WO2018155429A1 - Heat pump device control method and heat pump device - Google Patents

Heat pump device control method and heat pump device Download PDF

Info

Publication number
WO2018155429A1
WO2018155429A1 PCT/JP2018/005966 JP2018005966W WO2018155429A1 WO 2018155429 A1 WO2018155429 A1 WO 2018155429A1 JP 2018005966 W JP2018005966 W JP 2018005966W WO 2018155429 A1 WO2018155429 A1 WO 2018155429A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange medium
heat
medium
valve
Prior art date
Application number
PCT/JP2018/005966
Other languages
French (fr)
Japanese (ja)
Inventor
小野 裕司
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Publication of WO2018155429A1 publication Critical patent/WO2018155429A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a heat pump device control method and a heat pump device.
  • a heat pump cycle constituent device such as a compressor is provided in a circulation path of a heat exchange medium to constitute a heat pump cycle.
  • the heat exchange medium is in a high temperature and high pressure state on the discharge side of the compressor, the water to be heated can be heated to a high temperature, and high temperature water can be obtained.
  • a heat exchange medium such as CO 2 is in a supercritical state on the compressor discharge side, hot water of about 90 ° C. can be obtained.
  • COP coefficient of performance
  • Patent Document 1 discloses that in a heat pump device, the degree of superheat of a heat exchange medium on the compressor inlet side is controlled by controlling the opening of an expansion valve.
  • a method of controlling the degree of superheat of the heat exchange medium on the compressor inlet side by controlling the opening degree of the expansion valve is, for example, a heat exchanger in a heat exchange medium circulation path between the expansion valve and the compressor.
  • the degree of superheat on the compressor inlet side does not uniquely correspond to the opening of the expansion valve, and therefore the control accuracy of the degree of superheat may be reduced.
  • At least one embodiment makes it possible to accurately control the degree of superheat of the heat exchange medium on the compressor inlet side in the heat pump device in view of the above problems, thereby preventing the occurrence of a liquid back phenomenon and high COP and high
  • the purpose is to enable heating capacity.
  • the control method of the heat pump device is as follows: A heat exchange medium circuit; Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit; A bypass provided in the heat exchange medium circulation path; A heat exchange medium tank provided in the bypass, A first on-off valve provided in the heat exchange medium circulation path on the inlet side of the heat exchange medium tank; A second on-off valve provided in the heat exchange medium circulation path on the outlet side of the heat exchange medium tank; A heat pump control method using CO 2 as a heat exchange medium, A measurement step of measuring the temperature and pressure of the heat exchange medium on the inlet side of the compressor to determine the degree of superheat; Overheating for controlling the degree of superheat to fall within a target range by controlling the flow rate of the heat exchange medium circulating in the heat exchange medium circulation path by controlling the opening and closing of the first on-off valve and the second on-off valve. A degree control step; Is provided.
  • a heat pump device for example, in summer and winter, the temperature of a medium to be cooled (external air, heat source water, etc.) that exchanges heat with a heat exchange medium in an evaporator, and a medium to be heated (heated medium that exchanges heat with a heat exchange medium in a gas cooler). Since external conditions such as the temperature of heated water, outside air, etc.) are different, the required flow rate of the heat exchange medium circulating in the heat exchange medium circuit is different. Therefore, in the heat pump device according to this embodiment, a heat exchange medium circulation path is provided with a bypass path, a heat exchange medium tank is provided in the bypass path, and the heat exchange medium is taken in and out of the heat exchange medium tank. The flow rate of the heat exchange medium flowing through the medium circulation path can be adjusted.
  • the flow rate of the heat exchange medium flowing through the heat exchange medium circulation path is controlled, and thereby the degree of superheat of the heat exchange medium on the compressor inlet side ( (Hereinafter also referred to simply as “superheat degree”) can be controlled within the target range with high accuracy.
  • a target range a range in which high COP and high heating capability are possible is selected. As a result, a liquid back phenomenon in which the liquid heat exchange medium flows into the compressor can be prevented, and a high COP and a high heating capacity can be achieved.
  • the superheat control step includes Based on the evaporator inlet temperature of the cooled medium that exchanges heat with the heat exchange medium in the evaporator and the gas cooler inlet temperature of the heated medium that exchanges heat with the heat exchange medium in the gas cooler, the target value of the superheat degree is determined.
  • the target value setting step sets the superheat degree target value based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be cooled. Even if the inlet temperature of the medium and the inlet temperature of the medium to be heated change, the degree of superheat can be controlled within the target range. In addition, by setting an upper limit threshold and a lower limit threshold with the target value interposed therebetween, and controlling so that the degree of superheat falls between these thresholds, the degree of superheat can be reliably controlled within the target range.
  • the target value setting step The target value is set based on a preset correlation among the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value of the superheat degree.
  • the correlation between the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value of the superheat degree is obtained in advance, and the superheat degree is calculated based on this correlation. Since the target value is set and the degree of superheat is controlled so as to be the target value, liquid back prevention, high COP, and high heating capacity can be realized with certainty.
  • the opening times of the first on-off valve and the second on-off valve are obtained from the difference between the measured value of the superheat degree and the target value, and the first on-off valve and the second on-off valve are obtained based on the obtained opening time.
  • the opening time of the first on-off valve is set longer than the opening time of the second on-off valve.
  • the opening time of the first on-off valve is set longer than the opening time of the second on-off valve.
  • the amount of the heat exchange medium flowing into the heat exchange medium tank is made larger than the amount discharged from the heat exchange medium tank. This can reduce the risk of liquid back.
  • the cooling medium is outside air or heat source water. According to the method (6), when the medium to be cooled is outside air or heat source water, liquid back is prevented, and high COP and high heating capacity are possible.
  • the heated medium is heated water or outside air.
  • the medium to be cooled is heated water or outside air, liquid back can be prevented, and high COP and high heating capacity can be achieved.
  • the COP of the heat pump device can be improved. Even when the heat exchange step is performed, the degree of superheat can be accurately controlled within the target range by adjusting the amount of heat exchange medium stored in the heat exchange medium tank.
  • the operation mode of the heat pump device is: A first operation mode; A second operation mode having a heating capacity higher than that of the first operation mode; A plurality of operation modes including According to the above method (9), by switching the operation of the heat pump device to the plurality of operation modes, for example, any one of the target performances such as the amount of tapping water, tapping temperature, and energy saving is obtained while obtaining a high COP. The target operation becomes possible.
  • An expansion valve opening control step of controlling the opening of the expansion valve so that the compressor discharge pressure of the heat exchange medium becomes a target discharge pressure is controlled so that the compressor discharge pressure of the heat exchange medium (hereinafter also referred to as “compressor discharge pressure” or simply “discharge pressure”) becomes the target discharge pressure.
  • compressor discharge pressure or simply “discharge pressure”
  • discharge pressure the compressor discharge pressure of the heat exchange medium
  • the target discharge pressure a discharge pressure that prevents a liquid back phenomenon and obtains a high COP and a high heating capacity is set in advance.
  • target discharge temperature the discharge temperature which can obtain high COP and high heating capability is preset.
  • the opening degree of the expansion valve is controlled so that the compressor discharge temperature of the heat exchange medium (hereinafter also referred to as “discharge temperature” in the unit) becomes the target discharge temperature.
  • the compressor discharge temperature can be accurately controlled to the target discharge temperature. In this way, by using both the circulation amount control of the heat exchange medium flowing through the heat exchange medium circulation path and the discharge temperature control, liquid back can be prevented, and operation with high COP and high heating capability is possible. Become.
  • the cooled medium that exchanges heat with the heat exchange medium in the evaporator is heat source water
  • the heated medium that exchanges heat with the heat exchange medium in the gas cooler is outside air.
  • the heat pump device includes: A heat exchange medium circuit; Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit; A bypass provided in the heat exchange medium circulation path; A heat exchange medium tank provided in the bypass, A first on-off valve provided at an inlet of the heat exchange medium tank; A second on-off valve provided at an outlet of the heat exchange medium tank; A heat pump device using CO 2 as a heat exchange medium, A first temperature sensor for measuring the temperature of the heat exchange medium on the inlet side of the compressor; A pressure sensor for measuring the pressure of the heat exchange medium on the inlet side of the compressor; A control unit that obtains the degree of superheat from the measurement values measured by the first temperature sensor and the pressure sensor, and controls the first on-off valve and the second on-off valve to control the degree of superheat to fall within a target range.
  • Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit
  • a bypass
  • the control unit obtains the degree of superheat from the measured values measured by the first temperature sensor and the pressure sensor, and controls the opening degree of the first on-off valve and the second on-off valve to overheat. Since the degree is controlled to fall within the target range, liquid back can be prevented, and high COP and high heating capacity are possible.
  • the controller is A storage unit that stores a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target value of the superheat degree; Based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the target value of the superheat degree, the upper limit threshold value that is larger than the target value, and the lower limit value that is less than the target value
  • the target value of the superheat degree is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the inlet temperature of the medium to be cooled and the medium to be heated Even if the inlet temperature changes, the degree of superheat can be controlled within the target range, which enables prevention of liquid back and high COP and high heating capacity. Further, by setting the upper limit threshold and the lower limit threshold with the target value interposed therebetween, and controlling the degree of superheat to be between these thresholds, the degree of superheat can be reliably controlled within the target range.
  • the heat pump device is a heat pump unit in which the supercritical heat pump cycle constituent device is housed inside a box-shaped casing. According to the structure of said (15), a heat pump apparatus can be made compact by setting a heat pump apparatus as a heat pump unit, Thereby, installation of a heat pump apparatus becomes easy and the use of a heat pump apparatus can be expanded.
  • the degree of superheat of the heat exchange medium on the compressor inlet side can be accurately controlled within a target range, thereby preventing liquid back and enabling high COP and high heating capacity. Become.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • FIG. 1 to 4 show a heat pump apparatus 10 (10A, 10B, 10C, 10D) according to some embodiments.
  • the heat pump device 10 (10A-10D) is a CO 2 as a heat exchange medium
  • the CO 2 circulation path 14 CO 2 is circulated as a heat exchange medium
  • a supercritical heat pump cycle component 12 including an expansion valve 20 and an evaporator 22 (22a, 22b).
  • a bypass path 24 is provided in the CO 2 circulation path 14, and a CO 2 tank 26 is provided in the bypass path 24. Comprising a CO 2 tank 26 of the inlet side of the bypass passage 24 to the first on-off valve 28, and a second on-off valve 30 in the bypass passage 24 on the outlet side of the CO 2 tank 26.
  • the heat exchange medium collects and evaporates the heat held by the medium to be cooled, and in the gas cooler 18, the heat exchange medium is cooled by exchanging heat with the medium to be heated, and the medium to be heated is heated.
  • the heat exchange medium is CO 2
  • CO 2 is in a supercritical state on the discharge side of the compressor 16, and thus high-temperature water of about 90 ° C., for example, is obtained as the heated medium heated by the gas cooler 18.
  • the required flow rate of the heat exchange medium circulating in the CO 2 circulation path 14 varies depending on external conditions such as the evaporator inlet temperature and the gas cooler inlet temperature of the medium to be cooled.
  • the amount of CO 2 stored in the CO 2 tank 26 is adjusted by adjusting the flow of CO 2 into and out of the CO 2 tank 26. Is adjusted to adjust the flow rate of the heat exchange medium circulating in the CO 2 circulation path 14.
  • the heat pump device 10 (10A ⁇ 10D) further includes a first temperature sensor 32 for measuring the temperature T 1 of the heat exchange medium to CO 2 circulation path 14 on the inlet side of the compressor 16, the heat at the inlet side of the compressor 16 and a pressure sensor 34 for measuring the pressure P 1 of the exchange medium.
  • the control unit 36 obtains the degree of superheat of the heat exchange medium on the compressor inlet side from the measurement values measured by the first temperature sensor 32 and the pressure sensor 34, and determines the opening degrees of the first on-off valve 28 and the second on-off valve 30. Control the degree of superheat so that it falls within the target range. As the target range, the degree of superheat that prevents the liquid back phenomenon and can operate with a high COP and a high heating capacity is selected.
  • the controller 36 controls the opening and closing of the first on-off valve 28 and the second on-off valve 30 to control the degree of superheat so that it falls within the target range.
  • COP and high heating capability are possible.
  • the evaporator 22 (22a) uses the outside air as a medium to be cooled, the heat exchange medium exchanges heat with the outside air, collects heat from the outside air, and vaporizes.
  • the air heat source heat exchanger includes an inlet header 40, an outlet header 42, and a plurality of heat transfer tubes 44 installed between the headers.
  • the plurality of heat transfer tubes 44 have a fan 46 that is arranged in parallel with an interval through which outside air can flow, and that forms an air flow a ⁇ b> 1 that flows between the plurality of heat transfer tubes 44.
  • the gas cooler 18 (18a) uses the heated water w1 as a heated medium, and the heat exchange medium heats the heated water w1.
  • the heated water channel 48 is led to the gas cooler 18 (18 a), and the heated water w ⁇ b> 1 is circulated through the heated water channel 48 by the pump 50.
  • the water to be heated w1 is heated by the heat exchange medium, becomes hot water, and is supplied to the customer.
  • the evaporator 22 (22b) uses the heat source water w2 as a cooled medium, and the heat exchange medium exchanges heat with the heat source water w2 to generate heat from the heat source water w2. It is a water heat source heat exchanger that collects and vaporizes heat. A heat source water circulation path 52 is led to the water heat source heat exchanger.
  • the water heat source heat exchanger is a plate heat exchanger with good heat exchange efficiency.
  • an air duct 54 is provided in the gas cooler 18 (18 b), and outside air is introduced into the air duct 54 by the fan 56 to form an air flow a ⁇ b> 2.
  • the air flow a2 exchanges heat with the heat exchange medium by the gas cooler 18, is heated by the heat exchange medium, and is supplied to a demand destination such as a drying apparatus as a heating source.
  • the medium to be cooled is the heat source water w2 and the medium to be heated is the water to be heated w1
  • the degree of superheat so as to enter the target range Liquid back can be prevented, and high COP and high heating capacity can be achieved.
  • the evaporator 22 is provided with an air heat source heat exchanger and a water heat source evaporator in parallel with respect to the CO 2 circulation path 14, and the heat exchange medium is an air heat source heat exchanger or a water heat source evaporator.
  • the heat exchange medium is an air heat source heat exchanger or a water heat source evaporator.
  • the second temperature sensor 58 that measures the evaporator inlet temperature of the medium to be cooled that is exchanged with the heat exchange medium by the evaporator 22, and the heat by the gas cooler 18.
  • a third temperature sensor 60 that measures the gas cooler inlet temperature of the heated medium that exchanges heat with the exchange medium.
  • the control unit 36 includes a storage unit 62 and a calculation unit 64.
  • the storage unit 62 stores information relating to a correlation set in advance among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target value of the degree of superheat. This correlation is determined from experimental data acquired in the past.
  • the calculation unit 64 based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the superheat degree target value, the upper limit threshold value that is higher than this target value, and the superheat degree that is higher than this target value. Set a small lower threshold.
  • the control unit 36 performs the opening / closing operation of the first opening / closing valve 28 and the second opening / closing valve 30 so that the degree of superheat obtained from the measured values of the first temperature sensor 32 and the pressure sensor 34 is equal to or lower than the upper threshold and lower threshold. Control.
  • the target value of the superheat degree is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the inlet temperature of the medium to be cooled and the inlet temperature of the medium to be heated are set. Even if the temperature changes, the degree of superheat can be controlled within the target range, which enables prevention of liquid back and high COP and high heating capacity. Further, by setting the upper limit threshold and the lower limit threshold with the target value interposed therebetween, and controlling the degree of superheat to be between these thresholds, the degree of superheat can be reliably controlled within the target range.
  • the second temperature sensor 58 is provided facing the air flow a1 on the inlet side of the air heat source heat exchanger. In the embodiment shown in FIGS. It is provided in the heat source water circulation path 52 on the inlet side of the evaporator. In the embodiment shown in FIGS. 1 and 3, the third temperature sensor 60 is provided in the heated water channel 48 on the inlet side with respect to the gas cooler 18 (18a). In the embodiment shown in FIGS. (18b) is provided in the air duct 54 on the inlet side.
  • the heat pump device 10 (10 ⁇ / b> E) is configured by a heat pump unit in which a supercritical heat pump cycle component 12 is housed inside a box-shaped casing 70.
  • the heat pump apparatus 10 (10E) is comprised with a heat pump unit, it can be made compact, and thereby, the installation of the heat pump apparatus 10 becomes easy, and the application of the heat pump apparatus 10 can be expanded.
  • a pair of air heat source heat exchangers are provided as the evaporator 22 (22a).
  • the air flow a1 enters the inside of the box-shaped casing 70 from the air intake port 72 formed in the upper region of the front surface 70a and the back surface 70b of the box-shaped casing 70 by the operation of the fan 46, and is an evaporator formed in a panel shape.
  • (Air heat source heat exchanger) 22 (22a) passes through a plurality of heat transfer tubes 44 and flows out from an air outlet 74 formed on the upper surface 70c of the box-shaped casing 70.
  • the fan 46 is provided at the air outlet 74.
  • the heat exchange unit 76 including the pair of air heat source heat exchangers and the fan 46 is disposed in the upper region, and the supercritical heat pump cycle including the compressor 16, the gas cooler 18 (18 a), the expansion valve 20, and the like in the lower region. Since the component device 12 is arranged, the heat transfer area of the heat exchange unit 76 can be increased, and the amount of heat exchange can be increased.
  • the control method of the heat pump apparatus first measures the temperature of the heat exchange medium with the first temperature sensor 32 on the inlet side of the compressor 16 and exchanges heat with the pressure sensor 34.
  • the pressure of the medium is measured, and the degree of superheat is obtained from these measured values (measurement step S10).
  • the first on-off valve 28 and the second on-off valve 30 are controlled to open and close, and the amount of heat exchange medium stored in the CO 2 tank 26 is adjusted, whereby the flow rate of the heat exchange medium circulating in the CO 2 circulation path 14 is adjusted. Is controlled so that the degree of superheat falls within the target range (superheat degree control step S12).
  • a target range a range in which liquid back is prevented and a high COP and a high heating capacity are possible is selected.
  • the liquid back phenomenon in which the liquid heat exchange medium flows into the compressor 16 can be prevented, and a high COP and a high heating capacity can be achieved.
  • the target value setting step S14 and the control steps S16 to S24 are performed in the superheat degree control step S12.
  • overheating is performed based on the evaporator inlet temperature of the medium to be cooled to be exchanged with the heat exchange medium by the evaporator 22 and the gas cooler inlet temperature of the medium to be heated to be heat exchanged with the heat exchange medium by the gas cooler 18.
  • the target value SHset for the degree is set.
  • an upper limit threshold SHmax having a degree of superheat greater than the target value SHset and a lower limit threshold SHmin having a degree of superheat smaller than the target value SHset are set (steps S16a and S16b), and the degree of superheat SH measured in the measurement step S10.
  • the opening / closing operations of the first opening / closing valve 28 and the second opening / closing valve 30 are controlled so that the upper limit threshold SHmax is equal to or lower than the lower limit threshold SHmin (steps S18 to S24).
  • the superheat target value SHset is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated. Even if the temperature and the inlet temperature of the heated medium change, the degree of superheat can be controlled within the target range. Further, the upper limit threshold SHmax and the lower limit threshold SHmin are set across the target value SHset, and the superheat degree SH can be reliably controlled within the target range by controlling the superheat degree to be between these threshold values.
  • the target value is set based on a preset correlation among the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value SHset of the superheat degree.
  • Set SHset the target value SHset is set based on the correlation with the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value SHset of the superheat degree, and becomes this target value SHset.
  • the target value SHset of the superheat degree that can prevent liquid back and that can achieve high COP and high heating capacity is set as the evaporator inlet temperature T 2 of the medium to be cooled and previously obtained as a function of the gas cooler inlet temperature T 3 of the heated medium.
  • SHset F 1 (T 2 , T 3 ) (1)
  • an inverter 66 that makes the rotational speed of the drive motor of the compressor 16 variable is provided.
  • the superheat degree SH can be easily controlled to the target value SHset by using the rotation speed control of the compressor 16 by the inverter 66 together.
  • a reciprocating compressor is used as the compressor, and the rotational speed of the reciprocating compressor is controlled.
  • the opening times S 1 and S of the first on-off valve 28 and the second on-off valve 30 are calculated from the difference between the measured value of the degree of superheat measured in the measuring step S 10 and the target value SHset. 2 is calculated (calculation steps S20a and S20b). According to this embodiment, by obtaining the opening time of the first on-off valve 28 and the second on-off valve 30 from the difference between the measured value of the superheat degree and the target value SHset, the superheat degree is brought close to the target value SHset early. Can do.
  • the absolute value of the difference between the first on-off valve 28 and the second on-off valve 30 is time same, the opening time S 1 of the first on-off valve 28 of the second on-off valve 30 opening time is set longer than S 2 (S 2 ⁇ S 1 ). According to this embodiment, since the amount of heat exchange medium flowing into the CO 2 tank 26 due to S 2 ⁇ S 1 is larger than the amount discharged from the CO 2 tank 26, liquid back occurs when adjusting the circulation amount of the heat exchange medium. Risk can be reduced.
  • a heat exchanger 38 is provided to exchange heat between the heat exchange medium on the outlet side of the gas cooler 18 and the heat exchange medium on the outlet side of the evaporator 22.
  • COP of the heat pump apparatus 10 can be improved.
  • the amount of heat exchange medium stored in the CO 2 tank 26 is adjusted because the amount of CO 2 circulated through the CO 2 circulation path 14 and the degree of superheat uniquely correspond.
  • the degree of superheat can be accurately controlled within the target range.
  • the operation mode of the heat pump device 10 has a plurality of operation modes including a first operation mode and a second operation mode having a heating capacity higher than that of the first operation mode.
  • the heat pump device 10 can be switched to a plurality of operation modes, for example, one of the target performances such as the amount of tapping water, tapping temperature, energy saving, etc. is used as a main purpose while obtaining a high COP. Can be switched.
  • the heat pump device 10 includes three types of energy saving modes for energy saving, a power mode with increased heating capacity, and a standard mode that is an intermediate mode between the energy saving mode and the power mode. It is possible to switch to the operation mode. For each of these operation modes, it sets the target value SHset of superheat at different correlation between the inlet temperature T 2 and T 3. As a result, it is possible to operate according to the purpose of each operation mode while obtaining a high COP.
  • the target value SHset is set with a different correlation for each region A, B, C,..., And G that differs depending on the operation mode and the inlet temperature of the medium to be cooled. .
  • the target value SHset is calculated by varying the coefficients of the inlet temperatures T 2 and T 3 for each of the regions A, B, C,.
  • the expansion valve 20 in addition to controlling the circulation amount of the heat exchange medium in the CO 2 circulation path 14, the expansion valve 20 is controlled so that the compressor discharge pressure of the heat exchange medium becomes the target discharge pressure Pset.
  • Step S32 for controlling the opening is performed.
  • an expansion valve whose opening degree can be controlled is used as the expansion valve 20, for example, an electronic expansion valve whose opening degree can be controlled.
  • 3 and 4 show an embodiment of the heat pump device 10 (10C, 10D) that performs expansion valve opening degree control together with circulation amount control of the heat exchange medium. In these embodiments, for instance, provided with a pressure sensor 15 to the CO 2 circulation path 14 of the compressor outlet to measure the discharge pressure P 2.
  • the compressor discharge pressure of the heat exchange medium can be accurately set to the target discharge pressure Pset, thereby enabling high COP and high heating capacity.
  • the circulation amount control of the heat exchange medium flowing through the CO 2 circulation path 14 and the discharge pressure control together liquid back can be prevented, and high COP and high heating capacity can be achieved.
  • the cooled medium in the evaporator 22 e.g., air flow a1, heat source water w1, etc.
  • the heated medium at the inlet temperature T 2 and the gas cooler 18 e.g., heat source water w2, based on the inlet temperature T 3 of the air flow a2, etc.
  • the target discharge pressure Pset discharge pressure setting step of controlling the opening degree of the expansion valve 20 so that the set target discharge pressure S30.
  • the discharge pressure varies depending on external conditions such as the inlet temperature T 2 of the medium to be cooled in the evaporator 22 and the inlet temperature T 3 of the medium to be heated in the gas cooler 18.
  • the heat pump apparatus 10 can obtain a high COP and a high heating capacity even if these external conditions fluctuate. Further, since the compressor discharge pressure is controlled to the target discharge pressure, overcompression of the compressor 16 can be suppressed.
  • the discharge pressure setting step S30 based on a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target discharge pressure of the heat exchange medium on the compressor discharge side, Set the target discharge pressure.
  • a correlation between the external condition and the compressor discharge pressure is obtained in advance, and the target discharge pressure is set based on this correlation. Therefore, even if the external condition fluctuates, the probability is high. Thus, liquid back can be prevented, and high COP and high heating capacity can be obtained.
  • the rotational speed of the compressor 16 is decreased as compared with when the inlet temperature is in the low temperature range (rotational speed control step S34).
  • the discharge pressure is accurately set to the target discharge pressure Pset by reducing the rotation speed of the compressor 16 compared to when the inlet temperature is in the low temperature range. It can be controlled well, thereby preventing liquid back and enabling high COP and high heating capacity.
  • the process when the operation mode needs to be changed, the process returns to the discharge pressure setting step S30, and a new target discharge pressure is set (step S36).
  • the process when the external condition changes, the process returns to the discharge pressure setting step S30, and a new target discharge pressure is set (step S38).
  • FIG. 10 shows a heat pump device 10 (10F) according to yet another embodiment.
  • the heat pump device 10 (10F) illustrated in FIG. 10 is substantially the same as the configuration of the heat pump device 10 (10B) illustrated in FIG. 2, and thus the description of the same components as the heat pump device 10 (10B) is omitted. However, it differs from the heat pump device 10 (10B) in that the heat exchanger 38 is not provided in the CO 2 circulation path 14. Further, in one embodiment, it comprises a temperature sensor 17 for measuring the discharge temperature T 4 to CO 2 circulation path 14 of the compressor outlet.
  • Step S42 for controlling the opening degree of the expansion valve 20 is performed so that
  • the compressor discharge temperature of the heat exchange medium can be accurately set to the target discharge temperature Tset, and this enables high COP and high heating capacity.
  • the circulation amount control of the heat exchange medium flowing through the CO 2 circulation path 14 and the control of the discharge temperature liquid back can be prevented and high COP and high heating capacity can be achieved.
  • the cooled medium in the evaporator 22 (e.g., air flow a1, heat source water w1, etc.) the heated medium at the inlet temperature T 2 and the gas cooler 18 (e.g., heat source water w2, based on the inlet temperature T 3 of the air flow a2, etc.), sets a target discharge temperature Tset, (discharge temperature setting step of controlling the opening degree of the expansion valve 20 so that the set target discharge temperature S40).
  • the discharge temperature varies depending on external conditions such as the inlet temperature T 2 of the medium to be cooled in the evaporator 22 and the inlet temperature T 3 of the medium to be heated in the gas cooler 18.
  • the heat pump device 10 can obtain a high COP and a high heating capacity even if these external conditions fluctuate. Further, since the compressor discharge temperature is controlled to the target discharge temperature, overcompression of the compressor 16 can be suppressed.
  • the discharge temperature setting step S40 based on a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target discharge temperature of the heat exchange medium on the compressor discharge side, Set the target discharge temperature.
  • a correlation between the external condition and the compressor discharge temperature is obtained in advance, and the target discharge temperature is set based on this correlation. Therefore, even if the external condition fluctuates, the probability is high. Thus, liquid back can be prevented, and high COP and high heating capacity can be obtained.
  • Tset F 3 (T 2 , T 3 ) (3)
  • the heat pump device 10 (10F) prevents liquid back by controlling the opening of the expansion valve 20 so that the target discharge temperature Tset obtained by the above function is obtained.
  • a high COP and a high heating capacity can be obtained.
  • both the control-side parameter and the controlled-side parameter are temperatures, a calculation process for converting the discharge pressure to the discharge temperature is unnecessary, and control is facilitated.
  • the rotational speed of the compressor 16 is decreased compared to when the inlet temperature is in the low temperature range (rotational speed control step S44).
  • the discharge temperature can be more accurately set to the target discharge temperature Tset by reducing the rotation speed of the compressor 16 than when the inlet temperature is in the low temperature range. It can be controlled well, thereby preventing liquid back and enabling high COP and high heating capacity.
  • the process when the operation mode needs to be changed, the process returns to the discharge temperature setting step S40, and a new target discharge temperature is set (step S46).
  • the process when the external condition changes, the process returns to the discharge temperature setting step S40, and a new target discharge temperature is set (step S48).
  • the heat pump device 10 (10F) does not include the heat exchanger 38, the opening degree of the expansion valve 20 and the discharge temperature can be more linearly associated with each other. Therefore, since the target discharge temperature can be controlled more accurately, further liquid back prevention, high COP, and high heating capability are possible.
  • the medium to be cooled of the heat pump apparatus 10 (10F) is heat source water, and the medium to be heated is outside air. Since the medium to be heated is the outside air having a smaller specific heat than water, the temperature variation of the heated outside air is likely to increase and the temperature control becomes difficult, but the compressor discharge temperature is targeted by controlling the opening degree of the expansion valve 20. Since the discharge temperature is controlled, the temperature variation of the heated medium can be suppressed. Further, since both the control-side parameter and the controlled-side parameter are temperatures, a calculation process for converting the discharge pressure to the discharge temperature is unnecessary, and control is facilitated.
  • the degree of superheat of the heat exchange medium on the compressor inlet side can be accurately controlled, thereby preventing the liquid back phenomenon and COP and high heating capacity can be realized.
  • Heat pump device 10 (10A, 10B, 10C, 10D) Heat pump device 10 (10E) Heat pump unit 12 Supercritical heat pump cycle component 14 CO 2 circulation path 15, 34 Pressure sensor 16 Compressor 17 Temperature sensor 18 (18a, 18b) Gas cooler 20 Expansion Valve 22 (22a, 22b) Evaporator 24 Bypass path 26 CO 2 tank 28 First on-off valve 30 Second on-off valve 32 First temperature sensor 36 Control unit 38 Heat exchanger 40 Inlet header 42 Outlet header 44 Heat transfer tubes 46, 56 Fan 48 Heated water channel 50 Pump 52 Heat source water circuit 54 Air duct 58 Second temperature sensor 60 Third temperature sensor 66 Motor inverter 70 Box-shaped casing 70a Front surface 70b Rear surface 70c Upper surface 72 Air intake port 74 Air outlet port 7 6 Heat exchange unit a1, a2 Air flow w1 Heated water w2 Heat source water

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A heat pump device control method according to one embodiment is a method of controlling a heat pump device comprising: a supercritical heat pump cycle component device that is provided with CO2 in a heat exchange medium circulation path and that includes a compressor, a gas cooler, an expansion valve, and an evaporator; a bypass path that is provided in the heat exchange medium circulation path; a heat exchange medium tank that is provided in the bypass path; a first on-off valve that is provided on the inlet side of the heat exchange medium tank; and a second on-off valve that is provided on the outlet side of the heat exchange medium tank. The heat pump device control method comprises: a measurement step of finding the degree of superheating by measuring the temperature and pressure of the heat exchange medium at the inlet of the compressor; and a superheating control step of controlling the degree of superheating so as to be within target range by way of controlling the opening and closing of the first on-off valve and the second on-off valve and thus controlling the flow rate of the heat exchange medium circulating in the heat exchange medium circulation path.

Description

ヒートポンプ装置の制御方法及びヒートポンプ装置Heat pump device control method and heat pump device
 本開示は、ヒートポンプ装置の制御方法及びヒートポンプ装置に関する。 The present disclosure relates to a heat pump device control method and a heat pump device.
 ヒートポンプ装置は、熱交換媒体の循環路に圧縮機などのヒートポンプサイクル構成機器が設けられてヒートポンプサイクルを構成する。圧縮機吐出側で熱交換媒体が高温高圧状態となることで、被加熱水を高温まで加熱でき、高温水を得ることができる。特に、COなどの熱交換媒体は圧縮機吐出側で超臨界状態となるため、90℃程度の熱水を得ることができる。
 圧縮機の入口側では、液状の熱交換媒体が圧縮機に流入することで生じるいわゆる液バック現象を防止し、かつ成績係数(COP)及び加熱能力を高めることができる過熱度に調整する必要がある。
In the heat pump device, a heat pump cycle constituent device such as a compressor is provided in a circulation path of a heat exchange medium to constitute a heat pump cycle. When the heat exchange medium is in a high temperature and high pressure state on the discharge side of the compressor, the water to be heated can be heated to a high temperature, and high temperature water can be obtained. In particular, since a heat exchange medium such as CO 2 is in a supercritical state on the compressor discharge side, hot water of about 90 ° C. can be obtained.
On the inlet side of the compressor, it is necessary to adjust the degree of superheat to prevent the so-called liquid back phenomenon that occurs when the liquid heat exchange medium flows into the compressor and to increase the coefficient of performance (COP) and the heating capacity. is there.
 通常、圧縮機入口における熱交換媒体の過熱度の調整は膨張弁の開度調整によって行われる。
 特許文献1には、ヒートポンプ装置において、膨張弁の開度を制御することで、圧縮機入口側の熱交換媒体の過熱度を制御することが開示されている。
Normally, the degree of superheat of the heat exchange medium at the compressor inlet is adjusted by adjusting the opening of the expansion valve.
Patent Document 1 discloses that in a heat pump device, the degree of superheat of a heat exchange medium on the compressor inlet side is controlled by controlling the opening of an expansion valve.
特開2003-19443号公報JP 2003-19443 A
 特許文献1のように、膨張弁の開度制御によって圧縮機入口側の熱交換媒体の過熱度を制御する方法は、膨張弁と圧縮機との間の熱交換媒体循環路に例えば熱交換器などの機器が介在すると、膨張弁の開度に対して圧縮機入口側の過熱度が一義的に対応しなくなり、従って、過熱度の制御精度が低下するおそれがある。 As in Patent Document 1, a method of controlling the degree of superheat of the heat exchange medium on the compressor inlet side by controlling the opening degree of the expansion valve is, for example, a heat exchanger in a heat exchange medium circulation path between the expansion valve and the compressor. When a device such as this is interposed, the degree of superheat on the compressor inlet side does not uniquely correspond to the opening of the expansion valve, and therefore the control accuracy of the degree of superheat may be reduced.
 少なくとも一実施形態は、上記課題に鑑み、ヒートポンプ装置において、圧縮機入口側の熱交換媒体の過熱度を精度良く制御可能にし、これによって、液バック現象の発生を防止し、かつ高COPと高加熱能力とを可能にすることを目的とする。 At least one embodiment makes it possible to accurately control the degree of superheat of the heat exchange medium on the compressor inlet side in the heat pump device in view of the above problems, thereby preventing the occurrence of a liquid back phenomenon and high COP and high The purpose is to enable heating capacity.
 (1)少なくとも一実施形態に係るヒートポンプ装置の制御方法は、
 熱交換媒体循環路と、
 該熱交換媒体循環路に設けられる圧縮機、ガスクーラ、膨張弁及び蒸発器を含む超臨界ヒートポンプサイクル構成機器と、
 前記熱交換媒体循環路に設けられたバイパス路と、
 該バイパス路に設けられた熱交換媒体タンクと、
 前記熱交換媒体タンクの入口側で前記熱交換媒体循環路に設けられた第1開閉弁と、
 前記熱交換媒体タンクの出口側で前記熱交換媒体循環路に設けられた第2開閉弁と、
 を備え、COを熱交換媒体とするヒートポンプ装置の制御方法であって、
 前記圧縮機の入口側で前記熱交換媒体の温度及び圧力を計測し過熱度を求める計測ステップと、
 前記第1開閉弁及び前記第2開閉弁を開閉制御して前記熱交換媒体循環路を循環する前記熱交換媒体の流量を制御することで前記過熱度を目標範囲内に入るように制御する過熱度制御ステップと、
 を備える。
(1) The control method of the heat pump device according to at least one embodiment is as follows:
A heat exchange medium circuit;
Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit;
A bypass provided in the heat exchange medium circulation path;
A heat exchange medium tank provided in the bypass,
A first on-off valve provided in the heat exchange medium circulation path on the inlet side of the heat exchange medium tank;
A second on-off valve provided in the heat exchange medium circulation path on the outlet side of the heat exchange medium tank;
A heat pump control method using CO 2 as a heat exchange medium,
A measurement step of measuring the temperature and pressure of the heat exchange medium on the inlet side of the compressor to determine the degree of superheat;
Overheating for controlling the degree of superheat to fall within a target range by controlling the flow rate of the heat exchange medium circulating in the heat exchange medium circulation path by controlling the opening and closing of the first on-off valve and the second on-off valve. A degree control step;
Is provided.
 ヒートポンプ装置において、例えば、夏期と冬期とでは、蒸発器で熱交換媒体と熱交換する被冷却媒体(外気、熱源水等)の温度、及びガスクーラで熱交換媒体と熱交換する被加熱媒体(被加熱水、外気等)の温度などの外的条件が異なるので、熱交換媒体循環路を循環する熱交換媒体の必要流量が異なる。
 そこで、この実施形態に係るヒートポンプ装置では、熱交換媒体循環路にバイパス路を設け、このバイパス路に熱交換媒体タンクを設け、この熱交換媒体タンクに熱交換媒体を出し入れすることで、熱交換媒体循環路を流れる熱交換媒体の流量を調整可能にしている。
In a heat pump device, for example, in summer and winter, the temperature of a medium to be cooled (external air, heat source water, etc.) that exchanges heat with a heat exchange medium in an evaporator, and a medium to be heated (heated medium that exchanges heat with a heat exchange medium in a gas cooler). Since external conditions such as the temperature of heated water, outside air, etc.) are different, the required flow rate of the heat exchange medium circulating in the heat exchange medium circuit is different.
Therefore, in the heat pump device according to this embodiment, a heat exchange medium circulation path is provided with a bypass path, a heat exchange medium tank is provided in the bypass path, and the heat exchange medium is taken in and out of the heat exchange medium tank. The flow rate of the heat exchange medium flowing through the medium circulation path can be adjusted.
 さらに、熱交換媒体タンクに貯留する熱交換媒体量を調整することで、熱交換媒体循環路を流れる熱交換媒体の流量を制御し、これによって、圧縮機入口側の熱交換媒体の過熱度(以下単に「過熱度」とも言う。)を精度良く目標範囲内に制御できる。目標範囲として、高COPと高加熱能力とが可能となる範囲を選択する。
 これによって、液状の熱交換媒体が圧縮機に流入する液バック現象を防止でき、かつ高COPと高加熱能力とが可能になる。
Further, by adjusting the amount of heat exchange medium stored in the heat exchange medium tank, the flow rate of the heat exchange medium flowing through the heat exchange medium circulation path is controlled, and thereby the degree of superheat of the heat exchange medium on the compressor inlet side ( (Hereinafter also referred to simply as “superheat degree”) can be controlled within the target range with high accuracy. As a target range, a range in which high COP and high heating capability are possible is selected.
As a result, a liquid back phenomenon in which the liquid heat exchange medium flows into the compressor can be prevented, and a high COP and a high heating capacity can be achieved.
 (2)一実施形態では、前記(1)の方法において、
 前記過熱度制御ステップは、
 前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度及び前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度に基づいて、前記過熱度の目標値を設定する目標値設定ステップと、
 前記目標値より前記過熱度が大きい上限閾値及び前記目標値より前記過熱度が小さい下限閾値を設定し、前記計測ステップで計測された過熱度が前記上限閾値以下及び前記下限閾値以上となるように、前記第1開閉弁及び前記第2開閉弁を開閉制御する制御ステップと、
 を備える。
(2) In one embodiment, in the method of (1),
The superheat control step includes
Based on the evaporator inlet temperature of the cooled medium that exchanges heat with the heat exchange medium in the evaporator and the gas cooler inlet temperature of the heated medium that exchanges heat with the heat exchange medium in the gas cooler, the target value of the superheat degree is determined. A target value setting step to be set;
An upper limit threshold having a degree of superheat greater than the target value and a lower limit threshold having a degree of superheat smaller than the target value are set, and the degree of superheat measured in the measurement step is less than or equal to the upper limit threshold and greater than or equal to the lower limit threshold. A control step for controlling opening and closing of the first on-off valve and the second on-off valve;
Is provided.
 上記(2)の方法によれば、上記目標値設定ステップにおいて、被冷却媒体の蒸発器入口温度及び被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値を設定するので、被冷却媒体の入口温度及び被加熱媒体の入口温度が変っても、過熱度を目標範囲内に制御できる。
 また、目標値を挟んで上限閾値及び下限閾値を設定し、過熱度がこれら閾値の間となるように制御することで、過熱度を確実に目標範囲に制御できる。
According to the method (2), the target value setting step sets the superheat degree target value based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be cooled. Even if the inlet temperature of the medium and the inlet temperature of the medium to be heated change, the degree of superheat can be controlled within the target range.
In addition, by setting an upper limit threshold and a lower limit threshold with the target value interposed therebetween, and controlling so that the degree of superheat falls between these thresholds, the degree of superheat can be reliably controlled within the target range.
 (3)一実施形態では、前記(2)の方法において、
 前記目標値設定ステップにおいて、
 前記被冷却媒体の蒸発器入口温度、前記被加熱媒体のガスクーラ入口温度及び前記過熱度の目標値との間で予め設定された相関に基づいて、前記目標値を設定する。
 上記(3)の方法によれば、被冷却媒体の蒸発器入口温度、被加熱媒体のガスクーラ入口温度、及び過熱度の目標値との相関を予め求めておき、この相関に基づいて過熱度の目標値を設定し、この目標値となるように過熱度を制御するため、液バック防止と、高COP及び高加熱能力とを確実に実現できる。
(3) In one embodiment, in the method of (2),
In the target value setting step,
The target value is set based on a preset correlation among the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value of the superheat degree.
According to the method (3) above, the correlation between the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value of the superheat degree is obtained in advance, and the superheat degree is calculated based on this correlation. Since the target value is set and the degree of superheat is controlled so as to be the target value, liquid back prevention, high COP, and high heating capacity can be realized with certainty.
 (4)一実施形態では、前記(2)又は(3)の方法において、
 前記計測ステップで計測した過熱度の計測値と前記目標値設定ステップで設定した前記目標値との差分から、前記第1開閉弁及び前記第2開閉弁の開放時間を求める演算ステップを備える。
 上記(4)の方法によれば、過熱度の計測値と目標値との差分から第1開閉弁及び第2開閉弁の開放時間を求め、求めた開放時間に基づいて第1開閉弁及び第2開閉弁を開閉することで、過熱度を早期に目標値に近づけることができる。
(4) In one embodiment, in the method (2) or (3),
A calculating step of obtaining an opening time of the first on-off valve and the second on-off valve from a difference between the measured value of the degree of superheat measured in the measuring step and the target value set in the target value setting step;
According to the above method (4), the opening times of the first on-off valve and the second on-off valve are obtained from the difference between the measured value of the superheat degree and the target value, and the first on-off valve and the second on-off valve are obtained based on the obtained opening time. By opening and closing the 2 on-off valve, the degree of superheat can be brought close to the target value at an early stage.
 (5)一実施形態では、前記(4)の方法において、
 前記演算ステップにおいて、
 前記第1開閉弁及び前記第2開閉弁の前記差分の絶対値が同一のとき前記第1開閉弁の開放時間を前記第2開閉弁の開放時間より長く設定する。
 上記(5)の方法によれば、過熱度の計測値と目標値との差分の絶対値が同一のとき、第1開閉弁の開放時間を第2開閉弁の開放時間より長く設定することで、熱交換媒体タンクに流入する熱交換媒体の量を熱交換媒体タンクから排出する量より多くする。これによって、液バックが起こる危険度を低減できる。
(5) In one embodiment, in the method of (4),
In the calculation step,
When the absolute value of the difference between the first on-off valve and the second on-off valve is the same, the opening time of the first on-off valve is set longer than the opening time of the second on-off valve.
According to the above method (5), when the absolute value of the difference between the measured value of the superheat degree and the target value is the same, the opening time of the first on-off valve is set longer than the opening time of the second on-off valve. The amount of the heat exchange medium flowing into the heat exchange medium tank is made larger than the amount discharged from the heat exchange medium tank. This can reduce the risk of liquid back.
 (6)一実施形態では、前記(2)~(5)の何れかの方法において、
 前記被冷却媒体は外気又は熱源水である。
 上記(6)の方法によれば、被冷却媒体が外気又は熱源水であるとき、液バックを防止し、かつ高COPと高加熱能力とが可能になる。
(6) In one embodiment, in any one of the methods (2) to (5),
The cooling medium is outside air or heat source water.
According to the method (6), when the medium to be cooled is outside air or heat source water, liquid back is prevented, and high COP and high heating capacity are possible.
 (7)一実施形態では、前記(2)~(6)の何れかの方法において、
 前記被加熱媒体は被加熱水又は外気である。
 上記(7)の方法によれば、被冷却媒体が被加熱水又は外気であるとき、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。
(7) In one embodiment, in any of the methods (2) to (6),
The heated medium is heated water or outside air.
According to the method (7), when the medium to be cooled is heated water or outside air, liquid back can be prevented, and high COP and high heating capacity can be achieved.
 (8)一実施形態では、前記(1)~(7)の何れかの方法において、
 前記ガスクーラの出口側の前記熱交換媒体と前記蒸発器の出口側の前記熱交換媒体とを熱交換する熱交換ステップを備える。
 上記熱交換ステップを行うことで、ヒートポンプ装置のCOPを向上できる。また、上記熱交換ステップが行われる場合であっても、熱交換媒体タンクに貯留する熱交換媒体量を調整することで、過熱度を精度良く目標範囲内に制御できる。
(8) In one embodiment, in any one of the methods (1) to (7),
A heat exchanging step of exchanging heat between the heat exchange medium on the outlet side of the gas cooler and the heat exchange medium on the outlet side of the evaporator;
By performing the heat exchange step, the COP of the heat pump device can be improved. Even when the heat exchange step is performed, the degree of superheat can be accurately controlled within the target range by adjusting the amount of heat exchange medium stored in the heat exchange medium tank.
 (9)一実施形態では、前記(1)~(8)の何れかの方法において、
 前記ヒートポンプ装置の運転モードは、
 第1運転モードと、
 前記第1運転モードより加熱能力が高い第2運転モードと、
 を含む複数の運転モードを有する。
 上記(9)の方法によれば、ヒートポンプ装置の運転を上記複数の運転モードに切り替えることで、高COPを得ながら、例えば、出湯量、出湯温度、省エネ等の目標性能のうちどれかを主目的とする運転が可能になる。
(9) In one embodiment, in any one of the methods (1) to (8),
The operation mode of the heat pump device is:
A first operation mode;
A second operation mode having a heating capacity higher than that of the first operation mode;
A plurality of operation modes including
According to the above method (9), by switching the operation of the heat pump device to the plurality of operation modes, for example, any one of the target performances such as the amount of tapping water, tapping temperature, and energy saving is obtained while obtaining a high COP. The target operation becomes possible.
 (10)一実施形態では、前記(1)~(9)の何れかの方法において、
 前記熱交換媒体の圧縮機吐出圧が目標吐出圧となるように前記膨張弁の開度を制御する膨張弁開度制御ステップを備える。
 上記(10)の方法によれば、熱交換媒体の圧縮機吐出圧(以下、「圧縮機吐出圧」又は単に「吐出圧」とも言う。)が目標吐出圧となるように、膨張弁の開度を制御することで、吐出圧を精度良く目標吐出圧にすることができると共に、高COPと高加熱能力とが可能になる。目標吐出圧として、液バック現象を防止し、高COPと高加熱能力とが得られる吐出圧を予め設定しておく。
 このように、熱交換媒体循環路を流れる熱交換媒体の循環量制御と吐出圧の制御とを併用することで、液バックを防止でき、かつ高COPと高加熱能力とを達成できる。また、吐出圧を目標吐出圧に制御するため、圧縮機の過圧縮を抑制できる。
(10) In one embodiment, in any one of the methods (1) to (9),
An expansion valve opening control step of controlling the opening of the expansion valve so that the compressor discharge pressure of the heat exchange medium becomes a target discharge pressure.
According to the method (10) above, the expansion valve is opened so that the compressor discharge pressure of the heat exchange medium (hereinafter also referred to as “compressor discharge pressure” or simply “discharge pressure”) becomes the target discharge pressure. By controlling the degree, the discharge pressure can be accurately set to the target discharge pressure, and a high COP and a high heating capacity can be achieved. As the target discharge pressure, a discharge pressure that prevents a liquid back phenomenon and obtains a high COP and a high heating capacity is set in advance.
In this way, by using both the circulation amount control of the heat exchange medium flowing through the heat exchange medium circulation path and the discharge pressure control, liquid back can be prevented, and high COP and high heating capacity can be achieved. Further, since the discharge pressure is controlled to the target discharge pressure, overcompression of the compressor can be suppressed.
 (11)一実施形態では、前記(1)~(9)の何れかの構成において、
 前記熱交換媒体の圧縮機吐出温度が目標吐出温度となるように前記膨張弁の開度を制御する膨張弁開度制御ステップを備える。なお、目標吐出温度として、高COPと高加熱能力とを得られる吐出温度を予め設定しておく。
 上記(11)の方法によれば、熱交換媒体の圧縮機吐出温度(以下、単位に「吐出温度」とも言う。)が目標吐出温度となるように、膨張弁の開度を制御することで、圧縮機吐出温度を精度良く目標吐出温度に制御することができる。このように、熱交換媒体循環路を流れる熱交換媒体の循環量制御と吐出温度の制御とを併用することで、液バックを防止でき、かつ高COPと高加熱能力とを有する運転が可能になる。
(11) In one embodiment, in any one of the configurations (1) to (9),
An expansion valve opening control step for controlling the opening of the expansion valve so that the compressor discharge temperature of the heat exchange medium becomes a target discharge temperature. In addition, as target discharge temperature, the discharge temperature which can obtain high COP and high heating capability is preset.
According to the above method (11), the opening degree of the expansion valve is controlled so that the compressor discharge temperature of the heat exchange medium (hereinafter also referred to as “discharge temperature” in the unit) becomes the target discharge temperature. The compressor discharge temperature can be accurately controlled to the target discharge temperature. In this way, by using both the circulation amount control of the heat exchange medium flowing through the heat exchange medium circulation path and the discharge temperature control, liquid back can be prevented, and operation with high COP and high heating capability is possible. Become.
 (12)一実施形態では、前記(11)の方法において、
 前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体は熱源水であり、前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体は外気である。
 上記(12)の方法によれば、被加熱媒体が水と比べて比熱が小さい外気であるため、加熱された外気の温度のバラツキが大きくなりやすく、温度制御が難しくなるが、膨張弁の開度制御により圧縮機吐出温度を目標吐出温度とする制御を行うため、被加熱媒体の温度バラツキを抑制できる。
(12) In one embodiment, in the method of (11),
The cooled medium that exchanges heat with the heat exchange medium in the evaporator is heat source water, and the heated medium that exchanges heat with the heat exchange medium in the gas cooler is outside air.
According to the above method (12), since the medium to be heated is the outside air whose specific heat is smaller than that of water, the temperature variation of the heated outside air tends to be large and the temperature control becomes difficult. Since the compressor discharge temperature is controlled to the target discharge temperature by the degree control, the temperature variation of the heated medium can be suppressed.
 (13)少なくとも一実施形態に係るヒートポンプ装置は、
 熱交換媒体循環路と、
 該熱交換媒体循環路に設けられる圧縮機、ガスクーラ、膨張弁及び蒸発器を含む超臨界ヒートポンプサイクル構成機器と、
 前記熱交換媒体循環路に設けられたバイパス路と、
 該バイパス路に設けられた熱交換媒体タンクと、
 前記熱交換媒体タンクの入口に設けられた第1開閉弁と、
 前記熱交換媒体タンクの出口に設けられた第2開閉弁と、
 を備え、COを熱交換媒体とするヒートポンプ装置であって、
 前記圧縮機の入口側で前記熱交換媒体の温度を計測する第1温度センサと、
 前記圧縮機の入口側で前記熱交換媒体の圧力を計測する圧力センサと、
 前記第1温度センサ及び前記圧力センサで計測した計測値から過熱度を求め、前記第1開閉弁及び前記第2開閉弁を制御して前記過熱度を目標範囲内に入るように制御する制御部と、
 を備える。
(13) The heat pump device according to at least one embodiment includes:
A heat exchange medium circuit;
Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit;
A bypass provided in the heat exchange medium circulation path;
A heat exchange medium tank provided in the bypass,
A first on-off valve provided at an inlet of the heat exchange medium tank;
A second on-off valve provided at an outlet of the heat exchange medium tank;
A heat pump device using CO 2 as a heat exchange medium,
A first temperature sensor for measuring the temperature of the heat exchange medium on the inlet side of the compressor;
A pressure sensor for measuring the pressure of the heat exchange medium on the inlet side of the compressor;
A control unit that obtains the degree of superheat from the measurement values measured by the first temperature sensor and the pressure sensor, and controls the first on-off valve and the second on-off valve to control the degree of superheat to fall within a target range. When,
Is provided.
 上記(13)の構成によれば、上記制御部によって、第1温度センサ及び圧力センサで計測した計測値から過熱度を求め、第1開閉弁及び第2開閉弁の開度を制御して過熱度を目標範囲内に入るように制御するので、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。 According to the configuration of (13) above, the control unit obtains the degree of superheat from the measured values measured by the first temperature sensor and the pressure sensor, and controls the opening degree of the first on-off valve and the second on-off valve to overheat. Since the degree is controlled to fall within the target range, liquid back can be prevented, and high COP and high heating capacity are possible.
 (14)一実施形態では、前記(13)の構成において、
 前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度を計測する第2温度センサと、
 前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度を計測する第3温度センサと、
 を備え、
 前記制御部は、
 前記被冷却媒体の入口温度、前記被加熱媒体の入口温度及び前記過熱度の目標値との間で予め設定された相関を記憶する記憶部と、
 前記被冷却媒体の蒸発器入口温度及び前記被加熱媒体のガスクーラ入口温度に基づいて、前記過熱度の目標値と、前記目標値より過熱度が大きい上限閾値及び前記目標値より過熱度が小さい下限閾値とを設定する演算部と、
 を含み、
 前記第1温度センサ及び前記圧力センサの計測値から求められた過熱度が前記上限閾値以下及び前記下限閾値以上となるように第1開閉弁及び前記第2開閉弁を開閉制御するものである。
(14) In one embodiment, in the configuration of (13),
A second temperature sensor for measuring an evaporator inlet temperature of a medium to be cooled that exchanges heat with the heat exchange medium in the evaporator;
A third temperature sensor that measures a gas cooler inlet temperature of a heated medium that exchanges heat with the heat exchange medium in the gas cooler;
With
The controller is
A storage unit that stores a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target value of the superheat degree;
Based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the target value of the superheat degree, the upper limit threshold value that is larger than the target value, and the lower limit value that is less than the target value An arithmetic unit for setting a threshold;
Including
The first on-off valve and the second on-off valve are controlled to be opened and closed so that the degree of superheat obtained from the measured values of the first temperature sensor and the pressure sensor is equal to or lower than the upper limit threshold and equal to or higher than the lower limit threshold.
 上記(14)の構成によれば、被冷却媒体の蒸発器入口温度及び被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値を設定するので、被冷却媒体の入口温度及び被加熱媒体の入口温度が変っても、過熱度を目標範囲内に制御でき、これによって、液バックの防止と高COP及び高加熱能力とが可能になる。
 また、目標値を挟んで上限閾値及び下限閾値を設定し、過熱度をこれら閾値の間になるように制御することで、過熱度を確実に目標範囲に制御できる。
According to the configuration of (14) above, since the target value of the superheat degree is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the inlet temperature of the medium to be cooled and the medium to be heated Even if the inlet temperature changes, the degree of superheat can be controlled within the target range, which enables prevention of liquid back and high COP and high heating capacity.
Further, by setting the upper limit threshold and the lower limit threshold with the target value interposed therebetween, and controlling the degree of superheat to be between these thresholds, the degree of superheat can be reliably controlled within the target range.
 (15)一実施形態では、前記(13)又は(14)の構成において、
 前記ヒートポンプ装置は、箱形ケーシングの内部に前記超臨界ヒートポンプサイクル構成機器が収納されたヒートポンプユニットである。
 上記(15)の構成によれば、ヒートポンプ装置をヒートポンプユニットとすることで、ヒートポンプ装置をコンパクト化でき、これによって、ヒートポンプ装置の設置が容易になり、ヒートポンプ装置の用途を拡大できる。
(15) In one embodiment, in the configuration of (13) or (14),
The heat pump device is a heat pump unit in which the supercritical heat pump cycle constituent device is housed inside a box-shaped casing.
According to the structure of said (15), a heat pump apparatus can be made compact by setting a heat pump apparatus as a heat pump unit, Thereby, installation of a heat pump apparatus becomes easy and the use of a heat pump apparatus can be expanded.
 少なくとも一実施形態によれば、圧縮機入口側の熱交換媒体の過熱度が精度良く目標範囲に制御可能になり、これによって、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。 According to at least one embodiment, the degree of superheat of the heat exchange medium on the compressor inlet side can be accurately controlled within a target range, thereby preventing liquid back and enabling high COP and high heating capacity. Become.
一実施形態に係るヒートポンプ装置の系統図である。It is a systematic diagram of the heat pump device concerning one embodiment. 一実施形態に係るヒートポンプ装置の系統図である。It is a systematic diagram of the heat pump device concerning one embodiment. 一実施形態に係るヒートポンプ装置の系統図である。It is a systematic diagram of the heat pump device concerning one embodiment. 一実施形態に係るヒートポンプ装置の系統図である。It is a systematic diagram of the heat pump device concerning one embodiment. 一実施形態に係るヒートポンプ装置の制御部のブロック線図である。It is a block diagram of the control part of the heat pump apparatus which concerns on one Embodiment. 一実施形態に係るヒートポンプユニットの斜視図である。It is a perspective view of the heat pump unit concerning one embodiment. 一実施形態に係るヒートポンプ装置の制御方法の工程図である。It is process drawing of the control method of the heat pump apparatus which concerns on one Embodiment. 一実施形態に係るヒートポンプ装置の運転モードを示す図表である。It is a graph which shows the operation mode of the heat pump apparatus which concerns on one Embodiment. 一実施形態に係るヒートポンプ装置の制御方法の工程図である。It is process drawing of the control method of the heat pump apparatus which concerns on one Embodiment. 一実施形態に係るヒートポンプ装置の系統図である。It is a systematic diagram of the heat pump device concerning one embodiment. 一実施形態に係るヒートポンプ装置の制御方法の工程図である。It is process drawing of the control method of the heat pump apparatus which concerns on one Embodiment.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
 図1~図4は幾つかの実施形態に係るヒートポンプ装置10(10A、10B、10C、10D)を示す。
 図1~図4において、ヒートポンプ装置10(10A~10D)は、COを熱交換媒体とし、熱交換媒体としてCOが循環するCO循環路14に、圧縮機16、ガスクーラ18(18a、18b)、膨張弁20及び蒸発器22(22a、22b)を含む超臨界ヒートポンプサイクル構成機器12を備える。
 また、CO循環路14にバイパス路24が設けられ、バイパス路24にCOタンク26が設けられる。COタンク26の入口側のバイパス路24に第1開閉弁28を備え、COタンク26の出口側のバイパス路24に第2開閉弁30を備える。
1 to 4 show a heat pump apparatus 10 (10A, 10B, 10C, 10D) according to some embodiments.
1 to 4, the heat pump device 10 (10A-10D) is a CO 2 as a heat exchange medium, the CO 2 circulation path 14 CO 2 is circulated as a heat exchange medium, the compressor 16, gas cooler 18 (18a, 18b), and a supercritical heat pump cycle component 12 including an expansion valve 20 and an evaporator 22 (22a, 22b).
Further, a bypass path 24 is provided in the CO 2 circulation path 14, and a CO 2 tank 26 is provided in the bypass path 24. Comprising a CO 2 tank 26 of the inlet side of the bypass passage 24 to the first on-off valve 28, and a second on-off valve 30 in the bypass passage 24 on the outlet side of the CO 2 tank 26.
 蒸発器22において、熱交換媒体は被冷却媒体の保有熱を採取して気化し、ガスクーラ18において、熱交換媒体は被加熱媒体と熱交換して冷却され、被加熱媒体は加熱される。熱交換媒体がCOのとき、COは圧縮機16の吐出側で超臨界状態となるため、ガスクーラ18で加熱された被加熱媒体として、例えば90℃程度の高温水が得られる。
 また、被冷却媒体の蒸発器入口温度及びガスクーラ入口温度等の外的条件によって、CO循環路14を循環する熱交換媒体の必要流量は異なる。そこで、第1開閉弁28及び第2開閉弁30の開閉動作を制御することで、COタンク26へのCOの出入りを調整し、COタンク26に貯留される熱交換媒体の貯留量を調整することで、CO循環路14を循環する熱交換媒体の流量を調整する。
In the evaporator 22, the heat exchange medium collects and evaporates the heat held by the medium to be cooled, and in the gas cooler 18, the heat exchange medium is cooled by exchanging heat with the medium to be heated, and the medium to be heated is heated. When the heat exchange medium is CO 2 , CO 2 is in a supercritical state on the discharge side of the compressor 16, and thus high-temperature water of about 90 ° C., for example, is obtained as the heated medium heated by the gas cooler 18.
The required flow rate of the heat exchange medium circulating in the CO 2 circulation path 14 varies depending on external conditions such as the evaporator inlet temperature and the gas cooler inlet temperature of the medium to be cooled. Therefore, by controlling the opening / closing operation of the first on-off valve 28 and the second on-off valve 30, the amount of CO 2 stored in the CO 2 tank 26 is adjusted by adjusting the flow of CO 2 into and out of the CO 2 tank 26. Is adjusted to adjust the flow rate of the heat exchange medium circulating in the CO 2 circulation path 14.
 ヒートポンプ装置10(10A~10D)は、さらに、圧縮機16の入口側でCO循環路14に熱交換媒体の温度Tを計測する第1温度センサ32と、圧縮機16の入口側で熱交換媒体の圧力Pを計測する圧力センサ34とを備える。制御部36は、第1温度センサ32及び圧力センサ34で計測した計測値から、圧縮機入口側の熱交換媒体の過熱度を求め、第1開閉弁28及び第2開閉弁30の開度を制御して過熱度を目標範囲内に入るように制御する。該目標範囲として、液バック現象を防止し、かつ高COP及び高加熱能力の運転が可能な過熱度が選択される。 The heat pump device 10 (10A ~ 10D) further includes a first temperature sensor 32 for measuring the temperature T 1 of the heat exchange medium to CO 2 circulation path 14 on the inlet side of the compressor 16, the heat at the inlet side of the compressor 16 and a pressure sensor 34 for measuring the pressure P 1 of the exchange medium. The control unit 36 obtains the degree of superheat of the heat exchange medium on the compressor inlet side from the measurement values measured by the first temperature sensor 32 and the pressure sensor 34, and determines the opening degrees of the first on-off valve 28 and the second on-off valve 30. Control the degree of superheat so that it falls within the target range. As the target range, the degree of superheat that prevents the liquid back phenomenon and can operate with a high COP and a high heating capacity is selected.
 上記構成によれば、制御部36によって、第1開閉弁28及び第2開閉弁30の開閉を制御して過熱度を目標範囲内に入るように制御するので、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。 According to the above configuration, the controller 36 controls the opening and closing of the first on-off valve 28 and the second on-off valve 30 to control the degree of superheat so that it falls within the target range. COP and high heating capability are possible.
 幾つかの実施形態では、図1及び図3に示すように、蒸発器22(22a)は、外気を被冷却媒体とし、熱交換媒体は外気と熱交換して外気から熱を採取して気化する空気熱源熱交換器である。
 一実施形態では、この空気熱源熱交換器は、入口ヘッダ40と、出口ヘッダ42と、これらヘッダ間に架設される複数の伝熱管44を含む。複数の伝熱管44は、夫々外気が流通可能な間隔を有して並列に配置され、複数の伝熱管44の間を流れる空気流a1を形成するためのファン46を有する。
 複数の伝熱管44の間に空気流a1が形成されることで、外気と熱交換媒体との熱交換効率を向上できる。
In some embodiments, as shown in FIGS. 1 and 3, the evaporator 22 (22a) uses the outside air as a medium to be cooled, the heat exchange medium exchanges heat with the outside air, collects heat from the outside air, and vaporizes. It is an air heat source heat exchanger.
In one embodiment, the air heat source heat exchanger includes an inlet header 40, an outlet header 42, and a plurality of heat transfer tubes 44 installed between the headers. The plurality of heat transfer tubes 44 have a fan 46 that is arranged in parallel with an interval through which outside air can flow, and that forms an air flow a <b> 1 that flows between the plurality of heat transfer tubes 44.
By forming the air flow a1 between the plurality of heat transfer tubes 44, the heat exchange efficiency between the outside air and the heat exchange medium can be improved.
 幾つかの実施形態では、図1及び図3に示すように、ガスクーラ18(18a)は、被加熱水w1を被加熱媒体とし、熱交換媒体は被加熱水w1を加熱する。
 一実施形態では、ガスクーラ18(18a)に被加熱水路48が導設され、ポンプ50によって被加熱水路48に被加熱水w1が循環する。被加熱水w1は熱交換媒体によって加熱され、温水となって需要先に供給される。
In some embodiments, as shown in FIGS. 1 and 3, the gas cooler 18 (18a) uses the heated water w1 as a heated medium, and the heat exchange medium heats the heated water w1.
In one embodiment, the heated water channel 48 is led to the gas cooler 18 (18 a), and the heated water w <b> 1 is circulated through the heated water channel 48 by the pump 50. The water to be heated w1 is heated by the heat exchange medium, becomes hot water, and is supplied to the customer.
 図1及び図3に示す実施形態によれば、被冷却媒体が外気(空気流a1)であり、被加熱媒体が被加熱水w1であるときに、過熱度を目標範囲に入るように制御することで、液バックを防止し、かつ高COPと高加熱能力とが可能になる。 According to the embodiment shown in FIG. 1 and FIG. 3, when the medium to be cooled is outside air (air flow a1) and the medium to be heated is heated water w1, the superheat degree is controlled to enter the target range. As a result, liquid back is prevented, and high COP and high heating capability are possible.
 幾つかの実施形態では、蒸発器22(22b)は、図2及び図4に示すように、熱源水w2を被冷却媒体とし、熱交換媒体は熱源水w2と熱交換して熱源水w2から熱を採取して気化する水熱源熱交換器である。熱源水循環路52が該水熱源熱交換器に導設される。
 一実施形態では、該水熱源熱交換器は熱交換効率の良いプレート型熱交換器が用いられる。
In some embodiments, as shown in FIGS. 2 and 4, the evaporator 22 (22b) uses the heat source water w2 as a cooled medium, and the heat exchange medium exchanges heat with the heat source water w2 to generate heat from the heat source water w2. It is a water heat source heat exchanger that collects and vaporizes heat. A heat source water circulation path 52 is led to the water heat source heat exchanger.
In one embodiment, the water heat source heat exchanger is a plate heat exchanger with good heat exchange efficiency.
 幾つかの実施形態では、図2及び図4に示すように、ガスクーラ18(18b)に空気ダクト54が設けられ、ファン56によって空気ダクト54の内部に外気が導入されて空気流a2が形成される。空気流a2はガスクーラ18で熱交換媒体と熱交換し、熱交換媒体によって加熱され、加熱源として例えば乾燥装置などの需要先に供給される。 In some embodiments, as shown in FIGS. 2 and 4, an air duct 54 is provided in the gas cooler 18 (18 b), and outside air is introduced into the air duct 54 by the fan 56 to form an air flow a <b> 2. The The air flow a2 exchanges heat with the heat exchange medium by the gas cooler 18, is heated by the heat exchange medium, and is supplied to a demand destination such as a drying apparatus as a heating source.
 図2及び図4に示す実施形態によれば、被冷却媒体が熱源水w2であり、被加熱媒体が被加熱水w1であるときに、過熱度を目標範囲に入るように制御することで、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。 According to the embodiment shown in FIGS. 2 and 4, when the medium to be cooled is the heat source water w2 and the medium to be heated is the water to be heated w1, by controlling the degree of superheat so as to enter the target range, Liquid back can be prevented, and high COP and high heating capacity can be achieved.
 他の実施形態として、蒸発器22が、CO循環路14に対して空気熱源熱交換器と水熱源蒸発器とが並列に設けられ、熱交換媒体が空気熱源熱交換器又は水熱源蒸発器に切替え可能に供給される実施形態がある。
 この実施形態においても、液バックを防止でき、かつ高COPと高加熱能力とが可能になる。また、空気熱源熱交換器と水熱源蒸発器とで熱交換媒体の必要流量が異なる場合、COタンク26の熱交換媒体貯留量を調整することで、夫々に必要な流量とすることができる。
As another embodiment, the evaporator 22 is provided with an air heat source heat exchanger and a water heat source evaporator in parallel with respect to the CO 2 circulation path 14, and the heat exchange medium is an air heat source heat exchanger or a water heat source evaporator. There are embodiments that are supplied in a switchable manner.
Also in this embodiment, liquid back can be prevented, and high COP and high heating capability are possible. Moreover, when the required flow rate of the heat exchange medium is different between the air heat source heat exchanger and the water heat source evaporator, the required flow rate can be obtained by adjusting the heat exchange medium storage amount of the CO 2 tank 26. .
 幾つかの実施形態では、図1~図4に示すように、蒸発器22で熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度を計測する第2温度センサ58と、ガスクーラ18で熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度を計測する第3温度センサ60と、を備える。 In some embodiments, as shown in FIGS. 1 to 4, the second temperature sensor 58 that measures the evaporator inlet temperature of the medium to be cooled that is exchanged with the heat exchange medium by the evaporator 22, and the heat by the gas cooler 18. And a third temperature sensor 60 that measures the gas cooler inlet temperature of the heated medium that exchanges heat with the exchange medium.
 制御部36は、図5に示すように、記憶部62と演算部64とを有する。記憶部62には、被冷却媒体の入口温度、被加熱媒体の入口温度及び過熱度の目標値との間で予め設定された相関に係る情報が記憶される。この相関は過去に取得された実験データなどから割り出される。演算部64では、被冷却媒体の蒸発器入口温度及び被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値と、この目標値より過熱度が大きい上限閾値及びこの目標値より過熱度が小さい下限閾値とを設定する。
 制御部36は、第1温度センサ32及び圧力センサ34の計測値から求められた過熱度が上限閾値以下及び下限閾値以上となるように第1開閉弁28及び第2開閉弁30の開閉動作を制御する。
As illustrated in FIG. 5, the control unit 36 includes a storage unit 62 and a calculation unit 64. The storage unit 62 stores information relating to a correlation set in advance among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target value of the degree of superheat. This correlation is determined from experimental data acquired in the past. In the calculation unit 64, based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the superheat degree target value, the upper limit threshold value that is higher than this target value, and the superheat degree that is higher than this target value. Set a small lower threshold.
The control unit 36 performs the opening / closing operation of the first opening / closing valve 28 and the second opening / closing valve 30 so that the degree of superheat obtained from the measured values of the first temperature sensor 32 and the pressure sensor 34 is equal to or lower than the upper threshold and lower threshold. Control.
 上記実施形態によれば、被冷却媒体の蒸発器入口温度及び被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値を設定するので、被冷却媒体の入口温度及び被加熱媒体の入口温度が変っても、過熱度を目標範囲内に制御でき、これによって、液バックの防止と高COP及び高加熱能力とが可能になる。
 また、目標値を挟んで上限閾値及び下限閾値を設定し、過熱度をこれら閾値の間になるように制御することで、過熱度を確実に目標範囲に制御できる。
According to the above embodiment, since the target value of the superheat degree is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the inlet temperature of the medium to be cooled and the inlet temperature of the medium to be heated are set. Even if the temperature changes, the degree of superheat can be controlled within the target range, which enables prevention of liquid back and high COP and high heating capacity.
Further, by setting the upper limit threshold and the lower limit threshold with the target value interposed therebetween, and controlling the degree of superheat to be between these thresholds, the degree of superheat can be reliably controlled within the target range.
 第2温度センサ58は、図1及び図3に示す実施形態では、空気熱源熱交換器の入口側の空気流a1に面して設けられ、図2及び図4に示す実施形態では、水熱源蒸発器の入口側の熱源水循環路52に設けられる。
 第3温度センサ60は、図1及び図3に示す実施形態では、ガスクーラ18(18a)に対して入口側の被加熱水路48に設けられ、図2及び図4に示す実施形態では、ガスクーラ18(18b)に対して入口側の空気ダクト54に設けられる。
In the embodiment shown in FIGS. 1 and 3, the second temperature sensor 58 is provided facing the air flow a1 on the inlet side of the air heat source heat exchanger. In the embodiment shown in FIGS. It is provided in the heat source water circulation path 52 on the inlet side of the evaporator.
In the embodiment shown in FIGS. 1 and 3, the third temperature sensor 60 is provided in the heated water channel 48 on the inlet side with respect to the gas cooler 18 (18a). In the embodiment shown in FIGS. (18b) is provided in the air duct 54 on the inlet side.
 一実施形態では、図6に示すように、ヒートポンプ装置10(10E)は、箱形ケーシング70の内部に超臨界ヒートポンプサイクル構成機器12が収納されたヒートポンプユニットで構成される。
 この実施形態によれば、ヒートポンプ装置10(10E)はヒートポンプユニットで構成されるので、コンパクト化でき、これによって、ヒートポンプ装置10の設置が容易になり、ヒートポンプ装置10の用途を拡大できる。
In one embodiment, as shown in FIG. 6, the heat pump device 10 (10 </ b> E) is configured by a heat pump unit in which a supercritical heat pump cycle component 12 is housed inside a box-shaped casing 70.
According to this embodiment, since the heat pump apparatus 10 (10E) is comprised with a heat pump unit, it can be made compact, and thereby, the installation of the heat pump apparatus 10 becomes easy, and the application of the heat pump apparatus 10 can be expanded.
 ヒートポンプ装置10(10E)の一実施形態として、図6に示すように、蒸発器22(22a)として一対の空気熱源熱交換器を備える。空気流a1は、ファン46の稼働によって箱形ケーシング70の正面70a及び背面70bの上部領域に形成された空気取込口72から箱形ケーシング70の内部に入り、パネル状に形成された蒸発器(空気熱源熱交換器)22(22a)を構成する複数の伝熱管44の間を通り抜け、箱形ケーシング70の上面70cに形成された空気流出口74から流出する。一実施形態では、ファン46は空気流出口74に設けられる。
 このように、上部領域に一対の空気熱源熱交換器及びファン46を含む熱交換ユニット76が配置され、下部に、圧縮機16、ガスクーラ18(18a)及び膨張弁20等を含む超臨界ヒートポンプサイクル構成機器12が配置されるため、熱交換ユニット76の伝熱面積を増加でき、熱交換量を増加できる。
As one embodiment of the heat pump apparatus 10 (10E), as shown in FIG. 6, a pair of air heat source heat exchangers are provided as the evaporator 22 (22a). The air flow a1 enters the inside of the box-shaped casing 70 from the air intake port 72 formed in the upper region of the front surface 70a and the back surface 70b of the box-shaped casing 70 by the operation of the fan 46, and is an evaporator formed in a panel shape. (Air heat source heat exchanger) 22 (22a) passes through a plurality of heat transfer tubes 44 and flows out from an air outlet 74 formed on the upper surface 70c of the box-shaped casing 70. In one embodiment, the fan 46 is provided at the air outlet 74.
As described above, the heat exchange unit 76 including the pair of air heat source heat exchangers and the fan 46 is disposed in the upper region, and the supercritical heat pump cycle including the compressor 16, the gas cooler 18 (18 a), the expansion valve 20, and the like in the lower region. Since the component device 12 is arranged, the heat transfer area of the heat exchange unit 76 can be increased, and the amount of heat exchange can be increased.
 一実施形態に係るヒートポンプ装置の制御方法は、図7に示すように、まず、圧縮機16の入口側で、第1温度センサ32で熱交換媒体の温度を計測し、圧力センサ34で熱交換媒体の圧力を計測し、これらの計測値から過熱度を求める(計測ステップS10)。
 次に、第1開閉弁28及び第2開閉弁30を開閉制御し、COタンク26の熱交換媒体の貯留量を調整し、これによって、CO循環路14を循環する熱交換媒体の流量を制御することで、過熱度を目標範囲内に入るように制御する(過熱度制御ステップS12)。目標範囲として、液バックを防止し、高COPと高加熱能力とが可能となる範囲を選択する。
 これによって、液状の熱交換媒体が圧縮機16に流入する液バック現象を防止でき、かつ高COPと高加熱能力とが可能になる。
As shown in FIG. 7, the control method of the heat pump apparatus according to the embodiment first measures the temperature of the heat exchange medium with the first temperature sensor 32 on the inlet side of the compressor 16 and exchanges heat with the pressure sensor 34. The pressure of the medium is measured, and the degree of superheat is obtained from these measured values (measurement step S10).
Next, the first on-off valve 28 and the second on-off valve 30 are controlled to open and close, and the amount of heat exchange medium stored in the CO 2 tank 26 is adjusted, whereby the flow rate of the heat exchange medium circulating in the CO 2 circulation path 14 is adjusted. Is controlled so that the degree of superheat falls within the target range (superheat degree control step S12). As a target range, a range in which liquid back is prevented and a high COP and a high heating capacity are possible is selected.
As a result, the liquid back phenomenon in which the liquid heat exchange medium flows into the compressor 16 can be prevented, and a high COP and a high heating capacity can be achieved.
 一実施形態では、過熱度制御ステップS12において、目標値設定ステップS14と制御ステップS16~S24とを行う。
 目標値設定ステップS14では、蒸発器22で熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度、及びガスクーラ18で熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値SHsetを設定する。
 制御ステップS16~S22では、目標値SHsetより過熱度が大きい上限閾値SHmax及び目標値SHsetより過熱度が小さい下限閾値SHminを設定し(ステップS16a及びS16b)、計測ステップS10で計測された過熱度SHが上限閾値SHmax以下及び下限閾値SHmin以上となるように、第1開閉弁28及び第2開閉弁30の開閉動作を制御する(ステップS18~S24)。
In one embodiment, the target value setting step S14 and the control steps S16 to S24 are performed in the superheat degree control step S12.
In the target value setting step S14, overheating is performed based on the evaporator inlet temperature of the medium to be cooled to be exchanged with the heat exchange medium by the evaporator 22 and the gas cooler inlet temperature of the medium to be heated to be heat exchanged with the heat exchange medium by the gas cooler 18. The target value SHset for the degree is set.
In control steps S16 to S22, an upper limit threshold SHmax having a degree of superheat greater than the target value SHset and a lower limit threshold SHmin having a degree of superheat smaller than the target value SHset are set (steps S16a and S16b), and the degree of superheat SH measured in the measurement step S10. The opening / closing operations of the first opening / closing valve 28 and the second opening / closing valve 30 are controlled so that the upper limit threshold SHmax is equal to or lower than the lower limit threshold SHmin (steps S18 to S24).
 この実施形態によれば、目標値設定ステップS14において、被冷却媒体の蒸発器入口温度及び被加熱媒体のガスクーラ入口温度に基づいて、過熱度の目標値SHsetを設定するので、被冷却媒体の入口温度及び被加熱媒体の入口温度が変っても、過熱度を目標範囲内に制御できる。
 また、目標値SHsetを挟んで上限閾値SHmax及び下限閾値SHminを設定し、過熱度がこれら閾値の間となるように制御することで、過熱度SHを確実に目標範囲に制御できる。
According to this embodiment, in the target value setting step S14, the superheat target value SHset is set based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated. Even if the temperature and the inlet temperature of the heated medium change, the degree of superheat can be controlled within the target range.
Further, the upper limit threshold SHmax and the lower limit threshold SHmin are set across the target value SHset, and the superheat degree SH can be reliably controlled within the target range by controlling the superheat degree to be between these threshold values.
 一実施形態では、目標値設定ステップS14において、被冷却媒体の蒸発器入口温度、被加熱媒体のガスクーラ入口温度及び過熱度の目標値SHsetとの間で予め設定された相関に基づいて、目標値SHsetを設定する。
 この実施形態によれば、被冷却媒体の蒸発器入口温度、被加熱媒体のガスクーラ入口温度、及び過熱度の目標値SHsetとの相関に基づいて目標値SHsetを設定し、この目標値SHsetとなるように過熱度を制御するため、液バック防止と、高COP及び高加熱能力とを確実に達成できる。
In one embodiment, in the target value setting step S14, the target value is set based on a preset correlation among the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value SHset of the superheat degree. Set SHset.
According to this embodiment, the target value SHset is set based on the correlation with the evaporator inlet temperature of the medium to be cooled, the gas cooler inlet temperature of the medium to be heated, and the target value SHset of the superheat degree, and becomes this target value SHset. Thus, since the degree of superheat is controlled, liquid back prevention, high COP, and high heating capability can be achieved with certainty.
 一実施形態では、下記(1)式のように、液バックを防止でき、かつ高COPと高加熱能力とが可能な過熱度の目標値SHsetを、被冷却媒体の蒸発器入口温度T及び被加熱媒体のガスクーラ入口温度Tの関数として予め求めておく。
       SHset =F(T、T)      (1)
 上記関数で求めた目標値SHsetとなるように、第1開閉弁28及び第2開閉弁30を開閉制御することで、入口温度T及びTが変動しても、液バックを防止でき、かつ高COPと高加熱能力とを得ることができる。
In one embodiment, as shown in the following equation (1), the target value SHset of the superheat degree that can prevent liquid back and that can achieve high COP and high heating capacity is set as the evaporator inlet temperature T 2 of the medium to be cooled and previously obtained as a function of the gas cooler inlet temperature T 3 of the heated medium.
SHset = F 1 (T 2 , T 3 ) (1)
By controlling the opening and closing of the first on-off valve 28 and the second on-off valve 30 so as to be the target value SHset obtained by the above function, liquid back can be prevented even if the inlet temperatures T 2 and T 3 fluctuate, In addition, a high COP and a high heating capacity can be obtained.
 一実施形態では、図5に示すように、圧縮機16の駆動モータの回転数を可変とするインバータ66を設ける。
 制御ステップS16~S24において、インバータ66による圧縮機16の回転数制御を併用することで、過熱度SHを目標値SHsetに制御しやすくなる。
 一実施形態では、圧縮機は、例えば、往復動式圧縮機が用いられ、往復動式圧縮機の回転数を制御する。
In one embodiment, as shown in FIG. 5, an inverter 66 that makes the rotational speed of the drive motor of the compressor 16 variable is provided.
In the control steps S16 to S24, the superheat degree SH can be easily controlled to the target value SHset by using the rotation speed control of the compressor 16 by the inverter 66 together.
In one embodiment, for example, a reciprocating compressor is used as the compressor, and the rotational speed of the reciprocating compressor is controlled.
 一実施形態では、図7に示すように、計測ステップS10で計測した過熱度の計測値と目標値SHsetとの差分から、第1開閉弁28及び第2開閉弁30の開放時間S及びSを求める(演算ステップS20a及びS20b)。
 この実施形態によれば、過熱度の計測値と目標値SHsetとの差分から第1開閉弁28及び第2開閉弁30の開放時間を求めることで、過熱度を早期に目標値SHsetに近づけることができる。
In one embodiment, as shown in FIG. 7, the opening times S 1 and S of the first on-off valve 28 and the second on-off valve 30 are calculated from the difference between the measured value of the degree of superheat measured in the measuring step S 10 and the target value SHset. 2 is calculated (calculation steps S20a and S20b).
According to this embodiment, by obtaining the opening time of the first on-off valve 28 and the second on-off valve 30 from the difference between the measured value of the superheat degree and the target value SHset, the superheat degree is brought close to the target value SHset early. Can do.
 一実施形態では、演算ステップS20a及びS20bにおいて、第1開閉弁28及び第2開閉弁30の差分の絶対値が同一のとき、第1開閉弁28の開放時間Sを第2開閉弁30の開放時間Sより長く設定する(S<S)。
 この実施形態によれば、S<SによってCOタンク26に流入する熱交換媒体量がCOタンク26から排出する量より多くなるため、熱交換媒体の循環量調整時に液バックが起こる危険度を低減できる。
In one embodiment, in the calculation step S20a and S20b, the absolute value of the difference between the first on-off valve 28 and the second on-off valve 30 is time same, the opening time S 1 of the first on-off valve 28 of the second on-off valve 30 opening time is set longer than S 2 (S 2 <S 1 ).
According to this embodiment, since the amount of heat exchange medium flowing into the CO 2 tank 26 due to S 2 <S 1 is larger than the amount discharged from the CO 2 tank 26, liquid back occurs when adjusting the circulation amount of the heat exchange medium. Risk can be reduced.
 一実施形態では、図1~図4に示すように、熱交換器38を備え、ガスクーラ18の出口側の熱交換媒体と蒸発器22の出口側の熱交換媒体とを熱交換する。
 これによって、ヒートポンプ装置10のCOPを向上できる。また、熱交換器38が存在しても、CO循環路14を循環するCO循環量と過熱度とは一義的に対応するので、COタンク26に貯留する熱交換媒体量を調整することで、過熱度を精度良く目標範囲内に制御できる。
In one embodiment, as shown in FIGS. 1 to 4, a heat exchanger 38 is provided to exchange heat between the heat exchange medium on the outlet side of the gas cooler 18 and the heat exchange medium on the outlet side of the evaporator 22.
Thereby, COP of the heat pump apparatus 10 can be improved. Even if the heat exchanger 38 is present, the amount of heat exchange medium stored in the CO 2 tank 26 is adjusted because the amount of CO 2 circulated through the CO 2 circulation path 14 and the degree of superheat uniquely correspond. Thus, the degree of superheat can be accurately controlled within the target range.
 一実施形態では、ヒートポンプ装置10の運転モードは、第1運転モードと、第1運転モードより加熱能力が高い第2運転モードと、を含む複数の運転モードを有する。
 この実施形態では、ヒートポンプ装置10が複数の運転モードに切替え可能であるため、高COPを得ながら、例えば、出湯量、出湯温度、省エネ等の目標性能のうちどれかを主目的とする運転に切り替えることができる。
In one embodiment, the operation mode of the heat pump device 10 has a plurality of operation modes including a first operation mode and a second operation mode having a heating capacity higher than that of the first operation mode.
In this embodiment, since the heat pump device 10 can be switched to a plurality of operation modes, for example, one of the target performances such as the amount of tapping water, tapping temperature, energy saving, etc. is used as a main purpose while obtaining a high COP. Can be switched.
 一実施形態では、図8に示すように、ヒートポンプ装置10は、省エネを目的とした省エネモード、加熱能力を高めたパワーモード、及び省エネモードとパワーモードとの中間モードである標準モードの3種類の運転モードに切替え可能になっている。これらの運転モードごとに、入口温度T及びTとの異なる相関で過熱度の目標値SHsetを設定する。
 これによって、高COPを得ながら、各運転モードの目的に応じた運転が可能になる。
In one embodiment, as shown in FIG. 8, the heat pump device 10 includes three types of energy saving modes for energy saving, a power mode with increased heating capacity, and a standard mode that is an intermediate mode between the energy saving mode and the power mode. It is possible to switch to the operation mode. For each of these operation modes, it sets the target value SHset of superheat at different correlation between the inlet temperature T 2 and T 3.
As a result, it is possible to operate according to the purpose of each operation mode while obtaining a high COP.
 一実施形態では、図8に示すように、運転モードごと及び被冷却媒体の入口温度に応じて異なる領域A、B、C、・・・及びGごとに、異なる相関で目標値SHsetを設定する。
 このように、きめ細かく目標吐出圧を設定することで、被冷却媒体の入口温度T及びTが変動しても高COPと高加熱能力とが可能になる。
 一実施形態では、上記(1)式で領域A、B、C、・・・及びGごとに入口温度T及びTの係数を夫々異ならせて目標値SHsetを算出する。
In one embodiment, as shown in FIG. 8, the target value SHset is set with a different correlation for each region A, B, C,..., And G that differs depending on the operation mode and the inlet temperature of the medium to be cooled. .
Thus, by setting the target discharge pressure finely, even if the inlet temperatures T 2 and T 3 of the medium to be cooled fluctuate, a high COP and a high heating capability are possible.
In one embodiment, the target value SHset is calculated by varying the coefficients of the inlet temperatures T 2 and T 3 for each of the regions A, B, C,.
 一実施形態では、図9に示すように、CO循環路14の熱交換媒体の循環量制御に加えて、熱交換媒体の圧縮機吐出圧が目標吐出圧Psetとなるように膨張弁20の開度を制御するステップS32を行う。
 この実施形態では、膨張弁20として開度制御可能な膨張弁を用い、例えば、開度制御可能な電子式膨張弁を用いる。
 図3及び図4は、熱交換媒体の循環量制御と共に、膨張弁開度制御を行うヒートポンプ装置10(10C、10D)の実施形態を示す。これらの実施形態では、例えば、吐出圧Pを計測するため圧縮機出口のCO循環路14に圧力センサ15を設ける。
In one embodiment, as shown in FIG. 9, in addition to controlling the circulation amount of the heat exchange medium in the CO 2 circulation path 14, the expansion valve 20 is controlled so that the compressor discharge pressure of the heat exchange medium becomes the target discharge pressure Pset. Step S32 for controlling the opening is performed.
In this embodiment, an expansion valve whose opening degree can be controlled is used as the expansion valve 20, for example, an electronic expansion valve whose opening degree can be controlled.
3 and 4 show an embodiment of the heat pump device 10 (10C, 10D) that performs expansion valve opening degree control together with circulation amount control of the heat exchange medium. In these embodiments, for instance, provided with a pressure sensor 15 to the CO 2 circulation path 14 of the compressor outlet to measure the discharge pressure P 2.
 この実施形態によれば、熱交換媒体の圧縮機吐出圧を精度良く目標吐出圧Psetにすることができると共に、これによって、高COPと高加熱能力とが可能になる。
 このように、CO循環路14を流れる熱交換媒体の循環量制御と、吐出圧の制御とを併用することで、液バックを防止し、かつ高COPと高加熱能力とを達成できる。
According to this embodiment, the compressor discharge pressure of the heat exchange medium can be accurately set to the target discharge pressure Pset, thereby enabling high COP and high heating capacity.
Thus, by using the circulation amount control of the heat exchange medium flowing through the CO 2 circulation path 14 and the discharge pressure control together, liquid back can be prevented, and high COP and high heating capacity can be achieved.
 一実施形態では、膨張弁開度制御ステップS32の前段で、蒸発器22における被冷却媒体(例えば、空気流a1、熱源水w1等)の入口温度T及びガスクーラ18における被加熱媒体(例えば、熱源水w2、空気流a2等)の入口温度Tに基づいて、目標吐出圧Psetを設定し、設定された目標吐出圧となるように膨張弁20の開度を制御する(吐出圧設定ステップS30)。
 吐出圧は、蒸発器22における被冷却媒体の入口温度T及びガスクーラ18における被加熱媒体の入口温度T等の外的条件によって変動する。
 この実施形態では、これらの外的条件を考慮して目標吐出圧を設定するので、これらの外的条件が変動しても、ヒートポンプ装置10は高COPと高加熱能力を得ることができる。また、圧縮機吐出圧を目標吐出圧に制御するため、圧縮機16の過圧縮を抑制できる。
In one embodiment, in front of the expansion valve opening control step S32, the cooled medium in the evaporator 22 (e.g., air flow a1, heat source water w1, etc.) the heated medium at the inlet temperature T 2 and the gas cooler 18 (e.g., heat source water w2, based on the inlet temperature T 3 of the air flow a2, etc.), and sets the target discharge pressure Pset, (discharge pressure setting step of controlling the opening degree of the expansion valve 20 so that the set target discharge pressure S30).
The discharge pressure varies depending on external conditions such as the inlet temperature T 2 of the medium to be cooled in the evaporator 22 and the inlet temperature T 3 of the medium to be heated in the gas cooler 18.
In this embodiment, since the target discharge pressure is set in consideration of these external conditions, the heat pump apparatus 10 can obtain a high COP and a high heating capacity even if these external conditions fluctuate. Further, since the compressor discharge pressure is controlled to the target discharge pressure, overcompression of the compressor 16 can be suppressed.
 一実施形態では、吐出圧設定ステップS30において、被冷却媒体の入口温度、被加熱媒体の入口温度及び圧縮機吐出側の熱交換媒体の目標吐出圧の間で予め設定された相関に基づいて、目標吐出圧を設定する。
 この実施形態では、上記外的条件と圧縮機吐出圧との間の相関を予め求めておき、この相関に基づいて目標吐出圧を設定するので、上記外的条件が変動しても、高い確率で液バックを防止し、高COPと高加熱能力を得ることができる。
In one embodiment, in the discharge pressure setting step S30, based on a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target discharge pressure of the heat exchange medium on the compressor discharge side, Set the target discharge pressure.
In this embodiment, a correlation between the external condition and the compressor discharge pressure is obtained in advance, and the target discharge pressure is set based on this correlation. Therefore, even if the external condition fluctuates, the probability is high. Thus, liquid back can be prevented, and high COP and high heating capacity can be obtained.
 一実施形態では、下記(2)式のように、高COPと高加熱能力とが可能な目標吐出圧Psetを被冷却媒体の入口温度T及び被加熱媒体の入口温度Tの関数として予め求めておく。
       Pset =F(T、T)      (2)
 上記関数で求めた目標吐出圧Psetとなるように、膨張弁20の開度を制御することで、入口温度T及びTが変動しても、ヒートポンプ装置10は高COPと高加熱能力とを得ることができる。
In one embodiment, as shown in the following equation (2), in advance of high COP and high heating capacity and capable target discharge pressure Pset as a function of the inlet temperature T 3 of the inlet temperature T 2 and the heated medium of the cooling medium I ask for it.
Pset = F 2 (T 2 , T 3 ) (2)
Even if the inlet temperatures T 2 and T 3 fluctuate by controlling the opening of the expansion valve 20 so that the target discharge pressure Pset obtained by the above function is obtained, the heat pump device 10 has a high COP and a high heating capacity. Can be obtained.
 一実施形態では、図9に示すように、被冷却媒体の入口温度が高温度域のときに入口温度が低温度域のときより圧縮機16の回転数を減少させる(回転数制御ステップS34)。
 この実施形態によれば、被冷却媒体の入口温度が高温度域のときに入口温度が低温度域のときより圧縮機16の回転数を減少させることで、吐出圧を目標吐出圧Psetに精度良く制御でき、これによって、液バックを防止し、高COPと高加熱能力とが可能になる。
In one embodiment, as shown in FIG. 9, when the inlet temperature of the medium to be cooled is in the high temperature range, the rotational speed of the compressor 16 is decreased as compared with when the inlet temperature is in the low temperature range (rotational speed control step S34). .
According to this embodiment, when the inlet temperature of the medium to be cooled is in the high temperature range, the discharge pressure is accurately set to the target discharge pressure Pset by reducing the rotation speed of the compressor 16 compared to when the inlet temperature is in the low temperature range. It can be controlled well, thereby preventing liquid back and enabling high COP and high heating capacity.
 一実施形態では、図9に示すように、運転モードの変更が必要になったとき、吐出圧設定ステップS30に戻り、新たに目標吐出圧を設定する(ステップS36)。 In one embodiment, as shown in FIG. 9, when the operation mode needs to be changed, the process returns to the discharge pressure setting step S30, and a new target discharge pressure is set (step S36).
 一実施形態では、図9に示すように、外的条件が変わったとき、吐出圧設定ステップS30に戻り、新たに目標吐出圧を設定する(ステップS38)。 In one embodiment, as shown in FIG. 9, when the external condition changes, the process returns to the discharge pressure setting step S30, and a new target discharge pressure is set (step S38).
 図10及び図11は、さらに別な実施形態に係るヒートポンプ装置10(10F)を示す。図10に示すヒートポンプ装置10(10F)は、図2に示すヒートポンプ装置10(10B)の構成とほぼ同一であるため、ヒートポンプ装置10(10B)と同一の構成部分の説明は省略する。但し、ヒートポンプ装置10(10B)と比べて、CO循環路14に熱交換器38を備えていない点で異なる。また、一実施形態では、圧縮機出口のCO循環路14に吐出温度Tを計測するための温度センサ17を備える。 10 and 11 show a heat pump device 10 (10F) according to yet another embodiment. The heat pump device 10 (10F) illustrated in FIG. 10 is substantially the same as the configuration of the heat pump device 10 (10B) illustrated in FIG. 2, and thus the description of the same components as the heat pump device 10 (10B) is omitted. However, it differs from the heat pump device 10 (10B) in that the heat exchanger 38 is not provided in the CO 2 circulation path 14. Further, in one embodiment, it comprises a temperature sensor 17 for measuring the discharge temperature T 4 to CO 2 circulation path 14 of the compressor outlet.
 一実施形態では、ヒートポンプ装置10(10F)において、図11に示すように、CO循環路14の熱交換媒体の循環量制御に加えて、熱交換媒体の圧縮機吐出温度が目標吐出温度Tsetとなるように膨張弁20の開度を制御するステップS42を行う。 In one embodiment, in the heat pump apparatus 10 (10F), as shown in FIG. 11, in addition to controlling the circulation amount of the heat exchange medium in the CO 2 circulation path 14, the compressor discharge temperature of the heat exchange medium is set to the target discharge temperature Tset. Step S42 for controlling the opening degree of the expansion valve 20 is performed so that
 この実施形態によれば、熱交換媒体の圧縮機吐出温度を精度良く目標吐出温度Tsetにすることができると共に、これによって、高COPと高加熱能力とが可能になる。
 このように、CO循環路14を流れる熱交換媒体の循環量制御と吐出温度の制御とを併用することで、液バックを防止し、かつ高COPと高加熱能力とを達成できる。
According to this embodiment, the compressor discharge temperature of the heat exchange medium can be accurately set to the target discharge temperature Tset, and this enables high COP and high heating capacity.
Thus, by using both the circulation amount control of the heat exchange medium flowing through the CO 2 circulation path 14 and the control of the discharge temperature, liquid back can be prevented and high COP and high heating capacity can be achieved.
 一実施形態では、膨張弁開度制御ステップS42の前段で、蒸発器22における被冷却媒体(例えば、空気流a1、熱源水w1等)の入口温度T及びガスクーラ18における被加熱媒体(例えば、熱源水w2、空気流a2等)の入口温度Tに基づいて、目標吐出温度Tsetを設定し、設定された目標吐出温度となるように膨張弁20の開度を制御する(吐出温度設定ステップS40)。
 吐出温度は、蒸発器22における被冷却媒体の入口温度T及びガスクーラ18における被加熱媒体の入口温度T等の外的条件によって変動する。
 この実施形態では、これらの外的条件を考慮して目標吐出温度を設定するので、これらの外的条件が変動しても、ヒートポンプ装置10は高COPと高加熱能力を得ることができる。また、圧縮機吐出温度を目標吐出温度に制御するため、圧縮機16の過圧縮を抑制できる。
In one embodiment, in front of the expansion valve opening control step S42, the cooled medium in the evaporator 22 (e.g., air flow a1, heat source water w1, etc.) the heated medium at the inlet temperature T 2 and the gas cooler 18 (e.g., heat source water w2, based on the inlet temperature T 3 of the air flow a2, etc.), sets a target discharge temperature Tset, (discharge temperature setting step of controlling the opening degree of the expansion valve 20 so that the set target discharge temperature S40).
The discharge temperature varies depending on external conditions such as the inlet temperature T 2 of the medium to be cooled in the evaporator 22 and the inlet temperature T 3 of the medium to be heated in the gas cooler 18.
In this embodiment, since the target discharge temperature is set in consideration of these external conditions, the heat pump device 10 can obtain a high COP and a high heating capacity even if these external conditions fluctuate. Further, since the compressor discharge temperature is controlled to the target discharge temperature, overcompression of the compressor 16 can be suppressed.
 一実施形態では、吐出温度設定ステップS40において、被冷却媒体の入口温度、被加熱媒体の入口温度及び圧縮機吐出側の熱交換媒体の目標吐出温度の間で予め設定された相関に基づいて、目標吐出温度を設定する。
 この実施形態では、上記外的条件と圧縮機吐出温度との間の相関を予め求めておき、この相関に基づいて目標吐出温度を設定するので、上記外的条件が変動しても、高い確率で液バックを防止し、高COPと高加熱能力を得ることができる。
In one embodiment, in the discharge temperature setting step S40, based on a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target discharge temperature of the heat exchange medium on the compressor discharge side, Set the target discharge temperature.
In this embodiment, a correlation between the external condition and the compressor discharge temperature is obtained in advance, and the target discharge temperature is set based on this correlation. Therefore, even if the external condition fluctuates, the probability is high. Thus, liquid back can be prevented, and high COP and high heating capacity can be obtained.
 一実施形態では、下記(3)式のように、高COPと高加熱能力とが可能な目標吐出温度Tsetを被冷却媒体の入口温度T及び被加熱媒体の入口温度Tの関数として予め求めておく。
       Tset =F(T、T)      (3)
 上記関数で求めた目標吐出温度Tsetとなるように、膨張弁20の開度を制御することで、入口温度T及びTが変動しても、ヒートポンプ装置10(10F)は液バックを防止し、高COPと高加熱能力とを得ることができる。
 また、制御側パラメータ及び被制御側パラメータが共に温度であるので、吐出圧を吐出温度に換算する計算過程が不要になり、制御が容易になる。
In one embodiment, as described below (3), in advance of high COP and high heating capacity and capable target discharge temperature Tset as a function of the inlet temperature T 3 of the inlet temperature T 2 and the heated medium of the cooling medium I ask for it.
Tset = F 3 (T 2 , T 3 ) (3)
Even if the inlet temperatures T 2 and T 3 fluctuate, the heat pump device 10 (10F) prevents liquid back by controlling the opening of the expansion valve 20 so that the target discharge temperature Tset obtained by the above function is obtained. In addition, a high COP and a high heating capacity can be obtained.
Further, since both the control-side parameter and the controlled-side parameter are temperatures, a calculation process for converting the discharge pressure to the discharge temperature is unnecessary, and control is facilitated.
 一実施形態では、図11に示すように、被冷却媒体の入口温度が高温度域のときに入口温度が低温度域のときより圧縮機16の回転数を減少させる(回転数制御ステップS44)。
 この実施形態によれば、被冷却媒体の入口温度が高温度域のときに入口温度が低温度域のときより圧縮機16の回転数を減少させることで、吐出温度を目標吐出温度Tsetに精度良く制御でき、これによって、液バックを防止し、高COPと高加熱能力とが可能になる。
In one embodiment, as shown in FIG. 11, when the inlet temperature of the medium to be cooled is in the high temperature range, the rotational speed of the compressor 16 is decreased compared to when the inlet temperature is in the low temperature range (rotational speed control step S44). .
According to this embodiment, when the inlet temperature of the medium to be cooled is in the high temperature range, the discharge temperature can be more accurately set to the target discharge temperature Tset by reducing the rotation speed of the compressor 16 than when the inlet temperature is in the low temperature range. It can be controlled well, thereby preventing liquid back and enabling high COP and high heating capacity.
 一実施形態では、図11に示すように、運転モードの変更が必要になったとき、吐出温度設定ステップS40に戻り、新たに目標吐出温度を設定する(ステップS46)。 In one embodiment, as shown in FIG. 11, when the operation mode needs to be changed, the process returns to the discharge temperature setting step S40, and a new target discharge temperature is set (step S46).
 一実施形態では、図11に示すように、外的条件が変わったとき、吐出温度設定ステップS40に戻り、新たに目標吐出温度を設定する(ステップS48)。 In one embodiment, as shown in FIG. 11, when the external condition changes, the process returns to the discharge temperature setting step S40, and a new target discharge temperature is set (step S48).
 ヒートポンプ装置10(10F)は、熱交換器38を備えないため、膨張弁20の開度と吐出温度とをさらにリニアに一義的に対応させることができる。従って、さらに正確に目標吐出温度に制御できるので、さらなる液バックの防止及び高COP、高加熱能力が可能になる。 Since the heat pump device 10 (10F) does not include the heat exchanger 38, the opening degree of the expansion valve 20 and the discharge temperature can be more linearly associated with each other. Therefore, since the target discharge temperature can be controlled more accurately, further liquid back prevention, high COP, and high heating capability are possible.
 一実施形態では、ヒートポンプ装置10(10F)の被冷却媒体は熱源水であり、被加熱媒体は外気である。
 被加熱媒体が水と比べて比熱が小さい外気であるため、加熱された外気の温度のバラツキが大きくなりやすく、温度制御が難しくなるが、膨張弁20の開度制御により圧縮機吐出温度を目標吐出温度とする制御を行うため、被加熱媒体の温度バラツキを抑制できる。また、制御側パラメータ及び被制御側パラメータが共に温度であるので、吐出圧を吐出温度に換算する計算過程が不要になり、制御が容易になる。
In one embodiment, the medium to be cooled of the heat pump apparatus 10 (10F) is heat source water, and the medium to be heated is outside air.
Since the medium to be heated is the outside air having a smaller specific heat than water, the temperature variation of the heated outside air is likely to increase and the temperature control becomes difficult, but the compressor discharge temperature is targeted by controlling the opening degree of the expansion valve 20. Since the discharge temperature is controlled, the temperature variation of the heated medium can be suppressed. Further, since both the control-side parameter and the controlled-side parameter are temperatures, a calculation process for converting the discharge pressure to the discharge temperature is unnecessary, and control is facilitated.
 少なくとも一実施形態によれば、COを熱交換媒体とするヒートポンプ装置において、圧縮機入口側の熱交換媒体の過熱度を精度良く制御可能にし、これによって、液バック現象を防止し、かつ高COPと高加熱能力とを実現できる。 According to at least one embodiment, in a heat pump apparatus using CO 2 as a heat exchange medium, the degree of superheat of the heat exchange medium on the compressor inlet side can be accurately controlled, thereby preventing the liquid back phenomenon and COP and high heating capacity can be realized.
 10(10A、10B、10C、10D)  ヒートポンプ装置
 10(10E) ヒートポンプユニット
 12  超臨界ヒートポンプサイクル構成機器
 14  CO循環路
 15、34  圧力センサ
 16  圧縮機
 17  温度センサ
 18(18a、18b)  ガスクーラ
 20  膨張弁
 22(22a、22b)  蒸発器
 24  バイパス路
 26  COタンク
 28  第1開閉弁
 30  第2開閉弁
 32  第1温度センサ
 36  制御部
 38  熱交換器
 40  入口ヘッダ
 42  出口ヘッダ
 44  伝熱管
 46、56  ファン
 48  被加熱水路
 50  ポンプ
 52  熱源水循環路
 54  空気ダクト
 58  第2温度センサ
 60  第3温度センサ
 66  モータインバータ
 70  箱形ケーシング
  70a  正面
  70b  背面
  70c  上面
 72  空気取込口
 74  空気流出口
 76  熱交換ユニット
 a1、a2  空気流
 w1  被加熱水
 w2  熱源水
10 (10A, 10B, 10C, 10D) Heat pump device 10 (10E) Heat pump unit 12 Supercritical heat pump cycle component 14 CO 2 circulation path 15, 34 Pressure sensor 16 Compressor 17 Temperature sensor 18 (18a, 18b) Gas cooler 20 Expansion Valve 22 (22a, 22b) Evaporator 24 Bypass path 26 CO 2 tank 28 First on-off valve 30 Second on-off valve 32 First temperature sensor 36 Control unit 38 Heat exchanger 40 Inlet header 42 Outlet header 44 Heat transfer tubes 46, 56 Fan 48 Heated water channel 50 Pump 52 Heat source water circuit 54 Air duct 58 Second temperature sensor 60 Third temperature sensor 66 Motor inverter 70 Box-shaped casing 70a Front surface 70b Rear surface 70c Upper surface 72 Air intake port 74 Air outlet port 7 6 Heat exchange unit a1, a2 Air flow w1 Heated water w2 Heat source water

Claims (15)

  1.  熱交換媒体循環路と、
     該熱交換媒体循環路に設けられる圧縮機、ガスクーラ、膨張弁及び蒸発器を含む超臨界ヒートポンプサイクル構成機器と、
     前記熱交換媒体循環路に設けられたバイパス路と、
     該バイパス路に設けられた熱交換媒体タンクと、
     前記熱交換媒体タンクの入口側で前記熱交換媒体循環路に設けられた第1開閉弁と、
     前記熱交換媒体タンクの出口側で前記熱交換媒体循環路に設けられた第2開閉弁と、
     を備え、COを熱交換媒体とするヒートポンプ装置の制御方法であって、
     前記圧縮機の入口側で前記熱交換媒体の温度及び圧力を計測し過熱度を求める計測ステップと、
     前記第1開閉弁及び前記第2開閉弁を開閉制御して前記熱交換媒体循環路を循環する前記熱交換媒体の流量を制御することで前記過熱度を目標範囲内に入るように制御する過熱度制御ステップと、
     を備えることを特徴とするヒートポンプ装置の制御方法。
    A heat exchange medium circuit;
    Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit;
    A bypass provided in the heat exchange medium circulation path;
    A heat exchange medium tank provided in the bypass,
    A first on-off valve provided in the heat exchange medium circulation path on the inlet side of the heat exchange medium tank;
    A second on-off valve provided in the heat exchange medium circulation path on the outlet side of the heat exchange medium tank;
    A heat pump control method using CO 2 as a heat exchange medium,
    A measurement step of measuring the temperature and pressure of the heat exchange medium on the inlet side of the compressor to determine the degree of superheat;
    Overheating for controlling the degree of superheat to fall within a target range by controlling the flow rate of the heat exchange medium circulating in the heat exchange medium circulation path by controlling the opening and closing of the first on-off valve and the second on-off valve. A degree control step;
    A control method for a heat pump apparatus, comprising:
  2.  前記過熱度制御ステップは、
     前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度及び前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度に基づいて、前記過熱度の目標値を設定する目標値設定ステップと、
     前記目標値より前記過熱度が大きい上限閾値及び前記目標値より前記過熱度が小さい下限閾値を設定し、前記計測ステップで計測された過熱度が前記上限閾値以下及び前記下限閾値以上となるように、前記第1開閉弁及び前記第2開閉弁を開閉制御する制御ステップと、
     を備えることを特徴とする請求項1に記載のヒートポンプ装置の制御方法。
    The superheat control step includes
    Based on the evaporator inlet temperature of the cooled medium that exchanges heat with the heat exchange medium in the evaporator and the gas cooler inlet temperature of the heated medium that exchanges heat with the heat exchange medium in the gas cooler, the target value of the superheat degree is determined. A target value setting step to be set;
    An upper limit threshold having a degree of superheat greater than the target value and a lower limit threshold having a degree of superheat smaller than the target value are set, and the degree of superheat measured in the measurement step is less than or equal to the upper limit threshold and greater than or equal to the lower limit threshold. A control step for controlling opening and closing of the first on-off valve and the second on-off valve;
    The method for controlling a heat pump apparatus according to claim 1, comprising:
  3.  前記目標値設定ステップにおいて、
     前記被冷却媒体の蒸発器入口温度、前記被加熱媒体のガスクーラ入口温度及び前記過熱度の目標値との間で予め設定された相関に基づいて、前記目標値を設定することを特徴とする請求項2に記載のヒートポンプ装置の制御方法。
    In the target value setting step,
    The target value is set based on a preset correlation among an evaporator inlet temperature of the medium to be cooled, a gas cooler inlet temperature of the medium to be heated, and a target value of the superheat degree. Item 3. A method for controlling a heat pump apparatus according to Item 2.
  4.  前記計測ステップで計測した過熱度の計測値と前記目標値設定ステップで設定した前記目標値との差分から、前記第1開閉弁及び前記第2開閉弁の開放時間を求める演算ステップを備えることを特徴とする請求項2又は3に記載のヒートポンプ装置の制御方法。 And a calculation step of obtaining an opening time of the first on-off valve and the second on-off valve from a difference between the measured value of the degree of superheat measured in the measurement step and the target value set in the target value setting step. The control method of the heat pump apparatus according to claim 2 or 3, characterized by the above.
  5.  前記演算ステップにおいて、
     前記第1開閉弁及び前記第1開閉弁の前記差分の絶対値が同一のとき前記第1開閉弁の開放時間を前記第2開閉弁の開放時間より長く設定することを特徴とする請求項4に記載のヒートポンプ装置の制御方法。
    In the calculation step,
    5. The opening time of the first on-off valve is set longer than the opening time of the second on-off valve when the absolute values of the differences between the first on-off valve and the first on-off valve are the same. The control method of the heat pump apparatus described in 2.
  6.  前記被冷却媒体は外気又は熱源水であることを特徴とする請求項2乃至5の何れか一項に記載のヒートポンプ装置の制御方法。 The method for controlling a heat pump device according to any one of claims 2 to 5, wherein the medium to be cooled is outside air or heat source water.
  7.  前記被加熱媒体は被加熱水又は外気であることを特徴とする請求項2乃至6の何れか一項に記載のヒートポンプ装置の制御方法。 The method of controlling a heat pump apparatus according to any one of claims 2 to 6, wherein the heated medium is heated water or outside air.
  8.  前記ガスクーラの出口側の前記熱交換媒体と前記蒸発器の出口側の前記熱交換媒体とを熱交換する熱交換ステップを備えることを特徴とする請求項1乃至7の何れか一項に記載のヒートポンプ装置の制御方法。 The heat exchange step of exchanging heat between the heat exchange medium on the outlet side of the gas cooler and the heat exchange medium on the outlet side of the evaporator is provided. Control method of heat pump device.
  9.  前記ヒートポンプ装置の運転モードは、
     第1運転モードと、
     前記第1運転モードより加熱能力が高い第2運転モードと、
     を含む複数の運転モードを有することを特徴とする請求項1乃至8の何れか一項に記載のヒートポンプ装置の制御方法。
    The operation mode of the heat pump device is:
    A first operation mode;
    A second operation mode having a heating capacity higher than that of the first operation mode;
    The control method of the heat pump apparatus as described in any one of Claims 1 thru | or 8 characterized by the above-mentioned.
  10.  前記熱交換媒体の圧縮機吐出圧が目標吐出圧となるように前記膨張弁の開度を制御する膨張弁開度制御ステップを備えることを特徴とする請求項1乃至9の何れか一項に記載のヒートポンプ装置の制御方法。 The expansion valve opening degree control step of controlling the opening degree of the expansion valve so that the compressor discharge pressure of the heat exchange medium becomes a target discharge pressure is provided. The control method of the heat pump apparatus of description.
  11.  前記熱交換媒体の圧縮機吐出温度が目標吐出温度となるように前記膨張弁の開度を制御する膨張弁開度制御ステップを備えることを特徴とする請求項1乃至9の何れか一項に記載のヒートポンプ装置の制御方法。 The expansion valve opening degree control step which controls the opening degree of the expansion valve so that the compressor discharge temperature of the heat exchange medium becomes a target discharge temperature is provided. The control method of the heat pump apparatus of description.
  12.  前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体は熱源水であり、前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体は外気であることを特徴とする請求項11に記載のヒートポンプ装置の制御方法。 The medium to be cooled which exchanges heat with the heat exchange medium in the evaporator is heat source water, and the medium to be heated which exchanges heat with the heat exchange medium in the gas cooler is outside air. Control method of heat pump device.
  13.  熱交換媒体循環路と、
     該熱交換媒体循環路に設けられる圧縮機、ガスクーラ、膨張弁及び蒸発器を含む超臨界ヒートポンプサイクル構成機器と、
     前記熱交換媒体循環路に設けられたバイパス路と、
     該バイパス路に設けられた熱交換媒体タンクと、
     前記熱交換媒体タンクの入口に設けられた第1開閉弁と、
     前記熱交換媒体タンクの出口に設けられた第2開閉弁と、
     を備え、COを熱交換媒体とするヒートポンプ装置であって、
     前記圧縮機の入口側で前記熱交換媒体の温度を計測する第1温度センサと、
     前記圧縮機の入口側で前記熱交換媒体の圧力を計測する圧力センサと、
     前記第1温度センサ及び前記圧力センサで計測した計測値から過熱度を求め、前記第1開閉弁及び前記第2開閉弁を制御して前記過熱度を目標範囲内に入るように制御する制御部と、
     を備えることを特徴とするヒートポンプ装置。
    A heat exchange medium circuit;
    Supercritical heat pump cycle components including a compressor, a gas cooler, an expansion valve and an evaporator provided in the heat exchange medium circuit;
    A bypass provided in the heat exchange medium circulation path;
    A heat exchange medium tank provided in the bypass,
    A first on-off valve provided at an inlet of the heat exchange medium tank;
    A second on-off valve provided at an outlet of the heat exchange medium tank;
    A heat pump device using CO 2 as a heat exchange medium,
    A first temperature sensor for measuring the temperature of the heat exchange medium on the inlet side of the compressor;
    A pressure sensor for measuring the pressure of the heat exchange medium on the inlet side of the compressor;
    A control unit that obtains the degree of superheat from the measurement values measured by the first temperature sensor and the pressure sensor, and controls the first on-off valve and the second on-off valve to control the degree of superheat to fall within a target range. When,
    A heat pump device comprising:
  14.  前記蒸発器で前記熱交換媒体と熱交換する被冷却媒体の蒸発器入口温度を計測する第2温度センサと、
     前記ガスクーラで前記熱交換媒体と熱交換する被加熱媒体のガスクーラ入口温度を計測する第3温度センサと、
     を備え、
     前記制御部は、
     前記被冷却媒体の入口温度、前記被加熱媒体の入口温度及び前記過熱度の目標値との間で予め設定された相関を記憶する記憶部と、
     前記被冷却媒体の蒸発器入口温度及び前記被加熱媒体のガスクーラ入口温度に基づいて、前記過熱度の目標値と、前記目標値より過熱度が大きい上限閾値及び前記目標値より過熱度が小さい下限閾値とを設定する演算部と、
     を含み、
     前記第1温度センサ及び前記圧力センサの計測値から求められた過熱度が前記上限閾値以下及び前記下限閾値以上となるように第1開閉弁及び前記第2開閉弁を開閉制御するものであることを特徴とする請求項13に記載のヒートポンプ装置。
    A second temperature sensor for measuring an evaporator inlet temperature of a medium to be cooled that exchanges heat with the heat exchange medium in the evaporator;
    A third temperature sensor that measures a gas cooler inlet temperature of a heated medium that exchanges heat with the heat exchange medium in the gas cooler;
    With
    The controller is
    A storage unit that stores a preset correlation among the inlet temperature of the medium to be cooled, the inlet temperature of the medium to be heated, and the target value of the superheat degree;
    Based on the evaporator inlet temperature of the medium to be cooled and the gas cooler inlet temperature of the medium to be heated, the target value of the superheat degree, the upper limit threshold value that is larger than the target value, and the lower limit value that is less than the target value An arithmetic unit for setting a threshold;
    Including
    Opening and closing control of the first on-off valve and the second on-off valve is performed so that the degree of superheat determined from the measured values of the first temperature sensor and the pressure sensor is not more than the upper threshold and the lower threshold. The heat pump device according to claim 13.
  15.  前記ヒートポンプ装置は、箱形ケーシングの内部に前記超臨界ヒートポンプサイクル構成機器が収納されたヒートポンプユニットであることを特徴とする請求項13又は14に記載のヒートポンプ装置。 The heat pump device according to claim 13 or 14, wherein the heat pump device is a heat pump unit in which the supercritical heat pump cycle constituent device is housed in a box-shaped casing.
PCT/JP2018/005966 2017-02-21 2018-02-20 Heat pump device control method and heat pump device WO2018155429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030453A JP2020079650A (en) 2017-02-21 2017-02-21 Control method of heat pump device and heat pump device
JP2017-030453 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155429A1 true WO2018155429A1 (en) 2018-08-30

Family

ID=63254264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005966 WO2018155429A1 (en) 2017-02-21 2018-02-20 Heat pump device control method and heat pump device

Country Status (2)

Country Link
JP (1) JP2020079650A (en)
WO (1) WO2018155429A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346448A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2002106959A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat pump water heater
JP2002310519A (en) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk Heat pump water heater
JP2006077998A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device, and control method
JP2007514918A (en) * 2003-12-17 2007-06-07 キャリア コーポレイション Supercritical vapor compression optimization by maximizing heater capacity
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
JP2007303807A (en) * 2006-04-11 2007-11-22 Mayekawa Mfg Co Ltd Operation method for hot water supply device, hot water supply device and fluid heater
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2010281552A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater and method of operating the same
JP2012072949A (en) * 2010-09-28 2012-04-12 Denso Corp Water heater
JP2013217563A (en) * 2012-04-09 2013-10-24 Hitachi Appliances Inc Heat pump type liquid heating device and heat pump type water heater
JP3187932U (en) * 2013-06-27 2013-12-26 安彦 荒井 Dehumidifier
JP2014006010A (en) * 2012-06-26 2014-01-16 Hitachi Appliances Inc Heat pump water heater
JP2015161465A (en) * 2014-02-27 2015-09-07 株式会社前川製作所 CO2 water heater
JP2015227766A (en) * 2014-06-03 2015-12-17 日立アプライアンス株式会社 Heat pump water heater

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346448A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Heat pump hot-water supplier
JP2002106959A (en) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd Heat pump water heater
JP2002310519A (en) * 2001-04-11 2002-10-23 Nishiyodo Kuchoki Kk Heat pump water heater
JP2007514918A (en) * 2003-12-17 2007-06-07 キャリア コーポレイション Supercritical vapor compression optimization by maximizing heater capacity
JP2006077998A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device, and control method
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
JP2007303807A (en) * 2006-04-11 2007-11-22 Mayekawa Mfg Co Ltd Operation method for hot water supply device, hot water supply device and fluid heater
JP2009092258A (en) * 2007-10-04 2009-04-30 Panasonic Corp Refrigerating cycle device
JP2010281552A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Water heater and method of operating the same
JP2012072949A (en) * 2010-09-28 2012-04-12 Denso Corp Water heater
JP2013217563A (en) * 2012-04-09 2013-10-24 Hitachi Appliances Inc Heat pump type liquid heating device and heat pump type water heater
JP2014006010A (en) * 2012-06-26 2014-01-16 Hitachi Appliances Inc Heat pump water heater
JP3187932U (en) * 2013-06-27 2013-12-26 安彦 荒井 Dehumidifier
JP2015161465A (en) * 2014-02-27 2015-09-07 株式会社前川製作所 CO2 water heater
JP2015227766A (en) * 2014-06-03 2015-12-17 日立アプライアンス株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2020079650A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
WO2016107202A1 (en) Refrigerant control method for multi-split machine connected in series
JP5279763B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
US20060107683A1 (en) Air conditioning system and method for controlling the same
JP5898537B2 (en) Heat pump heating system
JPWO2015162696A1 (en) Air conditioner and its defrosting operation method
JP2008232508A (en) Water heater
JP5514787B2 (en) Environmental test equipment
JP2008530500A (en) Control of cooling circuit with internal heat exchanger
US10634262B2 (en) Refrigeration cycle device and three-way flow rate control valve
JP7208519B2 (en) Unit control device, unit control method, unit control program
JP6355325B2 (en) Refrigerator and control method of refrigerator
JP2012202624A (en) Refrigeration cycle apparatus
JP6072670B2 (en) Heat pump hot water supply / heating system
WO2018155429A1 (en) Heat pump device control method and heat pump device
JP2018169130A (en) Air conditioning system
KR100625568B1 (en) Multi type air conditioner
WO2021006184A1 (en) Water quantity adjustment device
WO2018155428A1 (en) Heat pump device control method and heat pump device
WO2017158715A1 (en) Multi-room type air conditioning device and control method and program for multi-room type air conditioning device
JP6989788B2 (en) Refrigeration cycle device
WO2016151655A1 (en) Air conditioning device and method for determining performance of same
JP6629081B2 (en) Temperature control device
KR200401277Y1 (en) Heat pump
JP7098513B2 (en) Environment forming device and cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP