WO2018157676A1 - 免对正轴心的影像测量装置及其测量方法 - Google Patents

免对正轴心的影像测量装置及其测量方法 Download PDF

Info

Publication number
WO2018157676A1
WO2018157676A1 PCT/CN2018/073650 CN2018073650W WO2018157676A1 WO 2018157676 A1 WO2018157676 A1 WO 2018157676A1 CN 2018073650 W CN2018073650 W CN 2018073650W WO 2018157676 A1 WO2018157676 A1 WO 2018157676A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
workpiece
virtual
distance
post
Prior art date
Application number
PCT/CN2018/073650
Other languages
English (en)
French (fr)
Inventor
林明慧
Original Assignee
林明慧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林明慧 filed Critical 林明慧
Priority to US16/490,560 priority Critical patent/US11105618B2/en
Publication of WO2018157676A1 publication Critical patent/WO2018157676A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness

Definitions

  • the present invention relates to an image measuring apparatus and a measuring method thereof, and more particularly to an image measuring apparatus and a measuring method thereof for quickly and accurately measuring a workpiece contour size without a positive axis.
  • the screws are generally cylindrical. As long as the contour image of any profile is taken, the characteristic size representing the screw can be calculated.
  • Triangular Thread Screw this structure is hereinafter referred to as Triangular Thread Screw
  • the cross-section of the triangular screw is not a symmetrical triangle due to the deformation of the screw, and the concentricity of the screw and the screw is not good, so any of the triangular screws can be clamped by the rotating clamp.
  • Position usually the center of rotation does not accurately pass the centroid of the triangle, so the measurement of the outer diameter and the length of the center line of the triangular screw tends to have a large error.
  • V-micrometer uses the principle that three points can form a circle to calculate the outer diameter, but it is necessary to pay attention to the measurement when measuring.
  • the contacts must be aligned with the apex of the triangle, otherwise the measured value will be inaccurate.
  • the outer diameter distance measured using a V-type micrometer is also for reference only.
  • the contact must be aligned with the apex of the triangle.
  • the use of V-type micrometers and centimeter cards are contact-type measurement methods, the personnel's operating experience is relatively important, and the increase in error rate caused by human factors is often a potential problem of such measuring instruments.
  • an object of the present invention is to provide an image measuring device and a measuring method thereof, which are free from the positive axis, and which can realize non-contact image measuring mode by using parameter reading and calculation of shielding dark regions with different rotation angles, and can be arbitrarily By placing or clamping the workpiece without accurately aligning the axis, the axial position of the workpiece can be correctly estimated, and then its characteristic size is calculated, so that the present invention has considerable convenience.
  • the special concept of the alignment of the positive axis with the image measurement method, not only the measurement manpower can be reduced and the measurement cost can be reduced, but also the measurement time can be greatly saved and the measurement accuracy can be improved, so as to solve the problem of excessive error and human contact in the known technology.
  • An embodiment of the present invention provides an image measuring device for correcting a positive axis, which is used for measuring a workpiece to be tested, and the image measuring device for eliminating the positive axis includes a rotating disk, a light projection unit, and an image capturing device.
  • Unit central control processing unit and rotary drive.
  • the rotating disc includes a rotating shaft center position, and the workpiece to be tested is disposed on the rotating disc.
  • the light projection unit generates light and causes the light to travel along the illumination path, and the illumination path passes through the workpiece to be tested.
  • the image capturing unit is disposed on the illumination path to receive the light, and the workpiece to be tested shields part of the light, so that the first workpiece is formed on the image capturing unit to shield the dark area.
  • the signal is connected to the rotating disk, the light projection unit and the image capturing unit.
  • the rotating disk and the workpiece to be tested are controlled by the central control processing unit to rotate by a rotation angle, so that the second workpiece is shielded from the dark area on the image capturing unit.
  • the central control processing unit generates a pre-rotation distance parameter and a post-rotation distance parameter according to the first workpiece shading dark area and the second workpiece shading dark area operation, and the central control processing unit calculates the pre-rotation distance parameter and the post-rotation distance parameter to generate the workpiece axis. Heart position.
  • the rotary driving member is connected to the rotating disk, and the rotating driving member is controlled by the central control processing unit to rotate the rotating disk, so that the rotating disk rotates synchronously with the workpiece to be tested.
  • the axial position of the workpiece is separated from the rotational axis position by a shaft spacing, and the axial spacing is used to determine whether the positive axis is aligned.
  • the non-contact image measuring device of the present invention can arbitrarily place or hold the workpiece to be tested by the non-contact image measuring method, and can accurately estimate the workpiece to be tested without accurately aligning the axis.
  • the position of the workpiece axis, and then calculate the feature size of the workpiece to be tested, not only can be quickly measured, but also has good convenience and high accuracy.
  • the rotating disk may include a virtual rotation axis and a bearing surface, wherein the virtual rotation axis is perpendicular to the XY plane, and the virtual rotation axis corresponds to the rotation axis position.
  • the bearing surface vertically intersects the virtual rotation axis and is parallel to the XY plane, and the workpiece to be tested is placed on the bearing surface.
  • the rotation angle is greater than 0 degrees and less than 180 degrees, and the shaft difference spacing is greater than or equal to 0 and less than the radius of the rotating disk.
  • the shape of the first workpiece shielding dark region may correspond to the contour of the workpiece to be tested, and the first workpiece shielding dark region includes the first pre-rotation contour edge, the second pre-rotation contour edge, the first pre-rotation virtual measurement line, and the first Two virtual measurement lines before rotation.
  • the first pre-rotation contour edge is located on one side of the virtual rotation axis.
  • the second pre-rotation contour edge is separated from the first pre-rotation contour edge by a rotation front edge distance.
  • the first pre-rotation virtual measurement line is parallel to the XY plane, and the first pre-rotation virtual measurement line has a first pre-rotation distance, and the first pre-rotation distance represents a distance between the first pre-rotation contour edge and the virtual rotation axis.
  • the second pre-rotation virtual measurement line is coupled to the first pre-rotation virtual measurement line, and the second pre-rotation virtual measurement line is parallel to the XY plane.
  • the second pre-rotation virtual measurement line has a second pre-rotation distance, and the second pre-rotation distance represents a distance between the second pre-rotation contour edge and the virtual rotation axis.
  • the rotational axis position represents the intersection of the virtual rotational axis and the first pre-rotation virtual measurement line.
  • the first pre-rotation distance and the second pre-rotation distance are obtained by the central control processing unit according to the first pre-rotation virtual measurement line and the second pre-rotation virtual measurement line, respectively.
  • the pre-rotation distance parameter includes a first pre-rotation distance and a second pre-rotation distance
  • the rotation front line distance is a sum of the first pre-rotation distance and the second pre-rotation distance
  • the central control processing unit may generate two parallel virtual vertical edges according to the first pre-rotation virtual measurement line and the second pre-rotation virtual measurement line, and the two virtual vertical edges are perpendicular to the first pre-rotation virtual measurement line and The second pre-rotation virtual measurement line, and the two virtual vertical edges are tangent to the first pre-rotation contour edge and the second pre-rotation contour edge, respectively.
  • the shape of the second workpiece shielding dark region may correspond to the contour of the workpiece to be tested, and the second workpiece shielding dark region includes a first rotated contour edge, a second rotated contour edge, a first rotated virtual measurement line, and The second measurement is followed by a virtual measurement line.
  • the first rotated contour edge is located on one side of the virtual rotation axis.
  • the second rotated contour edge is separated from the first rotated contour edge by a rear edge distance.
  • the virtual measurement line is parallel to the XY plane, and the first rotation virtual measurement line has a first rotation distance, and the first rotation distance represents the distance between the first rotation contour edge and the virtual rotation axis. .
  • the virtual measurement line is connected to the first rotation virtual measurement line, and the second rotation virtual measurement line is parallel to the XY plane.
  • the second rotated virtual measurement line has a second post-rotation distance, and the second rotated distance represents a distance between the second rotated contour edge and the virtual rotation axis.
  • the first post-rotation distance and the second post-rotation distance are calculated by the central control processing unit according to the first post-rotation virtual measurement line and the second post-rotation virtual measurement line, respectively.
  • the post-rotation distance parameter includes a first post-rotation distance and a second post-rotation distance, and the rotated back-line distance is a sum of the first post-rotation distance and the second post-rotation distance.
  • the central control processing unit may generate a plurality of sets of two virtual vertical edges of parallel sides according to the number of rotations, the first workpiece shielding dark area and the second workpiece shielding dark area, and the virtual vertical edges are connected to form a virtual polygon, and the central portion
  • the control processing unit calculates the workpiece axis position according to the virtual polygon, the pre-rotation distance parameter, and the post-rotation distance parameter.
  • an image measurement method for correcting a positive axis for measuring a workpiece to be tested, and the image measurement method for eliminating the positive axis includes a workpiece placement step and a workpiece rotation step. , image capture steps, and axis calculation steps.
  • the workpiece placing step is to place the workpiece to be tested on the rotating disc, and the rotating disc has a rotating shaft center position.
  • the workpiece rotating step is to provide a rotary driving member to rotate the aforementioned rotating disk to rotate the rotating disk synchronously with the workpiece to be tested.
  • the image capturing step is to use the light projection unit to generate light to illuminate the workpiece to be tested, and to provide the image capturing unit to receive the light to determine that the first workpiece is shielded from the dark area.
  • the axis calculation step is to provide a central control processing unit to control the rotating disk to drive the workpiece to be tested to rotate by a rotation angle, so that the image capturing unit determines that the second workpiece is shielded from the dark region.
  • the central control processing unit generates a pre-rotation distance parameter and a post-rotation distance parameter according to the first workpiece shading dark area and the second workpiece shading dark area operation, and the central control processing unit calculates the pre-rotation distance parameter and the post-rotation distance parameter to generate the workpiece axis.
  • Heart position The axial position of the workpiece is separated from the position of the rotating shaft center by the axial distance, and the spacing of the shaft is used to determine whether the positive axis is aligned.
  • the image-measurement method of the positive-accurate center of the present invention can be accurately estimated without the accurate alignment of the positive axis under the condition that the workpiece to be tested can be placed or clamped by the non-contact image measurement method.
  • the position of the workpiece axis of the workpiece to be tested, and then the feature size is calculated, which is convenient and efficient.
  • the measurement manpower and cost can be reduced, and the accuracy is quite high.
  • the foregoing pivoting operation step may include a pre-rotation distance generating step of providing a central control processing unit to define a pre-rotation virtual measurement line and a second pre-rotation virtual
  • the measurement line is then calculated by the central control processing unit according to the pre-rotation virtual measurement line and the second pre-rotation virtual measurement line, respectively, to obtain the first pre-rotation distance and the second pre-rotation distance.
  • the first pre-rotation distance and the second pre-rotation distance are combined into the aforementioned pre-rotation distance parameter.
  • the foregoing axial calculation step may include a post-rotation distance generating step of providing a central control processing unit to define a first post-rotation virtual measurement line and a second post-rotation virtual measurement line, and then the central control processing unit The first post-rotation distance and the second post-rotation distance are obtained according to the first post-rotation virtual measurement line and the second post-rotation virtual measurement line respectively. The first post-rotation distance and the second post-rotation distance are combined into the aforementioned post-rotation distance parameter.
  • the post-rotation distance generating step is performed after the pre-rotation distance generating step.
  • the aforementioned axial calculation step may include a vertical edge generation step of providing a central control processing unit according to the first pre-rotation virtual measurement line, the second pre-rotation virtual measurement line, and the first post-rotation virtual measurement line.
  • the second rotated virtual measurement line operation produces two virtual vertical edges of two parallel sides.
  • One set of virtual vertical edges is tangent to the outline edge of the first workpiece shading dark area, and the other set of virtual vertical edges is tangent to the contour edge of the second workpiece shading dark area.
  • the foregoing axial calculation step may include a virtual polygon generating step of providing a central control processing unit to calculate the number of rotations of the rotating disk, so that the central control processing unit blocks the dark region according to the number of rotations, the first workpiece, and the second The workpiece obscures the dark area operation to produce two sets of virtual vertical edges of parallel sides.
  • the virtual vertical edges are connected to form a virtual polygon, and the central control processing unit calculates the workpiece axis position according to the virtual polygon, the pre-rotation distance parameter, and the post-rotation distance parameter.
  • FIG. 1 is a schematic diagram of an image measuring apparatus without a positive axis, according to an embodiment of the invention.
  • FIG. 2 is a schematic side view showing the workpiece to be tested presented by the display of the central control processing unit of FIG. 1.
  • FIG. 2 is a schematic side view showing the workpiece to be tested presented by the display of the central control processing unit of FIG. 1.
  • FIG. 3 is a block diagram showing the image measuring device of the alignment-free axis of FIG. 1.
  • 4A is a schematic view showing the measurement of the axial position of the workpiece according to the first embodiment of the present invention.
  • 4B is a schematic view showing the measurement of the axial position of the workpiece according to the second embodiment of the present invention.
  • 4C is a schematic view showing the measurement of the axial position of the workpiece according to the third embodiment of the present invention.
  • 4D is a schematic view showing the measurement of the axial position of the workpiece according to the fourth embodiment of the present invention.
  • Fig. 5A is a schematic view showing the measurement of the axial position of the workpiece according to the fifth embodiment of the present invention.
  • Fig. 5B is a schematic view showing the measurement of the axial position of the workpiece according to the sixth embodiment of the present invention.
  • Fig. 6 is a view showing the measurement of the axial position of the workpiece according to the seventh embodiment of the present invention.
  • Fig. 7 is a view showing the measurement of the axial position of the workpiece according to the eighth embodiment of the present invention.
  • Fig. 8 is a view showing the measurement of the axial position of the workpiece according to the ninth embodiment of the present invention.
  • FIG. 9 is a flow chart showing a method for measuring an image of a center-free axis according to an embodiment of the invention.
  • FIG. 10 is a flow chart showing a method for measuring an image of a center-free axis according to another embodiment of the present invention.
  • first edge contour of the workpiece SL n1 representative of the left shielding edge contour dark region S n
  • second edge contour of the workpiece shield SL n2 Representative right dark areas S n side profile edges
  • second virtual line L n2 measurements representative of the right side of the measuring line workpiece shielding the dark areas in the S n
  • edge distance representative of DLL n The distance between the first contour edge SL n1 and the second contour edge SL n2
  • the rotation angle ⁇ n represents the angle of the rotation of the rotating disk 200
  • the first distance D n1 represents the first contour edge SL n1 and the virtual rotation axis 210
  • the distance between the second contour D n2 represents the distance between the second contour edge SL n2 and the virtual rotation axis 210
  • the virtual vertical edge VL n represents the first virtual measurement line L
  • the "positive axis” represents that the workpiece axis position C' coincides with the rotation axis position C
  • the "free alignment axis” represents the workpiece axis position C' and the rotation axis position C can be aligned without alignment
  • FIG. 1 is a schematic diagram of an image measuring apparatus 100 for eliminating the positive axis according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view showing the workpiece 110 to be tested presented by the display 560 of the central control processing unit 500 of FIG. 1 .
  • FIG. 3 is a block diagram showing the image measuring apparatus 100 of the normal axis free of FIG.
  • the image centering apparatus 100 of the present invention is configured to measure the contour of the workpiece 110 to be tested, and includes a rotating disk 200, a light projection unit 300, an image capturing unit 400, and a central control processing unit 500. And a rotary drive member 600.
  • the rotary disk 200 includes a rotational axis position C, a virtual rotational axis 210, and a bearing surface 220.
  • the workpiece to be tested 110 is disposed on the rotating disk 200.
  • the virtual rotation axis 210 is perpendicular to the XY plane, that is, parallel to the Z axis, and the virtual rotation axis 210 corresponds to the rotation axis position C.
  • the bearing surface 220 intersects perpendicularly to the virtual rotational axis 210 and is parallel to the XY plane.
  • the workpiece to be tested 110 is placed on the bearing surface 220.
  • the workpiece to be tested 110 of the embodiment is a shaft-shaped workpiece, and the rotating disk 200 has a circular shape.
  • the workpiece to be tested 110 includes a virtual workpiece axis 112 and a workpiece axis position C′, the workpiece axis position C′ and the rotation axis position C are separated by a shaft spacing D n , and the virtual rotation axis 210 and the virtual workpiece axis 112 are also The axis spacing is D n apart.
  • the axial difference spacing D n is equal to 0, the workpiece 110 to be tested just aligns with the rotating disk 200 to each other; otherwise, when the axial spacing D n is greater than 0, it means that the workpiece 110 to be tested is not aligned with the rotating disk 200. heart. Regardless of the axial difference spacing D n , the image-correcting apparatus 100 of the present invention can quickly and accurately measure the contour size of the workpiece 110 to be tested.
  • the light projection unit 300 generates parallel rays 310 and causes the rays 310 to travel along the illumination path 320, and the illumination path 320 passes through the workpiece 110 to be tested.
  • the horizontal illumination range of the light ray 310 exceeds the width of the workpiece 110 to be tested. In other words, the workpiece 110 to be tested does not completely block the light 310.
  • the image capturing unit 400 is disposed on the illumination path 320 to receive the light ray 310, and the workpiece 110 to be tested shields part of the light ray 310, so that the image capturing unit 400 forms a workpiece shielding dark area S n and two side blank areas 410.
  • the light source 310 parallel and horizontal irradiation range greater than the width of the test piece 110, thus shielding the dark areas of the work S n contour shape completely corresponding to the workpiece to be measured 110.
  • the workpiece may be masked dark region S n are sequentially rotatable different rotation angles [theta] n accordance with the rotary disc 200 presenting different faces of the workpiece contour to be measured 110, the rotation angle [theta] n wherein rotation of the rotary disk 200 representative of the n th angle size, and the number of rotations n is 0 or a positive integer, and the workpiece shielding the dark areas S n represents the test piece in the conditions corresponding to the rotational angle [theta] n dark shielding region 110.
  • the image captured by the image capturing unit 400 is the first workpiece shielding dark area S 0 ;
  • the image captured by the image capturing unit 400 is the second workpiece shielding dark area S 1 ;
  • the rotating disk 200 is rotated by a rotation angle ⁇ 2 for the second time
  • the image captured by the image capturing unit 400 is the third workpiece shading the dark area S 2 , and so on.
  • the image capturing unit 400 of this embodiment may be a high resolution digital camera.
  • the rotary driving member 600 is coupled to the rotary disk 200, and the rotary driving member 600 is controlled by the central control processing unit 500 to rotate the rotary disk 200 to rotate the rotary disk 200 in synchronization with the workpiece 110 to be tested.
  • the rotary driving member 600 of the present embodiment is an electric motor that is controlled by the central control processing unit 500 to accurately rotate the rotation angle ⁇ n required for rotating the disk 200.
  • the rotation angle ⁇ n is greater than 0 degrees and less than 180 degrees, and the magnitude of the rotation angle ⁇ n can be determined according to the needs of the measurer.
  • the central control processing unit 500 is connected to the light projection unit 300, the image capturing unit 400, and the rotary driving unit 600.
  • the central control processing unit 500 indirectly signals the rotating disk 200 through the rotary drive 600.
  • the rotary disk 200 and the workpiece 110 to be measured by the central control unit 500 controls the rotation of a rotation angle ⁇ n, so that the image capturing unit shielding the dark areas formed in the workpiece 400 S n.
  • a central processing unit 500 controls the masking of the workpiece and the rotation of the mask dark areas S0 dark region S n according to the first workpiece before the rotation (rotation number n is greater than or equal to 1) before the rotation operation is generated from the parameter and the rotation distance parameter, and a central control
  • the processing unit 500 calculates the pre-rotation distance parameter and the post-rotation distance parameter to generate the workpiece axis position C'.
  • the position of the workpiece axis C 'position of the rotation axis C axis spaced distance difference D n, D n this axis pitch difference to determine whether the alignment axis, i.e., determines whether the two aligned axial position.
  • the central control processing unit 500 includes an optical control drive module 510, a processor 520, a rotation control drive module 530, a pre-calibration parameter module 540, a storage 550, and a display 560.
  • the optical control driving module 510 is connected to the processor 520, the light projection unit 300, and the image capturing unit 400.
  • the light projection unit 300 and the image capturing unit 400 are controlled by the optical control driving module 510 to control the light 310 and the illumination path 320.
  • the image captured by the fetch unit 400 is transmitted to the processor 520 via the optical control drive module 510 to perform subsequent image processing operations, wherein the image includes a workpiece shading dark area S n and two side blank areas 410.
  • the rotation control driving module 530 signals the processor 520 and the rotary driving member 600, and the processor 520 transmits the steering command to the rotary driving member 600 through the rotation control driving module 530, so that the rotating driving member 600 rotates the synchronous rotating disk 200 and the workpiece to be tested. 110 rotation angle ⁇ n .
  • the pre-calibration parameter module 540 is connected to the processor 520 and stores a plurality of pre-calibration parameters.
  • the pre-calibration parameters include the camera parameters of the image capturing unit 400 and the coordinate positions of the virtual rotating axis 210, which can be corrected in advance.
  • the pre-calibration parameters are used to accurately calculate the apparent size of the workpiece 110 to be tested.
  • the memory 550 signals the processor 520 and accesses information from the optical control drive module 510, the processor 520, the rotary control drive module 530, the pre-calibration parameter module 540, and the display 560 for subsequent dimensional analysis.
  • the display 560 presents a measurement screen and a manipulation interface, so that the measurer can smoothly complete the measurement of the workpiece 110 to be tested.
  • the image-receiving device 100 of the present invention when measuring a workpiece 110 to be tested, simply places the workpiece 110 to be tested on the rotating disk 200, and maintains the axial direction of the workpiece 110 to be tested and the light ray 310.
  • the optical axis is vertical.
  • the rotation control driving module 530 rotates the rotating disk 200 to the rotation angle ⁇ n to be measured, and activates the light projection unit 300 and the image capturing unit 400 to capture an image while detecting the workpiece 110 to be tested. Contour edge.
  • the central control processing unit 500 obtains the workpiece axial center position C′ of the workpiece 110 to be tested according to the image and the contour edge line, and the axial difference distance D n is greater than or equal to 0 and smaller than the radius of the rotating disk 200 .
  • the measurement concept of the present invention will be described below by a number of different embodiments.
  • FIG. 4A is a schematic diagram showing the measurement of the workpiece axial center position C′ according to the first embodiment of the present invention.
  • This first embodiment utilizes one rotation to measure the true roundness of a regularly cylindrical workpiece 110 to be tested, that is, the rotation of the rotary disk 200 for a certain number of rotations, the number of rotations being equal to one.
  • the workpiece axis position C' of the workpiece 110 to be tested does not coincide with the rotational axis position C of the rotating disk 200.
  • the workpiece axis position C' In order to measure the roundness, the workpiece axis position C' must be found.
  • the first workpiece shading dark area S 0 of the cylindrical workpiece to be tested 110 can be detected by the light projection unit 300 and the image capturing unit 400, and the first workpiece mask is obtained.
  • the first rotation front contour line SL 01 and the second rotation front contour edge line SL 02 of the left and right sides of the dark area S 0 , and calculating the first rotation front distance D 01 and the second of the virtual rotation axis 210 separated from the left and right contour edges Rotate the front distance D 02 and then draw a first set of two parallel vertical vertical lines VL n (ie, the pre-rotation virtual vertical edge VL 0 ) in the 0 degree direction of the rotational axis position C.
  • the rotating disk 200 is rotated by a rotation angle ⁇ 1 around the rotation axis position C, and the rotation angle ⁇ 1 is equal to 90 degrees to detect the contour edges of the left and right sides of the cylindrical workpiece 110 to be tested.
  • the two sets of virtual vertical edges VL n can finally form a rectangle, and the centroid of the rectangle can be calculated as the workpiece axis position C'.
  • the vertical distance between the virtual vertical edge VL 0 before the rotation and the virtual vertical edge VL 1 after the rotation is calculated from the workpiece axis position C′ to obtain the first inscribed circle radius value R0 and the second inscribed circle radius value R1.
  • the roundness of the workpiece 110 to be tested can be known by comparing the first inscribed circle radius value R0 and the second inscribed circle radius value R1.
  • the rotating disk 200 does not need to rotate too much rotation angle ⁇ n ,
  • a virtual polygon can be made as long as the vertical distance from the edge or diagonal to the rotational axis position C can be obtained, and the centroid of the virtual polygon will be very close to the workpiece axis position C' of the actual workpiece 110 to be tested.
  • the first workpiece shielding dark area S 0 and the second workpiece shielding dark area S 1 are both located between the two side blank areas 410, and the first workpiece shielding dark area S 0 includes the first pre-rotation contour.
  • the edge SL 01 (ie, the number of rotations n of the first contour edge SL n1 is equal to 0)
  • the second rotation front contour edge SL 02 (ie, the number of rotations n of the second contour edge SL n2 is equal to 0)
  • the first pre-rotation virtual measurement line L 01 ie, the number of rotations n of the first virtual measurement line L n1 is equal to 0
  • the second pre-rotation virtual measurement line L 02 ie, the number of rotations n of the second virtual measurement line L n2 is equal to 0
  • the first pre-rotation contour edge SL 01 is located on one side of the virtual rotation axis 210.
  • the second pre-rotation contour edge SL 02 is located on the other side of the virtual rotation axis 210, and the second pre-rotation contour edge SL 02 is separated from the first pre-rotation contour edge SL 01 by the rotation front edge distance DLL 0 (ie, the edge distance DLL)
  • the number n of rotations of n is equal to 0).
  • the first pre-rotation virtual measurement line L 01 is parallel to the XY plane.
  • the first pre-rotation virtual measurement line L 01 has a first pre-rotation distance D 01
  • the first pre-rotation distance D 01 represents a distance between the first pre-rotation contour edge SL 01 and the virtual rotation axis 210.
  • the second pre-rotation virtual measurement line L 02 is coupled to the first pre-rotation virtual measurement line L 01
  • the second pre-rotation virtual measurement line L 02 is parallel to the XY plane. Measuring a second rotation of the front virtual line L 02 having a second front rotational distance D 02, this second rotation of the front distance D 02 represents a second rotation of the front edge contour SL 02 and the virtual distance between the rotation axis 210.
  • the first pre-rotation distance D 01 and the second pre-rotation distance D 02 are calculated by the central control processing unit 500 according to the first pre-rotation virtual measurement line L 01 and the second pre-rotation virtual measurement line L 02 , respectively .
  • the central control processing unit 500 generates a pre-rotation distance parameter in accordance with the first workpiece shading dark area S 0 operation before the rotation.
  • the pre-rotation distance parameter includes a first pre-rotation distance D 01 and a second pre-rotation distance D 02
  • the rotation front edge distance DLL 0 is a sum of the first pre-rotation distance D 01 and the second pre-rotation distance D 02 .
  • the rotation axis position C is the rotation center of the rotating disk 200, which represents the intersection of the virtual rotation axis 210 and the first pre-rotation virtual measurement line L 01 , and also represents the first pre-rotation virtual measurement line L 01 and the second rotation.
  • the junction of the virtual measurement line L 02 is the rotation center of the rotating disk 200, which represents the intersection of the virtual rotation axis 210 and the first pre-rotation virtual measurement line L 01 , and also represents the first pre-rotation virtual measurement line L 01 and the second rotation.
  • the central control processing unit 500 can generate two parallel pre-rotation virtual vertical edges VL 0 according to the first pre-rotation virtual measurement line L 01 and the second pre-rotation virtual measurement line L 02 , and the two pre-rotation virtual vertical edges VL 0 is perpendicular to the first pre-rotation virtual measurement line L 01 and the second pre-rotation virtual measurement line L 02 , respectively, and the two pre-rotation virtual vertical edges VL 0 are respectively followed by the first pre-rotation contour edge SL 01 and the second pre-rotation contour edge SL 02 is tangent.
  • the shape of the second workpiece shielding dark region S 1 corresponds to the contour of the workpiece 110 to be tested, and the second workpiece shielding dark region S 1 includes the first rotated contour edge SL 11 and the second rotated contour edge SL 12 , A rotated virtual measurement line L 11 and a second rotated virtual measurement line L 12 .
  • the first post-rotation contour edge SL 11 is located on one side of the virtual rotation axis 210.
  • the second rotated contour edge SL 12 is located on the other side of the virtual rotation axis 210, and the second rotated contour edge SL 12 is separated from the first rotated contour edge SL 11 by a rotated rear edge distance DLL 1 .
  • the first post-rotation virtual measurement line L 11 is parallel to the XY plane, and the first post-rotation virtual measurement line L 11 has a first post-rotation distance D 11 , and the first post-rotation distance D 11 represents the first rotated contour edge SL The distance between 11 and the virtual rotation axis 210.
  • the second rotated virtual measurement line L 12 is coupled to the first rotated virtual measurement line L 11 , and the second rotated virtual measurement line L 12 is parallel to the XY plane. After the second virtual rotation after the measurement line L 12 having a second rotational distance D 12, the distance between the profile edges 210 SL 12 and the virtual rotation axis after the second rotation of the second rotating this representative of the distance D 12.
  • the first post-rotation distance D 11 and the second post-rotation distance D 12 are calculated by the central control processing unit 500 according to the first post-rotation virtual measurement line L 11 and the second post-rotation virtual measurement line L 12 , respectively .
  • the central control processing unit 500 generates a post-rotation distance parameter according to the second workpiece shading dark area S 1 operation after the first rotation, and the post-rotation distance parameter includes the first post-rotation distance D 11 and the second post-rotation distance.
  • D 12 , the rotated back line distance DLL 1 is the sum of the first post-rotation distance D 11 and the second post-rotation distance D 12 .
  • the central control processing unit 500 can generate two sets of parallel virtual opposite side two virtual vertical edges VL n according to the number of rotations, the first workpiece shielding dark area S 0 and the second workpiece shielding dark area S 1 , these virtual verticals
  • the edge line VL n is connected to form a virtual rectangle
  • the central control processing unit 500 calculates a rectangular workpiece axis position C' according to the virtual rectangle, the pre-rotation distance parameter, and the post-rotation distance parameter.
  • the roundness of the workpiece 110 to be tested can be known by the workpiece axial center position C′, the first inscribed circle radius value R0 and the second inscribed circle radius value R1, which is convenient, fast, accurate and efficient.
  • the axial spacing D 0 and D 1 represent the distance between the workpiece axial center position C′ and the rotational axis center position C in the X and Y directions before and after the rotation, respectively. D 0 and D 1 can be used to determine whether or not the positive axis is right.
  • FIG. 4B is a schematic diagram showing the measurement of the workpiece axial center position C′ according to the second embodiment of the present invention.
  • This second embodiment measures the roundness of a cylindrical workpiece 110 to be tested by one rotation under the condition that the rotational axis position C of the rotary disk 200 is outside the workpiece 110 to be tested; that is, the rotation The number of rotations of the disk 200 is equal to 1, which can calculate two inscribed circle radius values, which are the first inscribed circle radius value R0 and the second inscribed circle radius value R1, respectively.
  • the workpiece axis position C' must be found.
  • the light projection unit 300 and the image capturing unit 400 can detect and calculate the first rotation distance D 01 and the second distance between the virtual rotation axis 210 and the left and right contour edges. Rotate the front distance D 02 .
  • the contour edges of the left and right sides of the workpiece 110 to be tested are located on the same side of the rotational axis position C.
  • the rotary disk 200 is rotated by a rotation angle ⁇ 1 around the rotation axis position C, and the rotation angle ⁇ 1 is equal to 90 degrees to detect the contour edges of the left and right sides of the cylindrical workpiece 110 to be tested, and the rotation axis is calculated.
  • the first rotation distance D 11 and the second rotation distance D 12 of the heart position C to the left and right contour edges.
  • the two contour edges of the left and right sides of the workpiece 110 to be tested are respectively located on both sides of the rotation axis position C, that is, the rotation axis position C is located between the two contour edges.
  • a rectangle can be formed by two sets of virtual vertical edges VL n , and the centroid of the rectangle can be calculated as the workpiece axis position C′.
  • the roundness of the workpiece 110 to be tested can be known by comparing the first inscribed circle radius value R0 with the second inscribed circle radius value R1.
  • the present invention can quickly and accurately calculate the workpiece axial center position C′ and know the roundness of the workpiece 110 to be tested, regardless of whether the rotational axis position C is located outside or within the workpiece 110 to be tested.
  • the workpiece 110 to be tested can be arbitrarily placed or held on the rotating disk 200, thereby greatly increasing the convenience of measurement.
  • FIG. 4C is a schematic diagram showing the measurement of the workpiece axial center position C′ according to the third embodiment of the present invention.
  • 4D is a schematic view showing the measurement of the workpiece axial center position C' according to the fourth embodiment of the present invention.
  • the third embodiment is to measure the roundness of a cylindrical workpiece 110 to be tested by using two rotations, that is, the number of rotations of the rotary disk 200 is equal to two. From the third embodiment, three inscribed circle radius values can be calculated, which are the first inscribed circle radius value R0, the second inscribed circle radius value R1, and the third inscribed circle radius value R2, respectively.
  • the central control processing unit 500 can calculate and derive a virtual hexagon using the first virtual measurement line L n1 and the second virtual measurement line L n2 , wherein the number n of rotations is 0, 1, and 2. From this, it can be seen that the roundness can also be measured by the rotation angles ⁇ 1 and ⁇ 2 rotated twice, and the rotation angles ⁇ 1 and ⁇ 2 are both 60 degrees as shown in FIG. 4C . Of course, rotating more rotation angles ⁇ n can measure more accurate roundness.
  • the central control processing unit 500 can calculate and derive one by using the first distance D n1 and the second distance D n2 .
  • the central control processing unit 500 can calculate four inscribed circle radius values, which are the first inscribed circle radius value R0, the second inscribed circle radius value R1, the third inscribed circle radius value R2, and the fourth inner
  • the circle radius value R3 is cut as shown in Fig. 4D; the rest can be deduced by analogy. Thereby, the roundness of the workpiece 110 to be tested can be known by comparing these inscribed circle radius values.
  • FIG. 5A is a schematic diagram showing the measurement of the workpiece axial center position C' according to the fifth embodiment of the present invention.
  • FIG. 5B is a schematic view showing the measurement of the workpiece axial center position C' according to the sixth embodiment of the present invention, wherein the shape of the workpiece 110 to be tested is elliptical.
  • the number of rotations of the rotary disk 200 of FIG. 5A is equal to 1, and the corresponding rotation angle ⁇ 1 is 90 degrees.
  • the central control processing unit 500 can calculate two sets of tangent lines parallel to the opposite sides (ie, virtual vertical edges VL n ), which can form one.
  • Parallel virtual quadrilateral or virtual rectangle, and the approximate workpiece axis position C' of the elliptical workpiece 110 to be measured and the elliptical feature sizes A1, A2, B1, B2 can be calculated by the first distance D n1 and the second distance D n2 .
  • the number of rotations of the rotary disk 200 of FIG. 5B is equal to 3, and the corresponding rotation angles ⁇ 1 , ⁇ 2 , and ⁇ 3 are 60 degrees, 30 degrees, and 30 degrees, respectively.
  • the central control processing unit 500 can generate four sets of parallel tangent lines to form a virtual octagon.
  • the contour of the virtual octagon is closer to the ellipse of the workpiece 110 to be tested, so that the workpiece closer to the axis of the real workpiece can be obtained.
  • the elliptical feature sizes A1, A2, B1, B2 can be further measured from the workpiece axis position C'.
  • the centring of an arbitrary cross-sectional shape, that is, the workpiece axial center position C' can be obtained by rotating the rotary disk 200 of the positive-axis-free image measuring apparatus 100 of the present invention by at least one rotation angle ⁇ 1 .
  • FIG. 6 is a schematic diagram showing the measurement of the workpiece axis position C′ according to the seventh embodiment of the present invention.
  • the workpiece to be tested 110 is a triangular screw having a triangular arc shape similar to a triangle.
  • the position of a certain rotating disk 200 where the edge distance DLL n is maximum or minimum is found by the rotating disk 200, the light projection unit 300, the image capturing unit 400, the central control processing unit 500, and the rotation driving member 600 (DLL n)
  • the rotation angle ⁇ 0 is set to 0 degrees
  • the two parallel edges ie, the virtual vertical edge VL n and the number of rotations n are equal to 0
  • the distances are respectively set to a first distance D n1 and a second distance D n2 , wherein the number n of rotations is equal to zero.
  • the rotating disk 200 is rotated to a position of about 120 degrees, and the second set of parallel edges (ie, the virtual vertical edge VL n and the number of rotations n is equal to 1) are obtained by the central control processing unit 500, and the parallel edges thereof are rotated to the axis of rotation.
  • the distance of the position C is set to a first distance D n1 and a second distance D n2 , respectively, wherein the number of rotations n is equal to 1.
  • the position of about 120 degrees is further rotated to find a third set of parallel edges (ie, the virtual vertical edge VL n and the number of rotations n is equal to 2), and the distances of the parallel edges to the rotational axis position C are respectively set as the first distance D n1 and The second distance D n2 , wherein the number of rotations n is equal to two.
  • the three sets of parallel edges are looped to form a virtual hexagon.
  • the central control processing unit 500 can calculate not only the centroid of the virtual hexagon, that is, the workpiece axis position C', but also the axial distance D n between the workpiece axis position C' and the rotational axis position C.
  • the screw can be arbitrarily placed on the rotary disk 200 without the rotary axis position C corresponding to the workpiece axis of the workpiece 110 to be tested.
  • the heart position C' and then through the measurement of the rotation angle ⁇ n and related parameters, the three midline lengths CD0, CD1, CD2 of the circumscribed circle diameter of the triangular screw and the triangular screw can be quickly and accurately calculated, and the triangle teeth are known. Whether the screws meet the required specifications is ideal for measuring the needs of a large number of workpieces.
  • FIG. 7 is a schematic diagram showing the measurement of the workpiece axial center position C' according to the eighth embodiment of the present invention.
  • the workpiece to be tested 110 in the eighth embodiment is an irregularly shaped polygon, and the number of rotations of the rotating disk 200 is equal to 5, and the corresponding rotation angles ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 are all 30 degrees. .
  • the central control processing unit 500 can generate six first virtual measurement lines L n1 , six second virtual measurement lines L n2 , six first distances D n1 , and six second distances D n2 (the number of rotations n is 0, 1, 2, 3, 4, 5) and six sets of parallel tangent lines to form a virtual dodecagonal shape. Since the number of rotations is large, the contour of the virtual dodecagonal shape is very close to the shape of the workpiece 110 to be tested, so that the workpiece axial center position C' which is relatively close to the axis of the real workpiece can be obtained. It can be seen from the above that the more the number of rotations, the closer the outlined virtual polygon will be to the outer contour of the workpiece 110 to be tested, and the closer the centroid of the virtual polygon is to the axis of the real workpiece.
  • FIG. 8 is a schematic diagram showing the measurement of the workpiece axial center position C' according to the ninth embodiment of the present invention.
  • the workpiece to be tested 110 in the ninth embodiment includes a first workpiece portion 110a and a second workpiece portion 110b, and the first workpiece portion 110a is coupled between the second workpiece portion 110b and the rotating disk 200.
  • the first workpiece portion 110a and the second workpiece portion 110b are both cylindrical and have a step difference from each other.
  • the first workpiece portion 110a includes a first virtual workpiece axis 112a that is spaced apart from the virtual axis of rotation 210 by a first axis difference distance D a .
  • the second workpiece portion 110b includes a second virtual workpiece axis 112b that is spaced apart from the virtual axis of rotation 210 by a second axis difference distance Db . Since the axial position of the first workpiece portion 110a and the second workpiece portion 110b at different heights produces different axial spacings Dn , the image-correcting device 100 of the present invention can measure different heights. The shape of the workpiece can also be measured for the true roundness and the concentricity between the first workpiece portion 110a and the second workpiece portion 110b for different heights.
  • FIG. 9 is a schematic flow chart of an image measuring method 700 for correcting the positive axis according to an embodiment of the invention.
  • the image centering method 700 for measuring the positive axis is used to measure the workpiece 110 to be tested, and includes a workpiece placing step S12, a workpiece rotating step S14, an image capturing step S16, and an axis calculating step S18, and the sequence of the above steps is performed.
  • the workpiece placing step S12 is to place the workpiece 110 to be tested on the rotating disk 200.
  • the workpiece rotating step S14 is to provide the rotary driving member 600 to rotate the aforementioned rotating disk 200 to rotate the rotating disk 200 in synchronization with the workpiece 110 to be tested.
  • the image capturing step S16 is to use the light projection unit 300 to generate the light ray 310 to illuminate the workpiece to be tested 110, and to provide the image capturing unit 400 to receive the light ray 310 to determine that the first workpiece is shielded from the dark region S0.
  • the axis calculation step S18 is to provide the central control processing unit 500 to control the rotating disk 200 to rotate the workpiece 110 to be tested by a rotation angle ⁇ n , so that the image capturing unit 400 determines that the second workpiece shielding dark region S 1 is obtained .
  • the central control processing unit 500 generates a pre-rotation distance parameter and a post-rotation distance parameter according to the first workpiece shading dark area S 0 and the second workpiece shading dark area S 1 , and the central control processing unit 500 calculates the pre-rotation distance parameter and the rotation
  • the workpiece axis position C' is generated from the distance parameter.
  • the axis calculation step S18 includes a pre-rotation distance generation step S182, a post-rotation distance generation step S184, a vertical side line generation step S186, and a virtual polygon generation step S188.
  • the order in which the steps are executed is the pre-rotation distance generation step S182, the post-rotation distance generation step S184, the vertical side line generation step S186, and the virtual polygon generation step S188.
  • the pre-rotation distance generating step S182 is to provide the central control processing unit 500 to define the first pre-rotation virtual measurement line L 01 and the second pre-rotation virtual measurement line L 02 , and then the central control processing unit 500 respectively according to the first pre-rotation virtual measurement
  • the line L 01 and the second pre-rotation virtual measurement line L 02 are calculated to obtain a first pre-rotation distance D 01 and a second pre-rotation distance D 02 .
  • the first pre-rotation distance D 01 and the second pre-rotation distance D 02 are assembled into the aforementioned pre-rotation distance parameter.
  • step S184 is generated from the rotation to provide a central control processing unit 500 defines a first rotation after the virtual line L 11 and the second measurement after rotating the virtual measuring line L 12, and a central control processing unit 500 is based on the first virtual rotation
  • the measurement line L 11 and the second post-rotation virtual measurement line L 12 are calculated to obtain a first post-rotation distance D 11 and a second post-rotation distance D 12 .
  • the first post-rotation distance D 11 and the second post-rotation distance D 12 are combined into the aforementioned post-rotation distance parameter.
  • the vertical edge generation step S186 is to provide the central control processing unit 500 according to the first pre-rotation virtual measurement line L 01 , the second pre-rotation virtual measurement line L 02 , the first post-rotation virtual measurement line L 11 and the second rotation.
  • the virtual measurement line L 12 operates to generate two sets of parallel vertical edges of two virtual vertical edges VL n (ie, the pre-rotation virtual vertical edge VL 0 and the rotated virtual vertical edge VL 1 ).
  • One set of virtual vertical edges VL n (ie, the pre-rotation virtual vertical edge VL 0 ) is tangent to the contour edge of the first workpiece shading dark area S 0
  • the other set of virtual vertical edges VL n (ie, the rotated virtual vertical edge VL 1 ) ) is tangent to the contour edge of the second workpiece shading dark area S 1
  • the virtual polygon generating step S188 is to provide the central control processing unit 500 to calculate the number of rotations of the rotating disk 200, so that the central control processing unit 500 operates according to the number of rotations, the first workpiece shielding dark region S 0 and the second workpiece shielding dark region S 1 .
  • the present invention utilizes the non-contact image measuring method, and can arbitrarily place or hold the workpiece 110 to be tested, and can accurately estimate the workpiece axial center position C' of the workpiece 110 to be tested without accurately aligning the axis.
  • the feature size of the workpiece 110 to be tested is then calculated.
  • FIG. 10 is a schematic flow chart of an image measuring method 700 a for correcting the positive axis according to another embodiment of the present invention.
  • This image centering method 700a for eliminating the normal axis includes steps S21 to S29.
  • Step S21 is to arbitrarily place the workpiece 110 to be tested onto the rotating disk 200, and set the number N of measurements before the rotation to be equal to 1.
  • Step S22 is to rotate the rotating disk 200 and the workpiece 110 to be tested by a rotation angle ⁇ n and record the rotation angle ⁇ n , and the number N of measurements after the rotation n times is equal to n plus 1, so the number of measurements N is equal to 1 represents the measurement before the rotation. frequency.
  • step S23 the backlight is turned on, that is, the driving light projection unit 300 and the image capturing unit 400 capture an image, and the image is stored in the storage 550 of the central control processing unit 500. Furthermore, in step S24, the image is processed by the central control processing unit 500 and the first contour edge SL n1 and the second contour edge SL n2 are obtained , and the first distance D n1 and the second distance from the rotational axis position C are respectively calculated. distance D n2.
  • Step S25 is to set a point on the XY plane to the rotational axis position C.
  • Step S26 is to take a direction line of the rotation angle ⁇ n , and draw a vertical line at each of the first distance D n1 and the second distance D n2 around the rotation axis position C to form a set of parallel vertical edges of the virtual vertical line VL n .
  • step S27 is to determine whether or not the number of measurements N is sufficient. If it is insufficient, the number N of measurements is incremented by one, and the process returns to step S22 to perform a rotation angle ⁇ n of the rotary disk 200 again; otherwise, if the number of measurements is sufficient, step S28 is performed.
  • Step S28 is to draw a set of virtual polygons by the central control processing unit 500, and calculate the centroid position of the virtual polygon.
  • Step S29 calculates the feature size of the workpiece 110 to be tested centering on the centroid position. Therefore, the image-correcting method 700, 700a of the positive-axis-free method of the present invention can accurately estimate the workpiece axis position C' under the condition of the non-contact image measuring mode and the arbitrary placement of the workpiece 110 to be tested, not only Fast measurement, combined with high convenience and low cost.
  • the present invention has the following advantages: First, the non-contact image measuring method can be used to arbitrarily place or hold the workpiece to be tested, and the workpiece to be tested can be accurately estimated without accurately aligning the axis. The position of the workpiece axis, and then the feature size of the workpiece to be tested, is quite convenient. Second, since the positive axis is not accurately aligned, the measurement time can be greatly saved to increase the measurement efficiency. Thirdly, by combining the special concept of the alignment axis with the image measurement method, the measurement manpower and cost can be reduced, and the accuracy is very high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种免对正轴心的影像测量装置,通过光投影单元(300)产生光线照射至待测工件(110),并于影像撷取单元(400)上形成第一工件遮蔽阴暗区域。旋转盘(200)及待测工件(110)受控旋转一个旋转角度而形成第二工件遮蔽阴暗区域。中央控制处理单元(500)运算两遮蔽阴暗区域而产生工件轴心位置。还提供了一种免对正轴心的影像测量方法。该装置和方法可快速且正确地估算工件的轴心位置。

Description

免对正轴心的影像测量装置及其测量方法 技术领域
本发明是关于一种影像测量装置及其测量方法,特别是关于一种免对正轴心即可快速且准确地测量工件轮廓尺寸的影像测量装置及其测量方法。
背景技术
近年来,利用背投影像测量工件尺寸已经被广泛地应用于工业测量,然都只能做平面的轮廓影像测量。当要测量一个轴形待测工件的时候,许多测量项目都超出平面范畴,必须旋转待测工件才能测量。传统的投影测量必须倚赖精准的轴端顶心,将轴件同心而且水平夹持才能准确测量。由于传统技术的测量操作不易精确对准,所以无法快速有效地掌握所欲测量的剖面轮廓尺寸。
以螺丝为例,一般螺丝都是柱状的,只要撷取任意剖面的轮廓影像,就可以计算出代表这一颗螺丝的特征尺寸。但是如果螺丝剖面不是圆形的,而是三角形的剖面(此结构以下称为三角牙螺丝,Triangular Thread Screw),就必须准确定位找到三条中线才能算出三角牙螺丝的外径和中线长度。然而,对于传统的投影测量而言,其必须倚赖精密的旋转夹具才能找到准确的中线位置。即便有精密的旋转夹具,由于螺丝制造变形的关系,三角牙螺丝的横截面不会是对称的三角形,而且螺杆与螺头的同心度也不佳,所以利用旋转夹具夹持三角牙螺丝的任何位置,通常旋转中心不会准确地通过三角形的形心(centroid),因此三角牙螺丝的外径与中线长度的测量往往会出现较大的误差。
目前有一种公知的测量技术,其测量三角牙螺丝的外径是使用V型千分尺,此V型千分尺是利用三点可以构成一个圆的原理来计算外径,但是测量时必须注意取点,测量触头必须对准三角的顶点,否则测量值会不准。由于一般制造出来的三角牙不会是一个完美的正三角形,所以使用V型千分尺测量出来的外径距离也是仅供参考。至于测量中线长度,又得回归使用一般的分厘卡来测量,同样都有测量触头必须对准三角的顶点的问题。综上所述,使用V型千分尺与分厘卡均属于接触式的测量方式,人员的操作经验相对很重要,而人因造成误差率提升往往是这类测量器具的潜在问题。
由此可知,目前市场上缺乏一种可随意摆置工件、可快速测量、便利性佳且准确度高的免对正轴心的影像测量装置及其测量方法,故相关业者均在寻求其解决之道。
发明内容
因此,本发明的目的在于提供一种免对正轴心的影像测量装置及其测量方法,其利用不同旋转角度的遮蔽阴暗区域的参数撷取与计算实现非接触式的影像测量方式,可以任意摆放或夹持工件而不用准确对准轴心,就可以正确地估算工件的轴心位置,进而计算出它的特征尺寸,故本发明具有相当的便利性。此外,通过免对正轴心的特殊概念结合影像测量方式,不但可以减少测量人力与降低测量成本,还可大幅节省测量时间并提高测量准确度,以解决公知技术存有误差过大以及人为接触式测量的缺点及问题。
依据本发明一方面的实施方式提供一种免对正轴心的影像测量装置,其用以测量待测工件,此免对正轴心的影像测量装置包含旋转盘、光投影单元、影像撷取单元、中央控制处理单元以及旋转驱动件。其中旋转盘包含旋转轴心位置,待测工件设于旋转盘上。光投影单元产生光线,并使光线沿着照射路径行进,照射路径会通过待测工件。再者,影像撷取单元设于照射路径上接收光线,且待测工件遮蔽部分光线,令影像撷取单元上形成第一工件遮蔽阴暗区域。至于中央控制处理单元则信号连接旋转盘、光投影单元及影像撷取单元。旋转盘及待测工件受中央控制处理单元控制而旋转一个旋转角度,令影像撷取单元上形成第二工件遮蔽阴暗区域。中央控制处理单元依据第一工件遮蔽阴暗区域与第二工件遮蔽阴暗区域运算而产生旋转前距离参数与旋转后距离参数,且中央控制处理单元运算旋转前距离参数与旋转后距离参数而产生工件轴心位置。旋转驱动件连接旋转盘,且旋转驱动件受中央控制处理单元控制而转动旋转盘,令旋转盘与待测工件同步转动。其中工件轴心位置与旋转轴心位置相隔轴差间距,此轴差间距用以判断是否对正轴心。
借此,本发明的免对正轴心的影像测量装置通过非接触式的影像测量方式,可以任意摆放或夹持待测工件,不用准确对准轴心即可正确地估算待测工件的工件轴心位置,进而计算出待测工件的特征尺寸,不但可快速测量,还兼具便利性佳及准确度高。
前述实施方式的其他实施例如下:前述旋转盘可包含虚拟旋转轴心与承载面,其中虚拟旋转轴心垂直于XY平面,且虚拟旋转轴心对应旋转轴心位置。而承载面垂直相交于虚拟旋转轴心且平行于XY平面,待测工件置于承载面上。旋转角度大于0度且小于180度,轴差间距大于等于0且小于旋转盘的半径。此外,前述第一工件遮蔽阴暗区域的形状可对应待测工件的轮廓,且第一工件遮蔽阴暗区域包含第一旋转前轮廓边线、第二旋转前轮廓边线、第一旋转前虚拟测量线以及第二旋转前虚拟测量线。第一旋转前轮廓边线位于虚拟旋转轴心的一侧。第二旋转前轮廓边线与第一旋转前轮廓边线相隔旋转前边线距离。第一 旋转前虚拟测量线平行于XY平面,第一旋转前虚拟测量线具有第一旋转前距离,此第一旋转前距离代表第一旋转前轮廓边线与虚拟旋转轴心之间的距离。第二旋转前虚拟测量线衔接第一旋转前虚拟测量线,且第二旋转前虚拟测量线平行于XY平面。第二旋转前虚拟测量线具有第二旋转前距离,此第二旋转前距离代表第二旋转前轮廓边线与虚拟旋转轴心之间的距离。旋转轴心位置代表虚拟旋转轴心与第一旋转前虚拟测量线的交点。第一旋转前距离与第二旋转前距离由中央控制处理单元分别依据第一旋转前虚拟测量线与第二旋转前虚拟测量线运算求得。旋转前距离参数包含第一旋转前距离与第二旋转前距离,旋转前边线距离为第一旋转前距离与第二旋转前距离相加的总和。另外,前述中央控制处理单元可依据第一旋转前虚拟测量线与第二旋转前虚拟测量线运算而产生二条平行的虚拟垂直边线,此二条虚拟垂直边线分别垂直于第一旋转前虚拟测量线与第二旋转前虚拟测量线,且二条虚拟垂直边线分别跟第一旋转前轮廓边线与第二旋转前轮廓边线相切。
再者,前述第二工件遮蔽阴暗区域的形状可对应待测工件的轮廓,且第二工件遮蔽阴暗区域包含第一旋转后轮廓边线、第二旋转后轮廓边线、第一旋转后虚拟测量线以及第二旋转后虚拟测量线。其中第一旋转后轮廓边线位于虚拟旋转轴心的一侧。第二旋转后轮廓边线与第一旋转后轮廓边线相隔旋转后边线距离。而第一旋转后虚拟测量线平行于XY平面,且第一旋转后虚拟测量线具有第一旋转后距离,此第一旋转后距离代表第一旋转后轮廓边线与虚拟旋转轴心之间的距离。第二旋转后虚拟测量线衔接第一旋转后虚拟测量线,且第二旋转后虚拟测量线平行于XY平面。第二旋转后虚拟测量线具有第二旋转后距离,此第二旋转后距离代表第二旋转后轮廓边线与虚拟旋转轴心之间的距离。此外,第一旋转后距离与第二旋转后距离由中央控制处理单元分别依据第一旋转后虚拟测量线与第二旋转后虚拟测量线运算求得。旋转后距离参数包含第一旋转后距离与第二旋转后距离,旋转后边线距离为第一旋转后距离与第二旋转后距离相加的总和。另外,前述旋转盘的移动达一定转动次数,此转动次数大于等于1。前述中央控制处理单元可依据转动次数、第一工件遮蔽阴暗区域及第二工件遮蔽阴暗区域运算而产生多组平行对边的二条虚拟垂直边线,这些虚拟垂直边线环绕连接而形成虚拟多边形,且中央控制处理单元依据虚拟多边形、旋转前距离参数及旋转后距离参数计算工件轴心位置。
依据本发明另一方面的一实施方式提供一种免对正轴心的影像测量方法,其用以测量待测工件,此免对正轴心的影像测量方法包含工件摆放步骤、工件旋转步骤、影像撷取步骤以及轴心运算步骤。其中工件摆放步骤是在旋转盘上摆放待测工件,此旋转盘具有旋转轴心位置。工件旋转步骤是提供旋转驱动件旋转前述的旋转盘,令旋转盘与待测工件同步 转动。而影像撷取步骤是利用光投影单元产生光线照射待测工件,并提供影像撷取单元接收光线而判断获得第一工件遮蔽阴暗区域。此外,轴心运算步骤是提供中央控制处理单元控制旋转盘带动待测工件旋转一个旋转角度,令影像撷取单元上判断获得第二工件遮蔽阴暗区域。中央控制处理单元依据第一工件遮蔽阴暗区域与第二工件遮蔽阴暗区域运算而产生旋转前距离参数与旋转后距离参数,且中央控制处理单元运算旋转前距离参数与旋转后距离参数而产生工件轴心位置。工件轴心位置与旋转轴心位置相隔轴差间距,此轴差间距用以判断是否对正轴心。
借此,本发明的免对正轴心的影像测量方法通过非接触式的影像测量方式,在可以任意摆放或夹持待测工件的条件下,不用准确对正轴心即可正确地估算待测工件的工件轴心位置,进而计算出其特征尺寸,既便利又有效率。再者,通过免对正轴心的特殊概念结合影像测量方式,不但可以减少测量人力与成本,而且准确度相当高。
前述实施方式的其他实施例如下:前述轴心运算步骤可包含旋转前距离产生步骤,此旋转前距离产生步骤是提供中央控制处理单元定义出第一旋转前虚拟测量线与一第二旋转前虚拟测量线,然后中央控制处理单元分别依据第旋转前虚拟测量线与第二旋转前虚拟测量线运算求得第一旋转前距离与第二旋转前距离。第一旋转前距离与第二旋转前距离集合成前述的旋转前距离参数。另外,前述轴心运算步骤可包含旋转后距离产生步骤,此旋转后距离产生步骤是提供中央控制处理单元定义出第一旋转后虚拟测量线与第二旋转后虚拟测量线,然后中央控制处理单元分别依据第一旋转后虚拟测量线与第二旋转后虚拟测量线运算求得第一旋转后距离与第二旋转后距离。第一旋转后距离与第二旋转后距离集合成前述的旋转后距离参数。旋转后距离产生步骤执行于旋转前距离产生步骤之后。再者,前述轴心运算步骤可包含垂直边线产生步骤,此垂直边线产生步骤是提供中央控制处理单元依据第一旋转前虚拟测量线、第二旋转前虚拟测量线、第一旋转后虚拟测量线以及第二旋转后虚拟测量线运算而产生两组平行对边的二条虚拟垂直边线。其中一组虚拟垂直边线与第一工件遮蔽阴暗区域的轮廓边线相切,另一组虚拟垂直边线则与第二工件遮蔽阴暗区域的轮廓边线相切。此外,前述轴心运算步骤可包含虚拟多边形产生步骤,此虚拟多边形产生步骤是提供中央控制处理单元计算旋转盘的转动次数,使中央控制处理单元依据转动次数、第一工件遮蔽阴暗区域以及第二工件遮蔽阴暗区域运算而产生多组平行对边的二条虚拟垂直边线。这些虚拟垂直边线环绕连接而形成虚拟多边形,且中央控制处理单元依据虚拟多边形、旋转前距离参数及旋转后距离参数计算工件轴心位置。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是绘示本发明一实施例的免对正轴心的影像测量装置的示意图。
图2是绘示图1的中央控制处理单元的显示器所呈现待测工件的侧面影像示意图。
图3是绘示图1的免对正轴心的影像测量装置的方块示意图。
图4A是绘示本发明第一实施例的工件轴心位置的测量示意图。
图4B是绘示本发明第二实施例的工件轴心位置的测量示意图。
图4C是绘示本发明第三实施例的工件轴心位置的测量示意图。
图4D是绘示本发明第四实施例的工件轴心位置的测量示意图。
图5A是绘示本发明第五实施例的工件轴心位置的测量示意图。
图5B是绘示本发明第六实施例的工件轴心位置的测量示意图。
图6是绘示本发明第七实施例的工件轴心位置的测量示意图。
图7是绘示本发明第八实施例的工件轴心位置的测量示意图。
图8是绘示本发明第九实施例的工件轴心位置的测量示意图。
图9是绘示本发明一实施例的免对正轴心的影像测量方法的流程示意图。
图10是绘示本发明另一实施例的免对正轴心的影像测量方法的流程示意图。
具体实施方式
以下将参照附图说明本发明的多个实施例。为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施例中,这些实务上的细节是非必要的。此外,为简化附图起见,一些公知惯用的结构与元件在附图中将以简单示意的方式绘示;并且重复的元件将可能使用相同的编号表示。
首先定义本发明实施方式会用到的参数符号与解释名词:第一轮廓边线SL n1代表工件遮蔽阴暗区域S n的左侧轮廓边线;第二轮廓边线SL n2代表工件遮蔽阴暗区域S n的右侧轮廓边线;第一虚拟测量线L n1代表工件遮蔽阴暗区域S n中的左边测量线;第二条虚拟测量线L n2代表工件遮蔽阴暗区域S n中的右边测量线;边线距离DLL n代表第一轮廓边线SL n1与第二轮廓边线SL n2之间的距离;旋转角度θ n代表旋转盘200转动的夹角大小;第一距 离D n1代表第一轮廓边线SL n1与虚拟旋转轴心210之间的距离,而第二距离D n2代表第二轮廓边线SL n2与虚拟旋转轴心210之间的距离;虚拟垂直边线VL n代表垂直于第一虚拟测量线L n1与第二条虚拟测量线L n2的边线,其可连接组合形成虚拟多边形;上述的旋转次数n为0或正整数,当旋转次数n为0时代表“旋转前”,当旋转次数n为正整数时代表“旋转后的第n次旋转”。另外,“对正轴心”代表工件轴心位置C'与旋转轴心位置C重合对齐,“免对正轴心”代表工件轴心位置C'与旋转轴心位置C可以不用重合对齐,两者间存有轴差间距D n
请一并参阅图1~3,图1是绘示本发明一实施例的免对正轴心的影像测量装置100的示意图。图2是绘示图1的中央控制处理单元500的显示器560所呈现待测工件110的侧面影像示意图。图3是绘示图1的免对正轴心的影像测量装置100的方块示意图。如图所示,本发明的免对正轴心的影像测量装置100用以测量待测工件110的轮廓,其包含旋转盘200、光投影单元300、影像撷取单元400、中央控制处理单元500以及旋转驱动件600。
旋转盘200包含旋转轴心位置C、虚拟旋转轴心210以及承载面220。待测工件110设于旋转盘200上。虚拟旋转轴心210垂直于XY平面,即平行于Z轴,且虚拟旋转轴心210对应旋转轴心位置C。而承载面220垂直相交于虚拟旋转轴心210且平行于XY平面。待测工件110置于承载面220上。另外,本实施例的待测工件110为轴形工件,旋转盘200呈圆形。待测工件110包含虚拟工件轴心112与工件轴心位置C',工件轴心位置C'与旋转轴心位置C相隔轴差间距D n,而且虚拟旋转轴心210与虚拟工件轴心112亦相隔轴差间距D n。当轴差间距D n等于0时,待测工件110刚好与旋转盘200彼此对正轴心;反之,当轴差间距D n大于0时,代表待测工件110没有与旋转盘200对正轴心。而无论轴差间距D n为何,本发明的免对正轴心的影像测量装置100均可快速且准确地测量出待测工件110的轮廓尺寸。
光投影单元300产生平行的光线310,并使光线310沿着照射路径320行进,照射路径320会通过待测工件110。此光线310的水平照射范围超过待测工件110的宽度,换句话说,待测工件110并不会完全遮挡光线310。
影像撷取单元400设于照射路径320上接收光线310,且待测工件110遮蔽部分光线310,令影像撷取单元400上形成工件遮蔽阴暗区域S n以及二侧空白区域410。由于光线310为平行光源且其水平照射范围大于待测工件110的宽度,因此工件遮蔽阴暗区域S n的形状会完全对应待测工件110的轮廓。详细地说,工件遮蔽阴暗区域S n可依据旋转盘200依序转动不同的旋转角度θ n而呈现不同的待测工件110的轮廓样貌,其中旋转角度θ n 代表旋转盘200旋转第n次的夹角大小,且旋转次数n为0或正整数,而工件遮蔽阴暗区域S n则代表在对应旋转角度θ n条件下的待测工件110的遮蔽阴暗区域。例如:当一开始旋转盘200未旋转时(即旋转前;旋转角度θ 0等于0),影像撷取单元400所撷取到的影像为第一工件遮蔽阴暗区域S 0;当旋转盘200第一次旋转一个旋转角度θ 1时(即旋转后),影像撷取单元400所撷取到的影像为第二工件遮蔽阴暗区域S 1;当旋转盘200第二次旋转一个旋转角度θ 2时,影像撷取单元400所撷取到的影像为第三工件遮蔽阴暗区域S 2,其余依此类推。本实施例的影像撷取单元400可为高分辨率的数码相机。
旋转驱动件600连接旋转盘200,且旋转驱动件600受中央控制处理单元500控制而转动旋转盘200,令旋转盘200与待测工件110同步转动。本实施例的旋转驱动件600为电动马达,其受中央控制处理单元500控制,可以准确地转动旋转盘200所需的旋转角度θ n。另外,旋转角度θ n大于0度且小于180度,而旋转角度θ n的大小可依照测量者的需求来决定。
中央控制处理单元500信号连接光投影单元300、影像撷取单元400及旋转驱动件600。中央控制处理单元500通过旋转驱动件600间接地信号连接旋转盘200。旋转盘200及待测工件110受中央控制处理单元500控制而旋转一个旋转角度θ n,令影像撷取单元400上形成工件遮蔽阴暗区域S n。中央控制处理单元500依据旋转前的第一工件遮蔽阴暗区域S0与旋转后的工件遮蔽阴暗区域S n(旋转次数n大于等于1)运算而产生旋转前距离参数与旋转后距离参数,而且中央控制处理单元500运算旋转前距离参数与旋转后距离参数而产生工件轴心位置C'。工件轴心位置C'与旋转轴心位置C相隔轴差间距D n,此轴差间距D n用以判断是否对正轴心,亦即判断两轴心位置是否对正。详细地说,中央控制处理单元500包含光学控制驱动模块510、处理器520、旋转控制驱动模块530、预校参数模块540、储存器550以及显示器560。其中光学控制驱动模块510信号连接处理器520、光投影单元300及影像撷取单元400,光投影单元300与影像撷取单元400受光学控制驱动模块510控制光线310以及照射路径320,而影像撷取单元400所撷取的影像会通过光学控制驱动模块510传送至处理器520以执行后续的影像处理运算,其中影像包含工件遮蔽阴暗区域S n以及二侧空白区域410。另外,旋转控制驱动模块530信号连接处理器520与旋转驱动件600,处理器520通过旋转控制驱动模块530传送操控指令至旋转驱动件600,令旋转驱动件600转动同步旋转盘200及待测工件110旋转角度θ n。预校参数模块540信号连接处理器520且储存多个预校参数,此预校参数包含影像撷取单元400的相机参数与虚拟旋转轴心210的坐标位置,其都是可以事先校正得知,预校参数用以准确计算 待测工件110的外观尺寸。再者,储存器550信号连接处理器520并存取来自光学控制驱动模块510、处理器520、旋转控制驱动模块530、预校参数模块540以及显示器560的信息,以供后续尺寸分析使用。显示器560则呈现测量画面以及操控介面,让测量者可以顺利完成待测工件110的测量。本发明的免对正轴心的影像测量装置100在测量一个待测工件110的时候,只要将待测工件110任意摆放在旋转盘200上面,保持待测工件110的轴向与光线310的光学轴垂直即可。然后,旋转控制驱动模块530将旋转盘200旋转至所欲测量的旋转角度θ n,并启动光投影单元300和影像撷取单元400以撷取一张影像,同时侦测出待测工件110的轮廓边线。最后,中央控制处理单元500依据影像与轮廓边线运算获得待测工件110的工件轴心位置C',轴差间距D n大于等于0且小于旋转盘200的半径。下列将通过多个不同的实施例来说明本发明的测量概念。
请一并参阅图1、图2及图4A,图4A是绘示本发明第一实施例的工件轴心位置C'的测量示意图。此第一实施例是利用一次旋转来测量一个规则圆柱形的待测工件110的真圆度,也就是说,旋转盘200的移动达一定转动次数,此转动次数等于1。当任意摆放此待测工件110在旋转盘200上面的时候,待测工件110的工件轴心位置C'不会与旋转盘200的旋转轴心位置C点重合。为了测量真圆度,必须找到工件轴心位置C'。首先,在旋转角度θ 0为零的位置,利用光投影单元300与影像撷取单元400可侦测出此圆柱形待测工件110的第一工件遮蔽阴暗区域S 0,并获得第一工件遮蔽阴暗区域S 0左右对边的第一旋转前轮廓边线SL 01与第二旋转前轮廓边线SL 02,并且计算出虚拟旋转轴心210与左右轮廓边线相隔的第一旋转前距离D 01及第二旋转前距离D 02,然后在旋转轴心位置C的0度方向画出第一组平行的二条虚拟垂直边线VL n(即旋转前虚拟垂直边线VL 0)。接着,旋转盘200以旋转轴心位置C为中心旋转一个旋转角度θ 1,旋转角度θ 1等于90度,以侦测此圆柱形待测工件110左右对边的轮廓边线。并且计算出旋转轴心位置C到左右轮廓边线的第一旋转后距离D 11及第二旋转后距离D 12,然后在旋转轴心位置C的90度方向画出第二组平行的二条虚拟垂直边线VL n(即旋转后虚拟垂直边线VL 1)。这两组虚拟垂直边线VL n最终可以形成一个矩形,进而可以运算求得此矩形的形心,作为工件轴心位置C'。最后,从工件轴心位置C'分别计算其至旋转前虚拟垂直边线VL 0、旋转后虚拟垂直边线VL 1的垂直距离而得到第一内切圆半径值R0和第二内切圆半径值R1,比较第一内切圆半径值R0和第二内切圆半径值R1即可得知待测工件110的真圆度。值得一提的是,当待测工件110是一个规则的柱状体时(例如:椭圆柱、三角柱、平行四边柱、六角柱等),旋转盘200可以不需要旋转太多的旋转角度θ n,只要能求得对边或对角到旋转轴心位置C的垂直 距离即可做出一个虚拟多边形,而且此虚拟多边形的形心会非常接近真实待测工件110的工件轴心位置C'。
由图2与图4A可知,第一工件遮蔽阴暗区域S 0与第二工件遮蔽阴暗区域S 1均位于二侧空白区域410之间,且第一工件遮蔽阴暗区域S 0包含第一旋转前轮廓边线SL 01(即第一轮廓边线SL n1的旋转次数n等于0)、第二旋转前轮廓边线SL 02(即第二轮廓边线SL n2的旋转次数n等于0)、第一旋转前虚拟测量线L 01(即第一虚拟测量线L n1的旋转次数n等于0)以及第二旋转前虚拟测量线L 02(即第二条虚拟测量线L n2的旋转次数n等于0)。当虚拟旋转轴心210落在待测工件110的截面范围里面时,第一旋转前轮廓边线SL 01位于虚拟旋转轴心210的一侧。而第二旋转前轮廓边线SL 02位于虚拟旋转轴心210的另一侧,且第二旋转前轮廓边线SL 02与第一旋转前轮廓边线SL 01相隔旋转前边线距离DLL 0(即边线距离DLL n的旋转次数n等于0)。此外,第一旋转前虚拟测量线L 01平行于XY平面。第一旋转前虚拟测量线L 01具有第一旋转前距离D 01,此第一旋转前距离D 01代表第一旋转前轮廓边线SL 01与虚拟旋转轴心210之间的距离。第二旋转前虚拟测量线L 02衔接第一旋转前虚拟测量线L 01,且第二旋转前虚拟测量线L 02平行于XY平面。第二旋转前虚拟测量线L 02具有第二旋转前距离D 02,此第二旋转前距离D 02代表第二旋转前轮廓边线SL 02与虚拟旋转轴心210之间的距离。第一旋转前距离D 01与第二旋转前距离D 02由中央控制处理单元500分别依据第一旋转前虚拟测量线L 01与第二旋转前虚拟测量线L 02运算求得。换句话说,中央控制处理单元500依据旋转前的第一工件遮蔽阴暗区域S 0运算而产生旋转前距离参数。旋转前距离参数包含第一旋转前距离D 01与第二旋转前距离D 02,旋转前边线距离DLL 0为第一旋转前距离D 01与第二旋转前距离D 02相加的总和。而旋转轴心位置C为旋转盘200的旋转中心,其代表虚拟旋转轴心210与第一旋转前虚拟测量线L 01的交点,也代表第一旋转前虚拟测量线L 01与第二旋转前虚拟测量线L 02的衔接处。接着,中央控制处理单元500可依据第一旋转前虚拟测量线L 01与第二旋转前虚拟测量线L 02运算而产生二条平行的旋转前虚拟垂直边线VL 0,此二条旋转前虚拟垂直边线VL 0分别垂直于第一旋转前虚拟测量线L 01与第二旋转前虚拟测量线L 02,且二条旋转前虚拟垂直边线VL 0分别跟第一旋转前轮廓边线SL 01与第二旋转前轮廓边线SL 02相切。同理,第二工件遮蔽阴暗区域S 1的形状对应待测工件110的轮廓,且第二工件遮蔽阴暗区域S 1包含第一旋转后轮廓边线SL 11、第二旋转后轮廓边线SL 12、第一旋转后虚拟测量线L 11以及第二旋转后虚拟测量线L 12。其中第一旋转后轮廓边线SL 11位于虚拟旋转轴心210的一侧。第二旋转后轮廓边线SL 12位于虚拟旋转轴心210的另一侧,且第二旋转后轮廓边线SL 12与第 一旋转后轮廓边线SL 11相隔一旋转后边线距离DLL 1。而第一旋转后虚拟测量线L 11平行于XY平面,且第一旋转后虚拟测量线L 11具有第一旋转后距离D 11,此第一旋转后距离D 11代表第一旋转后轮廓边线SL 11与虚拟旋转轴心210之间的距离。第二旋转后虚拟测量线L 12衔接第一旋转后虚拟测量线L 11,且第二旋转后虚拟测量线L 12平行于XY平面。第二旋转后虚拟测量线L 12具有第二旋转后距离D 12,此第二旋转后距离D 12代表第二旋转后轮廓边线SL 12与虚拟旋转轴心210之间的距离。此外,第一旋转后距离D 11与第二旋转后距离D 12由中央控制处理单元500分别依据第一旋转后虚拟测量线L 11与第二旋转后虚拟测量线L 12运算求得。换句话说,中央控制处理单元500依据第一次旋转后的第二工件遮蔽阴暗区域S 1运算而产生旋转后距离参数,旋转后距离参数包含第一旋转后距离D 11与第二旋转后距离D 12,旋转后边线距离DLL 1为第一旋转后距离D 11与第二旋转后距离D 12相加的总和。由上述可知,中央控制处理单元500可依据转动次数、第一工件遮蔽阴暗区域S 0及第二工件遮蔽阴暗区域S 1运算而产生多组平行对边的二条虚拟垂直边线VL n,这些虚拟垂直边线VL n环绕连接而形成虚拟矩形,且中央控制处理单元500依据虚拟矩形、旋转前距离参数及旋转后距离参数计算出矩形的工件轴心位置C'。借此,通过工件轴心位置C'、第一内切圆半径值R0及第二内切圆半径值R1即可得知待测工件110的真圆度,既方便快速又精确有效率。另外值得一提的是,轴差间距D 0、D 1代表工件轴心位置C'与旋转轴心位置C分别于旋转前、旋转后在X和Y方向相隔的距离,这两个轴差间距D 0、D 1可用以判断是否对正轴心。
请一并参阅图1、图2及图4B,图4B是绘示本发明第二实施例的工件轴心位置C'的测量示意图。此第二实施例是在旋转盘200的旋转轴心位置C位于待测工件110之外的条件下,利用一次旋转来测量一个圆柱形的待测工件110的真圆度;也就是说,旋转盘200的转动次数等于1,其可计算得到两个内切圆半径值,其分别为第一内切圆半径值R0与第二内切圆半径值R1。为了测量真圆度,必须找到工件轴心位置C'。首先,在旋转角度θ 0为零的位置,利用光投影单元300与影像撷取单元400可侦测并且计算出虚拟旋转轴心210与左右轮廓边线相隔的第一旋转前距离D 01及第二旋转前距离D 02。此时待测工件110左右对边的轮廓边线均位于旋转轴心位置C的同一侧。然后,旋转盘200以旋转轴心位置C为中心旋转一个旋转角度θ 1,旋转角度θ 1等于90度,以侦测此圆柱形待测工件110左右对边的轮廓边线,并且计算出旋转轴心位置C到左右轮廓边线的第一旋转后距离D 11及第二旋转后距离D 12。此时待测工件110左右对边的二条轮廓边线分别位于旋转轴心位置C的两侧,亦即旋转轴心位置C位于二条轮廓边线之间。最后,通过两组虚拟垂直边线 VL n可以形成一个矩形,进而可以运算求得此矩形的形心,作为工件轴心位置C'。而通过比较第一内切圆半径值R0与第二内切圆半径值R1即可得知待测工件110的真圆度。由上述可知,无论旋转轴心位置C位于待测工件110之外或者之内,本发明均可快速且准确地运算出工件轴心位置C'并得知待测工件110的真圆度,故可任意摆放或夹持待测工件110于旋转盘200上,进而大幅增加测量的便利性。
请一并参阅图1、图2及图4A~4D,图4C是绘示本发明第三实施例的工件轴心位置C'的测量示意图。图4D是绘示本发明第四实施例的工件轴心位置C'的测量示意图。如图所示,其中第三实施例是利用两次旋转来测量一个圆柱形的待测工件110的真圆度,也就是说,旋转盘200的转动次数等于2。从第三实施例可计算得到三个内切圆半径值,其分别为第一内切圆半径值R0、第二内切圆半径值R1及第三内切圆半径值R2。中央控制处理单元500利用第一虚拟测量线L n1与第二条虚拟测量线L n2可以计算推导出一个虚拟六边形,其中旋转次数n为0、1及2。由此可知通过旋转两次的旋转角度θ 1与θ 2也可测量真圆度,旋转角度θ 1与θ 2均为60度,如图4C所示。当然,旋转更多的旋转角度θ n可以测量更准确的真圆度。如果旋转三次,即转动次数等于3,对应的旋转角度θ 1、θ 2及θ 3均为45度,且中央控制处理单元500利用第一距离D n1与第二距离D n2可以计算推导出一个虚拟八边形,其中旋转次数n为0、1、2及3。然后中央控制处理单元500可计算得到四个内切圆半径值,其分别为第一内切圆半径值R0、第二内切圆半径值R1、第三内切圆半径值R2及第四内切圆半径值R3,如图4D所示;其余可依此类推。借此,通过比较这些内切圆半径值就可以知道待测工件110的真圆度。
请一并参阅图1、图2、图5A及图5B,图5A是绘示本发明第五实施例的工件轴心位置C'的测量示意图。图5B是绘示本发明第六实施例的工件轴心位置C’的测量示意图,其中待测工件110的形状呈椭圆形。图5A的旋转盘200的转动次数等于1,对应的旋转角度θ 1为90度,中央控制处理单元500可以运算得到两组对边平行的切线(即虚拟垂直边线VL n),其可形成一个平行虚拟四边形或虚拟矩形,并通过第一距离D n1及第二距离D n2可以运算得到椭圆形待测工件110的近似工件轴心位置C'以及椭圆形的特征尺寸A1、A2、B1、B2。另外,图5B的旋转盘200的转动次数等于3,对应的旋转角度θ 1、θ 2及θ 3分别为60度、30度及30度。中央控制处理单元500可产生四组对边平行的切线形成一个虚拟八边形,此虚拟八边形的轮廓更贴近待测工件110的椭圆形,故可以求得更接近真实工件轴心的工件轴心位置C'。而且从工件轴心位置C'可进一步测量获得椭圆形的特征尺寸A1、A2、B1、B2。综此,本发明的免对正轴心的影像测量装置100的旋转盘200至少 旋转一个旋转角度θ 1就可以求得任意截面形状的形心,亦即工件轴心位置C'。
请一并参阅图1、图2及图6,图6是绘示本发明第七实施例的工件轴心位置C’的测量示意图。其中待测工件110为一个三角牙螺丝,其截面形状呈三角弧形,类似一个三角形。首先,通过旋转盘200、光投影单元300、影像撷取单元400、中央控制处理单元500以及旋转驱动件600操控测量找到边线距离DLL n为最大或最小的某一个旋转盘200的位置(DLL n取最大值或最小值视三角弧形的弧度而定),其旋转角度θ 0设为0度,且两平行边线(即虚拟垂直边线VL n且旋转次数n等于0)到旋转轴心位置C的距离分别设为第一距离D n1和第二距离D n2,其中旋转次数n等于0。然后,转动旋转盘200至约120度的位置,并通过中央控制处理单元500运算求得第二组平行边线(即虚拟垂直边线VL n且旋转次数n等于1),其平行边线到旋转轴心位置C的距离分别设为第一距离D n1和第二距离D n2,其中旋转次数n等于1。接着,再旋转约120度的位置找到第三组平行边线(即虚拟垂直边线VL n且旋转次数n等于2),其平行边线到旋转轴心位置C的距离分别设为第一距离D n1和第二距离D n2,其中旋转次数n等于2。这三组平行边线环接形成一个虚拟六边形。中央控制处理单元500不但可计算求出此虚拟六边形的形心,即工件轴心位置C',还可以得到工件轴心位置C'与旋转轴心位置C相隔的轴差间距D n。然后,根据此六边形的形心计算出三角牙螺丝外接圆直径DC和三角牙螺丝的三条中线长度CD0、CD1、CD2。因此,利用本发明的免对正轴心的影像测量装置100来测量三角牙螺丝时,可以任意摆放螺丝于旋转盘200上而不需要让旋转轴心位置C对应待测工件110的工件轴心位置C',然后通过旋转角度θ n以及相关参数的测量可以快速且准确地计算出三角牙螺丝外接圆直径DC和三角牙螺丝的三条中线长度CD0、CD1、CD2,进而得知此三角牙螺丝是否符合所需规格,非常适合应用于大量工件的测量需求上。
请一并参阅图1、图2及图7,图7是绘示本发明第八实施例的工件轴心位置C’的测量示意图。此第八实施例中的待测工件110为不规则形状的多边形,且旋转盘200的转动次数等于5,对应的旋转角度θ 1、θ 2、θ 3、θ 4、θ 5均为30度。中央控制处理单元500可产生六条第一虚拟测量线L n1、六条第二条虚拟测量线L n2、六个第一距离D n1、六个第二距离D n2(旋转次数n为0、1、2、3、4、5)以及六组对边平行的切线而形成一个虚拟十二边形。由于转动次数较多,因此虚拟十二边形的轮廓非常贴近待测工件110的形状,故可以求得相当接近真实工件轴心的工件轴心位置C'。由上述可知,转动次数越多,所勾勒出来的虚拟多边形会越接近原来待测工件110的***轮廓,而且此虚拟多边形的形心也会越接近真实工件的轴心。
请一并参阅图1、图2及图8,图8是绘示本发明第九实施例的工件轴心位置C’的测量示意图。此第九实施例中的待测工件110包含第一工件部110a与第二工件部110b,第一工件部110a连接于第二工件部110b与旋转盘200之间。第一工件部110a与第二工件部110b均为圆柱体且彼此有段差。第一工件部110a包含第一虚拟工件轴心112a,此第一虚拟工件轴心112a与虚拟旋转轴心210相隔第一轴差间距D a。第二工件部110b包含第二条虚拟工件轴心112b,此第二条虚拟工件轴心112b与虚拟旋转轴心210相隔第二轴差间距D b。由于第一工件部110a与第二工件部110b在不同高度处的轴心位置产生相异的轴差间距D n,而本发明的免对正轴心的影像测量装置100既可测量不同高度的工件形状,也可针对不同高度的第一工件部110a与第二工件部110b各自测量其真圆度及其之间的同心度。
请一并参阅图1、图2及图9,图9是绘示本发明一实施例的免对正轴心的影像测量方法700的流程示意图。此免对正轴心的影像测量方法700用以测量待测工件110,其包含工件摆放步骤S12、工件旋转步骤S14、影像撷取步骤S16以及轴心运算步骤S18,且上述步骤执行的顺序为工件摆放步骤S12、工件旋转步骤S14、影像撷取步骤S16以及轴心运算步骤S18。
工件摆放步骤S12是在旋转盘200上摆放待测工件110。
工件旋转步骤S14是提供旋转驱动件600旋转前述的旋转盘200,令旋转盘200与待测工件110同步转动。
影像撷取步骤S16是利用光投影单元300产生光线310照射待测工件110,并提供影像撷取单元400接收光线310而判断获得第一工件遮蔽阴暗区域S0。
轴心运算步骤S18是提供中央控制处理单元500控制旋转盘200带动待测工件110旋转一个旋转角度θ n,令影像撷取单元400上判断获得第二工件遮蔽阴暗区域S 1。中央控制处理单元500依据第一工件遮蔽阴暗区域S 0与第二工件遮蔽阴暗区域S 1运算而产生旋转前距离参数与旋转后距离参数,且中央控制处理单元500运算旋转前距离参数与旋转后距离参数而产生工件轴心位置C'。工件轴心位置C'与旋转轴心位置C相隔轴差间距D n,此轴差间距D n用以判断是否对正轴心。详细地说,轴心运算步骤S18包含旋转前距离产生步骤S182、旋转后距离产生步骤S184、垂直边线产生步骤S186以及虚拟多边形产生步骤S188。在轴心运算步骤S18中,步骤执行的顺序为旋转前距离产生步骤S182、旋转后距离产生步骤S184、垂直边线产生步骤S186以及虚拟多边形产生步骤S188。其中旋转前距离产生步骤S182是提供中央控制处理单元500定义出第一旋转前虚拟测量线L 01与第二 旋转前虚拟测量线L 02,然后中央控制处理单元500分别依据第一旋转前虚拟测量线L 01与第二旋转前虚拟测量线L 02运算求得第一旋转前距离D 01与第二旋转前距离D 02。第一旋转前距离D 01与第二旋转前距离D 02集合成前述的旋转前距离参数。另外,旋转后距离产生步骤S184是提供中央控制处理单元500定义出第一旋转后虚拟测量线L 11与第二旋转后虚拟测量线L 12,然后中央控制处理单元500分别依据第一旋转后虚拟测量线L 11与第二旋转后虚拟测量线L 12运算求得第一旋转后距离D 11与第二旋转后距离D 12。第一旋转后距离D 11与第二旋转后距离D 12集合成前述的旋转后距离参数。再者,垂直边线产生步骤S186是提供中央控制处理单元500依据第一旋转前虚拟测量线L 01、第二旋转前虚拟测量线L 02、第一旋转后虚拟测量线L 11以及第二旋转后虚拟测量线L 12运算而产生两组平行对边的二条虚拟垂直边线VL n(即旋转前虚拟垂直边线VL 0及旋转后虚拟垂直边线VL 1)。其中一组虚拟垂直边线VL n(即旋转前虚拟垂直边线VL 0)与第一工件遮蔽阴暗区域S 0的轮廓边线相切,另一组虚拟垂直边线VL n(即旋转后虚拟垂直边线VL 1)则与第二工件遮蔽阴暗区域S 1的轮廓边线相切。此外,虚拟多边形产生步骤S188是提供中央控制处理单元500计算旋转盘200的转动次数,使中央控制处理单元500依据转动次数、第一工件遮蔽阴暗区域S 0以及第二工件遮蔽阴暗区域S 1运算而产生多组平行对边的二条虚拟垂直边线VL n。这些虚拟垂直边线VL n环绕连接而形成虚拟多边形,且中央控制处理单元500依据虚拟多边形、旋转前距离参数及旋转后距离参数计算工件轴心位置C'。借此,本发明利用非接触式的影像测量方式,可以任意摆放或夹持待测工件110,不用准确对准轴心,就可以正确地估算待测工件110的工件轴心位置C',进而计算出待测工件110的特征尺寸。
请一并参阅图1、图2及图10,图10是绘示本发明另一实施例的免对正轴心的影像测量方法700a的流程示意图。此免对正轴心的影像测量方法700a包含步骤S21~S29。其中步骤S21是任意摆放待测工件110至旋转盘200上面,并且设定旋转前的测量次数N等于1。步骤S22是转动旋转盘200与待测工件110一个旋转角度θ n,并记录旋转角度θ n,旋转n次后的测量次数N会等于n加1,所以测量次数N等于1代表旋转前的测量次数。步骤S23是开启背光源,亦即驱动光投影单元300与影像撷取单元400撷取一张影像,并且将影像储存至中央控制处理单元500的储存器550中。再者,步骤S24是通过中央控制处理单元500处理影像并取得第一轮廓边线SL n1与第二轮廓边线SL n2,并且分别计算其与旋转轴心位置C相隔的第一距离D n1与第二距离D n2。步骤S25是在XY平面上设定一点为旋转轴心位置C。步骤S26是取旋转角度θ n的方向线,在旋转轴心位置C左右各第一距离D n1与第二距离D n2之处分别画一条垂直线而形成一组平行对边的虚拟垂直边线 VL n。此外,步骤S27是判定测量次数N是否足够。若不足,则测量次数N加1,并回至步骤S22执行,再一次转动旋转盘200一个旋转角度θ n;反之,若测量次数已足够,则执行步骤S28。步骤S28是通过中央控制处理单元500绘制一组虚拟多边形,并且计算此虚拟多边形的形心位置。步骤S29是以形心位置为中心,计算待测工件110的特征尺寸。借此,本发明的免对正轴心的影像测量方法700、700a均可在非接触式的影像测量方式以及任意摆放待测工件110的条件下准确估算工件轴心位置C',不但可快速测量,还兼具高便利性及低成本之效。
由上述实施方式可知,本发明具有下列优点:其一,利用非接触式的影像测量方式,可以任意摆放或夹持待测工件,不用准确对准轴心即可正确地估算待测工件的工件轴心位置,进而计算出待测工件的特征尺寸,具有相当之便利性。其二,由于不用准确对正轴心,因此可大幅节省测量时间以增加测量效率。其三,通过免对正轴心的特殊概念结合影像测量方式,不但可以减少测量人力与成本,而且准度非常高。
虽然本发明已以实施方式公开如上,然其并非用以限定本发明,任何本领域的一般技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求所界定的为准。

Claims (10)

  1. 一种免对正轴心的影像测量装置,用以测量待测工件,其特征在于,所述免对正轴心的影像测量装置包含:
    旋转盘,包含旋转轴心位置,所述待测工件设于所述旋转盘上;
    光投影单元,产生光线沿照射路径行进,所述照射路径通过所述待测工件;
    影像撷取单元,设于所述照射路径上接收所述光线,且所述待测工件遮蔽部分所述光线,令所述影像撷取单元上形成第一工件遮蔽阴暗区域;
    中央控制处理单元,信号连接所述旋转盘、所述光投影单元及所述影像撷取单元,所述旋转盘及所述待测工件受所述中央控制处理单元控制而旋转一个旋转角度,令所述影像撷取单元上形成第二工件遮蔽阴暗区域,所述中央控制处理单元依据所述第一工件遮蔽阴暗区域与所述第二工件遮蔽阴暗区域运算而产生旋转前距离参数与旋转后距离参数,且所述中央控制处理单元运算所述旋转前距离参数与所述旋转后距离参数而产生工件轴心位置;以及
    旋转驱动件,连接所述旋转盘,所述旋转驱动件受所述中央控制处理单元控制而转动所述旋转盘,令所述旋转盘与所述待测工件同步转动;
    其中所述工件轴心位置与所述旋转轴心位置相隔轴差间距,所述轴差间距用以判断是否对正轴心。
  2. 如权利要求1所述的免对正轴心的影像测量装置,其特征在于,所述旋转盘还包含:
    虚拟旋转轴心,垂直于XY平面,所述虚拟旋转轴心对应所述旋转轴心位置;以及
    承载面,垂直相交于所述虚拟旋转轴心且平行于所述XY平面,所述待测工件置于所述承载面上;
    其中所述旋转角度大于0度且小于180度,所述轴差间距大于等于0且小于所述旋转盘的半径。
  3. 如权利要求2所述的免对正轴心的影像测量装置,其特征在于,所述第一工件遮蔽阴暗区域的形状对应所述待测工件的轮廓,且所述第一工件遮蔽阴暗区域包含:
    第一旋转前轮廓边线,位于所述虚拟旋转轴心的一侧;
    第二旋转前轮廓边线,其与所述第一旋转前轮廓边线相隔一个旋转前边线距离;
    第一旋转前虚拟测量线,平行于所述XY平面,所述第一旋转前虚拟测量线具有第一旋转前距离,所述第一旋转前距离代表所述第一旋转前轮廓边线与所述虚拟旋转轴心之间的距离;以及
    第二旋转前虚拟测量线,衔接所述第一旋转前虚拟测量线,所述第二旋转前虚拟测量线平行于所述XY平面,所述第二旋转前虚拟测量线具有第二旋转前距离,所述第二旋转前距离代表所述第二旋转前轮廓边线与所述虚拟旋转轴心之间的距离;
    其中所述旋转轴心位置代表所述虚拟旋转轴心与所述第一旋转前虚拟测量线的交点,所述第一旋转前距离与所述第二旋转前距离由所述中央控制处理单元分别依据所述第一旋转前虚拟测量线与所述第二旋转前虚拟测量线运算求得,所述旋转前距离参数包含所述第一旋转前距离与所述第二旋转前距离,所述旋转前边线距离为所述第一旋转前距离与所述第二旋转前距离相加的总和。
  4. 如权利要求3所述的免对正轴心的影像测量装置,其特征在于,所述中央控制处理单元依据所述第一旋转前虚拟测量线与所述第二旋转前虚拟测量线运算而产生二条平行的虚拟垂直边线,所述二条虚拟垂直边线分别垂直于所述第一旋转前虚拟测量线与所述第二旋转前虚拟测量线,且所述二条虚拟垂直边线分别跟所述第一旋转前轮廓边线与所述第二旋转前轮廓边线相切。
  5. 如权利要求2所述的免对正轴心的影像测量装置,其特征在于,所述第二工件遮蔽阴暗区域的形状对应所述待测工件的轮廓,且所述第二工件遮蔽阴暗区域包含:
    第一旋转后轮廓边线,位于所述虚拟旋转轴心的一侧;
    第二旋转后轮廓边线,其与所述第一旋转后轮廓边线相隔旋转后边线距离;
    第一旋转后虚拟测量线,平行于所述XY平面,所述第一旋转后虚拟测量线具有第一旋转后距离,所述第一旋转后距离代表所述第一旋转后轮廓边线与所述虚拟旋转轴心之间的距离;以及
    第二旋转后虚拟测量线,衔接所述第一旋转后虚拟测量线,所述第二旋转后虚拟测量线平行于所述XY平面,所述第二旋转后虚拟测量线具有第二旋转后距离,所述第二旋转后距离代表所述第二旋转后轮廓边线与所述虚拟旋转轴心之间的距离;
    其中所述第一旋转后距离与所述第二旋转后距离由所述中央控制处理单元分别依据所述第一旋转后虚拟测量线与所述第二旋转后虚拟测量线运算求得,所述旋转后 距离参数包含所述第一旋转后距离与所述第二旋转后距离,所述旋转后边线距离为所述第一旋转后距离与所述第二旋转后距离相加的总和。
  6. 如权利要求1所述的免对正轴心的影像测量装置,其特征在于,
    所述旋转盘的移动达一定转动次数,所述转动次数大于等于1;以及
    所述中央控制处理单元依据所述转动次数、所述第一工件遮蔽阴暗区域及所述第二工件遮蔽阴暗区域运算而产生多组平行对边的二条虚拟垂直边线,所述多条虚拟垂直边线环绕连接而形成虚拟多边形,且所述中央控制处理单元依据所述虚拟多边形、所述旋转前距离参数及所述旋转后距离参数计算所述工件轴心位置。
  7. 一种免对正轴心的影像测量方法,用以测量待测工件,其特征在于,所述免对正轴心的影像测量方法包含以下步骤:
    工件摆放步骤,是在旋转盘上摆放所述待测工件,所述旋转盘具有旋转轴心位置;
    工件旋转步骤,是提供旋转驱动件旋转所述旋转盘,令所述旋转盘与所述待测工件同步转动;
    影像撷取步骤,是利用光投影单元产生光线照射所述待测工件,并提供影像撷取单元接收所述光线而判断获得第一工件遮蔽阴暗区域;以及
    轴心运算步骤,是提供中央控制处理单元控制所述旋转盘带动所述待测工件旋转一个旋转角度,令所述影像撷取单元上判断获得第二工件遮蔽阴暗区域,所述中央控制处理单元依据所述第一工件遮蔽阴暗区域与所述第二工件遮蔽阴暗区域运算而产生旋转前距离参数与旋转后距离参数,且所述中央控制处理单元运算所述旋转前距离参数与所述旋转后距离参数而产生工件轴心位置;
    其中所述工件轴心位置与所述旋转轴心位置相隔轴差间距,所述轴差间距用以判断是否对正轴心。
  8. 如权利要求7所述的免对正轴心的影像测量方法,其特征在于,所述轴心运算步骤还包含:
    旋转前距离产生步骤,是提供所述中央控制处理单元定义出第一旋转前虚拟测量线与第二旋转前虚拟测量线,然后所述中央控制处理单元分别依据所述第一旋转前虚拟测量线与所述第二旋转前虚拟测量线运算求得第一旋转前距离与第二旋转前距离,所述第一旋转前距离与所述第二旋转前距离集合成所述旋转前距离参数;以及
    旋转后距离产生步骤,是提供所述中央控制处理单元定义出第一旋转后虚拟测量线与第二旋转后虚拟测量线,然后所述中央控制处理单元分别依据所述第一旋转后虚 拟测量线与所述第二旋转后虚拟测量线运算求得第一旋转后距离与第二旋转后距离,所述第一旋转后距离与所述第二旋转后距离集合成所述旋转后距离参数;
    其中所述旋转后距离产生步骤执行于所述旋转前距离产生步骤之后。
  9. 如权利要求8所述的免对正轴心的影像测量方法,其特征在于,所述轴心运算步骤还包含:
    垂直边线产生步骤,是提供所述中央控制处理单元依据所述第一旋转前虚拟测量线、所述第二旋转前虚拟测量线、所述第一旋转后虚拟测量线及所述第二旋转后虚拟测量线运算而产生二组平行对边的二条虚拟垂直边线,其中所述一组虚拟垂直边线与所述第一工件遮蔽阴暗区域的轮廓边线相切,所述另一组虚拟垂直边线与所述第二工件遮蔽阴暗区域的轮廓边线相切。
  10. 如权利要求7所述的免对正轴心的影像测量方法,其特征在于,所述轴心运算步骤还包含:
    虚拟多边形产生步骤,是提供所述中央控制处理单元计算所述旋转盘的转动次数,使所述中央控制处理单元依据所述转动次数、所述第一工件遮蔽阴暗区域及所述第二工件遮蔽阴暗区域运算而产生多组平行对边的二条虚拟垂直边线,所述多条虚拟垂直边线环绕连接而形成虚拟多边形,且所述中央控制处理单元依据所述虚拟多边形、所述旋转前距离参数及所述旋转后距离参数计算所述工件轴心位置。
PCT/CN2018/073650 2017-03-02 2018-01-22 免对正轴心的影像测量装置及其测量方法 WO2018157676A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/490,560 US11105618B2 (en) 2017-03-02 2018-01-22 Image-measuring apparatus without axial alignment and image-measuring method without axial alignment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710119286.9 2017-03-02
CN201710119286.9A CN108534713B (zh) 2017-03-02 2017-03-02 免对正轴心的影像测量装置及其测量方法

Publications (1)

Publication Number Publication Date
WO2018157676A1 true WO2018157676A1 (zh) 2018-09-07

Family

ID=63370590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073650 WO2018157676A1 (zh) 2017-03-02 2018-01-22 免对正轴心的影像测量装置及其测量方法

Country Status (3)

Country Link
US (1) US11105618B2 (zh)
CN (1) CN108534713B (zh)
WO (1) WO2018157676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494023B (zh) * 2023-04-11 2024-03-22 中国航空制造技术研究院 电液束机床加工电极几何参数测量和纠偏的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775236A (en) * 1985-05-03 1988-10-04 Laser Metric Systems, Inc. Laser based roundness and diameter gaging system and method of using same
CN1884965A (zh) * 2005-06-24 2006-12-27 鸿富锦精密工业(深圳)有限公司 圆度测量***及方法
CN102650516A (zh) * 2011-02-28 2012-08-29 宝山钢铁股份有限公司 大口径钢管管端外径和椭圆度在线测量方法及装置
CN102901453A (zh) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法
CN103453848A (zh) * 2012-05-08 2013-12-18 业纳工业测量德国有限公司 用于测量机器元件的形状、位置和规格特征的设备和方法
CN106885522A (zh) * 2015-12-15 2017-06-23 株式会社三丰 用于外形尺寸的光学测量方法和测量装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278634A (en) * 1991-02-22 1994-01-11 Cyberoptics Corporation High precision component alignment sensor system
JPH11175752A (ja) * 1997-12-15 1999-07-02 Sega Enterp Ltd 画像処理装置及び画像処理方法
CN1255626A (zh) 1998-11-30 2000-06-07 南京大学 一种自动在线测径的方法及其装置
WO2008095733A1 (de) * 2007-02-09 2008-08-14 Tezet Technik Ag Messvorrichtung und verfahren zur ermittlung geometrischer eigenschaften von profilen
TWM358291U (en) 2008-12-19 2009-06-01 Arcs Prec Technology Co Ltd Image measurement platform
JP5337955B2 (ja) * 2009-05-19 2013-11-06 株式会社ミツトヨ 形状測定装置、形状測定方法、及びプログラム
JP5327634B2 (ja) * 2009-11-02 2013-10-30 株式会社リコー 回転測定装置、シート搬送装置、原稿読取装置、及び画像形成装置
JP5953903B2 (ja) 2011-05-19 2016-07-20 株式会社リコー シート長計測装置、画像形成装置、シート長計測方法、およびプログラム
JP5745178B2 (ja) * 2012-06-29 2015-07-08 富士フイルム株式会社 3次元測定方法、装置及びシステム、並びに画像処理装置
CN104508600B (zh) * 2012-07-27 2017-06-13 日本电气方案创新株式会社 三维用户界面装置及三维操作方法
CN104180763A (zh) * 2013-05-24 2014-12-03 南开大学 大直径圆环类零件内外径非接触式测量装置
CN103335602B (zh) * 2013-07-08 2016-06-08 重庆科技学院 一种光幕式轴类零件多工位多参数高精度测量方法及装置
DE102013216093B4 (de) * 2013-08-14 2016-06-02 Carl Zeiss Industrielle Messtechnik Gmbh Reduzieren von Fehlern einer Drehvorrichtung, insbesondere für die Bestimmung von Koordinaten eines Werkstücks oder die Bearbeitung eines Werkstücks
CN104006754B (zh) * 2014-05-28 2016-05-18 上海交通大学 基于激光传感器的圆筒壁厚自动测量装置
CN104296655B (zh) 2014-09-26 2017-03-29 中国科学院光电研究院 一种激光跟踪仪像旋公式初始角的标定方法
CN104344792A (zh) 2014-10-09 2015-02-11 常州西夏墅工具产业创业服务中心 圆度测量工具
CN104597053A (zh) 2014-10-28 2015-05-06 北京鸿浩信达技术有限公司 小型工件表面缺陷与尺寸超差自动检测仪
CN104482868B (zh) 2014-12-30 2017-07-25 苏州逸美德科技有限公司 一种玻璃按键孔边缘厚度高精度全自动检测机
JP6369339B2 (ja) * 2015-01-23 2018-08-08 ブラザー工業株式会社 画像記録装置
JP2022553403A (ja) * 2019-10-24 2022-12-22 ファイブズ・ランディス・コーポレーション ワークピースを研削かつ旋削する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775236A (en) * 1985-05-03 1988-10-04 Laser Metric Systems, Inc. Laser based roundness and diameter gaging system and method of using same
CN1884965A (zh) * 2005-06-24 2006-12-27 鸿富锦精密工业(深圳)有限公司 圆度测量***及方法
CN102650516A (zh) * 2011-02-28 2012-08-29 宝山钢铁股份有限公司 大口径钢管管端外径和椭圆度在线测量方法及装置
CN103453848A (zh) * 2012-05-08 2013-12-18 业纳工业测量德国有限公司 用于测量机器元件的形状、位置和规格特征的设备和方法
CN102901453A (zh) * 2012-09-12 2013-01-30 深圳深蓝精机有限公司 圆轴长度、外径、跳动值及真圆度的测量装置及其测量方法
CN106885522A (zh) * 2015-12-15 2017-06-23 株式会社三丰 用于外形尺寸的光学测量方法和测量装置

Also Published As

Publication number Publication date
CN108534713B (zh) 2019-08-06
US11105618B2 (en) 2021-08-31
US20200072601A1 (en) 2020-03-05
CN108534713A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
US9719946B2 (en) Ellipsometer and method of inspecting pattern asymmetry using the same
CN110645911B (zh) 一种旋转扫描获得完整外表面3d轮廓的装置和方法
US20090196527A1 (en) Calibration method of image planar coordinate system for high-precision image measurement system
CN103308281B (zh) 楔形透镜的检测装置和检测方法
CN104154881B (zh) 望远镜四通轴孔端面平行度误差检测方法
CN103017684A (zh) 同轴光检测柱孔圆度和直线度的装置及方法
CN109238157A (zh) 转盘半径及安装偏心四转位坐标增量检测方法及检测装置
CN106052576A (zh) 螺纹测量装置及测量方法
CN105444673A (zh) 旋转平移绝对检测法中确定光学元件中心的装置及方法
CN107631702A (zh) 一种非接触式转轴同轴度误差检测方法及装置
JP5270138B2 (ja) 校正用治具及び校正方法
WO2018157676A1 (zh) 免对正轴心的影像测量装置及其测量方法
JPS62289712A (ja) 歯車検査装置のトレ−サを方位決めするための方法と装置
TWI621833B (zh) 免對正軸心之影像量測裝置及其量測方法
JPH0661563B2 (ja) 共通のカリバー開口を形成する三つのロール或いは案内ローラを調整するための方法および装置
CN107305119A (zh) 一种针对标准长平晶的倾斜测试的标定方法和测试平台
CN109341596A (zh) 一种自准直光束平行度控制方法
JP2013063490A (ja) 切削装置および切削方法
JP5273563B2 (ja) 工具位置測定方法と装置
CN106363464B (zh) 偏心两点式寻边器
CN108827214A (zh) 一种特大型轴承套圈外径尺寸的检测装置及方法
JP4705828B2 (ja) 相対関係測定方法、及び相対関係測定装置
JPH08145636A (ja) 外径測定機を用いた形状測定方法
JP2754128B2 (ja) 円筒度測定装置及び測定方法
CN106979764B (zh) 一种三坐标测量光学元件用的定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761107

Country of ref document: EP

Kind code of ref document: A1