WO2018159181A1 - Rotating electric machine rotor and rotating electric machine equipped with same - Google Patents

Rotating electric machine rotor and rotating electric machine equipped with same Download PDF

Info

Publication number
WO2018159181A1
WO2018159181A1 PCT/JP2018/002632 JP2018002632W WO2018159181A1 WO 2018159181 A1 WO2018159181 A1 WO 2018159181A1 JP 2018002632 W JP2018002632 W JP 2018002632W WO 2018159181 A1 WO2018159181 A1 WO 2018159181A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
electrical machine
rotating electrical
space
Prior art date
Application number
PCT/JP2018/002632
Other languages
French (fr)
Japanese (ja)
Inventor
祐二 狩野
泰行 齋藤
山崎 慎司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880004614.3A priority Critical patent/CN110326191B/en
Priority to JP2019502514A priority patent/JP7113003B2/en
Publication of WO2018159181A1 publication Critical patent/WO2018159181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a rotor of a rotating electric machine such as a motor or a generator, and a rotating electric machine including the same.
  • An object of the present invention is to improve the demagnetization resistance when a plurality of permanent magnets are arranged while maintaining the high torque performance of the motor.
  • a rotor of a rotating electrical machine is a rotor of a rotating electrical machine that forms a first space that houses a first magnet and a second space that houses a second magnet, and the first space and
  • the bridge thickness that is the outermost part and the outermost part of the rotor core is larger than the bridge space that is the outermost part and the outermost part of the second space, and the outermost part of the second magnet is the outermost part of the second magnet. It arrange
  • the present invention it is possible to improve the demagnetization resistance when a plurality of permanent magnets are arranged while maintaining the high torque performance of the motor.
  • FIG. 2 is a partial cross-sectional view of an rZ cross section of the rotating electrical machine 200 shown in FIG.
  • FIG. 4 is a view showing an r- ⁇ section of the stator 230 and the rotor 250, and shows an AA section view of FIG.
  • FIG. 5 is a partially enlarged view showing an enlarged portion corresponding to one magnetic pole in the cross-sectional view of the rotor 280 and the stator 230 shown in FIG. 4. It is the elements on larger scale which expanded and showed one magnetic pole part of sectional drawing of the rotor 280 and the stator 230 which concern on other embodiment.
  • the rotating electrical machine according to the present invention can be applied to a pure electric vehicle that runs only by the rotating electrical machine and a hybrid type electric vehicle that is driven by both the engine and the rotating electrical machine.
  • a hybrid type electric vehicle is taken as an example. explain.
  • FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electrical machine according to an embodiment of the present invention.
  • the vehicle 100 is mounted with an engine 120, a first rotating electrical machine 200, a second rotating electrical machine 202, and a battery 180.
  • the battery 180 supplies DC power to the first rotating electrical machine 200 and the second rotating electrical machine 202 via the power converter 600 when the driving force by the first rotating electrical machine 200 and the second rotating electrical machine 202 is required. Further, battery 180 receives DC power from first rotating electric machine 200 and second rotating electric machine 202 during regenerative travel.
  • the exchange of DC power between the battery 180 and the first rotating electrical machine 200 and the second rotating electrical machine 202 is performed via the power conversion device 600.
  • the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt system power) and supplies DC power to a control circuit described below.
  • Rotational torque generated by the engine 120, the first rotating electric machine 200, and the second rotating electric machine 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 160.
  • the transmission 130 is controlled by a transmission control device 134
  • the engine 120 is controlled by an engine control device 124.
  • the battery 180 is controlled by the battery control device 184.
  • Transmission control device 134, engine control device 124, battery control device 184, power conversion device 600 and integrated control device 170 are connected by communication line 174.
  • the integrated control device 170 is a higher-level control device than the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184, and the transmission control device 134, the engine control device 124, and the power conversion device 600. And information representing each state of the battery control device 184 is received from each of them via the communication line 174. The integrated control device 170 calculates a control command for each control device based on the acquired information. The calculated control command is transmitted to each control device via the communication line 174.
  • the high voltage battery 180 is constituted by a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs high-voltage DC power of 250 to 600 volts or more.
  • the battery control device 184 outputs the charge / discharge status of the battery 180 and the state of each unit cell battery constituting the battery 180 to the integrated control device 170 via the communication line 174.
  • the integrated control device 170 determines that the battery 180 needs to be charged based on the information from the battery control device 184, the integrated control device 170 instructs the power conversion device 600 to perform a power generation operation.
  • the integrated control device 170 mainly manages the output torque of the engine 120 and the first rotating electric machine 200 and the second rotating electric machine 202, the output torque of the engine 120, and the output of the first rotating electric machine 200 and the second rotating electric machine 202. Computation processing of the total torque and torque distribution ratio with torque is performed, and a control command based on the computation processing result is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600.
  • the power conversion device 600 controls the first rotating electrical machine 200 and the second rotating electrical machine 202 so as to generate torque output or generated power according to the command.
  • Power converter 600 is provided with a power semiconductor that constitutes an inverter for operating first rotating electric machine 200 and second rotating electric machine 202.
  • the power conversion device 600 controls the switching operation of the power semiconductor based on a command from the integrated control device 170. By the switching operation of the power semiconductor, the first rotating electric machine 200 and the second rotating electric machine 202 are operated as an electric motor or a generator.
  • DC power from the high-voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600.
  • the power conversion device 600 converts the DC power supplied by controlling the switching operation of the power semiconductor into three-phase AC power, and supplies it to the first rotating electric machine 200 and the second rotating electric machine 202.
  • the rotors of the first rotating electrical machine 200 and the second rotating electrical machine 202 are rotationally driven with rotational torque applied from the outside, Three-phase AC power is generated in the stator windings of the first rotating electric machine 200 and the second rotating electric machine 202.
  • the generated three-phase AC power is converted into DC power by the power converter 600, and the DC power is supplied to the high-voltage battery 180, whereby the battery 180 is charged.
  • FIG. 2 shows a circuit diagram of the power conversion device 600 of FIG.
  • the power conversion device 600 is provided with a first inverter device for the first rotating electrical machine 200 and a second inverter device for the second rotating electrical machine 202.
  • the first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotating electrical machine 200.
  • the drive circuit 652 is provided on the drive circuit board 650.
  • the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotating electrical machine 202. Yes.
  • the drive circuit 656 is provided on the drive circuit board 654.
  • the control circuit 648 provided on the control circuit board 646, the capacitor module 630, and the transmission / reception circuit 644 mounted on the connector board 642 are commonly used by the first inverter device and the second inverter device.
  • the power modules 610 and 620 operate according to drive signals output from the corresponding first drive circuit 652 and second drive circuit 656, respectively.
  • the power modules 610 and 620 respectively convert DC power supplied from the battery 180 into three-phase AC power, and the stator is an armature winding of the first rotating electric machine 200 and the second rotating electric machine 202 corresponding thereto. Supply to winding. Further, the power modules 610 and 620 convert AC power induced in the stator windings of the first rotating electric machine 200 and the second rotating electric machine 202 into DC and supply it to the battery 180.
  • the power modules 610 and 620 are provided with a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 180, respectively.
  • Each series circuit includes a power semiconductor 21 constituting an upper arm and a power semiconductor 21 constituting a lower arm, and these power semiconductors 21 are connected in series.
  • the power module 610 and the power module 620 have substantially the same circuit configuration as shown in FIG. 2, and the power module 610 will be described as a representative here.
  • an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element.
  • the IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode.
  • a diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21.
  • the diode 38 includes two electrodes, a cathode electrode and an anode electrode.
  • the cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction.
  • Each is electrically connected to the emitter electrode.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode.
  • a parasitic diode whose forward direction is from the drain electrode to the source electrode is provided between the source electrode and the drain electrode, so there is no need to provide the diode 38 of FIG.
  • the arm of each phase is configured such that the emitter electrode of the IGBT 21 and the collector electrode of the IGBT 21 are electrically connected in series.
  • the emitter electrode of the IGBT 21 and the collector electrode of the IGBT 21 are electrically connected in series.
  • only one IGBT of each upper and lower arm of each phase is shown, but since the current capacity to be controlled is large, a plurality of IGBTs are actually electrically connected in parallel. ing. Below, in order to simplify description, it demonstrates as one power semiconductor.
  • each upper and lower arm of each phase is composed of three IGBTs.
  • the collector electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the source electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180.
  • the midpoint of each arm of each phase (the connection portion between the emitter electrode of the upper arm side IGBT and the collector electrode of the IGBT on the lower arm side) is the corresponding phase of the corresponding first rotating electric machine 200 or second rotating electric machine 202. It is electrically connected to the armature winding (stator winding).
  • the first drive circuit 652 and the second drive circuit 656 constitute a drive unit for controlling the corresponding power modules 610 and 620, and drive the IGBT 21 based on the control signal output from the control circuit 648. For generating a driving signal.
  • the drive signals generated by the first drive circuit 652 and the second drive circuit 656 are output to the gates of the power semiconductors 21 of the corresponding power modules 610 and 620, respectively.
  • the first drive circuit 652 and the second drive circuit 656 are each provided with six integrated circuits that generate drive signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits are made into one block. It is configured.
  • the control circuit 648 constitutes a control unit of each power module 610 and 620, and is constituted by a microcomputer that calculates a control signal (control value) for operating (turning on / off) a plurality of switching power semiconductor elements. Has been.
  • the control circuit 648 receives a torque command signal (torque command value) from the host controller, sensor outputs of the current sensors 660 and 662, and sensor outputs of the rotation sensors mounted on the first rotating electric machine 200 and the second rotating electric machine 202. Entered.
  • the control circuit 648 calculates a control value based on these input signals, and outputs a control signal for controlling the switching timing to the first drive circuit 652 and the second drive circuit 656.
  • the transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates information with other apparatuses via the communication line 174 in FIG. Send and receive.
  • Capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in DC voltage caused by the switching operation of IGBT 21, and is electrically connected in parallel to terminals on the DC side of power module 610 and power module 620. .
  • FIG. 3 is a partial cross-sectional view of the first rotary electric machine 200 shown in FIG.
  • the first rotating electrical machine 200 and the second rotating electrical machine 202 have substantially the same structure, and the structure of the first rotating electrical machine 200 will be described below as a representative example. However, the structure shown below does not need to be employed in both the first rotating electrical machine 200 and the second rotating electrical machine 202, and may be employed in only one of them.
  • a stator 230 is held inside the housing 212.
  • the stator 230 includes a stator core 232 and a stator winding 238.
  • a rotor 280 is rotatably held through a gap 222.
  • the rotor 280 includes a rotor core 282 fixed to the shaft 218, a permanent magnet 284, and a non-magnetic contact plate 226.
  • the housing 212 has a pair of end brackets 214 provided with bearings 216, and the shaft 218 is rotatably held by these bearings 216.
  • the shaft 218 is provided with a resolver 224 that detects the position and rotation speed of the pole of the rotor 280.
  • the output from the resolver 224 is taken into the control circuit 648 shown in FIG.
  • the control circuit 648 outputs a control signal to the drive circuit 652 based on the fetched output.
  • the drive circuit 652 outputs a drive signal based on the control signal to the power module 610.
  • the power module 610 performs a switching operation based on the control signal, and converts DC power supplied from the battery 180 into three-phase AC power. This three-phase AC power is supplied to the stator winding 238 shown in FIG. 3 and a rotating magnetic field is generated in the stator 230.
  • the frequency of the three-phase alternating current is controlled based on the output value of the resolver 224, and the phase of the three-phase alternating current with respect to the rotor 280 is also controlled based on the output value of the resolver 224.
  • FIG. 4 is a view showing an r- ⁇ section of the stator 230 and the rotor 250, and shows an AA section view of FIG. In FIG. 4, the housing 212, the shaft 218, and the stator winding 238 are not shown.
  • a large number of slots 237 and teeth 236 are evenly arranged on the inner circumference side of the stator core 232 over the entire circumference.
  • all slots and teeth are not labeled, and only some teeth and slots are represented by symbols.
  • a slot insulating material (not shown) is provided in the slot 237, and a plurality of phase windings of U phase, V phase, and W phase constituting the stator winding 238 of FIG.
  • the number of slots per phase per pole is 2, 48 slots 237 are formed at equal intervals.
  • the number of slots per phase per pole means that the U phase, V phase, and W phase of each slot 237 are in the ⁇ direction (circumferential direction) U phase, U phase, V phase, V phase, W phase, W phase,.
  • Means that two phases are arranged side by side, and six slots 237 are used for one U phase, V phase, and W phase.
  • the number of slots 237 of the stator core 232 is 48 of 6 ⁇ 8.
  • each hole 253 is formed along the z direction (axial direction), and permanent magnets 254 are embedded in the holes 253 and fixed with a filler such as an adhesive or resin.
  • the width in the ⁇ direction of the hole 253 is set larger than the width in the ⁇ direction between the permanent magnet 254a and the permanent magnet 254b, and the hole spaces 257 on both sides of the permanent magnet 254 function as magnetic gaps.
  • the hole space 257 may be filled with an adhesive, or may be solidified integrally with the permanent magnet 254 with a molding resin.
  • the permanent magnet 254 acts as a field pole of the rotor 250, and has an 8-pole configuration in this embodiment.
  • the magnetization direction of the permanent magnet 254 is perpendicular to the long side of the permanent magnet 254, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N-pole and the surface on the shaft side is S-pole, the stator side surface of the adjacent permanent magnet 254b is S-pole and the surface on the shaft side is N-pole. . These permanent magnets 254a and permanent magnets 254b are alternately arranged in the ⁇ direction.
  • the permanent magnet 254 may be inserted into the hole 253 after being magnetized, or may be magnetized by applying a strong magnetic field after being inserted into the hole 253 of the rotor core 252.
  • the magnetized permanent magnet 254 is a strong magnet, if the magnet is magnetized before the permanent magnet 254 is fixed to the rotor 250, a strong attractive force between the rotor core 252 and the permanent magnet 254 is fixed. Occurs and hinders assembly work.
  • due to the strong attractive force of the permanent magnet 254 dust such as iron powder may adhere to the permanent magnet 254. Therefore, when considering the productivity of the rotating electrical machine, it is preferable that the permanent magnet 254 is magnetized after being inserted into the rotor core 252.
  • the permanent magnet 254 may be a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bond magnet, or the like.
  • the residual magnetic flux density of the permanent magnet 254 is about 0.4 to 1.45T.
  • the alternating current since the alternating current is controlled to be sinusoidal, the product of the fundamental wave component of the interlinkage magnetic flux and the fundamental wave component of the alternating current becomes the time-average component of the torque, and the harmonic component of the interlinkage magnetic flux
  • the product of the fundamental wave components of the alternating current becomes the torque ripple that is the harmonic component of the torque. That is, in order to reduce the torque ripple, the harmonic component of the flux linkage may be reduced.
  • the harmonic component of the interlinkage magnetic flux since the product of the interlinkage magnetic flux and the angular velocity at which the rotor rotates is the induced voltage, reducing the harmonic component of the interlinkage magnetic flux is equivalent to reducing the harmonic component of the induced voltage.
  • FIG. 5 is a partially enlarged view showing an enlargement of one magnetic pole portion of the cross-sectional view shown in FIG.
  • the magnet insertion hole 253 forms a first insertion hole 253a that houses the first permanent magnet 254a1 and two second insertion holes 253b that house the two second permanent magnets 254a2.
  • the first magnetic gap 257a is formed outside the magnetic pole of the first permanent magnet 254a1 and in the vicinity of both ends of the first permanent magnet 254a1.
  • a second magnetic gap 257b is formed outside the magnetic pole of the second permanent magnet 254a2.
  • the second insertion hole 253b is formed in a V shape, and the first insertion hole 253a is formed between the second insertion holes 253b.
  • the two second insertion holes 253b are symmetrical with respect to the d-axis 300, are formed apart from each other, and each store a second permanent magnet 254a2.
  • the two second insertion holes 253b are formed apart from each other, but the insertion holes may be connected across the d-axis 300.
  • Such a saddle arrangement in which the magnet insertion hole and the permanent magnet are arranged has a higher torque than a permanent magnet having a V-shaped arrangement.
  • a plurality of permanent magnets are not arranged in a balanced manner against the demagnetization of the permanent magnets, only a part of the magnets will be extremely easily demagnetized.
  • the magnetic flux generated from the stator 230 is easily received by the first permanent magnet 254a1, and is easily demagnetized.
  • the bridge thickness W1 that is the finest between the first insertion hole 253a and the outer periphery of the rotor core 252 is the bridge thickness W1 that is the finest between the second insertion hole 253b and the outer periphery of the rotor core 252. It is formed to be larger than the length W2.
  • the outermost part of the second permanent magnet 254a2 is arranged to be inside the innermost part of the first permanent magnet 254a1.
  • the magnetic flux from the stator 230 does not concentrate on either the first permanent magnet 254a1 or the second permanent magnet 254a2, and the first permanent magnet 254a1 and the second permanent magnet 254a1 and the second permanent magnet 254a2 are maintained while maintaining the high torque performance of the saddle arrangement.
  • the permanent magnet 254a2 can have an equivalent demagnetization resistance.
  • the second permanent magnet 254a2 when projected from the direction parallel to the direction of the magnetic flux generated from the second permanent magnet 254a2, the second permanent magnet 254a2 is projected so that the projected portion of the outer peripheral end 258 overlaps the first insertion hole 253a.
  • the permanent magnet 254a2 is formed.
  • the first permanent magnet 254a1 and the second permanent magnet 254a2 can have the same demagnetization resistance while maintaining the high torque performance of the saddle arrangement.
  • the first permanent magnet 254a and the second permanent magnet 254b are housed one by one in the first insertion hole 254a1 and the second insertion hole 254a2, respectively, but it is equivalent even if the permanent magnet is divided in the circumferential direction. Performance can be obtained.
  • FIG. 6 is a partially enlarged view showing one magnetic pole part in a cross-sectional view of a rotor 280 and a stator 230 according to another embodiment.
  • FIG. 5 is different from the embodiment shown in FIG. 5 in that a mechanical bridge is provided between the magnetic gap 257b and a portion of the second insertion hole 253b where the second permanent magnet 254a2 is accommodated in order to increase the mechanical strength. This is a point where a portion 259 is provided.
  • a plurality of mechanical bridge portions 259 may be provided.
  • the magnetic flux leaks from the permanent magnet to reduce the performance, so it is desirable not to provide more than necessary.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The purpose of the present invention is to improve demagnetization resistance when a plurality of permanent magnets are arranged, while maintaining high torque performance of a motor. The rotating electric machine rotor according to the present invention forms a first space for housing a first magnet and a second space for housing a second magnet, wherein: a bridge width that becomes the narrowest portion between the first space and the outer circumference of a rotor core is larger than a bridge width that becomes the narrowest portion between the second space and the outer circumference of the rotor core; and the second magnet is arranged so that an outermost part of the second magnet is located on the inner side than an innermost part of the first magnet.

Description

回転電機の回転子及びこれを備えた回転電機Rotating electric machine rotor and rotating electric machine equipped with the same
 本発明は、モータや発電機等の回転電機の回転子、及びこれを備えた回転電機に関する。 The present invention relates to a rotor of a rotating electric machine such as a motor or a generator, and a rotating electric machine including the same.
 自動車駆動用などに用いられるモータは、高回転かつ高トルクが求められる。特許文献1に示されるように、トルクを向上させるために、モータに搭載されるロータが、2つのフラックスバリア間の磁路の幅をw1とし、フラックスバリアと外周フラックスバリアの端部との間の磁路の幅をw2としたときw1≧w2の関係を満たすようフラックスバリアを配置する技術が記載されている。 Motors used for driving automobiles are required to have high rotation and high torque. As shown in Patent Document 1, in order to improve the torque, the rotor mounted on the motor sets the width of the magnetic path between the two flux barriers to w1, and between the flux barrier and the end of the outer peripheral flux barrier. Describes a technique in which a flux barrier is arranged so as to satisfy the relationship of w1 ≧ w2, where w2 is the width of the magnetic path.
 しかしながら、モータの高トルク性能を維持しつつ複数の永久磁石を配置した場合における減磁耐力を考慮するための構成としては不十分であった。 However, the structure for considering the demagnetization resistance when a plurality of permanent magnets are arranged while maintaining the high torque performance of the motor is insufficient.
特開2006-314152号公報JP 2006-314152 A
 本発明の課題は、モータの高トルク性能を維持しつつ複数の永久磁石を配置した場合における減磁耐力の向上を図ることである。 An object of the present invention is to improve the demagnetization resistance when a plurality of permanent magnets are arranged while maintaining the high torque performance of the motor.
 本発明に係る回転電機の回転子は、第1磁石を収納する第1空間と、第2磁石を収納する第2空間と、を形成する回転電機の回転子であって、前記第1空間と回転子鉄心外周と最細部となるブリッジ太さは、前記第2空間と回転子鉄心外周と最細部となるブリッジ太さよりも大きく、前記第2磁石は、当該第2磁石の最外部が前記第1磁石の最内部よりも内側となるように配置される。 A rotor of a rotating electrical machine according to the present invention is a rotor of a rotating electrical machine that forms a first space that houses a first magnet and a second space that houses a second magnet, and the first space and The bridge thickness that is the outermost part and the outermost part of the rotor core is larger than the bridge space that is the outermost part and the outermost part of the second space, and the outermost part of the second magnet is the outermost part of the second magnet. It arrange | positions so that it may become inside from the innermost part of 1 magnet.
 本発明により、モータの高トルク性能を維持しつつ複数の永久磁石を配置した場合における減磁耐力の向上を図ることができる。 According to the present invention, it is possible to improve the demagnetization resistance when a plurality of permanent magnets are arranged while maintaining the high torque performance of the motor.
本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。It is a figure showing the schematic structure of the hybrid electric vehicle carrying the rotary electric machine of one embodiment of the present invention. 図1の電力変換装置600の回路図である。It is a circuit diagram of the power converter device 600 of FIG. 図1に示された回転電機200のr-Z断面の部分断面図である。FIG. 2 is a partial cross-sectional view of an rZ cross section of the rotating electrical machine 200 shown in FIG. 固定子230および回転子250のr-θ断面を示す図であり、図3のA-A断面図を示したものである。FIG. 4 is a view showing an r-θ section of the stator 230 and the rotor 250, and shows an AA section view of FIG. 図4に示した回転子280と固定子230の断面図の1磁極分を拡大して示した部分拡大図である。FIG. 5 is a partially enlarged view showing an enlarged portion corresponding to one magnetic pole in the cross-sectional view of the rotor 280 and the stator 230 shown in FIG. 4. 他の実施形態に係る回転子280と固定子230の断面図の1磁極分を拡大して示した部分拡大図である。It is the elements on larger scale which expanded and showed one magnetic pole part of sectional drawing of the rotor 280 and the stator 230 which concern on other embodiment.
 以下、図を参照して本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 本実施形態では、例えば電気自動車の走行用モータとして好適である。本発明による回転電機は、回転電機のみによって走行する純粋な電気自動車や、エンジンと回転電機の双方によって駆動されるハイブリッド型の電気自動車にも適用できるが、以下ではハイブリッド型の電気自動車を例に説明する。 In this embodiment, it is suitable as a motor for driving an electric vehicle, for example. The rotating electrical machine according to the present invention can be applied to a pure electric vehicle that runs only by the rotating electrical machine and a hybrid type electric vehicle that is driven by both the engine and the rotating electrical machine. Hereinafter, a hybrid type electric vehicle is taken as an example. explain.
 図1は、本発明の一実施形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。車両100には、エンジン120と第1回転電機200と第2回転電機202とバッテリ180とが搭載されている。 FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electrical machine according to an embodiment of the present invention. The vehicle 100 is mounted with an engine 120, a first rotating electrical machine 200, a second rotating electrical machine 202, and a battery 180.
 バッテリ180は、第1回転電機200と第2回転電機202による駆動力が必要な場合には電力変換装置600を介して第1回転電機200と第2回転電機202に直流電力を供給する。さらにバッテリ180は、回生走行時には第1回転電機200と第2回転電機202から直流電力を受ける。 The battery 180 supplies DC power to the first rotating electrical machine 200 and the second rotating electrical machine 202 via the power converter 600 when the driving force by the first rotating electrical machine 200 and the second rotating electrical machine 202 is required. Further, battery 180 receives DC power from first rotating electric machine 200 and second rotating electric machine 202 during regenerative travel.
 バッテリ180と第1回転電機200及び第2回転電機202との間の直流電力の授受は、電力変換装置600を介して行われる。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に直流電力を供給する。 The exchange of DC power between the battery 180 and the first rotating electrical machine 200 and the second rotating electrical machine 202 is performed via the power conversion device 600. Although not shown, the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt system power) and supplies DC power to a control circuit described below.
 エンジン120および第1回転電機200と第2回転電機202による回転トルクは、変速機130とデファレンシャルギア160を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。 Rotational torque generated by the engine 120, the first rotating electric machine 200, and the second rotating electric machine 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 160. The transmission 130 is controlled by a transmission control device 134, and the engine 120 is controlled by an engine control device 124.
 バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134、エンジン制御装置124、バッテリ制御装置184、電力変換装置600および統合制御装置170は、通信回線174によって接続されている。 The battery 180 is controlled by the battery control device 184. Transmission control device 134, engine control device 124, battery control device 184, power conversion device 600 and integrated control device 170 are connected by communication line 174.
 統合制御装置170は、変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184よりも上位の制御装置であり、変速機制御装置134,エンジン制御装置124,電力変換装置600およびバッテリ制御装置184の各状態を表す情報を、通信回線174を介してそれらからそれぞれ受け取る。統合制御装置170は、取得したそれらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線174を介してそれぞれの制御装置へ送信される。 The integrated control device 170 is a higher-level control device than the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184, and the transmission control device 134, the engine control device 124, and the power conversion device 600. And information representing each state of the battery control device 184 is received from each of them via the communication line 174. The integrated control device 170 calculates a control command for each control device based on the acquired information. The calculated control command is transmitted to each control device via the communication line 174.
 高電圧のバッテリ180は、リチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。バッテリ制御装置184は、バッテリ180の充放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。 The high voltage battery 180 is constituted by a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs high-voltage DC power of 250 to 600 volts or more. The battery control device 184 outputs the charge / discharge status of the battery 180 and the state of each unit cell battery constituting the battery 180 to the integrated control device 170 via the communication line 174.
 統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。また、統合制御装置170は、主に、エンジン120および第1回転電機200と第2回転電機202の出力トルクの管理、エンジン120の出力トルクと第1回転電機200と第2回転電機202の出力トルクとの総合トルクやトルク分配比の演算処理を行い、その演算処理結果に基づく制御指令を、変速機制御装置134,エンジン制御装置124および電力変換装置600へ送信する。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように第1回転電機200と第2回転電機202を制御する。 If the integrated control device 170 determines that the battery 180 needs to be charged based on the information from the battery control device 184, the integrated control device 170 instructs the power conversion device 600 to perform a power generation operation. The integrated control device 170 mainly manages the output torque of the engine 120 and the first rotating electric machine 200 and the second rotating electric machine 202, the output torque of the engine 120, and the output of the first rotating electric machine 200 and the second rotating electric machine 202. Computation processing of the total torque and torque distribution ratio with torque is performed, and a control command based on the computation processing result is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600. Based on the torque command from the integrated control device 170, the power conversion device 600 controls the first rotating electrical machine 200 and the second rotating electrical machine 202 so as to generate torque output or generated power according to the command.
 電力変換装置600には、第1回転電機200と第2回転電機202を運転するためのインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このパワー半導体のスイッチング動作により、第1回転電機200と第2回転電機202は電動機としてあるいは発電機として運転される。 Power converter 600 is provided with a power semiconductor that constitutes an inverter for operating first rotating electric machine 200 and second rotating electric machine 202. The power conversion device 600 controls the switching operation of the power semiconductor based on a command from the integrated control device 170. By the switching operation of the power semiconductor, the first rotating electric machine 200 and the second rotating electric machine 202 are operated as an electric motor or a generator.
 第1回転電機200と第2回転電機202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御して供給された直流電力を3相交流電力に変換し、第1回転電機200と第2回転電機202に供給する。 When operating the first rotating electric machine 200 and the second rotating electric machine 202 as electric motors, DC power from the high-voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600. The power conversion device 600 converts the DC power supplied by controlling the switching operation of the power semiconductor into three-phase AC power, and supplies it to the first rotating electric machine 200 and the second rotating electric machine 202.
 一方、第1回転電機200と第2回転電機202を発電機として運転する場合には、第1回転電機200と第2回転電機202の回転子が外部から加えられる回転トルクで回転駆動され、第1回転電機200と第2回転電機202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより、バッテリ180が充電される。 On the other hand, when the first rotating electrical machine 200 and the second rotating electrical machine 202 are operated as generators, the rotors of the first rotating electrical machine 200 and the second rotating electrical machine 202 are rotationally driven with rotational torque applied from the outside, Three-phase AC power is generated in the stator windings of the first rotating electric machine 200 and the second rotating electric machine 202. The generated three-phase AC power is converted into DC power by the power converter 600, and the DC power is supplied to the high-voltage battery 180, whereby the battery 180 is charged.
 図2は、図1の電力変換装置600の回路図を示す。電力変換装置600には、第1回転電機200のための第1のインバータ装置と、第2回転電機202のための第2のインバータ装置とが設けられている。 FIG. 2 shows a circuit diagram of the power conversion device 600 of FIG. The power conversion device 600 is provided with a first inverter device for the first rotating electrical machine 200 and a second inverter device for the second rotating electrical machine 202.
 第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。 The first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotating electrical machine 200. The drive circuit 652 is provided on the drive circuit board 650.
 一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2駆動回路656と、回転電機202の電流を検知する電流センサ662とを備えている。駆動回路656は駆動回路基板654に設けられている。 On the other hand, the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotating electrical machine 202. Yes. The drive circuit 656 is provided on the drive circuit board 654.
 制御回路基板646に設けられた制御回路648、コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通に使用される。 The control circuit 648 provided on the control circuit board 646, the capacitor module 630, and the transmission / reception circuit 644 mounted on the connector board 642 are commonly used by the first inverter device and the second inverter device.
 パワーモジュール610及び620は、それぞれ対応する第1駆動回路652及び第2駆動回路656から出力された駆動信号によって動作する。パワーモジュール610及び620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する第1回転電機200及び第2回転電機202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610及び620は、第1回転電機200及び第2回転電機202の固定子巻線に誘起された交流電力を直流に変換し、バッテリ180に供給する。 The power modules 610 and 620 operate according to drive signals output from the corresponding first drive circuit 652 and second drive circuit 656, respectively. The power modules 610 and 620 respectively convert DC power supplied from the battery 180 into three-phase AC power, and the stator is an armature winding of the first rotating electric machine 200 and the second rotating electric machine 202 corresponding thereto. Supply to winding. Further, the power modules 610 and 620 convert AC power induced in the stator windings of the first rotating electric machine 200 and the second rotating electric machine 202 into DC and supply it to the battery 180.
 パワーモジュール610及び620は、図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示す如く回路構成がほぼ同じであり、ここではパワーモジュール610で代表して説明する。 The power modules 610 and 620 are provided with a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 180, respectively. Has been. Each series circuit includes a power semiconductor 21 constituting an upper arm and a power semiconductor 21 constituting a lower arm, and these power semiconductors 21 are connected in series. The power module 610 and the power module 620 have substantially the same circuit configuration as shown in FIG. 2, and the power module 610 will be described as a representative here.
 本実施形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。 In this embodiment, an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element. The IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode. A diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21. The diode 38 includes two electrodes, a cathode electrode and an anode electrode. The cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction. Each is electrically connected to the emitter electrode.
 なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。 A MOSFET (metal oxide semiconductor field effect transistor) may be used as the switching power semiconductor element. The MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode. In the case of a MOSFET, a parasitic diode whose forward direction is from the drain electrode to the source electrode is provided between the source electrode and the drain electrode, so there is no need to provide the diode 38 of FIG.
 各相のアームは、IGBT21のエミッタ電極とIGBT21のコレクタ電極とが電気的に直列に接続されて構成されている。なお、本実施形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。 The arm of each phase is configured such that the emitter electrode of the IGBT 21 and the collector electrode of the IGBT 21 are electrically connected in series. In the present embodiment, only one IGBT of each upper and lower arm of each phase is shown, but since the current capacity to be controlled is large, a plurality of IGBTs are actually electrically connected in parallel. ing. Below, in order to simplify description, it demonstrates as one power semiconductor.
  図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のコレクタ電極はバッテリ180の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのエミッタ電極と下アーム側のIGBTのコレクタ電極との接続部分)は、対応する第1回転電機200や第2回転電機202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。 In the example shown in FIG. 2, each upper and lower arm of each phase is composed of three IGBTs. The collector electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the source electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180. The midpoint of each arm of each phase (the connection portion between the emitter electrode of the upper arm side IGBT and the collector electrode of the IGBT on the lower arm side) is the corresponding phase of the corresponding first rotating electric machine 200 or second rotating electric machine 202. It is electrically connected to the armature winding (stator winding).
 第1駆動回路652と第2駆動回路656は、対応するパワーモジュール610及び620を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。 The first drive circuit 652 and the second drive circuit 656 constitute a drive unit for controlling the corresponding power modules 610 and 620, and drive the IGBT 21 based on the control signal output from the control circuit 648. For generating a driving signal.
 それぞれの第1駆動回路652と第2駆動回路656で発生した駆動信号は、対応するパワーモジュール610及び620の各パワー半導体21のゲートにそれぞれ出力される。第1駆動回路652と第2駆動回路656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。 The drive signals generated by the first drive circuit 652 and the second drive circuit 656 are output to the gates of the power semiconductors 21 of the corresponding power modules 610 and 620, respectively. The first drive circuit 652 and the second drive circuit 656 are each provided with six integrated circuits that generate drive signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits are made into one block. It is configured.
 制御回路648は、各パワーモジュール610及び620の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660,662のセンサ出力、第1回転電機200及び第2回転電機202に搭載された回転センサのセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、第1駆動回路652及び第2駆動回路656にスイッチングタイミングを制御するための制御信号を出力する。 The control circuit 648 constitutes a control unit of each power module 610 and 620, and is constituted by a microcomputer that calculates a control signal (control value) for operating (turning on / off) a plurality of switching power semiconductor elements. Has been. The control circuit 648 receives a torque command signal (torque command value) from the host controller, sensor outputs of the current sensors 660 and 662, and sensor outputs of the rotation sensors mounted on the first rotating electric machine 200 and the second rotating electric machine 202. Entered. The control circuit 648 calculates a control value based on these input signals, and outputs a control signal for controlling the switching timing to the first drive circuit 652 and the second drive circuit 656.
 コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、パワーモジュール610やパワーモジュール620における直流側の端子に電気的に並列に接続されている。 The transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates information with other apparatuses via the communication line 174 in FIG. Send and receive. Capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in DC voltage caused by the switching operation of IGBT 21, and is electrically connected in parallel to terminals on the DC side of power module 610 and power module 620. .
 図3は、図1に示された第1回転電機200のr-Z断面の部分断面図である。なお、第1回転電機200と第2回転電機202とはほぼ同じ構造を有しており、以下では第1回転電機200の構造を代表例として説明する。ただし、以下に示す構造は第1回転電機200と第2回転電機202の双方に採用されている必要はなく、一方だけに採用されていても良い。 FIG. 3 is a partial cross-sectional view of the first rotary electric machine 200 shown in FIG. The first rotating electrical machine 200 and the second rotating electrical machine 202 have substantially the same structure, and the structure of the first rotating electrical machine 200 will be described below as a representative example. However, the structure shown below does not need to be employed in both the first rotating electrical machine 200 and the second rotating electrical machine 202, and may be employed in only one of them.
 ハウジング212の内部には固定子230が保持される。固定子230は、固定子コア232と固定子巻線238とを備えている。 A stator 230 is held inside the housing 212. The stator 230 includes a stator core 232 and a stator winding 238.
 固定子コア232の内周側には、回転子280が空隙222を介して回転可能に保持されている。回転子280は、シャフト218に固定された回転子コア282と、永久磁石284と、非磁性体のあて板226とを備えている。 On the inner peripheral side of the stator core 232, a rotor 280 is rotatably held through a gap 222. The rotor 280 includes a rotor core 282 fixed to the shaft 218, a permanent magnet 284, and a non-magnetic contact plate 226.
 ハウジング212は、軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。 The housing 212 has a pair of end brackets 214 provided with bearings 216, and the shaft 218 is rotatably held by these bearings 216.
 シャフト218には、回転子280の極の位置や回転速度を検出するレゾルバ224が設けられている。このレゾルバ224からの出力は、図2に示した制御回路648に取り込まれる。 The shaft 218 is provided with a resolver 224 that detects the position and rotation speed of the pole of the rotor 280. The output from the resolver 224 is taken into the control circuit 648 shown in FIG.
 制御回路648は、取り込まれた出力に基づいて制御信号を駆動回路652に出力する。駆動回路652は、その制御信号に基づく駆動信号をパワーモジュール610に出力する。パワーモジュール610は、制御信号に基づきスイッチング動作を行い、バッテリ180から供給される直流電力を3相交流電力に変換する。この3相交流電力は図3に示した固定子巻線238に供給され、回転磁界が固定子230に発生する。3相交流電流の周波数はレゾルバ224の出力値に基づいて制御され、3相交流電流の回転子280に対する位相も同じくレゾルバ224の出力値に基づいて制御される。 The control circuit 648 outputs a control signal to the drive circuit 652 based on the fetched output. The drive circuit 652 outputs a drive signal based on the control signal to the power module 610. The power module 610 performs a switching operation based on the control signal, and converts DC power supplied from the battery 180 into three-phase AC power. This three-phase AC power is supplied to the stator winding 238 shown in FIG. 3 and a rotating magnetic field is generated in the stator 230. The frequency of the three-phase alternating current is controlled based on the output value of the resolver 224, and the phase of the three-phase alternating current with respect to the rotor 280 is also controlled based on the output value of the resolver 224.
 図4は、固定子230および回転子250のr-θ断面を示す図であり、図3のA-A断面図を示したものである。なお、図4ではハウジング212、シャフト218および固定子巻線238の記載を省略した。 FIG. 4 is a view showing an r-θ section of the stator 230 and the rotor 250, and shows an AA section view of FIG. In FIG. 4, the housing 212, the shaft 218, and the stator winding 238 are not shown.
 固定子コア232の内周側には、多数のスロット237とティース236とが全周に渡って均等に配置されている。図4では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみに符号を付した。 A large number of slots 237 and teeth 236 are evenly arranged on the inner circumference side of the stator core 232 over the entire circumference. In FIG. 4, all slots and teeth are not labeled, and only some teeth and slots are represented by symbols.
 スロット237内にはスロット絶縁材(図示省略)が設けられ、図3の固定子巻線238を構成するU相、V相、W相の複数の相巻線が装着されている。本実施形態では、毎極毎相スロット数が2であるため、スロット237は等間隔に48個形成されている。この毎極毎相スロット数とは、各スロット237のU相、V相、W相がθ方向(周方向)にU相、U相、V相、V相、W相、W相、・・・と2つずつ並ぶように相を配置することを意味し、1極のU相、V相、W相で6つのスロット237を使うことになる。本実施形態では、後述する永久磁石254がθ方向に8組並ぶ8極であるため、固定子コア232のスロット237の数は6×8の48個となっている。 A slot insulating material (not shown) is provided in the slot 237, and a plurality of phase windings of U phase, V phase, and W phase constituting the stator winding 238 of FIG. In this embodiment, since the number of slots per phase per pole is 2, 48 slots 237 are formed at equal intervals. The number of slots per phase per pole means that the U phase, V phase, and W phase of each slot 237 are in the θ direction (circumferential direction) U phase, U phase, V phase, V phase, W phase, W phase,. Means that two phases are arranged side by side, and six slots 237 are used for one U phase, V phase, and W phase. In the present embodiment, since eight permanent magnets 254 described later are arranged in eight directions in the θ direction, the number of slots 237 of the stator core 232 is 48 of 6 × 8.
 回転子コア252の外周近傍には、永久磁石254を挿入するための複数の穴253がθ方向に沿って等間隔に8組配設されている。各穴253はz方向(軸方向)に沿って形成されており、その穴253には永久磁石254がそれぞれ埋め込まれ、接着剤や樹脂等の充填剤で固定されている。 In the vicinity of the outer periphery of the rotor core 252, eight sets of plural holes 253 for inserting the permanent magnets 254 are arranged at equal intervals along the θ direction. Each hole 253 is formed along the z direction (axial direction), and permanent magnets 254 are embedded in the holes 253 and fixed with a filler such as an adhesive or resin.
 穴253のθ方向の幅は、永久磁石254aと永久磁石254bの間におけるθ方向の幅よりも大きく設定されており、永久磁石254の両側の穴空間257は磁気的空隙として機能する。この穴空間257は接着剤を埋め込んでも良いし,成型用樹脂で永久磁石254と一体に固めても良い。 The width in the θ direction of the hole 253 is set larger than the width in the θ direction between the permanent magnet 254a and the permanent magnet 254b, and the hole spaces 257 on both sides of the permanent magnet 254 function as magnetic gaps. The hole space 257 may be filled with an adhesive, or may be solidified integrally with the permanent magnet 254 with a molding resin.
 永久磁石254は回転子250の界磁極として作用し、本実施形態では8極構成となっている。 The permanent magnet 254 acts as a field pole of the rotor 250, and has an 8-pole configuration in this embodiment.
 本実施形態における永久磁石254の磁化方向は、永久磁石254の長辺に対して直角方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石254aと永久磁石254bがθ方向に交互に配置されている。 In the present embodiment, the magnetization direction of the permanent magnet 254 is perpendicular to the long side of the permanent magnet 254, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N-pole and the surface on the shaft side is S-pole, the stator side surface of the adjacent permanent magnet 254b is S-pole and the surface on the shaft side is N-pole. . These permanent magnets 254a and permanent magnets 254b are alternately arranged in the θ direction.
 永久磁石254は、磁化した後に穴253に挿入しても良いし、回転子コア252の穴253に挿入した後に強力な磁界を与えて磁化するようにしても良い。ただし、磁化後の永久磁石254は強力な磁石なので、回転子250に永久磁石254を固定する前に磁石を着磁すると、永久磁石254の固定時に回転子コア252との間に強力な吸引力が生じて組み付け作業の妨げとなる。また、永久磁石254の強力な吸引力により、永久磁石254に鉄粉などのごみが付着するおそれがある。そのため、回転電機の生産性を考慮した場合、永久磁石254を回転子コア252に挿入した後に磁化するのが好ましい。 The permanent magnet 254 may be inserted into the hole 253 after being magnetized, or may be magnetized by applying a strong magnetic field after being inserted into the hole 253 of the rotor core 252. However, since the magnetized permanent magnet 254 is a strong magnet, if the magnet is magnetized before the permanent magnet 254 is fixed to the rotor 250, a strong attractive force between the rotor core 252 and the permanent magnet 254 is fixed. Occurs and hinders assembly work. In addition, due to the strong attractive force of the permanent magnet 254, dust such as iron powder may adhere to the permanent magnet 254. Therefore, when considering the productivity of the rotating electrical machine, it is preferable that the permanent magnet 254 is magnetized after being inserted into the rotor core 252.
 なお、永久磁石254には、ネオジウム系,サマリウム系の焼結磁石やフェライト磁石,ネオジウム系のボンド磁石などを用いることができる。永久磁石254の残留磁束密度は0.4~1.45T程度である。 The permanent magnet 254 may be a neodymium-based or samarium-based sintered magnet, a ferrite magnet, a neodymium-based bond magnet, or the like. The residual magnetic flux density of the permanent magnet 254 is about 0.4 to 1.45T.
 3相交流電流を固定子巻線238に流すことにより回転磁界が固定子230に発生すると、この回転磁界が回転子250の永久磁石254aと永久磁石254bに作用してトルクが生じる。このトルクは、永久磁石254から出される磁束のうち各相巻線に鎖交する成分と、各相巻線に流れる交流電流の鎖交磁束に直交する成分の積で表される。 When a rotating magnetic field is generated in the stator 230 by flowing a three-phase alternating current through the stator winding 238, the rotating magnetic field acts on the permanent magnet 254a and the permanent magnet 254b of the rotor 250 to generate torque. This torque is represented by the product of the component interlinked with each phase winding of the magnetic flux generated from the permanent magnet 254 and the component orthogonal to the interlinkage magnetic flux of the alternating current flowing through each phase winding.
 ここで、交流電流は正弦波状になるように制御されているので、鎖交磁束の基本波成分と交流電流の基本波成分の積がトルクの時間平均成分となり、鎖交磁束の高調波成分と交流電流の基本波成分の積がトルクの高調波成分であるトルクリプルとなる。つまり、トルクリプルを低減するには、鎖交磁束の高調波成分を低減すればよい。言い換えれば、鎖交磁束と回転子の回転する角速度の積が誘起電圧であるから、鎖交磁束の高調波成分を低減することは、誘起電圧の高調波成分を低減することに等しい。 Here, since the alternating current is controlled to be sinusoidal, the product of the fundamental wave component of the interlinkage magnetic flux and the fundamental wave component of the alternating current becomes the time-average component of the torque, and the harmonic component of the interlinkage magnetic flux The product of the fundamental wave components of the alternating current becomes the torque ripple that is the harmonic component of the torque. That is, in order to reduce the torque ripple, the harmonic component of the flux linkage may be reduced. In other words, since the product of the interlinkage magnetic flux and the angular velocity at which the rotor rotates is the induced voltage, reducing the harmonic component of the interlinkage magnetic flux is equivalent to reducing the harmonic component of the induced voltage.
 図5は、図4に示した断面図の1磁極分を拡大して示した部分拡大図である。 FIG. 5 is a partially enlarged view showing an enlargement of one magnetic pole portion of the cross-sectional view shown in FIG.
 磁石挿入孔253は、第1永久磁石254a1を収納する第1挿入孔253aと、2つの第2永久磁石254a2をそれぞれを収納する2つの第2挿入孔253bと、を形成する。 The magnet insertion hole 253 forms a first insertion hole 253a that houses the first permanent magnet 254a1 and two second insertion holes 253b that house the two second permanent magnets 254a2.
 第1永久磁石254a1の磁極外側であって第1永久磁石254a1の両端部付近に第1磁気的空隙257aが形成される。また第2永久磁石254a2の磁極外側に第2磁気的空隙257bが形成されてる。これらにより、コギングトルクや通電時のトルク脈動を低減される。 The first magnetic gap 257a is formed outside the magnetic pole of the first permanent magnet 254a1 and in the vicinity of both ends of the first permanent magnet 254a1. A second magnetic gap 257b is formed outside the magnetic pole of the second permanent magnet 254a2. As a result, cogging torque and torque pulsation during energization are reduced.
 また第2挿入孔253bはV字状で形成され、第1挿入孔253aは第2挿入孔253bの間に形成される。2つの第2挿入孔253bは、d軸300を堺に対称形状となっており、それぞれ離れて形成され、それぞれに第2永久磁石254a2が収納されている。 The second insertion hole 253b is formed in a V shape, and the first insertion hole 253a is formed between the second insertion holes 253b. The two second insertion holes 253b are symmetrical with respect to the d-axis 300, are formed apart from each other, and each store a second permanent magnet 254a2.
 本実施形態では2つの第2挿入孔253bが離れて形成されているが、d軸300を跨いで挿入孔同士が接続されていてもよい。このような磁石挿入孔および永久磁石の配置を取る∇配置は、永久磁石をV字配置したものよりも高トルクになる。しかし永久磁石の減磁に対して、複数ある永久磁石をバランス良く配置しないと、一部の磁石だけ極端に減磁しやすい状態となる。 In the present embodiment, the two second insertion holes 253b are formed apart from each other, but the insertion holes may be connected across the d-axis 300. Such a saddle arrangement in which the magnet insertion hole and the permanent magnet are arranged has a higher torque than a permanent magnet having a V-shaped arrangement. However, if a plurality of permanent magnets are not arranged in a balanced manner against the demagnetization of the permanent magnets, only a part of the magnets will be extremely easily demagnetized.
 本実施形態にある∇配置の場合、固定子230より発生する磁束は第1永久磁石254a1が受けやすく、減磁しやすい。 In the case of the saddle arrangement in the present embodiment, the magnetic flux generated from the stator 230 is easily received by the first permanent magnet 254a1, and is easily demagnetized.
 そこで本実施形態では、第1挿入孔253aと回転子コア252の外周との最細部となるブリッジ太さW1は、第2挿入孔253bと回転子コア252の外周との最細部となるブリッジ太さW2よりも大きくなるように形成される。 Therefore, in the present embodiment, the bridge thickness W1 that is the finest between the first insertion hole 253a and the outer periphery of the rotor core 252 is the bridge thickness W1 that is the finest between the second insertion hole 253b and the outer periphery of the rotor core 252. It is formed to be larger than the length W2.
 さらに、第2永久磁石254a2の最外部は第1永久磁石254a1の最内部よりも内側になるように配置する。 Furthermore, the outermost part of the second permanent magnet 254a2 is arranged to be inside the innermost part of the first permanent magnet 254a1.
 これにより、固定子230からの磁束が第1永久磁石254a1と第2永久磁石254a2のいずれかに集中することがなくなり、∇配置の高トルク性能を維持しつつ、第1永久磁石254a1と第2永久磁石254a2は同等の減磁耐力とすることが可能となる。 As a result, the magnetic flux from the stator 230 does not concentrate on either the first permanent magnet 254a1 or the second permanent magnet 254a2, and the first permanent magnet 254a1 and the second permanent magnet 254a1 and the second permanent magnet 254a2 are maintained while maintaining the high torque performance of the saddle arrangement. The permanent magnet 254a2 can have an equivalent demagnetization resistance.
 また、第2永久磁石254a2から発生する磁束の向きと平行な方向から投影した場合、第2永久磁石254a2の外周側端部258の射影部が、第1挿入孔253aに重なるように、第2永久磁石254a2を形成する。これによりさらに∇配置の高トルク性能を維持しつつ、第1永久磁石254a1と第2永久磁石254a2は同等の減磁耐力とすることが可能となる。 In addition, when projected from the direction parallel to the direction of the magnetic flux generated from the second permanent magnet 254a2, the second permanent magnet 254a2 is projected so that the projected portion of the outer peripheral end 258 overlaps the first insertion hole 253a. The permanent magnet 254a2 is formed. As a result, the first permanent magnet 254a1 and the second permanent magnet 254a2 can have the same demagnetization resistance while maintaining the high torque performance of the saddle arrangement.
 本実施形態では、第1挿入孔254a1と第2挿入孔254a2にそれぞれ1つずつ第1永久磁石254a、第2永久磁石254bが収納されているが、永久磁石を周方向に分割しても同等の性能を得ることができる。 In the present embodiment, the first permanent magnet 254a and the second permanent magnet 254b are housed one by one in the first insertion hole 254a1 and the second insertion hole 254a2, respectively, but it is equivalent even if the permanent magnet is divided in the circumferential direction. Performance can be obtained.
 図6は、他の実施形態に係る回転子280と固定子230の断面図の1磁極分を拡大して示した部分拡大図である。 FIG. 6 is a partially enlarged view showing one magnetic pole part in a cross-sectional view of a rotor 280 and a stator 230 according to another embodiment.
 図5の示された実施形態と異なる点は、機械的強度を高めるために、第2挿入孔253bの第2永久磁石254a2が収納される箇所と磁気的空隙257bとの間に機械的なブリッジ部259を設けた点である。 5 is different from the embodiment shown in FIG. 5 in that a mechanical bridge is provided between the magnetic gap 257b and a portion of the second insertion hole 253b where the second permanent magnet 254a2 is accommodated in order to increase the mechanical strength. This is a point where a portion 259 is provided.
 これにより、回転子250が回転した際の支えとなり、図5の構成より更に高回転化が可能となる。更に機械的強度を高めるために、機械的なブリッジ部259を複数設けてもよいが、その分、永久磁石の磁束漏れて性能低下につながるため、必要以上に設けない方が望ましい。 Thereby, it becomes a support when the rotor 250 rotates, and it becomes possible to further increase the rotation speed as compared with the configuration of FIG. In order to further increase the mechanical strength, a plurality of mechanical bridge portions 259 may be provided. However, the magnetic flux leaks from the permanent magnet to reduce the performance, so it is desirable not to provide more than necessary.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
21…パワー半導体又はIGBT、38…ダイオード、100…車両、110…前輪、120…エンジン、124…エンジン制御装置、130…変速機、134…変速機制御装置、160…デファレンシャルギア、170…総合制御装置、174…通信回線、180…バッテリ、184…バッテリ制御装置、200…第1回転電機、202…第2回転電機、174…通信回線、180…バッテリ、200…第1回転電機、202…第2回転電機、212…ハウジング、214…エンドブラケット、216…軸受、218…シャフト、222…空隙、224…レゾルバ、226…あて板、230…固定子、232…固定子コア、236…ティース、237…スロット、238…固定子巻線、253…穴、253a…第1挿入孔、254…永久磁石、254a…永久磁石、254a1…第1永久磁石、254a2…第2永久磁石、253b…第2挿入孔、254b…永久磁石、257…穴空間、257a…第1磁気的空隙、257b…第2磁気的空隙、258…外周側端部、259…ブリッジ部、280…回転子、282…回転子コア、284…永久磁石、300…d軸、600…電力変換装置、610…パワーモジュール、620…パワーモジュール、630…コンデンサモジュール、642…コネクタ基盤、644…送受信回路、646…制御回路基板、648…制御回路、650…駆動回路基板、652…第1駆動回路、654…駆動回路基板、656…第2駆動回路、660…電流センサ、662…電流センサ DESCRIPTION OF SYMBOLS 21 ... Power semiconductor or IGBT, 38 ... Diode, 100 ... Vehicle, 110 ... Front wheel, 120 ... Engine, 124 ... Engine control device, 130 ... Transmission, 134 ... Transmission control device, 160 ... Differential gear, 170 ... General control Device, 174 ... communication line, 180 ... battery, 184 ... battery control device, 200 ... first rotating electric machine, 202 ... second rotating electric machine, 174 ... communication line, 180 ... battery, 200 ... first rotating electric machine, 202 ... first Two-rotating electric machine, 212 ... housing, 214 ... end bracket, 216 ... bearing, 218 ... shaft, 222 ... gap, 224 ... resolver, 226 ... address plate, 230 ... stator, 232 ... stator core, 236 ... teeth, 237 ... slots, 238 ... stator windings, 253 ... holes, 253a ... first insertion holes, 254 ... permanent magnets 254a ... permanent magnet, 254a1 ... first permanent magnet, 254a2 ... second permanent magnet, 253b ... second insertion hole, 254b ... permanent magnet, 257 ... hole space, 257a ... first magnetic air gap, 257b ... second magnetic 258 ... outer peripheral side end, 259 ... bridge part, 280 ... rotor, 282 ... rotor core, 284 ... permanent magnet, 300 ... d-axis, 600 ... power converter, 610 ... power module, 620 ... power Module, 630 ... Capacitor module, 642 ... Connector board, 644 ... Transceiver circuit, 646 ... Control circuit board, 648 ... Control circuit, 650 ... Drive circuit board, 652 ... First drive circuit, 654 ... Drive circuit board, 656 ... No. 2 drive circuit, 660 ... current sensor, 662 ... current sensor

Claims (8)

  1.  第1磁石を収納する第1空間と、第2磁石を収納する第2空間と、を形成する回転電機の回転子であって、
     前記第1空間と回転子鉄心外周と最細部となるブリッジ太さは、前記第2空間と回転子鉄心外周と最細部となるブリッジ太さよりも大きく、
     前記第2磁石は、当該第2磁石の最外部が前記第1磁石の最内部よりも内側となるように配置される回転電機の回転子。
    A rotor of a rotating electrical machine that forms a first space that houses a first magnet and a second space that houses a second magnet,
    The bridge thickness which becomes the first space and the outer periphery of the rotor core and the smallest detail is larger than the bridge thickness which becomes the second space, the outer periphery of the rotor core and the smallest detail,
    The second magnet is a rotor of a rotating electrical machine that is arranged such that the outermost part of the second magnet is inside the innermost part of the first magnet.
  2.  請求項1に記載された回転電機の回転子であって、
     前記第2空間は、互いに離れて形成されかつそれぞれ前記第2磁石を収納される第3空間と第3空間とにより構成され、
     前記第3空間と前記第4空間によりV字状が構成される回転電機の回転子。
    A rotor for a rotating electrical machine according to claim 1,
    The second space is formed by a third space and a third space that are formed apart from each other and each accommodates the second magnet,
    A rotor of a rotating electrical machine in which a V shape is configured by the third space and the fourth space.
  3.  請求項2に記載された回転電機の回転子であって、
     前記第1空間は、前記第3空間と前記第4空間の間に形成される回転電機の回転子。
    A rotor for a rotating electrical machine according to claim 2,
    The first space is a rotor of a rotating electrical machine formed between the third space and the fourth space.
  4.  請求項1ないし3に記載されたいずれかの回転電機の回転子であって、
     前記第2磁石から発生する磁束の向きと平行な方向から投影した場合、
     前記第2磁石は、当該第2磁石の外径側の端部の射影部が前記第1磁石収納空間の射影部と重なるように配置される回転電機の回転子。
    A rotor for a rotating electrical machine according to any one of claims 1 to 3,
    When projected from a direction parallel to the direction of the magnetic flux generated from the second magnet,
    The second magnet is a rotor of a rotating electrical machine that is arranged such that a projected portion of an end portion on the outer diameter side of the second magnet overlaps with a projected portion of the first magnet storage space.
  5.  請求項1ないし4に記載されたいずれかの回転電機の回転子であって、
     前記第1磁石は、回転軸から外周に向かう方向に沿って周方向の幅が末広がりとなるように形成される回転電機の回転子。
    A rotor for a rotating electrical machine according to any one of claims 1 to 4,
    The first magnet is a rotor of a rotating electrical machine formed so that a width in a circumferential direction is widened along a direction from a rotation axis toward an outer periphery.
  6.  請求項5に記載された回転電機の回転子であって、
     前記第1磁石は、周方向に分割された複数の磁石で構成される回転電機の回転子。
    A rotor for a rotating electrical machine according to claim 5,
    The first magnet is a rotor of a rotating electrical machine composed of a plurality of magnets divided in a circumferential direction.
  7.  請求項1ないし5に記載されたいずれかの回転電機の回転子であって、
     前記第2空間は、前記第2磁石を収納する収納部と、ブリッジ部と、当該ブリッジ部を挟んで当該収納部と向かい合う空隙部と、により構成され、
     前記最細部となるブリッジ太さは、前記空隙部と前記回転子鉄心外周との距離により定義される回転電機の回転子。
    A rotor for a rotating electrical machine according to any one of claims 1 to 5,
    The second space is configured by a storage part that stores the second magnet, a bridge part, and a gap part that faces the storage part across the bridge part,
    The bridge thickness that is the most detailed is a rotor of a rotating electrical machine that is defined by a distance between the gap and the outer periphery of the rotor core.
  8.  請求項1ないし7に記載されたいずれかの回転子を備える回転電機であって、
     前記回転子を径方向に空隙を介して対向する固定子を備える回転電機。
    A rotary electric machine comprising any one of the rotors according to claim 1,
    A rotating electrical machine comprising a stator that faces the rotor in a radial direction with a gap therebetween.
PCT/JP2018/002632 2017-02-28 2018-01-29 Rotating electric machine rotor and rotating electric machine equipped with same WO2018159181A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880004614.3A CN110326191B (en) 2017-02-28 2018-01-29 Rotor of rotating electrical machine and rotating electrical machine provided with same
JP2019502514A JP7113003B2 (en) 2017-02-28 2018-01-29 Rotor of rotary electric machine and rotary electric machine provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035668 2017-02-28
JP2017-035668 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159181A1 true WO2018159181A1 (en) 2018-09-07

Family

ID=63371230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002632 WO2018159181A1 (en) 2017-02-28 2018-01-29 Rotating electric machine rotor and rotating electric machine equipped with same

Country Status (3)

Country Link
JP (1) JP7113003B2 (en)
CN (1) CN110326191B (en)
WO (1) WO2018159181A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205713A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Rotating electric machine
DE102021114872A1 (en) 2020-06-12 2021-12-16 Nidec Corporation ELECTRIC ROTARY MACHINE
WO2022097322A1 (en) * 2020-11-09 2022-05-12 日本電産株式会社 Rotary electrical machine
TWI814163B (en) * 2021-12-06 2023-09-01 日商日本電產股份有限公司 rotating electrical machine
DE112021006349T5 (en) 2020-12-09 2023-09-21 Nidec Corporation ELECTRIC LATHE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021122163A (en) * 2020-01-31 2021-08-26 日立金属株式会社 Rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2001178045A (en) * 1999-12-21 2001-06-29 Aichi Emerson Electric Co Ltd Permanent magnet embedded motor
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine
JP2016135055A (en) * 2015-01-21 2016-07-25 株式会社デンソー Rotor core for reluctance motor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272036A (en) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Synchronous permanent magnet motor
JP2006314152A (en) * 2005-05-06 2006-11-16 Nissan Motor Co Ltd Permanent-magnet motor
EP2595281B1 (en) * 2010-07-14 2019-01-23 Kabushiki Kaisha Toyota Jidoshokki Rotating element with embedded permanent magnet and rotating electrical machine
JP5643127B2 (en) * 2011-02-03 2014-12-17 トヨタ自動車株式会社 Rotating machine rotor
JP2012161226A (en) * 2011-02-03 2012-08-23 Toyota Motor Corp Rotor for rotary electric machine
JP5353962B2 (en) * 2011-07-05 2013-11-27 日産自動車株式会社 Permanent magnet type motor
CN202145610U (en) * 2011-07-28 2012-02-15 珠海格力电器股份有限公司 Permanent Magnet Synchronous Motor
JP5730736B2 (en) * 2011-10-04 2015-06-10 日立オートモティブシステムズ株式会社 Permanent magnet type rotating electric machine and vehicle equipped with permanent magnet type rotating electric machine
US8917005B2 (en) * 2011-12-09 2014-12-23 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
CN102801236A (en) * 2012-03-05 2012-11-28 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet auxiliary synchronous reluctance motor and rotor thereof, and assembly method for motor
CN202444391U (en) * 2012-03-05 2012-09-19 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnetic assisted synchronous reluctance motor and rotor thereof
CN102761221B (en) * 2012-03-05 2013-04-17 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet auxiliary synchronous reluctance motor and mounting method thereof
CN104247214B (en) * 2012-04-23 2017-05-24 三菱电机株式会社 Permanent magnet-type rotary electric machine and vehicle drive system
DE112012005688T5 (en) * 2012-05-28 2014-10-02 Aida Engineering, Ltd. Rotating electric machine with combined torque
WO2014013598A1 (en) * 2012-07-19 2014-01-23 三菱電機株式会社 Embedded magnet type synchronous motor
WO2014045445A1 (en) * 2012-09-24 2014-03-27 三菱電機株式会社 Permanent magnet-embedded electric motor
JP6079132B2 (en) * 2012-10-26 2017-02-15 株式会社ジェイテクト Embedded magnet rotor
CN203554097U (en) * 2013-06-05 2014-04-16 上海欧普斯达光纤通信设备有限公司 Permanent-magnet compound excitation synchronous motor rotor
JP6331506B2 (en) * 2014-03-12 2018-05-30 日産自動車株式会社 Rotor structure of rotating electrical machine
US10205358B2 (en) * 2014-04-12 2019-02-12 GM Global Technology Operations LLC Electric machine for a vehicle powertrain and the electric machine includes a permanent magnet
CN105186818A (en) * 2015-09-14 2015-12-23 常州市普世汽车电动***有限公司 Permanent magnet synchronous motor with hybrid magnetic circuit arrangement
CN106329771B (en) * 2016-08-31 2019-01-25 恒大法拉第未来智能汽车(广东)有限公司 Rotor, motor and the vehicle of motor
CN106329774A (en) * 2016-09-14 2017-01-11 南京航空航天大学 Multilayer segmented built-in permanent magnet synchronous motor used for electric automobile driving

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114555A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Permanent magnet rotating machine
JP2001178045A (en) * 1999-12-21 2001-06-29 Aichi Emerson Electric Co Ltd Permanent magnet embedded motor
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine
JP2016135055A (en) * 2015-01-21 2016-07-25 株式会社デンソー Rotor core for reluctance motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205713A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Rotating electric machine
JP6987310B1 (en) * 2020-04-07 2021-12-22 三菱電機株式会社 Rotating machine
DE102021114872A1 (en) 2020-06-12 2021-12-16 Nidec Corporation ELECTRIC ROTARY MACHINE
WO2022097322A1 (en) * 2020-11-09 2022-05-12 日本電産株式会社 Rotary electrical machine
DE112021006349T5 (en) 2020-12-09 2023-09-21 Nidec Corporation ELECTRIC LATHE
TWI814163B (en) * 2021-12-06 2023-09-01 日商日本電產股份有限公司 rotating electrical machine

Also Published As

Publication number Publication date
JPWO2018159181A1 (en) 2019-11-07
CN110326191B (en) 2022-02-08
CN110326191A (en) 2019-10-11
JP7113003B2 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US10340756B2 (en) Rotating electric machine and vehicle equipped with rotating electric machine
JP5730736B2 (en) Permanent magnet type rotating electric machine and vehicle equipped with permanent magnet type rotating electric machine
JP5723524B2 (en) Rotating electric machines and electric vehicles
WO2018159181A1 (en) Rotating electric machine rotor and rotating electric machine equipped with same
JP6263551B2 (en) Rotating electric machine and electric vehicle equipped with the rotating electric machine
JP6585826B2 (en) Rotating electric machine stator and rotating electric machine using the same
WO2010044426A1 (en) Rotating electric machine and electric automobile
JP6111327B2 (en) Rotating electric machine and rotating electric machine rotor
JP2020174529A (en) Rotor of rotary electric machine, rotary electric machine, and vehicle
JP6670767B2 (en) Rotating electric machine
JP5914618B2 (en) Rotating electric machines and electric vehicles
JP5650276B2 (en) Rotor and rotating electric machine equipped with the same
JP6626768B2 (en) Stator of rotating electric machine, and rotating electric machine provided with the same
JP2016158401A (en) Rotor for rotary electric machine, and rotary electric machine with the same
CN111264018B (en) Rotor of rotating electric machine and rotating electric machine using the same
WO2023026499A1 (en) Rotating electric machine rotor and rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760542

Country of ref document: EP

Kind code of ref document: A1