WO2018159504A1 - Cover material for acoustic insulation and engine unit - Google Patents

Cover material for acoustic insulation and engine unit Download PDF

Info

Publication number
WO2018159504A1
WO2018159504A1 PCT/JP2018/006788 JP2018006788W WO2018159504A1 WO 2018159504 A1 WO2018159504 A1 WO 2018159504A1 JP 2018006788 W JP2018006788 W JP 2018006788W WO 2018159504 A1 WO2018159504 A1 WO 2018159504A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
covering material
soundproofing
elastic porous
soundproof
Prior art date
Application number
PCT/JP2018/006788
Other languages
French (fr)
Japanese (ja)
Inventor
荒井 剛
生磨 藤澤
森 正
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2018159504A1 publication Critical patent/WO2018159504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • F02B77/13Acoustic insulation

Definitions

  • the present invention relates to a soundproofing covering material and an engine unit.
  • the noise of the automobile is generated from the engine room because it is not only the noise generated from the drive system engine room such as the engine, motor and transmission, but also the exhaust sound, wind noise, tire road noise and the like.
  • the noise of the automobile is generated from the engine room because it is not only the noise generated from the drive system engine room such as the engine, motor and transmission, but also the exhaust sound, wind noise, tire road noise and the like.
  • the conventionally proposed soundproof covers do not always have a sufficient noise suppression effect against the increasingly strict regulation level.
  • the entire engine which is a sound source
  • almost the entire engine that is, almost the entire engine wall, upper surface (bonnet) side, lower surface (underbody) side.
  • Covering with soundproofing material to suppress noise leakage outside the vehicle and at the same time reduce the noise level in the engine room by its sound absorption effect, (Near) engine encapsulation can be considered.
  • the thickness provided for the soundproofing material is about 10 to 20 mm even when encapsulating.
  • the effect obtained because the noise on the relatively low frequency side of 1 kHz or less depends on the thickness and mass of the soundproofing material. Is extremely limited.
  • the soundproofing material cannot exhibit sufficient sound absorption performance, a large reverberation sound will sound in the engine room, and if the sound insulation performance is not sufficient, the energy that cannot be attenuated will vibrate the wall, upper surface, and lower surface of the engine room, Further loud noise may be generated.
  • Helmholtz structure with a space (back air layer) between the inner side of the soundproof material, the engine wall surface, and the inner wall of the engine room facing the soundproof material surface as a means to obtain a soundproof effect at a relatively low frequency with a thin soundproof material thickness
  • the sound absorption peak exists in a relatively low frequency range
  • the engine room wall on the back side will vibrate greatly.
  • a part of the exhaust side wall surface and the upper surface of the engine can reach a temperature of about 300 ° C. What has predetermined heat resistance is calculated
  • an object of the present invention is to provide a novel soundproofing covering material having heat resistance and sufficient soundproofing performance even if the thickness is thin, and an engine unit having such a soundproofing covering material. It is what.
  • the first elastic porous body and a porous film having a porosity of 0.1 to 5% and a pore diameter of 50 to 500 ⁇ m It discovered that the said technical subject could be solved by the coating material for soundproofing laminated
  • the present invention (1) A first elastic porous body, a porous film having an opening ratio of 0.1 to 5% and an opening diameter of 50 to 500 ⁇ m, and a second elastic porous body are laminated in this order.
  • Soundproofing covering material characterized by being made
  • the soundproofing covering material according to (1), wherein the porous film has a ventilation resistance of 0.1 to 1.0 kPa ⁇ s / m
  • the present invention it is possible to provide a novel soundproofing covering material having heat resistance and sufficient soundproofing performance even if the thickness is thin, and an engine unit having such a soundproofing covering material.
  • the soundproofing covering material according to the present invention includes a first fibrous assembly, a porous film having an opening ratio of 0.1 to 5% and an opening diameter of 50 to 500 ⁇ m, and a second elastic porous body. Are stacked in this order.
  • the porous film has a porosity of 0.1 to 5% and a diameter of 50 to 500 ⁇ m.
  • the constituent material of the porous film is not particularly limited, and a material having a desired pore distribution may be appropriately selected.
  • the porous film has flexibility and is not sandwiched between a first elastic porous body and a second elastic porous body, which will be described later, and does not cause significant heat shrinkage in a use environment. preferable.
  • Examples of such a porous film include a polyethylene film, a 6-nylon film, a 6,6-nylon film, an 11-nylon film, a 12-nylon film, and the like, and a polyester.
  • a polyethylene film a polyethylene film
  • a 6-nylon film a 6,6-nylon film
  • an 11-nylon film a 12-nylon film
  • a polyester a polyester
  • organic films such as films, short fiber nonwoven fabrics, long fiber cloths and papermaking papers can be mentioned.
  • the porous film may be composed of a multilayer film, and examples of the multilayer film include a co-extruded multilayer film manufactured such that a low-pressure polyethylene adhesive layer is disposed on both sides of a polyamide (nylon) film. Can do.
  • the porous film By using the porous film, adhesion to a first elastic porous body and a second elastic porous body described later can be easily improved.
  • the porous film may be obtained by appropriately applying a coating agent on the surface.
  • the porous film has a porosity of 0.1 to 5%, preferably 0.1 to 3%, preferably 0.15 to 3%. Is more preferable.
  • the porous film has a pore diameter of 50 to 500 ⁇ m, preferably 100 to 500 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the porosity (%) of the porous film is determined by observing the surface of the porous film with a microscope (Keyence Corp., VHX-500) (total area of pores / porosity of the porous film).
  • (Area) x100 means the arithmetic average value at an arbitrary 50 positions of the opening ratio.
  • the total area of the hole means a value measured with a microscope.
  • the pore diameter of the porous film means an arithmetic average value of the maximum diameters of 50 holes when the surface of the porous film is observed with a microscope.
  • the porous film constituting the soundproofing covering material according to the present invention has a porous film having the above-described opening ratio and opening diameter, so that sound can be heard from the outside while exhibiting heat resistance.
  • By easily controlling the flow resistance when passing it is possible to easily reduce the sound pressure at a desired frequency, particularly in the vicinity of a frequency of 1600 to 2000 Hz, while exhibiting desired heat resistance. That is, it is considered that the sound absorption performance can be improved by adjusting the flow resistance of the entire soundproofing laminate by disposing the slightly breathable film material in the center of the covering material.
  • the opening portion of the porous film is formed by subjecting the film material constituting the porous film to an opening treatment such as a needle punching treatment or passing a thermal sword mountain roll.
  • an opening treatment such as a needle punching treatment or passing a thermal sword mountain roll.
  • the aperture ratio and the aperture diameter of the porous film can be easily controlled by controlling the processing conditions during the aperture processing.
  • the porous film preferably has a ventilation resistance of 0.1 to 1.0 kPa ⁇ s / m, preferably 0.1 to 0.5 kPa ⁇ s / m. Is more preferably 0.1 to 0.2 kPa ⁇ s / m, and still more preferably 0.1 to 0.16 kPa ⁇ s / m.
  • the airflow resistance of the porous film is measured by measuring the flow resistance at the inlet side and the outlet side when air is passed in the direction perpendicular to the main surface of the porous film at 0.5 m / s. It means the difference (differential pressure) between the two when measured with a container (manufactured by Nippon Acoustic Co., Ltd.)
  • the soundproofing covering material according to the present invention has a porous film having the above-mentioned ventilation resistance, so that the flow resistance when sound passes through the covering material from the outside can be easily controlled, and the desired frequency, particularly the frequency Sound pressure in the vicinity of 1600 to 2000 Hz can be easily reduced.
  • the Young's modulus of the porous film is preferably 0.1 GPa or less, more preferably 0.05 GPa or less, and further preferably 0.01 GPa or less.
  • the porous film has a desired flexibility, is excellent in flexibility, etc., and can easily provide a soundproofing coating material excellent in sound absorption. it can.
  • the Young's modulus of the porous film means a value measured in accordance with JIS K7127.
  • the thickness of the porous film is preferably 20 to 100 ⁇ m, more preferably 10 to 80 ⁇ m, and further preferably 30 to 70 ⁇ m.
  • the thickness of the porous film is within the above range, it is excellent in flexibility and can be easily reduced in thickness (compacted).
  • the density of the porous film is preferably 0.8 to 1.4 g / cm 3 , more preferably 1.0 to 1.3 g / cm 3 , More preferably, it is 1.1 to 1.2 g / cm 3 .
  • the density of the porous film is within the above range, it is possible to easily provide a soundproof coating material that is lightweight and excellent in flexibility.
  • the soundproofing covering material according to the present invention is characterized in that the first elastic porous body, the porous film, and the second elastic porous body are laminated in this order. .
  • the first elastic porous body and the second elastic porous body may be the same or different.
  • one or more selected from fiber assemblies and the like can be used as the elastic porous body constituting the first elastic porous body, and the elastic porous body constituting the second elastic porous body
  • the material include one or more selected from fiber assemblies, felts, and resin foams.
  • the assembly which consists of inorganic short fibers, such as glass wool (glass fiber), rock wool, a silica fiber, a silica alumina ceramic fiber, an alumina fiber, a mullite fiber, can be mentioned, for example.
  • the felt include one obtained by mixing one or more of the above-mentioned various short fibers by means such as a needle punch, and specifically, an inorganic fiber comprising inorganic short fibers that already form an assembly.
  • felt Made of felt (eg glass felt made of glass wool (glass fiber felt), polyester fiber felt such as polyethylene terephthalate felt, nylon fiber felt, polyethylene fiber felt, polypropylene fiber felt, acrylic fiber felt, aramid fiber felt, silica
  • resin felts obtained by processing alumina ceramic fiber felt, siri-force fiber felt, cotton, wool, wood wool, scrap fibers, etc. into a felt shape with a thermosetting resin.
  • an inorganic fiber felt is preferable, a density of 10 to 50 kg / m 3 is preferable, a density of 15 to 50 kg / m 3 is more preferable, and a density of 20 to 35 kg / m 3 is more preferable.
  • the resin foam one or more selected from resin foams such as polyurethane foam, polyethylene foam, polypropylene foam, phenol foam, melamine foam, nitrile butadiene rubber, chloroprene rubber, styrene rubber, silicone rubber, urethane rubber, ethylene -One or more types selected from open-cell bodies obtained by foaming propylene / diene rubber or the like in the form of open cells, or foamed by foaming after crushing or the like can be mentioned.
  • resin foams such as polyurethane foam, polyethylene foam, polypropylene foam, phenol foam, melamine foam, nitrile butadiene rubber, chloroprene rubber, styrene rubber, silicone rubber, urethane rubber, ethylene -One or more types selected from open-cell bodies obtained by foaming propylene / diene rubber or the like in the form of open cells, or foamed by foaming after crushing or the like can be mentioned.
  • the elastic porous body preferably includes inorganic fibers such as glass fibers or aramid fibers as constituent fibers, and more preferably includes inorganic fibers.
  • the soundproofing covering material according to the present invention is used for a soundproofing cover for an automobile engine, for example, the exhaust side wall surface and a part of the upper surface (near the exhaust manifold through which combustion exhaust gas passes) are at a high temperature. The material surface reaches a temperature of about 300 ° C., and under such temperature conditions, the film material is melted or significantly contracted.
  • the first elastic porous body or the second elastic porous body preferably includes a glass fiber as a constituent fiber, and the glass fiber preferably has a fiber diameter of 0.1 to 4 ⁇ m. More preferably, it is 1 to 4 ⁇ m, and further preferably 3 to 4 ⁇ m.
  • the glass fiber having the above fiber diameter can be produced by a centrifugal method or a flame method.
  • the fiber diameter of a glass fiber means the arithmetic mean value of the maximum diameter of 20 glass fibers measured with the microscope.
  • the first elastic porous body or the second elastic porous body contains glass fibers having the above-mentioned fiber diameter as constituent fibers, so that desired heat resistance and flame retardancy can be obtained. It can be exhibited more easily.
  • the first elastic porous body or the second elastic porous body contains glass fibers having the above fiber diameter as constituent fibers
  • the first elastic porous body is formed by fixing glass fibers with a binder made of a phenol resin selected from, for example, novolak, resol, benzylic ether, or the like, or a modified phenol resin such as urea modification.
  • a binder made of a phenol resin selected from, for example, novolak, resol, benzylic ether, or the like, or a modified phenol resin such as urea modification.
  • it may be produced by entanglement of glass fibers in the thickness direction by treatment such as needle punching.
  • the polyester fiber is preferably a flame-retardant polyester fiber.
  • Examples of the flame retardant polyester fiber include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate (PEI), polycyclohexylenedimethylene terephthalate (PCHDT), polyethylene naphthalate (PEN), and the like. Can be mentioned.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEI polyethylene isophthalate
  • PCHDT polycyclohexylenedimethylene terephthalate
  • PEN polyethylene naphthalate
  • Examples of the flame retardant polyester fiber include known ones, such as those described in JP-A-51-82392, JP-A-55-7888, JP-B-55-41610, and the like. Things can be mentioned.
  • the polyester fiber is a flame-retardant polyester and a thermal adhesive property. It may be a flame retardant composite fiber obtained by combining polyester.
  • examples of the flame retardant polyester include the same ones as those constituting the flame retardant polyester fiber described above.
  • the thermal adhesive polyester functions as a binder for the flame retardant polyester, has a melting point lower than the melting point of the flame retardant polyester, and the melting point of the flame retardant polyester. Those having a melting point which is at least 20 ° C. lower than that are preferred.
  • the difference between the melting points is less than 20 ° C.
  • high-temperature treatment is required during the production of the flame-retardant composite fiber, so the orientation of the flame-retardant polyester is likely to be reduced, and the reinforcing effect of the heat-adhesive polyester is reduced.
  • the durability of the flame-retardant-added fiber is likely to be lowered, and the physical properties of the flame-retardant polyester as a base material are likely to be lowered.
  • the thermal adhesive polyester preferably has a melting point of 110 ° C. to 220 ° C., more preferably 130 ° C. to 200 ° C. When the melting point of the heat-adhesive polyester is within the above range, the reinforcing effect is easily exhibited.
  • the melting point of the flame-retardant polyester and the melting point of the heat-adhesive polyester are the orientation when the fiberized product is arranged in a cross shape on the hot plate and heated from room temperature at 5 ° C./min. It means the temperature at which the striped pattern generated by
  • the thermal adhesive polyester is not particularly limited.
  • terephthalic acid isophthalic acid, phthalic acid, p-hydroxybenzoic acid, 5-sodium sulfoisophthalic acid, naphthalenedicarboxylic acid, oxalic acid, adipic acid, sebacic acid,
  • acid components selected from cyclohexylene dicarboxylic acid and the like, and one or more glycols selected from ethylene glycol, diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol, polyethylene glycol, and the like
  • ester-bonding a component is mentioned.
  • the first elastic porous body or the second elastic porous body constitutes a flame-retardant composite fiber in which the flame-retardant polyester and the heat-adhesive polyester are combined.
  • the composite ratio of the flame-retardant polyester and the heat-adhesive polyester is not particularly limited, but the flame-retardant polyester content is preferably 20 to 80% by mass, preferably 30 to 70% by mass. Some are more preferable, and 40 to 60% by mass is even more preferable.
  • the content ratio of the flame-retardant polyester constituting the flame-retardant composite fiber is within the above range, desired flame retardancy can be easily imparted to the flame-retardant composite fiber.
  • a seascore type in which the flame-retardant polyester is a core component and the heat-adhesive polyester is a sheath component, the flame-retardant polyester and the heat-adhesive polyester are arranged adjacent to each other.
  • a layered multilayer structure type or a side-by-side type can be used.
  • the thickness of the first elastic porous body or the second elastic porous body may be the same or different.
  • the thickness of the first elastic porous body or the second elastic porous body is preferably 0.5 to 20 mm, more preferably 1.5 to 15 mm, and further preferably 3 to 10 mm. preferable.
  • the sound resistance is excellent and the sound absorbing coating material is thinned (compact) and has sufficient sound absorption. It can be easily demonstrated.
  • the density of the first elastic porous body or the second elastic porous body may be the same or different.
  • the density of the first elastic porous body or the second elastic porous body is preferably 0.001 to 1.2 g / cm 3 , and is preferably 0.003 to 0. more preferably .5g / cm 3, more preferably from 0.006 ⁇ 0.1g / cm 3.
  • the density is appropriately selected from those having desired sound absorption properties according to the structure and thickness of the elastic porous body.
  • the basis weight of the first elastic porous body or the second elastic porous body is preferably 10 to 1000 g / m 2 , and more preferably 15 to 500 g / m 2. A range of 25 to 250 g / m 2 is more preferable.
  • the basis weight of the first elastic porous body or the second elastic porous body is within the above range, it is possible to easily provide a soundproofing covering material that is lightweight and has a desired shape.
  • the soundproofing covering material according to the present invention has the first elastic porous body or the second elastic porous body on the upper surface side and the lower surface side of the porous film, respectively. Sound absorption characteristics can be exhibited not only for sound passing from the lower surface side to the upper surface side but also for sound passing from the upper surface side to the lower surface side. For this reason, for example, when the soundproofing covering material according to the present invention is used as a soundproofing cover for an automobile engine, when the sound emitted from the automobile engine passes from the lower surface side to the upper surface side of the soundproofing covering material, An engine room that can convert the noise energy generated into vibration energy of the elastic porous body to exhibit a desired sound absorbing performance and accommodates the automobile engine and the soundproof covering material through the soundproof covering material.
  • the energy of the reflected noise is also converted into the vibration energy of the elastic porous material to further exhibit sound absorbing performance. can do.
  • a porous film having a predetermined aperture ratio and an aperture diameter exists between the first elastic porous body and the second elastic porous body, when passing through the soundproof coating material, as a result of the predetermined flow resistance, the sound generated from the automobile engine and passing through the porous film resonates with the sound reflected from the wall of the engine room to attenuate the energy, especially in the frequency band of 1600 Hz to 2000 Hz. It is considered that the pressure can be reduced.
  • the soundproofing covering material according to the present invention may further include a skin material on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body.
  • the skin material is preferably provided on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body. More preferably, it is provided.
  • both skin materials are the same. May be different.
  • the skin material at least one kind selected from inorganic long fiber cloth, inorganic fiber sheet, metal foil resin sheet subjected to opening treatment, etc., as long as no trouble such as melting or significant shrinkage occurs at a temperature of 300 ° C. Can be arranged.
  • one or more mixtures selected from inorganic fibers such as glass fiber, silica fiber, basalt fiber, silica alumina ceramic fiber, alumina fiber, and mullite fiber are knitted into a cross shape or integrated by means such as needle punching.
  • a sheet or a metal foil such as an aluminum foil in which fine apertures are provided on the surface to suppress reflection of sound can be preferably used from the viewpoints of design properties and prevention of fiber scattering due to vibration.
  • the airflow resistance of the skin material may be within a range that does not interfere with the effects of preventing fiber scattering, etc. in order to suppress the reflection of incident sound waves on the surface side, and is 1.0 kPa ⁇ s / m or less.
  • the ventilation resistance can be appropriately adjusted depending on how the fibers are knitted and the degree of opening of the metal foil.
  • the airflow resistance of the skin material is determined by measuring the pressure at the inlet side and the outlet side when air is passed at a rate of 0.5 mm / s in the direction perpendicular to the main surface of the skin material. It means the difference (differential pressure) between the two when measured by Nippon Acoustic Co., Ltd.
  • the inorganic fiber sheet examples include glass fiber felts containing glass fibers and resin binders, and the resin binders constituting the glass fiber felts include novolaks, resols, and the like, whose content is less than 5% by mass.
  • examples thereof include phenolic resins such as benzylic ethers, and modified phenolic resins such as urea modified with a content of 10 to 20% by mass.
  • the porosity is preferably 3% to 7%, more preferably 4% to 7%, More preferably, it is 5% to 7%.
  • the metal foil has a hole diameter of 1 ⁇ m or more, preferably 5 ⁇ m or more, and preferably 10 ⁇ m or more, within a range in which a liquid-stopping property can be secured. More preferred.
  • the hole area ratio and the hole diameter of the skin material can be measured by the same measurement method as the method for measuring the hole area ratio and the hole diameter of the porous film described above.
  • the thickness of the skin material is preferably 9 to 1000 ⁇ m, more preferably 9 to 500 ⁇ m, and further preferably 10 to 300 ⁇ m.
  • the thickness of the skin is within the above range, it is possible to easily exhibit sufficient sound absorption properties while being excellent in flexibility and thinning (compacting) the soundproofing covering material.
  • the covering material for soundproofing according to the present invention has a skin material, it becomes easy to ensure shape stability and design properties, and it is possible to suppress scattering of fibers constituting the covering material at the time of use, It can easily exhibit water repellency.
  • the soundproofing covering material according to the present invention preferably has a ventilation resistance of 1.0 to 4.0 kPa ⁇ s / m, more preferably 1.0 to 3.0 kPa ⁇ s / m or less. More preferably, the viscosity is 0.0 to 2.0 kPa ⁇ s / m or less.
  • the airflow resistance is measured by measuring the air pressure at the inlet side and the outlet side when air is passed at a rate of 0.5 mm / s in the direction perpendicular to the main surface of the soundproof coating material, respectively. It means the difference (difference pressure) between the two when measured by (Sound Co., Ltd.).
  • the soundproofing covering material according to the present invention is suitably 5 to 20 mm in thickness, more suitably 10 to 20 mm, and even more suitably 15 to 20 mm.
  • the soundproofing covering material according to the present invention can exhibit sufficient soundproofing performance even when the thickness is thin.
  • the soundproofing covering material according to the present invention has the above airflow resistance, it is possible to easily control the flow resistance and easily reduce the sound pressure at a desired frequency, particularly in the vicinity of the frequency of 1600 to 2000 Hz.
  • the soundproofing covering material according to the present invention can be produced, for example, by hot pressing into a predetermined shape in a state where all of the forming materials corresponding to the constituent members of the soundproofing covering material to be obtained are sequentially laminated.
  • the soundproofing covering material according to the present invention is, for example, one formed by hot pressing into a predetermined shape in a state where only a part of all the forming materials corresponding to the constituent members of the soundproofing covering material to be obtained is sequentially laminated.
  • other forming materials corresponding to the constituent members of the covering material for soundproofing to be obtained can be prepared by fixing them by hot pressing to a predetermined shape in a state of being sequentially laminated with an adhesive or the like as appropriate. .
  • the soundproofing covering material for example, (1) a first elastic porous body, (2) a porous film, and (3) a second elastic porous body are sequentially arranged in this order.
  • a laminated soundproofing covering material it can be produced by hot-pressure forming into a predetermined shape in a state in which the forming materials for forming these are sequentially laminated in this order.
  • a first skin material, (2) a first elastic porous body, (3) a porous film, and (4) a second elastic porous body are sequentially laminated in this order.
  • the covering material can be manufactured by hot pressing into a predetermined shape in a state where the forming materials for forming the covering materials are sequentially laminated in this order. Furthermore, (1) the first skin material, (2) the first elastic porous body, (3) the porous film, (4) the second elastic porous body, and (5) the second skin material are In the case of forming a soundproof covering material that is sequentially laminated in order, it can be produced, for example, by hot-pressing a forming material for forming each of them into a predetermined shape in a state of being sequentially laminated in this order.
  • the soundproof covering material according to the present invention can be suitably used, for example, as a soundproof cover for an automobile engine.
  • the soundproofing covering material according to the present invention is used as a soundproofing cover for an automobile engine, for example, by arranging it on at least a part of the exhaust side wall surface and the upper surface of the engine, suitable sound absorption characteristics can be easily exhibited. .
  • An engine unit according to the present invention includes an automobile engine, a soundproof coating material according to the present invention that covers at least a part of the vehicle engine, and an engine room that houses the automobile engine and the soundproof coating material.
  • the details of the soundproofing covering material according to the present invention are as described above. Moreover, in the engine unit according to the present invention, a well-known one can be appropriately employed as the automobile engine and the engine room.
  • the distance between the soundproofing covering material and the engine room is 0.1 to 30 mm, from the viewpoint of space saving. Is preferably 5 to 20 mm, and more preferably 5 to 15 mm.
  • the first elastic porous body and the second elastic porous body constituting the soundproofing covering material are provided with a porous film having a predetermined aperture ratio and an aperture diameter.
  • Example 1 In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) as a first elastic porous body forming material, glass fiber felt (manufactured by Nippon Inorganic Co., Ltd. Filatomica 30MY (glass fiber Of fiber diameter 3.5 ⁇ m, density 30 kg / m 3 , weight per unit area 300 g / m 2 , thickness 10 mm)), and (2) 6-nylon as a porous film forming material By passing the film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) through a hot sword mountain roll, the opening part (opening ratio 2.5%, A film having an opening diameter of 200 ⁇ m and a ventilation resistance of 0.11 kPa ⁇ s / m; and (3) glass fiber felt (Filatomector 30 manufactured by Nippon Inorganic Co., Ltd.) as the second elastic porous body
  • Y fiber diameter 3.5 ⁇ m glass fiber, density 30kg / m 3, a basis weight 300 g / m 2, thickness 10 mm
  • Y fiber diameter 3.5 ⁇ m glass fiber, density 30kg / m 3, a basis weight 300 g / m 2, thickness 10 mm
  • a soundproof cover for an automobile engine having a maximum thickness of 10 mm having a ventilation resistance of 2.3 kPa ⁇ s / m, in which the four sides of the end portion made of the laminate of the two elastic porous bodies are compressed and welded and sealed.
  • the first elastic porous body is arranged to be on the heat source side, and is placed on a hot plate heated to 300 ° C. so that the second elastic porous body side is Heat resistance was evaluated by allowing the porous film to stand at an ambient temperature of 24 ° C. and measuring the temperature of the porous film with a CA thermocouple until the temperature became steady.
  • the temperature of the porous film disposed in the center portion remains at 128 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the film substrate, of 140 ° C. or less. So it was not damaged.
  • Example 2 In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) as a first elastic porous body forming material, glass fiber felt (manufactured by Nippon Inorganic Co., Ltd. Filatomica 30MY (glass fiber Of fiber diameter 3.5 ⁇ m, density 30 kg / m 3 , weight per unit area 300 g / m 2 , thickness 10 mm)), and (2) 6-nylon as a porous film forming material By passing the film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) through a hot sword mountain roll, the opening part (opening ratio 2.5%, (3) Polyester fiber felt (S250-HSGY manufactured by Takayasu Co., Ltd.) as a forming material for the second elastic porous body, and a film having a ventilation resistance of 0.11 kPa ⁇ s / m provided with
  • the temperature of the porous film disposed in the center portion remains at 128 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the film substrate, of 140 ° C. or less. So it was not damaged.
  • the soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
  • Example 3 In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) glass fiber felt (Firatomica FM-24 manufactured by Nippon Inorganic Co., Ltd.) as a first elastic porous body forming material Glass fiber diameter 3.5 ⁇ m, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm)), and (2) 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) is passed through a thermal sword mountain roll to open a hole (opening ratio 2.5).
  • glass fiber felt Fiber diameter 3.5 ⁇ m, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm
  • 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modul
  • a film airflow resistance having a pore size 200 [mu] m) is 0.11 kPa ⁇ s / m, Nippon Muki Co. Firatomikuta FM-24 (glass fiber fiber diameter 3.5 [mu] m, density 24 kg / m 3, Eye The amount 120 g / m 2, sequentially arranged thickness 5 mm)) in this order under 5MPa in pressure by 30 seconds heat pressure molding at 185 ° C., the maximum thickness of the first elastic porous body 5 mm, 4 sides of the end portion consisting of a laminate of a porous film having a maximum thickness of 0.07 mm and an aperture diameter of 2.5% and an aperture diameter of 200 ⁇ m and a second elastic porous body having a maximum thickness of 5 mm are compressed, A soundproof cover for an automobile engine having a maximum thickness of 10 mm having a ventilation resistance of 2.0 kPa ⁇ s / m, which was welded and sealed, was obtained.
  • ⁇ Heat resistance evaluation> Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1. As a result, the temperature of the porous film disposed in the center portion remains at 131 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the base material of the film, of 140 ° C. or less. So it was not damaged. ⁇ Soundproof evaluation> The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
  • Example 4 In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) glass fiber felt (Firatomica FM-24 manufactured by Nippon Inorganic Co., Ltd.) as a first elastic porous body forming material Glass fiber diameter 3.5 ⁇ m, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm)), and (2) 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) is passed through a thermal sword mountain roll to open a hole (opening ratio 2.5).
  • glass fiber felt Fiber diameter 3.5 ⁇ m, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm
  • 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modul
  • ⁇ Heat resistance evaluation> Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
  • the temperature of the porous film disposed in the center portion remains at 131 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the base material of the film, of 140 ° C. or less. So it was not damaged.
  • the soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
  • Example 5 In a mold provided with a molding surface corresponding to the target shape to be obtained, (1) Silica cloth (silicas cloth 700 manufactured by Nichias Co., Ltd., fiber diameter 7 ⁇ m, density 1053 kg / m 3 , basis weight 569 g / m 2 , thickness 0.54 mm), (2) glass fiber felt (Firatomica 600-1-KS (glass) manufactured by Nippon Mining Co., Ltd.) as the first elastic porous body forming material Fiber diameter 1.0 ⁇ m, density 19 kg / m 3 , weight per unit area 95 g / m 2 , thickness 5 mm)), and (3) 6-nylon as a porous film forming material A hole-opening part (opening ratio of 2.5) is passed through a thermal sword mountain roll through a film-made film (Supele 35N-LL, Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) %, A film having an
  • a first skin material having a maximum thickness of 0.5 mm, a first elastic porous body having a maximum thickness of 4.5 mm, a porosity of 2.5%, and a pore diameter of 200 ⁇ m Porous with a maximum thickness of 0.07mm 4 sides of the laminate consisting of a laminate of a film, a second elastic porous body having a maximum thickness of 4.5 mm, and a first skin material having a maximum thickness of 0.5 ⁇ m are compressed and welded to provide a sealed air resistance.
  • ⁇ Heat resistance evaluation> Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1. As a result, the temperature of the porous film disposed in the center portion remains at 126 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is a softening point temperature of 140 ° C. or lower of 6-nylon, which is the film substrate. So it was not damaged. ⁇ Soundproof evaluation> The soundproofness of the obtained soundproof cover was evaluated in the same manner as in Example 1. As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
  • Example 6 In a mold provided with a molding surface corresponding to the target shape to be obtained, (1) Silica cloth (silicas cloth 700 manufactured by Nichias Co., Ltd., fiber diameter 7 ⁇ m, density 1053 kg / m 3 , basis weight 569 g / m 2 , thickness 0.54 mm), (2) glass fiber felt (Firatomica 600-1-KS (glass) manufactured by Nippon Mining Co., Ltd.) as the first elastic porous body forming material Fiber diameter 1.0 ⁇ m, density 19 kg / m 3 , weight per unit area 95 g / m 2 , thickness 5 mm)), and (3) 6-nylon as a porous film forming material Opening part (opening ratio of 2.5%) by passing a film (Ube Film Co., Ltd.
  • Polyester fiber felt (S250-HSGYN, manufactured by Takayasu Co., Ltd.) as a forming material for the second elastic porous body, and a film having a ventilation resistance of 0.11 kPa ⁇ s / m provided with a pore diameter of 200 ⁇ m)
  • the average fiber diameter of the fiber is 10 ⁇ m
  • the density is 25 kg / m 3
  • the weight per unit area is 250 g / m 2
  • the thickness is 10 mm) in this order, and hot pressing is performed at 185 ° C.
  • a first skin material having a maximum thickness of 0.5 mm
  • a first elastic porous body having a maximum thickness of 4.5 mm, a maximum thickness of 0.2% and an opening diameter of 200 ⁇ m.
  • Car engine with a length of 10mm To give the emissions for the soundproof cover.
  • ⁇ Heat resistance evaluation> Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1. As a result, the temperature of the porous film disposed in the center portion remains at 126 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is a softening point temperature of 140 ° C. or lower of 6-nylon, which is the film substrate. So it was not damaged. ⁇ Soundproof evaluation> The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
  • the soundproofing covering material according to the present invention has heat resistance and sufficient soundproofing performance even when the thickness is small.
  • polyester fiber felt (125H manufactured by Maeda Kosen Co., Ltd., fiber diameter 10 ⁇ m, density 125 kg / m 3 , weight per unit area 125 g / m 2 , thickness 1 mm)
  • polyester fiber felt (S250-HSGYN manufactured by Takayasu Co., Ltd.), average fiber diameter of polyester fiber 10 ⁇ m as the first elastic porous body forming material , Density 25 kg / m 3 , weight per unit area 250 g / m 2 , thickness 10 mm)
  • 6-nylon film Ube Film Co., Ltd.
  • the opening ratio is 1.19%
  • the opening diameter is 73 ⁇ m
  • the ventilation resistance is 0.45 kPa ⁇ s / m
  • Example 8 Each having an aperture ratio of 2.66%, an aperture diameter of 46 ⁇ m, and a ventilation resistance of 0.17 Pa ⁇ s / m was used.
  • the maximum thickness of 12 is 4 kPa / s / m.
  • the air resistance is 3.8 kPa ⁇ s / m in which the four sides of the elastic porous body and the laminate of the first skin material having the maximum thickness of 1 ⁇ m are compressed and welded.
  • a soundproof cover for a 5 mm automobile engine was obtained.
  • the aperture ratio was 1.19%
  • the aperture diameter was 73 ⁇ m
  • the ventilation resistance was 0.45 kPa ⁇ s / m
  • Example 8 The aperture ratio was 2.66%
  • the aperture diameter was 46 ⁇ m
  • the ventilation resistance was 0.17 Pa ⁇ s / m.
  • the airflow resistance of the automobile engine soundproof cover obtained by the above hot press molding was 1.26 kPa ⁇ s / m in Example 7 and 3.32 kPa ⁇ s / m in Example 8. .
  • the soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. The results are shown in FIGS. 7 and 8, respectively. As shown in FIGS. 7 and 8, the obtained soundproof cover exhibited good sound absorption on either the engine side or the outer surface side during installation.
  • the soundproof covers for automobile engines obtained in Examples 7 to 8 have excellent soundproof performance particularly in a frequency region of 2000 Hz or less.
  • the automobile engine soundproof cover without the porous film obtained in Comparative Example 1 has a sound absorption coefficient peak of about 4000 Hz and a sound absorption coefficient in a frequency band of 2000 Hz or less. Since it is low, it is difficult to exhibit the desired sound absorption characteristics, and the soundproof cover for automobile engines using the porous film having no apertures obtained in Comparative Example 2 has a low sound absorption coefficient in the entire frequency range. I understand that.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Provided is a novel cover material for acoustic insulation that has heat resistance and that even if thin has sufficient acoustic insulation performance. A cover material for acoustic insulation characterized in that a first elastic porous body, a porous film having an open hole ratio of 0.1-5% and an open hole diameter of 50-500 µm, and a second elastic porous body are layered in this order, a surface material preferably also being provided to at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body.

Description

防音用被覆材およびエンジンユニットSound insulation coating and engine unit
 本発明は、防音用被覆材およびエンジンユニットに関する。 The present invention relates to a soundproofing covering material and an engine unit.
 近年、自動車騒音に関する基準調和について、国連の欧州経済委員会(ECE)の自動車基準調和世界フォーラムにおいて検討され、車両構造に関する規則の制定、改訂が行われている。
 従来より、自動車メーカー各社は様々な防音仕様について開発を進めており、自動車エンジン用防音カバーとしても種々のものが提案されている(例えば、特許文献1(特開2002-180845号公報)参照)が、自動車の車外騒音については上記ECEの規則51(ECE R51)に規制値が定められ、同規制値を定めたRegulation EU No.540/2014によれば、2016年7月迄に72dB(フェーズ1)、2020年7月迄に70dB(フェーズ2)、2024年7月迄に68dB(フェーズ3)と段階を追って厳しくなる基準が施行され、車外騒音の規制レベルを最終的には2016年7月までの基準に対して4dB、音圧エネルギーとして約1/2.5に低減するという大変厳しい要求がなされている。
In recent years, standards for vehicle noise have been studied at the World Forum for Harmonization of Vehicle Standards of the European Economic Committee (ECE) of the United Nations, and regulations regarding vehicle structure have been established and revised.
Conventionally, automobile manufacturers have been developing various soundproof specifications, and various kinds of soundproof covers for automobile engines have been proposed (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-180845)). However, the regulation value for vehicle exterior noise is defined in the above ECE Regulation 51 (ECE R51). According to Regulation EU No.540 / 2014, which established the regulation value, 72 dB (phase 1), 70 dB (Phase 2) by July 2020, 68 dB (Phase 3) by July 2024, and the standards that will become stricter step by step will be enforced. There is a very strict requirement to reduce the sound pressure energy to about 1 / 2.5 with respect to the standard up to the moon.
 ところで、上記自動車の騒音は、エンジン、モーター、トランスミッション等駆動系エンジンルームから発生する騒音のみならず、排気音、風切音、タイヤロードノイズ等が合算したものであるため、エンジンルームから発生する騒音の低減のみで上記目標を達成しようとした場合、エンジンルームにおいて5~6dB、音圧エネルギーとして1/4に低減するという大きな騒音低減が必要になることから、従来の自動車エンジン用防音カバーでは対応が困難になってきている。 By the way, the noise of the automobile is generated from the engine room because it is not only the noise generated from the drive system engine room such as the engine, motor and transmission, but also the exhaust sound, wind noise, tire road noise and the like. When trying to achieve the above-mentioned target only by reducing noise, a large noise reduction of 5 to 6 dB in the engine room and a 1/4 reduction in sound pressure energy is required. It has become difficult to respond.
特開2002-180845号公報JP 2002-180845 A
 このように、従来提案されてきた防音カバーでは、益々厳しくなる規制水準に対し必ずしも十分な騒音抑制効果は得られ難い。 As described above, the conventionally proposed soundproof covers do not always have a sufficient noise suppression effect against the increasingly strict regulation level.
 このような状況下、防音仕様として、例えば、エンジンのほぼ全体、すなわち、エンジン壁面・上面(ボンネット)側・下面(アンダーボディー)側のほぼ全面に防音材を施行し、音源となるエンジン全体を防音材で覆い車外への騒音漏洩を抑制すると同時にその吸音効果によりエンジンルーム内の騒音レベルを低減させる、(ニア)エンジンカプセル化による対応が考えられる。 Under such circumstances, as a soundproof specification, for example, the entire engine, which is a sound source, is applied to almost the entire engine, that is, almost the entire engine wall, upper surface (bonnet) side, lower surface (underbody) side. Covering with soundproofing material to suppress noise leakage outside the vehicle and at the same time reduce the noise level in the engine room by its sound absorption effect, (Near) engine encapsulation can be considered.
 しかしながら、ダウンサイジングを施した最近の車両のエンジンルーム内は各部品が高度に集積され、スペースが狭いために、上記カプセル化を行う場合においても防音材に用意された厚さは10~20mm程度と極く薄い一方で、防音材による吸音および遮音効果により騒音を低減しようとした場合、特に1kHz以下の比較的低周波数側の騒音は防音材の厚さ及び質量に依存するので、得られる効果は極く限定的なものとなる。 However, in the engine room of a recent vehicle that has undergone downsizing, since the parts are highly integrated and the space is small, the thickness provided for the soundproofing material is about 10 to 20 mm even when encapsulating. On the other hand, when trying to reduce the noise by the sound absorption and sound insulation effect of the soundproofing material, the effect obtained because the noise on the relatively low frequency side of 1 kHz or less depends on the thickness and mass of the soundproofing material. Is extremely limited.
 防音材が十分な吸音性能を発揮できない場合、エンジンルーム内には大きな反響音が響き、遮音性能も十分でない場合には、減衰しきれないエネルギーがエンジンルームの壁面・上面・下面を振動させ、さらに大きな騒音が発生することもある。 If the soundproofing material cannot exhibit sufficient sound absorption performance, a large reverberation sound will sound in the engine room, and if the sound insulation performance is not sufficient, the energy that cannot be attenuated will vibrate the wall, upper surface, and lower surface of the engine room, Further loud noise may be generated.
 薄い防音材厚さで比較的低い周波数に防音効果を得る手段としては、防音材内側とエンジン壁面及び、防音材表面と対向するエンジンルーム内壁の間に空間(背後空気層)を設けたHelmholtz構造等の共鳴を利用したものが考えられるが、防音材が有する積層構造全体の共振現象を原理としているため、比較的低周波数域に吸音ピークがあると裏面側のエンジンルーム壁面はかえって大きく振動してしまい(共鳴透過)、特に、1600~2000Hz程度の周波数帯における音圧を抑制し難くなることが判明した。
 また、例えば自動車エンジン用防音カバーにおいては、エンジンの排気側壁面及び上面の一部(燃焼排ガスが通過するエキゾースト・マニフォールド近傍)が300℃程度の温度に達し得ることから、防音用被覆材としては所定の耐熱性を有するものが求められる。
Helmholtz structure with a space (back air layer) between the inner side of the soundproof material, the engine wall surface, and the inner wall of the engine room facing the soundproof material surface as a means to obtain a soundproof effect at a relatively low frequency with a thin soundproof material thickness However, if the sound absorption peak exists in a relatively low frequency range, the engine room wall on the back side will vibrate greatly. In particular, it has been found that it is difficult to suppress the sound pressure in a frequency band of about 1600 to 2000 Hz.
For example, in a soundproof cover for an automobile engine, a part of the exhaust side wall surface and the upper surface of the engine (near the exhaust manifold through which combustion exhaust gas passes) can reach a temperature of about 300 ° C. What has predetermined heat resistance is calculated | required.
 このような状況下、本発明は、耐熱性を有し、厚さが薄くても十分な防音性能を有する新規な防音用被覆材および係る防音用被覆材を有するエンジンユニットを提供することを目的とするものである。 Under such circumstances, an object of the present invention is to provide a novel soundproofing covering material having heat resistance and sufficient soundproofing performance even if the thickness is thin, and an engine unit having such a soundproofing covering material. It is what.
 上記目的を達成するために本発明者等が鋭意検討を行った結果、第一の弾性多孔質体と、開孔率が0.1~5%で開孔径が50~500μmである多孔質フィルムと、第二の弾性多孔質体とが、この順番に積層されてなる防音用被覆材により上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。 As a result of intensive studies by the present inventors in order to achieve the above object, the first elastic porous body and a porous film having a porosity of 0.1 to 5% and a pore diameter of 50 to 500 μm And it discovered that the said technical subject could be solved by the coating material for soundproofing laminated | stacked in this order with the 2nd elastic porous body, and came to complete this invention based on this knowledge.
 すなわち、本発明は、
(1)第一の弾性多孔質体と、開孔率が0.1~5%で開孔径が50~500μmである多孔質フィルムと、第二の弾性多孔質体とが、この順番に積層されてなることを特徴とする防音用被覆材、
(2)前記第一の弾性多孔体の外表面側および第二の弾性多孔質体の外表面側の少なくとも一方にさらに表皮材を有する上記(1)に記載の防音用被覆材、
(3)前記多孔質フィルムの通気抵抗が0.1~1.0kPa・s/mである上記(1)に記載の防音用被覆材、
(4)通気抵抗が1.0~4.0kPa・s/mである上記(1)に記載の防音用被覆材、
(5)前記防音用被覆材が自動車エンジン用防音カバーである上記(1)に記載の防音用被覆材、
(6)自動車用エンジンと当該自動車用エンジンの少なくとも一部を覆う上記(1)~(5)のいずれかに記載の防音用被覆材と、前記自動車用エンジンと防音用被覆材とを収容するエンジンルームとを有するエンジンユニットであって、前記自動車用エンジンと前記防音用被覆材との間または前記防音用被覆材とエンジンルームとの間に0.1~30mmの距離の空隙を有することを特徴とするエンジンユニット、
を提供するものである。
That is, the present invention
(1) A first elastic porous body, a porous film having an opening ratio of 0.1 to 5% and an opening diameter of 50 to 500 μm, and a second elastic porous body are laminated in this order. Soundproofing covering material, characterized by being made,
(2) The soundproofing covering material according to (1), further comprising a skin material on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body,
(3) The soundproofing covering material according to (1), wherein the porous film has a ventilation resistance of 0.1 to 1.0 kPa · s / m,
(4) The soundproofing coating material according to the above (1), wherein the ventilation resistance is 1.0 to 4.0 kPa · s / m,
(5) The soundproof covering material according to (1), wherein the soundproof covering material is a soundproof cover for an automobile engine,
(6) The vehicle engine and the soundproof covering material according to any one of the above (1) to (5) covering at least a part of the vehicle engine, and the vehicle engine and the soundproof cover material are accommodated. An engine unit having an engine room, the engine unit having a gap of 0.1 to 30 mm between the automobile engine and the soundproofing covering material or between the soundproofing covering material and the engine room. Engine unit,
Is to provide.
 本発明によれば、耐熱性を有し、厚さが薄くても十分な防音性能を有する新規な防音用被覆材および係る防音用被覆材を有するエンジンユニットを提供することができる。 According to the present invention, it is possible to provide a novel soundproofing covering material having heat resistance and sufficient soundproofing performance even if the thickness is thin, and an engine unit having such a soundproofing covering material.
本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example of this invention. 本発明の実施例および比較例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example and comparative example of this invention. 本発明の実施例および比較例における吸音特性を示す図である。It is a figure which shows the sound absorption characteristic in the Example and comparative example of this invention.
 先ず、本発明に係る防音用被覆材について説明する。
 本発明に係る防音用被覆材は、第一の繊維質集成体と、開孔率が0.1~5%で開孔径が50~500μmである多孔質フィルムと、第二の弾性多孔質体とが、この順番に積層されてなることを特徴とするものである。
First, the soundproofing covering material according to the present invention will be described.
The soundproofing covering material according to the present invention includes a first fibrous assembly, a porous film having an opening ratio of 0.1 to 5% and an opening diameter of 50 to 500 μm, and a second elastic porous body. Are stacked in this order.
 本発明に係る防音用被覆材において、多孔質フィルムは、開孔率が0.1~5%で開孔径が50~500μmであるものである。 In the soundproofing covering material according to the present invention, the porous film has a porosity of 0.1 to 5% and a diameter of 50 to 500 μm.
 多孔質フィルムの構成材料としては特に制限されず、所望の細孔分布を有するものを適宜選択すればよい。
 多孔質フィルムとしては、柔軟性を有し、後述する第一の弾性多孔質体および第二の弾性多孔質体間に挟持された状態で、使用環境下において著しい熱収縮等を生じないものが好ましい。
The constituent material of the porous film is not particularly limited, and a material having a desired pore distribution may be appropriately selected.
The porous film has flexibility and is not sandwiched between a first elastic porous body and a second elastic porous body, which will be described later, and does not cause significant heat shrinkage in a use environment. preferable.
 このような多孔質フィルムとしては、ポリエチレンフィルムや、6-ナイロン製フィルム、6,6-ナイロン製フィルム、11-ナイロン製フィルム、12-ナイロン製フィルム等から選ばれるポリアミド(ナイロン)フィルムや、ポリエステルフィルム等の有機フィルム、短繊維不織布、長繊維クロス及び抄造紙等から選ばれる一種以上を挙げることができる。 Examples of such a porous film include a polyethylene film, a 6-nylon film, a 6,6-nylon film, an 11-nylon film, a 12-nylon film, and the like, and a polyester. One or more types selected from organic films such as films, short fiber nonwoven fabrics, long fiber cloths and papermaking papers can be mentioned.
 多孔質フィルムは、多層フィルムにより構成されていてもよく、多層フィルムとしては、例えば、ポリアミド(ナイロン)フィルムの両面に低圧ポリエチレン接着層が配置されるように製造した共押し出し多層フィルム等を挙げることができる。
 上記多孔性フィルムを使用することにより、後述する第一の弾性多孔質体および第二の弾性多孔質体への密着性等を容易に向上することができる。
 また、多孔質フィルムは、その通気性を制御するために、表面に適宜塗布剤を塗布加工したものであってもよい。
The porous film may be composed of a multilayer film, and examples of the multilayer film include a co-extruded multilayer film manufactured such that a low-pressure polyethylene adhesive layer is disposed on both sides of a polyamide (nylon) film. Can do.
By using the porous film, adhesion to a first elastic porous body and a second elastic porous body described later can be easily improved.
Moreover, in order to control the air permeability, the porous film may be obtained by appropriately applying a coating agent on the surface.
 本発明に係る防音用被覆材において、多孔質フィルムは、開孔率が、0.1~5%であるものであり、0.1~3%であるものが好ましく、0.15~3%であるものがより好ましい。
 また、本発明に係る防音用被覆材において、多孔質フィルムは、開孔径が50~500μmであるものであり、100~500μmであるものが好ましく、100~300μmであるものがより好ましい。
In the soundproofing covering material according to the present invention, the porous film has a porosity of 0.1 to 5%, preferably 0.1 to 3%, preferably 0.15 to 3%. Is more preferable.
In the soundproofing covering material according to the present invention, the porous film has a pore diameter of 50 to 500 μm, preferably 100 to 500 μm, more preferably 100 to 300 μm.
 本出願書類において、多孔質フィルムの開孔率(%)は、多孔質フィルムの表面をマイクロスコープ((株)キーエンス、VHX-500)で観察した際に(孔の全面積/多孔質フィルムの面積)×100により算出される開孔割合の任意の50箇所における算術平均値を意味する。
 なお、上記孔の全面積は、マイクロスコープにより測定した値を意味する。
In the present application documents, the porosity (%) of the porous film is determined by observing the surface of the porous film with a microscope (Keyence Corp., VHX-500) (total area of pores / porosity of the porous film). (Area) x100 means the arithmetic average value at an arbitrary 50 positions of the opening ratio.
The total area of the hole means a value measured with a microscope.
 また、本出願書類において、多孔質フィルムの開孔径は、多孔質フィルムの表面をマイクロスコープで観察した際における50個の孔の最大直径の算術平均値を意味する。 In addition, in the present application document, the pore diameter of the porous film means an arithmetic average value of the maximum diameters of 50 holes when the surface of the porous film is observed with a microscope.
 本発明に係る防音用被覆材を構成する多孔質フィルムが、上記開孔率および開孔径を有する多孔質フィルムを有するものであることにより、耐熱性を発揮しつつ、外部から被覆材を音が通過する際の流れ抵抗を容易に制御することにより、所望の耐熱性を発揮しつつ、所望周波数、特に周波数1600~2000Hz近傍における音圧を容易に低減することができる。
 すなわち、被覆材の中央に微通気性フィルム材を配置することで、防音用積層材全体の流れ抵抗を調節し吸音性能を向上し得ると考えられる。
The porous film constituting the soundproofing covering material according to the present invention has a porous film having the above-described opening ratio and opening diameter, so that sound can be heard from the outside while exhibiting heat resistance. By easily controlling the flow resistance when passing, it is possible to easily reduce the sound pressure at a desired frequency, particularly in the vicinity of a frequency of 1600 to 2000 Hz, while exhibiting desired heat resistance.
That is, it is considered that the sound absorption performance can be improved by adjusting the flow resistance of the entire soundproofing laminate by disposing the slightly breathable film material in the center of the covering material.
 本発明に係る防音用被覆材において、多孔質フィルムの開孔部は、多孔質フィルムを構成するフィルム材をニードルパンチ処理したり熱剣山ロールを通過させる等の開孔処理を施すことにより形成することができ、上記多孔質フィルムの開孔率や開孔径も、上記開孔処理時の処理条件を制御することにより容易に制御することができる。 In the soundproofing covering material according to the present invention, the opening portion of the porous film is formed by subjecting the film material constituting the porous film to an opening treatment such as a needle punching treatment or passing a thermal sword mountain roll. In addition, the aperture ratio and the aperture diameter of the porous film can be easily controlled by controlling the processing conditions during the aperture processing.
 本発明に係る防音用被覆材において、多孔質フィルムは、通気抵抗が、0.1~1.0kPa・s/mであるものが好ましく、0.1~0.5kPa・s/mであるものがより好ましく、0.1~0.2kPa・s/mであるものがさらに好ましく、0.1~0.16kPa・s/mであるものが一層好ましい。 In the soundproofing covering material according to the present invention, the porous film preferably has a ventilation resistance of 0.1 to 1.0 kPa · s / m, preferably 0.1 to 0.5 kPa · s / m. Is more preferably 0.1 to 0.2 kPa · s / m, and still more preferably 0.1 to 0.16 kPa · s / m.
 本出願書類において、多孔質フィルムの通気抵抗は、多孔質フィルムの主表面に対して垂直方向に0.5m/sで空気を通過させたときにおける入口側および出口側における気圧を各々流れ抵抗測定器(日本音響(株)製)で測定したときにおける両者の差(差圧)を意味する。 In the present application documents, the airflow resistance of the porous film is measured by measuring the flow resistance at the inlet side and the outlet side when air is passed in the direction perpendicular to the main surface of the porous film at 0.5 m / s. It means the difference (differential pressure) between the two when measured with a container (manufactured by Nippon Acoustic Co., Ltd.)
 本発明に係る防音用被覆材が、上記通気抵抗を有する多孔質フィルムを有するものであることにより、外部から被覆材を音が通過する際の流れ抵抗を容易に制御して所望周波数、特に周波数1600~2000Hz近傍における音圧を容易に低減することができる。 The soundproofing covering material according to the present invention has a porous film having the above-mentioned ventilation resistance, so that the flow resistance when sound passes through the covering material from the outside can be easily controlled, and the desired frequency, particularly the frequency Sound pressure in the vicinity of 1600 to 2000 Hz can be easily reduced.
 本発明に係る防音用被覆材において、多孔質フィルムのヤング率は、0.1GPa以下が好ましく、0.05GPa以下がより好ましく、0.01GPa以下がさらに好ましい。
 多孔質フィルムのヤング率が上記範囲内にあることにより、多孔質フィルムが所望の柔軟性を有し、可撓性等に優れ、吸音性に優れた防音用被覆材を容易に提供することができる。
In the soundproofing covering material according to the present invention, the Young's modulus of the porous film is preferably 0.1 GPa or less, more preferably 0.05 GPa or less, and further preferably 0.01 GPa or less.
When the Young's modulus of the porous film is within the above range, the porous film has a desired flexibility, is excellent in flexibility, etc., and can easily provide a soundproofing coating material excellent in sound absorption. it can.
 本出願書類において、多孔質フィルムのヤング率は、JIS K7127の規定に準拠して測定された値を意味する。 In this application document, the Young's modulus of the porous film means a value measured in accordance with JIS K7127.
 本発明に係る防音用被覆材において、多孔質フィルムの厚みは、20~100μmであることが好ましく、10~80μmであることがより好ましく、30~70μmであることがさらに好ましい。
 多孔質フィルムの厚みが上記範囲内にあることにより、柔軟性に優れるとともに防音用被覆材の薄型化(コンパクト化)を容易に図ることができる。
In the soundproofing covering material according to the present invention, the thickness of the porous film is preferably 20 to 100 μm, more preferably 10 to 80 μm, and further preferably 30 to 70 μm.
When the thickness of the porous film is within the above range, it is excellent in flexibility and can be easily reduced in thickness (compacted).
 本発明に係る防音用被覆材において、多孔質フィルムの密度は、0.8~1.4g/cmであることが好ましく、1.0~1.3g/cmであることがより好ましく、1.1~1.2g/cmであることがさらに好ましい。
 多孔質フィルムの密度が上記範囲内にあることにより、軽量で柔軟性に優れた防音用被覆材を容易に提供することができる。
In the soundproofing covering material according to the present invention, the density of the porous film is preferably 0.8 to 1.4 g / cm 3 , more preferably 1.0 to 1.3 g / cm 3 , More preferably, it is 1.1 to 1.2 g / cm 3 .
When the density of the porous film is within the above range, it is possible to easily provide a soundproof coating material that is lightweight and excellent in flexibility.
 本発明に係る防音用被覆材は、第一の弾性多孔質体と、上記多孔質フィルムと、第二の弾性多孔質体とが、この順番に積層されてなることを特徴とするものである。
 本発明に係る防音用被覆材において、第一の弾性多孔質体と第二の弾性多孔質体とは、同一のものであってもよいし、異なるものであってもよい。
The soundproofing covering material according to the present invention is characterized in that the first elastic porous body, the porous film, and the second elastic porous body are laminated in this order. .
In the soundproofing covering material according to the present invention, the first elastic porous body and the second elastic porous body may be the same or different.
 本発明に係る防音用被覆材において、第一の弾性多孔質体を構成する弾性多孔質体として繊維集成体等から選ばれる一種以上が使用でき、第二の弾性多孔質体を構成する弾性多孔質体としては、繊維集成体、フェルトおよび樹脂発泡体から選ばれる一種以上を挙げることができる。 In the covering material for soundproofing according to the present invention, one or more selected from fiber assemblies and the like can be used as the elastic porous body constituting the first elastic porous body, and the elastic porous body constituting the second elastic porous body Examples of the material include one or more selected from fiber assemblies, felts, and resin foams.
 上記繊維集成体としては、例えば、グラスウール(ガラス繊維)、ロックウール、シリカ繊維、シリカアルミナセラミックファイバー、アルミナ繊維、ムライト繊維等の無機短繊維からなる集成体を挙げることができる。
 フェルトとしては、上記各種短繊維の一種以上を混合したものをニードルパンチ等の手段で一体化したものを挙げることができ、具体的には、もう集成体を形成する無機短繊維からなる無機繊維製フェルト(例えば、グラスウールからなるグラスフェルト(ガラス繊維フェルト)等の他、ポリエチレンテレフタレートフェルト等のポリエステル繊維フェルト、ナイロン繊維フェルト、ポリエチレン繊維フェルト、ポリプロピレン繊維フェルト、アクリル繊維フェルト、アラミド繊維フェルト、シリカーアルミナセラミックスファイバーフェルト、シリ力繊維フェルト、綿、羊毛、木毛、クズ繊維等を熱硬化性樹脂でフェルト状に加工したレジンフェルト等から選ばれる一種以上を挙げることができる。
 フェルトとしては、無機繊維製フェルトが好ましく、密度が10~50kg/mであるものが好ましく、15~50kg/mであるものより好ましく、20~35kg/mであるものがさらに好ましく、人造鉱物繊維の吹き付け物や成形物を使用することができる。
 上記樹脂発泡体としては、ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、フェノールフォーム、メラミンフォーム等の樹脂フォームから選ばれる一種以上や、二トリルブタジエンラバー、クロロプレンラバー、スチレンラバー、シリコーンゴム、ウレタンゴム、エチレン・プロピレン・ジエンゴム等を連泡状に発泡させるか、発泡後にクラッシング加工などにより連泡化した連続気泡体から選ばれる一種以上を挙げることができる。
As said fiber assembly, the assembly which consists of inorganic short fibers, such as glass wool (glass fiber), rock wool, a silica fiber, a silica alumina ceramic fiber, an alumina fiber, a mullite fiber, can be mentioned, for example.
Examples of the felt include one obtained by mixing one or more of the above-mentioned various short fibers by means such as a needle punch, and specifically, an inorganic fiber comprising inorganic short fibers that already form an assembly. Made of felt (eg glass felt made of glass wool (glass fiber felt), polyester fiber felt such as polyethylene terephthalate felt, nylon fiber felt, polyethylene fiber felt, polypropylene fiber felt, acrylic fiber felt, aramid fiber felt, silica There may be mentioned one or more selected from resin felts obtained by processing alumina ceramic fiber felt, siri-force fiber felt, cotton, wool, wood wool, scrap fibers, etc. into a felt shape with a thermosetting resin.
As the felt, an inorganic fiber felt is preferable, a density of 10 to 50 kg / m 3 is preferable, a density of 15 to 50 kg / m 3 is more preferable, and a density of 20 to 35 kg / m 3 is more preferable. Artificial mineral fiber sprays and moldings can be used.
As the resin foam, one or more selected from resin foams such as polyurethane foam, polyethylene foam, polypropylene foam, phenol foam, melamine foam, nitrile butadiene rubber, chloroprene rubber, styrene rubber, silicone rubber, urethane rubber, ethylene -One or more types selected from open-cell bodies obtained by foaming propylene / diene rubber or the like in the form of open cells, or foamed by foaming after crushing or the like can be mentioned.
 耐熱性を考慮した場合には、上記弾性多孔質体としては、ガラス繊維等の無機繊維またはアラミド繊維を構成繊維として含むものが好ましく、無機繊維を含むものがより好ましい。
 本発明に係る防音用被覆材を例えば自動車エンジン用防音カバーに使用した場合、エンジンの排気側壁面及び上面の一部(燃焼排ガスが通過するエキゾースト・マニフォールド近傍)は高温となるため、防音用被覆材表面が300℃程度の温度に達してしまい、係る温度条件下においては、上記フィルム材に溶融や著しい収縮等が生じてしまう。そこで、表面側の第一の弾性多孔質体に断熱吸音性能が著しく高い極細無機繊維を使用し、上記開孔率および開孔径を有する多孔質フィルムを中央部に配置することにより、防音性とともに所望の断熱性を発揮して多孔質フィルムを保護しつつ、所望周波数、特に周波数1600~2000Hz近傍における音圧を容易に低減することができると考えられる。
In consideration of heat resistance, the elastic porous body preferably includes inorganic fibers such as glass fibers or aramid fibers as constituent fibers, and more preferably includes inorganic fibers.
When the soundproofing covering material according to the present invention is used for a soundproofing cover for an automobile engine, for example, the exhaust side wall surface and a part of the upper surface (near the exhaust manifold through which combustion exhaust gas passes) are at a high temperature. The material surface reaches a temperature of about 300 ° C., and under such temperature conditions, the film material is melted or significantly contracted. Therefore, by using ultrafine inorganic fibers with extremely high heat insulation and sound absorption performance for the first elastic porous body on the surface side, and arranging the porous film having the above-mentioned porosity and aperture diameter in the center, it is possible to achieve sound insulation. It is considered that the sound pressure at a desired frequency, particularly in the vicinity of a frequency of 1600 to 2000 Hz, can be easily reduced while exhibiting a desired heat insulating property to protect the porous film.
 第一の弾性多孔質体または第二の弾性多孔質体としては、ガラス繊維を構成繊維として含むものが好ましく、上記ガラス繊維としては、繊維径が、0.1~4μmであるものが好ましく、1~4μmであるものがより好ましく、3~4μmであるものがさらに好ましい。
 上記繊維径を有するガラス繊維は、遠心法または火炎法で製造することができる。
The first elastic porous body or the second elastic porous body preferably includes a glass fiber as a constituent fiber, and the glass fiber preferably has a fiber diameter of 0.1 to 4 μm. More preferably, it is 1 to 4 μm, and further preferably 3 to 4 μm.
The glass fiber having the above fiber diameter can be produced by a centrifugal method or a flame method.
 なお、本出願書類において、ガラス繊維の繊維径は、マイクロスコープにより測定した20本のガラス繊維の最大径の算術平均値を意味する。 In addition, in this application document, the fiber diameter of a glass fiber means the arithmetic mean value of the maximum diameter of 20 glass fibers measured with the microscope.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体が上記繊維径を有するガラス繊維を構成繊維として含むことにより、所望の耐熱性、難燃性をより容易に発揮することができる。 In the covering material for soundproofing according to the present invention, the first elastic porous body or the second elastic porous body contains glass fibers having the above-mentioned fiber diameter as constituent fibers, so that desired heat resistance and flame retardancy can be obtained. It can be exhibited more easily.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体が、構成繊維として上記繊維径を有するガラス繊維を構成繊維として含む場合、第一の弾性多孔質体または第二の弾性多孔質体は、ガラス繊維を、例えばノボラック、レゾール、ベンジリックエーテル系等から選ばれるフェノール樹脂や、尿素変性等の変性フェノール樹脂等からなるバインダーで固定してなるものであってもよいし、または、ニードルパンチ等の処理によりガラス繊維を厚さ方向に絡めることにより製造してなるものであってもよい。 In the covering material for soundproofing according to the present invention, when the first elastic porous body or the second elastic porous body contains glass fibers having the above fiber diameter as constituent fibers, the first elastic porous body The body or the second elastic porous body is formed by fixing glass fibers with a binder made of a phenol resin selected from, for example, novolak, resol, benzylic ether, or the like, or a modified phenol resin such as urea modification. Alternatively, it may be produced by entanglement of glass fibers in the thickness direction by treatment such as needle punching.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体として、ポリエステル繊維を構成繊維として含むものである場合、当該ポリエステル繊維としては難燃性ポリエステル繊維が好ましい。 In the soundproofing covering material according to the present invention, when the first elastic porous body or the second elastic porous body includes a polyester fiber as a constituent fiber, the polyester fiber is preferably a flame-retardant polyester fiber.
 上記難燃性ポリエステル繊維としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンイソフタレート(PEI)、ポリシクロヘキシレンジメチレンテレフタレート(PCHDT)またはポリエチレンナフタレート(PEN)等を主たる繰返し単位とするポリエステルを挙げることができる。 Examples of the flame retardant polyester fiber include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene isophthalate (PEI), polycyclohexylenedimethylene terephthalate (PCHDT), polyethylene naphthalate (PEN), and the like. Can be mentioned.
 上記難燃性ポリエステル繊維としては、公知のものを挙げることもでき、例えば、特開昭51-82392号公報、特開昭55-7888号公報、特公昭55-41610号公報等に記載されたものを挙げることができる。 Examples of the flame retardant polyester fiber include known ones, such as those described in JP-A-51-82392, JP-A-55-7888, JP-B-55-41610, and the like. Things can be mentioned.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体が、ポリエステル繊維を構成繊維として含むものである場合、当該ポリエステル繊維としては難燃性ポリエステルと熱接着性ポリエステルとが複合されてなる難燃性複合繊維であってもよい。 In the soundproofing covering material according to the present invention, when the first elastic porous body or the second elastic porous body contains a polyester fiber as a constituent fiber, the polyester fiber is a flame-retardant polyester and a thermal adhesive property. It may be a flame retardant composite fiber obtained by combining polyester.
 上記難燃性ポリエステルと熱接着性ポリエステルとが複合されてなる難燃性複合繊維において、難燃性ポリエステルとしては、上述した難燃性ポリエステル繊維を構成するものと同様のものを挙げることができる。
 また、上記難燃性複合繊維において、熱接着性ポリエステルは、難燃性ポリエステルのバインダーとして機能するものであって、難燃性ポリエステルの融点よりも低い融点を有し、難燃性ポリエステルの融点よりも少なくとも20℃低い融点を有するものが好ましい。
 上記融点の差が20℃未満であると、難燃性複合繊維の作製時に高温処理が必要になるために難燃性ポリエステルの配向性が低下し易くなり、熱接着性ポリエステルによる補強効果が低減して難燃剤内添繊維の耐久性が低下し易くなるとともに、母材である難燃性ポリエステルの物性低下を生じ易くなる。
In the flame retardant composite fiber obtained by combining the flame retardant polyester and the heat-adhesive polyester, examples of the flame retardant polyester include the same ones as those constituting the flame retardant polyester fiber described above. .
Further, in the flame retardant composite fiber, the thermal adhesive polyester functions as a binder for the flame retardant polyester, has a melting point lower than the melting point of the flame retardant polyester, and the melting point of the flame retardant polyester. Those having a melting point which is at least 20 ° C. lower than that are preferred.
If the difference between the melting points is less than 20 ° C., high-temperature treatment is required during the production of the flame-retardant composite fiber, so the orientation of the flame-retardant polyester is likely to be reduced, and the reinforcing effect of the heat-adhesive polyester is reduced. As a result, the durability of the flame-retardant-added fiber is likely to be lowered, and the physical properties of the flame-retardant polyester as a base material are likely to be lowered.
 上記熱接着性ポリエステルは、融点が110℃~220℃であるものが好ましく、130℃~200℃であるものがより好ましい。熱接着性ポリエステルの融点が上記範囲内にあることによって補強効果を発揮し易くなる。 The thermal adhesive polyester preferably has a melting point of 110 ° C. to 220 ° C., more preferably 130 ° C. to 200 ° C. When the melting point of the heat-adhesive polyester is within the above range, the reinforcing effect is easily exhibited.
 なお、本出願書類において、難燃性ポリエステルの融点および熱接着性ポリエステルの融点とは、繊維化物を熱板上に十字状に配置し、室温から5℃/分で昇温したときに、配向により生じる縞模様が焼失する温度を意味するものとする。 In the present application documents, the melting point of the flame-retardant polyester and the melting point of the heat-adhesive polyester are the orientation when the fiberized product is arranged in a cross shape on the hot plate and heated from room temperature at 5 ° C./min. It means the temperature at which the striped pattern generated by
 上記熱接着性ポリエステルとしては、特に制限されないが、例えば、テレフタル酸、イソフタル酸、フタル酸、p-ヒドロキシ安息香酸、5-ナトリウムスルホイソフタル酸、ナフタレンジカルボン酸、シュウ酸、アジピン酸、セバチン酸、シクロヘキシレンジカルボン酸等から選ばれる一種以上の酸成分と、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ポリエチレングリコール等から選ばれる一種以上のグリコール成分とをエステル結合させてなるものが挙げられる。 The thermal adhesive polyester is not particularly limited. For example, terephthalic acid, isophthalic acid, phthalic acid, p-hydroxybenzoic acid, 5-sodium sulfoisophthalic acid, naphthalenedicarboxylic acid, oxalic acid, adipic acid, sebacic acid, One or more acid components selected from cyclohexylene dicarboxylic acid and the like, and one or more glycols selected from ethylene glycol, diethylene glycol, triethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol, polyethylene glycol, and the like The thing formed by ester-bonding a component is mentioned.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体が、上記難燃性ポリエステルおよび熱接着性ポリエステルが複合されてなる難燃性複合繊維を構成繊維として有するものである場合、難燃性ポリエステルと熱接着性ポリエステルの複合割合は特に制限されないが、難燃性ポリステルの含有割合が20~80質量%であるものが好ましく、30~70質量%であるものがより好ましく、40~60質量%であるものがさらに好ましい。
 難燃性複合繊維を構成する難燃性ポリエステルの含有割合が上記範囲内にあることにより、難燃性複合繊維に対して所望の難燃性を容易に付与することができる。
In the covering material for soundproofing according to the present invention, the first elastic porous body or the second elastic porous body constitutes a flame-retardant composite fiber in which the flame-retardant polyester and the heat-adhesive polyester are combined. In this case, the composite ratio of the flame-retardant polyester and the heat-adhesive polyester is not particularly limited, but the flame-retardant polyester content is preferably 20 to 80% by mass, preferably 30 to 70% by mass. Some are more preferable, and 40 to 60% by mass is even more preferable.
When the content ratio of the flame-retardant polyester constituting the flame-retardant composite fiber is within the above range, desired flame retardancy can be easily imparted to the flame-retardant composite fiber.
 上記難燃性ポリエステルおよび熱接着性ポリエステルの複合形態としては、難燃性ポリエステルをコア成分とし熱接着性ポリエステルをシース成分とするシースコア型、難燃性ポリエステルおよび熱接着性ポリエステルが隣接配置された層状多層構造型やサイドバイサイド型等を挙げることができる。 As a composite form of the flame retardant polyester and the heat-adhesive polyester, a seascore type in which the flame-retardant polyester is a core component and the heat-adhesive polyester is a sheath component, the flame-retardant polyester and the heat-adhesive polyester are arranged adjacent to each other. A layered multilayer structure type or a side-by-side type can be used.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体の厚みは同一であってもよいし異なっていてもよい。
 第一の弾性多孔質体または第二の弾性多孔質体の厚みは、0.5~20mmであることが好ましく、1.5~15mmであることがより好ましく、3~10mmであることがさらに好ましい。
In the soundproofing covering material according to the present invention, the thickness of the first elastic porous body or the second elastic porous body may be the same or different.
The thickness of the first elastic porous body or the second elastic porous body is preferably 0.5 to 20 mm, more preferably 1.5 to 15 mm, and further preferably 3 to 10 mm. preferable.
 第一の弾性多孔質体または第二の弾性多孔質体の厚みが上記範囲内にあることにより、柔軟性に優れるとともに防音用被覆材の薄型化(コンパクト化)を図りつつ十分な吸音性を容易に発揮することができる。 When the thickness of the first elastic porous body or the second elastic porous body is within the above range, the sound resistance is excellent and the sound absorbing coating material is thinned (compact) and has sufficient sound absorption. It can be easily demonstrated.
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体の密度は同一であってもよいし異なっていてもよい。
 本発明に係る防音用被覆材において、第一の弾性多孔質体または第二の弾性多孔質体の密度は、0.001~1.2g/cmであることが好ましく、0.003~0.5g/cmであることがより好ましく、0.006~0.1g/cmであることがさらに好ましい。
 上記密度は、弾性多孔質体の構造および厚み等に応じて、所望の吸音性を有するものから適宜選択される。
In the soundproofing covering material according to the present invention, the density of the first elastic porous body or the second elastic porous body may be the same or different.
In the soundproofing covering material according to the present invention, the density of the first elastic porous body or the second elastic porous body is preferably 0.001 to 1.2 g / cm 3 , and is preferably 0.003 to 0. more preferably .5g / cm 3, more preferably from 0.006 ~ 0.1g / cm 3.
The density is appropriately selected from those having desired sound absorption properties according to the structure and thickness of the elastic porous body.
 上記密度を達成する上で、第一の弾性多孔質体または第二の弾性多孔質体の目付は、10~1000g/mであることが好ましく、15~500g/mであることがより好ましく、25~250g/mであることがさらに好ましい。
 第一の弾性多孔質体または第二の弾性多孔質体の目付が上記範囲内にあることにより、軽量で所望形状を有する防音用被覆材を容易に提供することができる。
In achieving the above density, the basis weight of the first elastic porous body or the second elastic porous body is preferably 10 to 1000 g / m 2 , and more preferably 15 to 500 g / m 2. A range of 25 to 250 g / m 2 is more preferable.
When the basis weight of the first elastic porous body or the second elastic porous body is within the above range, it is possible to easily provide a soundproofing covering material that is lightweight and has a desired shape.
 本発明に係る防音用被覆材は、上記多孔質フィルムの上面側および下面側に各々第一の弾性多孔質体または第二の弾性多孔質体を有するものであることから、防音用被覆材の下面側から上面側に通過する音のみならず上面側から下面側に通過する音に対しても吸音特性を発揮することができる。
 このため、例えば本発明に係る防音用被覆材を自動車エンジン用防音カバーとして使用した場合、自動車エンジンから発せられた音が防音用被覆材の下面側から上面側に通過する際に、自動車エンジンから発せられる騒音エネルギーを弾性多孔質体の振動エネルギーに変換して所望の吸音性能を発揮することができ、上記防音用被覆材を通過して自動車用エンジンと防音用被覆材とを収容するエンジンルームの壁面で反射した音が防音用被覆材の上面側から下面側に通過する際にも、同様に上記反射された騒音のエネルギーを弾性多孔質体の振動エネルギーに変換してさらに吸音性能を発揮することができる。
 また、この際、第一の弾性多孔質体および第二の弾性多孔質体間に所定の開孔率および開孔径を有する多孔質フィルムが存在することにより、防音用被覆材を通過する際に所定の流れ抵抗が生じる結果、自動車エンジンから発生して多孔質フィルムを通過した音とエンジンルームの壁面で反射した音とが共鳴してエネルギーが減衰し、特に特に1600Hz~2000Hzの周波数帯の音圧を低減させることができると考えられる。
The soundproofing covering material according to the present invention has the first elastic porous body or the second elastic porous body on the upper surface side and the lower surface side of the porous film, respectively. Sound absorption characteristics can be exhibited not only for sound passing from the lower surface side to the upper surface side but also for sound passing from the upper surface side to the lower surface side.
For this reason, for example, when the soundproofing covering material according to the present invention is used as a soundproofing cover for an automobile engine, when the sound emitted from the automobile engine passes from the lower surface side to the upper surface side of the soundproofing covering material, An engine room that can convert the noise energy generated into vibration energy of the elastic porous body to exhibit a desired sound absorbing performance and accommodates the automobile engine and the soundproof covering material through the soundproof covering material. Similarly, when the sound reflected by the wall surface passes from the upper surface side to the lower surface side of the soundproofing coating material, the energy of the reflected noise is also converted into the vibration energy of the elastic porous material to further exhibit sound absorbing performance. can do.
Further, at this time, when a porous film having a predetermined aperture ratio and an aperture diameter exists between the first elastic porous body and the second elastic porous body, when passing through the soundproof coating material, As a result of the predetermined flow resistance, the sound generated from the automobile engine and passing through the porous film resonates with the sound reflected from the wall of the engine room to attenuate the energy, especially in the frequency band of 1600 Hz to 2000 Hz. It is considered that the pressure can be reduced.
 本発明に係る防音用被覆材は、第一の弾性多孔体の外表面側および第二の弾性多孔質体の外表面側の少なくとも一方にさらに表皮材を有するものであってもよい。
 本発明に係る防音用被覆材において、表皮材は、第一の弾性多孔体の外表面側および第二の弾性多孔質体の外表面側の少なくとも一方に設けられていることが好ましく、両者に設けられていることがより好ましい。
The soundproofing covering material according to the present invention may further include a skin material on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body.
In the soundproofing covering material according to the present invention, the skin material is preferably provided on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body. More preferably, it is provided.
 本発明に係る防音用被覆材において、第一の弾性多孔体の外表面側および第二の弾性多孔質体の外表面側の両者に表皮材が設けられる場合、両表皮材は同一であってもよいし異なっていてもよい。 In the covering material for soundproofing according to the present invention, when the skin material is provided on both the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body, both skin materials are the same. May be different.
 表皮材としては、温度300℃で溶融や著しい収縮等の不具合が生じないのであれば、無機長繊維クロス、無機繊維製シートや開孔処理を施した金属箔樹脂シート等から選ばれる一種以上を配置することができる。 As the skin material, at least one kind selected from inorganic long fiber cloth, inorganic fiber sheet, metal foil resin sheet subjected to opening treatment, etc., as long as no trouble such as melting or significant shrinkage occurs at a temperature of 300 ° C. Can be arranged.
 具体的には、ガラス繊維、シリカ繊維、バサルト繊維、シリカアルミナセラミックファイバー、アルミナ繊維、ムライト繊維等の無機繊維から選ばれる一種以上の混合物をクロス状に編み込んだりニードルパンチ等の手段で一体化したシートや、表面に微細な開孔を施して音の反射を抑制したアルミニウム箔等の金属箔等が、意匠性や振動による繊維の飛散防止等の観点から好ましく使用することができる。
 表皮材の通気抵抗は、入射音波の表面側の反射を抑制するために、繊維飛散防止等の効果を妨げない範囲内のものであればよく、1.0kPa・s/m以下であるものが好ましく、0.5kPa・s/m以下であるものがより好ましく、0.3kPa・s/m以下であるものがさらに好ましい。
 上記通気抵抗は、繊維も編み方や金属箔の開孔の程度等により適宜調整することができる。
Specifically, one or more mixtures selected from inorganic fibers such as glass fiber, silica fiber, basalt fiber, silica alumina ceramic fiber, alumina fiber, and mullite fiber are knitted into a cross shape or integrated by means such as needle punching. A sheet or a metal foil such as an aluminum foil in which fine apertures are provided on the surface to suppress reflection of sound can be preferably used from the viewpoints of design properties and prevention of fiber scattering due to vibration.
The airflow resistance of the skin material may be within a range that does not interfere with the effects of preventing fiber scattering, etc. in order to suppress the reflection of incident sound waves on the surface side, and is 1.0 kPa · s / m or less. Preferably, it is 0.5 kPa · s / m or less, more preferably 0.3 kPa · s / m or less.
The ventilation resistance can be appropriately adjusted depending on how the fibers are knitted and the degree of opening of the metal foil.
 本出願書類において、表皮材の通気抵抗は、表皮材の主表面に対して垂直方向に0.5mm/sで空気を通過させたときにおける入口側および出口側における気圧を各々流れ抵抗測定器(日本音響(株)製)で測定したときにおける両者の差(差圧)を意味する。 In the present application document, the airflow resistance of the skin material is determined by measuring the pressure at the inlet side and the outlet side when air is passed at a rate of 0.5 mm / s in the direction perpendicular to the main surface of the skin material. It means the difference (differential pressure) between the two when measured by Nippon Acoustic Co., Ltd.
 無機繊維製シートとしては、例えば、ガラス繊維および樹脂バインダーを含むガラス繊維フェルトを挙げることができ、係るガラス繊維フェルトを構成する樹脂バインダーとしては、含有量が5質量%未満であるノボラック、レゾール、ベンジリックエーテル系等のフェノール樹脂や、含有量が10~20質量%である尿素変性等の変性フェノール樹脂を挙げることができる。 Examples of the inorganic fiber sheet include glass fiber felts containing glass fibers and resin binders, and the resin binders constituting the glass fiber felts include novolaks, resols, and the like, whose content is less than 5% by mass. Examples thereof include phenolic resins such as benzylic ethers, and modified phenolic resins such as urea modified with a content of 10 to 20% by mass.
 表皮材として無機繊維製シートを用いた場合、所望の吸音性を発揮しつつ、優れた耐熱性および断熱性を容易に発揮することができる。 When an inorganic fiber sheet is used as the skin material, excellent heat resistance and heat insulation can be easily exhibited while exhibiting desired sound absorption.
 また、表皮材として金属箔を用いた場合、所望の吸音性を発揮するために、開孔率が、3%~7%であるものが好ましく、4%~7%であるものがより好ましく、5%~7%であるものがより好ましい。
 また、本発明に係る防音用被覆材において、金属箔には止液性が確保できる範囲で、開孔径が1μm以上であるものであり、5μm以上であるものが好ましく、10μm以上であるものがより好ましい。
 表皮材の開孔率や開孔径は、上述した多孔質フィルムの開孔率や開孔径の測定方法と同様の測定方法で測定することができる。
Further, when a metal foil is used as the skin material, in order to exhibit a desired sound absorbing property, the porosity is preferably 3% to 7%, more preferably 4% to 7%, More preferably, it is 5% to 7%.
Further, in the soundproofing covering material according to the present invention, the metal foil has a hole diameter of 1 μm or more, preferably 5 μm or more, and preferably 10 μm or more, within a range in which a liquid-stopping property can be secured. More preferred.
The hole area ratio and the hole diameter of the skin material can be measured by the same measurement method as the method for measuring the hole area ratio and the hole diameter of the porous film described above.
 本発明に係る防音用被覆材において、表皮材の厚みは、9~1000μmであることが好ましく、9~500μmであることがより好ましく、10~300μmであることがさらに好ましい。
 表皮の厚みが上記範囲内にあることにより、柔軟性に優れるとともに防音用被覆材の薄型化(コンパクト化)を図りつつ十分な吸音性を容易に発揮することができる。
In the soundproofing covering material according to the present invention, the thickness of the skin material is preferably 9 to 1000 μm, more preferably 9 to 500 μm, and further preferably 10 to 300 μm.
When the thickness of the skin is within the above range, it is possible to easily exhibit sufficient sound absorption properties while being excellent in flexibility and thinning (compacting) the soundproofing covering material.
 本発明に係る防音用被覆材が、表皮材を有するものである場合、形状安定性や意匠性を確保し易くなるとともに、使用時において被覆材を構成する繊維等の飛散を抑制し得るとともに、容易に撥水性を発揮することができる。 When the covering material for soundproofing according to the present invention has a skin material, it becomes easy to ensure shape stability and design properties, and it is possible to suppress scattering of fibers constituting the covering material at the time of use, It can easily exhibit water repellency.
 本発明に係る防音用被覆材は、通気抵抗が、1.0~4.0kPa・s/mのものが好ましく、1.0~3.0kPa・s/m以下であるものがより好ましく、1.0~2.0kPa・s/m以下であるものがさらに好ましい。 The soundproofing covering material according to the present invention preferably has a ventilation resistance of 1.0 to 4.0 kPa · s / m, more preferably 1.0 to 3.0 kPa · s / m or less. More preferably, the viscosity is 0.0 to 2.0 kPa · s / m or less.
 本出願書類において、通気抵抗は、防音用被覆材の主表面に対して垂直方向に0.5mm/sで空気を通過させたときにおける入口側および出口側における気圧を各々流れ抵抗測定器(日本音響(株)製)で測定したときにおける両者の差(差圧)を意味する。 In the present application documents, the airflow resistance is measured by measuring the air pressure at the inlet side and the outlet side when air is passed at a rate of 0.5 mm / s in the direction perpendicular to the main surface of the soundproof coating material, respectively. It means the difference (difference pressure) between the two when measured by (Sound Co., Ltd.).
 本発明に係る防音用被覆材は、厚さが、5~20mmであるものが適当であり、10~20mmであるものがより適当であり、15~20mmであるものがさらに適当である。
 本発明に係る防音用被覆材は、厚さが薄くても十分な防音性能を発揮することができる。
The soundproofing covering material according to the present invention is suitably 5 to 20 mm in thickness, more suitably 10 to 20 mm, and even more suitably 15 to 20 mm.
The soundproofing covering material according to the present invention can exhibit sufficient soundproofing performance even when the thickness is thin.
 本発明に係る防音用被覆材が、上記通気抵抗を有するものであることにより、流れ抵抗を容易に制御して所望周波数、特に周波数1600~2000Hz近傍における音圧を容易に低減することができる。 Since the soundproofing covering material according to the present invention has the above airflow resistance, it is possible to easily control the flow resistance and easily reduce the sound pressure at a desired frequency, particularly in the vicinity of the frequency of 1600 to 2000 Hz.
 本発明に係る防音用被覆材は、例えば、得ようとする防音用被覆材の構成部材に対応する形成材の全部を順次積層した状態で所定形状に熱圧成形することにより作製することができる。
 また、本発明に係る防音用被覆材は、例えば、得ようとする防音用被覆材の構成部材に対応する全形成材のうち一部のみを順次積層した状態で所定形状に熱圧成形したものと、得ようとする防音用被覆材の構成部材に対応する他の形成材を順次積層した状態で所定形状に熱圧成形したものを、適宜接着剤等で固定することにより作製することができる。
The soundproofing covering material according to the present invention can be produced, for example, by hot pressing into a predetermined shape in a state where all of the forming materials corresponding to the constituent members of the soundproofing covering material to be obtained are sequentially laminated. .
In addition, the soundproofing covering material according to the present invention is, for example, one formed by hot pressing into a predetermined shape in a state where only a part of all the forming materials corresponding to the constituent members of the soundproofing covering material to be obtained is sequentially laminated. Then, other forming materials corresponding to the constituent members of the covering material for soundproofing to be obtained can be prepared by fixing them by hot pressing to a predetermined shape in a state of being sequentially laminated with an adhesive or the like as appropriate. .
 具体的には、本発明に係る防音用被覆材として、例えば、(1)第一の弾性多孔質体、(2)多孔質フィルム、(3)第二の弾性多孔質体がこの順番で順次積層されてなる防音用被覆材を形成する場合、これ等を各々形成する形成材をこの順番で順次積層した状態で所定形状に熱圧成形することにより作製することができる。
 また、(1)第一の表皮材、(2)第一の弾性多孔質体、(3)多孔質フィルム、(4)第二の弾性多孔質体がこの順番で順次積層されてなる防音用被覆材を形成する場合、例えば、これ等を各々形成する形成材をこの順番で順次積層した状態で所定形状に熱圧成形することにより作製することができる。
 さらに、(1)第一の表皮材、(2)第一の弾性多孔質体、(3)多孔質フィルム、(4)第二の弾性多孔質体、(5)第二の表皮材がこの順番で順次積層されてなる防音用被覆材を形成する場合、例えば、これ等を各々形成する形成材をこの順番で順次積層した状態で所定形状に熱圧成形することにより作製することができる。
Specifically, as the soundproofing covering material according to the present invention, for example, (1) a first elastic porous body, (2) a porous film, and (3) a second elastic porous body are sequentially arranged in this order. In the case of forming a laminated soundproofing covering material, it can be produced by hot-pressure forming into a predetermined shape in a state in which the forming materials for forming these are sequentially laminated in this order.
Further, (1) a first skin material, (2) a first elastic porous body, (3) a porous film, and (4) a second elastic porous body are sequentially laminated in this order. In the case of forming the covering material, for example, the covering material can be manufactured by hot pressing into a predetermined shape in a state where the forming materials for forming the covering materials are sequentially laminated in this order.
Furthermore, (1) the first skin material, (2) the first elastic porous body, (3) the porous film, (4) the second elastic porous body, and (5) the second skin material are In the case of forming a soundproof covering material that is sequentially laminated in order, it can be produced, for example, by hot-pressing a forming material for forming each of them into a predetermined shape in a state of being sequentially laminated in this order.
 本発明に係る防音用被覆材は、例えば、自動車エンジン用防音カバーとして好適に使用することができる。
 本発明に係る防音用被覆材を自動車エンジン用防音カバーとして使用する場合、例えば、エンジンの排気側壁面および上面の少なくとも一部に配置することにより、好適な吸音特性を容易に発揮することができる。
The soundproof covering material according to the present invention can be suitably used, for example, as a soundproof cover for an automobile engine.
When the soundproofing covering material according to the present invention is used as a soundproofing cover for an automobile engine, for example, by arranging it on at least a part of the exhaust side wall surface and the upper surface of the engine, suitable sound absorption characteristics can be easily exhibited. .
 本発明によれば、耐熱性を有し、厚さが薄くても十分な防音性能を有する新規な防音用被覆材を提供することができる。 According to the present invention, it is possible to provide a novel soundproofing covering material having heat resistance and sufficient soundproofing performance even when the thickness is thin.
 次に、本発明に係るエンジンユニットについて説明する。
 本発明に係るエンジンユニットは、自動車用エンジンと当該自動車用エンジンの少なくとも一部を覆う本発明に係る防音用被覆材と、上記自動車用エンジンと防音用被覆材とを収容するエンジンルームとを有するエンジンユニットであって、上記自動車用エンジンと上記防音用被覆材との間または前記防音用被覆材とエンジンルームとの間に0.1~30mmの距離の空隙を有することを特徴とするものである。
Next, the engine unit according to the present invention will be described.
An engine unit according to the present invention includes an automobile engine, a soundproof coating material according to the present invention that covers at least a part of the vehicle engine, and an engine room that houses the automobile engine and the soundproof coating material. An engine unit, characterized in that it has a gap of 0.1 to 30 mm between the automobile engine and the soundproof covering material or between the soundproof covering material and the engine room. is there.
 本発明に係るエンジンユニットにおいて、本発明に係る防音用被覆材の詳細は上述したとおりである。
 また、本発明に係るエンジンユニットにおいて、自動車用エンジンやエンジンルームは、公知のものを適宜採用することができる。
In the engine unit according to the present invention, the details of the soundproofing covering material according to the present invention are as described above.
Moreover, in the engine unit according to the present invention, a well-known one can be appropriately employed as the automobile engine and the engine room.
 本発明に係るエンジンユニットにおいて、防音用被覆材とエンジンルーム間の距離(防音用被覆材およびエンジンルーム壁面に形成される隙間の幅)は、0.1~30mmであり、省スペースの観点からも、5~20mmが好ましく、5~15mmがさらに好ましい。 In the engine unit according to the present invention, the distance between the soundproofing covering material and the engine room (the width of the gap formed between the soundproofing covering material and the engine room wall surface) is 0.1 to 30 mm, from the viewpoint of space saving. Is preferably 5 to 20 mm, and more preferably 5 to 15 mm.
 本発明に係るエンジンユニットにおいて、防音用被覆材を構成する第一の弾性多孔質体および第二の弾性多孔質体間に所定の開孔率および開孔径を有する多孔質フィルムが存在して防音用被覆材を通過する音に所定の流れ抵抗が生じる結果、防音用被覆材とエンジンルーム間の距離が上記範囲内にあることにより、自動車エンジンから発生して多孔質フィルムを通過した音とエンジンルームの壁面で反射した音とが共鳴してエネルギーが減衰し易くなり、特に1600Hz~2000Hzの周波数帯の音を好適に低減することができると考えられる。 In the engine unit according to the present invention, the first elastic porous body and the second elastic porous body constituting the soundproofing covering material are provided with a porous film having a predetermined aperture ratio and an aperture diameter. As a result of the occurrence of a predetermined flow resistance in the sound passing through the coating material for the sound, the distance between the soundproofing coating material and the engine room is within the above range, so that the sound generated from the automobile engine and passed through the porous film and the engine It is considered that the energy reflected by the sound reflected by the wall surface of the room is easily attenuated, and particularly the sound in the frequency band of 1600 Hz to 2000 Hz can be suitably reduced.
 本発明によれば、耐熱性を有し、厚さが薄くても十分な防音性能を有する防音用被覆材を有する新規なエンジンユニットを提供することができる。 According to the present invention, it is possible to provide a novel engine unit having a soundproof covering material having heat resistance and sufficient soundproofing performance even when the thickness is thin.
 次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
(実施例1)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ30MY(ガラス繊維の繊維径3.5μm、密度30kg/m、目付量300g/m、厚さ10mm))を配置した上で、その上に、(2)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(3)第二の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ30MY(ガラス繊維の繊維径3.5μm、密度30kg/m、目付量300g/m、厚さ10mm))をこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が2.3kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体を熱源側となるように配置して、300℃に加熱したホットプレート上に設置して第二の弾性多孔質体側を雰囲気温度24℃に放置し、多孔質フィルムの温度をCA熱電対で測定し定常となるまで測定することにより、耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は128℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価> 以下の方法で得られた防音カバーの防音性を評価した。
 上記防音カバーの平坦部を打ち抜き、インピーダンスチューブ(ブリュエル・ケアー・ジャパン社製type4206_細管)に背後空気層が10mmとなるようにセットし、ホワイトノイズ(白色雑音)を入力して、1/3オクターブバンド周波数で500Hz~6.3kHzの垂直入射吸音率を測定した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
Example 1
In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) as a first elastic porous body forming material, glass fiber felt (manufactured by Nippon Inorganic Co., Ltd. Filatomica 30MY (glass fiber Of fiber diameter 3.5 μm, density 30 kg / m 3 , weight per unit area 300 g / m 2 , thickness 10 mm)), and (2) 6-nylon as a porous film forming material By passing the film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) through a hot sword mountain roll, the opening part (opening ratio 2.5%, A film having an opening diameter of 200 μm and a ventilation resistance of 0.11 kPa · s / m; and (3) glass fiber felt (Filatomector 30 manufactured by Nippon Inorganic Co., Ltd.) as the second elastic porous body forming material. Y (fiber diameter 3.5μm glass fiber, density 30kg / m 3, a basis weight 300 g / m 2, thickness 10 mm) are sequentially arranged) in this order under 5MPa of pressure, 30 seconds heat at 185 ° C. pressure By molding, a first elastic porous body having a maximum thickness of 5 mm, a porous film having a maximum thickness of 0.07 mm having an aperture ratio of 2.5% and an aperture diameter of 200 μm, and a maximum thickness of 5 mm. A soundproof cover for an automobile engine having a maximum thickness of 10 mm having a ventilation resistance of 2.3 kPa · s / m, in which the four sides of the end portion made of the laminate of the two elastic porous bodies are compressed and welded and sealed.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body is arranged to be on the heat source side, and is placed on a hot plate heated to 300 ° C. so that the second elastic porous body side is Heat resistance was evaluated by allowing the porous film to stand at an ambient temperature of 24 ° C. and measuring the temperature of the porous film with a CA thermocouple until the temperature became steady.
As a result, the temperature of the porous film disposed in the center portion remains at 128 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the film substrate, of 140 ° C. or less. So it was not damaged.
<Soundproof evaluation> The soundproofness of the soundproof cover obtained by the following method was evaluated.
The flat part of the soundproof cover is punched out, set in an impedance tube (type 4206_ capillary tube manufactured by Brüel & Kjær Japan) so that the back air layer is 10 mm, white noise (white noise) is input, and 1/3 A normal incidence sound absorption coefficient of 500 Hz to 6.3 kHz was measured at an octave band frequency.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
(実施例2)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ30MY(ガラス繊維の繊維径3.5μm、密度30kg/m、目付量300g/m、厚さ10mm))を配置した上で、その上に、(2)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(3)第二の弾性多孔質体の形成材として、ポリエステル繊維フェルト(高安(株)製S250-HSGYN、ポリエステル繊維の平均繊維径10μm、密度25kg/m、目付量250g/m、厚さ10mm))をこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が1.9kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体が熱源側となるように配置して、実施例1と同様にして耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は128℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価>
 得られた防音カバーの防音性を実施例1と同様の方法で評価した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
(Example 2)
In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) as a first elastic porous body forming material, glass fiber felt (manufactured by Nippon Inorganic Co., Ltd. Filatomica 30MY (glass fiber Of fiber diameter 3.5 μm, density 30 kg / m 3 , weight per unit area 300 g / m 2 , thickness 10 mm)), and (2) 6-nylon as a porous film forming material By passing the film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) through a hot sword mountain roll, the opening part (opening ratio 2.5%, (3) Polyester fiber felt (S250-HSGY manufactured by Takayasu Co., Ltd.) as a forming material for the second elastic porous body, and a film having a ventilation resistance of 0.11 kPa · s / m provided with an opening diameter of 200 μm) N, polyester fiber average fiber diameter 10 μm, density 25 kg / m 3 , weight per unit area 250 g / m 2 , thickness 10 mm) are sequentially arranged in this order, and hot press molding at 185 ° C. for 30 seconds under a pressure of 5 MPa. A first elastic porous body having a maximum thickness of 5 mm, a porous film having a maximum thickness of 0.07 mm having an aperture ratio of 2.5% and an aperture diameter of 200 μm, and a second film having a maximum thickness of 5 mm. A soundproof cover for an automobile engine with a maximum thickness of 10 mm having a ventilation resistance of 1.9 kPa · s / m, in which the four sides of the elastic porous body were compressed and welded and sealed.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
As a result, the temperature of the porous film disposed in the center portion remains at 128 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the film substrate, of 140 ° C. or less. So it was not damaged.
<Soundproof evaluation>
The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
(実施例3)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタFM-24(ガラス繊維の繊維径3.5μm、密度24kg/m、目付量120g/m、厚さ5mm))を配置した上で、その上に、(2)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、日本無機(株)製フィラトミクタFM-24(ガラス繊維の繊維径3.5μm、密度24kg/m、目付量120g/m、厚さ5mm))をこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が2.0kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体が熱源側となるように配置して、実施例1と同様にして耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は131℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価>
 得られた防音カバーの防音性を実施例1と同様の方法で評価した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
(Example 3)
In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) glass fiber felt (Firatomica FM-24 manufactured by Nippon Inorganic Co., Ltd.) as a first elastic porous body forming material Glass fiber diameter 3.5 μm, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm)), and (2) 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) is passed through a thermal sword mountain roll to open a hole (opening ratio 2.5). %, a film airflow resistance having a pore size 200 [mu] m) is 0.11 kPa · s / m, Nippon Muki Co. Firatomikuta FM-24 (glass fiber fiber diameter 3.5 [mu] m, density 24 kg / m 3, Eye The amount 120 g / m 2, sequentially arranged thickness 5 mm)) in this order under 5MPa in pressure by 30 seconds heat pressure molding at 185 ° C., the maximum thickness of the first elastic porous body 5 mm, 4 sides of the end portion consisting of a laminate of a porous film having a maximum thickness of 0.07 mm and an aperture diameter of 2.5% and an aperture diameter of 200 μm and a second elastic porous body having a maximum thickness of 5 mm are compressed, A soundproof cover for an automobile engine having a maximum thickness of 10 mm having a ventilation resistance of 2.0 kPa · s / m, which was welded and sealed, was obtained.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
As a result, the temperature of the porous film disposed in the center portion remains at 131 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the base material of the film, of 140 ° C. or less. So it was not damaged.
<Soundproof evaluation>
The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
(実施例4)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタFM-24(ガラス繊維の繊維径3.5μm、密度24kg/m、目付量120g/m、厚さ5mm))を配置した上で、その上に、(2)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(3)第二の弾性多孔質体の形成材として、ポリエステル繊維フェルト(高安(株)製S250-HSGYN、ポリエステル繊維の平均繊維径10μm、密度25kg/m、目付量250g/m、厚さ10mm))をこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が1.6kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体が熱源側となるように配置して、実施例1と同様にして耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は131℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価>
 得られた防音カバーの防音性を実施例1と同様の方法で評価した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
Example 4
In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) glass fiber felt (Firatomica FM-24 manufactured by Nippon Inorganic Co., Ltd.) as a first elastic porous body forming material Glass fiber diameter 3.5 μm, density 24 kg / m 3 , basis weight 120 g / m 2 , thickness 5 mm)), and (2) 6- A nylon film (Supele 35N-LL, manufactured by Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) is passed through a thermal sword mountain roll to open a hole (opening ratio 2.5). %, An aperture resistance of 200 μm) and a ventilation resistance of 0.11 kPa · s / m, and (3) a polyester fiber felt (S250- manufactured by Takayasu Co., Ltd.) as the second elastic porous body forming material. HSGY N, polyester fiber average fiber diameter 10 μm, density 25 kg / m 3 , weight per unit area 250 g / m 2 , thickness 10 mm) are sequentially arranged in this order, and hot press molding at 185 ° C. for 30 seconds under a pressure of 5 MPa. A first elastic porous body having a maximum thickness of 5 mm, a porous film having a maximum thickness of 0.07 mm having an aperture ratio of 2.5% and an aperture diameter of 200 μm, and a second film having a maximum thickness of 5 mm. A soundproof cover for an automobile engine having a maximum thickness of 10 mm having a ventilation resistance of 1.6 kPa · s / m, in which the four sides of the end portion made of the laminated body of the elastic porous body are compressed and welded and sealed.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
As a result, the temperature of the porous film disposed in the center portion remains at 131 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is the temperature of the softening point temperature of 6-nylon, which is the base material of the film, of 140 ° C. or less. So it was not damaged.
<Soundproof evaluation>
The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
(実施例5)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の表皮材として、シリカクロス(ニチアス(株)製シルテックスクロス700、繊維径7μm、密度1053kg/m、目付量569g/m、厚さ0.54mm)、(2)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ600-1-KS(ガラス繊維の繊維径1.0μm、密度19kg/m、目付量95g/m、厚さ5mm))を配置した上で、その上に、(3)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率 10 kPa)を熱剣山ロールを通過させることによって開孔部(開孔率 2.5%、開孔径 200 μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(4)第二の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ600-1-KS(ガラス繊維の繊維径1.0μm、密度19kg/m、目付量95g/m、厚さ5mm))と、(5)第二の表皮材として、シリカクロス(ニチアス(株)製シルテックスクロス700、繊維径7μm、密度1053kg/m、目付量569g/m、厚さ0.54mm)とをこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ0.5mmの第一の表皮材、最大厚さ4.5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ4.5mmの第二の弾性多孔質体および最大厚さ0.5μmの第一の表皮材の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が3.8kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体が熱源側となるように配置して、実施例1と同様にして耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は126℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価> 得られた防音カバーの防音性を実施例1と同様の方法で評価した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
(Example 5)
In a mold provided with a molding surface corresponding to the target shape to be obtained, (1) Silica cloth (silicas cloth 700 manufactured by Nichias Co., Ltd., fiber diameter 7 μm, density 1053 kg / m 3 , basis weight 569 g / m 2 , thickness 0.54 mm), (2) glass fiber felt (Firatomica 600-1-KS (glass) manufactured by Nippon Mining Co., Ltd.) as the first elastic porous body forming material Fiber diameter 1.0 μm, density 19 kg / m 3 , weight per unit area 95 g / m 2 , thickness 5 mm)), and (3) 6-nylon as a porous film forming material A hole-opening part (opening ratio of 2.5) is passed through a thermal sword mountain roll through a film-made film (Supele 35N-LL, Ube Film Co., Ltd., density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) %, A film having an air opening resistance of 0.11 kPa · s / m provided with an aperture diameter of 200 μm), and (4) glass fiber felt (Filatomector 600 manufactured by Nippon Inorganic Co., Ltd.) as the second elastic porous body forming material. -1-KS (glass fiber diameter 1.0 μm, density 19 kg / m 3 , basis weight 95 g / m 2 , thickness 5 mm)) and (5) silica cloth (Nichias Co., Ltd.) as the second skin material ) Siltex cloth 700, fiber diameter 7 μm, density 1053 kg / m 3 , basis weight 569 g / m 2 , thickness 0.54 mm) are sequentially arranged in this order, and at a pressure of 5 MPa for 30 seconds at 185 ° C. By hot pressing, a first skin material having a maximum thickness of 0.5 mm, a first elastic porous body having a maximum thickness of 4.5 mm, a porosity of 2.5%, and a pore diameter of 200 μm Porous with a maximum thickness of 0.07mm 4 sides of the laminate consisting of a laminate of a film, a second elastic porous body having a maximum thickness of 4.5 mm, and a first skin material having a maximum thickness of 0.5 μm are compressed and welded to provide a sealed air resistance. A soundproof cover for an automobile engine having a maximum thickness of 10 mm, which is 3.8 kPa · s / m, was obtained.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
As a result, the temperature of the porous film disposed in the center portion remains at 126 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is a softening point temperature of 140 ° C. or lower of 6-nylon, which is the film substrate. So it was not damaged.
<Soundproof evaluation> The soundproofness of the obtained soundproof cover was evaluated in the same manner as in Example 1.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
(実施例6)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の表皮材として、シリカクロス(ニチアス(株)製シルテックスクロス700、繊維径7μm、密度1053kg/m、目付量569g/m、厚さ0.54mm)、(2)第一の弾性多孔質体の形成材として、ガラス繊維フェルト(日本無機(株)製フィラトミクタ600-1-KS(ガラス繊維の繊維径1.0μm、密度19kg/m、目付量95g/m、厚さ5mm))を配置した上で、その上に、(3)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(4)第二の弾性多孔質体の形成材として、ポリエステル繊維フェルト(高安(株)製S250-HSGYN、ポリエステル繊維の平均繊維径10μm、密度25kg/m、目付量250g/m、厚さ10mm))とをこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形することにより、最大厚さ0.5mmの第一の表皮材、最大厚さ4.5mmの第一の弾性多孔質体、開孔率が2.5%で開孔径が200μmである最大厚さ0.07mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が3.5kPa・s/mである最大厚さ10mmの自動車エンジン用防音カバーを得た。
<耐熱性評価>
 得られた自動車エンジン用防音カバーを用い、上記第一の弾性多孔質体が熱源側となるように配置して、実施例1と同様にして耐熱性を評価した。
 その結果、熱源側面暴露温度(300℃)に対し、中央部に配置した多孔質フィルムの温度は126℃に留まり、フィルムの基材である6-ナイロンの軟化点温度140℃以下の温度であるため、損傷を受けなかった。
<防音性評価>
 得られた防音カバーの防音性を実施例1と同様の方法で評価した。
 表1および図1に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側においても良好な吸音性を示した。
(Example 6)
In a mold provided with a molding surface corresponding to the target shape to be obtained, (1) Silica cloth (silicas cloth 700 manufactured by Nichias Co., Ltd., fiber diameter 7 μm, density 1053 kg / m 3 , basis weight 569 g / m 2 , thickness 0.54 mm), (2) glass fiber felt (Firatomica 600-1-KS (glass) manufactured by Nippon Mining Co., Ltd.) as the first elastic porous body forming material Fiber diameter 1.0 μm, density 19 kg / m 3 , weight per unit area 95 g / m 2 , thickness 5 mm)), and (3) 6-nylon as a porous film forming material Opening part (opening ratio of 2.5%) by passing a film (Ube Film Co., Ltd. Superen 35N-LL, density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) through a hot sword mountain roll Open (4) Polyester fiber felt (S250-HSGYN, manufactured by Takayasu Co., Ltd.) as a forming material for the second elastic porous body, and a film having a ventilation resistance of 0.11 kPa · s / m provided with a pore diameter of 200 μm) The average fiber diameter of the fiber is 10 μm, the density is 25 kg / m 3 , the weight per unit area is 250 g / m 2 , and the thickness is 10 mm) in this order, and hot pressing is performed at 185 ° C. for 30 seconds under a pressure of 5 MPa. Thus, a first skin material having a maximum thickness of 0.5 mm, a first elastic porous body having a maximum thickness of 4.5 mm, a maximum thickness of 0.2% and an opening diameter of 200 μm. The maximum thickness with a ventilation resistance of 3.5 kPa · s / m, in which the four sides of the end made of a laminate of a 07 mm porous film and a second elastic porous body having a maximum thickness of 5 mm are compressed, welded and sealed. Car engine with a length of 10mm To give the emissions for the soundproof cover.
<Heat resistance evaluation>
Using the obtained soundproof cover for an automobile engine, the first elastic porous body was placed on the heat source side, and the heat resistance was evaluated in the same manner as in Example 1.
As a result, the temperature of the porous film disposed in the center portion remains at 126 ° C. with respect to the heat source side surface exposure temperature (300 ° C.), and is a softening point temperature of 140 ° C. or lower of 6-nylon, which is the film substrate. So it was not damaged.
<Soundproof evaluation>
The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1.
As shown in Table 1 and FIG. 1, the obtained soundproof cover exhibited good sound absorption on both the engine side and the outer surface side during installation.
Figure JPOXMLDOC01-appb-T000001
 表1および図1~図6より、本発明に係る防音用被覆材は、耐熱性を有し、厚さが薄くても十分な防音性能を有することが分かる。
Figure JPOXMLDOC01-appb-T000001
It can be seen from Table 1 and FIGS. 1 to 6 that the soundproofing covering material according to the present invention has heat resistance and sufficient soundproofing performance even when the thickness is small.
(実施例7~実施例8)
 得ようとする目的形状に対応する成形面が施された成形型内に、(1)第一の表皮材として、ポリエステル繊維フェルト(前田工繊(株)製125H、繊維径10μm、密度125kg/m、目付量125g/m、厚さ1mm)、(2)第一の弾性多孔質体の形成材として、ポリエステル繊維フェルト(高安(株)製S250-HSGYN、ポリエステル繊維の平均繊維径10μm、密度25kg/m、目付量250g/m、厚さ10mm))を配置した上で、その上に、(3)多孔質フィルムの形成材として、6-ナイロン製フィルム(宇部フィルム(株)製シュペレン35N-LL、密度70kg/m、厚さ0.07mm、ヤング率10kPa)を熱剣山ロールを通過させることによって開孔部(開孔率2.5%、開孔径200μm)を設けた通気抵抗が0.11kPa・s/mであるフィルムと、(4)第二の弾性多孔質体の形成材として、ポリエステル繊維フェルト(高安(株)製S250-HSGYN、ポリエステル繊維の平均繊維径10μm、密度25kg/m、目付量250g/m、厚さ10mm))と、(5)第二の表皮材として、ポリエステル繊維フェルト(前田工繊(株)製125H、繊維径10μm、密度125kg/m、目付量125g/m、厚さ1mm)とをこの順番で順次配置し、5MPaの加圧力下、185℃で30秒間熱圧成形した。
 このとき、上記開孔部を有する多孔質フィルムとしては、実施例7においては、開孔率1.19%、開孔径73μm、通気抵抗が0.45kPa・s/m、実施例8においては、開孔率2.66%、開孔径46μm、通気抵抗が0.17Pa・s/mであるものを各々使用した。
 上記熱圧成形により、各々、最大厚さ1mmの第一の表皮材、最大厚さ5mmの第一の弾性多孔質体、最大厚さ0.5mmの多孔質フィルムおよび最大厚さ5mmの第二の弾性多孔質体および最大厚さ1μmの第一の表皮材の積層体からなる端部4辺が圧縮、溶着されて密封された通気抵抗が3.8kPa・s/mである最大厚さ12.5mmの自動車エンジン用防音カバーを得た。
 上記熱圧成形して得られた自動車エンジン用防音カバーにおいて、実施例7においては、開孔率1.19%、開孔径73μm、通気抵抗が0.45kPa・s/m、実施例8においては、開孔率2.66%、開孔径46μm、通気抵抗が0.17Pa・s/mであるものであった。
 また、上記熱圧成形して得られた自動車エンジン用防音カバーの通気抵抗率は、実施例7においては1.26kPa・s/m、実施例8においては3.32kPa・s/mであった。
<防音性評価>
 得られた防音カバーの防音性を実施例1と同様の方法で評価した。結果を各々図7および図8に示す。
 図7および図8に示すように、得られた防音カバーは設置時におけるエンジン側および外表面側のいずれの側において良好な吸音性を示した。
(Examples 7 to 8)
In a molding die provided with a molding surface corresponding to the target shape to be obtained, (1) As a first skin material, polyester fiber felt (125H manufactured by Maeda Kosen Co., Ltd., fiber diameter 10 μm, density 125 kg / m 3 , weight per unit area 125 g / m 2 , thickness 1 mm), (2) polyester fiber felt (S250-HSGYN manufactured by Takayasu Co., Ltd.), average fiber diameter of polyester fiber 10 μm as the first elastic porous body forming material , Density 25 kg / m 3 , weight per unit area 250 g / m 2 , thickness 10 mm)), and (3) 6-nylon film (Ube Film Co., Ltd.) as a porous film forming material. ) Sperene 35N-LL, density 70 kg / m 3 , thickness 0.07 mm, Young's modulus 10 kPa) is passed through a hot sword mountain roll to open the hole (opening ratio 2.5%, hole diameter 2) And a film having a ventilation resistance of 0.11 kPa · s / m and (4) polyester fiber felt (S250-HSGYN, manufactured by Takayasu Co., Ltd.) And an average fiber diameter of 10 μm, a density of 25 kg / m 3 , a basis weight of 250 g / m 2 , a thickness of 10 mm)), and (5) as a second skin material, a polyester fiber felt (125H manufactured by Maeda Kosen Co., Ltd., fiber) diameter 10 [mu] m, density 125 kg / m 3, sequentially arranged basis weight 125 g / m 2, a thickness of 1mm) and in this order, under 5MPa in pressure, and 30 seconds heat pressure molding at 185 ° C..
At this time, as the porous film having the above-mentioned opening portion, in Example 7, the opening ratio is 1.19%, the opening diameter is 73 μm, the ventilation resistance is 0.45 kPa · s / m, and in Example 8, Each having an aperture ratio of 2.66%, an aperture diameter of 46 μm, and a ventilation resistance of 0.17 Pa · s / m was used.
By the above hot pressing, a first skin material having a maximum thickness of 1 mm, a first elastic porous body having a maximum thickness of 5 mm, a porous film having a maximum thickness of 0.5 mm, and a second skin having a maximum thickness of 5 mm, respectively. The maximum thickness of 12 is 4 kPa / s / m. The air resistance is 3.8 kPa · s / m in which the four sides of the elastic porous body and the laminate of the first skin material having the maximum thickness of 1 μm are compressed and welded. A soundproof cover for a 5 mm automobile engine was obtained.
In the automobile engine soundproof cover obtained by the above-described hot press molding, in Example 7, the aperture ratio was 1.19%, the aperture diameter was 73 μm, the ventilation resistance was 0.45 kPa · s / m, and in Example 8, The aperture ratio was 2.66%, the aperture diameter was 46 μm, and the ventilation resistance was 0.17 Pa · s / m.
In addition, the airflow resistance of the automobile engine soundproof cover obtained by the above hot press molding was 1.26 kPa · s / m in Example 7 and 3.32 kPa · s / m in Example 8. .
<Soundproof evaluation>
The soundproof property of the obtained soundproof cover was evaluated in the same manner as in Example 1. The results are shown in FIGS. 7 and 8, respectively.
As shown in FIGS. 7 and 8, the obtained soundproof cover exhibited good sound absorption on either the engine side or the outer surface side during installation.
(比較例1)
 多孔質フィルムを設けなかった以外は、実施例7~実施例8と同様にして自動車エンジン用防音カバーを得、実施例7~実施例8と同様にして防音性を評価した。
 結果を図7および図8に示す。
(Comparative Example 1)
A soundproof cover for an automobile engine was obtained in the same manner as in Examples 7 to 8 except that the porous film was not provided, and the soundproofing property was evaluated in the same manner as in Examples 7 to 8.
The results are shown in FIG. 7 and FIG.
(比較例2)
 多孔質フィルムの形成材に開孔部を設けなかった以外は、実施例7~実施例8と同様にして自動車エンジン用防音カバーを得、実施例7~実施例8と同様にして防音性を評価した。
 結果を図7および図8に示す。
(Comparative Example 2)
A soundproof cover for an automobile engine was obtained in the same manner as in Examples 7 to 8 except that the porous film forming material was not provided with an opening, and the soundproofing property was obtained in the same manner as in Examples 7 to 8. evaluated.
The results are shown in FIG. 7 and FIG.
 図7および図8より、実施例7~実施例8で得られた自動車エンジン用防音カバーは、特に2000Hz以下の周波数領域において優れた防音性能を有するものであることが分かる。
 一方、図7および図8より、比較例1で得られた多孔質フィルムを有さない自動車エンジン用防音カバーは、吸音率のピークが4000Hz程度に位置し、2000Hz以下の周波数帯における吸音率が低いことから、所望の吸音特性を発揮し難く、また、比較例2で得られた開孔部を有さない多孔質フィルムを用いた自動車エンジン用防音カバーは、全周波数領域において吸音率が低いことが分かる。
7 and 8, it can be seen that the soundproof covers for automobile engines obtained in Examples 7 to 8 have excellent soundproof performance particularly in a frequency region of 2000 Hz or less.
On the other hand, from FIG. 7 and FIG. 8, the automobile engine soundproof cover without the porous film obtained in Comparative Example 1 has a sound absorption coefficient peak of about 4000 Hz and a sound absorption coefficient in a frequency band of 2000 Hz or less. Since it is low, it is difficult to exhibit the desired sound absorption characteristics, and the soundproof cover for automobile engines using the porous film having no apertures obtained in Comparative Example 2 has a low sound absorption coefficient in the entire frequency range. I understand that.
 本発明によれば、耐熱性を有し、厚さが薄くても十分な防音性能を有する新規な防音用被覆材および係る防音用被覆材を有するエンジンユニットを提供することができる。
 
ADVANTAGE OF THE INVENTION According to this invention, it can provide the engine unit which has heat resistance and a novel soundproof coating | covering material which has sufficient soundproof performance even if thickness is thin, and the soundproofing | coating material which concerns.

Claims (6)

  1.  第一の弾性多孔質体と、開孔率が0.1~5%で開孔径が50~500μmである多孔質フィルムと、第二の弾性多孔質体とが、この順番に積層されてなることを特徴とする防音用被覆材。 A first elastic porous body, a porous film having an opening ratio of 0.1 to 5% and an opening diameter of 50 to 500 μm, and a second elastic porous body are laminated in this order. A soundproofing covering material characterized by that.
  2.  前記第一の弾性多孔体の外表面側および第二の弾性多孔質体の外表面側の少なくとも一方にさらに表皮材を有する請求項1に記載の防音用被覆材。 The soundproofing covering material according to claim 1, further comprising a skin material on at least one of the outer surface side of the first elastic porous body and the outer surface side of the second elastic porous body.
  3.  前記多孔質フィルムの通気抵抗が0.1~1.0kPa・s/mである請求項1に記載の防音用被覆材。 The soundproofing covering material according to claim 1, wherein the airflow resistance of the porous film is 0.1 to 1.0 kPa · s / m.
  4.  通気抵抗が1.0~4.0kPa・s/mである請求項1に記載の防音用被覆材。 The soundproofing covering material according to claim 1, wherein the ventilation resistance is 1.0 to 4.0 kPa · s / m.
  5.  前記防音用被覆材が自動車エンジン用防音カバーである請求項1に記載の防音用被覆材。 The soundproof covering material according to claim 1, wherein the soundproof covering material is a soundproof cover for an automobile engine.
  6.  自動車用エンジンと当該自動車用エンジンの少なくとも一部を覆う請求項1~請求項5のいずれかに記載の防音用被覆材と、前記自動車用エンジンと防音用被覆材とを収容するエンジンルームとを有するエンジンユニットであって、前記自動車用エンジンと前記防音用被覆材との間または前記防音用被覆材とエンジンルームとの間に0.1~30mmの距離の空隙を有することを特徴とするエンジンユニット。
     
    A soundproof covering material according to any one of claims 1 to 5 that covers at least a part of the vehicle engine and the vehicle engine, and an engine room that houses the vehicle engine and the soundproof cover material. An engine unit having an air gap of a distance of 0.1 to 30 mm between the automobile engine and the soundproofing covering material or between the soundproofing covering material and the engine room. unit.
PCT/JP2018/006788 2017-02-28 2018-02-23 Cover material for acoustic insulation and engine unit WO2018159504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037108A JP6655569B2 (en) 2017-02-28 2017-02-28 Engine unit
JP2017-037108 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159504A1 true WO2018159504A1 (en) 2018-09-07

Family

ID=63370717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006788 WO2018159504A1 (en) 2017-02-28 2018-02-23 Cover material for acoustic insulation and engine unit

Country Status (2)

Country Link
JP (1) JP6655569B2 (en)
WO (1) WO2018159504A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090909A (en) * 2018-12-03 2020-06-11 ニチアス株式会社 Noise insulation cover and engine unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137160A (en) * 2004-11-15 2006-06-01 Howa Seni Kogyo Kk Sound absorbing material for vehicle
JP2009090845A (en) * 2007-10-10 2009-04-30 Kasai Kogyo Co Ltd Sound insulating material for vehicle
JP2011064167A (en) * 2009-09-18 2011-03-31 Nichias Corp Soundproof cover and method for producing the same
JP2014031087A (en) * 2012-08-02 2014-02-20 Toyo Tire & Rubber Co Ltd Assembly of pneumatic tire and rim

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956441B2 (en) * 1993-09-16 1999-10-04 トヨタ車体株式会社 Soundproofing material
JP2005001403A (en) * 2003-06-09 2005-01-06 Hayashi Gijutsu Kenkyusho:Kk Automobile flooring material
JP4394638B2 (en) * 2005-12-15 2010-01-06 株式会社林技術研究所 Molded interior materials for automobiles
JP2010234991A (en) * 2009-03-31 2010-10-21 Kasai Kogyo Co Ltd Sound insulating material for vehicle
EP3081435A1 (en) * 2015-04-15 2016-10-19 Autoneum Management AG Lightweight engine mounted trim part
JP6585383B2 (en) * 2015-05-27 2019-10-02 株式会社オーツカ Non-woven fabric laminate and perforated film used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137160A (en) * 2004-11-15 2006-06-01 Howa Seni Kogyo Kk Sound absorbing material for vehicle
JP2009090845A (en) * 2007-10-10 2009-04-30 Kasai Kogyo Co Ltd Sound insulating material for vehicle
JP2011064167A (en) * 2009-09-18 2011-03-31 Nichias Corp Soundproof cover and method for producing the same
JP2014031087A (en) * 2012-08-02 2014-02-20 Toyo Tire & Rubber Co Ltd Assembly of pneumatic tire and rim

Also Published As

Publication number Publication date
JP2018141432A (en) 2018-09-13
JP6655569B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
KR101114805B1 (en) Sound absorbing material
RU2629867C2 (en) Method of manufacturing highly heat-resistant sound-absorbing and sound-insulating materials
EP1792725B1 (en) Soundproof material
US8028801B2 (en) Soundproof cover
US7694779B2 (en) Sound absorbing material
ZA200507678B (en) Ultra-light sound insulator
WO2019004153A1 (en) Soundproof covering material and engine unit
CA2162171A1 (en) Composite sandwich element
WO2020116139A1 (en) Sound-proofing cover and engine unit
JP6754724B2 (en) Soundproof coating and engine unit
WO2018159504A1 (en) Cover material for acoustic insulation and engine unit
JP3701010B2 (en) Insulator dash for automobile
KR20150024966A (en) Sound absorbing and insulating material for vehicle having high heat-resistance
KR101497379B1 (en) Insulation for vehicle
JP3496761B2 (en) Soundproofing material for air conditioner outdoor unit
JPS6333279Y2 (en)
KR20210099703A (en) Acoustic absorber having stack structure for automobile
JP3006967B2 (en) Soundproofing material for vehicles
JP6044785B2 (en) Air intake duct
KR102372331B1 (en) Manufacturing method of undercover for vehicle engine
JP2002089887A (en) Soundproof material for outdoor unit of air conditioner
WO2022216578A1 (en) Multi-layered fibrous structures for thermoacoustics applications
JP2009157060A (en) Sound absorbing structure
JP2008201264A (en) Vehicle sound insulation structure
CN117098651A (en) Multi-layer fibrous structure for thermo-acoustic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761536

Country of ref document: EP

Kind code of ref document: A1