WO2018159386A1 - Aluminosilicate glass - Google Patents

Aluminosilicate glass Download PDF

Info

Publication number
WO2018159386A1
WO2018159386A1 PCT/JP2018/006000 JP2018006000W WO2018159386A1 WO 2018159386 A1 WO2018159386 A1 WO 2018159386A1 JP 2018006000 W JP2018006000 W JP 2018006000W WO 2018159386 A1 WO2018159386 A1 WO 2018159386A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
aluminosilicate glass
coordinated
mgo
coordinate
Prior art date
Application number
PCT/JP2018/006000
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 村田
慎護 中根
加藤 嘉成
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2019502902A priority Critical patent/JP7339605B2/en
Publication of WO2018159386A1 publication Critical patent/WO2018159386A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to an aluminosilicate glass, and more particularly to an aluminosilicate glass that is less likely to be scratched by a surface without forming a compressive stress layer by ion exchange on the surface, and that cracks do not easily develop due to impact or the like.
  • Smartphones, PDAs and other devices are becoming increasingly popular.
  • a cover glass is used to protect the touch panel display.
  • the cover glass for these uses is required to be difficult to break due to impact or the like.
  • Glass is a brittle material, and it is known that cracks are potentially present in the glass. When tensile stress is applied to the crack by impact or thermal stress, the crack may develop and the glass may be damaged. In particular, in the case of use of cover glass, the development of cracks due to impact or the like is regarded as a problem.
  • the ion exchange treatment is a step of immersing the glass in a high temperature ion exchange solution for a long time, the manufacturing cost of the glass is increased.
  • the present invention has been made in view of the above circumstances, and its technical problem is that even if a compressive stress layer by ion exchange is not formed on the surface, surface scratches are difficult to occur, and cracks develop due to impact or the like. It is to create a difficult glass.
  • the present inventors introduce highly coordinated Al into the glass network of an aluminosilicate glass, surface scratches are difficult to be formed without forming a compressive stress layer by ion exchange on the surface, and cracks are caused by impact or the like. It is found that it is difficult to progress, specifically, the brittleness is lowered, and the Vickers hardness, fracture toughness K 1c , Young's modulus, crack resistance and the like are improved and proposed as the present invention. That is, the aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, and 5 in the glass network. It is characterized by containing coordinated Al and / or hexacoordinate Al.
  • the aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO have a function of modifying the glass network and are generally referred to as network modified oxides.
  • the ease of surface scratches, the probability of occurrence of cracks, and the speed of crack growth are evaluated by measuring Vickers hardness, fracture toughness K 1c , brittleness, Young's modulus, and crack resistance described later. These properties are correlated with the coordination number of Al in the glass network. When pentacoordinate Al and / or hexacoordinate Al is introduced into the glass network, Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance can be increased while lowering brittleness.
  • Al in the glass network is usually tetracoordinate, but if a network-modified oxide (especially MgO) having a high ionic strength (field strength) is appropriately introduced, It is possible to efficiently introduce 5-coordinate Al and / or 6-coordinate Al.
  • a network-modified oxide especially MgO
  • field strength field strength
  • the aluminosilicate glass of the present invention preferably has a ratio of (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) of 0.01 or more.
  • the ratio of “tetracoordinate Al” can be measured by a nuclear magnetic resonance method (NMR) (the same applies to 5-coordinate Al and hexacoordinate Al).
  • (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al)” represents the total ratio of 5-coordinated Al and 6-coordinated Al It is a value divided by the total ratio of the Al, 5-coordinated Al and 6-coordinated Al (that is, the total ratio of the total coordination number of Al).
  • the aluminosilicate glass of the present invention preferably has a ratio of (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) of 0.03 or more.
  • the aluminosilicate glass of the present invention has a glass composition of mol%, SiO 2 40-80%, Al 2 O 3 5-40%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO 1-40%, Li 2 O + Na. It is preferable to contain 0 to 40% of 2 O + K 2 O and 0 to 40% of MgO + CaO + SrO + BaO. If it does in this way, it will become easy to provide the liquid phase viscosity suitable for plate-shaped fabrication.
  • Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO refers to the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO + CaO + SrO + BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • the content of Al 2 O 3 in the glass composition is preferably not less than the content of MgO + CaO + SrO + BaO, and the content of MgO is preferably not less than 10 mol%.
  • MgO having a higher ionic strength (field strength) is introduced in an amount of Al 2 O 3 more than the content of alkaline earth metal oxide and 10 mol% or more, [ Since the charge of AlO 4 ] ⁇ is hardly compensated, highly coordinated Al can be efficiently introduced into the glass network. As a result, brittleness is significantly reduced, and Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance are greatly improved.
  • the aluminosilicate glass of the present invention preferably has a brittleness of less than 8.1 ⁇ m ⁇ 0.5 .
  • “Brightness” is obtained by dividing Vickers hardness, which will be described later, by fracture toughness K 1c , and was proposed as an index of brittleness by Lorne et al. (BR Lawn and D.). B. Marshll, J. Am. Ceram. Soc., 62 [7-8] 347-350 (1979)).
  • the aluminosilicate glass of the present invention preferably has a fracture toughness K 1c of 0.70 MPa ⁇ m 0.5 or more.
  • fracture toughness K 1c is a pre-crack introduction fracture test method (SEPB method: Single-Edge-Precracked-) defined by Japanese Industrial Standards JIS R1607 “Flame-Temperature Toughness Test Method for Fine Ceramics”. This is a value measured by Beam-Method).
  • the aluminosilicate glass of the present invention preferably has a Vickers hardness of 5.4 GPa or more.
  • Vickers hardness refers to a value measured by pushing a Vickers indenter with a load of 100 gf with a Vickers hardness tester.
  • the aluminosilicate glass of the present invention preferably has a Young's modulus of 70 GPa or more.
  • Young's modulus refers to a value measured by a resonance method.
  • the aluminosilicate glass of the present invention preferably has a crack resistance of 500 gf or more.
  • crack resistance refers to a load at which the crack occurrence rate is 50%.
  • crack occurrence rate refers to a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a predetermined load is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting the indenter 20 times and determining the total number of cracks generated, the total number of cracks generated is calculated by the formula of (total cracks generated / 80) ⁇ 100.
  • the aluminosilicate glass of the present invention is preferably plate-shaped.
  • the aluminosilicate glass of the present invention does not have a compressive stress layer by ion exchange on the surface.
  • the aluminosilicate glass of the present invention is preferably used for a cover glass.
  • Sample No. It is the measurement data of the nuclear magnetic resonance method (NMR) which shows the ratio of the coordination number of Al in the glass network of 1,2,9.
  • NMR nuclear magnetic resonance method
  • the aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO, but of course, two or more components. May be included.
  • the aluminosilicate glass of the present invention contains five-coordinate Al and / or six-coordinate Al in the glass network, and preferably contains five-coordinate Al and six-coordinate Al in the glass network. If pentacoordinate Al and hexacoordinate Al are not present in the glass network, the brittleness tends to increase, and Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease.
  • (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) is 0.01 or more, 0.03 or more, 0.05 As described above, it is preferably 0.07 or more, particularly preferably 0.10 to 0.70. If (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) is too small, the brittleness tends to increase, and Vickers hardness, fracture toughness K 1c , Young's modulus Crack resistance tends to decrease.
  • the aluminosilicate glass of the present invention has a glass composition of mol%, SiO 2 40-80%, Al 2 O 3 5-40%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO 1-40%, Li 2 O + Na 2 O + K. 2 O 0 to 40%, MgO + CaO + SrO + BaO 0 to 40% are preferably contained.
  • the reason why the content range of each component is regulated as described above is shown below.
  • % display shall show mol%.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is preferably 40 to 80%, 50 to 80%, 55 to 75%, in particular 60 to 70%.
  • the content of SiO 2 is too small, it becomes difficult to vitrify, water resistance and weather resistance tends to decrease.
  • the content of SiO 2 is too large, the meltability and the formability tends to decrease.
  • Al 2 O 3 is a component for introducing high coordination number Al into the glass network to lower brittleness and to increase Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance. Moreover, it is a component which improves a weather resistance.
  • the content of Al 2 O 3 is preferably 5 to 40%, 10 to 30%, 15 to 25%, particularly 20 to 23%. If the content of Al 2 O 3 is too small, the brittleness tends to increase, and the weather resistance, Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease. On the other hand, when the content of Al 2 O 3 is too large, the melting properties, formability, and resistance to devitrification tends to drop.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO are network-modifying oxides, and are components that improve the meltability, moldability, and heat workability.
  • the total amount of these components is 1 to 40%, 5 to 35%, 10 to 30%, especially 15 to 25%. When there is too much total amount of these components, devitrification resistance will fall easily.
  • Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity and improve the meltability, moldability, and thermal processability.
  • the total amount of Li 2 O, Na 2 O and K 2 O is preferably 0-40%, 0-30%, 0-20%, 0-10%, especially 0-5%.
  • the respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0-30%, 0-20%, 0-10%, 0-5%, in particular 0-1%.
  • MgO has a small ionic radius and high ionic strength, so it lowers brittleness, and is an effective component for increasing Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance, and lowers high-temperature viscosity. It is a component that enhances meltability, moldability and heat processability.
  • the content of MgO is preferably 0 to 40%, 3 to 35%, 5 to 30%, particularly 10 to 25%. When there is too much content of MgO, devitrification resistance will fall easily.
  • CaO, SrO, and BaO are components that lower the high-temperature viscosity and increase the meltability, moldability, and thermal processability.
  • the total amount of CaO, SrO and BaO is preferably 0 to 15%, 0 to 10%, especially 0 to 5%.
  • the respective contents of CaO, SrO and BaO are preferably 0 to 12%, 0 to 5%, in particular 0 to 2%.
  • the content of Al 2 O 3 is preferably greater than the content of MgO + CaO + SrO + BaO, more preferably 5% or more than the content of MgO + CaO + SrO + BaO, and even more preferably 10% or more than the content of MgO + CaO + SrO + BaO.
  • the content of Al 2 O 3 is less than the content of MgO + CaO + SrO + BaO, it becomes difficult to introduce highly coordinated Al into the glass network.
  • the molar ratio MgO / (MgO + CaO + SrO + BaO) is 0.5 or more, 0.7 or more, 0.8 or more, particularly 0 from the viewpoint of increasing Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance while reducing brittleness. .9 or more is preferable.
  • MgO / (MgO + CaO + SrO + BaO) is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO and BaO.
  • B 2 O 3 is a component that forms a glass network and a component that increases crack resistance.
  • the content of B 2 O 3 is preferably 0 to 20%, 0 to 10%, 0 to 5%, particularly 0 to 1%.
  • TiO 2 is a component that enhances the weather resistance, but is a component that colors the glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • ZrO 2 is a component that increases weather resistance, but is a component that decreases devitrification resistance. Therefore, the content of ZrO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
  • 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 and CeO 2 may be added.
  • Fe 2 O 3 is a component that is inevitably mixed as an impurity in the glass raw material, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, particularly 0.01 to 0.07%.
  • V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the respective contents of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are preferably 0.1% or less, particularly less than 0.01%.
  • the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F.
  • substantially does not contain means that the glass component does not positively add an explicit component but allows it to be mixed as an impurity. Specifically, It indicates that the content is less than 0.05%.
  • the aluminosilicate glass of the present invention preferably has the following characteristics.
  • the Vickers hardness is preferably 5.4 GPa or more, 5.7 GPa or more, 6.0 GPa or more, 6.3 GPa or more, 6.6 GPa or more, particularly 6.9 GPa or more. If the Vickers hardness is too low, surface scratches are likely to occur.
  • Fracture toughness K 1c is preferably 0.70 MPa ⁇ m 0.5 or more, 0.75 MPa ⁇ m 0.5 or more, 0.80 MPa ⁇ m 0.5 or more, 0.85 MPa ⁇ m 0.5 or more, particularly 0 90 MPa ⁇ m 0.5 or more. If the fracture toughness K1c is too low, the cracks are likely to progress and the glass is easily broken.
  • Buritorunesu preferably 8.1 ⁇ m less than -0.5, 7.8 .mu.m less than -0.5, 7.6 [mu] m less than -0.5, 7.3 .mu.m less than -0.5, 7.0 .mu.m less than -0.5, In particular, it is 6.7 ⁇ m ⁇ 0.5 or less. If the brittleness is too high, the glass becomes brittle and surface scratches tend to occur.
  • the Young's modulus is preferably 70 GPa or more, 75 GPa or more, 80 GPa or more, 85 GPa or more, 90 GPa or more, particularly 95 GPa or more. If the Young's modulus is too low, the average bond strength of the glass becomes low and cracks tend to progress.
  • the crack resistance is preferably 500 gf or more, preferably 700 gf or more, 1000 gf or more, 1400 gf or more, 1700 gf or more, particularly 2000 to 5000 gf. If the crack resistance is too low, if tensile stress is applied due to impact or thermal stress, cracks that exist potentially develop due to impact or the like, and the glass tends to break.
  • the crystallinity is preferably 30% or less, more preferably 10% or less, and particularly preferably less than 1%, that is, an amorphous glass. If the crystallinity is too high, it becomes difficult to bend the glass.
  • the aluminosilicate glass of the present invention preferably does not have a compressive stress layer by ion exchange on the surface. Thereby, an ion exchange process becomes unnecessary and the manufacturing cost of glass can be reduced.
  • the aluminosilicate glass of the present invention can be produced as follows.
  • a glass raw material prepared so as to have a predetermined glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified and stirred, and then fed to a molding apparatus to be formed into a plate shape. By cooling, an aluminosilicate glass can be produced.
  • the aluminosilicate glass is formed into various shapes, but when applied to a cover glass or the like, it is preferably formed into a flat plate shape, that is, formed into a glass plate.
  • a method of forming into a flat plate shape it is preferable to employ an overflow down draw method.
  • the overflow downdraw method is a method in which a large number of glass plates can be easily produced while a large amount of glass plates having excellent surface smoothness can be produced with the surface being unpolished. If the surface is unpolished, the manufacturing cost of the glass plate can be reduced.
  • the glass plate In addition to the overflow downdraw method, it is also preferable to form the glass plate by a float method or a rollout method.
  • the float method is a method capable of producing a large glass plate at low cost.
  • the glass plate is preferably chamfered as necessary. In that case, it is preferable to perform C chamfering with a # 800 metal bond grindstone or the like. If it does in this way, end face strength can be raised. It is also preferable to reduce the crack source existing on the end face by etching the end face of the glass plate as necessary.
  • Table 1 shows examples of the present invention (sample Nos. 1 to 8) and comparative examples (samples No. 9 and 10).
  • a glass plate was produced as follows.
  • the glass raw material was prepared so that the aluminosilicate glass of Table 1 was obtained.
  • the prepared glass batch was put into a continuous melting furnace, melted at 1600 ° C. for 20 hours, then clarified and stirred to obtain a homogeneous molten glass, and then formed into a flat plate shape.
  • the obtained glass plate was evaluated for Al coordination number, Vickers hardness Hv, fracture toughness K 1c , brittleness B, Young's modulus, rigidity, Poisson's ratio, and crack resistance.
  • the coordination number of Al is measured by nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • a nuclear magnetic resonance spectrometer manufactured by BRUKER was used. In the measurement, the magnetic field used was 11.7 T, the resonance frequency was 500 MHz, measurement was performed using pulse excitation of 0.5 ⁇ s, and the delay rate was 1 s to 2 s. Note that “(5Al + 6Al) / (4Al + 5Al + 6Al)” represents (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al).
  • Vickers hardness Hv is a value measured by pushing a Vickers indenter with a load of 100 gf with a Vickers hardness meter.
  • Fracture toughness K 1c is a pre-crack introduction fracture test method (SEPB method: Single-Edge-Precracked-Beam-Method) defined by Japanese Industrial Standards JIS R1607 “Test Method for Room Temperature Fracture Toughness (Toughness) of Fine Ceramics”. It is a measured value.
  • Brittleness B was proposed as an index of brittleness by Lone et al. (BR Lawn and DB Marshll, J. Am. Ceram. Soc., 62 [7-8] 347-350 ( 1979)), it is a value determined by dividing Vickers hardness fracture toughness K 1c.
  • the Young's modulus and the rigidity are values measured by a resonance method, and the Poisson's ratio is a value calculated from the Young's modulus and the rigidity.
  • Crack resistance is a load with a crack occurrence rate of 50%.
  • the crack occurrence rate is a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a predetermined load is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting the indenter 20 times and determining the total number of cracks generated, the total number of cracks generated is calculated by the formula of (total cracks generated / 80) ⁇ 100.
  • Fig. 1 shows sample no. It is the measurement data of the nuclear magnetic resonance method (NMR) which shows the ratio of the coordination number of Al in the glass network of 1,2,9.
  • NMR nuclear magnetic resonance method
  • the aluminosilicate glass of the present invention is suitable for a cover glass of a smartphone, but besides that, a substrate for an image sensor such as CSP, CCD, CIS, a cover glass, a window glass, an automobile windshield, a door glass, Applicable to pharmaceutical tube glass, heat-resistant tableware, etc.

Abstract

This aluminosilicate glass according to the present invention is characterized by containing at least one component selected from the group consisting of Li2O, Na2O, K2O, MgO, CaO, SrO, and BaO, wherein 5-coordinate Al and/or 6-coordinate Al is included in the glass network.

Description

アルミノケイ酸塩ガラスAluminosilicate glass
 本発明は、アルミノケイ酸塩ガラスに関し、特に表面にイオン交換による圧縮応力層を形成しなくても、表面傷が付き難く、また衝撃等によりクラックが進展し難いアルミノケイ酸塩ガラスに関する。 The present invention relates to an aluminosilicate glass, and more particularly to an aluminosilicate glass that is less likely to be scratched by a surface without forming a compressive stress layer by ion exchange on the surface, and that cracks do not easily develop due to impact or the like.
 スマートフォン、PDA等のデバイスは、益々普及する傾向にある。これらの用途には、タッチパネルディスプレイを保護するためにカバーガラスが用いられている。これらの用途のカバーガラスには、衝撃等により破損し難いこと等が求められる。 Smartphones, PDAs and other devices are becoming increasingly popular. For these applications, a cover glass is used to protect the touch panel display. The cover glass for these uses is required to be difficult to break due to impact or the like.
特開2006-83045号公報JP 2006-83045 A
 ガラスは脆性材料であり、ガラス内にはクラックが潜在的に存在することが知られている。そして、そのクラックに衝撃や熱応力により引っ張り応力が加わると、クラックが進展し、ガラスが破損する虞がある。特に、カバーガラスの用途の場合、衝撃等によるクラックの進展は問題視される。 Glass is a brittle material, and it is known that cracks are potentially present in the glass. When tensile stress is applied to the crack by impact or thermal stress, the crack may develop and the glass may be damaged. In particular, in the case of use of cover glass, the development of cracks due to impact or the like is regarded as a problem.
 この問題を解決するための方法として、イオン交換処理により、表面に圧縮応力層を形成して、表面傷を付き難くすると共に、脆さを改善してクラックの進展を防止する方法が知られている(特許文献1、非特許文献1参照)。 As a method for solving this problem, a method is known in which a compression stress layer is formed on the surface by ion exchange treatment to make it difficult to be damaged by a surface and to improve the brittleness and prevent the development of cracks. (See Patent Document 1 and Non-Patent Document 1).
 しかし、イオン交換処理は、高温のイオン交換溶液に、ガラスを長時間浸漬させる工程であるため、ガラスの製造コストを高騰させる。 However, since the ion exchange treatment is a step of immersing the glass in a high temperature ion exchange solution for a long time, the manufacturing cost of the glass is increased.
 そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、表面にイオン交換による圧縮応力層を形成しなくても、表面傷が付き難く、また衝撃等によりクラックが進展し難いガラスを創案することである。 Therefore, the present invention has been made in view of the above circumstances, and its technical problem is that even if a compressive stress layer by ion exchange is not formed on the surface, surface scratches are difficult to occur, and cracks develop due to impact or the like. It is to create a difficult glass.
 本発明者等は、アルミノケイ酸塩ガラスのガラスネットワーク中に高配位のAlを導入すると、表面にイオン交換による圧縮応力層を形成しなくても、表面傷が付き難く、また衝撃等によりクラックが進展し難くなること、具体的にはブリトルネスが低下し、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗等が向上することを見出し、本発明として提案するものである。すなわち、本発明のアルミノケイ酸塩ガラスは、LiO、NaO、KO、MgO、CaO、SrO、BaOの群から選ばれる成分の内、少なくとも1成分を含み、ガラスネットワーク中に5配位のAl及び/又は6配位のAlを含むことを特徴とする。 When the present inventors introduce highly coordinated Al into the glass network of an aluminosilicate glass, surface scratches are difficult to be formed without forming a compressive stress layer by ion exchange on the surface, and cracks are caused by impact or the like. It is found that it is difficult to progress, specifically, the brittleness is lowered, and the Vickers hardness, fracture toughness K 1c , Young's modulus, crack resistance and the like are improved and proposed as the present invention. That is, the aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, and 5 in the glass network. It is characterized by containing coordinated Al and / or hexacoordinate Al.
 本発明のアルミノケイ酸塩ガラスは、LiO、NaO、KO、MgO、CaO、SrO、BaOの群から選ばれる成分の内、少なくとも1成分を含む。LiO、NaO、KO、MgO、CaO、SrO、BaOは、ガラスネットワークを修飾する作用を有し、一般的には網目修飾酸化物と称されている。 The aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO. Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO have a function of modifying the glass network and are generally referred to as network modified oxides.
 本発明者等の調査によると、表面傷の付き易さ、クラックの発生確率、クラックの進展速度は、後述のビッカース硬度、破壊靱性K1c、ブリトルネス、ヤング率、クラック抵抗を測定することで評価することが可能であり、これらの特性は、ガラスネットワーク中のAlの配位数と相関関係がある。そして、ガラスネットワーク中に5配位のAl及び/又は6配位のAlを導入すると、ブリトルネスを低下させつつ、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗を高めることができる。 According to the investigations by the present inventors, the ease of surface scratches, the probability of occurrence of cracks, and the speed of crack growth are evaluated by measuring Vickers hardness, fracture toughness K 1c , brittleness, Young's modulus, and crack resistance described later. These properties are correlated with the coordination number of Al in the glass network. When pentacoordinate Al and / or hexacoordinate Al is introduced into the glass network, Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance can be increased while lowering brittleness.
 アルミノケイ酸塩ガラスにおいて、ガラスネットワーク中のAlは、通常、4配位であるが、イオン強度(field strength)が高い網目修飾酸化物(特にMgO)等を適正に導入すれば、ガラスネットワーク中に5配位のAl及び/又は6配位のAlを効率良く導入することができる。 In an aluminosilicate glass, Al in the glass network is usually tetracoordinate, but if a network-modified oxide (especially MgO) having a high ionic strength (field strength) is appropriately introduced, It is possible to efficiently introduce 5-coordinate Al and / or 6-coordinate Al.
 また、本発明のアルミノケイ酸塩ガラスは、(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が0.01以上であることが好ましい。ここで、「4配位のAl」の割合は、核磁気共鳴法(NMR)で測定可能である(5配位のAl、6配位のAlも同様)。また「(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)」は、5配位のAlと6配位のAlの合計割合を、4配位のAl、5配位のAl及び6配位のAlの合計割合(つまりAlの全配位数の合計割合)で割った値である。 The aluminosilicate glass of the present invention preferably has a ratio of (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) of 0.01 or more. Here, the ratio of “tetracoordinate Al” can be measured by a nuclear magnetic resonance method (NMR) (the same applies to 5-coordinate Al and hexacoordinate Al). “(5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al)” represents the total ratio of 5-coordinated Al and 6-coordinated Al It is a value divided by the total ratio of the Al, 5-coordinated Al and 6-coordinated Al (that is, the total ratio of the total coordination number of Al).
 また、本発明のアルミノケイ酸塩ガラスは、(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が0.03以上であることが好ましい。 The aluminosilicate glass of the present invention preferably has a ratio of (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) of 0.03 or more.
 また、本発明のアルミノケイ酸塩ガラスは、ガラス組成として、モル%で、SiO 40~80%、Al 5~40%、LiO+NaO+KO+MgO+CaO+SrO+BaO 1~40%、LiO+NaO+KO 0~40%、MgO+CaO+SrO+BaO 0~40%を含有することが好ましい。このようにすれば、板状成形に適した液相粘度を付与し易くなる。ここで、「LiO+NaO+KO+MgO+CaO+SrO+BaO」は、LiO、NaO、KO、MgO、CaO、SrO及びBaOの合量を指す。「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。 The aluminosilicate glass of the present invention has a glass composition of mol%, SiO 2 40-80%, Al 2 O 3 5-40%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO 1-40%, Li 2 O + Na. It is preferable to contain 0 to 40% of 2 O + K 2 O and 0 to 40% of MgO + CaO + SrO + BaO. If it does in this way, it will become easy to provide the liquid phase viscosity suitable for plate-shaped fabrication. Here, “Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO” refers to the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO and BaO. “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O. “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO and BaO.
 また、本発明のアルミノケイ酸塩ガラスは、ガラス組成中のAlの含有量がMgO+CaO+SrO+BaOの含有量以上であり、且つMgOの含有量が10モル%以上であることが好ましい。本発明者等の調査によると、Alの含有量をアルカリ土類金属酸化物の含有量より多く導入し、且つイオン強度(field strength)が高いMgOを10モル%以上導入すると、[AlOの電荷が補償され難くなるため、ガラスネットワーク中に高配位のAlを効率良く導入することが可能になる。結果として、ブリトルネスが大幅に低下し、またビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が大幅に向上する。 In the aluminosilicate glass of the present invention, the content of Al 2 O 3 in the glass composition is preferably not less than the content of MgO + CaO + SrO + BaO, and the content of MgO is preferably not less than 10 mol%. According to the inventors' investigation, when MgO having a higher ionic strength (field strength) is introduced in an amount of Al 2 O 3 more than the content of alkaline earth metal oxide and 10 mol% or more, [ Since the charge of AlO 4 ] is hardly compensated, highly coordinated Al can be efficiently introduced into the glass network. As a result, brittleness is significantly reduced, and Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance are greatly improved.
 また、本発明のアルミノケイ酸塩ガラスは、ブリトルネスが8.1μm-0.5未満であることが好ましい。ここで、「ブリトルネス」は、後述のビッカース硬度を破壊靱性K1cで除して求められるものであり、ローン等によって脆さの指標として提案されたものである(B.R. Lawn and D.B. Marshll, J.Am. Ceram.Soc., 62[7-8] 347-350(1979))。 The aluminosilicate glass of the present invention preferably has a brittleness of less than 8.1 μm −0.5 . Here, “Brightness” is obtained by dividing Vickers hardness, which will be described later, by fracture toughness K 1c , and was proposed as an index of brittleness by Lorne et al. (BR Lawn and D.). B. Marshll, J. Am. Ceram. Soc., 62 [7-8] 347-350 (1979)).
 また、本発明のアルミノケイ酸塩ガラスは、破壊靱性K1cが0.70MPa・m0.5以上であることが好ましい。ここで、「破壊靱性K1c」は、日本工業規格JISR1607「ファインセラミックスの室温破壊じん(靱)性試験方法」で定められる、予き裂導入破壊試験方法(SEPB法:Single-Edge-Precracked-Beam-Method)で測定した値を指す。 The aluminosilicate glass of the present invention preferably has a fracture toughness K 1c of 0.70 MPa · m 0.5 or more. Here, “fracture toughness K 1c ” is a pre-crack introduction fracture test method (SEPB method: Single-Edge-Precracked-) defined by Japanese Industrial Standards JIS R1607 “Flame-Temperature Toughness Test Method for Fine Ceramics”. This is a value measured by Beam-Method).
 また、本発明のアルミノケイ酸塩ガラスは、ビッカース硬度が5.4GPa以上であることが好ましい。ここで、「ビッカース硬度」は、ビッカース硬度計にて100gfの荷重でビッカース圧子を押し込むことで測定した値を指す。 The aluminosilicate glass of the present invention preferably has a Vickers hardness of 5.4 GPa or more. Here, “Vickers hardness” refers to a value measured by pushing a Vickers indenter with a load of 100 gf with a Vickers hardness tester.
 また、本発明のアルミノケイ酸塩ガラスは、ヤング率が70GPa以上であることが好ましい。ここで、「ヤング率」は、共振法により測定した値を指す。 The aluminosilicate glass of the present invention preferably has a Young's modulus of 70 GPa or more. Here, “Young's modulus” refers to a value measured by a resonance method.
 また、本発明のアルミノケイ酸塩ガラスは、クラック抵抗が500gf以上であることが好ましい。ここで、「クラック抵抗」は、クラック発生率が50%となる荷重を指す。「クラック発生率」は、次のようにして測定した値を指す。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、所定荷重に設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。このようにして圧子を20回打ち込み、総クラック発生数を求めた後、(総クラック発生数/80)×100の式により求める。 The aluminosilicate glass of the present invention preferably has a crack resistance of 500 gf or more. Here, “crack resistance” refers to a load at which the crack occurrence rate is 50%. “Crack occurrence rate” refers to a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a predetermined load is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting the indenter 20 times and determining the total number of cracks generated, the total number of cracks generated is calculated by the formula of (total cracks generated / 80) × 100.
 また、本発明のアルミノケイ酸塩ガラスは、板状であることが好ましい。 The aluminosilicate glass of the present invention is preferably plate-shaped.
 また、本発明のアルミノケイ酸塩ガラスは、表面にイオン交換による圧縮応力層を有しないことが好ましい。 Moreover, it is preferable that the aluminosilicate glass of the present invention does not have a compressive stress layer by ion exchange on the surface.
 また、本発明のアルミノケイ酸塩ガラスは、カバーガラスに用いることが好ましい。 The aluminosilicate glass of the present invention is preferably used for a cover glass.
試料No.1、2、9のガラスネットワーク中のAlの配位数の割合を示す核磁気共鳴法(NMR)の測定データである。Sample No. It is the measurement data of the nuclear magnetic resonance method (NMR) which shows the ratio of the coordination number of Al in the glass network of 1,2,9.
 本発明のアルミノケイ酸塩ガラスは、LiO、NaO、KO、MgO、CaO、SrO、BaOの群から選ばれる成分の内、少なくとも1成分を含むが、当然ながら、2成分以上の成分を含んでいてもよい。 The aluminosilicate glass of the present invention contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO, but of course, two or more components. May be included.
 本発明のアルミノケイ酸塩ガラスは、ガラスネットワーク中に5配位のAl及び/又は6配位のAlを含み、好ましくはガラスネットワーク中に5配位のAl及び6配位のAlを含む。ガラスネットワーク中に5配位のAl及び6配位のAlが存在していないと、ブリトルネスが上昇し易くなり、またビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が低下し易くなる。 The aluminosilicate glass of the present invention contains five-coordinate Al and / or six-coordinate Al in the glass network, and preferably contains five-coordinate Al and six-coordinate Al in the glass network. If pentacoordinate Al and hexacoordinate Al are not present in the glass network, the brittleness tends to increase, and Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease.
 本発明のアルミノケイ酸塩ガラスは、(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が0.01以上、0.03以上、0.05以上、0.07以上、特に0.10~0.70であることが好ましい。(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が小さ過ぎると、ブリトルネスが上昇し易くなり、またビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が低下し易くなる。 In the aluminosilicate glass of the present invention, (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) is 0.01 or more, 0.03 or more, 0.05 As described above, it is preferably 0.07 or more, particularly preferably 0.10 to 0.70. If (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) is too small, the brittleness tends to increase, and Vickers hardness, fracture toughness K 1c , Young's modulus Crack resistance tends to decrease.
 本発明のアルミノケイ酸塩ガラスは、ガラス組成として、モル%で、SiO 40~80%、Al 5~40%、LiO+NaO+KO+MgO+CaO+SrO+BaO 1~40%、LiO+NaO+KO 0~40%、MgO+CaO+SrO+BaO 0~40%を含有することが好ましい。上記のように各成分の含有範囲を規制した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示はモル%を指すものとする。 The aluminosilicate glass of the present invention has a glass composition of mol%, SiO 2 40-80%, Al 2 O 3 5-40%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO 1-40%, Li 2 O + Na 2 O + K. 2 O 0 to 40%, MgO + CaO + SrO + BaO 0 to 40% are preferably contained. The reason why the content range of each component is regulated as described above is shown below. In addition, in description of the containing range of each component,% display shall show mol%.
 SiOは、ガラスネットワークを形成する成分である。SiOの含有量は、好ましくは40~80%、50~80%、55~75%、特に60~70%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、耐水性や耐候性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 40 to 80%, 50 to 80%, 55 to 75%, in particular 60 to 70%. When the content of SiO 2 is too small, it becomes difficult to vitrify, water resistance and weather resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability and the formability tends to decrease.
 Alは、ガラスネットワーク中に高配位数のAlを導入し、ブリトルネスを低下させると共に、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗を高めるための成分である。また耐候性を高める成分である。Alの含有量は、好ましくは5~40%、10~30%、15~25%、特に20~23%である。Alの含有量が少な過ぎると、ブリトルネスが上昇し易くなり、また耐候性、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性、成形性及び耐失透性が低下し易くなる。 Al 2 O 3 is a component for introducing high coordination number Al into the glass network to lower brittleness and to increase Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance. Moreover, it is a component which improves a weather resistance. The content of Al 2 O 3 is preferably 5 to 40%, 10 to 30%, 15 to 25%, particularly 20 to 23%. If the content of Al 2 O 3 is too small, the brittleness tends to increase, and the weather resistance, Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease. On the other hand, when the content of Al 2 O 3 is too large, the melting properties, formability, and resistance to devitrification tends to drop.
 LiO、NaO、KO、MgO、CaO、SrO及びBaOは、網目修飾酸化物であり、また溶融性、成形性及び熱加工性を高める成分である。これらの成分の合量は1~40%、5~35%、10~30%、特に15~25%である。これらの成分の合量が多過ぎると、耐失透性が低下し易くなる。 Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO are network-modifying oxides, and are components that improve the meltability, moldability, and heat workability. The total amount of these components is 1 to 40%, 5 to 35%, 10 to 30%, especially 15 to 25%. When there is too much total amount of these components, devitrification resistance will fall easily.
 LiO、NaO及びKOは、高温粘度を低下させて、溶融性、成形性及び熱加工性を高める成分である。LiO、NaO及びKOの合量は、好ましくは0~40%、0~30%、0~20%、0~10%、特に0~5%である。LiO、NaO及びKOのそれぞれの含有量は、好ましくは0~30%、0~20%、0~10%、0~5%、特に0~1%である。LiO、NaO及びKOの含有量が多過ぎると、LiO、NaO及びKOのイオン強度が低いため、ガラスネットワーク中に高配位のAlを導入し難くなる。結果として、ブリトルネスが上昇し易くなり、またビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が低下し易くなる。 Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity and improve the meltability, moldability, and thermal processability. The total amount of Li 2 O, Na 2 O and K 2 O is preferably 0-40%, 0-30%, 0-20%, 0-10%, especially 0-5%. The respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0-30%, 0-20%, 0-10%, 0-5%, in particular 0-1%. When Li 2 O, the content of Na 2 O and K 2 O is too large, Li 2 O, since the ionic strength of Na 2 O and K 2 O is low, it is difficult to introduce a high coordination of Al in the glass network Become. As a result, the brittleness tends to increase, and the Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease.
 MgOは、イオン半径が小さく、イオン強度が高いため、ブリトルネスを低下させると共に、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗を高めるために有効な成分であり、また高温粘度を低下させて、溶融性、成形性及び熱加工性を高める成分である。MgOの含有量は、好ましくは0~40%、3~35%、5~30%、特に10~25%である。MgOの含有量が多過ぎると、耐失透性が低下し易くなる。 MgO has a small ionic radius and high ionic strength, so it lowers brittleness, and is an effective component for increasing Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance, and lowers high-temperature viscosity. It is a component that enhances meltability, moldability and heat processability. The content of MgO is preferably 0 to 40%, 3 to 35%, 5 to 30%, particularly 10 to 25%. When there is too much content of MgO, devitrification resistance will fall easily.
 CaO、SrO及びBaOは、高温粘度を低下させて、溶融性、成形性及び熱加工性を高める成分である。CaO、SrO及びBaOの合量は、好ましくは0~15%、0~10%、特に0~5%である。CaO、SrO及びBaOのそれぞれの含有量は、好ましくは0~12%、0~5%、特に0~2%である。CaO、SrO及びBaOの含有量が多過ぎると、耐失透性が低下し易くなる。またSrO及びBaOの含有量が多過ぎると、SrO及びBaOのイオン強度が低いため、ガラスネットワーク中に高配位のAlを導入し難くなる。結果として、ブリトルネスが上昇し易くなり、またビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗が低下し易くなる。 CaO, SrO, and BaO are components that lower the high-temperature viscosity and increase the meltability, moldability, and thermal processability. The total amount of CaO, SrO and BaO is preferably 0 to 15%, 0 to 10%, especially 0 to 5%. The respective contents of CaO, SrO and BaO are preferably 0 to 12%, 0 to 5%, in particular 0 to 2%. When there is too much content of CaO, SrO, and BaO, devitrification resistance will fall easily. Moreover, when there is too much content of SrO and BaO, since the ionic strength of SrO and BaO is low, it will become difficult to introduce | transduce highly coordinated Al in a glass network. As a result, the brittleness tends to increase, and the Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance tend to decrease.
 Alの含有量は、MgO+CaO+SrO+BaOの含有量より多いことが好ましく、MgO+CaO+SrO+BaOの含有量より5%以上多いことがより好ましく、MgO+CaO+SrO+BaOの含有量より10%以上多いことが更に好ましい。Alの含有量がMgO+CaO+SrO+BaOの含有量より少ないと、ガラスネットワーク中に高配位のAlを導入し難くなる。 The content of Al 2 O 3 is preferably greater than the content of MgO + CaO + SrO + BaO, more preferably 5% or more than the content of MgO + CaO + SrO + BaO, and even more preferably 10% or more than the content of MgO + CaO + SrO + BaO. When the content of Al 2 O 3 is less than the content of MgO + CaO + SrO + BaO, it becomes difficult to introduce highly coordinated Al into the glass network.
 モル比MgO/(MgO+CaO+SrO+BaO)は、ブリトルネスを低下させつつ、ビッカース硬度、破壊靱性K1c、ヤング率、クラック抵抗を高める観点から、0.5以上、0.7以上、0.8以上、特に0.9以上が好ましい。なお、「MgO/(MgO+CaO+SrO+BaO)」は、MgOの含有量をMgO、CaO、SrO及びBaOの合量で割った値である。 The molar ratio MgO / (MgO + CaO + SrO + BaO) is 0.5 or more, 0.7 or more, 0.8 or more, particularly 0 from the viewpoint of increasing Vickers hardness, fracture toughness K 1c , Young's modulus, and crack resistance while reducing brittleness. .9 or more is preferable. “MgO / (MgO + CaO + SrO + BaO)” is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO and BaO.
 上記成分以外にも、例えば以下の成分を添加してもよい。 In addition to the above components, for example, the following components may be added.
 Bは、ガラスネットワークを形成する成分であり、またクラック抵抗を高める成分である。しかし、Bの含有量が多過ぎると、歪点や耐候性が低下し易くなる。よって、Bの含有量は、好ましくは0~20%、0~10%、0~5%、特に0~1%である。 B 2 O 3 is a component that forms a glass network and a component that increases crack resistance. However, when the content of B 2 O 3 is too large, the strain point and the weather resistance tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 20%, 0 to 10%, 0 to 5%, particularly 0 to 1%.
 TiOは、耐候性を高める成分であるが、ガラスを着色させる成分である。よって、TiOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。 TiO 2 is a component that enhances the weather resistance, but is a component that colors the glass. Therefore, the content of TiO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
 ZrOは、耐候性を高める成分であるが、耐失透性を低下させる成分である。よって、ZrOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。 ZrO 2 is a component that increases weather resistance, but is a component that decreases devitrification resistance. Therefore, the content of ZrO 2 is preferably 0 to 0.5%, particularly 0 to less than 0.1%.
 清澄剤として、SnO、Cl、SO、CeOの群(好ましくはSnO、SOの群)から選択された一種又は二種以上を0.05~0.5%添加してもよい。 As a fining agent, 0.05 to 0.5% of one or more selected from the group of SnO 2 , Cl, SO 3 and CeO 2 (preferably the group of SnO 2 and SO 3 ) may be added. .
 Feは、ガラス原料に不純物として不可避的に混入する成分であり、着色成分である。よって、Feの含有量は、好ましくは0.5%以下、特に0.01~0.07%である。 Fe 2 O 3 is a component that is inevitably mixed as an impurity in the glass raw material, and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, particularly 0.01 to 0.07%.
 V、Cr、CoO及びNiOは、着色成分である。よって、V、Cr、CoO及びNiOのそれぞれの含有量は、好ましくは0.1%以下、特に0.01%未満である。 V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are coloring components. Therefore, the respective contents of V 2 O 5 , Cr 2 O 3 , CoO 3 and NiO are preferably 0.1% or less, particularly less than 0.01%.
 環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、Bi及びFを含有しないことが好ましい。ここで、「実質的に~を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満であることを指す。 From the environmental consideration, it is preferable that the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F. Here, “substantially does not contain” means that the glass component does not positively add an explicit component but allows it to be mixed as an impurity. Specifically, It indicates that the content is less than 0.05%.
 本発明のアルミノケイ酸塩ガラスは、以下の特性を有することが好ましい。 The aluminosilicate glass of the present invention preferably has the following characteristics.
 ビッカース硬度は、好ましくは5.4GPa以上、5.7GPa以上、6.0GPa以上、6.3GPa以上、6.6GPa以上、特に6.9GPa以上である。ビッカース硬度が低過ぎると、表面傷が付き易くなる。 The Vickers hardness is preferably 5.4 GPa or more, 5.7 GPa or more, 6.0 GPa or more, 6.3 GPa or more, 6.6 GPa or more, particularly 6.9 GPa or more. If the Vickers hardness is too low, surface scratches are likely to occur.
 破壊靱性K1cは、好ましくは0.70MPa・m0.5以上、0.75MPa・m0.5以上、0.80MPa・m0.5以上、0.85MPa・m0.5以上、特に0.90MPa・m0.5以上である。破壊靱性K1cが低過ぎると、クラックが進展し易くなり、ガラスが破損し易くなる。 Fracture toughness K 1c is preferably 0.70 MPa · m 0.5 or more, 0.75 MPa · m 0.5 or more, 0.80 MPa · m 0.5 or more, 0.85 MPa · m 0.5 or more, particularly 0 90 MPa · m 0.5 or more. If the fracture toughness K1c is too low, the cracks are likely to progress and the glass is easily broken.
 ブリトルネスは、好ましくは8.1μm-0.5未満、7.8μm-0.5未満、7.6μm-0.5未満、7.3μm-0.5未満、7.0μm-0.5未満、特に6.7μm-0.5以下である。ブリトルネスが高過ぎると、ガラスが脆くなって、表面傷が付き易くなる。 Buritorunesu preferably 8.1μm less than -0.5, 7.8 .mu.m less than -0.5, 7.6 [mu] m less than -0.5, 7.3 .mu.m less than -0.5, 7.0 .mu.m less than -0.5, In particular, it is 6.7 μm −0.5 or less. If the brittleness is too high, the glass becomes brittle and surface scratches tend to occur.
 ヤング率は、好ましくは70GPa以上、75GPa以上、80GPa以上、85GPa以上、90GPa以上、特に95GPa以上である。ヤング率が低過ぎると、ガラスの平均結合強度が低くなって、クラックが進展し易くなる。 The Young's modulus is preferably 70 GPa or more, 75 GPa or more, 80 GPa or more, 85 GPa or more, 90 GPa or more, particularly 95 GPa or more. If the Young's modulus is too low, the average bond strength of the glass becomes low and cracks tend to progress.
 クラック抵抗は、好ましくは500gf以上であり、好ましくは700gf以上、1000gf以上、1400gf以上、1700gf以上、特に2000~5000gfである。クラック抵抗が低過ぎると、衝撃や熱応力により引っ張り応力が加わると、衝撃等により、潜在的に存在するクラックが進展し、ガラスが破損し易くなる。 The crack resistance is preferably 500 gf or more, preferably 700 gf or more, 1000 gf or more, 1400 gf or more, 1700 gf or more, particularly 2000 to 5000 gf. If the crack resistance is too low, if tensile stress is applied due to impact or thermal stress, cracks that exist potentially develop due to impact or the like, and the glass tends to break.
 結晶化度は、好ましくは30%以下、より好ましくは10%以下、特に好ましくは1%未満、つまり非晶質ガラスである。結晶化度が高過ぎると、ガラスを曲げ加工し難くなる。 The crystallinity is preferably 30% or less, more preferably 10% or less, and particularly preferably less than 1%, that is, an amorphous glass. If the crystallinity is too high, it becomes difficult to bend the glass.
 本発明のアルミノケイ酸塩ガラスは、表面にイオン交換による圧縮応力層を有していないことが好ましい。これにより、イオン交換処理が不要になり、ガラスの製造コストを低廉化することができる。 The aluminosilicate glass of the present invention preferably does not have a compressive stress layer by ion exchange on the surface. Thereby, an ion exchange process becomes unnecessary and the manufacturing cost of glass can be reduced.
 以下のようにして、本発明のアルミノケイ酸塩ガラスを作製することができる。 The aluminosilicate glass of the present invention can be produced as follows.
 まず所定のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500~1700℃で加熱溶融し、清澄、攪拌した後、成形装置に供給して板状に成形し、徐冷することにより、アルミノケイ酸塩ガラスを作製することができる。 First, a glass raw material prepared so as to have a predetermined glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified and stirred, and then fed to a molding apparatus to be formed into a plate shape. By cooling, an aluminosilicate glass can be produced.
 アルミノケイ酸塩ガラスは、種々の形状に成形されるが、カバーガラス等に適用する場合、平板形状に成形すること、つまりガラス板に成形することが好ましい。平板形状に成形する方法として、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法は、表面が未研磨の状態で、表面平滑性に優れたガラス板を大量に作製し得ると共に、大型のガラス板も容易に作製し得る方法である。なお、表面が未研磨であると、ガラス板の製造コストを低廉化することができる。 The aluminosilicate glass is formed into various shapes, but when applied to a cover glass or the like, it is preferably formed into a flat plate shape, that is, formed into a glass plate. As a method of forming into a flat plate shape, it is preferable to employ an overflow down draw method. The overflow downdraw method is a method in which a large number of glass plates can be easily produced while a large amount of glass plates having excellent surface smoothness can be produced with the surface being unpolished. If the surface is unpolished, the manufacturing cost of the glass plate can be reduced.
 オーバーフローダウンドロー法以外にも、フロート法又はロールアウト法でガラス板を成形することも好ましい。特に、フロート法は、大型のガラス板を安価に作製し得る方法である。 In addition to the overflow downdraw method, it is also preferable to form the glass plate by a float method or a rollout method. In particular, the float method is a method capable of producing a large glass plate at low cost.
 ガラス板は、必要に応じて、面取り加工されていることが好ましい。その場合、#800のメタルボンド砥石等により、C面取り加工を行うことが好ましい。このようにすれば、端面強度を高めることができる。必要に応じて、ガラス板の端面をエッチングして、端面に存在するクラックソースを低減することも好ましい。 The glass plate is preferably chamfered as necessary. In that case, it is preferable to perform C chamfering with a # 800 metal bond grindstone or the like. If it does in this way, end face strength can be raised. It is also preferable to reduce the crack source existing on the end face by etching the end face of the glass plate as necessary.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、本発明の実施例(試料No.1~8)と比較例(試料No.9、10)を示している。 Table 1 shows examples of the present invention (sample Nos. 1 to 8) and comparative examples (samples No. 9 and 10).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次のようにしてガラス板を作製した。表1に記載のアルミノケイ酸塩ガラスが得られるように、ガラス原料を調合した。次に、調合済みのガラスバッチを連続溶融炉に投入し、1600℃で20時間溶融した後、清澄、攪拌して、均質な溶融ガラスを得た上で、平板形状に成形した。得られたガラス板について、Alの配位数、ビッカース硬度Hv、破壊靱性K1c、ブリトルネスB、ヤング率、剛性率、ポアソン比及びクラック抵抗を評価した。 A glass plate was produced as follows. The glass raw material was prepared so that the aluminosilicate glass of Table 1 was obtained. Next, the prepared glass batch was put into a continuous melting furnace, melted at 1600 ° C. for 20 hours, then clarified and stirred to obtain a homogeneous molten glass, and then formed into a flat plate shape. The obtained glass plate was evaluated for Al coordination number, Vickers hardness Hv, fracture toughness K 1c , brittleness B, Young's modulus, rigidity, Poisson's ratio, and crack resistance.
 Alの配位数は、核磁気共鳴法(NMR)で測定したものである。27A NMRスペクトルは、BRUKER製の核磁気共鳴分光計を使用した。測定に際し、使用磁場を11.7T、共振周波数を500MHzとし、0.5μsのパルス励起を用いて測定し、遅れ速度を1s~2sとした。なお、「(5Al+6Al)/(4Al+5Al+6Al)」は、(5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)を表している。 The coordination number of Al is measured by nuclear magnetic resonance (NMR). For the 27 A NMR spectrum, a nuclear magnetic resonance spectrometer manufactured by BRUKER was used. In the measurement, the magnetic field used was 11.7 T, the resonance frequency was 500 MHz, measurement was performed using pulse excitation of 0.5 μs, and the delay rate was 1 s to 2 s. Note that “(5Al + 6Al) / (4Al + 5Al + 6Al)” represents (5-coordinated Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al).
 ビッカース硬度Hvは、ビッカース硬度計にて100gfの荷重でビッカース圧子を押し込むことで測定した値である。 Vickers hardness Hv is a value measured by pushing a Vickers indenter with a load of 100 gf with a Vickers hardness meter.
 破壊靱性K1cは、日本工業規格JISR1607「ファインセラミックスの室温破壊じん(靱)性試験方法」で定められる、予き裂導入破壊試験方法(SEPB法:Single-Edge-Precracked-Beam-Method)で測定した値である。 Fracture toughness K 1c is a pre-crack introduction fracture test method (SEPB method: Single-Edge-Precracked-Beam-Method) defined by Japanese Industrial Standards JIS R1607 “Test Method for Room Temperature Fracture Toughness (Toughness) of Fine Ceramics”. It is a measured value.
 ブリトルネスBは、ローン等によって脆さの指標として提案されたものであり(B.R. Lawn and D.B. Marshll, J.Am. Ceram.Soc., 62[7-8] 347-350(1979))、ビッカース硬度を破壊靱性K1cで除して求められる値である。 Brittleness B was proposed as an index of brittleness by Lone et al. (BR Lawn and DB Marshll, J. Am. Ceram. Soc., 62 [7-8] 347-350 ( 1979)), it is a value determined by dividing Vickers hardness fracture toughness K 1c.
 ヤング率と剛性率は、共振法により測定した値であり、ポアソン比は、ヤング率と剛性率から算出した値である。 The Young's modulus and the rigidity are values measured by a resonance method, and the Poisson's ratio is a value calculated from the Young's modulus and the rigidity.
 クラック抵抗は、クラック発生率が50%となる荷重である。クラック発生率は、次のようにして測定した値である。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、所定荷重に設定したビッカース圧子をガラス表面(光学研磨面)に15秒間打ち込み、その15秒後に圧痕の4隅から発生するクラックの数をカウント(1つの圧痕につき最大4とする)する。このようにして圧子を20回打ち込み、総クラック発生数を求めた後、(総クラック発生数/80)×100の式により求める。 Crack resistance is a load with a crack occurrence rate of 50%. The crack occurrence rate is a value measured as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., a Vickers indenter set to a predetermined load is driven into the glass surface (optical polishing surface) for 15 seconds, and 15 seconds later, it is generated from the four corners of the indentation. Count the number of cracks (maximum 4 per indentation). Thus, after indenting the indenter 20 times and determining the total number of cracks generated, the total number of cracks generated is calculated by the formula of (total cracks generated / 80) × 100.
 図1は、試料No.1、2、9のガラスネットワーク中のAlの配位数の割合を示す核磁気共鳴法(NMR)の測定データである。 Fig. 1 shows sample no. It is the measurement data of the nuclear magnetic resonance method (NMR) which shows the ratio of the coordination number of Al in the glass network of 1,2,9.
 表1、図1から分かるように、試料No.1~8は、ガラスネットワーク中に5配位のAl及び/又は6配位のAlが存在しているため、破壊靱性K1c、ビッカース硬度Hv、ヤング率、クラック抵抗が高く、ブリトルネスBが低かった。一方、試料No.9、10は、ガラスネットワーク中に5配位のAl及び6配位のAlが存在していないため、破壊靱性K1c、ビッカース硬度Hv、ヤング率、クラック抵抗が低く、ブリトルネスBが高かった。 As can be seen from Table 1 and FIG. In Nos. 1 to 8, 5-coordinate Al and / or 6-coordinate Al exist in the glass network, so that fracture toughness K 1c , Vickers hardness Hv, Young's modulus, crack resistance is high, and brittleness B is low. It was. On the other hand, sample No. Nos. 9 and 10 had low fracture toughness K 1c , Vickers hardness Hv, Young's modulus, crack resistance, and high brittleness B because pentacoordinate Al and hexacoordinate Al were not present in the glass network.
 本発明のアルミノケイ酸塩ガラスは、スマートフォンのカバーガラスに好適であるが、それ以外にも、CSP、CCD、CIS等のイメージセンサー用基板やカバーガラス、窓ガラス、自動車のフロントガラス、ドアガラス、医薬品用管ガラス、耐熱食器等に適用可能である。 The aluminosilicate glass of the present invention is suitable for a cover glass of a smartphone, but besides that, a substrate for an image sensor such as CSP, CCD, CIS, a cover glass, a window glass, an automobile windshield, a door glass, Applicable to pharmaceutical tube glass, heat-resistant tableware, etc.

Claims (13)

  1.  LiO、NaO、KO、MgO、CaO、SrO、BaOの群から選ばれる成分の内、少なくとも1成分を含み、ガラスネットワーク中に5配位のAl及び/又は6配位のAlを含むことを特徴とするアルミノケイ酸塩ガラス。 It contains at least one component selected from the group consisting of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO, and is a 5-coordinate Al and / or 6-coordinate in the glass network. An aluminosilicate glass characterized by containing Al.
  2.  (5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が0.01以上であることを特徴とする請求項1に記載のアルミノケイ酸塩ガラス。 2. The aluminosilicate glass according to claim 1, wherein (5-coordinate Al + 6-coordinate Al) / (4-coordinate Al + 5-coordinate Al + 6-coordinate Al) is 0.01 or more.
  3.  (5配位のAl+6配位のAl)/(4配位のAl+5配位のAl+6配位のAl)が0.03以上であることを特徴とする請求項1に記載のアルミノケイ酸塩ガラス。 2. The aluminosilicate glass according to claim 1, wherein (5-coordinate Al + 6-coordinated Al) / (4-coordinated Al + 5-coordinated Al + 6-coordinated Al) is 0.03 or more.
  4.  ガラス組成として、モル%で、SiO 40~80%、Al 5~40%、LiO+NaO+KO+MgO+CaO+SrO+BaO 1~40%、LiO+NaO+KO 0~40%、MgO+CaO+SrO+BaO 0~40%を含有することを特徴とする請求項1~3の何れかに記載のアルミノケイ酸塩ガラス。 As a glass composition, SiO 2 40-80%, Al 2 O 3 5-40%, Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO 1-40%, Li 2 O + Na 2 O + K 2 O 0-40%, MgO + CaO + SrO + BaO 0 in mol%. 4. The aluminosilicate glass according to claim 1, wherein the aluminosilicate glass contains ˜40%.
  5.  ガラス組成中のAlの含有量がMgOの含有量以上であり、且つMgOの含有量が10モル%以上であることを特徴とする請求項4に記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to claim 4, wherein the content of Al 2 O 3 in the glass composition is not less than the content of MgO and the content of MgO is not less than 10 mol%.
  6.  ブリトルネスが8.1μm-0.5以下であることを特徴とする請求項1~5の何れかに記載のアルミノケイ酸塩ガラス。 6. The aluminosilicate glass according to claim 1, wherein the brittleness is 8.1 μm −0.5 or less.
  7.  ビッカース硬度が5.0GPa以上であることを特徴とする請求項1~6の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 6, which has a Vickers hardness of 5.0 GPa or more.
  8.  破壊靱性K1cが0.60MPa・m0.5以上であることを特徴とする請求項1~7の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 7, wherein the fracture toughness K 1c is 0.60 MPa · m 0.5 or more.
  9.  ヤング率が60GPa以上であることを特徴とする請求項1~8の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 8, wherein Young's modulus is 60 GPa or more.
  10.  クラック抵抗が500gf以上であることを特徴とする請求項1~9の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 9, which has a crack resistance of 500 gf or more.
  11.  板状であることを特徴とする請求項1~10の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 10, which has a plate shape.
  12.  表面にイオン交換による圧縮応力層を有しないことを特徴とする請求項1~11の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 11, wherein the surface does not have a compressive stress layer by ion exchange.
  13.  カバーガラスに用いることを特徴とする請求項1~12の何れかに記載のアルミノケイ酸塩ガラス。 The aluminosilicate glass according to any one of claims 1 to 12, which is used for a cover glass.
PCT/JP2018/006000 2017-02-28 2018-02-20 Aluminosilicate glass WO2018159386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502902A JP7339605B2 (en) 2017-02-28 2018-02-20 aluminosilicate glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036368 2017-02-28
JP2017-036368 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159386A1 true WO2018159386A1 (en) 2018-09-07

Family

ID=63371279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006000 WO2018159386A1 (en) 2017-02-28 2018-02-20 Aluminosilicate glass

Country Status (2)

Country Link
JP (1) JP7339605B2 (en)
WO (1) WO2018159386A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121889A1 (en) * 2018-12-11 2020-06-18 Agc株式会社 Glass, chemically strengthened glass, and electronic device including same
WO2021010376A1 (en) * 2019-07-17 2021-01-21 Agc株式会社 Glass, chemically strengthened glass, and cover glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180618A (en) * 1977-07-27 1979-12-25 Corning Glass Works Thin silicon film electronic device
JPS61232245A (en) * 1985-04-01 1986-10-16 コ−ニング グラス ワ−クス Optical fiber
JP2010090026A (en) * 2003-02-19 2010-04-22 Nippon Electric Glass Co Ltd Cover glass for semiconductor package

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261232A (en) * 1985-05-13 1986-11-19 Ohara Inc Fire-resistant and heat-resistant glass
CA1300648C (en) * 1987-04-27 1992-05-12 Francis Willis Martin Glass-ceramics for electronic packaging
CN115650602A (en) 2016-01-21 2023-01-31 Agc株式会社 Chemically strengthened glass and glass for chemical strengthening

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180618A (en) * 1977-07-27 1979-12-25 Corning Glass Works Thin silicon film electronic device
JPS61232245A (en) * 1985-04-01 1986-10-16 コ−ニング グラス ワ−クス Optical fiber
JP2010090026A (en) * 2003-02-19 2010-04-22 Nippon Electric Glass Co Ltd Cover glass for semiconductor package

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMISTA P. ET AL.: "Crystallization behaviour in the system Mg0-A1203-Si02", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 192, 1995, pages 529 - 533, XP022270128, DOI: doi:10.1016/0022-3093(95)00451-3 *
INABA SEIJI ET AL.: "Young's Modulus and Compositional Parameters of Oxide Glasses", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 82, December 1999 (1999-12-01), pages 3501 - 3507, XP055417357, DOI: doi:10.1111/j.1151-2916.1999.tb02272.x *
SAKAMURA, HIROYASU ET AL.: "Internal friction in alkali aluminosilicate glasses containing divalent ions", JOURNAL OF THE CERAMIC ASSOCIATION, vol. 93, 1985, pages 781 - 785 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121889A1 (en) * 2018-12-11 2020-06-18 Agc株式会社 Glass, chemically strengthened glass, and electronic device including same
JPWO2020121889A1 (en) * 2018-12-11 2021-10-28 Agc株式会社 Glass, chemically strengthened glass and electronic devices containing it
JP7310830B2 (en) 2018-12-11 2023-07-19 Agc株式会社 Glass, chemically strengthened glass and electronic devices containing the same
WO2021010376A1 (en) * 2019-07-17 2021-01-21 Agc株式会社 Glass, chemically strengthened glass, and cover glass

Also Published As

Publication number Publication date
JP7339605B2 (en) 2023-09-06
JPWO2018159386A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
WO2014003188A1 (en) Toughened glass substrate and manufacturing process therefor
WO2009139427A1 (en) Glass
WO2015199150A1 (en) Glass and chemically toughened glass using same
US11407673B2 (en) High index glasses
WO2018159386A1 (en) Aluminosilicate glass
JP2010030848A (en) Glass
JP5423000B2 (en) Optical glass
JP5413817B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JP2023083562A (en) cover glass
WO2022145281A1 (en) Tempered glass plate
WO2018124084A1 (en) Glass plate for chemical tempering and method for producing chemically tempered glass plate
CN111819159B (en) Tempered glass and glass for tempering
EP3887322A1 (en) High index low density glass
WO2020129578A1 (en) Aluminosilicate glass
JP2021178766A (en) Glass sheet and production method thereof
CN112512981A (en) Tempered glass and glass for tempering
KR20160026888A (en) Alkali-free glass
KR20130127957A (en) Alkali glass and method for manufacturing the same
KR20130127956A (en) Alkali glass and method for manufacturing the same
JP7303482B2 (en) cover glass
JP2010030850A (en) Glass
JP2017057134A (en) Method for producing glass for tempering and tempered glass
KR20180115151A (en) Alkali-free glass with improved brittleness and crack resistance
JP2008273782A (en) Glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761326

Country of ref document: EP

Kind code of ref document: A1