WO2018157806A1 - 一种无级变速器 - Google Patents

一种无级变速器 Download PDF

Info

Publication number
WO2018157806A1
WO2018157806A1 PCT/CN2018/077489 CN2018077489W WO2018157806A1 WO 2018157806 A1 WO2018157806 A1 WO 2018157806A1 CN 2018077489 W CN2018077489 W CN 2018077489W WO 2018157806 A1 WO2018157806 A1 WO 2018157806A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary
shifting
continuously variable
variable transmission
driven
Prior art date
Application number
PCT/CN2018/077489
Other languages
English (en)
French (fr)
Inventor
蔡有建
Original Assignee
蔡有建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡有建 filed Critical 蔡有建
Priority to DE112018001076.7T priority Critical patent/DE112018001076B4/de
Publication of WO2018157806A1 publication Critical patent/WO2018157806A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/76Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with an orbital gear having teeth formed or arranged for obtaining multiple gear ratios, e.g. nearly infinitely variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/067Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions mechanical actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2884Screw-nut devices

Definitions

  • the present invention relates to a continuously variable transmission of a mechanical device that can be applied to automobiles and other transmission power.
  • automatic transmissions mainly include electronically controlled mechanical automatic transmission (AMT), hydraulic automatic transmission (AT), dual clutch automatic transmission (DCT), and mechanical stepless automatic transmission (CVT). Big class.
  • the mechanical stepless automatic transmission (CVT) can maintain the engine speed in the most economical working area due to the characteristics of continuous variable speed and continuous power output during the shifting process, realizing the same type of vehicle or the same type of machinery.
  • the device has the lowest fuel consumption and the most gradual operation.
  • the mechanical stepless automatic transmission (CVT) also has the advantages of simple structure, small number of parts, smaller volume, and lighter weight than the conventional transmission.
  • mechanical stepless automatic transmission In addition to the mainstream belt and chain type, mechanical stepless automatic transmission (CVT) also has various forms, such as cone ring type, roller type, etc., power through metal ring or metal disk on the drive cone, passive cone or cone Transfer between the discs.
  • CVT mechanical stepless automatic transmission
  • these forms of mechanical stepless automatic transmissions have limited contact areas due to power transmission, concentrated stress, limited transmission of maximum torque and variable speed stability, and are currently only used in a small number of models.
  • a continuously variable transmission includes: a planetary power transmission mechanism including at least: a power input member; and a power output member, the power output member An output shaft and at least one planetary driven member coupled to the output shaft for driving the output shaft to rotate, the planetary driven member being disposed outside the power input member and at the power input a driving member rotates around the power input member; a shifting ring surrounds the planetary driven member, and the shifting ring is movable back and forth in a first direction; and a shifting unit, the shifting unit includes at least one pressing a pressing device disposed outside the shifting ring and fixedly coupled to the shifting ring to drive the shifting ring to move back and forth in the first direction to adjust a power output component of the planetary power transmission mechanism Rotating speed.
  • the power input member includes an input shaft and a center sun gear sleeved on the input shaft;
  • the power output member further includes a planet carrier having the output shaft, wherein the center sun gear Provided in the carrier; wherein the planetary driven member is disposed outside the central sun gear, connected to the carrier, and connected to the central sun gear and the shifting ring,
  • the planetary driven member is rotatable about a center of the shifting ring under the rotational drive of the central sun gear to drive the output shaft to rotate.
  • the planetary driven member includes: a driven planetary gear that meshes with the central sun gear, the driven planetary gear is disposed in the carrier; coaxial with the driven planetary gear and mutual a fixed planetary cone wheel, the planetary cone wheel being coupled to the shifting ring; a planetary gear shaft fixedly coupled to the driven planetary gear, a planetary cone wheel, and the planetary gear shaft also passing through the driven Planetary gears and planetary cones are connected to the planet carrier.
  • the input shaft is disposed coaxially with the output shaft.
  • the power output component includes a plurality of the planetary driven components, wherein a plurality of the planetary driven components are disposed around an outer side of the power input component.
  • the shifting ring includes: an annular central shaft; and a plurality of conical springs disposed on the annular central shaft, wherein each of the conical springs may have the annular central axis Centering; wherein the pressing device controls at least one of the conical shrapnel to roll on the surface of the planetary driven member while rotating around the annular central axis to drive the shifting ring The first direction moves.
  • the shifting unit further includes: a shifting screw mechanism disposed outside the pressing device, the shifting screw mechanism comprising: a lead screw extending in the first direction; and a screw a nut sleeved on the screw rod and movable back and forth along the screw rod in a first direction; wherein the pressing device is coupled to the screw nut, the pressing device can be a spindle nut synchronously moving in the first direction to drive the shifting ring to move in the first direction; a shifting control mechanism coupled to the lead screw to drive the screw to rotate to control the The spindle nut moves in the first direction along the lead screw.
  • a shifting screw mechanism disposed outside the pressing device, the shifting screw mechanism comprising: a lead screw extending in the first direction; and a screw a nut sleeved on the screw rod and movable back and forth along the screw rod in a first direction; wherein the pressing device is coupled to the screw nut, the pressing device can be a spindle nut synchronously moving in the first direction to drive
  • the shifting unit includes a plurality of the shifting screw mechanisms, a plurality of the shifting screw mechanisms are disposed around the outside of the pressing device, and the screw rods of the plurality of shifting screw mechanisms are connected
  • the shift control mechanism is described.
  • each of the shift spindle mechanisms further includes a synchronous sprocket disposed at the same end of the shift spindle mechanism; the shifting unit further includes a connection of each of the synchronous sprockets Toothed chain.
  • the pressing device is provided with a card slot extending in the first direction toward a side surface of the shifting ring, and a conical elastic piece of the shifting ring is engaged in the card slot.
  • the pressing device surrounds the shifting ring in a sleeve shape.
  • the continuously variable transmission further includes a housing, and the planetary power transmission mechanism and the shifting unit are disposed in the housing.
  • the continuously variable transmission provided by the embodiment of the present invention rotates around the planetary driven member of the power output component by the power input component, thereby driving the output shaft of the power output component to rotate, and the transmission torque is transmitted.
  • the method can effectively increase the power transmission and meet the demand of high torque working conditions.
  • the continuously variable transmission further controls the shifting of the continuously variable transmission by controlling the shifting ring to move in the first direction to adjust the rotational speed of the power output member of the power transmitting mechanism by the shifting unit, wherein during the shifting, the shifting includes a plurality of loops
  • the conical shrapnel is a centrally rotating central shaft. Therefore, the shifting ring moves in the rolling direction on the surface of the planetary cone during the first direction of movement, compared to the existing mechanical belt of the mechanical stepless automatic transmission (CVT).
  • CVT mechanical stepless automatic transmission
  • the shifting ring is deformed under the co-extrusion of the pressing device and the planetary cone wheel, and the contact area with the planetary cone wheel is increased, so that the contact area is large, the running wear is small, and the service life is long.
  • Etc. The structure of the continuously variable transmission also avoids the complicated hydraulic pressing device in the existing continuously variable transmission, thereby having the advantages of simple manufacturing, low cost and high reliability.
  • FIG. 1 is a schematic cross-sectional structural view of a continuously variable transmission according to a first embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view of the line A-A in Figure 1;
  • Figure 3 is a partial enlarged view of B in Figure 2;
  • FIG. 4 is a schematic view showing the movement path of the conical shrapnel of the shifting ring on the planetary cone wheel during the shifting process of the continuously variable transmission of the present invention.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in many forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete,
  • the same reference numerals in the drawings denote the same or similar structures, and a repetitive description thereof will be omitted.
  • the existing mechanical continuously variable transmission has at least two problems that limit the maximum transmission torque of the transmission:
  • the working contact surface is limited. If the positive pressure used to generate the friction force is too large, it may cause the mechanical stress to be too large and cause failure;
  • the frictional force of the transmitted power and the frictional resistance to be overcome by the shifting are on the same contact surface, and both are sliding friction. If the frictional force of the transmitted power is increased, the shifting will not proceed smoothly.
  • the present invention provides a continuously variable transmission.
  • the continuously variable transmission includes a planetary power transmission mechanism including at least: a power input member; and a power output member including an output shaft and at least one a planetary driven member coupled to the output shaft and driving the output shaft to rotate, the planetary driven member being disposed outside the power input member and rotatable around the power input member
  • the power input member rotates;
  • a shifting ring surrounds the planetary driven member, and the shifting ring is movable back and forth in a first direction;
  • the shifting unit, the shifting unit includes at least a pressing device, the pressing device
  • the utility model is disposed outside the shifting ring and fixedly connected with the shifting ring to drive the shifting ring to move back and forth in the first direction to adjust the rotational speed of the power output component of the planetary power transmission mechanism.
  • FIG. 1 to FIG. 4 respectively show a cross-sectional structural diagram of a continuously variable transmission according to an embodiment of the present invention, a structural schematic diagram of a shifting ring and a pressing device, and a trajectory of a conical shrapnel of a shifting ring during shifting.
  • schematic diagram. 2 is a schematic cross-sectional view of the structure AA of FIG. 1;
  • FIG. 3 is a partial enlarged view of B of FIG.
  • the continuously variable transmission mainly includes a planetary power transmission mechanism, a shifting ring, and a shifting unit.
  • the planetary power transmission mechanism includes at least a power input member and a power output member.
  • the power output component includes an output shaft and at least one planetary driven component connected to the output shaft to drive the output shaft to rotate, the planetary driven component is disposed outside the power input component, and The power input member is rotated about the power input member.
  • the power input member 1 includes an input shaft 11 and a center sun gear 13 that is sleeved on the input shaft 11.
  • the center sun gear 13 and the input shaft 11 are fixed to each other and can rotate synchronously with the input shaft 11 (here, the rotation refers to the rotation of the input shaft 11 under the driving of an apparatus such as an engine).
  • the power output unit 2 includes a carrier 23 having an output shaft 21 and a driven member 25.
  • the output shaft 21 is located at the left end of the planet carrier 23, and preferably, the output shaft 21 is disposed coaxially with the input shaft 11.
  • the center sun gear 13 is disposed in the carrier 23.
  • the planetary follower member 25 is disposed outside the center sun gear 13.
  • the planetary follower member 25 is coupled to the carrier 23, the center sun gear 13, and the shifting ring 3.
  • the power take-off component 2 can include a plurality of planetary driven components 25.
  • a plurality of planetary follower members 25 are disposed around the outer side of the power input member 1.
  • the power take-off member 2 includes two driven members 25 that are symmetrical with respect to the annular central axis of the carrier 23. It should be noted that, in the embodiment shown in FIGS.
  • the power output member 2 having the driven member 25 that is symmetrical with respect to the annular central axis of the opposite carrier 23 is taken as an example, but is not limited thereto. Therefore, in other embodiments of the present invention, the number of planetary follower components may be adjusted according to the actual torque magnitude, for example, having three or four, etc., and the plurality of planetary driven components simultaneously transmit torque, thereby effectively Increase power transmission. Moreover, the plurality of planetary follower members are not necessarily symmetrically arranged in pairs, and are not described herein.
  • the planetary follower member 25 includes a driven planetary gear 251, a planetary cone wheel 252, and a planetary gear shaft 253.
  • the driven planetary gear 251 is disposed in the carrier 23 and meshes with the center sun gear 13.
  • the planetary cone wheel 252 and the driven planetary gear 251 are coaxially disposed and fixedly connected to each other, and the two may be integrally formed.
  • the surface of the planet cone 252 has a groove to reduce the slip of the shifting ring.
  • the planetary gear shaft 253 is coaxially connected to the driven planetary gear 251 and the planetary cone 252, and is fixedly connected to each other.
  • the planetary gear shaft 253 is connected to the carrier 23 via the driven planetary gear 251 and the planetary cone 252, and is disposed on the carrier 23. rotation.
  • the shifting ring 3 surrounds the planetary driven member, and the shifting ring 3 is movable back and forth in the first direction (the X-axis direction in Fig. 1).
  • the shifting ring 3 can be a steel ring formed by a plurality of conical shrapnel.
  • the shifting ring 3 includes an annular central shaft 32 and a plurality of conical shrapnel 31.
  • a plurality of conical shrapnels 31 are disposed on the annular central shaft 32.
  • each of the conical elastic pieces 31 can roll on the surface of the planetary cone wheel 252 while rotating around the annular central axis 32, and further, the shifting ring 3 is moved in the first direction to realize the continuously variable transmission.
  • the rolling form can be adopted in the process, and the steel belt of the existing mechanical continuous automatic transmission (CVT) has the advantages of less frictional resistance and quick shifting than the sliding form adopted in the shifting process.
  • CVT mechanical continuous automatic transmission
  • the shifting ring 3 is coupled to the planet cone 252.
  • the connection between the planetary cone 252 and the shifting ring 3 herein may refer to the mutual meshing between the planetary cone 252 and the shifting ring 3, or may only refer to between the planetary cone 252 and the shifting ring 3. Fit each other.
  • the driven planetary gear 251 is rotated by the driving of the center sun gear 13
  • the planetary follower member 25 is rotated about the center of the shift ring 3, and the carrier 23 and its output shaft 21 are rotated to realize power output.
  • the shifting ring including the annular central shaft 32 and the plurality of conical elastic pieces 31 is described by taking the shifting ring including the annular central shaft 32 and the plurality of conical elastic pieces 31 as an example, it is not limited thereto, and the present invention can be realized.
  • the function of the shifting of the step-variable transmission may be any of the existing shifting rings, and will not be described herein.
  • the shifting unit controls the shifting ring to move in the first direction to adjust the rotational speed of the power output member.
  • the shifting unit includes a shifting screw mechanism 4, a pressing device 5, and a shifting control mechanism.
  • the shifting unit comprises two shifting spindle mechanisms 4.
  • the two shifting screw mechanisms 4 are respectively disposed on two sides of the shifting ring 3 (the upper and lower sides of the shifting ring 3 are provided in FIGS. 1 and 2), and each of the shifting screw mechanisms 4 is connected to one of the shifting gears. Control agency.
  • the shifting unit having the two shifting screw mechanisms 4 is described as an example in the embodiment shown in FIGS. 1 and 2, the present invention is not limited thereto. In other embodiments of the present invention, the shifting is performed.
  • the number of screw mechanisms can be adjusted according to actual needs, for example, three or four variable speed screw mechanisms, which will not be described here.
  • the shift spindle mechanism 4 provided above the shifting ring 3 in Fig. 1 will be described as an example.
  • the shift spindle mechanism 4 is disposed outside the shifting ring 3, and the shifting spindle mechanism 4 includes a lead screw 41 and a lead nut 42.
  • the lead screw 41 extends in the first direction (the X-axis direction in Fig. 1).
  • the lead nut 42 is sleeved on the lead screw 41 and is movable back and forth along the lead screw 41 in the first direction.
  • the movement of the screw nut 42 along the screw 41 means that the thread along the surface of the screw 41 moves during the rotation of the screw 41.
  • the pressing device 5 is disposed outside the shifting ring 3 and is coupled to the spindle nut 42 and the shifting ring 3.
  • the pressing device 5 can synchronously move with the screw nut 42 in the first direction to drive the shifting ring to move in the first direction to adjust the rotational speed of the power output component of the planetary power transmission mechanism.
  • the pressing device 5 can also exert a compression deformation on the conical spring 31 of the shifting ring 3, so that the shifting ring 3 fits the planetary cone 252 in an elliptical shape to increase its relationship with the planetary cone 252.
  • the contact area between them avoids stress concentration and slippage, and in turn, achieves efficient power transmission.
  • the pressing device 5 is disposed in a sleeve shape on the outer side of the shifting ring 3. Also, in this embodiment, the pressing device 5 is integrally formed with the spindle nut 42 of the two shift spindle mechanisms 4, and thus can be moved synchronously with the spindle nut 42.
  • the pressing device 5 controls (for example, pushes or the like) at least one conical spring of the shifting ring 3 to roll on the surface of the planetary cone 252 while rotating around the annular central shaft 32 to drive the shifting ring 3 at the first The direction is moved back and forth. Further, in the embodiment shown in FIGS. 2 and 3, the pressing device 5 is provided with a card groove 53 extending in the first direction (the X-axis direction in FIG.
  • the number of the card slots 53 is the same as the number of the conical springs 31 of the shifting ring 3.
  • the card slot 53 can prevent the shifting ring 3 from rotating (rotating), and further, the planetary cone 252 is rotated within the shifting ring 3 (revolving around the center of the shifting ring 3).
  • the shift control mechanism (not shown in Figs. 1 and 2) is coupled to the lead screw 41 to drive the lead screw 41 to rotate, thereby controlling the spindle nut 42 to move in the first direction along the lead screw 41.
  • each shift spindle mechanism 4 further includes a timing sprocket 43.
  • Two timing sprockets 43 are disposed at the same end of the shift spindle mechanism 4.
  • the shifting unit also includes a toothed chain (not shown in Figures 1 and 2) that surrounds the two synchronizing sprockets 43. After the two synchronous sprockets 43 are connected to the toothed chain, the rotational speeds of the two sprockets 43 can be kept consistent. Further, the rotational speeds of the two screw rods 41 can be kept consistent, and the compression of the two screw rods 41 can be made constant.
  • the device 5 moves linearly in the axial direction, thereby ensuring stability during the movement of the shifting ring 3.
  • the pressing device may be a straight cylindrical shape or a tapered cylindrical shape, for example, on the input shaft 11 side, the right side of the figure, the diameter becomes smaller. Therefore, the deformation of the shifting ring 3 to the region is made larger, so that the contact area with the small end of the planetary cone 252 (ie, the smaller end) is larger, thereby reducing the slip of the shifting ring 3, which is not Give a brief description.
  • the central sun gear 13 rotates (rotates) with the input shaft 11 to drive the driven planetary gear 251 to rotate (rotate).
  • the planetary cone 252 is also rotated synchronously. Since the planetary cone wheel 252 is connected to the shifting ring 3 and the shifting ring 3 does not rotate (fixed by the pressing device 5), it will be inside the shifting ring 3 during the rotation (rotation) of the planetary cone wheel 252. Rotation around the center of the shifting ring 3 (revolution), and further, since the planetary gear shaft 253 passes through the carrier 23, the carrier 23 and the output shaft 21 on the carrier 23 can be rotated (rotated) to realize power transmission.
  • the spindle 41 of the shift spindle mechanism 4 is first driven to rotate axially by the shift control mechanism (ie, rotation). After the screw 41 rotates, the screw nut 42 can be moved in the first direction. Since the pressing device 5 is integrally formed with the spindle nut 42, the pressing device 5 also moves in the first direction (the X-axis direction in Fig. 1) with the screw nut 42. Further, the pressing device 5 pushes the shifting ring 3 to cause the conical elastic piece 31 of the shifting ring 3 to roll on the surface of the planetary cone 252 in the first direction.
  • FIG. 4 is a schematic view showing the movement path of the conical shrapnel of the shifting ring on the planetary cone wheel during the shifting process of the continuously variable transmission of the present invention.
  • 4 is schematically illustrated by taking a conical spring 31 on the shifting ring 3 as an example.
  • the conical elastic piece 31 of the shifting ring 3 is centered on the annular central axis 32. Rotating (as indicated by the arrow in Fig.
  • the shifting ring adopts the form of rolling, which has less frictional resistance and can be realized faster than the sliding form of the existing mechanical stepless automatic transmission (CVT) steel strip in the shifting process. Variable speed and other advantages.
  • the planetary cone wheels 252 have different diameters on the path in which the shift ring 3 rolls in the first direction, deceleration or acceleration of the continuously variable transmission can be achieved.
  • the diameter of the planetary cone 252 is gradually increased in the direction along the X-axis, and the angular velocities of the two planetary cones 252 are constant, the planetary cone 252 and the shifting ring 3
  • the linear velocity of the meshing position is increased by the increase of the diameter thereof, so that the speed of the rotation (revolution) of the planetary cone 252 in the shifting ring 3 is increased, and the planetary carrier 23 is pushed by the planetary gear shaft 253 to accelerate the rotation, thereby
  • the output shaft 21 is realized to speed up the output speed.
  • the speed of the output shaft 21 can be slowed by rolling the shifting ring 3 in a direction opposite to the X-axis.
  • the continuously variable transmission further includes a housing 6.
  • the planetary power transmission mechanism, the shifting ring and the shifting unit are all disposed in the casing 6.
  • the continuously variable transmission provided by the embodiment of the present invention rotates around the planetary driven member that drives the power output component by the power input member, thereby driving the power.
  • the output shaft of the output member rotates, and the transmission torque transmission mode can effectively increase the power transmission to meet the demand of the high torque working condition.
  • the continuously variable transmission further controls the shifting of the continuously variable transmission by controlling the shifting ring to move in the first direction to adjust the rotational speed of the power output member of the power transmitting mechanism by the shifting unit, wherein during the shifting, the shifting includes a plurality of loops
  • the conical shrapnel is a centrally rotating central shaft. Therefore, the shifting ring moves in the rolling direction on the surface of the planetary cone during the first direction of movement, compared to the existing mechanical belt of the mechanical stepless automatic transmission (CVT).
  • CVT mechanical stepless automatic transmission
  • the structure of the continuously variable transmission also avoids the complicated hydraulic pressing device in the existing continuously variable transmission, thereby having the advantages of simple manufacturing, low cost and high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

一种无级变速器,包括:行星动力传输机构、变速环(3)和变速单元,行星动力传输机构至少包括一动力输入部件(1)和一动力输出部件(2),动力输出部件(2)包括一输出轴(21)以及至少一与输出轴(21)相连接并驱动输出轴(21)旋转的行星从动部件(25),行星从动部件(25)设置于动力输入部件(1)的外侧,且可在动力输入部件(1)的驱动下环绕动力输入部件(1)转动;变速环(3)环绕连接行星从动部件(25)且可在第一方向上来回移动;变速单元至少包括一压紧装置(5),压紧装置(5)设置于变速环(3)外侧且与变速环(3)固定连接并驱动变速环(3)在第一方向来回移动,调节动力输出部件(2)的转速。

Description

一种无级变速器 技术领域
本发明涉及一种可应用于汽车及其他传递动力的机械装置无级变速器。
背景技术
自动变速器作为汽车及其他机械传动装置的核心部件,目前主要有电控机械自动变速器(AMT)、液力自动变速器(AT)、双离合自动变速器(DCT)、机械无级自动变速器(CVT)四大类。其中,机械无级自动变速器(CVT)由于具有可连续变速,且变速过程中动力可持续输出等特点,可使发动机转速保持在最经济的工作区域,实现在相同条件下的汽车或同类型机械装置中油耗最低、运行最为平缓等效果。另外,机械无级自动变速器(CVT)还具有比传统变速器结构简单、部件数量少、体积更小、重量更轻等优点。
机械无级自动变速器(CVT)除了主流的带式和链式,还存在各种不同形式,如锥环式、滚轮式等,动力通过金属环或金属盘在主动锥轮、被动锥轮或者锥盘之间传递进行。但是这些形式的机械无级自动变速器由于动力传递处接触面积较小,应力较为集中,可传递最大扭矩和变速稳定性均受到限制,目前只是在小部分车型上应用。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种无级变速器。
根据本发明的一个方面提供一种无级变速器,所述无级变速器包括:行星动力传输机构,所述行星动力传输机构至少包括:一动力输入部件;和一动力输出部件,所述动力输出部件包括一输出轴以及至少一与所述输出轴相连接、驱动所述输出轴旋转的行星从动部件,所述行星从动部件设置于所述动力输入部件的外侧,且可在所述动力输入部件的驱动下环绕所述动力输入部件转动;变速环,环绕连接所述行星从动部件,且所述变速环可在第一方向上来回移动;变速单元,所述变速单元至少包括一压紧装置,所述压紧装置设置于所述变速环外侧,且与所述变速环固定连接,驱动所述变速环在所述第一方向来回移动、调节所述行星动力传输机构的动力输出部件的转速。
优选地,所述动力输入部件包括一输入轴以及套设于所述输入轴上的中心太阳齿轮;所述动力输出部件还包括一具有所述输出轴的行星架,其中,所述中心太阳齿轮设置于所述行星架内;其中,所述行星从动部件设置于所述中心太阳齿轮的外侧,与所述行星架相连接,且与所述中心太阳齿轮和所述变速环相连接,所述行星从动部件可在所述中心太阳齿轮的旋转驱动下绕所述变速环的中心转动,以驱动所述输出轴旋转。
优选地,所述行星从动部件包括:与所述中心太阳齿轮相啮合的从动行星齿轮,所述 从动行星齿轮设置于所述行星架内;与所述从动行星齿轮同轴且相互固定的行星锥轮,所述行星锥轮与所述变速环相连接;行星齿轮轴,与所述从动行星齿轮、行星锥轮固定连接,且所述行星齿轮轴还穿过所述从动行星齿轮、行星锥轮与所述行星架相连。
优选地,所述输入轴与所述输出轴同轴设置。
优选地,所述动力输出部件包括多个所述行星从动部件,其中,多个所述行星从动部件环绕设置于所述动力输入部件的外侧。
优选地,所述变速环包括:一环状中心轴;以及多个圆锥形弹片,设置于所述环状中心轴上,其中,每个所述圆锥形弹片均可以所述环状中心轴为中心转动;其中,所述压紧装置控制至少一个所述圆锥形弹片在以所述环状中心轴为中心转动的同时、在所述行星从动部件表面滚动,以驱动所述变速环沿所述第一方向移动。
优选地,所述变速单元还包括:变速丝杆机构,设置于所述压紧装置外侧,所述变速丝杆机构包括:丝杆,所述丝杆沿所述第一方向延伸;和丝杆螺母,套设于所述丝杆上,且可沿所述丝杆在第一方向上来回移动;其中,所述压紧装置与所述丝杆螺母连接,所述压紧装置可随所述丝杆螺母在所述第一方向上同步移动,以带动所述变速环在所述第一方向上移动;变速控制机构,与所述丝杆相连接,驱动所述丝杆旋转,以控制所述丝杆螺母沿所述丝杆在第一方向上移动。
优选地,所述变速单元包括多个所述变速丝杆机构,多个所述变速丝杆机构环绕设置于所述压紧装置的外侧,多个所述变速丝杆机构的丝杆均连接所述变速控制机构。
优选地,每个所述变速丝杆机构还包括一同步链轮,所述同步链轮设置于所述变速丝杆机构的同一端;所述变速单元还包括一连接每个所述同步链轮的齿形链。
优选地,所述压紧装置朝向所述变速环的一侧表面设有沿所述第一方向延伸的卡槽,所述变速环的圆锥形弹片卡于所述卡槽中。
优选地,所述压紧装置呈套筒状环绕所述变速环。
优选地,所述无级变速器还包括一壳体,所述行星动力传输机构和所述变速单元设置于所述壳体内。
相比于现有技术,本发明实施例提供的无级变速器通过由动力输入部件驱动动力输出部件的行星从动部件环绕其转动,以此带动动力输出部件的输出轴旋转,该传递扭矩的传递方式可有效地增加动力传递,满足大扭矩工况需求。
此外,该无级变速器还通过变速单元控制变速环沿第一方向移动以调节动力传输机构的动力输出部件的转速实现无级变速器的变速,其中,变速过程中,由于变速包括多个可以绕环状中心轴为中心转动的圆锥形弹片,因此,变速环在第一方向移动的过程中以滚动的形式在行星锥轮表面移动,相比现有的机械无级自动变速器(CVT)的钢带在变速过程中采用的滑动形式来说,具有摩擦阻力较小、且可实现快速变速等优点。并且,结合该行星锥轮的结构后,该变速环在压紧装置和行星锥轮共同挤压下变形,增加与行星锥轮接触 面积,因此还具有接触面积大、运行磨损小、寿命较长等优点。该无级变速器的结构还避免了采用现有无级变速器中复杂的液压压紧装置,从而具有制造较为简单,成本较低,可靠性较高等优点。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为本发明的第一实施例的无级变速器的截面结构示意图;
图2为图1中A—A处的截面结构示意图;
图3为图2中B处的局部放大图;
图4为本发明的无级变速器在变速过程中变速环的圆锥形弹片在行星锥轮上的运动轨迹示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
现有的机械无级自动变速器(CVT)至少都存在以下两个问题限制了变速器的最大传递扭矩:
1、工作接触面有限,若用于产生摩擦力的正压力如果太大容易引起机构应力过大导致失效;
2、传递动力的摩擦力和变速需要克服的摩擦阻力在同一接触面,且均为滑动摩擦,若一味提高传递动力的摩擦力将使变速无法顺利进行。
因此,若将现有的机械无级自动变速器应用于高扭矩和具有较高运动性能要求的车辆或器械中至少会存在以下问题:
1)传动带容易损坏,因此,对其材质要求较高;
2)变速器无法承受较大的载荷;
3)不能快速移动传动带,因此,无法满足车辆快速变速的使用要求;
4)变速器的制造工艺复杂。
针对上述因素,本发明提供一种无级变速器。依据本发明的主旨构思,所述无级变速器包括行星动力传输机构,所述行星动力传输机构至少包括:一动力输入部件;和一动力输出部件,所述动力输出部件包括一输出轴以及至少一与所述输出轴相连接、驱动所述输出轴旋转的行星从动部件,所述行星从动部件设置于所述动力输入部件的外侧,且可在所述动力输入部件的驱动下环绕所述动力输入部件转动;变速环,环绕连接所述行星从动部 件,且所述变速环可在第一方向上来回移动;变速单元,所述变速单元至少包括一压紧装置,所述压紧装置设置于所述变速环外侧,且与所述变速环固定连接,驱动所述变速环在所述第一方向来回移动、调节所述行星动力传输机构的动力输出部件的转速。
下面结合附图和实施例对本发明的技术内容进行进一步地说明。
请一并参见图1至图4,其分别示出了本发明实施例的无级变速器的截面结构示意图、变速环和压紧装置的结构示意图以及变速过程中变速环的圆锥形弹片的运动轨迹示意图。其中,图2为图1中A—A处的截面结构示意图;图3为图2中B处的局部放大图。在本发明的优选实施例中,所述无级变速器主要包括行星动力传输机构、变速环以及变速单元。
所述行星动力传输机构至少包括一动力输入部件和一动力输出部件。所述动力输出部件包括一输出轴以及至少一与所述输出轴相连接、驱动所述输出轴旋转的行星从动部件,所述行星从动部件设置于所述动力输入部件的外侧,且可在所述动力输入部件的驱动下环绕所述动力输入部件转动。
具体来说,在图1和图2所示的实施例中,动力输入部件1包括一输入轴11以及套设于输入轴11上的中心太阳齿轮13。中心太阳齿轮13与输入轴11相互固定,且可随输入轴11同步旋转(此处的旋转是指输入轴11在发动机等设备的驱动下进行的自转)。
动力输出部件2包括具有一输出轴21的行星架23以及从动部件25。在图1所示的实施例中,输出轴21位于行星架23的左端,且优选地,输出轴21与输入轴11同轴设置。中心太阳齿轮13设置于行星架23内。
行星从动部件25设置于中心太阳齿轮13的外侧。行星从动部件25与行星架23、中心太阳齿轮13以及变速环3相连接。在本发明的优选实施例中,动力输出部件2可以包括多个行星从动部件25。其中,多个行星从动部件25环绕设置与动力输入部件1的外侧。在图1和图2所示的实施例中,动力输出部件2包括两个从动部件25,两个行星从动部件25相对行星架23的环状中心轴相互对称。需要说明的是,虽然图1和图2所示实施例中以具有两个相对行星架23的环状中心轴相互对称的从动部件25的动力输出部件2为例进行说明,但并不限于此,在本发明的其他实施例中,行星从动部件的数量可以根据实际的扭矩大小需要进行调整,例如具有三个或四个等,多个行星从动部件同时传递扭矩,以此有效地增加动力传递。并且,多个行星从动部件并不一定是两两对称设置的,在此不予赘述。
具体来说,行星从动部件25包括从动行星齿轮251、行星锥轮252以及行星齿轮轴253。其中,从动行星齿轮251设置于行星架23内且与中心太阳齿轮13相啮合。行星锥轮252与从动行星齿轮251之间同轴设置且相互固定连接,二者可以为一体成型。优选地,行星锥轮252表面具有沟槽,以此减少变速环打滑现象。行星齿轮轴253与所述从动行星齿轮251、行星锥轮252同轴且相互固定连接,其穿过从动行星齿轮251、行星锥轮252与行星架23连接,且可在行星架23上自转。
变速环3环绕所述行星从动部件,且变速环3可在第一方向(图1中的X轴方向)上 来回移动。如图2和图3所示,变速环3可以为一由多个圆锥形弹片串成的钢环。具体来说,变速环3包括一环状中心轴32以及多个圆锥形弹片31。多个圆锥形弹片31设置于环状中心轴32上。其中,每个圆锥形弹片31均可在以环状中心轴32为中心转动的同时,在行星锥轮252的表面滚动,进而,使变速环3在沿第一方向移动、实现无级变速器变速的过程中可采用滚动的形式,相比现有的机械无级自动变速器(CVT)的钢带在变速过程中采用的滑动形式来说,具有摩擦阻力较小、且可实现快速变速等优点。
在图1和图2所示的实施例中,变速环3与行星锥轮252相连接。需要说明的是,此处行星锥轮252与变速环3的连接可以是指行星锥轮252与变速环3之间的相互啮合,也可以仅仅是指行星锥轮252与变速环3之间的相互贴合。进而,当从动行星齿轮251在中心太阳齿轮13的驱动下旋转后,可使行星从动部件25绕变速环3的中心转动,带动行星架23及其输出轴21旋转,实现动力的输出。此外,虽然本发明图1至图4所示实施例中以包括环状中心轴32以及多个圆锥形弹片31的变速环为例进行说明,但并不以此为限,在可以实现该无级变速器变速的作用的技术上,其也可以是现有的任一种变速环,在此不予赘述。
所述变速单元控制变速环沿第一方向移动以调节动力输出部件的转速。所述变速单元包括变速丝杆机构4、压紧装置5以及变速控制机构。在图1和图2所示的实施例中,所述变速单元包括两个变速丝杆机构4。其中,两个变速丝杆机构4分别设置于变速环3的两侧(图1和图2中为设置于变速环3的上下两侧),每个变速丝杆机构4均连接一个所述变速控制机构。需要说明的是,虽然图1和图2所示的实施例中以具有两个变速丝杆机构4的变速单元为例进行说明,但并不限于此,在本发明的其他实施例中,变速丝杆机构的数量可以根据实际的需要进行调整,例如具有三个或四个变速丝杆机构,在此不予赘述。
由于在此实施例中,两个变速丝杆机构4的结构相同,因此,以图1中设置于变速环3上方的变速丝杆机构4为例进行说明。具体来说,变速丝杆机构4设置于变速环3的外侧,变速丝杆机构4包括丝杆41和丝杆螺母42。如图1所示,丝杆41沿第一方向(图1中的X轴方向)延伸。丝杆螺母42套设于丝杆41上,且可沿丝杆41在第一方向上来回移动。其中,丝杆螺母42沿丝杆41的移动是指在丝杆41旋转过程中,沿丝杆41表面的螺纹进行移动。
压紧装置5设置于变速环3外侧,与丝杆螺母42和变速环3连接。压紧装置5可随丝杆螺母42在第一方向上同步移动,以带动所述变速环在所述第一方向上移动,调节所述行星动力传输机构的动力输出部件的转速。此外,压紧装置5还可以对变速环3的圆锥形弹片31起到挤压变形的作用,使变速环3以椭圆状的形式贴合行星锥轮252,以增加其与行星锥轮252之间的接触面积,避免应力集中、出现打滑,进而,实现有效的动力传递。具体来说,在图1至图3所示的实施例中,压紧装置5呈套筒状设置于变速环3的外侧。并且,在此实施例中,压紧装置5与两个变速丝杆机构4的丝杆螺母42一体成型,因此可随丝杆螺母42同步移动。压紧装置5控制(例如推动等方式)变速环3的至少一 个圆锥形弹片在以环状中心轴32为中心转动的同时,在行星锥轮252的表面滚动,以驱动变速环3在第一方向来回移动、此外,在图2和图3所示的实施例中,压紧装置5朝向变速环3的一侧表面设有沿第一方向(图1中X轴方向)延伸的卡槽53,变速环3的圆锥形弹片31卡于卡槽53中。优选地,卡槽53的数量与变速环3的圆锥形弹片31数量相同。卡槽53可以阻止变速环3旋转(自转),进而,实现了行星锥轮252在变速环3内转动(绕变速环3的中心公转)。
所述变速控制机构(图1和图2中未示出)与丝杆41相连接,驱动丝杆41旋转,以此控制丝杆螺母42沿丝杆41在第一方向上移动。
进一步地,在图1和图2所示的实施例中,每个变速丝杆机构4还包括一同步链轮43。两个同步链轮43均设置于变速丝杆机构4的同一端。变速单元还包括一环绕两个同步链轮43的齿形链(图1和图2中未示出)。齿形链连接两个同步链轮43后可使二者的转速保持一致,进而,可使两个丝杆41的转速保持一致,在两个丝杆41的转速一致的情况下可使压紧装置5沿轴向直线移动,从而保证了变速环3移动过程中的稳定性。
需要说明的是,在本发明的些实施例中,压紧装置可以是直筒状也可以是具有一定锥度的锥筒状,例如,在输入轴11一侧,图示的右侧,直径变小,从而实现变速环3运行到该区域时变形更大,使其与行星锥轮252小端处(即尺寸较小的一端)接触面积也就更大,从而减少变速环3打滑,在此不予赘述。
进一步地,结合上述图1至图3所示,本发明的无级变速器在动力传输的过程中,中心太阳齿轮13随输入轴11同步旋转(自转)后驱动从动行星齿轮251旋转(自转),使行星锥轮252也同步进行旋转。由于行星锥轮252与变速环3相连接,且变速环3并不旋转(被压紧装置5固定),因此,在行星锥轮252旋转(自转)的过程中,其会在变速环3内绕变速环3的中心转动(公转),进而,因行星齿轮轴253穿过行星架23,所以可带动行星架23以及行星架23上的输出轴21进行旋转(自转),实现动力的传输。
进一步地,结合图1和图2所示的实施例,在所述无级变速器需要进行变速的情况下,首先由变速控制机构驱动变速丝杆机构4的丝杆41轴向旋转(即自转),丝杆41旋转后可以使丝杆螺母42沿第一方向上移动。由于压紧装置5与丝杆螺母42一体成型,因此,压紧装置5同样随丝杆螺母42在第一方向(图1中X轴方向)移动。进而,压紧装置5推动变速环3使变速环3的圆锥形弹片31沿第一方向在行星锥轮252的表面进行滚动。为了清楚地对变速环的圆锥形弹片的运行轨迹进行说明,图4示出了本发明的无级变速器在变速过程中变速环的圆锥形弹片在行星锥轮上的运动轨迹示意图。其中,图4示意性地以变速环3上的一个圆锥形弹片31为例进行说明。具体来说,如图4所示,当压紧装置5沿第一方向(如图4中X轴方向)推动变速环3时,变速环3的圆锥形弹片31以环状中心轴32为中心转动(如图4箭头所示)的同时,沿行星锥轮252表面滚动,进而,使变速环3沿第一方向(如图4中X轴方向)移动,因此,该无级变速器在变速的过程中、其变速环采用的是滚动的形式,相比现有的机械无级自动变速器(CVT)的钢带在变速过 程中采用的滑动形式来说,具有摩擦阻力较小、且可实现快速变速等优点。
进而,由于行星锥轮252在变速环3沿第一方向进行滚动的路径上直径不同,因此,可以实现无级变速器的减速或加速。在图1所示的实施例中,由于沿着X轴的方向上行星锥轮252的直径逐渐增大,而两个行星锥轮252的角速度是不变的,行星锥轮252与变速环3相啮合位置的线速度因其直径的增大而增大,因此,行星锥轮252在变速环3内的转动(公转)的速度加快了,通过行星齿轮轴253推动行星架23加快转动,进而实现输出轴21加快输出转速。相反,变速环3沿着与X轴相反的方向滚动后可使输出轴21的转速变慢。
进一步地,在图1和图2所示的实施例中,所述无级变速器还包括一壳体6。其中,行星动力传输机构、变速环和变速单元均设置于壳体6内。
综上所述,结合上述图1至图4所示的实施例,本发明实施例提供的无级变速器中通过由动力输入部件驱动动力输出部件的行星从动部件环绕其转动,以此带动动力输出部件的输出轴旋转,该传递扭矩的传递方式可有效地增加动力传递,满足大扭矩工况需求。
此外,该无级变速器还通过变速单元控制变速环沿第一方向移动以调节动力传输机构的动力输出部件的转速实现无级变速器的变速,其中,变速过程中,由于变速包括多个可以绕环状中心轴为中心转动的圆锥形弹片,因此,变速环在第一方向移动的过程中以滚动的形式在行星锥轮表面移动,相比现有的机械无级自动变速器(CVT)的钢带在变速过程中采用的滑动形式来说,具有摩擦阻力较小、且可实现快速变速等优点。并且,结合该行星锥轮的结构后,不但多个行星锥轮可同时传递扭矩,而且该变速环在压紧装置和行星锥轮共同挤压下变形,增加与行星锥轮接触面积,因此还具有接触面积大、运行磨损小、寿命较长等优点。该无级变速器的结构还避免了采用现有无级变速器中复杂的液压压紧装置,从而具有制造较为简单,成本较低,可靠性较高等优点。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种无级变速器,其特征在于,所述无级变速器包括:
    行星动力传输机构,所述行星动力传输机构至少包括:
    一动力输入部件;和
    一动力输出部件,所述动力输出部件包括一输出轴以及至少一与所述输出轴相连接、驱动所述输出轴旋转的行星从动部件,所述行星从动部件设置于所述动力输入部件的外侧,且可在所述动力输入部件的驱动下环绕所述动力输入部件转动;
    变速环,环绕连接所述行星从动部件,且所述变速环可在第一方向上来回移动;
    变速单元,所述变速单元至少包括一压紧装置,所述压紧装置设置于所述变速环外侧,且与所述变速环固定连接,驱动所述变速环在所述第一方向来回移动、调节所述行星动力传输机构的动力输出部件的转速。
  2. 根据权利要求1所述的无级变速器,其特征在于,所述动力输入部件包括一输入轴以及套设于所述输入轴上的中心太阳齿轮;
    所述动力输出部件还包括一具有所述输出轴的行星架,所述中心太阳齿轮设置于所述行星架内;
    其中,所述行星从动部件设置于所述中心太阳齿轮的外侧,与所述行星架相连接,且与所述中心太阳齿轮和所述变速环相连接,所述行星从动部件可在所述中心太阳齿轮的旋转驱动下绕所述变速环的中心转动,以驱动所述输出轴旋转。
  3. 根据权利要求2所述的无级变速器,其特征在于,所述行星从动部件包括:
    与所述中心太阳齿轮相啮合的从动行星齿轮,所述从动行星齿轮设置于所述行星架内;
    与所述从动行星齿轮同轴且相互固定的行星锥轮,所述行星锥轮与所述变速环相连接;
    行星齿轮轴,与所述从动行星齿轮、行星锥轮固定连接,且所述行星齿轮轴还穿过所述从动行星齿轮、行星锥轮与所述行星架相连。
  4. 根据权利要求2所述的无级变速器,其特征在于,所述输入轴与所述输出轴同轴设置。
  5. 根据权利要求1所述的无级变速器,其特征在于,所述动力输出部件包括多个所述行星从动部件,其中,多个所述行星从动部件环绕设置于所述动力输入部件的外侧。
  6. 根据权利要求1所述的无级变速器,其特征在于,所述变速环包括:
    一环状中心轴;以及
    多个圆锥形弹片,设置于所述环状中心轴上,其中,每个所述圆锥形弹片均可以所述环状中心轴为中心转动;
    其中,所述压紧装置控制至少一个所述圆锥形弹片在以所述环状中心轴为中心转动的 同时、在所述行星从动部件表面滚动,以驱动所述变速环沿所述第一方向移动。
  7. 根据权利要求1所述的无级变速器,其特征在于,所述变速单元还包括:
    变速丝杆机构,设置于所述压紧装置外侧,所述变速丝杆机构包括:
    丝杆,所述丝杆沿所述第一方向延伸;和
    丝杆螺母,套设于所述丝杆上,且可沿所述丝杆在第一方向上来回移动;
    其中,所述压紧装置与所述丝杆螺母连接,所述压紧装置可随所述丝杆螺母在所述第一方向上同步移动,以带动所述变速环在所述第一方向上移动;
    变速控制机构,与所述丝杆相连接,驱动所述丝杆旋转,以控制所述丝杆螺母沿所述丝杆在第一方向上移动。
  8. 根据权利要求7所述的无级变速器,其特征在于,所述变速单元包括多个所述变速丝杆机构,多个所述变速丝杆机构环绕设置于所述压紧装置的外侧,多个所述变速丝杆机构的丝杆均连接所述变速控制机构。
  9. 根据权利要求8所述的无级变速器,其特征在于,每个所述变速丝杆机构还包括一同步链轮,所述同步链轮设置于所述变速丝杆机构的同一端;所述变速单元还包括一连接每个所述同步链轮的齿形链。
  10. 根据权利要求1所述的无级变速器,其特征在于,所述压紧装置朝向所述变速环的一侧表面设有沿所述第一方向延伸的卡槽,所述变速环的圆锥形弹片卡于所述卡槽中。
  11. 根据权利要求1所述的无级变速器,其特征在于,所述压紧装置呈套筒状环绕所述变速环。
  12. 根据权利要求1至11所述的无级变速器,其特征在于,所述无级变速器还包括一壳体,所述行星动力传输机构和所述变速单元设置于所述壳体内。
PCT/CN2018/077489 2017-03-01 2018-02-28 一种无级变速器 WO2018157806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018001076.7T DE112018001076B4 (de) 2017-03-01 2018-02-28 Stufenloses Reibradgetriebe mit Kegelplaneten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710118090.8A CN108533700B (zh) 2017-03-01 2017-03-01 一种无级变速器
CN201710118090.8 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018157806A1 true WO2018157806A1 (zh) 2018-09-07

Family

ID=63369750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077489 WO2018157806A1 (zh) 2017-03-01 2018-02-28 一种无级变速器

Country Status (3)

Country Link
CN (1) CN108533700B (zh)
DE (1) DE112018001076B4 (zh)
WO (1) WO2018157806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332601A (zh) * 2020-10-20 2021-02-05 赵泽碧 一种传动实时控制件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201065924Y (zh) * 2007-07-11 2008-05-28 日本电产新宝(浙江)有限公司 变速机
US20130099615A1 (en) * 2011-10-25 2013-04-25 Lynwood A. Stewart Magnetic torque systems
JP2013181628A (ja) * 2012-03-02 2013-09-12 Isuzu Motors Ltd 無段変速装置
CN103502692A (zh) * 2011-05-06 2014-01-08 五十铃自动车株式会社 行星摩擦轮式无级变速器
CN104508327A (zh) * 2012-08-01 2015-04-08 株式会社三国 无级变速装置
CN206770535U (zh) * 2017-03-01 2017-12-19 蔡有建 一种无级变速器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2188880A1 (en) 1995-03-24 1996-10-03 Jeong Cheol Kim Infinitely variable speed transmission
JPH11515077A (ja) 1995-10-26 1999-12-21 ゲトラク イノヴァツィオンズ ゲーエムベーハー 変速比を無段階で変更可能な自動車変速機
DE19929424A1 (de) 1999-06-26 2001-01-11 Bosch Gmbh Robert Reibrad-Umlaufgetriebe mit Kegelrädern
US6955624B2 (en) 2002-12-12 2005-10-18 Dwight Stanford Brass Motor vehicle drivetrain having at least two CNT's and flywheels
WO2007029564A1 (ja) * 2005-09-06 2007-03-15 Mikuni Corp. 遊星ローラ変速装置及びそれを備えた車輌
CN102230522A (zh) * 2011-04-13 2011-11-02 北京理工大学 一种汽车用双锥轮无级变速器
CN102661365A (zh) * 2012-04-05 2012-09-12 中北大学 变齿数齿轮无级变速器
CN103807394B (zh) * 2014-01-27 2016-01-27 北京理工大学 内接触锥环式无级变速器
CN204610720U (zh) * 2015-04-22 2015-09-02 重庆小康工业集团股份有限公司 全齿式行星机构无级变速器
DE102016109551A1 (de) 2016-05-24 2017-11-30 Volkswagen Aktiengesellschaft Stufenplanetengetriebe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201065924Y (zh) * 2007-07-11 2008-05-28 日本电产新宝(浙江)有限公司 变速机
CN103502692A (zh) * 2011-05-06 2014-01-08 五十铃自动车株式会社 行星摩擦轮式无级变速器
US20130099615A1 (en) * 2011-10-25 2013-04-25 Lynwood A. Stewart Magnetic torque systems
JP2013181628A (ja) * 2012-03-02 2013-09-12 Isuzu Motors Ltd 無段変速装置
CN104508327A (zh) * 2012-08-01 2015-04-08 株式会社三国 无级变速装置
CN206770535U (zh) * 2017-03-01 2017-12-19 蔡有建 一种无级变速器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332601A (zh) * 2020-10-20 2021-02-05 赵泽碧 一种传动实时控制件

Also Published As

Publication number Publication date
CN108533700B (zh) 2024-05-03
CN108533700A (zh) 2018-09-14
DE112018001076B4 (de) 2022-07-14
DE112018001076T5 (de) 2019-12-24

Similar Documents

Publication Publication Date Title
US20170284508A1 (en) Planetary Powertrain Configuration with a Ball Variator Continuously Variable Transmission Used as a Powersplit
US20110319222A1 (en) Continuously variable transmission mechanism and transmission using the same
CN203255336U (zh) 一种自行车无级变速装置
US3420122A (en) Infinitely variable friction drive
CN103307237B (zh) 柔性啮合无级变速箱
CN111677821A (zh) 齿轮传动无级变速器
US1981582A (en) Friction change speed gears
WO2021115024A1 (zh) 变径链条环轮以及变径链条环轮变速器
WO2018157806A1 (zh) 一种无级变速器
CN100383433C (zh) 双带或双链传动的同步装置
WO2016178913A1 (en) Power path with feedthrough planetary for concentric/coaxial applications
CN103791055B (zh) 一种汽车无级变速装置
CN109555828B (zh) 一种滚压式无级变速器
CN202402581U (zh) 基于变节圆半径的星形链传动无级变速装置
US10088021B2 (en) Continuously variable transmission
JP5234015B2 (ja) 無段変速装置
CN108533709A (zh) 滚轮传动无级变速箱
US20170248213A1 (en) Planetary powertrain configurations with a ball variator continuously variable transmission used as a powersplit
CN105864371A (zh) 无极变速装置
CN108506447B (zh) 一种无级变速器
CN109555825B (zh) 一种不停车在线无级连续变速传动装置
CN206770535U (zh) 一种无级变速器
CN111255866A (zh) 链传动无级变速装置
CN112377584A (zh) 摩擦式机械无级变速器
EP2716936A1 (en) Transmission mechanism for friction planetary continuous variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760790

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18760790

Country of ref document: EP

Kind code of ref document: A1