WO2018157502A1 - 炉内自循环流化床气化炉及其中的阶梯风束布风板 - Google Patents

炉内自循环流化床气化炉及其中的阶梯风束布风板 Download PDF

Info

Publication number
WO2018157502A1
WO2018157502A1 PCT/CN2017/088042 CN2017088042W WO2018157502A1 WO 2018157502 A1 WO2018157502 A1 WO 2018157502A1 CN 2017088042 W CN2017088042 W CN 2017088042W WO 2018157502 A1 WO2018157502 A1 WO 2018157502A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
distribution plate
hole
air distribution
air
Prior art date
Application number
PCT/CN2017/088042
Other languages
English (en)
French (fr)
Inventor
张连华
陈柏金
王季
张晖
仇云龙
Original Assignee
中科聚信洁能热锻装备研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710116686.4A external-priority patent/CN106753581B/zh
Priority claimed from CN201710116272.1A external-priority patent/CN106753580B/zh
Application filed by 中科聚信洁能热锻装备研发股份有限公司 filed Critical 中科聚信洁能热锻装备研发股份有限公司
Priority to EP17898809.3A priority Critical patent/EP3527645B1/en
Priority to US16/490,557 priority patent/US10934499B2/en
Priority to ES17898809T priority patent/ES2802467T3/es
Priority to JP2018532765A priority patent/JP6618130B2/ja
Publication of WO2018157502A1 publication Critical patent/WO2018157502A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • C10J2300/0936Coal fines for producing producer gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1631Ash recycling

Definitions

  • the invention relates to the technical field of gasification furnaces, in particular to a self-circulating fluidized bed gasification furnace in a furnace and a stepped wind beam air distribution plate therein, which belongs to a special component of a coal gasification equipment.
  • each gasifier has its own advantages and disadvantages, such as fixed bed gasifiers, high coal conversion rate and thermal efficiency, and gas contains a large amount of tar and other pollutants; Circulating fluidized bed gasifier produces clean gas that is free of tar and other contaminants.
  • the raw coal has low thermal efficiency, and the coal slag contains a large amount of semi-coke.
  • the coking coal slag needs to be transported to a low-demand combustion environment for re-combustion. , such as raw materials used in the combustion of thermal power plants.
  • One of the objects of the present invention is to provide a self-circulating fluidized bed gasification furnace in a furnace, which can realize multiple self-circulating combustion gasification in the furnace, and has good gasification temperature control and high coal gasification rate in the furnace. No leakage and other advantages.
  • the second object of the present invention is to provide a stepped wind beam air distribution plate of a circulating fluidized bed gasification furnace, which is configured by the vent hole of the air distribution plate and the gas outlet end of the vent hole to be polymerized to the same large hole passage.
  • the wind entering the gasifier is a bundled stepped wind beam, and effectively prevents the solid phase material in the furnace cavity from leaking into the gas chamber.
  • the present invention provides a stepped wind beam air distribution plate of a circulating fluidized bed gasification furnace, the stepped wind beam air distribution plate comprising a wind deflecting plate body, and the inside of the air distribution plate body
  • the gas mixture has a through hole and a plurality of vent holes.
  • the gas mixing through hole extends from the top surface of the air distribution plate body to the air distribution plate body, and the air outlet of the plurality of ventilation holes communicates with the bottom of the gas mixing through hole.
  • the air inlets of the plurality of vent holes are located at a bottom surface of the air distribution plate body, wherein the vent holes are designed to have a labyrinth.
  • the gas mixture through hole comprises a cylindrical hole and a hollow circular table having a large upper and lower diameter, an upper port of the cylindrical hole is located at a top surface of the air distribution plate body, and a lower port thereof and the circular table The upper edge is connected, and the hollow truncated cone is connected to the air outlet of the plurality of vent holes as a connection portion of the gas mixture through hole.
  • the hollow circular table is set as a cap; the bottom of the gas mixture through hole is a plane, and the plane is set as a resistance table; or the bottom surface of the air distribution plate body is a body toward the air distribution plate The concave spherical crown arch.
  • vent hole includes a divergent vent hole segment, a vertical vent hole segment and a horizontal vent hole segment which are sequentially penetrated from the air outlet to the air inlet; or the vent hole includes an air outlet from the air outlet to the air inlet A divergent vent hole segment and a horizontal vent hole segment that are sequentially passed through.
  • each section of the vent hole is set according to the gas volume requirement and the gas velocity requirement, and the solid phase particle deposition speed, the solid phase particle diameter, and/or the solid phase particle in the gasifier where the stepped wind beam distribution plate is located. Density to set.
  • an in-furnace self-circulating fluidized bed gasification furnace comprising a furnace body and a furnace chamber covered by the furnace body, the furnace chamber including the upper portion The furnace chamber and the air distribution plate disposed at a lower portion of the furnace chamber, the in-furnace self-circulating fluidized bed gasification furnace further includes a mixed air chamber disposed at a lower portion of the air distribution plate.
  • the stepped wind beam air distribution panel includes a air distribution plate body, and a gas mixture through hole and a plurality of ventilation holes in the air distribution plate body, and a top surface of the air distribution plate body covers the furnace cavity a bottom port, a bottom surface of the air distribution plate body serves as a top of the air mixing chamber, and the gas mixing through hole extends from a top surface of the air distribution plate body to the air distribution plate body, An air outlet of the vent hole is connected to a bottom of the gas mixing through hole, and an air inlet of the plurality of vent holes is located at a bottom surface of the air distribution plate body, wherein the vent hole is a meandering design,
  • the gas mixing through hole communicates with the bottom of the furnace chamber, and the air inlet of the vent hole communicates with the mixed air chamber.
  • the gas mixture through hole is located at the center of the bottom of the furnace chamber; the furnace chamber is a top and bottom small round table structure; or the mixed gas chamber is a pre-combustible mixture gas chamber.
  • the in-furnace self-circulating fluidized bed gasification furnace further comprises a coal conveying pipe disposed in a middle portion of the furnace cavity and a high temperature gas pipe disposed in an upper portion of the furnace cavity, wherein the coal conveying pipe is connected to the furnace cavity;
  • the inlet of the high temperature gas feed conduit is in communication with the furnace chamber, and the outlet thereof is in communication with the lower passage means.
  • the in-furnace self-circulating fluidized bed gasification furnace further includes a guide stage disposed in the furnace chamber and located at an inlet of the high temperature gas pipeline.
  • the table of the guide table faces upward, and the upper surface of the guide table is a circular arc surface, and the circular arc surface is connected with the inner wall of the lower tube wall of the high temperature gas pipeline, so that the furnace chamber falls into the guide table The material can smoothly enter the lower channel along the inner wall of the high temperature gas pipe.
  • the high-temperature gas mixture obtained by pre-combustion in the mixed gas chamber is first ejected from the air inlet of the lower end of the vent hole into the air outlet of the upper end of the vent hole, and then enters the gas mixture through-hole bundle rushing direction.
  • the furnace chamber forms a stepped wind beam with a large flow velocity at a large intermediate velocity from the high-temperature gas mixture entering the furnace cavity through the through-hole of the gas mixture, so that an intermediate upward flow of the bundled airflow and a downward flow of the airflow are formed in the furnace cavity. Circulating flow.
  • the in-furnace self-circulating fluidized bed gasification furnace further includes a gasifying agent conduit communicating with the mixed gas chamber, the gasifying agent conduit introducing a gasifying agent into the mixed gas chamber.
  • the in-furnace self-circulating fluidized bed gasification furnace further includes the pulverized coal conveying pipe and/or the carbon-containing fly ash conveying pipe communicating with the mixed gas chamber, wherein the pulverized coal conveying pipe is used for Pulverized coal is fed into the mixed gas chamber; the carbon-containing fly ash conveying pipe is fed into the mixed gas chamber by the carbon-containing fly ash, the high-temperature gas mixture comprising the gasifying agent, and a gasifying agent, Gas containing high-temperature carbonaceous fly ash produced by pre-combustion of carbon fly ash and pulverized coal.
  • the gas mixture through hole comprises a cylindrical hole and a hollow circular table having a large upper and lower diameter, an upper port of the cylindrical hole is located at a top surface of the air distribution plate body, and a lower port thereof and the circular table The upper edge is connected, and the hollow circular table serves as a connection portion of the gas mixture through hole, and communicates with the air outlet of the plurality of ventilation holes.
  • the hollow circular table is set as a cap; the bottom of the gas mixture through hole is a plane, the plane is set as a resisting table; the longitudinal cross-sectional shape of the guiding table is a part of the ring; or
  • the bottom surface of the air distribution plate body is a spherical arch surface that is recessed into the body of the air distribution plate.
  • vent hole includes a divergent vent hole segment, a vertical vent hole segment and a horizontal vent hole segment which are sequentially penetrated from the air outlet to the air inlet; or the vent hole includes an air outlet from the air outlet to the air inlet According to A through-flow divergent vent hole segment and a horizontal vent hole segment.
  • the stepped wind beam air distribution plate of the present invention is condensed into the same large hole passage through the vent hole setting and the vent hole outlet end, thereby realizing the wind entering the gasification furnace.
  • the solid phase material in the furnace cavity is effectively prevented from leaking into the air chamber.
  • the invention realizes the self-circulation of the combustion materials in the furnace cavity in the furnace cavity by designing the upper and lower furnace chambers and the design of the stepped wind beam airflow with a large intermediate flow velocity, thereby ensuring circulation.
  • the self-circulating fluidized bed gasification furnace in the furnace of the invention can realize multiple self-circulating combustion gasification in the furnace, and has the advantages of good gasification temperature control, high coal gasification rate and no ash leakage.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a self-circulating fluidized bed gasifier in a furnace according to an embodiment of the present invention
  • 1 is a furnace cavity
  • 2 is a stepped wind beam air distribution plate
  • 3 is a preheating device
  • 201 is a vent hole
  • 202 is a resistance block
  • 203 is a gas mixture through hole
  • 204 is a sealing cap
  • 205 is Ball crown arch surface
  • 301 is a mixed gas chamber
  • 4 is a guide table
  • a is a coal conveying pipe
  • b is a high temperature gas pipe
  • c is a pulverized coal conveying pipe
  • d is a carbon fly ash conveying pipe
  • e is gasification Agent catheter.
  • one embodiment or “an embodiment” as used herein refers to a particular feature, structure, or characteristic that can be included in at least one implementation of the invention.
  • the appearances of the "in one embodiment”, “a” or “an” Unless otherwise stated, the words “connected, connected, and connected to each other in the context of an electrical connection are meant to be directly or indirectly electrically connected.
  • one of the methods for solving the first problem in the background art is to carry out a plurality of self-circulating combustion gasification in a circulating fluidized bed gasifier.
  • the gas or gas mixture of the furnace chamber is a stepped wind beam that is uneven and can generate internal circulation.
  • the existing air distribution plates are generally modified for the gas to uniformly enter the gasifier furnace from the gas chamber, and the purpose is to uniformly enter the gas in the gasifier furnace in the gasification furnace; Due to the irrational setting of the windshield, there is still a serious ash leakage phenomenon, which causes the wind chamber to be blocked.
  • new design requirements have been proposed for the structure of existing air distribution panels.
  • the second method for solving the first problem in the background art is that heating or preliminary combustion of the gasifying agent entering the circulating fluidized bed can bring a large amount of heat into the furnace chamber to raise the gasification temperature in the furnace chamber.
  • a solution to the second problem in the background art is to design a differential air distribution panel. Therefore, with a newly designed combined gasifier with a circulating fluidized bed and a pyrolysis gasification bed, it is necessary to design a gasification furnace that can generate multiple self-circulating combustion gasification in the furnace chamber and An adapted air distribution panel that produces a stepped wind beam.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a self-circulating fluidized bed gasifier in a furnace according to an embodiment of the present invention.
  • the in-furnace self-circulating fluidized bed gasification furnace shown in Fig. 1 comprises a furnace body (not shown) and a furnace chamber (not shown) covered by the furnace body, for example, the furnace body is an outer casing, and the furnace interior The cavity is a cavity covered by the outer casing.
  • the furnace inner chamber comprises a furnace chamber 1 disposed at an upper portion and a stepped wind beam distribution panel 2 (or a distribution panel 2) disposed at a lower portion of the furnace chamber 1, the in-furnace self-circulating fluidized bed gasification furnace further comprising a mixed air chamber 3 disposed at a lower portion of the stepped wind beam air distribution plate 2, wherein a top surface of the stepped wind beam air distribution plate 2 covers a bottom port of the furnace chamber 1, and the stepped wind beam air distribution plate 2 The bottom surface serves as the top of the mixed gas chamber 3.
  • the furnace chamber 1 will first be described.
  • the middle portion of the furnace chamber 1 is provided with a coal conveying pipe a, and the coal conveying pipe a is connected with the furnace chamber 1;
  • the upper portion of the furnace chamber 1 is provided with a high temperature gas pipe b, and the inlet of the high temperature gas pipe b is
  • the furnace chamber 1 is in communication with its outlet being in communication with a downstream device (not shown).
  • the furnace chamber 1 may be of a large upper and lower structure.
  • the furnace chamber 1 is a top and bottom small round table structure; the top of the furnace chamber 1 is arranged to be concave.
  • the crown structure of the ball The reason why the shape of the furnace chamber 1 is set as such can be seen below.
  • a guide table 4 is provided in the furnace chamber 1 and at the inlet of the high temperature gas conduit b.
  • the table of the guide table 4 faces upward, and the upper surface of the guide table 4 is an arc surface, and the arc surface is in contact with the inner wall of the lower wall of the high temperature gas pipe b.
  • the longitudinal cross-sectional shape of the dump table 4 is part of a circular ring.
  • the stepped wind beam distribution panel 2 includes an air distribution plate body 200, and a gas mixture through hole 203 and a plurality of ventilation holes 201 located in the air distribution plate body 200.
  • the gas mixture through hole 203 extends from the top surface of the air distribution plate body 200 (which may also be referred to as a top surface of the stepped wind beam air distribution plate 2) into the air distribution plate body 200, and the The gas mixture through hole 203 communicates with the bottom of the furnace chamber 1, and specifically, the gas mixture through hole 203 is located at the center of the bottom of the furnace chamber 1.
  • the air outlet of the upper end of the plurality of vent holes 201 is in communication with the bottom of the gas mixture through hole 203, and the air inlet of the lower end of the plurality of vent holes 201 is located at the bottom surface of the air distribution plate body 200 (the It may also be referred to as a bottom surface of the stepped wind beam air distribution plate 2, and an air inlet of the lower end of the vent hole 201 is in communication with the mixed air chamber 3, wherein the vent hole 201 is designed to have a labyrinth.
  • the gas mixture through hole 203 includes a cylindrical hole 205 and a hollow circular table 204 that is large and small, and an upper port of the cylindrical hole 205 is located in the air distribution plate body 200.
  • a top surface of the circular table 204 is connected to the upper edge of the circular table 204;
  • the hollow circular table 204 is connected to the air outlet of the upper end of the plurality of ventilation holes 201 as a connecting portion of the gas mixture through hole 203.
  • the circular table 204 can be set as a cap;
  • the bottom of the gas mixture through hole 203 is a plane, and the plane is set as the resistance table 202.
  • the bottom surface of the stepped wind beam air distribution plate 2 is an upward spherical crown arch surface 205 (or the bottom surface of the stepped wind beam air distribution plate 2 is the air distribution plate body 2 )
  • the inner spherical recessed arch surface, that is, the top of the mixed air chamber 3 is a concave spherical arch surface 205.
  • the vent hole 201 includes a divergent vent hole section, a vertical vent hole section, and a horizontal vent hole section which are sequentially passed through from the air outlet to the air inlet.
  • the venting opening 201 includes a diverging venting section and a horizontal venting section extending sequentially from the air outlet to the air inlet. That is, the vent hole 201 in the present invention may be designed to have a labyrinth.
  • the oblique arrangement of the segments in the vent 201 may be based on gas volume requirements and gas velocity requirements, as well as solid phase particle deposition velocity, solid phase particle diameter, and/or in the gasifier in which the stepped wind beam distribution panel 2 is located. Or set the solid particle density.
  • a pulverized coal conveying pipe c and a carbon-containing fly ash conveying pipe d are disposed in the middle of the mixing gas chamber 301, and the pulverized coal conveying pipe c and the carbon-containing fly ash conveying pipe d are connected to the mixed gas chamber 301.
  • a gasification agent conduit e is disposed at the bottom of the mixed gas chamber 301, and the gasification agent conduit e is in communication with the mixed gas chamber 301;
  • the mixed gas chamber 301 is a pre-combustible mixed gas chamber, that is, a gasifying agent, carbon-containing fly ash, and
  • the pulverized coal may be pre-combusted in the mixed gas chamber 301. It should be noted that in other embodiments, only one pulverized coal conveying pipe c or only one carbon fly ash conveying pipe d and the mixed air chamber 301 may be disposed. Connected.
  • the pulverized coal conveying pipe c and the carbon-containing fly ash conveying pipe d disposed in the middle of the mixed gas chamber 301 respectively feed the pulverized coal and the carbon-containing fly ash into the mixed gas chamber 301, and the gasifying agent conduit e is disposed at the bottom of the mixed gas chamber 301.
  • the chemical agent is sent to the mixed gas chamber 301, and the pulverized coal and the carbonaceous fly ash meet the gasification agent in the mixed gas chamber 301 and are combusted and vaporized, and the high temperature gas mixture in the mixed gas chamber 301 (for example, a gasifying agent and a gasifying agent) , carbon-containing fly ash, coal with high-temperature carbonaceous fly ash produced by pre-combustion of pulverized coal, enters the furnace chamber 1 through the stepped wind beam air distribution plate 2, so that a large amount of heat can be introduced into the furnace chamber 1 to enhance The gasification temperature in the furnace chamber 1.
  • the high temperature gas mixture in the mixed gas chamber 301 for example, a gasifying agent and a gasifying agent
  • the gasifying agent in the mixed gas chamber 301 and the gas with high-temperature fly ash generated by combustion are discharged through the air inlet of the lower end of the vent hole 201 into the air outlet of the upper end of the vent hole 201, and then enter the gas mixture.
  • the through holes 203 are bundled and directed toward the furnace chamber 1 of the gasifier. Since the diameter of the gas mixture through hole 203 is large and the amount of gas flowing through the gas mixture through hole 203 is large, the flow rate of the gas mixture rushing from the gas mixture through hole 203 to the furnace chamber 1 is different, forming an intermediate portion.
  • the gasification agent entering the furnace chamber 1 and the stepped wind beam flow of the gas with high-temperature fly ash are rapidly flowed upward in the furnace chamber 1 of the gasification furnace, and are transported into the coal transportation tube a disposed in the middle of the furnace chamber 1
  • the coal in the furnace cavity is rapidly burned and pyrolyzed.
  • the furnace chamber 1 Because of entering the furnace chamber 1 is a stepped wind beam with a small flow velocity at the middle flow velocity and a large edge velocity, and the furnace chamber 1 is specially designed for the structure of the upper and lower round table, so that the material and the airflow in the furnace chamber of the gasifier are generated from The chrysanthemum-like (or fountain-like) internal circulation phenomenon of the top to the bottom, thereby realizing the multiple cycles of combustion and degassing of coal in the furnace chamber of the gasifier, ensuring the gasification temperature in the furnace chamber and improving the coal Gasification rate.
  • the middle of the high temperature gas mixture entering the circulating fluidized bed gasifier furnace chamber 1 is a high speed gas flow, and therefore, the diameter of the through hole 203 which will fall into the gas mixture is higher.
  • the large material is blown up quickly with the airflow, and after many cycles, it finally passes through the high-temperature gas material guide tube to enter the lower equipment, thereby solving the problem that the non-coal material in the existing circulating fluidized bed furnace chamber is easy to retain gasification. The problem with the bottom of the furnace.
  • the stepped wind beam air distribution plate 2 of the present invention can be made of a non-metal high temperature resistant material; the stepped wind beam air distribution plate 2 can be designed as a whole structure with the gasifier furnace wall; The air distribution plate and the gasifier furnace wall may also be separate bodies and are bonded to each other.
  • the mixed gas chamber 301 provided in the present invention can heat or preliminaryly burn the gasifying agent entering the circulating fluidized bed, thereby bringing a large amount of heat into the furnace chamber 1 to enhance gasification in the furnace chamber 1.
  • Temperature The stepped wind beam air distribution plate 2 provided in the present invention is disposed by the vent hole 201 and the air outlet end of the vent hole 201 is polymerized to the same large hole passage (ie, the gas mixture through hole 203), thereby realizing the wind entering the furnace chamber 1.
  • the self-circulating fluidized bed gasification furnace in the furnace in the present invention due to the design and the upper step of the wind beam distribution panel 2
  • the design of the furnace cavity of the large and small round table structure realizes the inner circulating airflow in the furnace chamber 1 and the inner circulation flow of the edge airflow flowing downward, thereby realizing the multiple cycles of pyrolysis of coal in the gas chamber of the gasifier. Gasification ensures the gasification temperature in the furnace chamber 1 and increases the gasification rate of the coal.
  • the middle of the high temperature gas mixture entering the circulating fluidized bed gasifier chamber 1 is a high velocity gas stream which will fall into the diameter and mass of the gas mixture through hole 203.
  • the larger material is blown up quickly with the airflow, and after many cycles, it finally passes through the high temperature gas conduit b to enter the lower equipment.
  • connection means connected words, and unless otherwise stated, means direct or indirect connection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种炉内自循环流化床气化炉及其中的阶梯风束布风板(2),其中,阶梯风束布风板(2)包括布风板本体(200),以及位于布风板本体(200)内的气料混合物通孔(203)和多个通气孔(201),气料混合通孔(203)自布风板本体(200)的顶面延伸至布风板本体(200)内,多个通气孔(201)的出气口与气料混合通孔(203)的底部相连通,多个通气孔(201)的进气口位于布风板本体(200)的底面,所述通气孔(201)为曲径设计。与现有技术相比,该阶梯风束布风板(2)通过布风板200的通气孔(201)曲径设置和通气孔(201)出气端聚合到同一个大孔通道(即气料混合物通孔(203),实现了进入气化炉的风为集束阶梯风束,且有效地阻止了炉腔(1)内固相物料漏入气室(3);炉内自循环流化床气化炉可实现炉内多次自循环燃烧气化,且具有炉内气化温度控制好、煤气化率高、无漏灰等优点。

Description

炉内自循环流化床气化炉及其中的阶梯风束布风板 【技术领域】
本发明涉及气化炉技术领域,特别涉及一种炉内自循环流化床气化炉及其中的阶梯风束布风板,属于煤气化设备的专用部件。
【背景技术】
随着社会不断进步,热能需求越来越大。传统的获取方式一般都是直接从燃煤中获得,然而在煤直接燃烧的过程中会产生大量的污染物,对人们的生存环境产生巨大的影响。因而国家近年出台了大量的关于禁止直接燃煤取热的文件。为此人们设计出各种各样将原煤转化为煤气的气化炉,改为将原煤转化为煤气的燃烧方式获取能源。如固定床、循环流化床等形式生产制作煤气的气化炉,在一定程度上减少了燃烧对环境的污染。但是深究现有各种形式的气化炉,人们发现每种气化炉都各有优缺点,如固定床气化炉,煤转化率和热效率都高,而煤气中含有大量焦油等污染物;循环流化床气化炉,生产制得的为不含焦油等污染物的洁净煤气,而原煤使用热效率低,煤渣中含有大量半焦,需将含焦煤渣运送到低要求燃烧环境进行再燃烧,如用于热电厂燃烧的原料。为了解决上述问题,立志于煤制气研究的人们设计出一种循环流化床与热解气化床相复合的组合式气化炉,在燃烧气化的过程中既不产生焦油等污染物,又能大幅提高煤的燃烧气化率。这种设计存在两个缺陷,一个是循环流化床循环次数的减少,循环流化床炉腔内的气化温度难以保证,达不到大颗粒煤块不产生焦油的燃烧温度;第二个是循环流化床炉腔内不设底排渣,质量较大的非煤物质易滞留气化炉底。
由此,有必要提出一种新的技术方案来解决上述问题。
【发明内容】
本发明的目的之一在于提出了一种炉内自循环流化床气化炉,其可实现炉内多次自循环燃烧气化,且具有炉内气化温度控制好、煤气化率高、无漏灰等优点。
本发明的目的之二在于提出了一种循环流化床气化炉的阶梯风束布风板,它通过布风板的通气孔曲径设置和通气孔出气端聚合到同一个大孔通道,实现 了进入气化炉的风为集束阶梯风束,且有效地阻止了炉腔内固相物料漏入气室。
根据本发明的一个方面,本发明提供一种循环流化床气化炉的阶梯风束布风板,所述阶梯风束布风板包括布风板本体,以及位于所述布风板本体内的气料混合物通孔和多个通气孔。所述气料混合通孔自所述布风板本体的顶面延伸至所述布风板本体内,所述多个通气孔的出气口与所述气料混合通孔的底部相连通,所述多个通气孔的进气口位于所述布风板本体的底面,其中,所述通气孔为曲径设计。
进一步的,所述气料混合物通孔包括柱形孔和上小下大的空心圆台,所述柱形孔的上端口位于所述布风板本体的顶面,其下端口与所述圆台的上边沿相接,所述空心圆台作为所述气料混合物通孔的连接部与所述多个通气孔的出气口相连通。
进一步的,所述空心圆台设定为封帽;所述气料混合物通孔的底为平面,该平面设定为阻料台;或所述布风板本体的底面为向布风板本体内凹陷的球冠拱面。
进一步的,所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段、竖直通气孔段和水平通气孔段;或所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段和水平通气孔段。
进一步的,所述通气孔中各段的斜向设置根据气量要求和气速要求,以及阶梯风束布风板所在气化炉中的固相颗粒沉积速度、固相颗粒直径和/或固相颗粒密度来设置。
根据本发明的另一个方面,本发明提供一种炉内自循环流化床气化炉,其包括炉体和被所述炉体包覆的炉内腔,所述炉内腔包括设置于上部的炉腔和设置于炉腔下部的布风板,所述炉内自循环流化床气化炉还包括设置于所述布风板下部的混合气室。所述阶梯风束布风板包括布风板本体,以及位于所述布风板本体内的气料混合物通孔和多个通气孔,所述布风板本体的顶面覆盖所述炉腔的底部端口,所述布风板本体的底面作为所述混合气室的顶,所述气料混合通孔自所述布风板本体的顶面延伸至所述布风板本体内,所述多个通气孔的出气口与所述气料混合通孔的底部相连通,所述多个通气孔的进气口位于所述布风板本体的底面,所述通气孔为曲径设计,所述气料混合通孔与所述炉腔的底部相连通,所述通气孔的进气口与所述混合气室相连通。
进一步的,所述气料混合物通孔位于所述炉腔的底部中心;所述炉腔为上大下小的倒圆台结构;或所述混合气室是可预燃烧的混合物气室。
进一步的,所述炉内自循环流化床气化炉还包括设置于炉腔中部的输煤管和设置于炉腔上部的高温气料导管,所述输煤管与炉腔相连通;所述高温气料导管的入口与炉腔相连通,其出口与下道装置相连通。
进一步的,所述炉内自循环流化床气化炉还包括设置在所述炉腔内且位于所述高温气料导管的入口处的导料台。所述导料台的台面向上,所述导料台的上台面为圆弧面,所述圆弧面与高温气料导管下管壁的内壁相接,以使炉腔内落入导料台的物料可以沿高温气料导管内壁平滑进入下道装置。
进一步的,所述混合气室内预燃烧得到的高温气料混合物,先由通气孔的下端的进气口进入到通气孔的上端的出气口喷出,然后再进入气料混合物通孔集束冲向所述炉腔,从气料混合物通孔进入炉腔的高温气料混合物形成中间流速大边缘流速小的阶梯风束,使炉腔内形成中间向上的集束气流、边缘向下的气流漫流的内循环流动。
进一步的,所述炉内自循环流化床气化炉还包括与所述混合气室相连通的气化剂导管,所述气化剂导管将气化剂导入所述混合气室内。
进一步的,所述炉内自循环流化床气化炉还包括与所述混合气室相连通的所述粉煤输送管和/或含碳飞灰输送管,所述粉煤输送管用于将粉煤输送入所述混合气室内;所述含碳飞灰输送管由于将含碳飞灰送入所述混合气室内,所述高温气料混合物包括所述气化剂,以及气化剂、含碳飞灰、粉煤预燃烧产生的带有高温含碳飞灰的煤气。
进一步的,所述气料混合物通孔包括柱形孔和上小下大的空心圆台,所述柱形孔的上端口位于所述布风板本体的顶面,其下端口与所述圆台的上边沿相接,所述空心圆台作为所述气料混合物通孔的连接部,与所述多个通气孔的出气口相连通。
进一步的,所述空心圆台设定为封帽;所述气料混合物通孔的底为平面,该平面设定为阻料台;导料台的纵向截面形状为圆环的一部分;或所述布风板本体的底面为向布风板本体内凹陷的球冠拱面。
进一步的,所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段、竖直通气孔段和水平通气孔段;或所述通气孔包括自其出气口向进气口依 次贯通的发散状通气孔段和水平通气孔段。
与现有技术相比,根据本发明的一个方面,本发明中阶梯风束布风板通过通气孔曲径设置和通气孔出气端聚合到同一个大孔通道,实现了进入气化炉的风为集束阶梯风束,且有效地阻止了炉腔内固相物料漏入气室。根据本发明的另一个方面,本发明通过上大下小的炉腔的设计和中间流速大的阶梯风束气流的设计,实现了炉腔内燃烧物料在炉腔内的自循环,保证了循环流化床气化炉燃烧所需的气化温度。这样,本发明中的炉内自循环流化床气化炉可以实现炉内多次自循环燃烧气化,且具有炉内气化温度控制好、煤气化率高、无漏灰等优点。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明在一个实施例中的炉内自循环流化床气化炉的纵剖面示意图;
附图中:1为炉腔、2为阶梯风束布风板、3为预热装置,201为通气孔、202为阻料台、203为气料混合物通孔、204为封帽、205为球冠拱面、301为混合气室,4为导料台,a为输煤管、b为高温气料导管、c为粉煤输送管、d为含碳飞灰输送管、e为气化剂导管。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。除非特别说明,本文中的连接、相连、相接的表示电性连接的词均表示直接或间接电性相连。
发明人发现,解决背景技术中的第一个问题的方法之一是,让煤在循环流化床气化炉中进行多次自循环燃烧气化。为了实现这一目的,要求进入气化炉 炉腔的气体或气料混合物为不均匀、可产生内循环的阶梯风束。然而,现有布风板一般都是为了气体从气室均匀进入气化炉炉膛而进行各种改进,目的就是要进入气化炉炉膛的气体在气化炉中各处均匀;同时传统的布风板因风帽设置的不合理还存在较为严重的漏灰现象,造成风室堵塞。为此对现有布风板的结构就提出了新的设计要求。
解决背景技术中的第一个问题的方法之二是,将进入循环流化床的气化剂加热或初步燃烧,能够向炉腔内带入大量的热量,提升炉腔内的气化温度。解决背景技术中的第二个问题的方法是,设计差别化的布风板。因此,应用新设计的循环流化床与热解气化床相复合的组合式气化炉,就必须设计出可在炉腔内产生多次自循环燃烧气化的气化炉及与之相适配的产生阶梯风束的布风板。
请参考图1所示,其为本发明在一个实施例中的炉内自循环流化床气化炉的纵剖面示意图。图1所示的炉内自循环流化床气化炉包括炉体(未示出)和被所述炉体包覆的炉内腔(未示出),比如,炉体为外壳,炉内腔是外壳包覆的空腔。所述炉内腔包括设置于上部的炉腔1和设置于炉腔1下部的阶梯风束布风板2(或布风板2),所述炉内自循环流化床气化炉还包括设置于所述阶梯风束布风板2下部的混合气室3,其中,所述阶梯风束布风板2的顶面覆盖所述炉腔1底部端口,所述阶梯风束布风板2的底面作为所述混合气室3的顶。
首先介绍所述炉腔1。所述炉腔1的中部设置有输煤管a,输煤管a与炉腔1相连通;所述炉腔1的上部设置有高温气料导管b,所述高温气料导管b的入口与炉腔1相连通,其出口与下道装置(未示出)相连通。所述炉腔1可以为上大下小的结构,在图1所示的实施例中,所述炉腔1为上大下小的倒圆台结构;所述炉腔1的顶部设置成上凹的球冠结构。对所述炉腔1的形状进行如此设置的原因,可参见下文。
在所述炉腔1内且在高温气料导管b的入口处设置有导料台4。在图1所示的实施例中,所述导料台4的台面向上,导料台4上台面为圆弧面,所述圆弧面与高温气料导管b下管壁的内壁相接,这样,炉腔1内落入导料台4的物料可以沿高温气料导管b内壁平滑进入下道装置。在一个优选的实施例中,所述倒料台4的纵向截面形状为圆环的一部分。
接着介绍所述阶梯风束布风板2。所述阶梯风束布风板2包括布风板本体200,以及位于布风板本体200内的气料混合物通孔203和多个通气孔201。所述气料混合物通孔203自所述布风板本体200的顶面(其也可称为阶梯风束布风板2的顶面)延伸至所述布风板本体200内,且所述气料混合物通孔203与炉腔1的底部相连通,具体的,所述气料混合物通孔203位于所述炉腔1的底部中心。所述多个通气孔201上端的出气口与所述气料混合物通孔203的底部与相连通,所述多个通气孔201下端的进气口位于所述布风板本体200的底面(其也可称为阶梯风束布风板2的底面),且所述通气孔201下端的进气口与所述混合气室3相连通,其中,所述通气孔201为曲径设计。
在图1所示的实施例中,所述气料混合物通孔203包括柱形孔205和上小下大的空心圆台204,所述柱形孔205的上端口位于所述布风板本体200的顶面,其下端口与所述圆台204的上边沿相接;所述空心圆台204作为所述气料混合物通孔203的连接部与所述多个通气孔201上端的出气口相连通,其中,所述圆台204可以设定为封帽;所述气料混合物通孔203的底为平面,该平面设定为阻料台202。在图1所示的实施例中,所述阶梯风束布风板2的底面为上凹的球冠拱面205(或所述阶梯风束布风板2的底面为向布风板本体2内凹陷的球冠拱面),即所述混合气室3的顶为上凹的球冠拱面205。
在图1所示的实施例中,通气孔201包括自其出气口向进气口依次贯通的发散状通气孔段、竖直通气孔段和水平通气孔段。在另一个实施例中,通气孔201包括自其出气口向进气口依次贯通的发散状通气孔段和水平通气孔段。也就是说,本发明中的通气孔201只要是曲径设计即可。在一个实施例中,通气孔201中各段的斜向设置可以根据气量要求和气速要求,以及阶梯风束布风板2所在气化炉中的固相颗粒沉积速度、固相颗粒直径和/或固相颗粒密度来设置。
最后介绍所述混合气室3。在图1所示的实施例中,混合气室301中部设置有粉煤输送管c和含碳飞灰输送管d,粉煤输送管c和含碳飞灰输送管d与混合气室301相连通;混合气室301底部设置气化剂导管e,气化剂导管e与混合气室301相连通;混合气室301为可预燃烧的混合气室,即气化剂、含碳飞灰和粉煤可以在所述混合气室301内预燃烧。需要特别注意的是,在其他实施例中,可只设置一条粉煤输送管c或只设置一条含碳飞灰输送管d与混合气室301相 连通。
为了便于理解本发明,以下结合图1具体介绍本发明中的炉内自循环流化床气化炉的工作原理。
混合气室301中部设置的粉煤输送管c和含碳飞灰输送管d分别将粉煤和含碳飞灰送进混合气室301中,混合气室301底部设置气化剂导管e将气化剂送进混合气室301,粉煤和含碳飞灰与气化剂在混合气室301相遇并燃烧气化,混合气室301中高温气料混合物(比如,气化剂及气化剂、含碳飞灰、粉煤预燃烧产生的带有高温含碳飞灰的煤气),经阶梯风束布风板2进入炉腔1,从而能够向炉腔1内带入大量的热量,提升炉腔1内的气化温度。
具体的,混合气室301中气化剂及燃烧产生的带有高温飞灰的煤气,经由通气孔201下端的进气口进入到通气孔201上端的出气口喷出,然后再进入气料混合物通孔203集束冲向气化炉的炉腔1。由于气料混合物通孔203的直径较大和流过气料混合物通孔203的气量较大,因此,从气料混合物通孔203中冲向炉腔1的气料混合物的流速不相同,形成中间流速大边缘流速小的阶梯风束。因此,进入炉腔1的气化剂及带有高温飞灰的煤气的阶梯风束流,在气化炉的炉腔1内向上快速流动,遇炉腔1中部设置的输煤管a输送进入炉腔的煤迅速燃烧热解气化。
由于进入炉腔1的是中间流速大边缘流速小的阶梯风束,加之炉腔1为上大下小的倒圆台结构的特别设计,使得气化炉的炉腔内1的物料及气流产生自上至下的菊花状(或喷泉状)的内循环现象,从而实现了煤在气化炉炉腔1内多次循环燃热解气化,保证了炉腔内的气化温度,提高了煤的气化率。同时,由于阶梯风束布风板的设计,使进入循环流化床气化炉炉腔1的高温气料混合物的中间是高速的气流,因此,将落入气料混合物通孔203的直径较大的物料吹起随气流快速向上,多次循环后最终经过高温气料导b管进入下道设备,从而解决了现有循环流化床炉腔内质量较大的非煤物质易滞留气化炉底的问题。
需要特别说明的是,本发明中的阶梯风束布风板2可以采用非金属耐高温材料制成;阶梯风束布风板2可以与气化炉炉壁设计为一整体结构;阶梯风束布风板与气化炉炉壁也可以为互相独立的分体,且互相间采用粘结连接。
综上所述,本发明中设置的混合气室301可以将进入循环流化床的气化剂加热或初步燃烧,从而向炉腔1内带入大量的热量,提升炉腔1内的气化温度; 本发明中设置的阶梯风束布风板2通过通气孔201曲径设置和通气孔201出气端聚合到同一个大孔通道(即气料混合物通孔203),实现了进入炉腔1的风为集束阶梯风束,且有效地阻止了炉腔1内固相物料漏入气室;本发明中的炉内自循环流化床气化炉,由于阶梯风束布风板2的设计和上大下小倒圆台结构的炉腔设计,实现了炉腔1内中间集束气流向上,边缘气流漫流向下的内循环流动,从而实现了煤在气化炉炉腔1内多次循环燃热解气化,保证了炉腔1内的气化温度,提高了煤的气化率。此外,由于阶梯风束布风板2的设计,使得进入循环流化床气化炉炉腔1的高温气料混合物的中间是高速的气流,将落入气料混合物通孔203的直径和质量较大的物料吹起随气流快速向上,多次循环后最终经过高温气料导管b进入下道设备。
在本发明中,“连接”、相连、“连”、“接”等表示相连的词语,如无特别说明,则表示直接或间接的连接。
需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (15)

  1. 一种循环流化床气化炉的阶梯风束布风板,其特征在于,所述阶梯风束布风板包括布风板本体,以及位于所述布风板本体内的气料混合物通孔和多个通气孔,
    所述气料混合通孔自所述布风板本体的顶面延伸至所述布风板本体内,所述多个通气孔的出气口与所述气料混合通孔的底部相连通,所述多个通气孔的进气口位于所述布风板本体的底面,
    其中,所述通气孔为曲径设计。
  2. 根据权利要求1所述的阶梯风束布风板,其特征在于,
    所述气料混合物通孔包括柱形孔和上小下大的空心圆台,所述柱形孔的上端口位于所述布风板本体的顶面,其下端口与所述圆台的上边沿相接,
    所述空心圆台作为所述气料混合物通孔的连接部与所述多个通气孔的出气口相连通。
  3. 根据权利要求2所述的阶梯风束布风板,其特征在于,
    所述空心圆台设定为封帽;
    所述气料混合物通孔的底为平面,该平面设定为阻料台;或
    所述布风板本体的底面为向布风板本体内凹陷的球冠拱面。
  4. 根据权利要求1所述的阶梯风束布风板,其特征在于,
    所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段、竖直通气孔段和水平通气孔段;或
    所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段和水平通气孔段。
  5. 根据权利要求4所述的阶梯风束布风板,其特征在于,
    所述通气孔中各段的斜向设置根据气量要求和气速要求,以及阶梯风束布风板所在气化炉中的固相颗粒沉积速度、固相颗粒直径和/或固相颗粒密度来设置。
  6. 一种炉内自循环流化床气化炉,其包括炉体和被所述炉体包覆的炉内腔,其特征在于,所述炉内腔包括设置于上部的炉腔和设置 于炉腔下部的布风板,
    所述炉内自循环流化床气化炉还包括设置于所述布风板下部的混合气室,
    所述阶梯风束布风板包括布风板本体,以及位于所述布风板本体内的气料混合物通孔和多个通气孔,所述布风板本体的顶面覆盖所述炉腔的底部端口,所述布风板本体的底面作为所述混合气室的顶,
    所述气料混合通孔自所述布风板本体的顶面延伸至所述布风板本体内,所述多个通气孔的出气口与所述气料混合通孔的底部相连通,所述多个通气孔的进气口位于所述布风板本体的底面,所述通气孔为曲径设计,
    所述气料混合通孔与所述炉腔的底部相连通,所述通气孔的进气口与所述混合气室相连通。
  7. 根据权利要求6所述的炉内自循环流化床气化炉,其特征在于,
    所述气料混合物通孔位于所述炉腔的底部中心;
    所述炉腔为上大下小的倒圆台结构;或
    所述混合气室是可预燃烧的混合物气室。
  8. 根据权利要求6所述的炉内自循环流化床气化炉,其特征在于,其还包括设置于炉腔中部的输煤管和设置于炉腔上部的高温气料导管,
    所述输煤管与炉腔相连通;
    所述高温气料导管的入口与炉腔相连通,其出口与下道装置相连通。
  9. 根据权利要求8所述的炉内自循环流化床气化炉,其特征在于,其还包括设置在所述炉腔内且位于所述高温气料导管的入口处的导料台,
    所述导料台的台面向上,所述导料台的上台面为圆弧面,所述圆弧面与高温气料导管下管壁的内壁相接,以使炉腔内落入导料台的物料可以沿高温气料导管内壁平滑进入下道装置。
  10. 根据权利要求7所述的炉内自循环流化床气化炉,其特征在于,
    所述混合气室内预燃烧得到的高温气料混合物,先由通气孔的下端的进气口进入到通气孔的上端的出气口喷出,然后再进入气料混合物通孔集束冲向所述炉腔,从气料混合物通孔进入炉腔的高温气料混合物形成中间流速大边缘流速小的阶梯风束,使炉腔内形成中间向上的集束气流、边缘向下的气流漫流的内循环流动。
  11. 根据权利要求10所述的炉内自循环流化床气化炉,其特征在于,其还包括与所述混合气室相连通的气化剂导管,所述气化剂导管将气化剂导入所述混合气室内。
  12. 根据权利要求11所述的炉内自循环流化床气化炉,其特征在于,其还包括与所述混合气室相连通的所述粉煤输送管和/或含碳飞灰输送管,
    所述粉煤输送管用于将粉煤输送入所述混合气室内;
    所述含碳飞灰输送管由于将含碳飞灰送入所述混合气室内,
    所述高温气料混合物包括所述气化剂,以及气化剂、含碳飞灰、粉煤预燃烧产生的带有高温含碳飞灰的煤气。
  13. 根据权利要求6所述的所述的炉内自循环流化床气化炉,其特征在于,
    所述气料混合物通孔包括柱形孔和上小下大的空心圆台,所述柱形孔的上端口位于所述布风板本体的顶面,其下端口与所述圆台的上边沿相接,
    所述空心圆台作为所述气料混合物通孔的连接部,与所述多个通气孔的出气口相连通。
  14. 根据权利要求13所述的阶梯风束布风板,其特征在于,
    所述空心圆台设定为封帽;
    所述气料混合物通孔的底为平面,该平面设定为阻料台;
    导料台的纵向截面形状为圆环的一部分;或
    所述布风板本体的底面为向布风板本体内凹陷的球冠拱面。
  15. 根据权利要求6所述的阶梯风束布风板,其特征在于,
    所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段、竖直通气孔段和水平通气孔段;或
    所述通气孔包括自其出气口向进气口依次贯通的发散状通气孔段和水平通气孔段。
PCT/CN2017/088042 2017-03-01 2017-06-13 炉内自循环流化床气化炉及其中的阶梯风束布风板 WO2018157502A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17898809.3A EP3527645B1 (en) 2017-03-01 2017-06-13 In-gasifier self-circulating fluidised bed gasifier and stepped constrained wind air-distribution plate therein
US16/490,557 US10934499B2 (en) 2017-03-01 2017-06-13 Internally self-circulating fluidized bed gasifier and air distributor therein for generating stepped constrained wind
ES17898809T ES2802467T3 (es) 2017-03-01 2017-06-13 Gasificador de lecho fluidizado autocirculante dentro del gasificador y placa de distribución de aire de viento escalonado y forzado en su interior
JP2018532765A JP6618130B2 (ja) 2017-03-01 2017-06-13 炉内自動循環流動層ガス化炉およびその多層風案内板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710116686.4 2017-03-01
CN201710116686.4A CN106753581B (zh) 2017-03-01 2017-03-01 一种循环流化床气化炉阶梯风束布风板
CN201710116272.1A CN106753580B (zh) 2017-03-01 2017-03-01 一种炉内自循环流化床气化炉
CN201710116272.1 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018157502A1 true WO2018157502A1 (zh) 2018-09-07

Family

ID=63369731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088042 WO2018157502A1 (zh) 2017-03-01 2017-06-13 炉内自循环流化床气化炉及其中的阶梯风束布风板

Country Status (5)

Country Link
US (1) US10934499B2 (zh)
EP (1) EP3527645B1 (zh)
JP (1) JP6618130B2 (zh)
ES (1) ES2802467T3 (zh)
WO (1) WO2018157502A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597846A (zh) * 2004-08-16 2005-03-23 中国科学院广州能源研究所 一种非对称结构的内循环生物质流化床气化炉
CN201074223Y (zh) * 2007-06-29 2008-06-18 合肥天焱绿色能源开发有限公司 灰渣自凝聚生物质流化床气化炉
CN101571288A (zh) * 2009-06-19 2009-11-04 北京乡电电力有限公司 一种生物质流化床旋流布风装置
KR101406660B1 (ko) * 2012-06-13 2014-06-13 재단법인 포항산업과학연구원 유동층 연소로
CN106753580A (zh) * 2017-03-01 2017-05-31 中聚信海洋工程装备有限公司 一种炉内自循环流化床气化炉
CN106753581A (zh) * 2017-03-01 2017-05-31 中聚信海洋工程装备有限公司 一种循环流化床气化炉阶梯风束布风板
CN206494910U (zh) * 2017-03-01 2017-09-15 中聚信海洋工程装备有限公司 一种炉内自循环流化床气化炉
CN206494911U (zh) * 2017-03-01 2017-09-15 中聚信海洋工程装备有限公司 一种循环流化床气化炉阶梯风束布风板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2702744A (en) * 1948-08-12 1955-02-22 Koppers Co Inc Gasification of powdered fuel and use of a protective gas
CA1095876A (en) 1977-07-20 1981-02-17 James R. Murphy Method and apparatus for regeneration of cracking catalyst
US4400181A (en) * 1982-01-28 1983-08-23 Hydrocarbon Research, Inc. Method for using fast fluidized bed dry bottom coal gasification
US7578981B2 (en) * 2004-07-29 2009-08-25 Gas Technologies Llc System for direct-oxygenation of alkane gases
US20060147853A1 (en) * 2005-01-06 2006-07-06 Lipp Charles W Feed nozzle assembly and burner apparatus for gas/liquid reactions
CN101363626B (zh) * 2007-08-06 2015-05-20 国际壳牌研究有限公司 制造燃烧器前脸的方法
CN101363624B (zh) * 2007-08-06 2011-05-25 国际壳牌研究有限公司 燃烧器
CN201261774Y (zh) 2008-06-22 2009-06-24 闫万河 余热回收流化床气化炉
CN201539855U (zh) 2009-09-30 2010-08-04 张建超 生物质气化燃烧锅炉
US20130160856A1 (en) * 2011-12-22 2013-06-27 General Electric Company Multi-port injector system and method
US9145524B2 (en) * 2012-01-27 2015-09-29 General Electric Company System and method for heating a gasifier
US9150801B2 (en) * 2012-01-27 2015-10-06 General Electric Company System and method for heating a gasifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597846A (zh) * 2004-08-16 2005-03-23 中国科学院广州能源研究所 一种非对称结构的内循环生物质流化床气化炉
CN201074223Y (zh) * 2007-06-29 2008-06-18 合肥天焱绿色能源开发有限公司 灰渣自凝聚生物质流化床气化炉
CN101571288A (zh) * 2009-06-19 2009-11-04 北京乡电电力有限公司 一种生物质流化床旋流布风装置
KR101406660B1 (ko) * 2012-06-13 2014-06-13 재단법인 포항산업과학연구원 유동층 연소로
CN106753580A (zh) * 2017-03-01 2017-05-31 中聚信海洋工程装备有限公司 一种炉内自循环流化床气化炉
CN106753581A (zh) * 2017-03-01 2017-05-31 中聚信海洋工程装备有限公司 一种循环流化床气化炉阶梯风束布风板
CN206494910U (zh) * 2017-03-01 2017-09-15 中聚信海洋工程装备有限公司 一种炉内自循环流化床气化炉
CN206494911U (zh) * 2017-03-01 2017-09-15 中聚信海洋工程装备有限公司 一种循环流化床气化炉阶梯风束布风板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527645A4 *

Also Published As

Publication number Publication date
US10934499B2 (en) 2021-03-02
EP3527645B1 (en) 2020-05-27
JP6618130B2 (ja) 2019-12-11
ES2802467T3 (es) 2021-01-19
US20200071628A1 (en) 2020-03-05
JP2019512557A (ja) 2019-05-16
EP3527645A4 (en) 2019-11-13
EP3527645A1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2018133303A1 (zh) 一种循环流化床与热解床复合气化的方法及其装置
CN103992824A (zh) 双旋风煤热解气化分级转化装置及方法
WO2017161633A1 (zh) 旋风燃烧装置、燃烧设备和燃烧方法
CN104277881A (zh) 干法排渣流化床气化反应装置
WO2017156824A1 (zh) 一种褐煤半焦贫氧燃烧锅炉
CN107488470A (zh) 一种等离子体液态排渣的气化炉及方法
CN106753580B (zh) 一种炉内自循环流化床气化炉
CN202881205U (zh) 一种多管路组合式气化喷嘴
CN106276889A (zh) 活性炭活化炉的炉体
CN105779014B (zh) J型气流床气化炉
CN206494910U (zh) 一种炉内自循环流化床气化炉
WO2018157502A1 (zh) 炉内自循环流化床气化炉及其中的阶梯风束布风板
CN209481593U (zh) 煤气化废热全回收***
CN206494911U (zh) 一种循环流化床气化炉阶梯风束布风板
CN109931597B (zh) 一种燃料分级气化及低nox燃烧锅炉
CN104152184B (zh) 生物质旋风热解-悬浮燃烧复合气化装置及其气化方法
CN106147876B (zh) 气化烧嘴
CN103123110B (zh) 一种集粉浓缩的煤粉燃烧器及燃烧方法
CN202338901U (zh) 一种集粉浓缩的煤粉燃烧器
CN106753581B (zh) 一种循环流化床气化炉阶梯风束布风板
CN106635177B (zh) 高效低耗高氢煤气发生***
CN210856014U (zh) 一种流化床气化炉
CN110628463A (zh) 一种煤气发生炉混合布风***及工作方法
CN206160102U (zh) 一种劣质煤高效低NOx分段耦合燃烧装置
CN221028273U (zh) 一种三段式生物质加压气化炉

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017898809

Country of ref document: EP

Effective date: 20190514

NENP Non-entry into the national phase

Ref country code: DE