition to being advantageous for downsizing, it is possible to suppress variations in positional accuracy during manufacturing.
  • the magnetic detection element may be another type such as a Hall element.
  • the number of magnetic detection elements is not limited to the four exemplified in the embodiment, and may be one or more arbitrary numbers.
  • a magnetic detection unit in which four magnetoresistive effect elements are connected in a full bridge has been described as an example.
  • the magnetic detection unit may be a structure in which two magnetoresistive effect elements are connected in a half bridge.
  • One magnetoresistive element and one fixed resistor may be half-bridge connected.
  • the magnetic detection element and the magnetic field generating conductor are not limited to being configured in a common laminated body, and may be provided separately from each other.
  • the magnetic detection unit, the first operational amplifier 50, and the second operational amplifier 60 are not limited to the dual power supply drive, but may be a single power supply drive.
  • a yoke may be formed between the two. By forming the yoke, more magnetic fields can be efficiently guided to the first to fourth magnetoresistive elements (10, 20, 30, 40), so that a minute magnetic field can be detected with high accuracy. Is possible.
  • the yoke is formed by a thin film process, so that it can be placed with high precision in both dimensions and position, and can be formed in the same stacking process, so the cost is lower than the parts attached to the outside. Can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Provided is a magnetic sensor which makes it possible to improve the frequency characteristics of output voltage. The magnetic sensor is provided with: a magnetic detection unit including first through fourth magnetoresistive effect elements (10, 20, 30, 40) to which a first magnetic field to be detected is applied; a first operational amplifier 50 to which an output voltage of the magnetic detection unit is inputted; a magnetic field-generating conductor 70 for generating a second magnetic field canceling out the first magnetic field in the magnetic detection unit by a flow of negative feedback current outputted by the first operational amplifier 50; a detection resistor Rs to which the negative feedback current flows; and a second operational amplifier 60. The second operational amplifier 60 includes: an inverting input terminal connected to one magnetic field-generating conductor 70-side end of the detection resistor Rs; an output terminal connected to another end of the detection resistor Rs; and a non-inverting input terminal connected to ground serving as a fixed-voltage terminal.

Description

磁気センサMagnetic sensor
 本発明は、検出対象の磁界に応じた負帰還電流を電圧に変換して出力する磁気センサに関する。 The present invention relates to a magnetic sensor that converts a negative feedback current corresponding to a magnetic field to be detected into a voltage and outputs the voltage.
 下記特許文献1は、微小な磁界の検出が可能な磁界検出センサを開示する。この磁界検出センサは、検出対象磁界の向きに応じて抵抗値が変化する複数の磁気抵抗効果素子が接続され、所定の接続点間の差動電圧を出力可能なように構成されたブリッジ回路と、前記ブリッジ回路の中心付近に、前記検出対象磁界を集磁するとともに前記検出対象磁界の向きを変化させる磁性体を配置し、前記磁気抵抗効果素子に前記検出対象磁界の向きとは逆方向となる磁界を与える磁界発生導体と、前記ブリッジ回路の差動電圧が入力され、前記磁界発生導体に前記検出対象磁界の向きとは逆方向となる前記磁界を発生させる帰還電流を前記磁界発生導体に流すための差動演算回路と、前記帰還電流を電圧値として出力するための電圧変換回路と、を備える。 The following Patent Document 1 discloses a magnetic field detection sensor capable of detecting a minute magnetic field. The magnetic field detection sensor includes a bridge circuit configured to connect a plurality of magnetoresistive effect elements whose resistance values change according to the direction of a magnetic field to be detected, and to output a differential voltage between predetermined connection points. A magnetic body that collects the magnetic field to be detected and changes the direction of the magnetic field to be detected is disposed near the center of the bridge circuit, and the direction of the magnetic field to be detected is opposite to the direction of the magnetic field to be detected. A magnetic field generating conductor that provides a magnetic field and a differential voltage of the bridge circuit are input, and a feedback current that causes the magnetic field generating conductor to generate the magnetic field that is opposite to the direction of the detection target magnetic field is supplied to the magnetic field generating conductor. A differential operation circuit for flowing the voltage, and a voltage conversion circuit for outputting the feedback current as a voltage value.
特開2015-219061号公報Japanese Patent Laid-Open No. 2015-219061
 特許文献1の磁界検出センサは、帰還電流を抵抗によって電圧に変換して出力する構成であるが、当該構成では、出力電圧の周波数特性が十分でない場合があった。すなわち、特許文献1の構成では、検出対象の磁界の周波数が高くなると、出力電圧が低下してしまい、検出磁界の誤差が発生する問題があった。 The magnetic field detection sensor disclosed in Patent Document 1 has a configuration in which a feedback current is converted into a voltage by a resistor and outputs the voltage. However, in this configuration, the frequency characteristics of the output voltage may not be sufficient. That is, in the configuration of Patent Document 1, when the frequency of the magnetic field to be detected is increased, the output voltage is reduced, and an error in the detected magnetic field occurs.
 本発明はこうした状況を認識してなされたものであり、その目的は、出力電圧の周波数特性を向上させることの可能な磁気センサを提供することにある。 The present invention has been made in recognition of such a situation, and an object of the present invention is to provide a magnetic sensor capable of improving the frequency characteristics of the output voltage.
 本発明のある態様は、磁気センサである。この磁気センサは、
 検出対象の第1磁界が印加される少なくとも1つの磁気検出素子を含む磁気検出部と、
 前記磁気検出部の出力電圧が入力される第1差動増幅器と、
 前記第1差動増幅器が出力する負帰還電流が流れることにより、前記磁気検出部において前記第1磁界を相殺する第2磁界を発生する磁界発生導体と、
 前記負帰還電流が流れる検出抵抗と、
 反転入力端子が前記検出抵抗の前記磁界発生導体側の一端に接続され、出力端子が前記検出抵抗の他端に接続され、かつ非反転入力端子が固定電圧端子に接続された、第2差動増幅器と、を備える。
One embodiment of the present invention is a magnetic sensor. This magnetic sensor
A magnetic detection unit including at least one magnetic detection element to which a first magnetic field to be detected is applied;
A first differential amplifier to which an output voltage of the magnetic detection unit is input;
A magnetic field generating conductor that generates a second magnetic field that cancels the first magnetic field in the magnetic detection unit by flowing a negative feedback current output from the first differential amplifier;
A detection resistor through which the negative feedback current flows;
A second differential having an inverting input terminal connected to one end of the detection resistor on the magnetic field generating conductor side, an output terminal connected to the other end of the detection resistor, and a non-inverting input terminal connected to a fixed voltage terminal And an amplifier.
 前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含んでもよい。 The magnetic detection unit may include a plurality of magnetoresistive elements that are bridge-connected.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between methods and systems are also effective as an aspect of the present invention.
 本発明によれば、出力電圧の周波数特性を向上させることの可能な磁気センサを提供することができる。 According to the present invention, it is possible to provide a magnetic sensor capable of improving the frequency characteristics of the output voltage.
本発明の実施の形態に係る磁気センサの磁気検出部を構成するブリッジ回路の概略回路図。The schematic circuit diagram of the bridge circuit which comprises the magnetic detection part of the magnetic sensor which concerns on embodiment of this invention. 前記磁気センサにおける磁気検出部及びその近傍の概略断面図。FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and its vicinity in the magnetic sensor. 同概略平面図。The schematic plan view. 前記磁気センサにおける磁界発生導体の配線パターン説明図。The wiring pattern explanatory drawing of the magnetic field generating conductor in the said magnetic sensor. 図1に示すブリッジ回路の各磁気抵抗効果素子の位置における検出対象磁界の向き及びそれによる各磁気抵抗効果素子の抵抗値変化を示す模式図。The schematic diagram which shows the direction of the detection object magnetic field in the position of each magnetoresistive effect element of the bridge circuit shown in FIG. 1, and the resistance value change of each magnetoresistive effect element by it. 図5の変形例を示す模式図。The schematic diagram which shows the modification of FIG. 実施の形態に係る磁気センサの概略回路図。1 is a schematic circuit diagram of a magnetic sensor according to an embodiment. 比較例に係る磁気センサの概略回路図。The schematic circuit diagram of the magnetic sensor which concerns on a comparative example. 図7及び図8の各出力電圧Voutの周波数特性を比較した簡易グラフ。9 is a simplified graph comparing frequency characteristics of output voltages Vout shown in FIGS. 7 and 8. FIG. 図7及び図8の各センサ構成におけるセンサの磁気分解能の周波数特性を比較した簡易グラフ。The simple graph which compared the frequency characteristic of the magnetic resolution of the sensor in each sensor structure of FIG.7 and FIG.8.
 以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、本発明の実施の形態に係る磁気センサの磁気検出部を構成するブリッジ回路の概略回路図である。このブリッジ回路は、第1磁気抵抗効果素子10、第2磁気抵抗効果素子20、第3磁気抵抗効果素子30、及び第4磁気抵抗効果素子40、を備える。第1から第4磁気抵抗効果素子(10、20、30、40)の固定層磁化方向は同じである。第1磁気抵抗効果素子10の一端と、第2磁気抵抗効果素子20の一端は、第1電源電圧Vccが供給される第1電源ラインに接続される。第1磁気抵抗効果素子10の他端は、第4磁気抵抗効果素子40の一端に接続される。第2磁気抵抗効果素子20の他端は、第3磁気抵抗効果素子30の一端に接続される。第3磁気抵抗効果素子30の他端と、第4磁気抵抗効果素子40の他端は、第2電源電圧-Vccが供給される第2電源ラインに接続される。第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に出力される電圧をVa、第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に出力される電圧をVbとする。 FIG. 1 is a schematic circuit diagram of a bridge circuit constituting a magnetic detection unit of a magnetic sensor according to an embodiment of the present invention. The bridge circuit includes a first magnetoresistive effect element 10, a second magnetoresistive effect element 20, a third magnetoresistive effect element 30, and a fourth magnetoresistive effect element 40. The fixed layer magnetization directions of the first to fourth magnetoresistive elements (10, 20, 30, 40) are the same. One end of the first magnetoresistance effect element 10 and one end of the second magnetoresistance effect element 20 are connected to a first power supply line to which a first power supply voltage Vcc is supplied. The other end of the first magnetoresistance effect element 10 is connected to one end of the fourth magnetoresistance effect element 40. The other end of the second magnetoresistive element 20 is connected to one end of the third magnetoresistive element 30. The other end of the third magnetoresistive effect element 30 and the other end of the fourth magnetoresistive effect element 40 are connected to a second power supply line to which a second power supply voltage −Vcc is supplied. The voltage output to the interconnection point between the first magnetoresistance effect element 10 and the fourth magnetoresistance effect element 40 is output to Va, and the voltage output to the interconnection point between the second magnetoresistance effect element 20 and the third magnetoresistance effect element 30. The voltage is Vb.
 図2は、実施の形態に係る磁気センサにおける磁気検出部及びその近傍の概略断面図である。図3は、同概略平面図である。図2及び図3により、直交三軸であるXYZ軸を定義する。また、図2及び図3において、検出対象磁界の磁力線を併せて示している。本実施の形態の磁気センサにおいて、第1から第4磁気抵抗効果素子(10、20、30、40)は、磁界発生導体70と共に、積層体5に設けられ、積層体5の表面上には磁性体80が設けられる。図3に示すように、 第1磁気抵抗効果素子10と第3磁気抵抗効果素子30は、X方向における位置が互いに等しい。同様に、第2磁気抵抗効果素子20と第4磁気抵抗効果素子40は、X方向における位置が互いに等しい。また、第1磁気抵抗効果素子10と第2磁気抵抗効果素子20は、Y方向における位置が互いに等しい。同様に、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40は、Y方向における位置が互いに等しい。 FIG. 2 is a schematic cross-sectional view of a magnetic detection unit and its vicinity in the magnetic sensor according to the embodiment. FIG. 3 is a schematic plan view of the same. 2 and 3, the XYZ axes that are orthogonal three axes are defined. 2 and 3 also show the lines of magnetic force of the magnetic field to be detected. In the magnetic sensor of the present embodiment, the first to fourth magnetoresistive elements (10, 20, 30, 40) are provided in the multilayer body 5 together with the magnetic field generating conductor 70, and on the surface of the multilayer body 5 A magnetic body 80 is provided. As shown in FIG. 3, the first magnetoresistive element 10 and the third magnetoresistive element 30 have the same position in the X direction. Similarly, the second magnetoresistive element 20 and the fourth magnetoresistive element 40 have the same position in the X direction. Further, the first magnetoresistive element 10 and the second magnetoresistive element 20 have the same position in the Y direction. Similarly, the third magnetoresistive element 30 and the fourth magnetoresistive element 40 have the same position in the Y direction.
 図3において、第1磁気抵抗効果素子10及び第3磁気抵抗効果素子30の配置と、第2磁気抵抗効果素子20及び第4磁気抵抗効果素子40の配置と、が線対称となるX方向の中心線をAとする。また、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20の配置と、第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の配置と、が線対称となるY方向の中心線をBとする。磁性体80は、磁性体80のX方向の中心線とY方向の中心線がそれぞれAとBに合致する位置に配置されることが好ましい。また、磁性体80は、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20のY方向側に延在し、かつ、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40の-Y方向側に延在することが好ましい。さらに、磁性体80は、積層体5側の端面がZ方向において第1から第4磁気抵抗効果素子(10、20、30、40)に最も近づいた配置、すなわち積層体5側の端面が積層体5の表面に接触していることが好ましい。このように配置にすることで、検出対象磁界の変化に応じた第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化が、効率良く、さらに均等に発生することになる。また、積層体5内における、磁界発生導体70を形成する層は、第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層よりも下層(-Z方向側の層)であることが好ましい。磁界発生導体70を第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層より下層に配置することで、磁性体80と第1から第4磁気抵抗効果素子(10、20、30、40)のZ方向の距離を近づけることができ、これにより検出対象磁界の変化に第1から第4磁気抵抗効果素子(10、20、30、40)が効率良く応答可能になる。磁性体80は軟磁性体であってもよい。磁性体80は、Z方向の検出対象磁界を集磁し、集磁した検出対象磁界を、第1から第4磁気抵抗効果素子(10、20、30、40)が有する固定層磁化方向と概ね平行になる方向へ変化させる。 In FIG. 3, the arrangement of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 and the arrangement of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 are axisymmetric in the X direction. Let A be the center line. A center line in the Y direction in which the arrangement of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20 and the arrangement of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40 are axisymmetric. Is B. The magnetic body 80 is preferably disposed at a position where the center line in the X direction and the center line in the Y direction of the magnetic body 80 match A and B, respectively. Further, the magnetic body 80 extends to the Y direction side of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20, and − of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40. It is preferable to extend in the Y direction side. Furthermore, the magnetic body 80 is arranged such that the end face on the laminated body 5 side is closest to the first to fourth magnetoresistive elements (10, 20, 30, 40) in the Z direction, that is, the end face on the laminated body 5 side is laminated. It is preferable to be in contact with the surface of the body 5. By arranging in this way, the resistance change of the first to fourth magnetoresistance effect elements (10, 20, 30, 40) according to the change of the magnetic field to be detected is efficiently and evenly generated. Become. Also, the layer forming the magnetic field generating conductor 70 in the multilayer body 5 is lower than the layer where the first to fourth magnetoresistance effect elements (10, 20, 30, 40) are formed (on the −Z direction side). Layer). By disposing the magnetic field generating conductor 70 below the layer where the first to fourth magnetoresistive elements (10, 20, 30, 40) are formed, the magnetic body 80 and the first to fourth magnetoresistive elements ( 10, 20, 30, 40) can be made closer to each other in the Z direction, so that the first to fourth magnetoresistive elements (10, 20, 30, 40) can respond efficiently to changes in the detection target magnetic field. become. The magnetic body 80 may be a soft magnetic body. The magnetic body 80 collects the magnetic field to be detected in the Z direction, and the magnetic field to be detected is approximately the same as the fixed layer magnetization direction of the first to fourth magnetoresistive elements (10, 20, 30, 40). Change to parallel direction.
 図4は、実施の形態の磁気センサにおける磁界発生導体70の配線パターン説明図である。本図では、積層体5内の磁界発生導体70の配線パターンを実線で示している。磁界発生導体70は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内の好ましくは単一の層に形成される。図4の例では、磁界発生導体70は、1ターンに満たないU字状の平面コイルとしているが、スパイラル状に複数ターン周回する平面コイルであってもよい。磁界発生導体70の両端は、スルーホール等の端子部(ターミナル)71、72にそれぞれ電気的に接続される。磁界発生導体70は、図7で後述のように、各磁気抵抗効果素子において検出対象磁界(第1磁界)を相殺する第2磁界を発生する。 FIG. 4 is an explanatory diagram of a wiring pattern of the magnetic field generating conductor 70 in the magnetic sensor of the embodiment. In this figure, the wiring pattern of the magnetic field generating conductor 70 in the multilayer body 5 is indicated by a solid line. The magnetic field generating conductor 70 is preferably formed in a single layer in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40). In the example of FIG. 4, the magnetic field generating conductor 70 is a U-shaped planar coil that is less than one turn, but may be a planar coil that circulates a plurality of turns in a spiral shape. Both ends of the magnetic field generating conductor 70 are electrically connected to terminal portions (terminals) 71 and 72 such as through holes, respectively. As will be described later with reference to FIG. 7, the magnetic field generating conductor 70 generates a second magnetic field that cancels the detection target magnetic field (first magnetic field) in each magnetoresistive effect element.
 図5は、図1に示すブリッジ回路の各磁気抵抗効果素子の位置における検出対象磁界の向き及びそれによる各磁気抵抗効果素子の抵抗値変化を示す模式図である。図5において検出対象磁界は、磁性体80が存在しなければ全体的に-Z方向と平行な磁界であり、磁性体80があることにより部分的に曲げられて、第1から第4磁気抵抗効果素子(10、20、30、40)の位置において図5に示す方向の成分を持つようになっている。第1磁気抵抗効果素子10においては、検出対象磁界の方向は固定層磁化方向と同一方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と一致し、第1磁気抵抗効果素子10の抵抗値は、無磁界時の抵抗値R0から-ΔRだけ変化する。一方、第2磁気抵抗効果素子20においては、検出対象磁界の方向は固定層磁化方向と逆方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と逆になり、第2磁気抵抗効果素子20の抵抗値は、無磁界時の抵抗値R0から+ΔRだけ変化する。同様に、第3磁気抵抗効果素子30の抵抗値は無磁界時と比較して-ΔRだけ変化し、第4磁気抵抗効果素子40の抵抗値は無磁界時と比較して+ΔRだけ変化する。このような第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化により、電圧Vaは無磁界時と比較して高くなり、電圧Vbは無磁界時と比較して低くなる。ゆえに、第1から第4磁気抵抗効果素子(10、20、30、40)のブリッジ回路は、差動出力、すなわち検出対象磁界の変化に応じて互いに逆の変化をする電圧Vaと電圧Vbの出力が可能となっている。なお、図6のようにブリッジ回路の配線を変更し、かつ第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の固定層磁化方向を変更しても、同様に差動出力が可能である。 FIG. 5 is a schematic diagram showing the direction of the magnetic field to be detected at the position of each magnetoresistive element of the bridge circuit shown in FIG. 1 and the change in resistance value of each magnetoresistive element due to this. In FIG. 5, the magnetic field to be detected is a magnetic field that is entirely parallel to the −Z direction when the magnetic body 80 is not present, and is partially bent by the presence of the magnetic body 80, so that the first to fourth magnetoresistances At the position of the effect element (10, 20, 30, 40), it has a component in the direction shown in FIG. In the first magnetoresistance effect element 10, the direction of the magnetic field to be detected has a component that is the same as the magnetization direction of the fixed layer. Therefore, the magnetization direction of the free layer coincides with the magnetization direction of the fixed layer. The resistance value changes by −ΔR from the resistance value R0 in the absence of a magnetic field. On the other hand, in the second magnetoresistance effect element 20, since the direction of the magnetic field to be detected has a component opposite to the fixed layer magnetization direction, the free layer magnetization direction is opposite to the fixed layer magnetization direction. The resistance value of the effect element 20 changes by + ΔR from the resistance value R0 when there is no magnetic field. Similarly, the resistance value of the third magnetoresistive effect element 30 changes by -ΔR compared to when no magnetic field is applied, and the resistance value of the fourth magnetoresistive effect element 40 changes by + ΔR compared with that when no magnetic field is applied. Due to the resistance change of the first to fourth magnetoresistive elements (10, 20, 30, 40), the voltage Va becomes higher than that in the absence of a magnetic field, and the voltage Vb becomes lower than that in the absence of a magnetic field. Become. Therefore, the bridge circuit of the first to fourth magnetoresistive elements (10, 20, 30, 40) has a differential output, that is, a voltage Va and a voltage Vb that change in opposite directions according to the change in the detection target magnetic field. Output is possible. In addition, even if the wiring of the bridge circuit is changed as shown in FIG. 6 and the fixed layer magnetization directions of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40 are changed, the differential output can be similarly performed. is there.
 図7は、実施の形態に係る磁気センサの概略回路図である。ブリッジ接続された第1から第4磁気抵抗効果素子(10、20、30、40)は、検出対象の第1磁界が印加される磁気検出部を構成する。第1差動増幅器としての第1演算増幅器50は、反転入力端子が第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に接続され、非反転入力端子が第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に接続され、出力端子が磁界発生導体70の一端に接続される。第1演算増幅器50は、磁気検出部の出力電圧(電圧Va,Vb)が入力され、磁界発生導体70に負帰還電流を供給する。磁界発生導体70は、第1演算増幅器50が出力する負帰還電流が流れることにより、磁気検出部において前記第1磁界を相殺する第2磁界を発生する。換言すれば、第1演算増幅器50は、磁気検出部において前記第1磁界を相殺する第2磁界を磁界発生導体70が発生するように、すなわち磁気検出部において磁気平衡状態が成立するように、磁界発生導体70に負帰還電流を供給する。検出抵抗Rsは、負帰還電流の経路に設けられる(磁界発生導体70と直列接続される)。第2差動増幅器としての第2演算増幅器60は、反転入力端子が検出抵抗Rsの磁界発生導体70側の一端に接続され、出力端子が検出抵抗Rsの他端に接続され、かつ非反転入力端子が固定電圧端子としてのグランドに接続される。第1演算増幅器50及び第2演算増幅器60は、共に両電源駆動であり、第1電源電圧Vccが供給される第1電源ラインと、第2電源電圧-Vccが供給される第2電源ラインと、にそれぞれ接続される。第2演算増幅器60の出力端子の電圧が、磁気センサとしての出力電圧Voutとなる。図7に示すように負帰還電流をIとすると、出力電圧Voutは、Vout=Rs×Iとなる。負帰還電流は、検出対象磁界(第1磁界)の大きさに比例するため、出力電圧Voutも、検出対象磁界に比例することになり、出力電圧Voutにより、検出対象磁界を検出することができる。 FIG. 7 is a schematic circuit diagram of the magnetic sensor according to the embodiment. The first to fourth magnetoresistance effect elements (10, 20, 30, 40) connected in a bridge form a magnetic detection unit to which a first magnetic field to be detected is applied. In the first operational amplifier 50 as the first differential amplifier, the inverting input terminal is connected to the interconnection point of the first magnetoresistive effect element 10 and the fourth magnetoresistive effect element 40, and the non-inverting input terminal is the second magnetoresistive. The effect element 20 and the third magnetoresistive effect element 30 are connected to the interconnection point, and the output terminal is connected to one end of the magnetic field generating conductor 70. The first operational amplifier 50 receives the output voltage (voltage Va, Vb) of the magnetic detection unit and supplies a negative feedback current to the magnetic field generating conductor 70. The magnetic field generating conductor 70 generates a second magnetic field that cancels out the first magnetic field in the magnetic detection section when a negative feedback current output from the first operational amplifier 50 flows. In other words, the first operational amplifier 50 is configured so that the magnetic field generating conductor 70 generates a second magnetic field that cancels the first magnetic field in the magnetic detection unit, that is, a magnetic equilibrium state is established in the magnetic detection unit. A negative feedback current is supplied to the magnetic field generating conductor 70. The detection resistor Rs is provided in the negative feedback current path (connected in series with the magnetic field generating conductor 70). The second operational amplifier 60 as the second differential amplifier has an inverting input terminal connected to one end of the detection resistor Rs on the magnetic field generating conductor 70 side, an output terminal connected to the other end of the detection resistor Rs, and a non-inverting input. The terminal is connected to the ground as a fixed voltage terminal. Both the first operational amplifier 50 and the second operational amplifier 60 are driven by both power sources, and the first power supply line to which the first power supply voltage Vcc is supplied and the second power supply line to which the second power supply voltage −Vcc is supplied. , Respectively. The voltage at the output terminal of the second operational amplifier 60 becomes the output voltage Vout as the magnetic sensor. As shown in FIG. 7, when the negative feedback current is I, the output voltage Vout is Vout = Rs × I. Since the negative feedback current is proportional to the magnitude of the detection target magnetic field (first magnetic field), the output voltage Vout is also proportional to the detection target magnetic field, and the detection target magnetic field can be detected by the output voltage Vout. .
 図8は、比較例に係る磁気センサの概略回路図である。図8に示す回路は、図7に示す回路と比較して、第2演算増幅器60が無くなり、検出抵抗Rsの他端がグランドに接続され、検出抵抗Rsの一端の電圧が出力電圧Voutとされている点で相違し、その他の点で一致する。図8における出力電圧Voutは、図7における出力電圧Voutと比較して、プラスマイナスが反転する他は計算上一致するが、周波数特性が異なる。 FIG. 8 is a schematic circuit diagram of a magnetic sensor according to a comparative example. Compared with the circuit shown in FIG. 7, the circuit shown in FIG. 8 eliminates the second operational amplifier 60, the other end of the detection resistor Rs is connected to the ground, and the voltage at one end of the detection resistor Rs becomes the output voltage Vout. Are different, and are otherwise identical. The output voltage Vout in FIG. 8 is the same as the output voltage Vout in FIG. 7 except that the plus and minus are inverted, but the frequency characteristics are different.
 図9は、図7及び図8の各出力電圧Voutの周波数特性を比較した簡易グラフである。このグラフは、検出対象磁界の大きさを一定として周波数を変化させた場合の各出力電圧Voutの大きさを表している。図7に示す実施の形態の磁気センサは、負帰還電流を電圧に変換する電流電圧変換回路が検出抵抗Rsに加えて第2演算増幅器60を含むことにより、検出抵抗Rsのみで電流電圧変換を行う図8の構成と比較して、図9に示すように、より高い周波数の磁界まで検出可能となる。これは、図7に示す回路は、第1演算増幅器50及び第2演算増幅器60により負帰還電流を供給する構成のため、第1演算増幅器50及のみで負帰還電流を供給する図8の回路と比較して第1演算増幅器50への負担が低減されたことによる。 FIG. 9 is a simplified graph comparing the frequency characteristics of the output voltages Vout shown in FIGS. This graph represents the magnitude of each output voltage Vout when the magnitude of the detection target magnetic field is constant and the frequency is changed. In the magnetic sensor of the embodiment shown in FIG. 7, the current-voltage conversion circuit that converts the negative feedback current into a voltage includes the second operational amplifier 60 in addition to the detection resistor Rs, so that the current-voltage conversion is performed only by the detection resistor Rs. Compared with the configuration of FIG. 8 to be performed, as shown in FIG. 9, even higher frequency magnetic fields can be detected. This is because the circuit shown in FIG. 7 is configured to supply the negative feedback current by the first operational amplifier 50 and the second operational amplifier 60, and therefore the circuit of FIG. This is because the burden on the first operational amplifier 50 is reduced as compared with FIG.
 図10は、図7及び図8の各センサ構成におけるセンサの磁気分解能の周波数特性を比較した簡易グラフである。1/fノイズと呼ばれる、エネルギーが周波数の反比例するノイズの存在により、磁気抵抗効果素子の分解能は一般に、検出対象磁界の周波数が高くなるほど良好となる。しかし、図10に示すように、図8の比較例の構成では、第1演算増幅器50の周波数特性がネックとなり、ある周波数以上では、周波数が高くなった場合の分解能の向上が鈍化する。これと比較して図7に示す実施の形態の回路では、第2演算増幅器60を設けたことにより、高周波数領域においても周波数が高くなった場合、第1演算増幅器50の周波数特性のネックが低減されることで、高周波数領域でより高分解能となるため、より高い周波数の磁界まで検出可能となる。 FIG. 10 is a simplified graph comparing the frequency characteristics of the magnetic resolution of the sensors in the sensor configurations of FIGS. Due to the presence of noise called 1 / f noise whose energy is inversely proportional to the frequency, the resolution of the magnetoresistive element generally becomes better as the frequency of the magnetic field to be detected becomes higher. However, as shown in FIG. 10, in the configuration of the comparative example of FIG. 8, the frequency characteristic of the first operational amplifier 50 becomes a bottleneck, and the improvement in the resolution when the frequency becomes higher is slowed above a certain frequency. In comparison with this, in the circuit of the embodiment shown in FIG. 7, when the second operational amplifier 60 is provided, the frequency characteristic of the first operational amplifier 50 becomes a bottleneck when the frequency becomes high even in the high frequency region. By being reduced, the resolution becomes higher in the high frequency region, so that even higher frequency magnetic fields can be detected.
 本実施の形態によれば、下記の効果を奏することができる。 According to this embodiment, the following effects can be achieved.
(1) 負帰還電流を電圧に変換する電流電圧変換回路が検出抵抗Rsに加えて第2演算増幅器60を有するため、出力電圧Voutの周波数特性(例えば100KHz以上の周波数特性)を向上させることができる。これにより、従来は検出できなかった急激な磁界変化を検出可能となる。 (1) Since the current-voltage conversion circuit for converting negative feedback current into voltage has the second operational amplifier 60 in addition to the detection resistor Rs, the frequency characteristic of the output voltage Vout (for example, frequency characteristic of 100 KHz or more) can be improved. it can. This makes it possible to detect a sudden magnetic field change that could not be detected in the past.
(2) ブリッジ接続された第1から第4磁気抵抗効果素子(10、20、30、40)を磁気検出部としているため、磁界検出の分解能を高めることができる。 (2) Since the first to fourth magnetoresistive effect elements (10, 20, 30, 40) connected by the bridge are used as the magnetic detection unit, the resolution of the magnetic field detection can be increased.
(3) 負帰還電流により磁気検出部における磁気平衡を保持することにより、第1から第4磁気抵抗効果素子(10、20、30、40)における環境温度による抵抗変化率の変化を抑え、検出精度を維持することができる。 (3) By maintaining the magnetic balance in the magnetic detector by negative feedback current, the change in the resistance change rate due to the environmental temperature in the first to fourth magnetoresistive effect elements (10, 20, 30, 40) is suppressed and detected. Accuracy can be maintained.
(4) 磁界発生導体70は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内に形成されるため、別体のソレノイドコイルを用いる場合よりも製品の小型化に有利になるほか、製造時における位置精度のバラつきを抑えることが可能となる。 (4) Since the negative magnetic field generating conductor 70 is formed in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40), it is more product than using a separate solenoid coil. In addition to being advantageous for downsizing, it is possible to suppress variations in positional accuracy during manufacturing.
 以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.
 実施の形態では磁気検出素子が磁気抵抗効果素子である場合を説明したが、磁気検出素子は、ホール素子等の他の種類のものであってもよい。また、磁気検出素子の個数は、実施の形態で例示した4つに限定されず、1つ以上の任意の個数でよい。実施の形態では4つの磁気抵抗効果素子がフルブリッジ接続された磁気検出部を例に説明したが、磁気検出部は、2つの磁気抵抗効果素子がハーフブリッジ接続されたものであってもよいし、1つの磁気抵抗効果素子と1つの固定抵抗とがハーフブリッジ接続されたものであってもよい。磁気検出素子及び磁界発生導体は、共通の積層体に構成される場合に限定されず、互いに別々に設けられてもよい。磁気検出部、第1演算増幅器50、及び第2演算増幅器60は、両電源駆動に限定されず、片電源駆動であってもよい。 Although the case where the magnetic detection element is a magnetoresistive effect element has been described in the embodiment, the magnetic detection element may be another type such as a Hall element. Further, the number of magnetic detection elements is not limited to the four exemplified in the embodiment, and may be one or more arbitrary numbers. In the embodiment, a magnetic detection unit in which four magnetoresistive effect elements are connected in a full bridge has been described as an example. However, the magnetic detection unit may be a structure in which two magnetoresistive effect elements are connected in a half bridge. One magnetoresistive element and one fixed resistor may be half-bridge connected. The magnetic detection element and the magnetic field generating conductor are not limited to being configured in a common laminated body, and may be provided separately from each other. The magnetic detection unit, the first operational amplifier 50, and the second operational amplifier 60 are not limited to the dual power supply drive, but may be a single power supply drive.
 第1から第4磁気抵抗効果素子(10、20、30、40)の検出精度をさらに向上させるために、磁性体80と第1から第4磁気抵抗効果素子(10、20、30、40)の間にヨークを形成してもよい。前記ヨークを形成することにより、第1から第4磁気抵抗効果素子(10、20、30、40)に、より多くの磁界を効率よく導くことが出来るため、微小な磁界を精度よく検出することが可能となる。また、前記ヨークは薄膜プロセスで形成することで、寸法、位置ともに精度よく配置できるだけでなく、同一の積層行程で形成できるため外部に付属させた部品より低コストとなり、製品の小型化や製造コストの削減が可能になる。 In order to further improve the detection accuracy of the first to fourth magnetoresistance effect elements (10, 20, 30, 40), the magnetic body 80 and the first to fourth magnetoresistance effect elements (10, 20, 30, 40). A yoke may be formed between the two. By forming the yoke, more magnetic fields can be efficiently guided to the first to fourth magnetoresistive elements (10, 20, 30, 40), so that a minute magnetic field can be detected with high accuracy. Is possible. In addition, the yoke is formed by a thin film process, so that it can be placed with high precision in both dimensions and position, and can be formed in the same stacking process, so the cost is lower than the parts attached to the outside. Can be reduced.
5 積層体、10 第1磁気抵抗効果素子、20 第2磁気抵抗効果素子、30 第3磁気抵抗効果素子、40 第4磁気抵抗効果素子、50 第1演算増幅器(第1差動増幅器)、60 第2演算増幅器(第2差動増幅器)、70 磁界発生導体、80 磁性体 5 laminated body, 10 first magnetoresistive effect element, 20 second magnetoresistive effect element, 30 third magnetoresistive effect element, 40 fourth magnetoresistive effect element, 50 first operational amplifier (first differential amplifier), 60 Second operational amplifier (second differential amplifier), 70 magnetic field generating conductor, 80 magnetic material

Claims (2)

  1.  検出対象の第1磁界が印加される少なくとも1つの磁気検出素子を含む磁気検出部と、
     前記磁気検出部の出力電圧が入力される第1差動増幅器と、
     前記第1差動増幅器が出力する負帰還電流が流れることにより、前記磁気検出部において前記第1磁界を相殺する第2磁界を発生する磁界発生導体と、
     前記負帰還電流が流れる検出抵抗と、
     反転入力端子が前記検出抵抗の前記磁界発生導体側の一端に接続され、出力端子が前記検出抵抗の他端に接続され、かつ非反転入力端子が固定電圧端子に接続された、第2差動増幅器と、を備える、磁気センサ。
    A magnetic detection unit including at least one magnetic detection element to which a first magnetic field to be detected is applied;
    A first differential amplifier to which an output voltage of the magnetic detection unit is input;
    A magnetic field generating conductor that generates a second magnetic field that cancels the first magnetic field in the magnetic detection unit by flowing a negative feedback current output from the first differential amplifier;
    A detection resistor through which the negative feedback current flows;
    A second differential having an inverting input terminal connected to one end of the detection resistor on the magnetic field generating conductor side, an output terminal connected to the other end of the detection resistor, and a non-inverting input terminal connected to a fixed voltage terminal And a magnetic sensor.
  2.  前記磁気検出部は、ブリッジ接続された複数の磁気抵抗効果素子を含む、請求項1に記載の磁気センサ。 The magnetic sensor according to claim 1, wherein the magnetic detection unit includes a plurality of magnetoresistive effect elements connected in a bridge.
PCT/JP2018/007876 2017-03-02 2018-03-01 Magnetic sensor WO2018159776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-039643 2017-03-02
JP2017039643A JP2018146303A (en) 2017-03-02 2017-03-02 Magnetic sensor

Publications (1)

Publication Number Publication Date
WO2018159776A1 true WO2018159776A1 (en) 2018-09-07

Family

ID=63370449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007876 WO2018159776A1 (en) 2017-03-02 2018-03-01 Magnetic sensor

Country Status (2)

Country Link
JP (1) JP2018146303A (en)
WO (1) WO2018159776A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455506B2 (en) * 2018-11-20 2024-03-26 Tdk株式会社 Magnetic detection device and moving object detection device
JP2020085574A (en) * 2018-11-20 2020-06-04 Tdk株式会社 Detection circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085228A (en) * 2008-09-30 2010-04-15 Tdk Corp Current sensor
JP2013238580A (en) * 2011-12-28 2013-11-28 Tdk Corp Current sensor
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085228A (en) * 2008-09-30 2010-04-15 Tdk Corp Current sensor
JP2013238580A (en) * 2011-12-28 2013-11-28 Tdk Corp Current sensor
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor

Also Published As

Publication number Publication date
JP2018146303A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2018190261A1 (en) Magnetic sensor
JP6350785B2 (en) Inverter device
JP4722934B2 (en) Resistor having a predetermined temperature coefficient
JP2015219061A (en) Magnetic field detection sensor and magnetic field detection device using the same
US11397225B2 (en) Current sensor, magnetic sensor and circuit
WO2018159776A1 (en) Magnetic sensor
JP6384677B2 (en) Current sensor
JP2011017574A (en) Electric current detector
JP2007033222A (en) Current sensor
JP5891516B2 (en) Current sensor
JP7225694B2 (en) magnetic sensor
JP2010091366A (en) Magnetic balance current sensor
JP2019219294A (en) Magnetic sensor
JP7286932B2 (en) magnetic sensor
JP2016115240A (en) Multiplication circuit and power sensor including the same
JP2018021846A (en) Magnetic sensor
JP4771094B2 (en) Magnetic balanced current sensor
JP2020085573A (en) Magnetism detector and mobile body detector
JP6644343B1 (en) Zero flux type magnetic sensor
JP2001141756A (en) Current sensor
WO2017141763A1 (en) Current sensor
JP2009121858A (en) Amplification circuit
JP6952471B2 (en) Semiconductor device
JP2020118515A (en) Magnetism detector and moving body detector
JP2007078662A (en) Torque detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761459

Country of ref document: EP

Kind code of ref document: A1