WO2018153137A1 - 柔性直流配电网单极接地故障识别方法及装置、存储介质 - Google Patents

柔性直流配电网单极接地故障识别方法及装置、存储介质 Download PDF

Info

Publication number
WO2018153137A1
WO2018153137A1 PCT/CN2017/114144 CN2017114144W WO2018153137A1 WO 2018153137 A1 WO2018153137 A1 WO 2018153137A1 CN 2017114144 W CN2017114144 W CN 2017114144W WO 2018153137 A1 WO2018153137 A1 WO 2018153137A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
current
positive
negative
ground fault
Prior art date
Application number
PCT/CN2017/114144
Other languages
English (en)
French (fr)
Inventor
彭忠
张爱玲
李泰�
赵静
荆雪记
胡永昌
陈朋
张艳浩
苏进国
李艳梅
肖龙
吴战锋
申帅华
杜少林
鲁庆华
孙攀磊
霍城辉
郑坤承
邵瑞博
周金萍
Original Assignee
许继集团有限公司
许继电气股份有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继集团有限公司, 许继电气股份有限公司, 国家电网公司 filed Critical 许继集团有限公司
Publication of WO2018153137A1 publication Critical patent/WO2018153137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/325Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors involving voltage comparison

Definitions

  • the invention relates to the technical field of power electronic technology and direct current power distribution, and particularly relates to a method and a device for identifying a single pole ground fault of a flexible DC distribution network, and a computer storage medium.
  • the multi-terminal flexible DC power distribution system refers to a flexible DC consisting of two or more voltage source converters (VSC, Voltage Source Converter) under the same DC grid, and the DC side of the converter port is connected in parallel or in series. Distribution System.
  • VSC voltage source converter
  • Voltage Source Converter Voltage Source Converter
  • Distribution System Compared with the traditional two-level or three-level VSC, Modular Multilevel Converter (MMC) has the advantages of easy expansion, low harmonic distortion, low switching loss, and strong fault handling capability.
  • MMC Modular Multilevel Converter
  • the inverter topology is preferred for the distribution network.
  • the grounding mode of the modular multilevel converter is selected to be grounded via a large resistor on the side of the AC valve.
  • the identification and elimination of DC single-pole ground fault is realized by differential protection.
  • the fault DC voltage becomes 0, and the non-fault DC voltage becomes 2 times the rated value.
  • the current at the fault is small, and there is a DC voltage offset at the valve side voltage of the converter, which affects the accuracy of fault detection.
  • the time for starting the differential protection is slow. If the faulty busbar cannot be quickly isolated, the device may overvoltage, start overvoltage protection, lock the inverter and the converter exit the operation, affecting the reliability of the power supply. .
  • the embodiments of the present invention are directed to a method and a device for identifying a single-pole ground fault of a flexible DC distribution network, and a computer storage medium, which are used to solve the problem that the prior art cannot accurately detect a single-pole ground fault.
  • an embodiment of the present invention provides a method for identifying a single-pole ground fault of a flexible DC distribution network, the method comprising the following steps:
  • the current of the positive DC bus of the converter outlet in the step 2) is connected to the positive current of the DC line connected to the positive DC bus, or the current of the negative DC bus is connected to the DC bus of the negative DC.
  • the differential current change rate between the negative currents of the line is greater than the set current threshold, including: the differential current change rate between the current of the positive DC bus of the converter outlet and the positive current of the positive DC bus connected to the DC line is greater than
  • the pulse spread of the constant current threshold is t p milliseconds, or the differential current change rate between the current of the negative DC bus and the negative current of the DC link of the negative DC bus is greater than the pulse spread of the set current threshold by t p milliseconds.
  • the absolute value of the sum of the ground voltage of the positive current DC bus of the converter outlet and the ground voltage of the negative DC bus in step 2) is greater than a set voltage threshold, including: The absolute value of the sum of the ground voltage of the positive DC bus of the current outlet and the ground voltage of the negative DC bus is greater than the pulse width of the set voltage threshold by t s milliseconds.
  • the method further includes: after determining that the DC bus has a single pole ground fault, tripping the DC circuit breaker connected to the bus bar to isolate the fault bus.
  • an embodiment of the present invention further provides a device for identifying a single-pole ground fault of a flexible DC distribution network, the device comprising:
  • the collecting unit is configured to obtain the current and the ground voltage of the positive DC bus of the converter outlet, the current and the ground voltage of the negative DC bus, the positive current of the DC line connected to the positive DC bus, and the DC connected to the negative DC line. Negative current of the line;
  • the identification unit is configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, and the current of the positive DC bus of the converter outlet and the positive DC When the differential current between the positive current of the bus line connected to the DC line or the current of the negative DC bus and the negative current of the negative DC bus connected to the DC line is greater than the set current threshold, the corresponding positive or negative DC bus is determined. A single pole ground fault has occurred.
  • the identification unit is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, And the differential current between the current of the positive current DC bus of the converter and the positive current of the positive DC bus is greater than the pulse width of the set current threshold t p milliseconds, or the current of the negative DC bus and the negative DC When the differential current change rate between the negative currents of the bus-connected DC line is greater than the pulse spread of the set current threshold by t p milliseconds, it is determined that the corresponding positive or negative DC bus has a single-pole ground fault.
  • the identifying unit is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold
  • the pulse spread is t s milliseconds, and the difference between the current of the positive DC bus of the converter outlet and the positive current of the DC line connected to the positive DC bus, or the current of the negative DC bus and the negative current of the DC link of the negative DC bus are connected.
  • the current change rate is greater than the set current threshold, it is determined that the corresponding positive or negative DC bus has a unipolar ground fault.
  • the identifying unit is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold The pulse is stretched by ts milliseconds, and the differential current between the current of the positive DC bus of the converter and the positive current of the positive DC bus is greater than the pulse width of the set current threshold by t p milliseconds, or the negative DC bus.
  • the differential current between the current of the DC line connected to the negative DC bus and the negative current of the DC line is greater than the pulse width of the set current threshold by t p milliseconds, it is determined that the corresponding positive or negative DC bus has a single pole ground fault.
  • the apparatus further includes an isolation unit configured to: after the identification unit detects a single-pole ground fault, send a fault detection signal to the control system, quickly tripping the converter outlet and Line DC breaker to isolate the faulty bus.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, where the computer executable instructions are used to execute an embodiment of the present invention.
  • the unipolar ground fault identification method for flexible DC distribution network is not limited to flexible DC distribution network.
  • the beneficial effects of the technical solutions of the embodiments of the present invention include: changing the differential current of the positive and negative bus currents and the DC current connected to the positive and negative bus bars as the transient protection criterion, and the positive and negative DC
  • the absolute value of the voltage and the ground voltage of the busbar is used as the voltage imbalance criterion.
  • both criteria exceed the threshold, the single-pole ground fault can be accurately detected, and the faulty busbar can be quickly identified.
  • the ground fault DC busbar is generated by jumping off.
  • the DC circuit breaker realizes the fast isolation of the faulty busbar and improves the reliability of the power supply of the DC distribution network.
  • FIG. 1 is a schematic flow chart of a method for identifying a single-pole ground fault of a flexible DC distribution network according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of a single pole ground fault measuring point of a flexible DC distribution network according to an embodiment of the present invention
  • FIG. 3 is a logic block diagram of a single pole ground fault location of a flexible DC distribution network according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a single pole ground fault identification device for a flexible DC distribution network according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for identifying a single-pole ground fault of a flexible DC distribution network according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • Step 101 Obtain the current and the ground voltage of the positive DC bus of the converter outlet, the current and the ground voltage of the negative DC bus, the positive current of the DC line connected to the positive DC bus, and the DC line connected to the negative DC line. Negative current.
  • Step 102 When the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, and the current of the positive DC bus of the converter outlet is connected to the positive DC bus. When the differential current between the positive current of the DC line or the current of the negative DC bus and the negative current of the DC link of the negative DC bus is greater than the set current threshold, the corresponding positive or negative DC bus occurrence is determined. Extreme ground fault.
  • the differential current change rate is greater than the set current threshold, specifically: the differential current between the current of the positive DC bus of the converter and the positive current of the DC bus connected to the positive DC bus is greater than the set current threshold.
  • the pulse spread is t p milliseconds, or the differential current change rate between the current of the negative DC bus and the negative current of the DC link of the negative DC bus is greater than the pulse spread of the set current threshold by t p milliseconds.
  • the absolute value of the sum of the ground voltage of the positive current DC bus of the converter and the ground voltage of the negative DC bus is greater than a set voltage threshold, specifically: the converter outlet positive DC
  • the absolute value of the sum of the ground voltage of the bus bar and the ground voltage of the negative DC bus is greater than the pulse spread of the set voltage threshold by t s milliseconds.
  • the absolute value of the sum of the ground voltage of the positive current DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, and the current of the positive DC bus of the converter outlet and the positive pole
  • the differential current change rate between the positive current of the DC bus connected to the DC line is greater than the pulse spread of the set current threshold by t p milliseconds, or the difference between the current of the negative DC bus and the negative current of the DC link connected to the negative DC bus.
  • the current change rate is greater than the pulse width of the set current threshold by t p milliseconds, it is determined that the corresponding positive or negative DC bus has a unipolar ground fault.
  • the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than the pulse width of the set voltage threshold by t s milliseconds, and the converter outlet is positive.
  • the current between the current of the DC bus and the positive current of the DC bus connected to the positive DC bus, or the negative current of the negative DC bus and the negative current of the negative DC bus are greater than the set current threshold, it is determined. A single pole ground fault occurs on the corresponding positive or negative DC bus.
  • the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than the pulse width of the set voltage threshold by ts milliseconds, and the converter outlet is positive DC.
  • the differential current between the current of the bus and the positive DC bus connected to the positive current of the DC line is greater than the pulse width of the set current threshold by t p milliseconds, or the current of the negative DC bus is connected to the negative current of the DC link of the negative DC bus.
  • the method further includes:
  • Step 103 After determining that the positive or negative DC bus has a unipolar ground fault, the DC circuit breaker connected to the busbar is tripped to isolate the faulty bus.
  • the differential current change rate of the positive and negative bus currents and the DC line current connected to the positive and negative bus bars is used as a transient value protection criterion, and the positive and negative voltages are positive and negative.
  • the absolute value of the voltage and the ground voltage of the pole DC bus is used as the voltage imbalance criterion. When both criteria exceed the threshold, the single pole ground fault can be accurately detected, and the fault bus is quickly identified, and the ground fault DC occurs through the trip.
  • the DC circuit breaker where the busbar is located realizes the rapid isolation of the faulty busbar and improves the reliability of the power supply of the DC distribution network.
  • a DC bus of a flexible DC distribution network is shown in Figure 2.
  • the MMC converter station is connected to the positive and negative DC busbars respectively.
  • the DC circuit breakers are provided on the positive and negative DC busbars, respectively K 0P , K 0N , and positive poles.
  • the DC bus is connected to the first DC line and the second DC line through the circuit breaker K 0P .
  • the first DC line is provided with a first reactor X 1 and a circuit breaker K 1P connected in series, and the second DC line is connected in series.
  • the second reactor X 2 and the DC breaker K 2P is shown in Figure 2.
  • the negative DC bus is connected to the third DC line and the fourth DC line through the circuit breaker K 0N , and the third DC line is respectively provided with a third reactor X 3 and a circuit breaker K 1N , and the fourth DC line A fourth reactor X 4 and a DC breaker K 2N are provided .
  • corresponding current measuring points, voltage measuring points, and corresponding current measuring points are set on the first, second, third, and fourth DC lines respectively at the positive and negative bus bars of the converter outlet.
  • the current detected by the current measuring point of the positive DC bus is I 0P
  • the voltage detected by the voltage measuring point is U 0P
  • the current detected by the current measuring point of the first DC line is I 1P
  • the current measuring point of the second DC line is detected .
  • the current is I 2P .
  • the current detected by the current measuring point of the negative DC bus is I 0N
  • the ground voltage detected by the voltage measuring point is U 0N
  • the current detected by the current measuring point of the third DC line is I 1N
  • the current measuring point of the fourth DC line is detected The current is I 2N .
  • the current I 0P of the current measuring point of the positive DC bus of the MMC converter outlet, the current I 1P of the first DC line, and the current I 2P of the second DC line are detected.
  • detecting the current I 0N of the negative DC bus, the current I 1N of the third DC line, and the current I 2N of the fourth DC line and simultaneously detecting the ground voltages U 0P and U 0N , and the two ground voltages U 0P , U 0N
  • the absolute value of the sum is compared with the set voltage threshold U dcset , and the current I 0P is subtracted from the current I 1P and I 2P respectively, and the differential current change rate is compared with the set current threshold dI dc1set , and the current I 0N is respectively
  • the difference current rate of the subtracted currents I 1N and I 2N is compared with the set current threshold dI dc2set .
  • a corresponding control protection device is set in the converter station, the sampling frequency is 10 kHz, and the program execution period of the control protection system is 100 microseconds.
  • the protection system detects the DC bus single pole ground fault, the protection system sends a protection signal to the control system.
  • the control system sends a command to trip the DC circuit breaker connected to the bus and isolate the fault bus.
  • the embodiment of the present invention further provides a unipolar ground fault identification device for a flexible DC distribution network.
  • the device includes:
  • the collecting unit 10 is configured to obtain a current and a ground voltage of the positive DC bus of the converter outlet, a current of the negative DC bus and a ground voltage, a positive current of the DC line connected to the positive DC bus, and a positive current connected to the negative DC line.
  • the negative current of the DC line is configured to obtain a current and a ground voltage of the positive DC bus of the converter outlet, a current of the negative DC bus and a ground voltage, a positive current of the DC line connected to the positive DC bus, and a positive current connected to the negative DC line.
  • the identification unit 20 is configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, and the current of the positive DC bus of the converter outlet and the positive pole When the differential current between the positive current of the DC bus connected to the DC line or the current of the negative DC bus and the negative current of the negative DC bus connected to the DC line is greater than the set current threshold, determine the corresponding positive or negative DC A single pole ground fault has occurred on the bus.
  • the identification unit 20 is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter outlet and the ground voltage of the negative DC bus is greater than a set voltage threshold, and The differential current between the current of the positive current DC bus of the current outlet and the positive current of the positive DC bus is greater than the pulse width of the set current threshold by t p milliseconds, or the current of the negative DC bus is connected to the negative DC bus.
  • the differential current change rate between the negative currents of the DC line is greater than the pulse spread of the set current threshold by t p milliseconds, it is determined that the corresponding positive or negative DC bus has a single pole ground fault.
  • the identification unit 20 is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter and the ground voltage of the negative DC bus is greater than the set voltage threshold, the pulse broadening t s milliseconds, and the differential current between the current of the positive DC bus of the converter outlet and the positive current of the DC line connected to the positive DC bus, or the current of the negative DC bus and the negative current of the DC link of the negative DC bus When the rate is greater than the set current threshold, it is determined that the corresponding positive or negative DC bus has a unipolar ground fault.
  • the identification unit 20 is further configured to: when the absolute value of the sum of the ground voltage of the positive DC bus of the converter and the ground voltage of the negative DC bus is greater than the set voltage threshold, the pulse broadening t s milliseconds, and the differential current between the current of the positive DC bus of the converter and the positive current of the positive DC bus is higher than the pulse width of the set current threshold by t p milliseconds, or the negative DC bus When the differential current between the current and the negative DC bus connected to the negative current of the DC line is greater than the pulse width of the set current threshold by t p milliseconds, it is determined that the corresponding positive or negative DC bus has a single pole ground fault.
  • the apparatus further includes an isolation unit 30 configured to: after the identification unit 20 detects a single pole ground fault, send a fault detection signal to the control system to quickly open the commutation The DC circuit breaker at the outlet and line to isolate the faulty bus.
  • the functions of the processing units in the single-pole ground fault identification device of the flexible DC distribution network according to the embodiments of the present invention can be understood by referring to the related description of the unipolar ground fault identification method of the flexible DC distribution network.
  • the processing unit in the unipolar ground fault identification device of the flexible DC distribution network in the embodiment of the present invention may be implemented by using an analog circuit that implements the functions described in the embodiments of the present invention, or may perform the functions described in the embodiments of the present invention.
  • the software is implemented by running on a smart terminal.
  • the unit 10, the identification unit 20, and the isolation unit 30 in the single-pole ground fault identification device of the flexible DC distribution network may be used by the flexible DC distribution network in practical applications.
  • the single-pole ground fault identification device of the flexible DC distribution network can accurately detect the single-pole ground fault.
  • the above-mentioned flexible DC distribution network single-pole ground fault identification device is actually a computer solution based on the method flow of the present invention, that is, a software architecture, which can be applied to a converter station, and the above device is The process corresponding to the method flow. Since the introduction of the above method is sufficiently clear and complete, and the device claimed in this embodiment is actually a software architecture, it will not be described in detail.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the embodiment of the present invention.
  • the method for identifying a single pole ground fault of a flexible DC distribution network After the computer executable instructions are executed by the processor, the method for identifying one or more of the foregoing flexible DC distribution grid single pole ground faults can be implemented.
  • the computer storage medium may be various types of storage media, and may be preferably a non-transitory storage medium in this embodiment.
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the components shown or discussed The coupling, or direct coupling, or communication connection between the components may be an indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the differential current change rate of the positive and negative bus currents and the DC line current connected to the positive and negative bus bars is used as a transient value protection criterion, and the ground voltage of the positive and negative DC bus bars is used.
  • the absolute value of the sum is used as the voltage imbalance criterion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种柔性直流配电网单极接地故障识别方法及装置、计算机存储介质,其中,所述方法包括:1)获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流(101);2)当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障(102)。

Description

柔性直流配电网单极接地故障识别方法及装置、存储介质
相关申请的交叉引用
本申请基于申请号为201710105811.1、申请日为2017年02月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及电力电子技术与直流配电技术领域,具体涉及一种柔性直流配电网单极接地故障识别方法及装置、计算机存储介质。
背景技术
多端柔性直流配电***是指在同一直流网架下,含有2个以上电压源换流器(VSC,Voltage Source Converter),换流端口直流侧采用并联或串联的方式相互连接而组成的柔性直流配电***。模块化多电平换流器(MMC,Modular Multilevel Converter)相对于传统两电平或三电平VSC,具有易于扩展、谐波畸变小、开关损耗低、故障处理能力强等优点,成为柔性直流配电网优先采用的换流器拓扑,一般情况下,模块化多电平换流器的接地方式选择交流阀侧经大电阻接地。
目前,直流单极接地故障的识别及排除是通过差动保护实现的,当母线发生单极金属性接地故障时,故障极直流电压变为0,非故障极直流电压变为2倍额定值,故障处的电流较小,换流器阀侧电压存在直流电压偏置,影响故障检测的准确性。并且,现有技术中启动差动保护的时间较慢,如果不能快速隔离故障母线,可能会造成设备过压、启动过压保护、闭锁换流器及换流器退出运行,影响供电的可靠性。
发明内容
本发明实施例期望提供一种柔性直流配电网单极接地故障识别方法及装置、计算机存储介质,用于解决现有技术无法准确检测出单极接地故障的问题。
为解决上述技术问题,第一方面,本发明实施例提出了一种柔性直流配电网单极接地故障识别方法,所述方法包括以下步骤:
1)获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流;
2)当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,可选地,步骤2)中所述换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值,包括:换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒。
在一实施例中,可选地,步骤2)中所述换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,包括:换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒。
在一实施例中,可选地,所述方法还包括:判定直流母线发生单极接地故障后,跳开与母线相连的直流断路器,以隔离故障母线。
为解决上述技术问题,第二方面,本发明实施例还提出了一种柔性直流配电网单极接地故障识别装置,所述装置包括:
采集单元,配置为获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流;
识别单元,配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,可选地,所述识别单元,还配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,可选地,所述识别单元,还配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,可选地,所述识别单元,还配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,可选地,所述装置还包括隔离单元,配置为:在所述识别单元检测到单极接地故障后,发送故障检测信号至控制***,快速跳开换流器出口和线路的直流断路器,以隔离故障母线。
为解决上述技术问题,第三方面,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的柔性直流配电网单极接地故障识别方法。
本发明实施例所述技术方案的有益效果包括:将正、负极母线电流、与对应正、负极母线相连的直流线路电流的差动电流变化率作为暂态量保护判据,将正、负极直流母线的对地电压和的绝对值作为电压不平衡判据,当两个判据都超过阈值时,能准确检测出单极接地故障,并快速识别故障母线,通过跳开发生接地故障直流母线所在的直流断路器,实现故障母线的快速隔离,提高了直流配电网的供电可靠性。
附图说明
图1为本发明实施例的一种柔性直流配电网单极接地故障识别方法的流程示意图;
图2是本发明实施例的柔性直流配电网单极接地故障测点配置图;
图3是本发明实施例的柔性直流配电网单极接地故障定位逻辑框图;
图4为本发明实施例的一种柔性直流配电网单极接地故障识别装置的组成结构示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。所附附图仅供参考说明之用,并非用来限定本发明实施例。
图1为本发明实施例的一种柔性直流配电网单极接地故障识别方法的流程示意图,如图1所示,所述方法包括以下步骤:
步骤101:获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流。
步骤102:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
作为一种可选实施方式,所述换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值,具体为:换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒。
作为一种可选实施方式,所述换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,具体为:换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对 值大于设定的电压阈值的脉冲展宽ts毫秒。
在一实施例中,当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
进一步地,所述方法还包括:
步骤103(在图1中未示出):判定正极或负极直流母线发生单极接地故障后,跳开与母线相连的直流断路器,以隔离故障母线。
本发明实施例的技术方案,将正、负极母线电流、与对应正、负极母线相连的直流线路电流的差动电流变化率作为暂态量保护判据,将正、负 极直流母线的对地电压和的绝对值作为电压不平衡判据,当两个判据都超过阈值时,能准确检测出单极接地故障,并快速识别故障母线,通过跳开发生接地故障直流母线所在的直流断路器,实现故障母线的快速隔离,提高了直流配电网的供电可靠性。
一种柔性直流配电网的直流母线如图2所示,MMC换流站分别连接正极、负极直流母线,正极、负极直流母线上均设有直流断路器,分别为K0P、K0N,正极直流母线通过断路器K0P连接第一直流线路、第二直流线路,第一直流线路上设有串联的第一电抗器X1和断路器K1P,第二直流线路上设有串联的第二电抗器X2和直流断路器K2P。与正极直流母线相对应,负极直流母线通过断路器K0N连接第三直流线路、第四直流线路,第三直流线路上分别设有第三电抗器X3和断路器K1N,第四直流线路设有第四电抗器X4和直流断路器K2N
如图2所示,分别在换流器出口的正、负母线设置相应的电流测点、电压测点,和在第一、第二、第三、第四直流线路上设置相应的电流测点。正极直流母线的电流测点检测的电流为I0P、电压测点检测到的电压为U0P,第一直流线路的电流测点检测的电流为I1P,第二直流线路的电流测点检测的电流为I2P。负极直流母线的电流测点检测的电流为I0N、电压测点检测的对地电压为U0N,第三直流线路的电流测点检测的电流为I1N,第四直流线路的电流测点检测的电流为I2N
当图2中的正极直流母线处发生接地故障时,检测MMC换流器出口正极直流母线的电流测点的电流I0P、第一直流线路的电流I1P、第二直流线路的电流I2P,检测负极直流母线的电流I0N、第三直流线路的电流I1N、第四直流线路的电流I2N,同时检测对地电压U0P、U0N,将两个对地电压U0P、U0N之和的绝对值与设定的电压阈值Udcset比较,将电流I0P分别减去电流I1P、I2P的差流变化率与设定的电流阈值dIdc1set进行比较,同时将电流I0N分别减去电流I1N、I2N的差流变化率与设定的电流阈值dIdc2set进行比较。当I0P分 别减去电流I1P、I2P的差流变化率大于dIdc1set,I0N分别减去电流I1N、I2N的差流变化率大于dIdc2set,且大于脉冲展宽tp毫秒时,判定当前直流母线存在故障。当对地电压U0P、U0N之和的绝对值大于Udcset时,且大于脉冲展宽ts毫秒,判定直流母线发生单极接地故障,此路信号为电压不平衡信号。即电压不平衡信号和差动电流变化率保护信号都为1时,表明直流母线发生单极接地故障,单极接地故障定位逻辑框图如图3所示。
在换流站内设置相应的控制保护装置,采样频率为10kHz,控制保护***程序执行周期为100微秒。当保护***检测到直流母线单极接地故障后,保护***将保护信号发送给控制***,控制***发送指令,跳开与母线相连的直流断路器,隔离故障母线。
与上述单极接地故障识别方法相对应,本发明实施例还提供了一种柔性直流配电网单极接地故障识别装置,如图4所示,所述装置包括:
采集单元10,配置为获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流。
识别单元20,配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,所述识别单元20,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的 差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,所述识别单元20,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,所述识别单元20,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
在一实施例中,所述装置还包括隔离单元30,所述隔离单元30配置为:在所述识别单元20检测到单极接地故障后,发送故障检测信号至控制***,快速跳开换流器出口和线路的直流断路器,以隔离故障母线。
本领域技术人员应当理解,本发明实施例的柔性直流配电网单极接地故障识别装置中各处理单元的功能,可参照前述柔性直流配电网单极接地故障识别方法的相关描述而理解,本发明实施例的柔性直流配电网单极接地故障识别装置中各处理单元,可通过实现本发明实施例所述的功能的模拟电路而实现,也可以通过执行本发明实施例所述的功能的软件在智能终端上的运行而实现。
本实施例中,所述柔性直流配电网单极接地故障识别装置中的才几单元10、识别单元20、隔离单元30,在实际应用中可由所述柔性直流配电网 单极接地故障识别装置或所述柔性直流配电网单极接地故障识别装置所属设备中的中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)或可编程门阵列(FPGA,Field-Programmable Gate Array)等实现。
本发明实施例的柔性直流配电网单极接地故障识别装置,能够准确检测出单极接地故障。
上述所指的柔性直流配电网单极接地故障识别装置,实际上是基于本发明方法流程的一种计算机解决方案,即一种软件构架,可以应用到换流站中,上述装置即为与方法流程相对应的处理进程。由于对上述方法的介绍已经足够清楚完整,而本实施例声称的装置实际上是一种软件构架,故不再详细进行描述。
与上述单极接地故障识别方法相对应,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的柔性直流配电网单极接地故障识别方法。所述计算机可执行指令被处理器执行之后,能够实现前述任意一项或多项柔性直流配电网单极接地故障识别的方法。
所述计算机存储介质可为各种类型的存储介质,在本实施例中可优选为非瞬间存储介质。
本领域技术人员应当理解,本实施例的存储介质中各程序的功能,可参照实施例所述的柔性直流配电网单极接地故障识别方法的相关描述而理解。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部 分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
工业实用性
本发明实施例的技术方案,将正、负极母线电流、与对应正、负极母线相连的直流线路电流的差动电流变化率作为暂态量保护判据,将正、负极直流母线的对地电压和的绝对值作为电压不平衡判据,当两个判据都超过阈值时,能准确检测出单极接地故障,并快速识别故障母线,通过跳开发生接地故障直流母线所在的直流断路器,实现故障母线的快速隔离,提高了直流配电网的供电可靠性。

Claims (10)

  1. 一种柔性直流配电网单极接地故障识别方法,所述方法包括以下步骤:
    1)获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流;
    2)当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
  2. 根据权利要求1所述的柔性直流配电网单极接地故障识别方法,其中,步骤2)中所述换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值,包括:
    换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒。
  3. 根据权利要求1所述的柔性直流配电网单极接地故障识别方法,其中,步骤2)中所述换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,包括:
    换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒。
  4. 根据权利要求1所述的柔性直流配电网单极接地故障识别方法,其 中,所述方法还包括:
    判定直流母线发生单极接地故障后,跳开与母线相连的直流断路器,以隔离故障母线。
  5. 一种柔性直流配电网单极接地故障识别装置,所述装置包括:
    采集单元,配置为获取换流器出口正极直流母线的电流与对地电压,负极直流母线的电流与对地电压,与正极直流母线相连的直流线路的正极电流,及与负极直流线路相连的直流线路的负极电流;
    识别单元,配置为当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
  6. 根据权利要求5所述的柔性直流配电网单极接地故障识别装置,其中,所述识别单元,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
  7. 根据权利要求5所述的柔性直流配电网单极接地故障识别装置,其中,所述识别单元,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒,且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间、或者负极直流母线的电流与负极直流母线相连直流线路的 负极电流之间的差动电流变化率大于设定的电流阈值时,判定相应的正极或负极直流母线发生单极接地故障。
  8. 根据权利要求5所述的柔性直流配电网单极接地故障识别装置,其中,所述识别单元,还配置为:当换流器出口正极直流母线的对地电压与负极直流母线的对地电压之和的绝对值大于设定的电压阈值的脉冲展宽ts毫秒且换流器出口正极直流母线的电流与正极直流母线相连直流线路的正极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒,或者负极直流母线的电流与负极直流母线相连直流线路的负极电流之间的差动电流变化率大于设定的电流阈值的脉冲展宽tp毫秒时,判定相应的正极或负极直流母线发生单极接地故障。
  9. 根据权利要求5所述的柔性直流配电网单极接地故障识别装置,其中,所述装置还包括隔离单元,配置为在所述识别单元检测到单极接地故障后,发送故障检测信号至控制***,跳开换流器出口和线路的直流断路器,以隔离故障母线。
  10. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至4任一项所述的柔性直流配电网单极接地故障识别方法。
PCT/CN2017/114144 2017-02-24 2017-11-30 柔性直流配电网单极接地故障识别方法及装置、存储介质 WO2018153137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710105811.1 2017-02-24
CN201710105811.1A CN106680670B (zh) 2017-02-24 2017-02-24 一种柔性直流配电网单极接地故障识别方法及装置

Publications (1)

Publication Number Publication Date
WO2018153137A1 true WO2018153137A1 (zh) 2018-08-30

Family

ID=58862367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114144 WO2018153137A1 (zh) 2017-02-24 2017-11-30 柔性直流配电网单极接地故障识别方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN106680670B (zh)
WO (1) WO2018153137A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680670B (zh) * 2017-02-24 2019-04-23 许继集团有限公司 一种柔性直流配电网单极接地故障识别方法及装置
CN107240910B (zh) * 2017-05-27 2019-03-29 天津大学 一种直流微网接地故障保护方法
CN107093891B (zh) * 2017-06-27 2018-09-04 国家电网公司 一种柔性变电站***直流线路保护方法及装置
CN107478950A (zh) * 2017-07-28 2017-12-15 许继集团有限公司 一种直流线路双极短路故障的辨识方法
CN107453386A (zh) * 2017-08-24 2017-12-08 中国南方电网有限责任公司 输电控制方法及柔性直流输电装置
CN107515356A (zh) * 2017-10-23 2017-12-26 华北电力大学(保定) 一种直流配电网***及其故障诊断方法
CN108107319A (zh) * 2017-11-27 2018-06-01 山东大学 一种多端柔性直流电网故障定位方法及***
CN108375711A (zh) * 2018-02-26 2018-08-07 南京华脉科技股份有限公司 一种双极不接地hvdc电源***的绝缘监察方法
CN108418239B (zh) * 2018-04-26 2021-02-02 南方电网科学研究院有限责任公司 柔性直流输电***功率控制方法和装置
CN108663602B (zh) * 2018-05-14 2019-07-23 山东大学 柔性直流配电网单极故障选线与区段定位方法及***
CN108680823B (zh) * 2018-05-14 2021-01-12 南方电网科学研究院有限责任公司 针对直流架空线路单极接地故障的检测方法
CN108616113B (zh) * 2018-05-16 2019-07-30 天津大学 一种小电流接地直流配电***接地故障保护方法
CN108957245B (zh) * 2018-09-26 2020-09-01 北京四方继保自动化股份有限公司 一种基于全故障电流的柔性直流配电网单极故障辨识方法
CN110231540B (zh) * 2019-06-04 2020-07-28 西安交通大学 一种用于伪双极直流输配电线路单极接地故障定位***
CN110350500B (zh) * 2019-08-13 2021-08-27 南京南瑞继保电气有限公司 伪双极直流配电网保护方法、装置、***、设备及介质
CN110927523A (zh) * 2019-11-29 2020-03-27 国电南瑞科技股份有限公司 一种柔性直流配电网故障定位方法
CN111987702B (zh) * 2020-08-21 2022-09-06 南京工程学院 基于直流断路器的柔性直流配电线路保护装置和方法
CN112886551B (zh) * 2021-01-19 2022-07-08 国网江苏省电力有限公司徐州供电分公司 Mmc换流器直流配电网单极高阻接地故障保护方法
CN112904142B (zh) * 2021-01-19 2023-05-30 国网江苏省电力有限公司徐州供电分公司 一种经箝位电阻接地直流配电网单极接地故障保护方法
CN113030653B (zh) * 2021-05-06 2022-02-01 重庆大学 一种用于直流电网单端保护的故障识别方法
CN113625124B (zh) * 2021-09-18 2023-06-13 广东电网有限责任公司 一种直流配电网单极故障线路的确定方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856881A (zh) * 2012-09-05 2013-01-02 华北电力大学 一种全桥mmc-hvdc直流故障分类检测与保护方法
CN104820157A (zh) * 2015-04-30 2015-08-05 国家电网公司 一种柔性直流输电***直流单极接地故障判断方法
CN105552947A (zh) * 2016-01-13 2016-05-04 特变电工新疆新能源股份有限公司 一种柔性直流输电***直流单极接地故障检测方法
WO2016156435A1 (en) * 2015-03-30 2016-10-06 General Electric Technology Gmbh Converters
CN106680670A (zh) * 2017-02-24 2017-05-17 许继集团有限公司 一种柔性直流配电网单极接地故障识别方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856881A (zh) * 2012-09-05 2013-01-02 华北电力大学 一种全桥mmc-hvdc直流故障分类检测与保护方法
WO2016156435A1 (en) * 2015-03-30 2016-10-06 General Electric Technology Gmbh Converters
CN104820157A (zh) * 2015-04-30 2015-08-05 国家电网公司 一种柔性直流输电***直流单极接地故障判断方法
CN105552947A (zh) * 2016-01-13 2016-05-04 特变电工新疆新能源股份有限公司 一种柔性直流输电***直流单极接地故障检测方法
CN106680670A (zh) * 2017-02-24 2017-05-17 许继集团有限公司 一种柔性直流配电网单极接地故障识别方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, GANG ET AL.: "Research on the Fault Location Method and Protection Configuration Strategy of MMC Based DC Distribution Grid", POWER SYSTEM PROTECTION AND CONTROL, vol. 43, no. 22, 16 November 2015 (2015-11-16), pages 127 - 133, ISSN: 1674-3415 *

Also Published As

Publication number Publication date
CN106680670B (zh) 2019-04-23
CN106680670A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018153137A1 (zh) 柔性直流配电网单极接地故障识别方法及装置、存储介质
CN106707081B (zh) 柔性直流配电网单极接地故障识别、故障保护方法
Zhang et al. Fault property identification method and application for MTDC grids with hybrid DC circuit breaker
CN108448540B (zh) 一种基于零序电流比较的小电阻接地***接地故障保护方法
CN106950459B (zh) 一种分布式单相接地故障判定方法
CN107727990B (zh) 一种配网弧光接地故障辨识方法
KR101438041B1 (ko) 전력회로 개폐기용 제어 회로
CN107437794A (zh) 直流微电网母线故障识别方法、装置和直流微电网***
CN110165642B (zh) 应对相邻变电站直流失压的广域保护方法、装置及设备
CN102163841B (zh) 过电压抑制装置
CN111969575B (zh) 配电网单相接地故障消弧方法、装置、设备及存储介质
Singh et al. Intelligent techniques for fault diagnosis in transmission lines—An overview
CN102435896A (zh) 船舶中压电力***中间歇性接地故障的快速识别方法
CN104124680A (zh) 消弧消谐选线及过电压保护装置
CN110221182B (zh) 一种分布式小电流接地选线方法及选线***
WO2004008600A3 (en) Electrical network protection system
CN108539716B (zh) 一种基于暂态量的保护启动方法和装置
CN113176478B (zh) 一种用于低压配电网的并联电弧检测方法
CN110161361B (zh) 电力***接地保护选线方法及选线***
CN110896214B (zh) 一种主动干预型消弧装置选相方法
CN114280421A (zh) 直流配电网故障选择性保护方法、***、装置及存储介质
Tümay et al. Sequence reference frame-based new sag/swell detection method for static transfer switches
Upadhyay et al. Design and implementation of adaptive autoreclosure for EHV transmission line
KR100904665B1 (ko) 저항성 누전전류로 작동되는 누전차단기
Klosinski et al. Hybrid Circuit Breaker-based Fault Detection and Interruption in 380V DC Test-setup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898149

Country of ref document: EP

Kind code of ref document: A1