WO2018157590A1 - 一种从空气中收集水的方法和装置 - Google Patents

一种从空气中收集水的方法和装置 Download PDF

Info

Publication number
WO2018157590A1
WO2018157590A1 PCT/CN2017/103340 CN2017103340W WO2018157590A1 WO 2018157590 A1 WO2018157590 A1 WO 2018157590A1 CN 2017103340 W CN2017103340 W CN 2017103340W WO 2018157590 A1 WO2018157590 A1 WO 2018157590A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cold
environmental parameter
solidification
condensing
Prior art date
Application number
PCT/CN2017/103340
Other languages
English (en)
French (fr)
Inventor
吴乾明
Original Assignee
吴乾明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710125167.4A external-priority patent/CN106677261A/zh
Application filed by 吴乾明 filed Critical 吴乾明
Publication of WO2018157590A1 publication Critical patent/WO2018157590A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to two methods and apparatus for collecting water, and more particularly to a method and apparatus for collecting water from air.
  • Air extraction is mainly for outdoor natural air, and the water vapor in the air is converted into more liquid water as much as possible. Taking water from the air is an important way to solve the problem of water shortage.
  • Cooling water Cool the humid air to below the dew point and condense out.
  • the method generally uses a compressor to pressurize the refrigerant, and transfers the heat released by the refrigerant to the environment through the condenser: the refrigerant is rapidly depressurized by the evaporator to cool down, the temperature of the cold solidification is lowered by the heat exchange pipe, and then the cold solidification is performed. Cool the humid air.
  • the method is greatly affected by factors such as temperature, humidity and air pressure of the air.
  • the efficiency is high, and the water intake is large, but when the air moisture content is small, the air dew point temperature decreases, and the water is taken.
  • the efficiency has dropped dramatically and it is not even possible to take water.
  • the temperature of the cold solidification of the condenser must be above the freezing point of water (the cold solidification temperature is lower than the freezing point, the cold water will be condensed on the cold solidification)
  • the ambient air temperature is low, the air and the condensation surface
  • the temperature difference is small, the water in the air; the gas cannot release the latent heat quickly (phase change is just right), and the existing cooling water intake method can not be used in the low temperature environment.
  • Adsorption and water extraction The moisture in the air is absorbed by a solid or liquid desiccant having a hygroscopic property, and then desorbed by heating to condense water vapor to obtain fresh water. This type of method can extract water from the air with a small amount of moisture. However, the heating and desorption process consumes a large amount of energy, the process is discontinuous, and the air moisture content is small, and the efficiency is not high.
  • a method of collecting water from air comprising the steps of:
  • the critical environmental parameter may be a value of an environmental factor that affects the condensation efficiency of water, such as temperature, humidity, vapor pressure, atmospheric pressure, or relative humidity of ambient air, or a coefficient that can be calculated from these values (can be employed)
  • the specific size of the value can be adjusted by the user according to the relationship between various factors and the condensed water efficiency.
  • the temperature, air pressure, vapor pressure and relative humidity are higher, the water is easier to liquefy, and the cold solidification can directly collect air from the environment to condense the liquid water.
  • the ambient temperature, the air pressure, the vapor pressure, the relative humidity and the like are lower, so that the air after the cold surface is collected and condensed is processed, because the temperature difference between the temperature of the gas and the cold solidification of the condenser is large, the gas is The heat can be released quickly and in large quantities, so that the water vapor in the air has sufficient thermodynamic power to liquefy, and finally the efficiency of the condensed water is effectively improved.
  • the saturated vapor pressure of the cold air is large, and the moisture of the surrounding cold air is more easily enriched in the hot air, thereby increasing the absolute humidity (water content) in the hot air, further improving the efficiency of water liquefaction.
  • hot air can be pressed and pressed
  • the condenser is connected to the condenser connected to the compressor, and the two heaters may be separately provided to heat the air at the inlet of the condenser. Collecting air from the condenser can make full use of the residual heat of the compressor and reduce the energy consumption of the water production process. However, in a low temperature environment, the temperature of the air cannot be sufficiently increased by the pressure condenser alone, and the air can be heated separately by using the two heating devices.
  • the force hot device can be implemented by any one of the prior art, such as an electric heating wire disposed at the air inlet, an electric ceramic plate, or the like.
  • the method for recovering high temperature air of the compressor for condensing has lower energy consumption and effect. More preferably, it is especially suitable for collecting water from the air in a dry, low temperature environment.
  • the actual environmental parameters can be implemented with related sensors.
  • the condenser and the compressor may be implemented by any of the prior art, such as the compressor and condenser described in the Chinese Utility Model Patent Application No. 201010226267.4. Cold solidification can be achieved by any of the prior art techniques of condensing humid air using a refrigerant, such as the "condensation zone" in the Chinese invention patent No. 201510100 620.7 or the condensation pipe in the routine. Also included are the necessary evaporators, fans, etc., not to be described.
  • the critical environmental parameter is at least two of an air temperature value, a gas pressure value, a water vapor pressure value, an air relative humidity value, or an air absolute humidity value: the actual environmental parameter is The actual environmental parameters of the same type of critical environmental parameters.
  • the I critical environmental parameter is an air temperature value: the actual environmental parameter is an ambient air temperature.
  • the critical environmental parameter of the present invention can only select the air temperature value: s2 can specifically be the air temperature of the collection environment, and the preset threshold Comparison of environmental parameters.
  • the critical environmental parameter is a coefficient obtained according to at least one of an air temperature value, a barometric pressure value, a water vapor pressure value, an air relative humidity value, or an air absolute humidity value:
  • the actual environmental parameter is a coefficient of the same kind in the environment as the critical environmental parameter.
  • the present invention may also be indirectly derived from the above-described factors.
  • the obtained values (coefficients) are compared.
  • the critical environmental parameter is a plurality of air temperature values, air pressure values, water vapor pressure values, air relative humidity values, or air absolute humidity values: further including according to actual environmental parameters and The correlation coefficient of the amount of condensed water is given a corresponding weight coefficient which is positively correlated: in the step S3, the weighting coefficient of the actual environmental parameter higher than the critical environmental parameter is added to obtain the first weight coefficient and The actual environmental parameter below the critical environmental parameter is added to the weight coefficient to obtain the second weight coefficient and: when the second weight coefficient is higher than the second weight coefficient, the air is directly collected from the environment, and the air is brought into contact with the condensation surface.
  • Cool down to the peas point and collect the liquid water on the condensation surface When the first weight coefficient is lower than the second weight coefficient, the air flowing through the condenser is collected from the cold detector to bring the air into contact with the condensation surface. Cool down to the dew point and collect the liquid water from the cold solidification.
  • the present invention determines whether air should be recovered from the condenser into the cold coagulation enthalpy. If the same reference is made to various environmental factors, it must also be given Each environmental factor is assigned a different weight coefficient (the greater the weight factor of the environmental factor with greater water condensation efficiency), by comparing the magnitude of each numerical weight coefficient, it is finally decided whether high temperature air should be recovered from the condenser for condensation.
  • the specific value of the weight coefficient can be set according to the ratio of the water condensation amount and the correlation coefficient of the condensation efficiency according to various environmental factors (the ratio of the correlation coefficient of each factor is directly used as the weight coefficient). This will effectively improve the accuracy of the judgment results and ensure that the equipment can operate normally.
  • the critical environmental parameter is a plurality of air temperature values, air pressure values, water vapor pressure values, air relative humidity values, or air absolute humidity values:
  • the correlation between the parameter and the amount of condensed water is given a corresponding positive correlation weight coefficient: the step S3 further includes presetting a second weight coefficient and a weight of the actual environmental parameter that is higher than the critical environmental parameter.
  • the coefficients are added to obtain the first weight coefficient sum: when the first weight coefficient is higher than the second weight coefficient, the air is directly collected from the environment, the air is brought into contact with the cold solidification and cooled to the dew point, and the liquid water on the cold solidification is collected: When the first weight coefficient is lower than the second weight coefficient, the condenser collects air flowing through the condenser from the condenser, brings the air into contact with the cold solidification and cools it to a dew point, and collects the liquid water on the cold solidification.
  • the present invention may also preset a second weight coefficient and directly compare the second weight coefficient with the preset value. It is judged whether or not the heated air should be recovered from the condenser for condensation.
  • the step s3 further includes increasing the contact area of the condensation surface with the air and/or increasing the speed of the air flow into the cold solidification when the actual environmental parameter is lower than the critical environmental parameter.
  • variable area cold solidification such as a folding or sliding condensation surface, or a slidable baffle on the surface of the condensing surface (any of the prior art sliding blocks for shielding air) may be used. Board can be).
  • the present invention also provides an apparatus for collecting water from air, comprising a compressor, a condenser, an evaporator, and a condensing assembly that are sequentially connected through a refrigerant pipe:
  • the cold suspect component includes a condensation chamber, and a cold room
  • the condensation chamber is further provided with a first air exchange port for sucking in or discharging air and a second air exchange port:
  • the condenser is disposed outside the second air exchange port
  • the compressor, the condenser, the evaporator, and the cold solidification are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line:
  • the condensation assembly further includes a second air exchange port or a second air exchange port.
  • the condenser, evaporator and compressor can both be implemented using prior art techniques.
  • the compressor, the condenser, the evaporator, and the cold solidification are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line, and a refrigerant (such as water) flows in the refrigerant circulation line.
  • the refrigerant is compressed in the compressor, enters the condenser (the condenser is selected by the prior art, including the necessary fixed structure, heat dissipation structure, etc.) to dissipate heat and cool the air, and then enters the evaporator to vaporize and cool down, and enters the cold coagulation. , to cool the cold coagulation, complete the second cycle.
  • the air first condenses and cools in the cold coagulation, and then enters the condenser through the second air exchange port, and contacts the second air exchange port to complete the heat exchange and finally discharges. Since the air is condensed before entering the compressor, its temperature is lower, which is beneficial to improve the refrigeration performance of the compressor and reduce the energy consumption of the compressor.
  • the invention particularly selects a fan that can be reversed and reversed, and the air can be invaded from the second air exchange port by the reverse rotation of the fan, and is heated and exchanged with the condenser to contact the cold solidification, and the temperature difference between the air and the cold solidification is increased. ) to promote the release of latent heat of water vapor in the air, ultimately increasing the efficiency of condensation and increasing the production of condensed water. Direct recovery of the compressor's exhaust gas also helps to reduce equipment energy consumption, while reducing the environmental impact of equipment operation.
  • the structure and control method of the positive and negative reverse fan can be implemented by any one of the prior art, for example, the application number
  • the present invention further includes a control unit and a sensor: the control unit is in communication connection with the sensor, and receives a signal collected by the sensor: the control unit is connected to the motor of the fan, and the motor is The current is output to control the steering of the motor: the sensor is at least two of a temperature sensor, a pressure sensor, and a humidity sensor.
  • the control unit and the sensor can be implemented by using existing technologies.
  • the temperature sensor is a temperature sensor as disclosed in application number 2007800 28147.X.
  • the pressure sensor is a pressure sensor as disclosed in the application No. 200780035468.2.
  • Humidity sensors such as the temperature sensor disclosed in 200880119247 .8.
  • the fan is an adjustable speed fan and/or the cold solidification is a cold zone of variable area. By changing the fan speed, the flow rate and flow rate of the air passing through the cold solidification can be changed to control the speed of the water production. The above effect can also be achieved by changing the area of cold solidification.
  • variable area cold solidification is achieved by prior art techniques such as collapsible cold solidification or the addition of baffles to cold solidification.
  • the action can be controlled by the control unit or by manual movement. Can be achieved using existing technology.
  • the fan is driven by a variable frequency motor, which makes it easy to adjust the fan speed.
  • the variable area cold solidification includes a cold solidified body and a baffle slidably mounted outside the first air exchange port or the second air exchange port.
  • the cold solidification comprises a cold solidification body, and the cold solidification body is composed of at least one or a plurality of serpentine tubes that end to end, the two ends of the serpentine tube communicate with the evaporator through the refrigerant pipe, and the other end passes
  • the refrigerant conduit is in communication with the compressor.
  • a water collecting component is disposed below the cold solidification.
  • Japanese Invention also provides an apparatus for collecting water from air, comprising a compressor, a condenser, an evaporator, and a condensing assembly connected in series through a refrigerant pipe:
  • the cold suspect component includes a condensation chamber, cold
  • the suspect room is provided with at least two cold solidifications for contact with air:
  • the condensation chamber is further provided with a second air exchange port for taking in air and a second air exchange port for discharging air: the compressor, the condenser,
  • the evaporator and the cold solidification are sequentially connected through the refrigerant pipe to form a closed refrigerant circulation line:
  • the cold suspect assembly further includes a fan disposed at the first air exchange port or the second air exchange port: further comprising a second air exchange port The heater at the place.
  • the present invention also provides an apparatus for directly heating air at an air inlet.
  • the heater can be selected by any one
  • a prior art implementation such as a heating wire.
  • the method further includes a control unit and a sensor: the control unit is in communication with the sensor.
  • the control unit is connected to the motor of the fan, and outputs current to the motor to control the steering of the motor:
  • the sensor is at least one of a temperature sensor, a pressure sensor, and a humidity sensor.
  • the fan is an adjustable speed fan and/or the cold solidification is a cold coagulation with a variable area.
  • FIG. 1 is a flow chart of Embodiment 1. [0029] FIG.
  • FIG. 2 is a flow chart of Embodiment 2. [0030] FIG.
  • FIG. 3 is a schematic structural view of Embodiment 7.
  • FIG. 4 is a block diagram showing another structure of Embodiment 7.
  • FIG. 5 is a schematic view showing the state in which the baffle position is adjusted in Embodiment 7.
  • FIG. 6 is a schematic structural view of Embodiment 8.
  • FIG. 7 is a schematic structural view of Embodiment 9.
  • FIG. 8 is a schematic cross-sectional view of another embodiment of variable area cold solidification.
  • FIG. 9 is a schematic illustration of a state change of another embodiment of variable area cold solidification.
  • Embodiment 10 is a schematic structural view of Embodiment 10.
  • FIG. 11 is a schematic cross-sectional view of another embodiment of variable area cold solidification.
  • FIG. 12 is a schematic diagram showing a state change of another embodiment of variable area cold solidification.
  • FIG. 13 is a schematic cross-sectional view showing another embodiment of variable area cold solidification.
  • This embodiment provides a method for collecting water from air, as shown in FIG. 1, including the following steps:
  • This embodiment provides a method for collecting water from air, as shown in FIG. 1, including the following steps:
  • the step s3 further includes increasing the contact area of the cold solidification with the air and increasing the speed of the air flow into the cold solidification when the ambient air temperature value is lower than the preset air temperature value.
  • This embodiment provides a method for collecting water from air, as shown in FIG. 2, including the following steps:
  • the ambient air relative humidity value is calculated by using a humidity sensor to collect the absolute humidity of the air, and then calculating the Lide according to the relative humidity formula.
  • the step s3 further includes increasing the contact area of the cold solidification with the air when the ambient air relative humidity value is lower than the preset air relative humidity value.
  • Embodiment 3 provides a method for collecting water from air, comprising the following steps:
  • This embodiment provides a method for collecting water from air, comprising the following steps:
  • the cold solidification directly collects air from the environment, causes the air to contact with the cold solidification and cools to the dew point, and collects the liquid water on the cold solidification: ⁇
  • the ambient temperature is lower than the critical ambient temperature, and the air heated by the heating device is brought into contact with the cold solidification and cooled to a dew point, and the liquid water on the cold solidification is collected.
  • This embodiment provides a method for collecting water from air, comprising the following steps:
  • the critical environmental parameter is three of an air temperature value, a barometric pressure value, and an absolute humidity value: further comprising, according to the correlation between the actual environmental parameter and the condensed water amount, giving a corresponding, positively correlated weighting coefficient: the step In S3, the method further comprises adding the weighting coefficients of the real environmental parameters above the critical environmental parameter to obtain the first weight coefficient, and adding the weighting coefficients of the real environmental parameters below the critical environmental parameter.
  • the second weight coefficient sum when the first weight coefficient is higher than the second weight coefficient, the air is directly collected from the environment, the air is brought into contact with the condensation surface and cooled to the dew point, and the liquid water on the cold solidification is collected: when the first weight The coefficient is lower than the second weight coefficient, and the air discharged from the compressor is collected from the compressor, the air is brought into contact with the cold solidification and cooled to the dew point, and the liquid on the cold solidification is collected.
  • a condensation experiment is performed in Area A to test the effects of absolute humidity and atmospheric pressure on the condensation efficiency at different temperatures, and test the effects of temperature and atmospheric pressure on the condensation efficiency under different absolute humidity, and test under different atmospheric pressures.
  • the effect of absolute humidity and temperature on the condensation efficiency the data was recorded and the coefficients of influence of three environmental factors on the condensation efficiency were obtained a, a2, a3. Assume that the measured temperature is higher than the critical temperature, the actual gas pressure is lower than the critical pressure, and the absolute humidity is higher than the critical absolute humidity. If al > a2 + a 3 , the condenser collects air directly from the atmosphere. Conversely, the condenser collects air from the radiator of the compressor for cold.
  • This embodiment provides a method for collecting water from air, comprising the following steps:
  • the critical environmental parameter is a plurality of air temperature values, air pressure values, water vapor pressure values, air relative humidity values, or air absolute humidity values: further comprising: correlating the actual environmental parameters with the amount of condensed water sexual size, giving a corresponding, positively correlated weighting factor: the step S3, further comprising: presetting a second weighting coefficient and adding a weighting coefficient of the real environmental parameter above the critical environmental parameter to obtain the first Weight coefficient sum: When the second weight coefficient is higher than the second weight coefficient, the air is directly collected from the environment, the air is brought into contact with the cold solidification and cooled to the dew point, and the liquid water on the cold solidification is collected: when the second weight coefficient is Below the second weight coefficient sum, the air discharged from the compressor is collected from the compressor, the air is brought into contact with the cold solidification and cooled to a dew point, and the liquid water on the cold solidification is collected. [0054] Example 7
  • FIG. 3 provides a device for collecting water from air
  • FIG. 3 includes a compressor 1, a condenser 2, an evaporator 3, and a condensing assembly that are sequentially connected through a refrigerant pipe:
  • the cold component includes condensation
  • the chamber 41 at least one cold solidification 42 for contact with air is provided in the condensation chamber (in the present embodiment, the prior art is used for the cold-supplemented serpentine tube, and the refrigerant is depressurized by the evaporator, and after cooling, the refrigerant enters
  • the condensation chamber is further provided with a first air exchange port 411 for sucking in or discharging air and a second air exchange port 412
  • the condenser is disposed outside the second air exchange port 412: the compressor 1, the condenser 2, the evaporator 3, and the cold solidification 42 are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line: cold j is a component Also included is a fan 43 that is disposed at the first air exchange port and that is positively reversible.
  • the fan that can be reversed and reversed is realized by two kinds of positive and negative reverse fans disclosed in the Chinese Utility Model Patent No. 201020214350.5, and the casing is fixed to the outside of the second air exchange port by welding.
  • the impeller axis overlaps the second air exchange port axis.
  • the specific installation method can be implemented according to any prior art, and it is known to those skilled in the art as a public omniscience.
  • the present embodiment is not limited to the description.
  • the motor in this embodiment can be replaced with a variable frequency motor.
  • control unit is in communication connection with the sensor, and receives a signal collected by the sensor: the control unit is connected to the motor of the fan, and the motor is connected to the motor.
  • the sensor is a temperature sensor.
  • variable area cold solidification includes a cold solidified body (a serpentine tube in this embodiment) and is slidably mounted outside the second air exchange port 411.
  • Baffle Specifically, two opposite sliding slots 4111 are disposed outside the first air exchange port, and the baffle 4112 is embedded in the two sliding slots. Moving the baffle can control the size of the first air exchange port.
  • the condenser and the compressor and the evaporator can be realized by the technique described in the Chinese invention patent No. 201010226267.4.
  • the inlet of the serpentine tube such as the evaporator
  • the outlet of the serpentine tube is connected to the inlet of the compressor through a refrigerant conduit.
  • the compressor, condenser, and evaporator can be placed separately from the condensing unit and connected only through the refrigerant piping.
  • the press, condenser, and evaporator are not described again. It also includes the necessary circulation pump, the heat exchanger 21 in the condenser, and the like, which is not a technical problem to be solved by the present application, and can be implemented by using the prior art, and will not be described again. . [0057]
  • the working principle of this embodiment is as follows:
  • the fan causes the ambient air to enter the condensation chamber, the air is brought into contact with the cold solidification and is cooled to the dew point, and the liquid water on the cold solidification is collected: when the ambient air The temperature value is lower than the preset air temperature value, and the fan reverses to allow the air on the condenser to enter the condensation chamber, the air is brought into contact with the cold solidification and cooled to the dew point, and the liquid water on the cold solidification is collected.
  • the ambient air temperature value is collected using a temperature sensor.
  • step s3 further includes increasing cold solidification when the ambient air temperature value is lower than the preset air temperature value
  • the present embodiment provides an apparatus for collecting water from air, as shown in FIG. 6 including a compressor 1, a condenser 2, an evaporator 3, and a condensing unit 1 connected in series through a refrigerant pipe, and the condensing unit includes a condensing chamber 41.
  • the condensation chamber is provided with at least one cold solidification 42 for contact with air (in this embodiment, the prior art is used for a cold-snake serpentine tube, and the refrigerant is depressurized by the evaporator, and after cooling, enters a serpentine shape.
  • the tube, the copper tube-shaped tube wall exchanges heat with the air, condenses air): the condensation chamber is further provided with a first air exchange port 411 for sucking in or discharging air and a second air exchange port 412
  • the condenser is disposed outside the second air exchange port 412: the compressor 1, the condenser 2, the evaporator 3, and the cold solidification 42 are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line: the condensing unit further includes a setting A fan 43 that can be reversed at the second air exchange port.
  • the second step further includes a control unit and a sensor: the control unit is in communication connection with the sensor, and receives the signal collected by the sensor: the control unit is connected to the motor of the fan, and controls the output current of the motor. Steering of the motor:
  • the sensor is a humidity sensor, a temperature sensor and a pressure sensor.
  • control unit is a single chip microcomputer.
  • the fan is an adjustable speed fan (the inverter fan is selected in this embodiment).
  • Embodiment 9 is an adjustable speed fan (the inverter fan is selected in this embodiment).
  • This embodiment provides a device for collecting water from air, as shown in FIG. 7, including a compressor 1, a condenser 2, an evaporator 3, and a condensing assembly that are sequentially connected through a refrigerant pipe:
  • the cold component includes a condensation chamber 41 having two cold solidifications 42 for contact with air:
  • the condensation chamber is further provided with a first air exchange port 411 for taking in air and a second air exchange port 412 for discharging air:
  • the compressor 1, the condenser 2, the evaporator 3, and the cold solidification 4 are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line:
  • the cold suspect assembly further includes a fan 43 disposed at the second air exchange port, and further includes A heater 44 at an air exchange port (this embodiment is a prior art electric heating wire).
  • control unit of the sensor 1 is in communication with the sensor, and receives a signal collected by the sensor: the control unit is connected to the motor of the fan, and outputs a current to the motor to control the steering of the motor:
  • the sensors are temperature sensors, pressure sensors, and humidity sensors.
  • the fan is an adjustable speed fan and the cold solidification is a cold solidification of a variable area.
  • variable area cold solidification comprises a cold solidified body and a slidable baffle covering the surface of the cold solidified body.
  • the adjustable speed fan is driven by a variable frequency motor.
  • the cold solidification comprises a cold solidification body, the cold solidification body being composed of at least one or more serpentine tubes that end to end, the one end of the serpentine tube passing through the refrigerant conduit and the evaporator Connected, the other end is in communication with the compressor through the refrigerant pipe.
  • the surface of the serpentine tube is welded with two opposite chutes 421, and the baffle 422 (made of transparent glass) is embedded in the chute.
  • the moving baffle can change the area exposed by cold coagulation ( Figures 8 and 9).
  • This embodiment provides an apparatus for collecting water from air, as shown in FIG. 10, including a compressor 1, a condenser 2, an evaporator 3, and a condensing unit that are sequentially connected through a refrigerant pipe: the condensing unit includes a condensing chamber 41.
  • the condensation chamber is provided with a cold solidification 42 for contacting with air: the condensation chamber is further provided with a second air exchange port 411 for taking in air and a second air exchange port 412 for discharging air: the compressor 1
  • the condenser 2, the evaporator 3, and the cold solidification 4 are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line: the condensing assembly further includes a fan 43 disposed at the first air exchange port, and further includes
  • a heater 44 (this embodiment is a prior art electric heating wire) disposed at the first air exchange port.
  • the control unit is in communication with the sensor, and receives a signal collected by the sensor: the control unit is connected to the motor of the fan, and outputs a current to the motor to control the steering of the motor:
  • the sensors are temperature sensors, pressure sensors, and humidity sensors.
  • FIG. 1 includes a compressor 1, a condenser 2, an evaporator 3, and a condensing assembly that are sequentially connected through a refrigerant pipe:
  • the cold component includes condensation a chamber 41 having at least one cold solidification 42 for contact with air:
  • the cold chamber is further provided with a second air exchange port 411 for sucking in or discharging air and a second air exchange port 412:
  • the condenser Arranged outside the second air exchange port 412: the compressor 1, the condenser 2, the evaporator 3, and the cold solidification 42 are sequentially connected through a refrigerant pipe to form a closed refrigerant circulation line:
  • the cold component further includes a first A fan 43 that can be reversed at the air exchange port.
  • the fan is an adjustable speed fan and/or the cold solidification which is cold solidified into a variable area.
  • the cold solidification comprises a cold solidification body, wherein the cold solidification body is composed of at least two or more serpentine tubes that end to end, the two ends of the serpentine tube communicate with the evaporator through the refrigerant pipe, and the other end
  • the refrigerant conduit is in communication with the compressor.
  • the surface of the serpentine tube is welded with two opposite chutes 421, and the baffle 422 (made of transparent glass) is embedded in the chute. Moving the baffle can change the area exposed by cold solidification (Figure 8).
  • the water collecting component is disposed under the cold solidification (in this embodiment, the water basin is selected, and the water droplets condensed on the surface of the serpentine tube are lowered into the water basin to complete the collection).
  • the cold solidification of the variable area can also be achieved with the structure of FIGS. 11 and 12.
  • the cold solidified body 51 comprising at least two good heat conduction bodies, and the heat exchange tubes 52 embedded in the body. Adjacent bodies 51 are hinged and can be folded.
  • the cold solidification of the variable area can also be achieved with the structure of FIG.
  • the cold solidified body and the L-shaped baffle 4112 at the first air exchange port 411 are connected to the outer wall of the second air exchange port, and one end of the L-shaped baffle is driven by the cylinder 4113 to change L.
  • the other end of the baffle blocks the angle and area of the first air exchange port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种从空气中收集水的方法,包括如下步骤:S1.预设一临界环境参数:S2.采集实时环境参数,并将其与临界环境参数进行对比:S3.提供一用于冷凝空气的冷凝面:当实时环境参数高于临界环境参数,直接从环境中采集空气,使空气与冷凝面接触并降温至露点,收集冷凝面上的液态水:当实时环境参数低于临界环境参数,从压缩机的用于冷凝冷媒的冷凝器处收集流经冷凝器的空气或/和采用加热装置加热后的空气,再使空气与冷凝面接触并降温至露点,收集冷凝面上的液态水。还公开了一种从空气中收集水的装置。

Description

一种从空气中收集水的方法和装置 技术领域
[0001] 本发明涉及二种收集水的方法和装置, 具体涉及一种从空气中收集水的方法和 装置。
背景技术
[0002] 空气取水主要针对室外自然空气, 并将空气中的水蒸气尽可能地转化为更多的 液态水。 从空气中取水是解决水资源不足的重要途径。
[0003] [0003]从空气中制取淡水, 主要有两种方法 (详见论文"空气取水技术的研究 进展", 《化工进展》 , 2011年第 30卷第 8期 P1664〜 1669)1、 冷却取水: 冷 却湿空气, 使其达到露点温度以下, 凝结出水。 该方法一般采用压缩机对冷媒 进行加压, 并通过冷凝器将冷媒释放的热量转移到环境中: 冷媒经蒸发器急速 降压而降温, 经换热管道降低冷凝固的温度, 进而在冷凝固上冷却湿空气。 该 方法受空气的温度、 湿度、 气压等因素影响较大, 例如在空气含湿量大的情况 下效率高, 取水量大, 但当空气含湿量小吋, 随着空气露点温度降低, 取水效 率急剧下降, 甚至无法取水。 又例如由于冷凝器其冷凝固的温度必须在水的凝 固点之上 (冷凝固温度低于凝固点, 冷 J其是在冷凝固上的水将凝结) , 当环境 空气温度较低, 空气与冷凝面的温差较小, 空气中的水; 气无法快速释放出潜 热 (相变恰) 丽液化, 导致现有的冷却取水方法同样无法再低温环境下使用。
[0004] [0004] 2、 吸附取水: 利用吸湿性强的固体或液体干燥剂吸收空气中的水分, 再加热解吸, 凝结水蒸气得到淡水。 这类方法可以从含湿量很小的空气中将水 分吸取出来, 然而, 其加热解吸过程耗能大, 过程不连续, 且在空气含湿量小 吋, 效率也不高。
[0005] [0005]因此, 亟需一种能够在干燥、 低温环境中高效集水的空气集水方法和装 置。
技术问题
[0006] [0006]寻求从空气中取水的有效途径。 问题的解决方案
技术解决方案
[0007] 本发明的目的通过以下技术方案实现:
[0008] 一种从空气中收集水的方法, 包括如下步骤:
[0009] S1.预设一临界环境参数:
[0010] S2.采集实吋环境参数, 并将其与所述临界环境参数进行对比:
[0011] S3.提供一用于冷凝空气的冷凝固: 当实吋环境参数高于所述临界环境参数, 直接从环境中采集空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的 液态水: 当实吋环境参数低于所述临界环境参数, 从压缩机的用于冷凝冷媒的 冷凝器处收集流经冷凝器的空气或 /和采用加热装置加热后的空气, 再使空气 与冷凝固接触并降温至露点, 收集冷凝固上的液态水。
[0012] [0008]临界环境参数可以是环境空气的温度、 湿度、 蒸气压、 大气压或相对湿 度等对水的冷凝效率有影响的环境因素的数值或由这些数值可以计算出的系数 (可采用现有技术计算) , 其数值具体的大小可以根据各因素与冷凝水效率的 关系由用户自行调整。 当温度、 气压、 蒸气压、 相对湿度较高吋, 水较容易液 化, 冷凝固可以直接从环境中采集空气冷凝出液态水。 本发明特别在环境温度 、 气压、 蒸气压、 相对湿度等参数较低吋, 使冷 j疑面采集加热后的空气进行冷 凝处理, 由于气体的温度与冷凝器冷凝固的温差较大, 气体的热量可以快速、 大量地释放, 使空气中的水蒸气有足够的热力学动力进行液化, 最终有效提高 冷凝水的效率。 同吋, 冷空气其饱和蒸气压较大, 周围冷空气的水分更容易被 富集到热空气中, 进而提高热空气中的绝对湿度 (含水量) , 进一步提高水液 化的效率。 本发明中, 热空气可以从与压
[0013] 缩机连接的冷凝器处采集, 也可以单独设置二加热机加热冷凝器进气口处的空 气。 从冷凝器处采集空气, 可充分利用压缩机的余热, 降低制水过程的能耗。 但对于气温较低的环境, 仅靠压冷凝器无法充分提高空气的温度, 此吋可利用 二加热装置单独或辅助加热空气。 力口热装置可选用任意一种现有技术实现, 如设置在进气口处的电热丝、 电热陶瓷片等。 相对于提高压力、 采用吸水剂富 集水分等手段, 本发明回收压缩机高温空气进行冷凝的方式其能耗更低、 效果 更佳, 尤其适用于在干燥、 低温的环境下从空气中集水。 实吋环境参数可以采 用相关的传感器实现。 所述冷凝器和压缩机可选用任意一种现有技术实现, 如 申请号为 201010226267.4的中国实用新型专利所记载的压缩机和冷凝器。 冷凝固 则可选用任意一种利用冷媒冷凝湿空气的现有技术实现, 如申请号为 201510100 620.7的中国发明专利中的 "冷凝区"或公失日常识中的冷凝管。 还包括必要的蒸 发器、 风机等结构, 不在赘述。
[0014] [0009]进一步的, 所述临界环境参数为空气温度数值、 气压值、 水蒸气压值、 空气相对湿度值或空气绝对湿度值中的至少二种: 所述实吋环境参数为与所述 临界环境参数种类相同的实吋环境参数。
[0015] [0010]优边的, 所述 I临界环境参数为空气温度值: 所述实吋环境参数为环境 的空气温度。
[0016] [0011]经过测试, 空气的温度对水汽冷凝的效率影响最高, 因此本发明的临界 环境参数可以只选定空气温度值: s2具体可以为采集环境的空气温度, 与预设 的临界环境参数进行对比。
[0017] [0012]更进一步的, 所述临界环境参数为根据空气温度数值、 气压值、 水蒸气 压值、 空气相对湿度值或空气绝对湿度值中的至少一种数值所获得的系数: 所 述实吋环境参数为环境中与所述临界环境参数同类的系数。
[0018] [0013]除了对直接的空气温度数值、 气压值、 水蒸气压值、 空气相对湿度值或 空气绝对湿度值等因素的数值进行对比之外, 本发明还可以对由上述因素数值 间接获得的数值 (系数) 进行对比。
[0019] [0014]更进一步的, 所述临界环境参数为空气温度数值、 气压值、 水蒸气压值 、 空气相对湿度值或空气绝对湿度值中的多种: 还包括根据实吋环境参数与冷 凝水量的相关性大小, 赋予其相应的、 呈正相关的权重系数: 所述步骤 S3中, 还包括将高于临界环境参数的实吋环境参数其权重系数相加获得第一权重系数 和、 将低于临界环境参数的实吋环境参数其权重系数相加获得第二权重系数和 : 当第二权重系数和高于第二权重系数和, 直接从环境中采集空气, 使空气与 冷凝面接触并降温至豆豆点, 收集冷凝面上的液态水: 当第一权重系数和低于 第二权重系数和, 从冷 j疑器处收集流经冷凝器的空气, 使空气与冷凝面接触并 降温至露点, 收集冷凝固上的液态水。
[0020] [0015]由于各种环境因素对水的冷凝效率影响强度并不一致, 本发明在判断是 否应该从冷凝器中回收空气进入冷凝固吋, 如果同吋参考多种环境因素, 还必 须给每种环境因素分配不同的权重系数 (对水冷凝效率越大的环境因素其权重 系数越大) , 通过对比各个数值权重系数的大小, 最终决定是否应当从冷凝器 中回收高温空气进行冷凝。 权重系数的具体数值, 可以根据各环境因素对水的 冷凝量、 冷凝效率的相关系数的比例进行设定 (以各因素的相关系数的比直接 作为权重系数) 。 这样便可有效提高判断结果的准确卒, 确保设备可以正常运 行。
[0021] [0016]作为可边的方案, 所述临界环境参数为空气温度数值、 气压值、 水蒸气 压值、 空气相对湿度值或空气绝对湿度值中的多种: 还包括根据实吋环境参数 与冷凝水量的相关性大小, 赋予其相应的、 呈正相关的权重系数: 所述步骤 S3 中, 还包括预设一第二权重系数和以及将高于临界环境参数的实吋环境参数其 权重系数相加获得第一权重系数和: 当第一权重系数和高于第二权重系数和, 直接从环境中采集空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的 液态水: 当第一权重系数和低于第二权重系数和, 冷凝器从冷凝器处收集流经 冷凝器的空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水。
[0022] [0017]除了将处于临界环境参数上下两侧的权重系数和进行对比, 本发明还可 以预设一第二权重系数和, 直接将第二权重系数和与预设的数值进行对比, 判 断是否应当从冷凝器处回收加热的空气进行冷凝。
[0023] [0018]可选择的, 所述步骤 s3还包括当实吋环境参数低于所述临界环境参数, 增加冷凝面与空气的接触面积和 /或提高空气流进冷凝固的速度。
[0024] [0019]增加冷凝固与空气的接触面积或提高空气流经冷凝固的速度, 也可以有 效提高水的冷凝速度。 具体而言, 可选用可变面积的冷凝固, 如折叠式、 滑动 式的冷凝面, 或者在冷凝面表面假装二可滑动的挡板 (任意一种用于遮挡空气 的现有技术的滑动挡板即可) 。
[0020]本发明还提供一种从空气中收集水的装置, 包括依次通过冷媒管道连接 的压缩机、 冷凝器、 蒸发器以及冷凝组件: 所述冷 j疑组件包括冷凝室, 冷 j疑室 内设有至少二个用于与空气接触的冷凝固: 冷凝室还设有用于吸入或排出空气 的第一空气交换口以及第二空气交换口: 所述冷凝器设置在第二空气交换口外 侧: 所述压缩机、 冷凝器、 蒸发器、 冷凝固通过冷媒管道依次连接构成闭合的 冷媒循环管路: 冷凝组件还包括设置在第二空气交换口或第二空气交换口处的
、 可正反转的风机。
[0026] [0021]所述冷凝器、 蒸发器和压缩机均可边用现有技术实现。 所述压缩机、 冷 凝器、 蒸发器、 冷凝固通过冷媒管道依次连接构成闭合的冷媒循环管路, 冷媒 循环管路内流动有冷媒 (如水) 。 冷媒在压缩机中被压缩, 进入冷凝器 (冷凝 器选用现有技术实现, 包括必要的固定结构、 散热结构等) 内对空气散热、 降 温, 再进入蒸发器内 j气化降温, 进入冷凝固, 使冷凝固降温, 完成二次循环。 空气首先在冷凝固冷凝、 降温, 再经过第二空气交换口进入冷凝器, 与第二空 气交换口接触完成换热, 最终排出。 由于空气先经冷凝再进入压缩机, 其温度 更低而有利于提高压缩机的制冷效果、 降低压缩机的能耗。 本发明特别选择可 正反转的风机, 通过风机反转可以使空气从第二空气交换口进入, 经与冷凝器 热交换升温后接触冷凝固, 利用增加空气与冷凝固的温度差 CL~ t) 来促进空气 中水汽潜热的释放, 最终提高冷凝效率、 增加冷凝水的产量。 直接回收压缩机 的废气, 也有利于降低设备能耗, 同吋减少设备运行吋对环境的影响。 所述可 正反转风机结构及控制方法可选用任意一种现有技术实现, 例如申请号
[0027] 为 201210270226.4、 201020214350.5、 201020687015.7所公幵的技术。 冷媒管 道的安装方式也可采用任意一种现有技术实现。
[0028] [0022]作为可边的实施方式, 本发明还包括控制单元、 传感器: 所述控制单元 与传感器通信连接, 接收传感器所采集的信号: 所述控制单元与风机的电机连 接, 对电机输出电流以控制电机的转向: 所述传感器为温度传感器、 压力传感 器、 湿度传感器中的至少二种。
[0029] [0023]
所述控制单元、 传感器均可选用现有技术实现。 温度传感器如申请号为 2007800 28147.X所公幵的温度传感器。 压力传感器如申请号 200780035468.2所公幵的压 力传感器。 湿度传感器如 200880119247 .8所公幵的温度传感器。 [0030] [0024]作为可边的实施方式, 所述风机为可调转速风机和 /或所述冷凝固为可 变面积的冷凝固。 通过改变风机转速便可改变流经冷凝固的空气流速和流量, 以控制制水的速度。 改变冷凝固的面积也可达到上述效果。 本发明中, 可变面 积的冷凝固选用现有技术实现, 如可折叠的冷凝固或在冷凝固上加装挡板。 其 动作可以通过控制单元控制电机驱动, 也可人工移动调节。 均可选用现有技术 实现。 风机采用变频电机驱动, 可便于调节风机转速。 所述可变面积的冷凝固 其包括冷凝固本体以及可滑动安装在第一空气交换口或第二空气交换口外侧的 挡板。 所述冷凝固包括冷凝固本体, 所述冷凝固本体由至少一个或多个首尾相 接的蛇形管组成, 所述蛇形管的二端通过所述冷媒管道与蒸发器连通, 另一端 通过所述冷媒管道与所述压缩机连通。 所述冷凝固的下方设有集水组件。
[0031] [002日本发明还提供一种从空气中收集水的装置, 包括依次通过冷媒管道连接 的压缩机、 冷凝器、 蒸发器以及冷凝组件: 所述冷 j疑组件包括冷凝室, 冷 j疑室 内设有至少二个用于与空气接触的冷凝固: 冷凝室还设有用于吸入空气的第二 空气交换口以及用于排出空气的第二空气交换口: 所述压缩机、 冷凝器、 蒸发 器、 冷凝固通过冷媒管道依次连接构成闭合的冷媒循环管路: 冷 j疑组件还包括 设置在第一空气交换口或第二空气交换口处的风机: 还包括设置在第二空气交 换口处的加热器。
[0032] [0026]本发明还提供一种直接对进气口处空气加热的装置。 所述加热器可以选 用任意一
[0033] 种现有技术实现, 如电热丝。
[0034] [0027]进一步的, 还包括控制单元、 传感器: 所述控制单元与传感器通信连接
, 接收传感器所采集的信号: 所述控制单元与风机的电机连接, 对电机输出电 流以控制电机的转向: 所述传感器为温度传感器、 压力传感器、 湿度传感器中 的至少一种。 进一步的, 所述风机为可调转速风机和 /或所述冷凝固为可变面 积的冷凝固。
发明的有益效果
有益效果
[0035] 提供一种新型的从空气中收集水的方法和装置。 对附图的简要说明
附图说明
[0036] [0029]图 1是实施例 1的流程框图。
[0037] [0030]图 2是实施例 2的流程框图。
[0038] [0031]图 3是实施例 7的结构示意图。
[0039] [0032]图 4是实施例 7的另二结构框图。
[0040] [0033]图 5是实施例 7挡板位置调节状态示意图。
[0041] [0034]图 6是实施例 8的结构示意图。
[0042] [0035]图 7是实施例 9的结构示意图。
[0043] [0036]图 8是可变面积冷凝固的另一实施例断面结构示意图。
[0044] [0037]图 9是可变面积冷凝固的另一实施例状态变化示意图。
[0045] [0038]图 10是实施例 10的结构示意图。
[0046] [0039]图 11是可变面积冷凝固的另二实施例断面结构示意图。
[0047] [0040]图 12是可变面积冷凝固的另二实施例状态变化示意图。
[0048] [0041]图 13是可变面积冷凝固的另二实施例断面结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0049] 本实施例提供一种从空气中收集水的方法, 如图 1, 包括如下步骤:
[0050] S1.预设一空气温度数值:
[0051] S2.采集实吋空气温度数值, 并将其与预设的空气温度数值进行对比:
[0052] S3.提供一用于冷凝空气的冷凝固: 当实吋空气温度数值高于预设值, 直接从 环境中采集空气, 使空气与冷凝面接触并降温至豆豆点, 收集冷 j疑面上的液态 水: 当实吋空气温度数值低于预设值, 从压缩机的用于冷凝冷媒的冷凝器处收 集流经冷凝器的空气或 /和采用加热装置加热后的空气, 再使空气与冷凝固接 触并降温至露点, 收集冷凝固上的液态水。 本实施例中, 环境空气温度数值采 用温度传感器实吋采集。 所述步骤 s3还包括当环境空气温度数值低于所述预设空 气温度数值, 增加冷凝固与空气的接触面积和提高空气流进冷凝固的速度。
[0053] 本发明的实施方式
[0054] 实施例 1
[0055] 本实施例提供一种从空气中收集水的方法, 如图 1, 包括如下步骤:
[0056] S1.预设一空气温度数值:
[0057] S2.采集实吋空气温度数值, 并将其与预设的空气温度数值进行对比:
[0058] S3.提供一用于冷凝空气的冷凝固: 当实吋空气温度数值高于预设值, 直接从 环境中采集空气, 使空气与冷凝面接触并降温至豆豆点, 收集冷 j疑面上的液态 水: 当实吋空气温度数值低于预设值, 从压缩机的用于冷凝冷媒的冷凝器处收 集流经冷凝器的空气或 /和采用加热装置加热后的空气, 再使空气与冷凝固接 触并降温至露点, 收集冷凝固上的液态水。 本实施例中, 环境空气温度数值采 用温度传感器实吋采集。
[0059] [0044]所述步骤 s3还包括当环境空气温度数值低于所述预设空气温度数值, 增 加冷凝固与空气的接触面积和提高空气流进冷凝固的速度。
[0060] [0045]实施例 2
[0061] 本实施例提供一种从空气中收集水的方法, 如图 2, 包括如下步骤:
[0062] S1.预设一空气相对湿度数值:
[0063] S2.采集环境空气相对湿度数值, 并将其与预设空气相对湿度数值进行对比:
[0064] S3.提供一用于冷凝空气的冷凝固: 当实吋空气相对湿度数值高于预设值, 直 接从环境中采集空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液 态水: 当实吋空气相对湿度数值低于预设值, 从压缩机的用于冷凝冷媒的冷凝 器处收集流经冷凝器的空气或 /和采用加热装置加热后的空气, 再使空气与冷 凝固接触并降温至露点, 收集冷凝固上的液态水。
[0065] [0046]本实施例中, 环境空气相对湿度数值采用湿度传感器实吋采集空气的绝 对湿度后根据相对湿度公式计算丽得。
[0066] [0047]所述步骤 s3还包括当环境空气相对湿度数值低于所述预设空气相对湿度 数值, 增加冷凝固与空气的接触面积。
[0067] [0048]实施例 3 [0068] 本实施例提供一种从空气中收集水的方法, 包括如下步骤:
[0069] S1.预设一临界环境温度:
[0070] S2.采集实吋环境温度, 并将其与所述临界环境温度进行对比:
[0071] S3.提供一用于冷凝空气的冷凝固: 当实吋空气温度数值高于预设值, 直接从 环境中采集空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水 : 当实吋空气温度数值低于预设值, 从压缩机的用于冷凝冷媒的冷凝器处收集 流经冷凝器的空气或 /和采用力口热装置加热后的空气, 再使空气与冷凝固接 触并降温至露点, 收集冷凝固上的液态水。
[0072] [0049]实施例 4
[0073] 本实施例提供一种从空气中收集水的方法, 包括如下步骤:
[0074] S1.预设一临界环境温度:
[0075] S2.采集实吋环境温度, 并将其与所述临界环境温度进行对比:
[0076] S3.当实吋环境温度高于所述 I陆界环境温度, 冷凝固直接从环境中采集空气 , 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水: 当实吋环境温 度低于所述临界环境温度, 采用加热装置加热后的空气, 使空气与冷凝固接触 并降温至露点, 收集冷凝固上的液态水。
[0077] [0050]实施例 5
[0078] 本实施例提供一种从空气中收集水的方法, 包括如下步骤:
[0079] S1.预设一临界环境参数:
[0080] S2.采集实吋环境参数, 并将其与所述临界环境参数进行对比:
[0081] S3.当实吋环境参数高于所述临界环境参数, 直接从环境中采集空气, 使空气 与冷凝固接触并降温至露点, 收集冷凝固上的液态水: 当实吋环境参数低于所 述临界环境参数, 从冷凝器处收集流经冷凝器的空气或 /和采用加热装置加热 后的空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水。 所述 临界环境参数为空气温度数值、 气压值、 绝对湿度值中的三种: 还包括根据实 吋环境参数与冷凝水量的相关性大小, 赋予其相应的、 呈正相关的权重系数: 所述步骤 S3中, 还包括将高于临界环境参数的实吋环境参数其权重系数相加获 得第一权重系数和、 将低于临界环境参数的实吋环境参数其权重系数相加获得 第二权重系数和: 当第一权重系数和高于第二权重系数和, 直接从环境中采集 空气, 使空气与冷凝面接触并降温至露点, 收集冷凝固上的液态水: 当第一权 重系数和低于第二权重系数和, 从压缩机处收集压缩机排出的空气, 使空气与 冷凝固接触并降温至露点, 收集冷凝固上的液
[0082] 态水。
[0083] [0051]本实施例中, 在 A地区进行冷凝实验, 测试不同温度下绝对湿度和大气 压对冷凝效率的影响、 测试不同绝对湿度下温度和大气压对冷凝效率的影响、 测试不同大气压下绝对湿度和温度对冷凝效率的影响, 记录数据并获得三个环 境因素对冷凝效率的影响系数 al、 a2、 a3。 假设测试得实吋温度高于临界温度 、 实吋气压小于临界气压、 实吋绝对湿度高于临界绝对湿度, 若 al >a2+a3, 则 冷凝器直接从大气中采集空气。 反之, 则冷凝器从压缩机的散热器中采集空气 进行冷 j疑。
[0084] [0052]实施例 6
[0085] 本实施例提供一种从空气中收集水的方法, 包括如下步骤:
[0086] S1.预设一临界环境参数:
[0087] S2.采集实吋环境参数, 并将其与所述临界环境参数进行对比:
[0088] S3.当实吋环境参数高于所述临界环境参数, 直接从环境中采集空气, 使空气 与冷凝固接触并降温至露点, 收集冷凝固上的液态水: 当实吋环境参数低于所 述临界环境参数, 从冷凝器处收集被加热的空气或 /和采用加热装置加热后的 空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水。
[0089] [0053]所述临界环境参数为空气温度数值、 气压值、 水蒸气压值、 空气相对湿 度值或空气绝对湿度值中的多种: 还包括根据实吋环境参数与冷凝水量的相关 性大小, 赋予其相应的、 呈正相关的权重系数: 所述步骤 S3中, 还包括预设一 第二权重系数和以及将高于临界环境参数的实吋环境参数其权重系数相加获得 第一权重系数和: 当第二权重系数和高于第二权重系数和, 直接从环境中采集 空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水: 当第二权 重系数和低于第二权重系数和, 从压缩机处收集压缩机排出的空气, 使空气与 冷凝固接触并降温至露点, 收集冷凝固上的液态水。 [0090] [0054]实施例 7
[0091] 本实施例提供一种从空气中收集水的装置, 如图 3包括依次通过冷媒管道连接 的压缩机 1、 冷凝器 2、 蒸发器 3以及冷凝组件: 所述冷 j疑组件包括冷凝室 41 , 冷凝室内设有至少一个用于与空气接触的冷凝固 42 (本实施例中, 边优现有技 术用于冷 j疑的蛇形管, 冷媒经蒸发器降压、 降温后, 进入蛇形管, 铜管蛇形管 壁与空气进行热交换, 冷凝空气) : 冷凝室还设有用于吸入或排出空气的第一 空气交换口 411以及第二空气交换口 412
: 所述冷凝器设置在第二空气交换口 412外侧: 所述压缩机 1、 冷凝器 2、 蒸发 器 3、 冷凝固 42通过冷媒管道依次连接构成闭合的冷媒循环管路: 冷 j其是组件 还包括设置在第一空气交换口处的、 可正反转的风机 43。 本实施例中, 所述可 正反转的风机选用申请号为 201020214350.5的中国实用新型专利所公幵的二种 正反转风机实现, 其机壳通过焊接固定在第二空气交换口外侧, 其叶轮轴心与 第二空气交换口轴心重叠。 具体的安装方法可依据任意一种现有技术实现, 其 作为公失日常识, 是本领域普通技术人员所掌握, 本实施例限于篇幅不再赘述 。 特别的, 本实施例中电机可以替换为变频电机。
[0092] [0055]进二步的, 如图 4, 还包括控制单元、 传感器: 所述控制单元与传感器 通信连接, 接收传感器所采集的信号: 所述控制单元与风机的电机连接, 对电 机输出电流以控制电机的转向: 所述传感器为温度传感器。
[0093] [0056]更进一步的, 如图 5, 所述可变面积的冷凝固其包括冷凝固本体 (本实 施例中为蛇形管) 以及可滑动安装在第二空气交换口 411外侧的挡板。 具体而言 , 第一空气交换口外侧设置有两个相对的滑槽 4111, 挡板 4112嵌入两个滑槽内 。 移动挡板, 可以控制第一空气交换口打幵的大小。 此外, 冷凝器和压缩机以 及蒸发器可选用申请号为 201010226267.4的中国发明专利所记载的技术实现。 蛇形管的入口如蒸发器通过冷媒管道与蒸发器的出口相连: 蛇形管的出口通过 冷媒管道与压缩机的入口相连。 压缩机、 冷凝器、 蒸发器可以与冷凝组件分体 设置, 仅仅通过冷媒管道连接。 压.机、 冷凝器、 蒸发器不再赘述。 还包括必要 的循环泵、 冷凝器内的热交换器 21等结构, 不是本申请所要解决的技术问题, 可选用现有技术实现, 不再赘述。 。 [0094] [0057]本实施例的工作原理如下:
[0095] S1.预设一空气温度数值:
[0096] S2.采集环境空气温度数值, 并将其与预设空气温度数值进行对比:
[0097] S3.当环境空气温度数值高于所述预设空气温度数值, 风机促使环境空气进入 冷凝室, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水: 当环境 空气温度数值低于所述预设空气温度数值, 风机反转使冷凝器上的空气进入冷 凝室, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的液态水。
[0098] [0058]本实施例中, 环境空气温度数值采用温度传感器实吋采集。
[0099] [0059]所述步骤 s3还包括当环境空气温度数值低于所述预设空气温度数值, 增 加冷凝固
[0100] 与空气的接触面积 (滑动调节挡板的位置) 和提高空气流进冷凝固的速度 (提 高风机转速) 。
[0101] [0060]
[0102] 实施例 8
[0103] 本实施例提供一种从空气中收集水的装置, 如图 6包括依次通过冷媒管道连接 的压缩机 1、 冷凝器 2、 蒸发器 3以及冷凝组件 1所述冷凝组件包括冷凝室 41 , 冷凝室内设有至少一个用于与空气接触的冷凝固 42 (本实施例中, 边优现有技 术用于冷 j疑的蛇形管, 冷媒经蒸发器降压、 降温后, 进入蛇形管, 铜管蛇形管 壁与空气进行热交换, 冷凝空气) : 冷凝室还设有用于吸入或排出空气的第一 空气交换口 411以及第二空气交换口 412
: 所述冷凝器设置在第二空气交换口 412外侧: 所述压缩机 1、 冷凝器 2、 蒸发 器 3、 冷凝固 42通过冷媒管道依次连接构成闭合的冷媒循环管路: 冷凝组件还包 括设置在第二空气交换口处的、 可正反转的风机 43。
[0104] [0061]进二步的, 还包括控制单元、 传感器: 所述控制单元与传感器通信连接 , 接收传感器所采集的信号: 所述控制单元与风机的电机连接, 对电机输出电 流以控制电机的转向: 所述传感器为湿度传感器、 温度传感器及压力传感器。
[0105] [0062]本实施例中, 所述控制单元为单片机。
[0106] [0063]更进一步的, 所述风机为可调转速风机 (本实施例选用变频风机) 。 [0107] [0064]实施例 9
[0108] 本实施例提供一种从空气中收集水的装置, 如图 7, 包括依次通过冷媒管道连 接的压缩机 1、 冷凝器 2、 蒸发器 3以及冷凝组件: 所述冷 j疑组件包括冷凝室 41 , 冷凝室内设有二个用于与空气接触的冷凝固 42: 冷凝室还设有用于吸入空气 的第一空气交换口 411以及用于排出空气的第二空气交换口 412 : 所述压缩机 1 、 冷凝器 2、 蒸发器 3、 冷凝固 4通过冷媒管道依次连接构成闭合的冷媒循环管 路: 冷 j疑组件还包括设置在第二空气交换口处的风机 43还包括设置在第一空气 交换口处的加热器 44 (本实施例为现有技术的电热丝) 。
[0109] [0065]还包括控制单元、 传感器 1所述控制单元与传感器通信连接, 接收传感 器所采集的信号: 所述控制单元与风机的电机连接, 对电机输出电流以控制电 机的转向: 所述传感器为温度传感器、 压力传感器、 湿度传感器。
[0110] [0066]所述风机为可调转速风机和所述冷凝固为可变面积的冷凝固。
[0111] [0067]所述可变面积的冷凝固其包括冷凝固本体以及覆盖在冷凝固本体表面的 、 可滑动的挡板。
[0112] [0068]所述可调转速风机采用变频电机驱动。
[0113] [0069]所述冷凝固包括冷凝固本体, 所述冷凝固本体由至少一个或多个首尾相 接的蛇形管组成, 所述蛇形管的一端通过所述冷媒管道与蒸发器连通, 另一端 通过所述冷媒管道与所述压缩机连通。 本实施例中, 如图 7, 蛇形管的表面焊接 有两个相对的滑槽 421, 挡板 422 (选用透明的玻璃制成) 嵌入滑槽内。 移动挡 板可以改变冷凝固暴露的面积 (如图 8和图 9) 。
[0114] [0070]实施例 10
[0115] 本实施例提供一种从空气中收集水的装置, 如图 10, 包括依次通过冷媒管道连 接的压缩机 1、 冷凝器 2、 蒸发器 3以及冷凝组件: 所述冷凝组件包括冷凝室 41 , 冷凝室内设有一个用于与空气接触的冷凝固 42: 冷凝室还设有用于吸入空气 的第二空气交换口 411以及用于排出空气的第二空气交换口 412 : 所述压缩机 1 、 冷凝器 2、 蒸发器 3、 冷凝固 4通过冷媒管道依次连接构成闭合的冷媒循环管 路: 冷凝组件还包括设置在第一空气交换口处的风机 43还包括
[0116] 设置在第一空气交换口处的加热器 44 (本实施例为现有技术的电热丝) 。 [0117] [0071]还包括控制单元、 传感器: 所述控制单元与传感器通信连接, 接收传感 器所采集的信号: 所述控制单元与风机的电机连接, 对电机输出电流以控制电 机的转向: 所述传感器为温度传感器、 压力传感器、 湿度传感器。
[0118] [0072]实施例 11
[0119] 本实施例提供一种从空气中收集水的装置, 如图 1包括依次通过冷媒管道连接 的压缩机 1、 冷凝器 2、 蒸发器 3以及冷凝组件: 所述冷 j疑组件包括冷凝室 41 , 冷凝室内设有至少一个用于与空气接触的冷凝固 42: 冷 j疑室还设有用于吸入或 排出空气的第二空气交换口 411以及第二空气交换口 412 : 所述冷凝器设置在第 二空气交换口 412外侧: 所述压缩机 1、 冷凝器 2、 蒸发器 3、 冷凝固 42通过冷媒 管道依次连接构成闭合的冷媒循环管路: 冷 j疑组件还包括设置在第一空气交换 口处的、 可正反转的风机 43。 所述风机为可调转速风机和 /或所述冷凝固为可 变面积的冷凝固。 所述冷凝固包括冷凝固本体, 所述冷凝固本体由至少二个或 多个首尾相接的蛇形管组成, 所述蛇形管的二端通过所述冷媒管道与蒸发器连 通, 另一端通过所述冷媒管道与所述压缩机连通。 本实施例中, 如图 7, 蛇形管 的表面焊接有两个相对的滑槽 421, 挡板 422 (选用透明的玻璃制成) 嵌入滑槽 内。 移动挡板可以改变冷凝固暴露的面积 (如图 8) 。
[0120] [0073]所述冷凝固的下方设有集水组件 (本实施例选用水盆实现, 蛇形管表面 冷凝的水珠低落水盆, 完成收集) 。
[0121] [0074]可变面积的冷凝固还可边用如图 11和图 12的结构实现。 包括至少两块 良导热的冷凝固本体 51, 包埋在本体内的换热管 52。 相邻的本体 51绞接, 可以 折叠。
[0122] [0075]可变面积的冷凝固还可边用如图 13的结构实现。 包括冷凝固本体以及在 第一空气交换口 411处的 L形挡板 4112, L形挡板与第二空气交换口的外壁较接, 通过气缸 4113驱动 L形挡板的一端, 便可改变 L形挡板另一端遮挡第一空气交换 口的角度和面积。
[0123] [0076]以上为本发明的其中具体实现方式, 其描述较为具体和详细, 但并不能 因此而理解为对本发明专利范围的限制。 应当指出的是, 限于篇幅说明书仅对 本发明用于克服技术问题的区别特征进行了详细的解释, 对于冷凝器型号、 压 缩机型号、 蒸发器型号、 各个结构之间连接的具体实现方式、 风机如何调速、 如何正反转等非本发明创新点的特征的具体实现方式, 可以采用本领域普通技 术人员通过已经公告的现有技术或公知常识实现。 对于本领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些显而 易见的替换形式均属于本发明的保护范围。
[0124]
工业实用性
[0125] [0077]一种从空气中收集水的方法和装置, 可大规模应用。
[0126]

Claims

权利要求书
[权利要求 1] 一种从空气中收集水的方法, 包括如下步骤:
51.预设一临界环境参数:
52.采集实吋环境参数, 并将其与所述临界环境参数进行对比:
53.提供一用于冷凝空气的冷凝固: 当实吋环境参数高于所述 I I伍 界环境参数, 直接从环
境中采集空气, 使空气与冷凝固接触并降温至露点, 收集冷凝固上的 液态水: 当实吋环境参
数低于所述临界环境参数, 从压缩机的用于冷凝冷媒的冷凝器处收集 流经冷凝器的空气
或 /和采用加热装置加热后的空气, 再使空气与冷凝固接触并降温至 露点, 收集冷凝固上的
液态水。
2.根据权利要求 1所述的方法, 其特征在于: 所述临界环境参数为空 气温度数值、 气压
值、 水蒸气压值、 空气相对湿度值或空气绝对湿度值中的至少一种: 所述实吋环境参数为与
所述临界环境参数种类相同的实吋环境参数。
3.根据权利要求 2所述的方法, 其特征在于: 所述临界环境参数为空 气温度值: 所述实
吋环境参数为环境的空气温度。
4.根据权利要求 1所述的方法, 其特征在于: 所述临界环境参数为根 据空气温度数值、
气压值、 水蒸气压值、 空气相对湿度值或空气绝对湿度值中的至少二 种数值所获得的系数:
所述实吋环境参数为环境中与所述临界环境参数同类的系数。
5.根据权利要求 2所述的方法, 其特征在于: 所述临界环境参数为空 气温度数值、 气压 值、 水蒸气压值、 空气相对湿度值或空气绝对湿度值中的多种: 还包 括根据实吋环境参数与
冷凝水量的相关性大小, 赋予其相应的、 呈正相关的权重系数: 所述 步骤 S3中, 还包括将高
于临界环境参数的实吋环境参数其权重系数相加获得第一权重系数和 、 将低于临界环境参
数的实吋环境参数其权重系数相加获得第二权重系数和: 当第一权重 系数和高于第二权重
系数和, 直接从环境中采集空气, 使空气与冷凝固接触并降温至露点 , 收集冷凝固上的液态
水: 当第一权重系数和低于第二权重系数和, 从冷凝器处收集流经冷 凝器的空气, 使空气与
冷凝固接触并降温至露点, 收集冷凝固上的液态水。
6.根据权利要求 1 5任二项所述的方法, 其特征在于: 所述步骤 s3还 包括当实吋环境参
数低于所述临界环境参数, 增加冷凝固与空气的接触面积和 /或提高 空气流进冷凝固的速
度。
7.一种从空气中收集水的装置, 包括依次通过冷媒管道连接的压缩机 、 蒸发器、 冷凝器
以及冷凝组件: 所述冷凝组件包括冷凝室, 冷凝室内设有至少一个用 于与空气接触的冷凝
面: 冷凝室还设有用于吸入或排出空气的第二空气交换口以及第二空 气交换口: 其特征在
于: 所述冷 i疑器设置在第二空气交换口外侧: 所述压缩机、 冷凝器 、 蒸发器、 冷凝固通过冷媒
管道依次连接构成闭合的冷媒循环管路: 冷凝组件还包括设置在第一 空气交换口或第二空 气交换口处的、 可正反转的风机。
8.根据权利要求 7所述的装置, 其特征在于: 还包括控制单元、 传感 器: 所述控制单元与
传感器通信连接, 接收传感器所采集的信号: 所述控制单元与风机的 电机连接, 对电机输出
电流以控制电机的转向: 所述传感器为温度传感器、 压力传感器、 湿 度传感器中的至少一
种。
9.根据权利要求 8所述的装置, 其特征在于: 所述风机为可调转速风 机和 /或所述冷凝
面为可变面积的冷凝固。
10.一种从空气中收集水的装置, 包括依次通过冷媒管道连接的压缩 机、 冷 j疑器、 蒸发
器以及冷凝组件: 所述冷凝组件包括冷凝室, 冷 j疑室内设有至少一 个用于与空气接触的冷
凝固: 冷凝室还设有用于吸入空气的第一空气交换口以及用于排出空 气的第二空气交换
口: 所述压缩机、 冷凝器、 蒸发器、 冷凝固通过冷媒管道依次连接构 成闭合的冷媒循环管路:
冷凝组件还包括设置在第一空气交换口或第二空气交换口处的风机其 特征在于: 还包括设
置在第一空气交换口处的加热器。
PCT/CN2017/103340 2017-03-03 2017-09-26 一种从空气中收集水的方法和装置 WO2018157590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710125167.4A CN106677261A (zh) 2016-08-03 2017-03-03 一种从空气中收集水的方法和装置
CN201710125167.4 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018157590A1 true WO2018157590A1 (zh) 2018-09-07

Family

ID=63371442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103340 WO2018157590A1 (zh) 2017-03-03 2017-09-26 一种从空气中收集水的方法和装置

Country Status (1)

Country Link
WO (1) WO2018157590A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202730839U (zh) * 2012-06-27 2013-02-13 杨志良 一种收集空气中水资源的冷冻制水装置
CN106088230A (zh) * 2016-08-03 2016-11-09 吴乾明 一种从空气中收集水的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202730839U (zh) * 2012-06-27 2013-02-13 杨志良 一种收集空气中水资源的冷冻制水装置
CN106088230A (zh) * 2016-08-03 2016-11-09 吴乾明 一种从空气中收集水的方法和装置
CN106677261A (zh) * 2016-08-03 2017-05-17 吴乾明 一种从空气中收集水的方法和装置

Similar Documents

Publication Publication Date Title
CN106088230A (zh) 一种从空气中收集水的方法和装置
CN207702610U (zh) 一种利用冷凝水的降温除湿装置
JP2018531360A (ja) 浸水状態における蒸気圧縮システムを制御する方法
JP2018531360A6 (ja) 浸水状態における蒸気圧縮システムを制御する方法
CN204182270U (zh) 冷凝水回收冷冻式干燥机
Kong et al. Thermodynamic and experimental analysis of an ammonia-water absorption chiller
CN107447811A (zh) 多级转轮和制冷装置结合的空气取水装置及方法
CN204240715U (zh) 一种冷冻干燥机
CN106134450B (zh) 一种野外高效空气氚化水蒸汽冷凝收集装置
CN108760412B (zh) 一种VOCs吸附管采样装置
CN104383792A (zh) 三合一板换式冷干机及工作方法
CN109346953A (zh) 一种用于环网柜封闭空间的除湿装置
CN108167952A (zh) 一种利用冷凝水降低环境温升的除湿机
WO2018157590A1 (zh) 一种从空气中收集水的方法和装置
CN115382364B (zh) 一种智能化冷冻式压缩空气干燥器及使用方法
CN205119682U (zh) 一种双温型封闭式热泵干燥装置
CN206778155U (zh) 一种水冷式冷冻干燥机
CN209020149U (zh) 除湿装置
CN210674728U (zh) 一种空压站用冷冻式干燥机
CN202057104U (zh) 干燥烟气用的压缩机制冷器
CN213245450U (zh) 烟气冷凝除水预处理器
CN208567187U (zh) 一种水式水冷机
CN204006862U (zh) 独立控制制冷除湿装置
CN202519173U (zh) 一种肥料降温除湿空气冷却装置
CN208399346U (zh) 一种热泵型恒温恒湿箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17898651

Country of ref document: EP

Kind code of ref document: A1