WO2018155377A1 - Film-forming material for resist process, pattern-forming method, and polysiloxane - Google Patents

Film-forming material for resist process, pattern-forming method, and polysiloxane Download PDF

Info

Publication number
WO2018155377A1
WO2018155377A1 PCT/JP2018/005727 JP2018005727W WO2018155377A1 WO 2018155377 A1 WO2018155377 A1 WO 2018155377A1 JP 2018005727 W JP2018005727 W JP 2018005727W WO 2018155377 A1 WO2018155377 A1 WO 2018155377A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
silicon
formula
carbon atoms
Prior art date
Application number
PCT/JP2018/005727
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 瀬古
裕介 大坪
真義 石川
博允 田中
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019501309A priority Critical patent/JPWO2018155377A1/en
Publication of WO2018155377A1 publication Critical patent/WO2018155377A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a film forming material for a resist process, a pattern forming method, and polysiloxane.
  • the resist film laminated on the substrate to be processed through an organic antireflection film is exposed and developed, and then the substrate is microfabricated by etching using the obtained resist pattern as a mask.
  • a pattern forming method is used.
  • a silicon-containing film is provided between the resist film and the organic underlayer film, the pattern formed on the resist film is transferred to the silicon-containing film, and the substrate to be processed is then used with the silicon-containing film patterned by transfer as a mask.
  • a multilayer resist process for etching is performed (see International Publication No. 2006-126406).
  • the silicon-containing film is required to have excellent solvent resistance and resistance to etching with an oxygen-based gas or the like (hereinafter also referred to as “oxygen-based gas etching resistance”).
  • the miniaturization of the resist pattern has progressed to a level of 45 nm or less, the required level of the performance is further increased, and it is used for forming a silicon-containing film in the conventional multilayer resist process.
  • the resist process film forming material cannot satisfy all of these requirements.
  • the present invention has been made based on the above circumstances, and can form a silicon-containing film that is excellent in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance. It is to provide a film forming material for resist process, a pattern forming method using the same, and polysiloxane.
  • the invention made in order to solve the above problems is a polysiloxane having a first structural unit (hereinafter also referred to as “structural unit (I)”) represented by the following formula (1) or formula (2) (hereinafter referred to as “structural unit (I)”). It is a film forming material for a resist process containing “[A] polysiloxane” and a solvent (hereinafter also referred to as “[B] solvent”).
  • L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group.
  • L 2 is a single bond.
  • L 2 is a single bond, n is 1.
  • R 2 is a polar group.
  • R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond.
  • I is an integer of 0-2.
  • L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms.
  • m is an integer of 1 to 3.
  • R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different.
  • L 4 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group.
  • Another invention made in order to solve the above problems is a step of forming a silicon-containing film on the upper side of the substrate by coating the film forming material for resist process, a step of patterning the silicon-containing film, And a step of forming a pattern on a substrate using the patterned silicon-containing film as a mask.
  • Still another invention made to solve the above problems is a polysiloxane having a structural unit represented by the above formula (1) or (2).
  • the film forming material for resist process and the pattern forming method of the present invention it is possible to form a silicon-containing film excellent in oxygen gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, Furthermore, it is possible to form a resist pattern that is excellent in shape and collapse suppression.
  • the polysiloxane of the present invention can be suitably used as a polysiloxane component of the resist process film-forming material. Therefore, these can be used suitably for a multilayer resist process etc., and can be used suitably for manufacture of a semiconductor device etc. in which further miniaturization is expected in the future.
  • the resist process film-forming material (hereinafter also simply referred to as “film-forming material”) contains [A] polysiloxane and [B] solvent.
  • the film-forming material may contain an optional component as long as the effects of the present invention are not impaired.
  • the film forming material it is possible to form a silicon-containing film excellent in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, and further excellent in shape and collapse suppression A resist pattern can be formed.
  • the reason why the film-forming material has the above-described configuration and exhibits the above-mentioned effects is not necessarily clear, but can be inferred as follows, for example. That is, the structural unit (I) of [A] polysiloxane has a carbon-carbon double bond or a carbon-carbon triple bond as R 1 or R 4 . Since this carbon-carbon double bond or carbon-carbon triple bond has a high cross-linking property, a high-density cross-linked structure is formed by heating.
  • the silicon-containing film formed from the film-forming material is further improved in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide.
  • the structural unit (I) of [A] polysiloxane has a monovalent group containing a polar group as R 2 or R 3 , a negative resist pattern formed on the silicon-containing film, etc. Therefore, the shape of the negative resist pattern or the like and the collapse suppression property are further improved. Since the film forming material has such an effect, it can be suitably used for a resist process.
  • each component will be described.
  • the polysiloxane is a polysiloxane having the structural unit (I).
  • the structural unit (I) is a structural unit represented by the following formula (1) or the following formula (2).
  • L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group.
  • L 2 is a single bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms.
  • n is an integer of 1 to 3.
  • R 2 is a monovalent group containing a polar group.
  • R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond.
  • i is an integer of 0-2.
  • L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms.
  • m is an integer of 1 to 3.
  • R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different.
  • L 4 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group.
  • Examples of the divalent organic group having 1 to 20 carbon atoms represented by L 1 and L 4 include, for example, a divalent hydrocarbon group having 1 to 20 carbon atoms and a divalent hydrocarbon between carbon-carbon of the hydrocarbon group.
  • Examples include a group ( ⁇ ) having a heteroatom-containing group, a group obtained by substituting part or all of the hydrogen atoms of the hydrocarbon group and the group ( ⁇ ) with a monovalent heteroatom-containing group.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include a divalent chain hydrocarbon group having 1 to 20 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. And 20 divalent aromatic hydrocarbon groups.
  • Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, and butene, and alkynes such as ethyne, propyne, and butyne. And a group excluding individual hydrogen atoms.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include alicyclic saturated carbon such as cycloalkane such as cyclopentane and cyclohexane, bridged saturated hydrocarbon such as norbornane, adamantane and tricyclodecane. Examples thereof include a group in which two hydrogen atoms of a cycloalkene such as hydrogen, cyclopentene and cyclohexene, and an alicyclic unsaturated hydrocarbon such as a bridged ring unsaturated hydrocarbon such as norbornene and tricyclodecene are removed.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms include hydrogen on 2 to 4 aromatic rings possessed by arenes such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene, and methylanthracene. Examples include a group in which a hydrogen atom on an atom or two aromatic rings and an alkyl group is removed.
  • hetero atom constituting the divalent and monovalent hetero atom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • divalent heteroatom-containing group examples include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— and —S— are preferred.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group. Among these, a halogen atom is preferable, and a fluorine atom is more preferable.
  • L 1 is preferably a single bond or a hydrocarbon group, more preferably a single bond or a chain hydrocarbon group, still more preferably a single bond or an alkanediyl group, and particularly preferably a single bond, a methanediyl group or an ethanediyl group.
  • L 4 is preferably a single bond or a hydrocarbon group, and more preferably a single bond.
  • Examples of the substituent for the ethenediyl group of R 1 and the ethenyl group of R 4 include monovalent organic groups having 1 to 10 carbon atoms.
  • the substituent of the ethenediyl group of R 1 and the ethenyl group of R 4 is preferably a hydrocarbon group, more preferably a chain hydrocarbon group, still more preferably an alkyl group, and particularly preferably a methyl group and an ethyl group.
  • R 1 is preferably an unsubstituted ethenediyl group.
  • R 4 is preferably an unsubstituted ethenyl group.
  • Examples of the divalent to tetravalent organic group having 1 to 20 carbon atoms represented by L 2 and L 3 include those exemplified as the divalent organic group having 1 to 20 carbon atoms of L 1 and L 4 , And a group obtained by removing one or two hydrogen atoms from a divalent organic group.
  • N and m are preferably 1 and 2, and more preferably 1.
  • L 2 is preferably a single bond or a methanediyl group.
  • L 2 is preferably a trivalent or tetravalent group obtained by removing 3 or 4 hydrogen atoms from methane.
  • L 3 is preferably a divalent to tetravalent group obtained by removing 2 to 4 hydrogen atoms from methane.
  • Examples of the monovalent group not containing the carbon-carbon double bond and carbon-carbon triple bond represented by R X are exemplified as the divalent organic groups having 1 to 20 carbon atoms of L 1 and L 4 described above. And monovalent organic groups obtained by adding one hydrogen atom to the group.
  • I is preferably 0 or 1, more preferably 0.
  • Examples of the monovalent group containing the polar group represented by R 2 and R 3 include a monovalent group containing a hetero atom.
  • R 2 and R 3 are preferably groups represented by the following formula (a) or the following formula (b).
  • R A is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R B is either a monovalent hydrocarbon group having 1 to 20 carbon atoms, or R B and R a and are combined with each other ring members together with the atom chain to which they are attached 5-20 The ring structure is formed.
  • R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded.
  • R c and R d are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R A and R B and R a to R d include a divalent carbon group having 1 to 20 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include a monovalent hydrocarbon group obtained by adding one hydrogen atom to a hydrogen group.
  • the hydrocarbon group for RA is preferably a chain hydrocarbon group or an alicyclic hydrocarbon group, more preferably an alkyl group or a cycloalkyl group, a methyl group, an i-propyl group, a t-butyl group, or a 1-methyl group.
  • a cyclohexane-1-yl group is more preferred, and a methyl group is preferred.
  • the hydrocarbon group of R A also preferably tertiary hydrocarbon group, t- butyl group is particularly preferable.
  • Examples of the ring structure having 3 to 20 ring members constituted by the carbon atoms to which R a and R b and R c and R d are combined and bonded to each other include, for example, 3 to 3 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include an alicyclic structure contained in 20 divalent alicyclic hydrocarbon groups.
  • the ring structure of R B and ring members 5-20 that the R a is formed together with the atom chain to which they are attached are combined to each other, for example 1,3-dioxacyclopentane structure, 1,3-dioxacyclohexane structure 1,3-dioxacycloalkane structures such as Of these, a 1,3-dioxacyclopentane structure is preferable.
  • Examples of the group containing a ring structure having 5 to 20 ring members formed together with an atomic chain in which R B and R a are combined with each other include 1,3-dioxacyclopentyl group and 2,2-dimethyl-1 , 3-Dioxacyclopentyl group is preferred.
  • mol% is preferred to 1 mol% with respect to all the structural units which constitute [A] polysiloxane, 5 mol% is still more preferred, 10 mol% is particularly preferred, and 20 mol% is even more particularly preferred.
  • 80 mol% is preferable, 50 mol% is more preferable, 40 mol% is further more preferable, 30 mol% is especially preferable.
  • Examples of the monomer that gives the structural unit (I) include compounds represented by the following formulas.
  • R is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R is preferably a monovalent chain hydrocarbon group, more preferably an alkyl group, and even more preferably a methyl group or an ethyl group.
  • the polysiloxane may have a structural unit (II) represented by the following formula (3).
  • R Y is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • j is an integer of 1 to 3.
  • the plurality of R Y are the same or different.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R Y include one hydrogen atom in the divalent hydrocarbon group having 1 to 20 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include a monovalent hydrocarbon group. Among these, a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
  • J is preferably 1 or 2, and more preferably 1.
  • Examples of the monomer giving the structural unit (II) include methyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, cyclohexyltrichlorosilane, and the like.
  • the lower limit of the content ratio of the structural unit (II) is preferably 0.1 mol% with respect to all the structural units constituting the [A] polysiloxane. 1 mol% is more preferable, 10 mol% is further more preferable, 20 mol% is especially preferable, and 30 mol% is further especially preferable. As an upper limit of the said content rate, 80 mol% is preferable, 60 mol% is more preferable, 50 mol% is further more preferable, 40 mol% is further especially preferable.
  • the polysiloxane may have a structural unit (III) represented by the following formula (4).
  • Examples of the monomer that gives the structural unit (III) include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, and tetrahalosilanes such as tetrachlorosilane and tetrabromosilane.
  • the lower limit of the content ratio of the structural unit (III) is preferably 1 mol% with respect to all the structural units constituting the [A] polysiloxane. More preferably, mol% is more preferable, 30 mol% is further more preferable, and 60 mol% is especially preferable. As an upper limit of the said content rate, 95 mol% is preferable, 90 mol% is more preferable, 85 mol% is further more preferable, 80 mol% is especially preferable.
  • the film-forming material can further enhance the etching resistance by the oxygen-based gas and the peelability by the alkaline hydrogen peroxide solution by setting the content ratio of the structural unit (III) in the above range.
  • the polysiloxane may have structural units other than the structural units (I) to (III) as other structural units as long as the effects of the present invention are not impaired.
  • Examples of other structural units include structural units derived from silane monomers containing a plurality of silicon atoms, such as hexamethoxydisilane, bis (trimethoxysilyl) methane, polydimethoxymethylcarbosilane, and the like.
  • the upper limit of the content of other structural units is preferably 10 mol%, more preferably 5 mol%, still more preferably 2 mol%, and more preferably 5 mol%. Particularly preferred.
  • the lower limit of the content of [A] polysiloxane in the film forming material is preferably 0.01% by mass, more preferably 0.1% by mass, further preferably 0.5% by mass, and particularly preferably 1% by mass. .
  • 20 mass% is preferable, 10 mass% is more preferable, 5 mass% is further more preferable, 3 mass% is especially preferable.
  • paintability of the said film formation material can be improved.
  • Only 1 type of polysiloxane may be contained and 2 or more types may be contained.
  • the lower limit of the weight average molecular weight (Mw) of the polysiloxane is preferably 1,000, more preferably 1,300, still more preferably 1,500, and particularly preferably 1,700.
  • the upper limit of Mw is preferably 100,000, more preferably 20,000, still more preferably 7,000, and particularly preferably 3,000.
  • the Mw of [A] polysiloxane in this specification uses Tosoh's GPC columns (two “G2000HXL”, one “G3000HXL” and one “G4000HXL”), flow rate: 1.0 mL / min, elution It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene under the analysis conditions of solvent: tetrahydrofuran, column temperature: 40 ° C.
  • the film forming material contains a [B] solvent.
  • the solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, and the like.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the alcohol solvent examples include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol and the like.
  • monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol and the like.
  • polyhydric alcohol solvents examples include polyhydric alcohol solvents.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, and cyclohexanone.
  • ether solvents include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran etc. are mentioned.
  • ester solvent examples include ethyl acetate, ⁇ -butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, acetic acid
  • Examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, and ethyl lactate.
  • nitrogen-containing solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • ether solvents and ester solvents are preferable, and ether solvents and ester solvents having a glycol structure are more preferable because of excellent film-forming properties.
  • ether solvents and ester solvents having a glycol structure examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl acetate
  • examples include ether. Among these, propylene glycol monomethyl ether acetate is particularly preferable.
  • the lower limit of the content of the ether solvent and the ester solvent having a glycol structure in the solvent is preferably 20% by mass, more preferably 60% by mass, still more preferably 90% by mass, and particularly preferably 100% by mass. preferable.
  • the lower limit of the content of the [B] solvent in the film forming material is preferably 80% by mass, more preferably 90% by mass, and still more preferably 95% by mass.
  • 99 mass% is preferable and 98 mass% is more preferable.
  • the film forming material may contain optional components such as a basic compound and an acid generator.
  • the basic compound promotes the curing reaction of the film forming material, and as a result, improves the strength and the like of the formed silicon-containing film. Further, the basic compound improves the peelability of the silicon-containing film with an acidic solution.
  • the basic compound include a compound having a basic amino group and a base generator that generates a compound having a basic amino group by the action of an acid or the action of heat.
  • the compound having a basic amino group include amine compounds.
  • the base generator include amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. Specific examples of the amine compound, amide group-containing compound, urea compound and nitrogen-containing heterocyclic compound include compounds described in paragraphs [0079] to [0082] of JP-A-2016-27370, for example. .
  • the content of the basic compound with respect to 100 parts by mass of [A] polysiloxane is, for example, 1 part by mass or more and 50 parts by mass or less.
  • the acid generator is a component that generates an acid upon exposure or heating.
  • the film forming material contains an acid generator, the condensation reaction of the [A] polysiloxane compound can be promoted even at a relatively low temperature (including room temperature).
  • photoacid generator examples include the acid generators described in paragraphs [0077] to [0081] of JP-A No. 2004-168748. It is done.
  • thermal acid generator examples include onium salt acid generators exemplified as photoacid generators in the above-mentioned patent documents, , 4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, alkylsulfonates and the like.
  • the lower limit of the content of the acid generator with respect to 100 parts by mass of [A] polysiloxane is preferably 0.01 parts by mass, more preferably 0.1 parts by mass. 0.5 parts by mass is more preferable, and 1 part by mass is particularly preferable.
  • the upper limit of the said content 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
  • the film forming material may contain other optional components in addition to the basic compound and the acid generator.
  • other optional components include surfactants, radical generators, colloidal silica, colloidal alumina, and organic polymers.
  • the said film forming material contains another arbitrary component, as an upper limit of the content, 2 mass parts is preferable with respect to 100 mass parts of [A] polysiloxane, and 1 mass part is more preferable.
  • the method for preparing the film-forming material is not particularly limited.
  • [A] polysiloxane, [B] solvent and, if necessary, optional components are mixed in a predetermined ratio.
  • the obtained mixed solution is mixed with a pore size of 0. It can be prepared by filtering with a 2 ⁇ m filter.
  • the lower limit of the solid content concentration of the film forming material is preferably 0.01% by mass, more preferably 0.1% by mass, further preferably 0.5% by mass, and particularly preferably 1% by mass.
  • the upper limit of the solid content concentration is preferably 20% by mass, more preferably 10% by mass, further preferably 5% by mass, and particularly preferably 3% by mass.
  • the solid content concentration of the film forming material means that the mass of the solid content in the film forming material is measured by baking the film forming material at 250 ° C. for 30 minutes, and the mass of the solid content is the mass of the film forming material. It is a value (mass%) calculated by dividing.
  • the silicon-containing film obtained from the film-forming material forms a resist pattern that is excellent in oxygen gas etching resistance and alkaline hydrogen peroxide solution while maintaining solvent resistance, and is excellent in shape and collapse suppression. be able to. Therefore, the film forming material can be suitably used as a material for forming a silicon-containing film as an intermediate film in a resist process, particularly a multilayer resist process.
  • the multilayer resist processes it is particularly preferably used in pattern formation using a multilayer resist process in a region finer than 90 nm (ArF, ArF in immersion exposure, F 2 , EUV, nanoimprint, etc.). it can.
  • the silicon-containing film forms the coating film by applying the film-forming material described above to the surface of another lower layer film such as a substrate or an organic lower layer film, and heat-treats and cures the coating film. Can be formed.
  • Examples of the method for applying the film forming material include a spin coating method, a roll coating method, and a dip method.
  • a spin coating method As a minimum of the temperature of heat processing, 50 ° C is preferred and 70 ° C is more preferred.
  • As an upper limit of the said temperature 450 degreeC is preferable and 300 degreeC is more preferable.
  • the lower limit of the average thickness of the formed silicon-containing film is preferably 10 nm, more preferably 20 nm.
  • the upper limit of the average thickness is preferably 200 nm, and more preferably 150 nm.
  • the pattern forming method includes a step of forming a silicon-containing film on the upper side of the substrate by applying the film-forming material (hereinafter also referred to as “silicon-containing film forming step”), and a step of patterning the silicon-containing film ( Hereinafter, it is also referred to as a “silicon-containing film patterning step” and a step of forming a pattern on the substrate using the patterned silicon-containing film as a mask (hereinafter also referred to as “substrate pattern forming step”).
  • the pattern forming method since the film forming material is used, it is possible to form a silicon-containing film that is excellent in oxygen-based gas etching resistance and peelability with alkaline hydrogen peroxide while maintaining solvent resistance. It is possible to form a resist pattern that is excellent in shape and collapse suppression.
  • the silicon-containing film patterning step includes a step of forming a resist pattern on the upper side of the silicon-containing film (hereinafter also referred to as “resist pattern forming step”), and a step of etching the silicon-containing film using the resist pattern as a mask. (Hereinafter also referred to as “silicon-containing film etching step”).
  • the pattern forming method may further include a step of forming an organic underlayer film on the upper side of the substrate (hereinafter, also referred to as “organic underlayer film forming step”) before the silicon-containing film forming step, if necessary. Good.
  • the pattern forming method may further include a step of removing the silicon-containing film (hereinafter, also referred to as “silicon-containing film removing step”) after the silicon-containing film forming step.
  • silicon-containing film removing step the silicon-containing film
  • Organic underlayer formation process In this step, an organic underlayer film is formed on the upper side of the substrate.
  • an organic underlayer film forming step can be performed as necessary.
  • the silicon-containing film forming step is performed after the organic underlayer film forming step, and in the silicon-containing film forming step, silicon is formed using the film forming material on the organic underlayer film. A containing film is formed.
  • the substrate examples include an insulating film such as silicon oxide, silicon nitride, silicon oxynitride, and polysiloxane, a resin substrate, and the like.
  • an interlayer insulating film such as a wafer covered with a low dielectric insulating film formed by “Black Diamond” from AMAT, “Silk” from Dow Chemical, “LKD5109” from JSR, or the like can be used.
  • a patterned substrate such as a wiring groove (trench) or a plug groove (via) may be used.
  • the organic underlayer film is different from the silicon-containing film formed from the film forming material.
  • the organic underlayer film has a predetermined function (for example, antireflection) that is necessary for further supplementing the function of the silicon-containing film and / or the resist film in the formation of the resist pattern, or to obtain a function that these do not have. Film, coating film flatness, and high etching resistance against fluorine-based gas).
  • Examples of the organic underlayer film include an antireflection film.
  • Examples of the antireflection film forming material include “NFC HM8006” manufactured by JSR Corporation.
  • the organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, followed by heating.
  • a silicon-containing film is formed on the upper side of the substrate by coating the film forming material.
  • a silicon-containing film is formed on the substrate directly or via another layer such as an organic underlayer film.
  • the method for forming the silicon-containing film is not particularly limited, but for example, by exposing and / or heating a coating film formed by coating the film-forming material on a substrate or the like by a known method such as a spin coating method. For example, a method of forming by curing.
  • Examples of the radiation used for this exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, particle beams such as electron beams, molecular beams and ion beams.
  • the temperature at the time of heating a coating film 90 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred.
  • As an upper limit of the said temperature 550 degreeC is preferable, 450 degreeC is more preferable, and 300 degreeC is further more preferable.
  • As a minimum of average thickness of a silicon content film formed 1 nm is preferred, 10 nm is more preferred, and 20 nm is still more preferred.
  • the upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
  • ⁇ Silicon-containing film patterning process> the silicon-containing film is patterned.
  • the silicon-containing film formed in the silicon-containing film forming step is patterned.
  • Examples of the method for patterning the silicon-containing film include a method including a resist pattern forming step and a silicon-containing film etching step.
  • resist pattern formation process In this step, a resist pattern is formed on the upper side of the silicon-containing film. By this step, a resist pattern is formed on the upper side of the silicon-containing film formed in the silicon-containing film forming step.
  • Examples of the method for forming a resist pattern include conventionally known methods such as a method using a resist composition and a method using a nanoimprint lithography method. This resist pattern is usually formed from an organic material.
  • a step of forming a resist film on the upper side of the silicon-containing film with the resist composition for example, a step of forming a resist film on the upper side of the silicon-containing film with the resist composition (hereinafter also referred to as “resist film forming step”), and a step of exposing the resist film (hereinafter also referred to as “development step”) may be used.
  • resist film formation process In this step, a resist film is formed on the upper side of the silicon-containing film with a resist composition. By this step, a resist film is formed on the upper side of the silicon-containing film.
  • the resist composition examples include a radiation-sensitive resin composition (chemically amplified resist composition) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, an alkali-soluble resin, and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent.
  • a radiation sensitive resin composition is preferable.
  • a positive pattern can be formed by developing with an alkali developer
  • a negative pattern can be formed by developing with an organic solvent developer.
  • a double patterning method, a double exposure method, or the like, which is a method for forming a fine pattern may be used as appropriate.
  • the polymer contained in the radiation-sensitive resin composition includes, in addition to the structural unit containing an acid dissociable group, for example, a structural unit containing a lactone structure, a cyclic carbonate structure and / or a sultone structure, or a structural unit containing an alcoholic hydroxyl group. Further, it may have a structural unit containing a phenolic hydroxyl group, a structural unit containing a fluorine atom, or the like.
  • EUV extreme ultraviolet rays
  • the lower limit of the solid content concentration of the resist composition is preferably 0.1% by mass, and more preferably 1% by mass.
  • As an upper limit of the said solid content concentration 50 mass% is preferable and 30 mass% is more preferable.
  • As the resist composition a resist composition filtered with a filter having a pore diameter of about 0.2 ⁇ m can be suitably used. In the pattern forming method, a commercially available resist composition can be used as it is as the resist composition.
  • Examples of the resist film forming method include a method of coating a resist composition on a silicon-containing film.
  • Examples of the resist composition coating method include conventional methods such as a spin coating method. When applying the resist composition, the amount of the resist composition to be applied is adjusted so that the resulting resist film has a predetermined thickness.
  • the resist film can be formed by volatilizing the solvent in the coating film by pre-baking the coating film of the resist composition.
  • the pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, and the like.
  • the lower limit of the pre-baking temperature is preferably 30 ° C., more preferably 50 ° C.
  • 200 degreeC is preferable and 150 degreeC is more preferable.
  • the resist film is exposed. This exposure is performed by selectively irradiating radiation, for example, through a photomask.
  • the radiation used for the exposure includes electromagnetic waves such as visible rays, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ rays, electron beams, molecular rays, ions, depending on the type of acid generator used in the resist composition.
  • electromagnetic waves such as visible rays, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ rays, electron beams, molecular rays, ions, depending on the type of acid generator used in the resist composition.
  • a particle beam such as a beam is appropriately selected, and among these, deep ultraviolet rays and electron beams are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm).
  • the exposure method is not particularly limited, and can be performed in accordance with a conventionally known pattern formation method.
  • the development may be alkali development or organic solvent development.
  • alkali developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol.
  • alkaline aqueous solutions in which at least one of the alkaline compounds is dissolved.
  • these alkaline aqueous solutions may be those obtained by adding appropriate amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants and the like.
  • organic solvent developer examples include liquids mainly composed of organic solvents such as ketone solvents, alcohol solvents, amide solvents, ether solvents, ester solvents and the like.
  • organic solvents such as ketone solvents, alcohol solvents, amide solvents, ether solvents, ester solvents and the like.
  • these solvents include those similar to the respective solvents exemplified as the above [B] organic solvent. These solvents may be used alone or in combination.
  • a predetermined resist pattern corresponding to the photomask can be formed by washing and drying.
  • the silicon-containing film is etched using the resist pattern as a mask. More specifically, a silicon-containing film on which a pattern is formed is obtained by one or more etchings using the resist pattern formed in the resist pattern forming step as a mask.
  • the etching may be dry etching or wet etching, but is preferably dry etching.
  • Dry etching can be performed using, for example, a known dry etching apparatus.
  • the etching gas used for dry etching can be selected as appropriate depending on the elemental composition of the silicon-containing film to be etched, such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6, etc.
  • Fluorine gas chlorine gas such as Cl 2 , BCl 3 , oxygen gas such as O 2 , O 3 , H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , reducing gases such as BCl 3 , He, N 2 , An inert gas such as Ar is used. These gases can also be mixed and used. For dry etching of a silicon-containing film, a fluorine-based gas is usually used, and a mixture of an oxygen-based gas and an inert gas is preferably used.
  • a pattern is formed on the substrate using the patterned silicon-containing film as a mask.
  • This step is usually performed by etching the substrate using the patterned silicon-containing film as a mask. More specifically, the patterned substrate is obtained by performing etching one or more times using the pattern formed on the silicon-containing film obtained in the silicon-containing film etching step as a mask.
  • the organic underlayer film is formed by etching the organic underlayer film using the silicon-containing film pattern as a mask, and then the substrate is etched using the organic underlayer film pattern as a mask. Thus, a pattern is formed on the substrate.
  • the etching may be dry etching or wet etching, but is preferably dry etching.
  • Dry etching for forming a pattern on the organic underlayer film can be performed using a known dry etching apparatus.
  • the etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film and the organic underlayer film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8.
  • Fluorine gas such as SF 6 , chlorine gas such as Cl 2 and BCl 3 , oxygen gas such as O 2 , O 3 , and H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C Reducing gases such as 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 , An inert gas such as He, N 2 , Ar, or the like is used, and these gases can be mixed and used. For dry etching of an organic underlayer film using a silicon-containing film pattern as a mask, an oxygen-based gas is usually used.
  • Dry etching for forming a pattern on a substrate using an organic underlayer film pattern as a mask can be performed using a known dry etching apparatus.
  • the etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the organic underlayer film and the substrate to be etched, and is similar to those exemplified as the etching gas used for the dry etching of the organic underlayer film.
  • ⁇ Silicon-containing film removal process> the silicon-containing film is removed after the silicon-containing film forming step.
  • this step is performed after the substrate etching step, the silicon-containing film remaining on the upper side of the substrate is removed.
  • This step can also be performed on a patterned or non-patterned silicon-containing film before the substrate etching step.
  • Examples of the method for removing the silicon-containing film include a method of dry etching the silicon-containing film, and a method of bringing a liquid such as a basic liquid or an acidic liquid into contact with the silicon-containing film.
  • a liquid such as a basic liquid or an acidic liquid.
  • a basic liquid is preferable.
  • the dry etching can be performed using a known dry etching apparatus. Further, as a source gas at the time of dry etching, for example, a fluorine gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , a chlorine gas such as Cl 2 , BCl 3, or the like is used. These gases can be mixed and used.
  • a fluorine gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6
  • a chlorine gas such as Cl 2 , BCl 3, or the like.
  • the wet stripping method is not particularly limited as long as the silicon-containing film and the alkaline hydrogen peroxide solution can be in contact with each other for a certain period of time under heating conditions, for example, a silicon-containing film.
  • substrate which has this in the heated alkaline hydrogen peroxide solution, the method of spraying alkaline hydrogen peroxide solution in a heating environment, the method of coating the heated alkaline hydrogen peroxide solution, etc. are mentioned. After each of these methods, the substrate may be washed with water and dried.
  • the lower limit of the temperature when the silicon-containing film removing step is performed using alkaline hydrogen peroxide is preferably 40 ° C., more preferably 50 ° C.
  • 90 degreeC is preferable and 80 degreeC is more preferable.
  • the lower limit of the dipping time in the dipping method is preferably 0.2 minutes, and more preferably 0.5 minutes.
  • the upper limit of the immersion time is preferably 30 minutes, more preferably 20 minutes, further preferably 10 minutes, and particularly preferably 5 minutes from the viewpoint of suppressing the influence on the substrate.
  • Example shown below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.
  • the measurement of the solid content concentration of the [A] polysiloxane solution and the measurement of the weight average molecular weight (Mw) of [A] polysiloxane in this example were carried out by the following methods.
  • Average thickness of film The average thickness of the film was measured using a spectroscopic ellipsometer (“M2000D” from JA WOOLLAM).
  • the inside of the reaction vessel was cooled to 30 ° C. or lower. After adding 379 parts by mass of propylene glycol monomethyl ether acetate to the cooled reaction solution, using an evaporator, the alcohol produced by the reaction and excess propylene glycol monomethyl ether acetate were removed to remove the propylene acetate of polysiloxane (A-1). A glycol monomethyl ether solution was obtained.
  • the Mw of the polysiloxane (A-1) was 1,820.
  • the solid content concentration of this polysiloxane (A-1) solution in propylene glycol monomethyl ether acetate was 11.1% by mass.
  • Example 1 [A] 1.8 parts by mass of (A-1) as a polysiloxane (solid content) and 98.2 parts by mass of (B-1) as a [B] solvent (included in the solution of [A] polysiloxane Solvent (including B-1)), and the obtained solution was filtered through a filter having a pore size of 0.2 ⁇ m to prepare a film forming material (J-1) for resist process.
  • Each of the prepared resist process film-forming materials was applied on a silicon wafer (substrate) by a spin coating method using a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron Ltd.).
  • the obtained coating film was heated on a hot plate at 220 ° C. for 1 minute, and then cooled at 23 ° C. for 60 seconds to obtain an average thickness of 30 nm shown in Examples 1 to 11 and Comparative Examples 1 to 3 in Table 2.
  • a substrate on which a silicon-containing film was formed was obtained.
  • SC1 mixed liquid
  • the average thickness of the film before and after immersion was measured.
  • the film thickness change rate (%) due to SC1 immersion was determined by the following formula.
  • Film thickness change rate (%) (S 0 ⁇ S 1 ) ⁇ 100 / S 0
  • the peelability by the alkaline hydrogen peroxide solution was evaluated as “A” (good) when the rate of change in film thickness was 99% or more, and “B” (bad) when it was less than 99%.
  • resist pattern shape and resist pattern collapse suppression The resist pattern shape and resist pattern collapse-inhibiting property were evaluated by performing the following lithography evaluation.
  • a composition for forming an organic underlayer film (“NFC HM8006” from JSR) is applied on a 12-inch silicon wafer by the above spin coater and then heated at 250 ° C. for 60 seconds to form an organic underlayer film having an average thickness of 100 nm. did.
  • the obtained film forming material is applied by the spin coater, heated at 220 ° C. for 60 seconds, and cooled at 23 ° C. for 60 seconds to form a silicon-containing film having an average thickness of 30 nm. did.
  • a radiation-sensitive resin composition (“ARF AR2772JN” manufactured by JSR) was coated on the silicon-containing film by the spin coater, heated at 90 ° C. for 60 seconds, and cooled at 23 ° C. for 30 seconds.
  • a resist film having a thickness of 100 nm was formed.
  • the exposure amount is gradually decreased and the exposure is sequentially performed, and the line width corresponding to the minimum exposure amount at which the collapse of the resist pattern is not confirmed is defined as the minimum dimension before collapse (nm). It was used as an index of pattern collapse inhibition.
  • the resist pattern collapse inhibition property was evaluated as “A” (good) when the minimum dimension before collapse was 32 nm or less, and “B” (bad) when it exceeded 32 nm.
  • the shape of the resist pattern was evaluated as “A” (good) when there was no tailing in the resist pattern, and “B” (bad) when there was pattern collapse or tailing.
  • the film forming material for resist process and the pattern forming method of the present invention it is possible to form a silicon-containing film excellent in oxygen gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, Furthermore, it is possible to form a resist pattern that is excellent in shape and collapse suppression.
  • the polysiloxane of the present invention can be suitably used as a polysiloxane component of the resist process film-forming material. Therefore, these can be used suitably for a multilayer resist process etc., and can be used suitably for manufacture of a semiconductor device etc. in which further miniaturization is expected in the future.

Abstract

The purpose of the present invention is to provide: a film-forming material for a resist process, from which it is possible to form a silicon-containing film that has resistance to oxygen-based etching and exhibits excellent release properties by means of an alkaline hydrogen peroxide solution while maintaining solvent resistance; a pattern-forming method using said film-forming material; and a polysiloxane. The present invention pertains to a film-forming material for a resist process, containing: a polysiloxane having a first structural unit represented by formula (1) or (2); and a solvent. In formula (1), L1 represents a single bond or a divalent organic group having 1-20 carbon atoms; R1 represents an ethynediyl group or a substituted or unsubstituted ethenediyl group; L2 represents a single bond or an (n+1)-valent organic group having 1-20 carbon atoms; n represents an integer of 1-3; and R2 represents a monovalent group including a polar group. In formula (2), L4 represents a single bond or a divalent organic group having 1-20 carbon atoms; and R4 represents a substituted or unsubstituted ethinyl group, or a substituted or unsubstituted ethenyl group.

Description

レジストプロセス用膜形成材料、パターン形成方法及びポリシロキサンFilm forming material for resist process, pattern forming method, and polysiloxane
 本発明は、レジストプロセス用膜形成材料、パターン形成方法及びポリシロキサンに関する。 The present invention relates to a film forming material for a resist process, a pattern forming method, and polysiloxane.
 半導体用素子等の製造においては、被加工基板上に有機系の反射防止膜を介して積層されたレジスト膜を露光及び現像した後、得られたレジストパターンをマスクとするエッチングにより基板を微細加工するパターン形成方法が用いられている。 In the manufacture of semiconductor devices, etc., the resist film laminated on the substrate to be processed through an organic antireflection film is exposed and developed, and then the substrate is microfabricated by etching using the obtained resist pattern as a mask. A pattern forming method is used.
 近年、基板にさらに微細な加工を行うため、マスクとするレジストパターンの微細化及び薄膜化の要求がある。しかし、上記レジスト膜及び有機系反射防止膜のエッチング速度の差はあまり大きくないため、マスクとするレジストパターンを薄くするにつれ、被加工基板をエッチングすることが困難となる。 In recent years, in order to perform finer processing on a substrate, there is a demand for miniaturization and thinning of a resist pattern as a mask. However, since the difference in etching rate between the resist film and the organic antireflection film is not so large, it becomes difficult to etch the substrate to be processed as the resist pattern used as a mask is thinned.
 そこで、レジスト膜と有機下層膜との間にケイ素含有膜を設け、上記レジスト膜に形成したパターンをケイ素含有膜に転写した後、転写によりパターン化されたケイ素含有膜をマスクとして被加工基板をエッチングする多層レジストプロセスが行われている(国際公開第2006-126406号参照)。上記ケイ素含有膜には、溶媒耐性と、酸素系ガス等によるエッチングに対する耐性(以下、「酸素系ガスエッチング耐性」ともいう)とに優れることが要求される。 Therefore, a silicon-containing film is provided between the resist film and the organic underlayer film, the pattern formed on the resist film is transferred to the silicon-containing film, and the substrate to be processed is then used with the silicon-containing film patterned by transfer as a mask. A multilayer resist process for etching is performed (see International Publication No. 2006-126406). The silicon-containing film is required to have excellent solvent resistance and resistance to etching with an oxygen-based gas or the like (hereinafter also referred to as “oxygen-based gas etching resistance”).
国際公開第2006/126406号International Publication No. 2006/126406
 しかしながら、レジストパターンの微細化が線幅45nm以下のレベルにまで進展している現在にあっては、上記性能の要求レベルはさらに高まり、上記従来の多層レジストプロセスにおいてケイ素含有膜の形成に用いられるレジストプロセス用膜形成材料では、これらの要求を全て満足させることはできていない。 However, at present, when the miniaturization of the resist pattern has progressed to a level of 45 nm or less, the required level of the performance is further increased, and it is used for forming a silicon-containing film in the conventional multilayer resist process. The resist process film forming material cannot satisfy all of these requirements.
 本発明は、以上のような事情に基づいてなされたものであり、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができるレジストプロセス用膜形成材料、これを用いたパターン形成方法及びポリシロキサンを提供することである。 The present invention has been made based on the above circumstances, and can form a silicon-containing film that is excellent in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance. It is to provide a film forming material for resist process, a pattern forming method using the same, and polysiloxane.
 上記課題を解決するためになされた発明は、下記式(1)又は式(2)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有するポリシロキサン(以下、「[A]ポリシロキサン」と、溶媒(以下、「[B]溶媒」ともいう)とを含有するレジストプロセス用膜形成材料である。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Lは、単結合又は炭素数1~20の2価の有機基である。Rは、エチンジイル基又は置換若しくは非置換のエテンジイル基である。Lは、単結合又は炭素数1~20の(n+1)価の有機基である。nは、1~3の整数である。Lが単結合の場合、nは1である。Rは、極性基を含む1価の基である。nが2以上の場合、複数のRは同一又は異なる。Rは、エチレン性炭素-炭素二重結合及び炭素-炭素三重結合を含まない1価の基である。iは、0~2の整数である。
 式(2)中、Lは、炭素数1~20の(m+1)価の有機基である。mは、1~3の整数である。Rは、極性基を含む1価の基である。mが2以上の場合、複数のRは同一又は異なる。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、置換若しくは非置換のエチニル基又は置換若しくは非置換のエテニル基である。)
The invention made in order to solve the above problems is a polysiloxane having a first structural unit (hereinafter also referred to as “structural unit (I)”) represented by the following formula (1) or formula (2) (hereinafter referred to as “structural unit (I)”). It is a film forming material for a resist process containing “[A] polysiloxane” and a solvent (hereinafter also referred to as “[B] solvent”).
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group. L 2 is a single bond. A bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms, n is an integer of 1 to 3. When L 2 is a single bond, n is 1. R 2 is a polar group. In the case where n is 2 or more, a plurality of R 2 are the same or different, and R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond. I is an integer of 0-2.
In the formula (2), L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms. m is an integer of 1 to 3. R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different. L 4 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group. )
 上記課題を解決するためになされた別の発明は、当該レジストプロセス用膜形成材料の塗工により、基板の上側にケイ素含有膜を形成する工程と、上記ケイ素含有膜をパターン化する工程と、上記パターン化されたケイ素含有膜をマスクとして、基板にパターンを形成する工程とを備えるパターン形成方法である。 Another invention made in order to solve the above problems is a step of forming a silicon-containing film on the upper side of the substrate by coating the film forming material for resist process, a step of patterning the silicon-containing film, And a step of forming a pattern on a substrate using the patterned silicon-containing film as a mask.
 上記課題を解決するためになされたさらに別の発明は、上記式(1)又は式(2)で表される構造単位を有するポリシロキサンである。 Still another invention made to solve the above problems is a polysiloxane having a structural unit represented by the above formula (1) or (2).
 本発明のレジストプロセス用膜形成材料及びパターン形成方法によれば、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができ、さらに、形状及び倒壊抑制性に優れるレジストパターンを形成することができる。本発明のポリシロキサンは、当該レジストプロセス用膜形成材料のポリシロキサン成分として好適に用いることができる。従って、これらは、多層レジストプロセス等に好適に使用することができ、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the film forming material for resist process and the pattern forming method of the present invention, it is possible to form a silicon-containing film excellent in oxygen gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, Furthermore, it is possible to form a resist pattern that is excellent in shape and collapse suppression. The polysiloxane of the present invention can be suitably used as a polysiloxane component of the resist process film-forming material. Therefore, these can be used suitably for a multilayer resist process etc., and can be used suitably for manufacture of a semiconductor device etc. in which further miniaturization is expected in the future.
 以下、本発明のレジストプロセス用膜形成材料及びパターン形成方法の実施形態について説明する。 Hereinafter, embodiments of the film forming material for resist process and the pattern forming method of the present invention will be described.
<レジストプロセス用膜形成材料>
 当該レジストプロセス用膜形成材料(以下、単に「膜形成材料」と称することもある)は、[A]ポリシロキサンと[B]溶媒とを含有する。当該膜形成材料は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。
<Film forming material for resist process>
The resist process film-forming material (hereinafter also simply referred to as “film-forming material”) contains [A] polysiloxane and [B] solvent. The film-forming material may contain an optional component as long as the effects of the present invention are not impaired.
 当該膜形成材料によれば、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができ、さらに、形状及び倒壊抑制性に優れるレジストパターンを形成することができる。当該膜形成材料が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]ポリシロキサンの構造単位(I)は、R又はRとして、炭素-炭素二重結合又は炭素-炭素三重結合を有している。この炭素-炭素二重結合又は炭素-炭素三重結合は高架橋性を有するので、加熱により高い密度の架橋構造を形成する。その結果、当該膜形成材料から形成されるケイ素含有膜は、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性がより向上する。また、[A]ポリシロキサンの構造単位(I)は、R又はRとして、極性基を含む1価の基を有しているため、ケイ素含有膜上に形成されるネガ型レジストパターン等との密着性が高くなるので、ネガ型レジストパターン等の形状及び倒壊抑制性がより向上する。当該膜形成材料は、このような効果を奏するので、レジストプロセスに好適に用いることができる。以下、各成分について説明する。 According to the film forming material, it is possible to form a silicon-containing film excellent in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, and further excellent in shape and collapse suppression A resist pattern can be formed. The reason why the film-forming material has the above-described configuration and exhibits the above-mentioned effects is not necessarily clear, but can be inferred as follows, for example. That is, the structural unit (I) of [A] polysiloxane has a carbon-carbon double bond or a carbon-carbon triple bond as R 1 or R 4 . Since this carbon-carbon double bond or carbon-carbon triple bond has a high cross-linking property, a high-density cross-linked structure is formed by heating. As a result, the silicon-containing film formed from the film-forming material is further improved in oxygen-based gas etching resistance and peelability by alkaline hydrogen peroxide. Moreover, since the structural unit (I) of [A] polysiloxane has a monovalent group containing a polar group as R 2 or R 3 , a negative resist pattern formed on the silicon-containing film, etc. Therefore, the shape of the negative resist pattern or the like and the collapse suppression property are further improved. Since the film forming material has such an effect, it can be suitably used for a resist process. Hereinafter, each component will be described.
<[A]ポリシロキサン>
 [A]ポリシロキサンは、構造単位(I)を有するポリシロキサンである。
<[A] polysiloxane>
[A] The polysiloxane is a polysiloxane having the structural unit (I).
[構造単位(I)]
 構造単位(I)は、下記式(1)又は下記式(2)で表される構造単位である。
[Structural unit (I)]
The structural unit (I) is a structural unit represented by the following formula (1) or the following formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Lは、単結合又は炭素数1~20の2価の有機基である。Rは、エチンジイル基又は置換若しくは非置換のエテンジイル基である。Lは、単結合又は炭素数1~20の(n+1)価の有機基である。nは、1~3の整数である。Lが単結合の場合、nは1である。Rは、極性基を含む1価の基である。nが2以上の場合、複数のRは同一又は異なる。Rは、エチレン性炭素-炭素二重結合及び炭素-炭素三重結合を含まない1価の基である。iは、0~2の整数である。 In the above formula (1), L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group. L 2 is a single bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms. n is an integer of 1 to 3. When L 2 is a single bond, n is 1. R 2 is a monovalent group containing a polar group. When n is 2 or more, the plurality of R 2 are the same or different. R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond. i is an integer of 0-2.
 上記式(2)中、Lは、炭素数1~20の(m+1)価の有機基である。mは、1~3の整数である。Rは、極性基を含む1価の基である。mが2以上の場合、複数のRは同一又は異なる。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、置換若しくは非置換のエチニル基又は置換若しくは非置換のエテニル基である。 In the above formula (2), L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms. m is an integer of 1 to 3. R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different. L 4 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group.
 L及びLで表される炭素数1~20の2価の有機基としては、例えば炭素数1~20の2価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を有する基(α)、上記炭化水素基及び上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。 Examples of the divalent organic group having 1 to 20 carbon atoms represented by L 1 and L 4 include, for example, a divalent hydrocarbon group having 1 to 20 carbon atoms and a divalent hydrocarbon between carbon-carbon of the hydrocarbon group. Examples include a group (α) having a heteroatom-containing group, a group obtained by substituting part or all of the hydrogen atoms of the hydrocarbon group and the group (α) with a monovalent heteroatom-containing group.
 炭素数1~20の2価の炭化水素基としては、例えば炭素数1~20の2価の鎖状炭化水素基、炭素数3~20の2価の脂環式炭化水素基、炭素数6~20の2価の芳香族炭化水素基等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include a divalent chain hydrocarbon group having 1 to 20 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. And 20 divalent aromatic hydrocarbon groups.
 炭素数1~20の2価の鎖状炭化水素基としては、例えばメタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン等のアルケン、エチン、プロピン、ブチン等のアルキンなどが有する2個の水素原子を除いた基等が挙げられる。 Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms include alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, and butene, and alkynes such as ethyne, propyne, and butyne. And a group excluding individual hydrogen atoms.
 炭素数3~20の2価の脂環式炭化水素基としては、例えばシクロペンタン、シクロヘキサン等のシクロアルカン、ノルボルナン、アダマンタン、トリシクロデカン等の橋かけ環飽和炭化水素などの脂環式飽和炭化水素、シクロペンテン、シクロヘキセン等のシクロアルケン、ノルボルネン、トリシクロデセン等の橋かけ環不飽和炭化水素などの脂環式不飽和炭化水素などが有する2個の水素原子を除いた基等が挙げられる。 Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include alicyclic saturated carbon such as cycloalkane such as cyclopentane and cyclohexane, bridged saturated hydrocarbon such as norbornane, adamantane and tricyclodecane. Examples thereof include a group in which two hydrogen atoms of a cycloalkene such as hydrogen, cyclopentene and cyclohexene, and an alicyclic unsaturated hydrocarbon such as a bridged ring unsaturated hydrocarbon such as norbornene and tricyclodecene are removed.
 炭素数6~20の2価の芳香族炭化水素基としては、例えばベンゼン、トルエン、エチルベンゼン、キシレン、ナフタレン、メチルナフタレン、アントラセン、メチルアントラセン等のアレーンが有する2~4個の芳香環上の水素原子又は2個の芳香環上及びアルキル基上の水素原子を除いた基等が挙げられる。 Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms include hydrogen on 2 to 4 aromatic rings possessed by arenes such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene, and methylanthracene. Examples include a group in which a hydrogen atom on an atom or two aromatic rings and an alkyl group is removed.
 2価及び1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the hetero atom constituting the divalent and monovalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-O-及び-S-が好ましい。 Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like. R 'is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— and —S— are preferred.
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。これらの中でハロゲン原子が好ましく、フッ素原子がより好ましい。 Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group. Among these, a halogen atom is preferable, and a fluorine atom is more preferable.
 Lとしては、単結合及び炭化水素基が好ましく、単結合及び鎖状炭化水素基がより好ましく、単結合及びアルカンジイル基がさらに好ましく、単結合、メタンジイル基及びエタンジイル基が特に好ましい。 L 1 is preferably a single bond or a hydrocarbon group, more preferably a single bond or a chain hydrocarbon group, still more preferably a single bond or an alkanediyl group, and particularly preferably a single bond, a methanediyl group or an ethanediyl group.
 Lとしては、単結合及び炭化水素基が好ましく、単結合がより好ましい。 L 4 is preferably a single bond or a hydrocarbon group, and more preferably a single bond.
 Rのエテンジイル基及びRのエテニル基の置換基としては、例えば炭素数1~10の1価の有機基等が挙げられる。炭素数1~10の1価の有機基としては、上記L及びLとして例示した炭素数1~20の2価の有機基に1個の水素原子を加えた1価の有機基のうち、炭素数1~10のもの等が挙げられる。Rのエテンジイル基及びRのエテニル基の置換基としては、炭化水素基が好ましく、鎖状炭化水素基がより好ましく、アルキル基がさらに好ましく、メチル基及びエチル基が特に好ましい。 Examples of the substituent for the ethenediyl group of R 1 and the ethenyl group of R 4 include monovalent organic groups having 1 to 10 carbon atoms. The monovalent organic group having 1 to 10 carbon atoms, among the monovalent organic group plus one hydrogen atom in the divalent organic group of the L 1 and L 4 illustrated having 1 to 20 carbon atoms as a And those having 1 to 10 carbon atoms. The substituent of the ethenediyl group of R 1 and the ethenyl group of R 4 is preferably a hydrocarbon group, more preferably a chain hydrocarbon group, still more preferably an alkyl group, and particularly preferably a methyl group and an ethyl group.
 Rとしては、非置換のエテンジイル基が好ましい。Rとしては、非置換のエテニル基が好ましい。 R 1 is preferably an unsubstituted ethenediyl group. R 4 is preferably an unsubstituted ethenyl group.
 L及びLで表される炭素数1~20の2~4価の有機基としては、例えば上記L及びLの炭素数1~20の2価の有機基として例示したもの、この2価の有機基から1個又は2個の水素原子を除いた基等が挙げられる。 Examples of the divalent to tetravalent organic group having 1 to 20 carbon atoms represented by L 2 and L 3 include those exemplified as the divalent organic group having 1 to 20 carbon atoms of L 1 and L 4 , And a group obtained by removing one or two hydrogen atoms from a divalent organic group.
 n及びmとしては、1及び2が好ましく、1がより好ましい。 N and m are preferably 1 and 2, and more preferably 1.
 nが1の場合、Lとしては、単結合及びメタンジイル基が好ましい。
 nが2又は3の場合、Lとしては、メタンから3個又は4個の水素原子を除いてなる3価及び4価の基が好ましい。
When n is 1, L 2 is preferably a single bond or a methanediyl group.
When n is 2 or 3, L 2 is preferably a trivalent or tetravalent group obtained by removing 3 or 4 hydrogen atoms from methane.
 Lとしてはメタンから2~4個の水素原子を除いてなる2価~4価の基が好ましい。 L 3 is preferably a divalent to tetravalent group obtained by removing 2 to 4 hydrogen atoms from methane.
 Rで表される炭素-炭素二重結合及び炭素-炭素三重結合を含まない1価の基としては、例えば上記L及びLの炭素数1~20の2価の有機基として例示した基に1個の水素原子を加えてなる1価の有機基等が挙げられる。 Examples of the monovalent group not containing the carbon-carbon double bond and carbon-carbon triple bond represented by R X are exemplified as the divalent organic groups having 1 to 20 carbon atoms of L 1 and L 4 described above. And monovalent organic groups obtained by adding one hydrogen atom to the group.
 iとしては、0及び1が好ましく、0がより好ましい。 I is preferably 0 or 1, more preferably 0.
 R及びRで表される極性基を含む1価の基としては、例えばヘテロ原子を含む1価の基等が挙げられる。R及びRとしては、下記式(a)又は下記式(b)で表される基が好ましい。 Examples of the monovalent group containing the polar group represented by R 2 and R 3 include a monovalent group containing a hetero atom. R 2 and R 3 are preferably groups represented by the following formula (a) or the following formula (b).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(a)及び(b)中、*は、上記式(1)におけるL若しくはR又は上記式(2)におけるLに結合する部位を示す。
 上記式(a)中、Rは、炭素数1~20の1価の炭化水素基である。
 上記式(b)中、Rは、炭素数1~20の1価の炭化水素基であるか、又はRとRとが互いに合わせられこれらが結合する原子鎖と共に環員数5~20の環構造を形成する。R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を表す。R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を表す。
In the above formulas (a) and (b), * represents a site that binds to L 2 or R 1 in the above formula (1) or L 3 in the above formula (2).
In the above formula (a), R A is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
In the above formula (b), R B is either a monovalent hydrocarbon group having 1 to 20 carbon atoms, or R B and R a and are combined with each other ring members together with the atom chain to which they are attached 5-20 The ring structure is formed. R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded. Represents a ring structure having 3 to 20 members. R c and R d are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded. Represents a ring structure having 3 to 20 members.
 R及びR並びにR~Rで表される炭素数1~20の1価の炭化水素基としては、例えば上記L及びLとして例示した炭素数1~20の2価の炭化水素基に1個の水素原子を加えてなる1価の炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R A and R B and R a to R d include a divalent carbon group having 1 to 20 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include a monovalent hydrocarbon group obtained by adding one hydrogen atom to a hydrogen group.
 Rの炭化水素基としては、鎖状炭化水素基及び脂環式炭化水素基が好ましく、アルキル基及びシクロアルキル基がより好ましく、メチル基、i-プロピル基、t-ブチル基及び1-メチルシクロヘキサン-1-イル基がさらに好ましく、メチル基が好ましい。また、Rの炭化水素基としては、3級の炭化水素基も好ましく、t-ブチル基が特に好ましい。 The hydrocarbon group for RA is preferably a chain hydrocarbon group or an alicyclic hydrocarbon group, more preferably an alkyl group or a cycloalkyl group, a methyl group, an i-propyl group, a t-butyl group, or a 1-methyl group. A cyclohexane-1-yl group is more preferred, and a methyl group is preferred. The hydrocarbon group of R A, also preferably tertiary hydrocarbon group, t- butyl group is particularly preferable.
 R及びR並びにR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造としては、例えば上記L及びLとして例示した炭素数3~20の2価の脂環式炭化水素基が含む脂環構造などが挙げられる。 Examples of the ring structure having 3 to 20 ring members constituted by the carbon atoms to which R a and R b and R c and R d are combined and bonded to each other include, for example, 3 to 3 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include an alicyclic structure contained in 20 divalent alicyclic hydrocarbon groups.
 RとRとが互いに合わせられこれらが結合する原子鎖と共に形成される環員数5~20の環構造としては、例えば1,3-ジオキサシクロペンタン構造、1,3-ジオキサシクロヘキサン構造等の1,3-ジオキサシクロアルカン構造等が挙げられる。これらの中で、1,3-ジオキサシクロペンタン構造が好ましい。RとRとが互いに合わせられこれらが結合する原子鎖と共に形成される環員数5~20の環構造を含む基としては、1,3-ジオキサシクロペンチル基及び2,2-ジメチル-1,3-ジオキサシクロペンチル基が好ましい。 The ring structure of R B and ring members 5-20 that the R a is formed together with the atom chain to which they are attached are combined to each other, for example 1,3-dioxacyclopentane structure, 1,3-dioxacyclohexane structure 1,3-dioxacycloalkane structures such as Of these, a 1,3-dioxacyclopentane structure is preferable. Examples of the group containing a ring structure having 5 to 20 ring members formed together with an atomic chain in which R B and R a are combined with each other include 1,3-dioxacyclopentyl group and 2,2-dimethyl-1 , 3-Dioxacyclopentyl group is preferred.
 構造単位(I)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、0.1モル%が好ましく、1モル%がより好ましく、5モル%がさらに好ましく、10モル%が特に好ましく、20モル%がさらに特に好ましい。上記含有割合の上限としては、80モル%が好ましく、50モル%がより好ましく、40モル%がさらに好ましく、30モル%が特に好ましい。 As a minimum of the content rate of structural unit (I), 0.1 mol% is preferred to 1 mol% with respect to all the structural units which constitute [A] polysiloxane, 5 mol% is still more preferred, 10 mol% is particularly preferred, and 20 mol% is even more particularly preferred. As an upper limit of the said content rate, 80 mol% is preferable, 50 mol% is more preferable, 40 mol% is further more preferable, 30 mol% is especially preferable.
 構造単位(I)を与える単量体としては、例えば下記式で表される化合物等が挙げられる。 Examples of the monomer that gives the structural unit (I) include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式中、Rは、炭素数1~20の1価の炭化水素基である。 In the above formula, R is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
 Rとしては、1価の鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基及びエチル基がさらに好ましい。 R is preferably a monovalent chain hydrocarbon group, more preferably an alkyl group, and even more preferably a methyl group or an ethyl group.
[構造単位(II)]
 [A]ポリシロキサンは、下記式(3)で表される構造単位(II)を有してもよい。
[Structural unit (II)]
[A] The polysiloxane may have a structural unit (II) represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(3)中、Rは、炭素数1~20の1価の炭化水素基である。jは、1~3の整数である。jが2以上の場合、複数のRは同一又は異なる。 In the above formula (3), R Y is a monovalent hydrocarbon group having 1 to 20 carbon atoms. j is an integer of 1 to 3. When j is 2 or more, the plurality of R Y are the same or different.
 Rで表される炭素数1~20の1価の炭化水素基としては、例えば上記L及びLとして例示した炭素数1~20の2価の炭化水素基に1個の水素原子を加えてなる1価の炭化水素基等が挙げられる。これらの中で、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R Y include one hydrogen atom in the divalent hydrocarbon group having 1 to 20 carbon atoms exemplified as L 1 and L 4 above. Examples thereof include a monovalent hydrocarbon group. Among these, a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a methyl group is more preferable.
 jとしては、1及び2が好ましく、1がより好ましい。 J is preferably 1 or 2, and more preferably 1.
 構造単位(II)を与える単量体としては、例えばメチルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、シクロヘキシルトリクロロシラン等が挙げられる。 Examples of the monomer giving the structural unit (II) include methyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, cyclohexyltrichlorosilane, and the like.
 [A]ポリシロキサンが構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、0.1モル%が好ましく、1モル%がより好ましく、10モル%がさらに好ましく、20モル%が特に好ましく、30モル%がさらに特に好ましい。上記含有割合の上限としては、80モル%が好ましく、60モル%がより好ましく、50モル%がさらに好ましく、40モル%がさらに特に好ましい。 [A] When the polysiloxane has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 0.1 mol% with respect to all the structural units constituting the [A] polysiloxane. 1 mol% is more preferable, 10 mol% is further more preferable, 20 mol% is especially preferable, and 30 mol% is further especially preferable. As an upper limit of the said content rate, 80 mol% is preferable, 60 mol% is more preferable, 50 mol% is further more preferable, 40 mol% is further especially preferable.
[構造単位(III)]
 [A]ポリシロキサンは、下記式(4)で表される構造単位(III)を有してもよい。
[Structural unit (III)]
[A] The polysiloxane may have a structural unit (III) represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 構造単位(III)を与える単量体としては、例えば
 テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン、テトラクロロシラン、テトラブロモシラン等のテトラハロシランなどが挙げられる。
Examples of the monomer that gives the structural unit (III) include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, and tetrahalosilanes such as tetrachlorosilane and tetrabromosilane.
 [A]ポリシロキサンが構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましく、30モル%がさらに好ましく、60モル%が特に好ましい。上記含有割合の上限としては、95モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましく、80モル%が特に好ましい。当該膜形成材料は、構造単位(III)の含有割合を上記範囲とすることで、酸素系ガスによるエッチング耐性及びアルカリ性過酸化水素水による剥離性をさらに高めることができる。 [A] When the polysiloxane has the structural unit (III), the lower limit of the content ratio of the structural unit (III) is preferably 1 mol% with respect to all the structural units constituting the [A] polysiloxane. More preferably, mol% is more preferable, 30 mol% is further more preferable, and 60 mol% is especially preferable. As an upper limit of the said content rate, 95 mol% is preferable, 90 mol% is more preferable, 85 mol% is further more preferable, 80 mol% is especially preferable. The film-forming material can further enhance the etching resistance by the oxygen-based gas and the peelability by the alkaline hydrogen peroxide solution by setting the content ratio of the structural unit (III) in the above range.
[その他の構造単位]
 [A]ポリシロキサンは、本発明の効果を損なわない限り、その他の構造単位として、上記構造単位(I)~(III)以外の構造単位を有していてもよい。他の構造単位としては、例えばヘキサメトキシジシラン、ビス(トリメトキシシリル)メタン、ポリジメトキシメチルカルボシラン等の複数のケイ素原子を含むシランモノマーに由来する構造単位等が挙げられる。[A]ポリシロキサンがその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、10モル%が好ましく、5モル%がより好ましく、2モル%がさらに好ましく、5モル%が特に好ましい。
[Other structural units]
[A] The polysiloxane may have structural units other than the structural units (I) to (III) as other structural units as long as the effects of the present invention are not impaired. Examples of other structural units include structural units derived from silane monomers containing a plurality of silicon atoms, such as hexamethoxydisilane, bis (trimethoxysilyl) methane, polydimethoxymethylcarbosilane, and the like. [A] When the polysiloxane has other structural units, the upper limit of the content of other structural units is preferably 10 mol%, more preferably 5 mol%, still more preferably 2 mol%, and more preferably 5 mol%. Particularly preferred.
 当該膜形成材料における[A]ポリシロキサンの含有量の下限としては、0.01質量%が好ましく、0.1質量%がより好ましく、0.5質量%がさらに好ましく、1質量%が特に好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましく、3質量%が特に好ましい。[A]ポリシロキサンの含有量を上記範囲とすることで、当該膜形成材料の塗布性を向上できる。[A]ポリシロキサンは、1種のみ含有されていてもよいし、2種以上含有されていてもよい。 The lower limit of the content of [A] polysiloxane in the film forming material is preferably 0.01% by mass, more preferably 0.1% by mass, further preferably 0.5% by mass, and particularly preferably 1% by mass. . As an upper limit of the said content, 20 mass% is preferable, 10 mass% is more preferable, 5 mass% is further more preferable, 3 mass% is especially preferable. [A] By making content of polysiloxane into the said range, the applicability | paintability of the said film formation material can be improved. [A] Only 1 type of polysiloxane may be contained and 2 or more types may be contained.
 [A]ポリシロキサンの重量平均分子量(Mw)の下限としては、1,000が好ましく、1,300がより好ましく、1,500がさらに好ましく、1,700が特に好ましい。上記Mwの上限としては、100,000が好ましく、20,000がより好ましく、7,000がさらに好ましく、3,000が特に好ましい。 [A] The lower limit of the weight average molecular weight (Mw) of the polysiloxane is preferably 1,000, more preferably 1,300, still more preferably 1,500, and particularly preferably 1,700. The upper limit of Mw is preferably 100,000, more preferably 20,000, still more preferably 7,000, and particularly preferably 3,000.
 本明細書における[A]ポリシロキサンのMwは、東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した値である。 The Mw of [A] polysiloxane in this specification uses Tosoh's GPC columns (two "G2000HXL", one "G3000HXL" and one "G4000HXL"), flow rate: 1.0 mL / min, elution It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene under the analysis conditions of solvent: tetrahydrofuran, column temperature: 40 ° C.
<[B]溶媒>
 当該膜形成材料は、[B]溶媒を含有する。[B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒等が挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
<[B] Solvent>
The film forming material contains a [B] solvent. [B] Examples of the solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, and the like. [B] A solvent can be used individually by 1 type or in combination of 2 or more types.
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等の多価アルコール系溶媒などが挙げられる。 Examples of the alcohol solvent include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol and the like. Examples thereof include polyhydric alcohol solvents.
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-ブチルケトン、シクロヘキサノン等が挙げられる。 Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, and cyclohexanone.
 エーテル系溶媒としては、例えばエチルエーテル、iso-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、テトラヒドロフラン等が挙げられる。 Examples of ether solvents include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran etc. are mentioned.
 エステル系溶媒としては、例えば酢酸エチル、γ-ブチロラクトン、酢酸n-ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、プロピオン酸エチル、プロピオン酸n-ブチル、乳酸メチル、乳酸エチル等が挙げられる。 Examples of the ester solvent include ethyl acetate, γ-butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, acetic acid Examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, and ethyl lactate.
 含窒素系溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。 Examples of the nitrogen-containing solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
 これらの中でも、エーテル系溶媒及びエステル系溶媒が好ましく、成膜性に優れるため、グリコール構造を有するエーテル系溶媒及びエステル系溶媒がより好ましい。 Among these, ether solvents and ester solvents are preferable, and ether solvents and ester solvents having a glycol structure are more preferable because of excellent film-forming properties.
 グリコール構造を有するエーテル系溶媒及びエステル系溶媒としては、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、特に、酢酸プロピレングリコールモノメチルエーテルが好ましい。 Examples of ether solvents and ester solvents having a glycol structure include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl acetate Examples include ether. Among these, propylene glycol monomethyl ether acetate is particularly preferable.
 [B]溶媒中のグリコール構造を有するエーテル系溶媒及びエステル系溶媒の含有率の下限としては、20質量%が好ましく、60質量%がより好ましく、90質量%がさらに好ましく、100質量%が特に好ましい。 [B] The lower limit of the content of the ether solvent and the ester solvent having a glycol structure in the solvent is preferably 20% by mass, more preferably 60% by mass, still more preferably 90% by mass, and particularly preferably 100% by mass. preferable.
 当該膜形成材料における[B]溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。上記含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。 The lower limit of the content of the [B] solvent in the film forming material is preferably 80% by mass, more preferably 90% by mass, and still more preferably 95% by mass. As an upper limit of the said content, 99 mass% is preferable and 98 mass% is more preferable.
<任意成分>
 当該膜形成材料は、塩基性化合物、酸発生剤等の任意成分を含有していてもよい。
<Optional component>
The film forming material may contain optional components such as a basic compound and an acid generator.
[塩基性化合物]
 上記塩基性化合物は、当該膜形成材料の硬化反応を促進し、その結果、形成されるケイ素含有膜の強度等を向上する。また、上記塩基性化合物は、上記ケイ素含有膜の酸性液による剥離性を向上する。上記塩基性化合物としては、例えば塩基性アミノ基を有する化合物や、酸の作用又は熱の作用により塩基性アミノ基を有する化合物を発生する塩基発生剤等が挙げられる。上記塩基性アミノ基を有する化合物としては、例えばアミン化合物等が挙げられる。上記塩基発生剤としては、例えばアミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。上記アミン化合物、アミド基含有化合物、ウレア化合物及び含窒素複素環化合物の具体例としては、例えば特開2016-27370号公報の段落[0079]~[0082]に記載されている化合物等が挙げられる。
[Basic compounds]
The basic compound promotes the curing reaction of the film forming material, and as a result, improves the strength and the like of the formed silicon-containing film. Further, the basic compound improves the peelability of the silicon-containing film with an acidic solution. Examples of the basic compound include a compound having a basic amino group and a base generator that generates a compound having a basic amino group by the action of an acid or the action of heat. Examples of the compound having a basic amino group include amine compounds. Examples of the base generator include amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. Specific examples of the amine compound, amide group-containing compound, urea compound and nitrogen-containing heterocyclic compound include compounds described in paragraphs [0079] to [0082] of JP-A-2016-27370, for example. .
 当該膜形成材料が上記塩基性化合物を含有する場合、[A]ポリシロキサン100質量部に対する上記塩基性化合物の含有量としては、例えば1質量部以上50質量部以下である。 When the film forming material contains the basic compound, the content of the basic compound with respect to 100 parts by mass of [A] polysiloxane is, for example, 1 part by mass or more and 50 parts by mass or less.
[酸発生剤]
 上記酸発生剤は、露光又は加熱により酸を発生する成分である。当該膜形成材料が酸発生剤を含有することで、比較的低温(常温を含む)においても[A]ポリシロキサン化合物の縮合反応を促進できる。
[Acid generator]
The acid generator is a component that generates an acid upon exposure or heating. When the film forming material contains an acid generator, the condensation reaction of the [A] polysiloxane compound can be promoted even at a relatively low temperature (including room temperature).
 露光により酸を発生する酸発生剤(以下、「光酸発生剤」ともいう)としては、例えば特開2004-168748号公報における段落[0077]~[0081]に記載の酸発生剤等が挙げられる。 Examples of the acid generator that generates an acid upon exposure (hereinafter, also referred to as “photoacid generator”) include the acid generators described in paragraphs [0077] to [0081] of JP-A No. 2004-168748. It is done.
 また、加熱により酸を発生する酸発生剤(以下、「熱酸発生剤」ともいう)としては、上記特許文献において光酸発生剤として例示されているオニウム塩系酸発生剤や、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、アルキルスルホネート類等が挙げられる。 Examples of the acid generator that generates an acid upon heating (hereinafter also referred to as “thermal acid generator”) include onium salt acid generators exemplified as photoacid generators in the above-mentioned patent documents, , 4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, alkylsulfonates and the like.
 当該膜形成材料が酸発生剤を含有する場合、この酸発生剤の[A]ポリシロキサン100質量部に対する含有量の下限としては、0.01質量部が好ましく、0.1質量部がより好ましく、0.5質量部がさらに好ましく、1質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。 When the film-forming material contains an acid generator, the lower limit of the content of the acid generator with respect to 100 parts by mass of [A] polysiloxane is preferably 0.01 parts by mass, more preferably 0.1 parts by mass. 0.5 parts by mass is more preferable, and 1 part by mass is particularly preferable. As an upper limit of the said content, 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
 当該膜形成材料は、上記塩基性化合物及び酸発生剤以外にも、その他の任意成分を含有していてもよい。その他の任意成分としては、例えば界面活性剤、ラジカル発生剤、コロイド状シリカ、コロイド状アルミナ、有機ポリマー等が挙げられる。当該膜形成材料がその他の任意成分を含有する場合、その含有量の上限としては、[A]ポリシロキサン100質量部に対して、2質量部が好ましく、1質量部がより好ましい。 The film forming material may contain other optional components in addition to the basic compound and the acid generator. Examples of other optional components include surfactants, radical generators, colloidal silica, colloidal alumina, and organic polymers. When the said film forming material contains another arbitrary component, as an upper limit of the content, 2 mass parts is preferable with respect to 100 mass parts of [A] polysiloxane, and 1 mass part is more preferable.
<レジストプロセス用膜形成材料の調製方法>
 当該膜形成材料の調製方法は特に限定されず、例えば[A]ポリシロキサン、[B]溶媒及び必要に応じて任意成分を所定の割合で混合し、好ましくは、得られた混合溶液を孔径0.2μmのフィルターでろ過することにより調製することができる。
<Method for preparing film forming material for resist process>
The method for preparing the film-forming material is not particularly limited. For example, [A] polysiloxane, [B] solvent and, if necessary, optional components are mixed in a predetermined ratio. Preferably, the obtained mixed solution is mixed with a pore size of 0. It can be prepared by filtering with a 2 μm filter.
 当該膜形成材料の固形分濃度の下限としては、0.01質量%が好ましく、0.1質量%がより好ましく、0.5質量%がさらに好ましく、1質量%が特に好ましい。上記固形分濃度の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましく、3質量%が特に好ましい。当該膜形成材料の固形分濃度とは、膜形成材料を250℃で30分間焼成することで、膜形成材料中の固形分の質量を測定し、この固形分の質量を膜形成材料の質量で除することにより算出される値(質量%)である。 The lower limit of the solid content concentration of the film forming material is preferably 0.01% by mass, more preferably 0.1% by mass, further preferably 0.5% by mass, and particularly preferably 1% by mass. The upper limit of the solid content concentration is preferably 20% by mass, more preferably 10% by mass, further preferably 5% by mass, and particularly preferably 3% by mass. The solid content concentration of the film forming material means that the mass of the solid content in the film forming material is measured by baking the film forming material at 250 ° C. for 30 minutes, and the mass of the solid content is the mass of the film forming material. It is a value (mass%) calculated by dividing.
<ケイ素含有膜>
 当該膜形成材料から得られるケイ素含有膜は、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れ、さらに、形状及び倒壊抑制性に優れるレジストパターンを形成することができる。従って、当該膜形成材料は、レジストプロセス、特に多層レジストプロセスにおける中間膜としてのケイ素含有膜を形成するための材料として好適に用いることができる。また、多層レジストプロセスの中でも、90nmよりも微細な領域(ArF、液浸露光でのArF、F、EUV、ナノインプリント等)での多層レジストプロセスを用いたパターン形成において、特に好適に用いることができる。
<Silicon-containing film>
The silicon-containing film obtained from the film-forming material forms a resist pattern that is excellent in oxygen gas etching resistance and alkaline hydrogen peroxide solution while maintaining solvent resistance, and is excellent in shape and collapse suppression. be able to. Therefore, the film forming material can be suitably used as a material for forming a silicon-containing film as an intermediate film in a resist process, particularly a multilayer resist process. In addition, among the multilayer resist processes, it is particularly preferably used in pattern formation using a multilayer resist process in a region finer than 90 nm (ArF, ArF in immersion exposure, F 2 , EUV, nanoimprint, etc.). it can.
 上記ケイ素含有膜は、上述の当該膜形成材料を、基板、有機下層膜等の他の下層膜などの表面に塗工することにより塗膜を形成し、この塗膜を加熱処理し、硬化させることにより形成することができる。 The silicon-containing film forms the coating film by applying the film-forming material described above to the surface of another lower layer film such as a substrate or an organic lower layer film, and heat-treats and cures the coating film. Can be formed.
 当該膜形成材料を塗工する方法としては、例えば回転塗工法、ロールコート法、ディップ法等が挙げられる。加熱処理の温度の下限としては、50℃が好ましく、70℃がより好ましい。上記温度の上限としては、450℃が好ましく、300℃がより好ましい。形成されるケイ素含有膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、200nmが好ましく、150nmがより好ましい。 Examples of the method for applying the film forming material include a spin coating method, a roll coating method, and a dip method. As a minimum of the temperature of heat processing, 50 ° C is preferred and 70 ° C is more preferred. As an upper limit of the said temperature, 450 degreeC is preferable and 300 degreeC is more preferable. The lower limit of the average thickness of the formed silicon-containing film is preferably 10 nm, more preferably 20 nm. The upper limit of the average thickness is preferably 200 nm, and more preferably 150 nm.
<パターン形成方法>
 当該パターン形成方法は、当該膜形成材料の塗工により基板の上側にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)と、上記ケイ素含有膜をパターン化する工程(以下、「ケイ素含有膜パターン化工程」ともいう)と、上記パターン化されたケイ素含有膜をマスクとして、基板にパターンを形成する工程(以下、「基板パターン形成工程」ともいう)とを備える。
<Pattern formation method>
The pattern forming method includes a step of forming a silicon-containing film on the upper side of the substrate by applying the film-forming material (hereinafter also referred to as “silicon-containing film forming step”), and a step of patterning the silicon-containing film ( Hereinafter, it is also referred to as a “silicon-containing film patterning step” and a step of forming a pattern on the substrate using the patterned silicon-containing film as a mask (hereinafter also referred to as “substrate pattern forming step”).
 当該パターン形成方法によれば、当該膜形成材料を用いるので、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができ、さらに、形状及び倒壊抑制性に優れるレジストパターンを形成することができる。 According to the pattern forming method, since the film forming material is used, it is possible to form a silicon-containing film that is excellent in oxygen-based gas etching resistance and peelability with alkaline hydrogen peroxide while maintaining solvent resistance. It is possible to form a resist pattern that is excellent in shape and collapse suppression.
 上記ケイ素含有膜パターン化工程は、上記ケイ素含有膜の上側にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程(以下、「ケイ素含有膜エッチング工程」ともいう)とを備えていてもよい。 The silicon-containing film patterning step includes a step of forming a resist pattern on the upper side of the silicon-containing film (hereinafter also referred to as “resist pattern forming step”), and a step of etching the silicon-containing film using the resist pattern as a mask. (Hereinafter also referred to as “silicon-containing film etching step”).
 当該パターン形成方法は、必要に応じて、上記ケイ素含有膜形成工程前に、基板の上側に有機下層膜を形成する工程(以下、「有機下層膜形成工程」ともいう)をさらに備えていてもよい。また、当該パターン形成方法は、上記ケイ素含有膜形成工程後に、上記ケイ素含有膜を除去する工程(以下、「ケイ素含有膜除去工程」ともいう)をさらに備えていてもよい。以下、各工程について説明する。 The pattern forming method may further include a step of forming an organic underlayer film on the upper side of the substrate (hereinafter, also referred to as “organic underlayer film forming step”) before the silicon-containing film forming step, if necessary. Good. The pattern forming method may further include a step of removing the silicon-containing film (hereinafter, also referred to as “silicon-containing film removing step”) after the silicon-containing film forming step. Hereinafter, each step will be described.
<有機下層膜形成工程>
 本工程では、基板の上側に有機下層膜を形成する。当該パターン形成方法では、必要に応じて、有機下層膜形成工程を行うことができる。
<Organic underlayer formation process>
In this step, an organic underlayer film is formed on the upper side of the substrate. In the pattern forming method, an organic underlayer film forming step can be performed as necessary.
 当該パターン形成方法において、有機下層膜形成工程を行う場合、有機下層膜形成工程後に、ケイ素含有膜形成工程を行い、ケイ素含有膜形成工程において、有機下層膜上に当該膜形成材料を用いてケイ素含有膜を形成する。 In the pattern forming method, when the organic underlayer film forming step is performed, the silicon-containing film forming step is performed after the organic underlayer film forming step, and in the silicon-containing film forming step, silicon is formed using the film forming material on the organic underlayer film. A containing film is formed.
 上記基板としては、例えば酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、樹脂基板等が挙げられる。例えば、AMAT社の「ブラックダイヤモンド」、ダウケミカル社の「シルク」、JSR社の「LKD5109」等により形成される低誘電体絶縁膜で被覆したウェハ等の層間絶縁膜を使用することができる。この基板としては、配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板を用いてもよい。 Examples of the substrate include an insulating film such as silicon oxide, silicon nitride, silicon oxynitride, and polysiloxane, a resin substrate, and the like. For example, an interlayer insulating film such as a wafer covered with a low dielectric insulating film formed by “Black Diamond” from AMAT, “Silk” from Dow Chemical, “LKD5109” from JSR, or the like can be used. As this substrate, a patterned substrate such as a wiring groove (trench) or a plug groove (via) may be used.
 上記有機下層膜は、当該膜形成材料から形成されるケイ素含有膜とは異なるものである。有機下層膜は、レジストパターン形成において、ケイ素含有膜及び/又はレジスト膜が有する機能をさらに補ったり、これらが有していない機能を得るために、必要とされる所定の機能(例えば、反射防止性、塗布膜平坦性、フッ素系ガスに対する高エッチング耐性)を付与したりする膜のことである。 The organic underlayer film is different from the silicon-containing film formed from the film forming material. The organic underlayer film has a predetermined function (for example, antireflection) that is necessary for further supplementing the function of the silicon-containing film and / or the resist film in the formation of the resist pattern, or to obtain a function that these do not have. Film, coating film flatness, and high etching resistance against fluorine-based gas).
 有機下層膜としては、例えば反射防止膜等が挙げられる。反射防止膜形成材料としては、例えばJSR社の「NFC HM8006」等が挙げられる。 Examples of the organic underlayer film include an antireflection film. Examples of the antireflection film forming material include “NFC HM8006” manufactured by JSR Corporation.
 有機下層膜は、有機下層膜形成用組成物を回転塗工法等により塗布して塗膜を形成した後、加熱することにより形成することができる。 The organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, followed by heating.
<ケイ素含有膜形成工程>
 本工程では、当該膜形成材料の塗工により、基板の上側にケイ素含有膜を形成する。本工程により、基板上に直接又は有機下層膜等の他の層を介してケイ素含有膜が形成される。
<Silicon-containing film formation process>
In this step, a silicon-containing film is formed on the upper side of the substrate by coating the film forming material. By this step, a silicon-containing film is formed on the substrate directly or via another layer such as an organic underlayer film.
 ケイ素含有膜の形成方法は特に限定されないが、例えば回転塗工法等の公知の方法により当該膜形成材料を基板上等に塗工して形成された塗膜を、露光及び/又は加熱することにより硬化させて形成する方法等が挙げられる。 The method for forming the silicon-containing film is not particularly limited, but for example, by exposing and / or heating a coating film formed by coating the film-forming material on a substrate or the like by a known method such as a spin coating method. For example, a method of forming by curing.
 この露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。 Examples of the radiation used for this exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and γ rays, particle beams such as electron beams, molecular beams and ion beams.
 塗膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。形成されるケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記平均厚みの上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。 As a minimum of the temperature at the time of heating a coating film, 90 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred. As an upper limit of the said temperature, 550 degreeC is preferable, 450 degreeC is more preferable, and 300 degreeC is further more preferable. As a minimum of average thickness of a silicon content film formed, 1 nm is preferred, 10 nm is more preferred, and 20 nm is still more preferred. The upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
<ケイ素含有膜パターン化工程>
 本工程では、上記ケイ素含有膜をパターン化する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜がパターニングされる。ケイ素含有膜をパターン化する方法としては、例えばレジストパターン形成工程及びケイ素含有膜エッチング工程を備える方法等が挙げられる。
<Silicon-containing film patterning process>
In this step, the silicon-containing film is patterned. By this step, the silicon-containing film formed in the silicon-containing film forming step is patterned. Examples of the method for patterning the silicon-containing film include a method including a resist pattern forming step and a silicon-containing film etching step.
[レジストパターン形成工程]
 本工程では、上記ケイ素含有膜の上側にレジストパターンを形成する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜の上側にレジストパターンが形成される。レジストパターンを形成する方法としては、例えばレジスト組成物を用いる方法、ナノインプリントリソグラフィー法を用いる方法等の従来公知の方法などが挙げられる。このレジストパターンは、通常、有機材料から形成される。
[Resist pattern formation process]
In this step, a resist pattern is formed on the upper side of the silicon-containing film. By this step, a resist pattern is formed on the upper side of the silicon-containing film formed in the silicon-containing film forming step. Examples of the method for forming a resist pattern include conventionally known methods such as a method using a resist composition and a method using a nanoimprint lithography method. This resist pattern is usually formed from an organic material.
 レジスト組成物を用いる方法としては、例えばレジスト組成物により上記ケイ素含有含有膜の上側にレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)と、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える方法等が挙げられる。 As a method of using the resist composition, for example, a step of forming a resist film on the upper side of the silicon-containing film with the resist composition (hereinafter also referred to as “resist film forming step”), and a step of exposing the resist film ( Hereinafter, a method including an “exposure step” and a step of developing the exposed resist film (hereinafter also referred to as “development step”) may be used.
(レジスト膜形成工程)
 本工程では、レジスト組成物により上記ケイ素含有膜の上側にレジスト膜を形成する。本工程により、ケイ素含有膜の上側にレジスト膜が形成される。
(Resist film formation process)
In this step, a resist film is formed on the upper side of the silicon-containing film with a resist composition. By this step, a resist film is formed on the upper side of the silicon-containing film.
 レジスト組成物としては、例えば酸解離性基を有する重合体及び感放射線性酸発生剤を含有する感放射線性樹脂組成物(化学増幅型レジスト組成物)、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤を含有するネガ型レジスト組成物等が挙げられる。これらの中で、感放射線性樹脂組成物が好ましい。感放射線性樹脂組成物を用いた場合、アルカリ現像液で現像することでポジ型パターンを形成することができ、有機溶媒現像液で現像することでネガ型パターンを形成することができる。レジストパターンの形成には、微細パターンを形成する手法であるダブルパターニング法、ダブルエクスポージャー法等を適宜用いてもよい。 Examples of the resist composition include a radiation-sensitive resin composition (chemically amplified resist composition) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, an alkali-soluble resin, and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent. Among these, a radiation sensitive resin composition is preferable. When a radiation sensitive resin composition is used, a positive pattern can be formed by developing with an alkali developer, and a negative pattern can be formed by developing with an organic solvent developer. For the formation of the resist pattern, a double patterning method, a double exposure method, or the like, which is a method for forming a fine pattern, may be used as appropriate.
 感放射線性樹脂組成物に含有される重合体は、酸解離性基を含む構造単位以外にも、例えばラクトン構造、環状カーボネート構造及び/又はスルトン構造を含む構造単位、アルコール性水酸基を含む構造単位、フェノール性水酸基を含む構造単位、フッ素原子を含む構造単位等を有していてもよい。上記重合体が、フェノール性水酸基を含む構造単位及び/又はフッ素原子を含む構造単位を有すると、露光における放射線として極端紫外線(EUV)、電子線等を用いる場合の感度を向上させることができる。 The polymer contained in the radiation-sensitive resin composition includes, in addition to the structural unit containing an acid dissociable group, for example, a structural unit containing a lactone structure, a cyclic carbonate structure and / or a sultone structure, or a structural unit containing an alcoholic hydroxyl group. Further, it may have a structural unit containing a phenolic hydroxyl group, a structural unit containing a fluorine atom, or the like. When the polymer has a structural unit containing a phenolic hydroxyl group and / or a structural unit containing a fluorine atom, the sensitivity when using extreme ultraviolet rays (EUV), electron beams or the like as radiation in exposure can be improved.
 レジスト組成物の固形分濃度の下限としては、0.1質量%が好ましく、1質量%が好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。レジスト組成物としては、孔径0.2μm程度のフィルターを用いてろ過したものを好適に用いることができる。当該パターン形成方法においては、レジスト組成物として、市販品のレジスト組成物をそのまま使用することもできる。 The lower limit of the solid content concentration of the resist composition is preferably 0.1% by mass, and more preferably 1% by mass. As an upper limit of the said solid content concentration, 50 mass% is preferable and 30 mass% is more preferable. As the resist composition, a resist composition filtered with a filter having a pore diameter of about 0.2 μm can be suitably used. In the pattern forming method, a commercially available resist composition can be used as it is as the resist composition.
 レジスト膜の形成方法としては、例えばレジスト組成物をケイ素含有膜上に塗工する方法等が挙げられる。レジスト組成物の塗工方法としては、例えば回転塗工法等の従来の方法などが挙げられる。レジスト組成物を塗工する際には、得られるレジスト膜が所定の膜厚となるように、塗工するレジスト組成物の量を調整する。 Examples of the resist film forming method include a method of coating a resist composition on a silicon-containing film. Examples of the resist composition coating method include conventional methods such as a spin coating method. When applying the resist composition, the amount of the resist composition to be applied is adjusted so that the resulting resist film has a predetermined thickness.
 レジスト膜は、レジスト組成物の塗膜をプレベークすることにより、塗膜中の溶媒を揮発させて形成することができる。プレベークの温度は、使用するレジスト組成物の種類等に応じて適宜調整されるが、プレベークの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。 The resist film can be formed by volatilizing the solvent in the coating film by pre-baking the coating film of the resist composition. The pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, and the like. The lower limit of the pre-baking temperature is preferably 30 ° C., more preferably 50 ° C. As an upper limit of the said temperature, 200 degreeC is preferable and 150 degreeC is more preferable.
(露光工程)
 本工程では、上記レジスト膜を露光する。この露光は、例えばフォトマスクを透過させることにより選択的に放射線を照射して行う。
(Exposure process)
In this step, the resist film is exposed. This exposure is performed by selectively irradiating radiation, for example, through a photomask.
 露光に用いられる放射線としては、レジスト組成物に使用されている酸発生剤の種類等に応じて、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線から適切に選択されるが、これらの中で、遠紫外線及び電子線が好ましく、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)、EUV(波長13nm等)及び電子線がより好ましく、ArFエキシマレーザー光、EUV及び電子線がさらに好ましい。また、露光の方法についても特に限定されず、従来公知のパターン形成において行われる方法に準じて行うことができる。 The radiation used for the exposure includes electromagnetic waves such as visible rays, ultraviolet rays, far ultraviolet rays, X-rays, γ rays, electron beams, molecular rays, ions, depending on the type of acid generator used in the resist composition. Among these, a particle beam such as a beam is appropriately selected, and among these, deep ultraviolet rays and electron beams are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm). ), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light (wavelength 134 nm), EUV (wavelength 13 nm, etc.) and electron beam are more preferred, and ArF excimer laser light, EUV and electron beam are more preferred. Further, the exposure method is not particularly limited, and can be performed in accordance with a conventionally known pattern formation method.
(現像工程)
 本工程では、上記露光されたレジスト膜を現像する。これにより、レジストパターンが形成される。
(Development process)
In this step, the exposed resist film is developed. Thereby, a resist pattern is formed.
 上記現像は、アルカリ現像でも有機溶媒現像でもよい。 The development may be alkali development or organic solvent development.
 アルカリ現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ性水溶液などが挙げられる。また、これらのアルカリ性水溶液は、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤等を適量添加したものであってもよい。 Examples of the alkali developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol. Amine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3. 0] -5-nonene, and an alkaline aqueous solution in which at least one of the alkaline compounds is dissolved. In addition, these alkaline aqueous solutions may be those obtained by adding appropriate amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants and the like.
 有機溶媒現像液としては、例えばケトン系溶媒、アルコール系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等の有機溶媒を主成分とする液などが挙げられる。これらの溶媒としては、例えば上記[B]有機溶媒として例示したそれぞれの溶媒と同様のもの等が挙げられる。これらの溶媒は1種単独でも、複数混合して用いてもよい。 Examples of the organic solvent developer include liquids mainly composed of organic solvents such as ketone solvents, alcohol solvents, amide solvents, ether solvents, ester solvents and the like. Examples of these solvents include those similar to the respective solvents exemplified as the above [B] organic solvent. These solvents may be used alone or in combination.
 現像液で現像を行った後、好ましくは、洗浄し、乾燥することによって、フォトマスクに対応した所定のレジストパターンを形成することができる。 After developing with a developing solution, preferably, a predetermined resist pattern corresponding to the photomask can be formed by washing and drying.
[ケイ素含有膜エッチング工程]
 本工程では、上記レジストパターンをマスクとして、上記ケイ素含有膜をエッチングする。より具体的には、上記レジストパターン形成工程で形成されたレジストパターンをマスクとした1又は複数回のエッチングによって、パターンが形成されたケイ素含有膜を得る。
[Silicon-containing film etching process]
In this step, the silicon-containing film is etched using the resist pattern as a mask. More specifically, a silicon-containing film on which a pattern is formed is obtained by one or more etchings using the resist pattern formed in the resist pattern forming step as a mask.
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。 The etching may be dry etching or wet etching, but is preferably dry etching.
 ドライエッチングは、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、エッチングされるケイ素含有膜の元素組成等により、適宜選択することができ、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガスなどが用いられる。これらのガスは混合して用いることもできる。ケイ素含有膜のドライエッチングには、通常フッ素系ガスが用いられ、これに酸素系ガスと不活性ガスとを混合したものが好適に用いられる。 Dry etching can be performed using, for example, a known dry etching apparatus. The etching gas used for dry etching can be selected as appropriate depending on the elemental composition of the silicon-containing film to be etched, such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6, etc. Fluorine gas, chlorine gas such as Cl 2 , BCl 3 , oxygen gas such as O 2 , O 3 , H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , reducing gases such as BCl 3 , He, N 2 , An inert gas such as Ar is used. These gases can also be mixed and used. For dry etching of a silicon-containing film, a fluorine-based gas is usually used, and a mixture of an oxygen-based gas and an inert gas is preferably used.
<基板パターン形成工程>
 本工程では、上記パターン化されたケイ素含有膜をマスクとして、基板にパターンを形成する。本工程は、通常、上記パターン化されたケイ素含有膜をマスクとして基板をエッチングすることにより行う。より具体的には、上記ケイ素含有膜エッチング工程で得られたケイ素含有膜に形成されたパターンをマスクとした1又は複数回のエッチングを行って、パターニングされた基板を得る。
<Substrate pattern formation process>
In this step, a pattern is formed on the substrate using the patterned silicon-containing film as a mask. This step is usually performed by etching the substrate using the patterned silicon-containing film as a mask. More specifically, the patterned substrate is obtained by performing etching one or more times using the pattern formed on the silicon-containing film obtained in the silicon-containing film etching step as a mask.
 基板上に有機下層膜を形成した場合には、ケイ素含有膜パターンをマスクとして有機下層膜をエッチングすることにより有機下層膜のパターンを形成した後に、この有機下層膜パターンをマスクとして基板をエッチングすることにより、基板にパターンを形成する。 When an organic underlayer film is formed on a substrate, the organic underlayer film is formed by etching the organic underlayer film using the silicon-containing film pattern as a mask, and then the substrate is etched using the organic underlayer film pattern as a mask. Thus, a pattern is formed on the substrate.
 上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。 The etching may be dry etching or wet etching, but is preferably dry etching.
 有機下層膜にパターンを形成する際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、ケイ素含有膜及びエッチングされる有機下層膜の元素組成等により、適宜選択することができ、例えば、CHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス、O、O、HO等の酸素系ガス、H、NH、CO、CO、CH、C、C、C、C、C、C、HF、HI、HBr、HCl、NO、NH、BCl等の還元性ガス、He、N、Ar等の不活性ガス等が用いられ、これらのガスは混合して用いることもできる。ケイ素含有膜パターンをマスクとした有機下層膜のドライエッチングには、通常、酸素系ガスが用いられる。 Dry etching for forming a pattern on the organic underlayer film can be performed using a known dry etching apparatus. The etching gas used for dry etching can be appropriately selected depending on the elemental composition of the silicon-containing film and the organic underlayer film to be etched, and for example, CHF 3 , CF 4 , C 2 F 6 , C 3 F 8. Fluorine gas such as SF 6 , chlorine gas such as Cl 2 and BCl 3 , oxygen gas such as O 2 , O 3 , and H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C Reducing gases such as 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , BCl 3 , An inert gas such as He, N 2 , Ar, or the like is used, and these gases can be mixed and used. For dry etching of an organic underlayer film using a silicon-containing film pattern as a mask, an oxygen-based gas is usually used.
 有機下層膜パターンをマスクとして基板にパターンを形成する際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、有機下層膜及びエッチングされる基板の元素組成等により、適宜選択することができ、例えば上記有機下層膜のドライエッチングに用いられるエッチングガスとして例示したものと同様のエッチングガス等が挙げられる。複数回の異なるエッチングガスにより、エッチングを行ってもよい。なお、基板パターン形成工程後、基板上、有機下層膜パターン上等にケイ素含有膜が残留している場合には、後述のケイ素含有膜除去工程を行うことにより、ケイ素含有膜を除去することができる。 Dry etching for forming a pattern on a substrate using an organic underlayer film pattern as a mask can be performed using a known dry etching apparatus. The etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the organic underlayer film and the substrate to be etched, and is similar to those exemplified as the etching gas used for the dry etching of the organic underlayer film. Etching gas or the like. Etching may be performed by a plurality of different etching gases. If the silicon-containing film remains on the substrate, the organic underlayer film pattern, etc. after the substrate pattern forming step, the silicon-containing film can be removed by performing a silicon-containing film removing step described later. it can.
<ケイ素含有膜除去工程>
 本工程では、上記ケイ素含有膜形成工程後に上記ケイ素含有膜を除去する。本工程が上記基板エッチング工程後に行われる場合、基板の上側に残存するケイ素含有膜が除去される。また、本工程は、上記基板エッチング工程前のパターン化された又はパターン化されていないケイ素含有膜に対して行うこともできる。
<Silicon-containing film removal process>
In this step, the silicon-containing film is removed after the silicon-containing film forming step. When this step is performed after the substrate etching step, the silicon-containing film remaining on the upper side of the substrate is removed. This step can also be performed on a patterned or non-patterned silicon-containing film before the substrate etching step.
 上記ケイ素含有膜を除去する方法としては、例えば上記ケイ素含有膜をドライエッチングする方法、上記ケイ素含有膜に塩基性液や酸性液等の液体を接触させる方法等が挙げられる。上記液体としては、塩基性液が好ましい。 Examples of the method for removing the silicon-containing film include a method of dry etching the silicon-containing film, and a method of bringing a liquid such as a basic liquid or an acidic liquid into contact with the silicon-containing film. As the liquid, a basic liquid is preferable.
 上記ドライエッチングは、公知のドライエッチング装置を用いて行うことができる。また、ドライエッチング時のソースガスとしては、例えばCHF、CF、C、C、SF等のフッ素系ガス、Cl、BCl等の塩素系ガス等が用いられ、これらのガスは混合して用いることができる。 The dry etching can be performed using a known dry etching apparatus. Further, as a source gas at the time of dry etching, for example, a fluorine gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , a chlorine gas such as Cl 2 , BCl 3, or the like is used. These gases can be mixed and used.
 上記塩基性液としては、アルカリ性過酸化水素水等が挙げられる。より具体的には、アンモニア及び過酸化水素の混合水溶液(25%アンモニア水溶液/30%過酸化水素水溶液/水=1/2/40混合水溶液(SC1))が特に好ましい。アルカリ性過酸化水素水を用いる場合、ウェット剥離の方法としては、ケイ素含有膜とアルカリ性過酸化水素水等とが、加熱条件下で一定時間接触できる方法であれば特に限定されず、例えばケイ素含有膜を有する基板を加熱したアルカリ性過酸化水素水に浸漬する方法、加熱環境下でアルカリ性過酸化水素水を吹き付ける方法、加熱したアルカリ性過酸化水素水を塗工する方法等が挙げられる。これらの各方法の後、基板を水洗し、乾燥させるとよい。 Examples of the basic liquid include alkaline hydrogen peroxide. More specifically, a mixed aqueous solution of ammonia and hydrogen peroxide (25% aqueous ammonia solution / 30% aqueous hydrogen peroxide solution / water = 1/2/40 mixed aqueous solution (SC1)) is particularly preferable. When the alkaline hydrogen peroxide solution is used, the wet stripping method is not particularly limited as long as the silicon-containing film and the alkaline hydrogen peroxide solution can be in contact with each other for a certain period of time under heating conditions, for example, a silicon-containing film. The method of immersing the board | substrate which has this in the heated alkaline hydrogen peroxide solution, the method of spraying alkaline hydrogen peroxide solution in a heating environment, the method of coating the heated alkaline hydrogen peroxide solution, etc. are mentioned. After each of these methods, the substrate may be washed with water and dried.
 ケイ素含有膜除去工程を、アルカリ性過酸化水素水を用いて行う場合の温度の下限としては、40℃が好ましく、50℃がより好ましい。上記温度の上限としては、90℃が好ましく、80℃がより好ましい。 The lower limit of the temperature when the silicon-containing film removing step is performed using alkaline hydrogen peroxide is preferably 40 ° C., more preferably 50 ° C. As an upper limit of the said temperature, 90 degreeC is preferable and 80 degreeC is more preferable.
 浸漬する方法における浸漬時間の下限としては、0.2分が好ましく、0.5分がより好ましい。上記浸漬時間の上限としては、基板への影響を抑制する観点から、30分が好ましく、20分がより好ましく、10分がさらに好ましく、5分が特に好ましい。 The lower limit of the dipping time in the dipping method is preferably 0.2 minutes, and more preferably 0.5 minutes. The upper limit of the immersion time is preferably 30 minutes, more preferably 20 minutes, further preferably 10 minutes, and particularly preferably 5 minutes from the viewpoint of suppressing the influence on the substrate.
 以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, examples will be described. In addition, the Example shown below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.
 本実施例における[A]ポリシロキサンの溶液の固形分濃度の測定、及び[A]ポリシロキサンの重量平均分子量(Mw)の測定は下記の方法により行った。 The measurement of the solid content concentration of the [A] polysiloxane solution and the measurement of the weight average molecular weight (Mw) of [A] polysiloxane in this example were carried out by the following methods.
[[A]ポリシロキサンの溶液の固形分濃度]
 [A]ポリシロキサンの溶液0.5gを250℃で30分間焼成することで、この溶液0.5g中の固形分の質量を測定し、[A]ポリシロキサンの溶液の固形分濃度(質量%)を算出した。
[[A] Solid content concentration of polysiloxane solution]
[A] 0.5 g of the polysiloxane solution was baked at 250 ° C. for 30 minutes to measure the mass of the solid content in 0.5 g of the solution, and [A] the solid content concentration of the polysiloxane solution (mass%) ) Was calculated.
[重量平均分子量(Mw)の測定]
 GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[Measurement of weight average molecular weight (Mw)]
Using GPC columns (two "G2000HXL", one "G3000HXL", one "G4000HXL" from Tosoh Corporation), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C. Measurement was performed by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene as a standard.
[膜の平均厚み]
 膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
[Average thickness of film]
The average thickness of the film was measured using a spectroscopic ellipsometer (“M2000D” from JA WOOLLAM).
<[A]ポリシロキサンの合成>
 [A]ポリシロキサンの合成に用いた単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味する。
 化合物(M-1)~(M-15):下記式(M-1)~(M-15)で表される化合物
<[A] Synthesis of polysiloxane>
[A] Monomers used for the synthesis of polysiloxane are shown below. In the following synthesis examples, unless otherwise specified, parts by mass means a value when the total mass of the monomers used is 100 parts by mass.
Compounds (M-1) to (M-15): Compounds represented by the following formulas (M-1) to (M-15)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[合成例1](ポリシロキサン(A-1)の合成)
 反応容器において、上記式(M-1)で表される化合物、上記式(M-2)で表される化合物及び上記式(M-3)で表される化合物をモル比率が50/25/25(モル%)となるようメタノール142質量部に溶解し、単量体溶液を調製した。上記反応容器内を60℃とし、撹拌しながら、6.25質量%シュウ酸水溶液47.9質量部を20分間かけて滴下した。滴下開始を反応の開始時間とし、反応を4時間実施した。反応終了後、反応容器内を30℃以下に冷却した。冷却した反応溶液に酢酸プロピレングリコールモノメチルエーテル379質量部を加えた後、エバポレーターを用いて、反応により生成したアルコール及び余剰の酢酸プロピレングリコールモノメチルエーテルを除去してポリシロキサン(A-1)の酢酸プロピレングリコールモノメチルエーテル溶液を得た。ポリシロキサン(A-1)のMwは1,820であった。このポリシロキサン(A-1)の酢酸プロピレングリコールモノメチルエーテル溶液の固形分濃度は、11.1質量%であった。 
[Synthesis Example 1] (Synthesis of polysiloxane (A-1))
In the reaction vessel, the compound represented by the above formula (M-1), the compound represented by the above formula (M-2) and the compound represented by the above formula (M-3) have a molar ratio of 50/25 / It melt | dissolved in 142 mass parts of methanol so that it might become 25 (mol%), and the monomer solution was prepared. The inside of the reaction vessel was set to 60 ° C., and 47.9 parts by mass of a 6.25 mass% oxalic acid aqueous solution was added dropwise over 20 minutes while stirring. The start of dropping was taken as the start time of the reaction, and the reaction was carried out for 4 hours. After completion of the reaction, the inside of the reaction vessel was cooled to 30 ° C. or lower. After adding 379 parts by mass of propylene glycol monomethyl ether acetate to the cooled reaction solution, using an evaporator, the alcohol produced by the reaction and excess propylene glycol monomethyl ether acetate were removed to remove the propylene acetate of polysiloxane (A-1). A glycol monomethyl ether solution was obtained. The Mw of the polysiloxane (A-1) was 1,820. The solid content concentration of this polysiloxane (A-1) solution in propylene glycol monomethyl ether acetate was 11.1% by mass.
[合成例2~14](ポリシロキサン(A-2)~(A-11)及び(a-1)~(a-3)の合成)
 下記表1に示す種類及び仕込み量の各単量体を使用した以外は、合成例1と同様にして、ポリシロキサン(A-2)~(A-11)及び(a-1)~(a-3)の酢酸プロピレングリコールモノメチルエーテル溶液を得た。表1中の「-」は、該当する単量体を使用しなかったことを示す。得られた[A]ポリシロキサンの溶液における[A]ポリシロキサンのMw及び固形分濃度(質量%)を表1に合わせて示す。
[Synthesis Examples 2 to 14] (Synthesis of polysiloxanes (A-2) to (A-11) and (a-1) to (a-3))
Polysiloxanes (A-2) to (A-11) and (a-1) to (a-1) are prepared in the same manner as in Synthesis Example 1 except that the monomers shown in Table 1 below are used in the amounts and charged amounts. -3) was obtained as a propylene glycol monomethyl ether solution. “-” In Table 1 indicates that the corresponding monomer was not used. Table 1 shows the Mw and solid content concentration (% by mass) of [A] polysiloxane in the obtained [A] polysiloxane solution.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[レジストプロセス用膜形成材料の調製]
 レジストプロセス用膜形成材料の調製に用いた[A]ポリシロキサン以外の成分を以下に示す。
[Preparation of film forming material for resist process]
Components other than [A] polysiloxane used for the preparation of a film forming material for a resist process are shown below.
[[B]溶媒]
 B-1:酢酸プロピレングリコールモノメチルエーテル
[[B] solvent]
B-1: Propylene glycol monomethyl ether acetate
[実施例1]
 [A]ポリシロキサン(固形分)としての(A-1)1.8質量部と、[B]溶媒としての(B-1)98.2質量部([A]ポリシロキサンの溶液に含まれる溶媒(B-1)も含む)とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過し、レジストプロセス用膜形成材料(J-1)を調製した。
[Example 1]
[A] 1.8 parts by mass of (A-1) as a polysiloxane (solid content) and 98.2 parts by mass of (B-1) as a [B] solvent (included in the solution of [A] polysiloxane Solvent (including B-1)), and the obtained solution was filtered through a filter having a pore size of 0.2 μm to prepare a film forming material (J-1) for resist process.
[実施例2~11及び比較例1~3]
 下記表2に示す種類及び配合量の各成分を用いた以外は、実施例1と同様にして、レジストプロセス用膜形成材料(J-2)~(J-11)及び(j-1)~(j-3)を調製した。
[Examples 2 to 11 and Comparative Examples 1 to 3]
Resist process film-forming materials (J-2) to (J-11) and (j-1) to (j-1) in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 2 below were used. (J-3) was prepared.
<ケイ素含有膜の形成>
 上記調製した各レジストプロセス用膜形成材料をシリコンウェハ(基板)上に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を用い、回転塗工法により塗工した。得られた塗膜に対し、220℃のホットプレートで1分間加熱した後、23℃で60秒間冷却することにより、表2の実施例1~11及び比較例1~3に示す平均厚み30nmのケイ素含有膜が形成された基板を得た。
<Formation of silicon-containing film>
Each of the prepared resist process film-forming materials was applied on a silicon wafer (substrate) by a spin coating method using a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron Ltd.). The obtained coating film was heated on a hot plate at 220 ° C. for 1 minute, and then cooled at 23 ° C. for 60 seconds to obtain an average thickness of 30 nm shown in Examples 1 to 11 and Comparative Examples 1 to 3 in Table 2. A substrate on which a silicon-containing film was formed was obtained.
<評価>
 上記調製した膜形成材料を、下記項目について下記方法により評価した。評価結果を下記表2に合わせて示す。表2中の「-」は、評価しなかったことを示す。
<Evaluation>
The film-forming material prepared above was evaluated by the following method for the following items. The evaluation results are shown in Table 2 below. “-” In Table 2 indicates that evaluation was not performed.
[溶媒耐性]
 上記得られたケイ素含有膜が形成された基板を、シクロヘキサン(20~25℃)に10秒間浸漬し、乾燥させた。浸漬前後の膜の平均厚みを測定した。浸漬前の膜の平均厚みをTと、浸漬後の膜の平均厚みをTとした場合における膜厚変化率(%)を下記式により求めた。
 膜厚変化率(%)=|T-T|×100/T
 溶媒耐性は、膜厚変化率が1%未満の場合は「A」(良好)と、1%以上の場合は「B」(不良)と評価した。
[Solvent resistance]
The obtained substrate on which the silicon-containing film was formed was immersed in cyclohexane (20 to 25 ° C.) for 10 seconds and dried. The average thickness of the film before and after immersion was measured. The film thickness change rate (%) when the average thickness of the film before immersion was T 0 and the average thickness of the film after immersion was T 1 was obtained by the following formula.
Film thickness change rate (%) = | T 1 −T 0 | × 100 / T 0
The solvent resistance was evaluated as “A” (good) when the film thickness change rate was less than 1%, and “B” (bad) when the film thickness change rate was 1% or more.
[アルカリ性過酸化水素水による剥離性]
 上記ケイ素含有膜が形成された基板を、アルカリ性過酸化水素水(25質量%アンモニア水溶液/30質量%過酸化水素水溶液/水=1/2/40(質量比)の混合液(SC1)、60~65℃)に5分間浸漬し、水で洗浄した。浸漬前後の膜の平均厚みを測定した。
 浸漬前の平均厚みをSと、浸漬後の平均厚みをSとした場合、SC1浸漬による膜厚変化率(%)を下記式により求めた。
 膜厚変化率(%)=(S-S)×100/S
 アルカリ性過酸化水素水による剥離性は、膜厚変化率が99%以上の場合は「A」(良好)と、99%未満の場合は「B」(不良)と評価した。
[Peelability with alkaline hydrogen peroxide]
The substrate on which the silicon-containing film was formed was mixed with alkaline hydrogen peroxide (mixed liquid (SC1) of 25 mass% aqueous ammonia solution / 30 mass% aqueous hydrogen peroxide solution / water = 1/2/40 (mass ratio), 60 (~ 65 ° C) for 5 minutes and washed with water. The average thickness of the film before and after immersion was measured.
When the average thickness before immersion was S 0 and the average thickness after immersion was S 1 , the film thickness change rate (%) due to SC1 immersion was determined by the following formula.
Film thickness change rate (%) = (S 0 −S 1 ) × 100 / S 0
The peelability by the alkaline hydrogen peroxide solution was evaluated as “A” (good) when the rate of change in film thickness was 99% or more, and “B” (bad) when it was less than 99%.
[レジストパターンの形状及びレジストパターンの倒壊抑制性]
 レジストパターンの形状及びレジストパターンの倒壊抑制性は、以下に示すリソグラフィー評価を行うことにより評価した。
[Resist pattern shape and resist pattern collapse suppression]
The resist pattern shape and resist pattern collapse-inhibiting property were evaluated by performing the following lithography evaluation.
(リソグラフィー評価、有機溶媒現像)
 12インチシリコンウェハ上に、有機下層膜形成用組成物(JSR社の「NFC HM8006」)を上記スピンコーターにより塗工した後、250℃で60秒間加熱し、平均厚み100nmの有機下層膜を形成した。この有機下層膜上に、上記得られた膜形成材料を、上記スピンコーターにより塗工し、220℃で60秒間加熱し、23℃で60秒間冷却することにより平均厚み30nmのケイ素含有膜を形成した。次いで、感放射線性樹脂組成物(JSR社の「ARF AR2772JN」)をこのケイ素含有膜上に上記スピンコーターにより塗工し、90℃で60秒間加熱し、23℃で30秒間冷却することにより平均厚み100nmのレジスト膜を形成した。
(Lithography evaluation, organic solvent development)
A composition for forming an organic underlayer film (“NFC HM8006” from JSR) is applied on a 12-inch silicon wafer by the above spin coater and then heated at 250 ° C. for 60 seconds to form an organic underlayer film having an average thickness of 100 nm. did. On the organic underlayer film, the obtained film forming material is applied by the spin coater, heated at 220 ° C. for 60 seconds, and cooled at 23 ° C. for 60 seconds to form a silicon-containing film having an average thickness of 30 nm. did. Next, a radiation-sensitive resin composition (“ARF AR2772JN” manufactured by JSR) was coated on the silicon-containing film by the spin coater, heated at 90 ° C. for 60 seconds, and cooled at 23 ° C. for 30 seconds. A resist film having a thickness of 100 nm was formed.
 次いで、ArF液浸露光装置(NIKON社の「S610C」)を使用し、NA:1.30、Dipoleの光学条件にて、40nmライン/80nmピッチのパターン形成用のマスクサイズのマスクを介して露光した。100℃で60秒間加熱し、23℃で30秒間冷却した後、酢酸ブチルを現像液として30秒間パドル現像し、メチルイソブチルカルビノール(MIBC)で洗浄し、乾燥させることにより、レジストパターンが形成された評価用基板を得た。 Next, using an ArF immersion exposure apparatus (“S610C” manufactured by NIKON) under an optical condition of NA: 1.30 and Dipole, exposure is performed through a mask having a mask size for pattern formation of 40 nm line / 80 nm pitch. did. After heating at 100 ° C for 60 seconds and cooling at 23 ° C for 30 seconds, paddle development with butyl acetate as a developer for 30 seconds, washing with methyl isobutyl carbinol (MIBC) and drying, a resist pattern is formed. A substrate for evaluation was obtained.
(レジストパターンの形状及び倒壊抑制性の評価)
 レジストパターンの形状及び倒壊抑制性は、以下のようにして測定した。評価用基板のレジストパターンの測長及び観察には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4000」)を用いた。
(Evaluation of resist pattern shape and collapse inhibition)
The shape of the resist pattern and the collapse inhibition property were measured as follows. A scanning electron microscope (“CG-4000” manufactured by Hitachi High-Technologies Corporation) was used for length measurement and observation of the resist pattern on the evaluation substrate.
 上記レジストパターンの形成において、段階的に露光量を減少させて順次露光を行い、レジストパターンの倒壊が確認されない最小の露光量に対応する線幅を最小倒壊前寸法(nm)と定義してレジストパターンの倒壊抑制性の指標とした。レジストパターンの倒壊抑制性は、最小倒壊前寸法が32nm以下の場合は「A」(良好)と、32nmを超える場合は「B」(不良)と評価した。 In the formation of the resist pattern, the exposure amount is gradually decreased and the exposure is sequentially performed, and the line width corresponding to the minimum exposure amount at which the collapse of the resist pattern is not confirmed is defined as the minimum dimension before collapse (nm). It was used as an index of pattern collapse inhibition. The resist pattern collapse inhibition property was evaluated as “A” (good) when the minimum dimension before collapse was 32 nm or less, and “B” (bad) when it exceeded 32 nm.
 レジストパターンの形状は、レジストパターンに裾引きがない場合は「A」(良好)と、パターン倒れ又は裾引きがある場合は「B」(不良)と評価した。 The shape of the resist pattern was evaluated as “A” (good) when there was no tailing in the resist pattern, and “B” (bad) when there was pattern collapse or tailing.
[酸素系ガスエッチング耐性]
 上記得られたケイ素含有膜が形成された基板を、エッチング装置(東京エレクトロン社の「Tactras-Vigus」)を用いて、O=400sccm、PRESS.=25mT、HF RF=200W、LF RF=0W、DCS=0V、RDC=50%、60secの条件にてエッチング処理し、処理前後の平均膜厚からエッチング速度(nm/分)を算出し、酸素系ガスエッチング耐性を評価した。エッチング速度が5nm/分未満の場合は「A」(良好)と、5nm/分以上の場合は「B」(不良)とした。
[Oxygen-based gas etching resistance]
The substrate on which the obtained silicon-containing film is formed by using an etching apparatus (Tokyo Electron Co. "Tactras-Vigus"), O 2 = 400sccm, PRESS . = 25 mT, HF RF = 200 W, LF RF = 0 W, DCS = 0 V, RDC = 50%, 60 sec. Etching is performed, and the etching rate (nm / min) is calculated from the average film thickness before and after the treatment. System gas etching resistance was evaluated. When the etching rate was less than 5 nm / min, “A” (good), and when the etching rate was 5 nm / min or more, “B” (bad).
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表2の結果から、実施例の膜形成材料によれば、形状及び倒壊抑制性に優れるレジストパターンを形成することができ、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができることが分かる。 From the results of Table 2, according to the film forming material of the example, a resist pattern excellent in shape and collapse-inhibiting property can be formed, and while maintaining solvent resistance, oxygen-based gas etching resistance and alkaline hydrogen peroxide water It can be seen that a silicon-containing film having excellent peelability can be formed.
 本発明のレジストプロセス用膜形成材料及びパターン形成方法によれば、溶媒耐性を維持しつつ、酸素系ガスエッチング耐性及びアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができ、さらに、形状及び倒壊抑制性に優れるレジストパターンを形成することができる。本発明のポリシロキサンは、当該レジストプロセス用膜形成材料のポリシロキサン成分として好適に用いることができる。従って、これらは、多層レジストプロセス等に好適に使用することができ、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。 According to the film forming material for resist process and the pattern forming method of the present invention, it is possible to form a silicon-containing film excellent in oxygen gas etching resistance and peelability by alkaline hydrogen peroxide while maintaining solvent resistance, Furthermore, it is possible to form a resist pattern that is excellent in shape and collapse suppression. The polysiloxane of the present invention can be suitably used as a polysiloxane component of the resist process film-forming material. Therefore, these can be used suitably for a multilayer resist process etc., and can be used suitably for manufacture of a semiconductor device etc. in which further miniaturization is expected in the future.

Claims (15)

  1.  下記式(1)又は式(2)で表される第1構造単位を有するポリシロキサンと、
     溶媒と
     を含有するレジストプロセス用膜形成材料。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Lは、単結合又は炭素数1~20の2価の有機基である。Rは、エチンジイル基又は置換若しくは非置換のエテンジイル基である。Lは、単結合又は炭素数1~20の(n+1)価の有機基である。nは、1~3の整数である。Lが単結合の場合、nは1である。Rは、極性基を含む1価の基である。nが2以上の場合、複数のRは同一又は異なる。Rは、エチレン性炭素-炭素二重結合及び炭素-炭素三重結合を含まない1価の基である。iは、0~2の整数である。
     式(2)中、Lは、炭素数1~20の(m+1)価の有機基である。mは、1~3の整数である。Rは、極性基を含む1価の基である。mが2以上の場合、複数のRは同一又は異なる。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、置換若しくは非置換のエチニル基又は置換若しくは非置換のエテニル基である。)
    A polysiloxane having a first structural unit represented by the following formula (1) or formula (2);
    A film forming material for a resist process containing a solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group. L 2 is a single bond. A bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms, n is an integer of 1 to 3. When L 2 is a single bond, n is 1. R 2 is a polar group. In the case where n is 2 or more, a plurality of R 2 are the same or different, and R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond. I is an integer of 0-2.
    In the formula (2), L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms. m is an integer of 1 to 3. R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different. L 4 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group. )
  2.  上記式(1)におけるR及び上記式(2)におけるRが、下記式(a)又は下記式(b)で表される請求項1に記載のレジストプロセス用膜形成材料。
    Figure JPOXMLDOC01-appb-C000002
    (式(a)及び(b)中、*は、上記式(1)におけるL若しくはR又は上記式(2)におけるLに結合する部位を示す。
     式(a)中、Rは、炭素数1~20の1価の炭化水素基である。
     式(b)中、Rは、炭素数1~20の1価の炭化水素基であるか、又はRとRとが互いに合わせられこれらが結合する原子鎖と共に環員数5~20の環構造を形成する。R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を表す。R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造を表す。)
    The film forming material for a resist process according to claim 1, wherein R 2 in the formula (1) and R 3 in the formula (2) are represented by the following formula (a) or the following formula (b).
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (a) and (b), * represents a site that binds to L 2 or R 1 in the above formula (1) or L 3 in the above formula (2).
    In the formula (a), R A is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
    In the formula (b), R B is a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a group having 5 to 20 ring members together with an atomic chain in which R B and R a are combined with each other. Form a ring structure. R a and R b are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded. Represents a ring structure having 3 to 20 members. R c and R d are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring composed of these groups combined with each other and the carbon atom to which they are bonded. Represents a ring structure having 3 to 20 members. )
  3.  上記式(a)におけるRの炭化水素基が、鎖状炭化水素基又は脂環式炭化水素基である請求項2に記載のレジストプロセス用膜形成材料。 The film forming material for a resist process according to claim 2, wherein the hydrocarbon group of RA in the formula (a) is a chain hydrocarbon group or an alicyclic hydrocarbon group.
  4.  上記式(b)におけるRとRとが互いに合わせられこれらが結合する原子鎖と共に環員数5~20の環構造を形成する請求項2又は請求項3に記載のレジストプロセス用膜形成材料。 4. The film forming material for a resist process according to claim 2, wherein R B and R a in the formula (b) are combined with each other to form a ring structure having 5 to 20 ring members together with an atomic chain to which they are bonded. .
  5.  上記式(1)におけるLが、単結合又はメタンジイル基である請求項1から請求項4のいずれか1項に記載のレジストプロセス用膜形成材料。 The film forming material for a resist process according to any one of claims 1 to 4, wherein L 2 in the formula (1) is a single bond or a methanediyl group.
  6.  上記ポリシロキサンが、下記式(3)で表される第2構造単位をさらに有する請求項1から請求項5のいずれか1項に記載のレジストプロセス用膜形成材料。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Rは、炭素数1~20の1価の炭化水素基である。jは、1~3の整数である。jが2以上の場合、複数のRは同一又は異なる。)
    The film forming material for a resist process according to any one of claims 1 to 5, wherein the polysiloxane further has a second structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (3), R Y is a monovalent hydrocarbon group having 1 to 20 carbon atoms. J is an integer of 1 to 3. When j is 2 or more, a plurality of R Y are the same. Or different.)
  7.  上記ポリシロキサンが、下記式(4)で表される第3構造単位をさらに有する請求項1から請求項6のいずれか1項に記載のレジストプロセス用膜形成材料。
    Figure JPOXMLDOC01-appb-C000004
    The film forming material for a resist process according to any one of claims 1 to 6, wherein the polysiloxane further has a third structural unit represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
  8.  上記ポリシロキサンを構成する全構造単位に対する上記第1構造単位の含有割合が、0.1モル%以上50モル%以下である請求項1から請求項7のいずれか1項に記載のレジストプロセス用膜形成材料。 The resist process according to any one of claims 1 to 7, wherein a content ratio of the first structural unit with respect to all structural units constituting the polysiloxane is 0.1 mol% or more and 50 mol% or less. Film forming material.
  9.  多層レジストプロセスに用いられる請求項1から請求項8のいずれか1項に記載のレジストプロセス用膜形成材料。 The film forming material for a resist process according to any one of claims 1 to 8, which is used in a multilayer resist process.
  10.  請求項1から請求項9のいずれか1項に記載のレジストプロセス用膜形成材料の塗工により、基板の上側にケイ素含有膜を形成する工程と、
     上記ケイ素含有膜をパターン化する工程と、
     上記パターン化されたケイ素含有膜をマスクとして、基板にパターンを形成する工程と
     を備えるパターン形成方法。
    A step of forming a silicon-containing film on the upper side of the substrate by coating the film forming material for a resist process according to any one of claims 1 to 9,
    Patterning the silicon-containing film;
    Forming a pattern on a substrate using the patterned silicon-containing film as a mask.
  11.  上記ケイ素含有膜形成工程後に、
     上記ケイ素含有膜を除去する工程
     をさらに備える請求項10に記載のパターン形成方法。
    After the silicon-containing film forming step,
    The pattern forming method according to claim 10, further comprising: removing the silicon-containing film.
  12.  上記ケイ素含有膜を除去する工程が、上記ケイ素含有膜に塩基性液を接触させて上記ケイ素含有膜を除去することを特徴とする請求項11に記載のパターン形成方法。 The pattern forming method according to claim 11, wherein the step of removing the silicon-containing film removes the silicon-containing film by bringing a basic liquid into contact with the silicon-containing film.
  13.  上記ケイ素含有膜パターン化工程が、
     上記ケイ素含有膜の上側にレジストパターンを形成する工程と、
     上記レジストパターンをマスクとして、上記ケイ素含有膜をエッチングする工程と
     を備える請求項10、請求項11又は請求項12に記載のパターン形成方法。
    The silicon-containing film patterning step is
    Forming a resist pattern on the upper side of the silicon-containing film;
    The pattern forming method according to claim 10, 11 or 12, comprising: etching the silicon-containing film using the resist pattern as a mask.
  14.  上記ケイ素含有膜形成工程前に、
     基板の上側に有機下層膜を形成する工程
     をさらに備える請求項10から請求項13のいずれか1項に記載のパターン形成方法。
    Before the silicon-containing film forming step,
    The pattern forming method according to claim 10, further comprising: forming an organic underlayer film on the upper side of the substrate.
  15.  下記式(1)又は式(2)で表される構造単位を有するポリシロキサン。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、Lは、単結合又は炭素数1~20の2価の有機基である。Rは、エチンジイル基又は置換若しくは非置換のエテンジイル基である。Lは、単結合又は炭素数1~20の(n+1)価の有機基である。nは、1~3の整数である。Lが単結合の場合、nは1である。Rは、極性基を含む1価の基である。nが2以上の場合、複数のRは同一又は異なる。Rは、エチレン性炭素-炭素二重結合及び炭素-炭素三重結合を含まない1価の基である。iは、0~2の整数である。
     式(2)中、Lは、炭素数1~20の(m+1)価の有機基である。mは、1~3の整数である。Rは、極性基を含む1価の基である。mが2以上の場合、複数のRは同一又は異なる。Lは、単結合又は炭素数1~20の2価の有機基である。Rは、置換若しくは非置換のエチニル基又は置換若しくは非置換のエテニル基である。)
    Polysiloxane having a structural unit represented by the following formula (1) or formula (2).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (1), L 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms. R 1 is an ethynediyl group or a substituted or unsubstituted ethenediyl group. L 2 is a single bond. A bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms, n is an integer of 1 to 3. When L 2 is a single bond, n is 1. R 2 is a polar group. In the case where n is 2 or more, a plurality of R 2 are the same or different, and R X is a monovalent group not containing an ethylenic carbon-carbon double bond and carbon-carbon triple bond. I is an integer of 0-2.
    In the formula (2), L 3 is an (m + 1) -valent organic group having 1 to 20 carbon atoms. m is an integer of 1 to 3. R 3 is a monovalent group containing a polar group. When m is 2 or more, the plurality of R 3 are the same or different. L 4 represents a divalent organic group single bond or a C 1-20. R 4 is a substituted or unsubstituted ethynyl group or a substituted or unsubstituted ethenyl group. )
PCT/JP2018/005727 2017-02-24 2018-02-19 Film-forming material for resist process, pattern-forming method, and polysiloxane WO2018155377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501309A JPWO2018155377A1 (en) 2017-02-24 2018-02-19 Film forming material for resist process, pattern forming method, and polysiloxane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017034173 2017-02-24
JP2017-034173 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155377A1 true WO2018155377A1 (en) 2018-08-30

Family

ID=63252731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005727 WO2018155377A1 (en) 2017-02-24 2018-02-19 Film-forming material for resist process, pattern-forming method, and polysiloxane

Country Status (3)

Country Link
JP (1) JPWO2018155377A1 (en)
TW (1) TW201835229A (en)
WO (1) WO2018155377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136250A1 (en) * 2022-01-12 2023-07-20 日産化学株式会社 Composition for forming silicon-containing resist underlayer film, and silicon-containing resist underlayer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011411A (en) * 2014-06-05 2016-01-21 Jsr株式会社 Composition for forming silicon-containing film, pattern forming method, and polysiloxane compound
JP2016074772A (en) * 2014-10-03 2016-05-12 信越化学工業株式会社 Coating type composition for forming silicon containing film, substrate, and pattern formation method
WO2016111210A1 (en) * 2015-01-09 2016-07-14 Jsr株式会社 Composition for forming silicon-containing film and pattern forming method using said composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011411A (en) * 2014-06-05 2016-01-21 Jsr株式会社 Composition for forming silicon-containing film, pattern forming method, and polysiloxane compound
JP2016074772A (en) * 2014-10-03 2016-05-12 信越化学工業株式会社 Coating type composition for forming silicon containing film, substrate, and pattern formation method
WO2016111210A1 (en) * 2015-01-09 2016-07-14 Jsr株式会社 Composition for forming silicon-containing film and pattern forming method using said composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136250A1 (en) * 2022-01-12 2023-07-20 日産化学株式会社 Composition for forming silicon-containing resist underlayer film, and silicon-containing resist underlayer film

Also Published As

Publication number Publication date
TW201835229A (en) 2018-10-01
JPWO2018155377A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI751171B (en) Silicon-rich silsesquioxane resins
JP2017068049A (en) Composition for forming silicon-containing film for multilayer resist process, and method for forming pattern
US20200117091A1 (en) Pattern-forming method, and silicon-containing film-forming composition
KR102556781B1 (en) Silicon-containing film forming composition for euv lithography, silicon-containing film for euv lithography, and patterning method
JP6787206B2 (en) Silicon-containing film forming composition for resist process, silicon-containing film and pattern forming method
JP6897071B2 (en) Film forming material for resist process, pattern forming method and polymer
WO2018155377A1 (en) Film-forming material for resist process, pattern-forming method, and polysiloxane
WO2020170934A1 (en) Film-forming composition and method for producing semiconductor substrate
US20230053159A1 (en) Resist underlayer film-forming composition, resist underlayer film, and method of producing semiconductor substrate
US20180292753A1 (en) Composition for forming silicon-containing film for euv lithography, silicon-containing film for euv lithography, and pattern-forming method
JP6741957B2 (en) Film forming material for resist process and pattern forming method
WO2020066669A1 (en) Method for processing semiconductor substrate
WO2018159356A1 (en) Composition for silicon-containing-film formation, silicon-containing film, pattern formation method, and polysiloxane
WO2019151153A1 (en) Film-forming composition for semiconductor lithography process, silicon-containing film, and method for forming resist pattern
JP7342953B2 (en) Composition, silicon-containing film, method for forming silicon-containing film, and method for processing semiconductor substrate
JP7301151B2 (en) Underlayer film forming composition, resist pattern forming method, electronic device manufacturing method
WO2022113781A1 (en) Silicon-containing composition and method for producing semiconductor substrate
WO2021235273A1 (en) Silicon-containing composition and method for producing semiconductor substrate
WO2022149478A1 (en) Composition, and method for producing semiconductor substrates
TW202342573A (en) Method for producing semiconductor substrate and silicon-containing composition
TW201344369A (en) Composition for forming resist lower layer film and method for forming pattern
TW202231626A (en) Radiation-sensitive resin composition and method for forming resist patter using same, and sulfonium salt compound and radiation-sensitive acid generator comprising same
TW202120635A (en) Resist underlayer film-forming composition, pattern forming method, and electronic device manufacturing method
TW202014440A (en) Underlayer film forming composition for multilayer resist processes and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758439

Country of ref document: EP

Kind code of ref document: A1