WO2018151538A1 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
WO2018151538A1
WO2018151538A1 PCT/KR2018/001951 KR2018001951W WO2018151538A1 WO 2018151538 A1 WO2018151538 A1 WO 2018151538A1 KR 2018001951 W KR2018001951 W KR 2018001951W WO 2018151538 A1 WO2018151538 A1 WO 2018151538A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
discharge chamber
rib
electric compressor
rear housing
Prior art date
Application number
PCT/KR2018/001951
Other languages
French (fr)
Korean (ko)
Inventor
김홍민
정수철
임권수
임재훈
신인철
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170022412A external-priority patent/KR102530820B1/en
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to JP2019500564A priority Critical patent/JP6742499B2/en
Priority to CN201880002829.1A priority patent/CN109477483B/en
Priority to US16/314,566 priority patent/US11073316B2/en
Priority to DE112018000059.1T priority patent/DE112018000059T5/en
Publication of WO2018151538A1 publication Critical patent/WO2018151538A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise

Definitions

  • the present invention relates to an electric compressor for minimizing vibration noise generated when a refrigerant chamber is discharged into the rear housing.
  • the compressor used in the air conditioning system sucks the evaporated refrigerant from the evaporator, converts it into a high temperature and high pressure state, which is easy to liquefy, and transfers the same to the condenser.
  • the compressor has a reciprocating type that performs the compression while the drive source for the compression to the refrigerant reciprocating and a rotary type that performs the compression while rotating, the reciprocating type to transfer the driving force of the drive source to the plurality of pistons using the crank
  • a crank type a swash plate type to be transmitted to a rotating shaft provided with a swash plate, and a wobble plate type using a wobble plate.
  • the rotary type there is a vane rotary type using a rotary rotary shaft and vanes, and a scroll type using a rotating scroll and a fixed scroll, and both the rotary, swash plate, and wobble plate types generate vibrations as high-pressure refrigerant is discharged into the discharge chamber. If the vibration is not attenuated for a certain time, pulsation due to vibration noise is caused in the rear housing having the discharge chamber.
  • the electric compressor is provided with a rear housing 10 in which a discharge chamber 11 through which refrigerant is discharged is formed. Since the rear housing 10 is made of a flat plate formed flat when viewed from the outside of the electric compressor, the volume of the discharge chamber 11 has a limited volume. In addition, the oil separator 20 is disposed obliquely on the rear housing 10 as shown in the drawing.
  • vibration noise is generated due to the tremor of the rear housing 10, which causes abnormal vibration of the vehicle or the air conditioning system equipped with the electric compressor. It acts as an inducing factor and needs countermeasures.
  • Embodiments of the present invention provide an electric compressor in which abnormal vibration and noise are minimized by increasing the internal volume of the discharge chamber of the rear housing so as to minimize vibration and noise caused by the discharge of the refrigerant in the electric compressor.
  • An electric compressor includes a rear housing 100 having a discharge chamber 110 through which a refrigerant is discharged; And an oil separator 200 disposed in the discharge chamber 110 and having a coolant inlet hole 202 for introducing the coolant therein, wherein the discharge chamber 110 has a volume outside the rear housing 100. Increased and protruded in multiple stages, characterized in that the interior of the discharge chamber 110 is divided into different volumes based on the oil separator 200.
  • the discharge chamber 110 may include a first chamber 112 partially protruding from the rear housing 100 in a protruding direction; A second chamber 114 partially protruding from the protruding end of the first chamber 112 at one side of the oil separator 200; And a third chamber 116 directly protruding in the protruding direction from the other side of the oil separator 200.
  • the second chamber 114 is larger in volume than the first chamber 112 or the third chamber 116.
  • the second chamber 114 protrudes longer in the protruding direction of the rear housing 100 than the length from which the first and third chambers 112 and 116 protrude.
  • the second chamber 114 is provided with a rib 300 extending in the circumferential direction of the rear housing 100 inside.
  • the rib 300 includes a first rib 310 formed in a ring shape in the second chamber 114;
  • the second rib 320 includes a plurality of second ribs 320 extending in a radial form from the first rib 310.
  • the second chamber 114 is provided with a third rib 330 divided into a plurality in the inner circumferential direction.
  • the first rib 310 and the second rib 320 may be formed in different thicknesses.
  • the first rib 310 is thicker than the second rib 320.
  • the oil separator 200 is characterized in that it is disposed eccentrically on one side with respect to the center of the rear housing (100).
  • the partition 400 for partitioning the interior of the discharge chamber 110 into different areas.
  • the partition 400 is characterized in that the communication portion 410 is formed in different positions.
  • the discharge chamber 110 is a volume ratio of the discharge chamber is set according to the internal volume (V1) of a predetermined size and the refrigerant discharge capacity (cc) of the refrigerant discharged to the discharge chamber 110, the discharge chamber (
  • the volume ratio of 110 is calculated by dividing the internal volume V1 of the discharge chamber 110 by the refrigerant discharge capacity cc, and the volume ratio of the discharge chamber 110 is any one of 2.0 to 3.2 times. Characterized in that the ratio of.
  • the discharge chamber 110 may include a first region S1 having a largest region among a plurality of regions located at different positions by the oil separator 200; A second region S2 having a region relatively smaller than the first region S1; And a third region S3 adjacent to the refrigerant inlet hole 202 and located adjacent to the second region S2.
  • the first region S1 is formed in the shape of a semi-circle, and the refrigerant discharged into the first region S1 diffuses inside the first region S1 or moves along the circumferential direction to reduce noise. It features.
  • the discharge chamber 110 is characterized in that the rib 300 is formed on one side adjacent to the oil separator 200, the rib 300 is not formed on the other side of the oil separator 300.
  • the electric compressor according to the present embodiment is mounted in a vehicle air conditioning system.
  • Embodiments of the present invention can minimize the vibration and noise caused by the discharge of the refrigerant which is the operating medium of the electric compressor, and can prevent the problem caused by the pulsating pressure to achieve a quiet operation of the installation object is installed. .
  • Embodiments of the present invention can improve the overall structural strength of the rear housing by changing the structure to achieve the volume increase and rigidity reinforcement of the discharge chamber at the same time.
  • FIG. 1 is a view showing a rear housing provided in a conventional electric compressor.
  • FIG. 2 is a cross-sectional view showing an electric compressor according to an embodiment of the present invention.
  • FIG 3 is a side view showing a rear housing of the electric compressor according to an embodiment of the present invention.
  • FIG. 4 is a view showing the inside of the rear housing of the electric compressor according to an embodiment of the present invention.
  • FIG. 5 is a view showing a third rib provided in the rear housing of the electric compressor according to another embodiment of the present invention.
  • FIG. 6 is a side view illustrating various embodiments of a discharge chamber formed in the rear housing.
  • FIG. 7 is a graph showing the noise reduction effect according to the volume ratio of the discharge chamber according to an embodiment of the present invention.
  • FIG. 8 is a graph showing the weight according to the volume ratio of the discharge chamber according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a motor-driven compressor according to an embodiment of the present invention
  • Figure 3 is a view showing a rear housing of the motor-driven compressor according to an embodiment of the present invention
  • Figure 4 is a view of the present invention The figure shows the inside of the rear housing of the electric compressor according to the embodiment.
  • the motor-driven compressor 1 performs oil separation of oil contained in a coolant and vibrates in the rear housing 100 by discharge of the coolant. Or to minimize the occurrence of noise to increase the internal volume of the discharge chamber 110 to prevent problems caused by vibration.
  • the present invention is limited to use in a vehicle air conditioning system equipped with a motor-driven compressor, it turns out that it can be applied to industrial compression unit or home air conditioning system.
  • Electric compressor (1) is formed of a front housing (2a) and the intermediate housing (2b) and the rear housing (100) formed in the inlet position where the refrigerant is sucked to form an outer shape
  • the intermediate housing (2b) has a drive unit (inside) 3) and a compression unit 5 are built in
  • the drive part 3 comprises a stator, a rotor, and a rotating shaft 4 inserted in the center of the rotor.
  • the rotational force generated by the motor unit 3 is transmitted to the compression unit 5 to compress and discharge the refrigerant.
  • the compression unit 5 includes a fixed scroll and a swing scroll.
  • the fixed scroll is maintained in a fixed state in the electric compressor (1), the pivoting scroll is installed so as to be eccentrically rotatable with respect to the fixed scroll to compress the refrigerant while the relative movement is made.
  • the rear housing 100 is located at one end of the intermediate housing 2b. More specifically, the rear housing 100 is selectively detachably mounted to the intermediate housing 2b while being in close contact with the right end with reference to the drawings.
  • the refrigerant discharged from the unit 5 is discharged at a predetermined pressure toward the discharge chamber 110 through the discharge hole via the back pressure chamber. And the pressure of the refrigerant discharged to the discharge chamber 110 is discharged at a pressure of about 30bar or so may generate noise.
  • Electric compressor 1 is a rear housing 100 is formed with a discharge chamber 110 for discharging the refrigerant, and the refrigerant inlet hole disposed in the discharge chamber 110 and the refrigerant flows ( 202 is formed, the oil separator 200 is formed, the discharge chamber 110 is increased in volume to the outside of the rear housing 100 protrudes in multiple stages, the discharge chamber based on the oil separator 200 The interior of 110 is divided into different volumes.
  • the discharge chamber 110 may include a first chamber 112 partially protruding from the rear housing 100 in a protruding direction from the rear housing 100 and the first chamber 112 at one side of the oil separator 200.
  • the second chamber 114 partially protrudes from the protruding end of the) and the third chamber 116 protrudes directly in the protruding direction from the other side of the oil separator 200.
  • the first to third chambers 112, 114, and 116 all induce noise reduction through volume increase when the refrigerant is discharged.
  • the first to third chambers 112, 114, and 116 do not have a limited volume and have a discharge chamber 110 having a specific ratio. To reduce the vibration noise caused by the refrigerant discharge.
  • the first chamber 112 is positioned adjacent to the second chamber 114 and is formed in a predetermined size on one side with respect to the center of the discharge chamber 110.
  • the first chamber 112 may protrude in a crescent form to the outside of the rear housing 100.
  • the discharge chamber 110 Since the discharge chamber 110 is subjected to an impact corresponding to the aforementioned pressure range when the refrigerant is discharged, noise may be reduced due to a diffusion effect when the volume of the discharge chamber 110 is increased.
  • the second chamber 114 is located at the center of the discharge chamber 110 adjacent to the first chamber 112, for example, is located at one side of the oil separator 200.
  • the second chamber 114 has a volume larger than that of the first chamber 112 or the third chamber 116.
  • the second chamber 114 has the largest volume since the refrigerant is discharged at a position not seen with the second chamber 114. It consists of.
  • the second chamber 114 When the refrigerant is discharged to the discharge chamber 110, the second chamber 114 may be formed in the above-described position because the second chamber 114 may diffuse in a radial form at an opposite position to induce a noise and vibration reduction effect more advantageously.
  • the layout of the rear housing 110 can be improved without complicating the layout of the rear housing 110, so that the noise attenuation effect can be improved.
  • the second chamber 114 has a larger volume than the first chamber 112, the space for diffusion can be stably maintained when the refrigerant is discharged, thereby improving the noise attenuation effect.
  • the second chamber 114 is maintained in an arrangement form partially surrounded by the first chamber 112 in the circumferential direction.
  • the pressure fluctuation due to the discharge of the refrigerant is primarily diffused in the first chamber 112 and then further diffused in the second chamber 114, which is advantageous in reducing vibration and noise.
  • the second chamber 114 protrudes longer in the protruding direction of the rear housing 100 than the protruding lengths of the first and third chambers 112 and 116.
  • the second chamber 114 has a protruding length protruding in a specific length range and varies according to the specifications of the electric compressor.
  • the third chamber 116 is located on the other side of the oil separator 200 on the basis of the drawing and is composed of a smaller volume than the first and second chambers 112 and 114.
  • the third chamber 116 is positioned at the edge of the rear housing 100 to reduce noise due to the discharge of the refrigerant in consideration of the limited layout of the rear housing 100, and the shape is not limited to the shape shown in the drawings. .
  • the rear housing 100 has ribs 300 extending in the circumferential direction of the rear housing 100 inside the second chamber 114 to minimize vibration caused by the discharge pressure of the refrigerant discharged from the discharge chamber 110. ) Is provided.
  • the rib 300 may be formed at the position to suppress or support vibration or noise generated by the discharge of the refrigerant, thereby achieving rigid reinforcement.
  • the rib 300 includes a first rib 310 formed in a ring shape in the second chamber 114, and a plurality of second ribs 320 extending radially from the first rib 310. .
  • the first rib 310 is formed in a ring shape, when vibration is transmitted to the first rib 310, the vibration of the rear housing 100 is partially transmitted to the second rib 320, which will be described later. Vibration may be diffused in the direction so that the overall vibration in the rear housing 100 is attenuated.
  • the first rib 310 is located at a lower position than the refrigerant inlet hole 202.
  • the second rib 320 is positioned at a position spaced apart from the refrigerant inlet hole 202 to prevent vibration from being transmitted to the refrigerant inlet hole 202, thereby promoting stable movement of the refrigerant gas.
  • vibration and noise generated in the second chamber 114 occupying most of the area of the rear housing 100 may be minimized.
  • the first rib 310 and the second rib 320 according to the present embodiment may have different thicknesses or the same thickness.
  • the time and attenuation amount of the vibration are transmitted may vary depending on the position, so the exact thickness may be changed according to the capacity of the electric compressor through a plurality of experiments.
  • first and second ribs 310 and 320 may be changed to the shapes shown in the drawings or other shapes.
  • the cross section is in the form of either a semi-circle or an ellipse or a polygonal shape.
  • the angles formed between the two ribs 320 may be maintained at a constant level. If the second ribs 320 are different from each other, the second ribs 320 may have different angles.
  • the second chambers 114 are divided into the same area by the second ribs 320 to discharge the refrigerant. It may be most advantageous for reducing vibrations.
  • the length of the second rib 320 extending to the place where the oil separator 200 is located is extended to the second rib extending to another place.
  • the area partitioned by the second rib 320 extending to the oil separator 200 may be configured to have a smaller area than other places.
  • the first rib 310 may be thicker than the second rib 320, and the final thickness is set through a plurality of experiments to reinforce the strength of the second chamber 114.
  • the first rib 310 may be thick or thin at a specific position according to the degree of vibration generated after the refrigerant is discharged toward the rear housing 100.
  • the second rib 320 may also be formed to have a thick thickness at a location where a lot of vibration is generated and to be thin at a location where a vibration is relatively low. Accordingly, the occurrence of vibration may be minimized by changing the thickness of the second rib 320 at a location where a lot of vibration is generated for each position of the rear housing 100.
  • the fourth rib 340 extends from the first rib 310 toward the oil separator 200.
  • the fourth rib 340 may extend to the length shown in the drawing due to the layout of the rear housing 100, but may also be extended to an increased length.
  • the fourth rib 340 is located below the refrigerant inlet hole 202.
  • a separate obstacle is disposed in the moving path, so that the refrigerant is positioned below the refrigerant inlet hole 202 on the basis of the drawing.
  • the discharge chamber 110 has the rib 300 formed at one side adjacent to the oil separator 200, and the rib 300 is not formed at the other side of the oil separator 300.
  • the rib 300 is arranged as above in consideration of the layout and space limitations of the rear housing 100 to reinforce structural rigidity.
  • the second chamber 114 is provided with a plurality of third ribs 330 divided along the inner circumferential direction.
  • the third rib 330 is disposed in the form shown in the figure for rigid reinforcement at the center position of the rear housing 100.
  • the plurality of third ribs 330 may be divided at regular intervals, and the shape may be variously changed in addition to the shape shown in the drawings.
  • the rear housing 100 is formed in a disc shape, and a plurality of mounting holes for bolting coupling are formed in the circumferential direction to be mounted on the intermediate housing 2b, and the discharge chamber 110 is formed in a separate area therein.
  • the sealing process is performed to prevent external leakage of the refrigerant through a sealing member (not shown), even when a high-pressure refrigerant is discharged into the discharge chamber 110, leakage does not occur.
  • the rear housing 100 includes an oil separator 200 disposed in the discharge chamber 110 and having a refrigerant inlet hole 202 for introducing the refrigerant moved into the discharge chamber 110. It is limited to being disposed in an eccentric state on one side of the rear housing 100 and shown as having two refrigerant inlet holes formed in the upper middle on the basis of the longitudinal direction of the oil separator 200, but the number can be changed. .
  • the oil separator 200 is limited to be inclined to the rear housing 100, and is formed in the rear housing 100 in a state of protruding toward the inner side of the discharge chamber 110 partitioned by the sealing member.
  • the oil separator 200 may be formed in a hollow state, and the oil contained in the refrigerant introduced into the refrigerant inlet hole 202 may move to a lower side of the oil separator 200 due to the difference in specific gravity. The refrigerant is moved through the inner upper portion of the oil separator 200.
  • the partition wall 400 partitions an inner region of the discharge chamber 110 via the oil separator 200, and the movement time of the refrigerant flowing into the refrigerant inlet hole 202 is different from each other.
  • the communicating part 410 is formed in another position.
  • a communication part 410 is formed in the partition wall 400, and refrigerant flows through the communication part 410 due to different inflow times of the refrigerant flowing into the communication part 410 from the discharge chamber 110. Phase difference occurs and pulsation noise is reduced.
  • the refrigerant inlet hole 202 is located on the upper side of the oil separator 200 based on the length direction. It is preferably located at.
  • the partition wall 400 is processed in the form shown in the drawings through a cutting method and the communication unit 410 is manufactured through additional processing after the hole processing is primarily made through a drill.
  • the electric compressor (1) is provided with a filter unit 30 for filtering the separated oil via the oil separator 200, the filter unit 30 is foreign matter contained in the oil separated through the oil separator (200) It is provided to filter the filter unit 30 is configured to include a filter frame seated on the filter body consisting of a mesh form.
  • the filter unit 30 is oil separated from the refrigerant before the oil discharged through the oil discharge hole (not shown) formed at the lower side of the oil separator 200 is supplied to the drive unit 3 of the electric compressor 1.
  • the installation position in the discharge chamber 110 is changed according to the position of the oil separator 200 for filtering on.
  • the filter unit 30 also corresponds to one side of the oil separator 200 as shown in the drawing. Is located on the right side.
  • the electric compressor 1 according to the present embodiment is mounted in a vehicle air conditioning system, vibration and noise transmission are minimized to the interior of the vehicle, thereby maintaining quiet operation.
  • the discharge chamber 110 includes a first region S1 having the largest region among a plurality of regions located at different positions by the oil separator 200, and a region relatively smaller than the first region S1. And a third region S3 adjacent to the refrigerant inlet hole 202 and located adjacent to the second region S2.
  • the first to third regions S1 to S3 are maintained in the same region, but are divided into regions shown in the drawing based on the oil separator 200, and noise attenuation is mainly performed in the first and second regions S1 and S2. Can be done.
  • the third region S3 may reduce noise generated while the refrigerant is introduced into the refrigerant inlet hole 202, but assists noise reduction with the first and second regions S1 and S2. It can also be done.
  • the first region S1 may be formed in a semi-circle shape, and noise may be attenuated while the refrigerant discharged to the first region S1 diffuses inside the first region S1 or moves along the circumferential direction. have.
  • the discharge chamber 110 is discharged according to an internal volume V1 having a predetermined size and a refrigerant discharge capacity cc in which refrigerant is discharged to the discharge chamber 110.
  • the volume ratio of the chamber is set.
  • the volume ratio of the discharge chamber 110 is calculated by dividing the internal volume V1 of the discharge chamber 110 by the refrigerant discharge capacity cc, and the volume ratio of the discharge chamber 110 is 2.0. It consists of any one of ⁇ 3.2 times.
  • the rear housing provided in the electric compressor may be composed of a plurality of types from the A type to the E type, and the rear housing 100 shown in the A type corresponds to a form in which the discharge amount is almost absent.
  • the rear housing 100 shown in the B type is provided in the discharge chamber 110 and the discharge length is derived to a length corresponding to e1.
  • the rear housing 100 shown in type C has a discharge chamber 110 with a length corresponding to e2
  • the rear housing 100 shown in a D type has a discharge chamber 110 with a length corresponding to e3.
  • the discharge chamber 110 is drawn to a length corresponding to e4.
  • the rear housing 100 shown in Types A to E all have different internal volumes and refrigerant discharge capacities.
  • the discharge capacities of the refrigerants are all constant, but the internal volumes of the rear housing 100 are different from each other. do.
  • the smallest internal volume of the rear housing 100 of the A type is maintained at 61 cc, and the largest internal volume of the rear housing 100 of the D type is maintained at 117 cc.
  • the weight of the rear housing according to the A to E type is different from each other, the weight of the A-type rear housing 100 is maintained at the lowest 462g, the weight of the D type rear housing 100 is the largest The weight is maintained.
  • the discharge chamber 110 is composed of any one of the ratio of the volume of the discharge tamper 110 is 2.0 to 3.2 times the length derived to the outside of the rear housing 100, the maximum according to each different ratio
  • the rear housing can be designed in which noise reduction performance is maintained.
  • the rear housing 100 may generate excessive noise when the volume ratio of the discharge chamber 110 is less than 2.0 times, and when the volume ratio exceeds 3.2 times, the rear housing 100 may use the rear housing 9100 in which the above volume ratio is maintained. It can be seen that it is most preferable to do.
  • the discharge chamber 110 is discharged according to an internal volume V1 having a predetermined size and a refrigerant discharge capacity cc in which refrigerant is discharged to the discharge chamber 110.
  • the volume ratio of the chamber is set.
  • the noise shown in the Y-axis relative to the refrigerant discharge capacity shown in the X-axis is the noise generated in the rear housing at the 3.1 times the position is most reduced.
  • the rear housing corresponding to the ratio of 3.0 to 3.15 has an excellent noise reduction effect due to the discharge of the refrigerant.
  • the noise is increased when the volume ratio of the discharge chamber 110 is 3.15 times or 3.2 times or more, it can be seen that it is most preferable to use the rear housing in which the above-described volume ratio is maintained.
  • the discharge chamber 110 protrudes in a range of at least 14 mm and at most 30 mm, the length of which protrudes to the outside of the rear housing 100, and the noise reduction effect due to the discharge of the refrigerant within the above range is most reduced. do.
  • the present embodiments can be used to reduce the vibration and noise generated by the discharge of the refrigerant in the electric compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

An electric compressor is disclosed. An electric compressor according to an embodiment of the present invention comprises: a rear housing (100) in which a discharge chamber (110) for discharging a refrigerant is formed; and an oil separator (200) disposed in the discharge chamber (110) and including a refrigerant inflow hole (202) into which the refrigerant is introduced, wherein the discharge chamber (110) increases in volume toward the outside of the rear housing (100) to protrude therefrom in multiple stages, and the interior of the discharge chamber (110) is divided into different volumes with reference to the oil separator (200).

Description

전동압축기Electric compressor
본 발명은 고압의 냉매가 토출되는 토출챔버가 형성된 리어 하우징으로서, 냉매가 리어하우징의 내측으로 토출될 때 발생하는 진동 소음을 최소화하기 위한 전동압축기에 관한 것이다.The present invention relates to an electric compressor for minimizing vibration noise generated when a refrigerant chamber is discharged into the rear housing.
일반적으로 공조시스템에서 사용되는 압축기는 증발기로부터 증발이 완료된 냉매를 흡입하여 액화하기 쉬운 고온 고압상태로 변화시켜 응축기로 전달하고 상기 압축기는 증발기를 경유하여 이동된 냉매를 압축하기 위해 작동 된다.In general, the compressor used in the air conditioning system sucks the evaporated refrigerant from the evaporator, converts it into a high temperature and high pressure state, which is easy to liquefy, and transfers the same to the condenser.
압축기는 냉매에 대한 압축을 위한 구동원이 왕복운동을 하면서 압축을 수행하는 왕복식과 회전운동을 하면서 압축을 수행하는 회전식이 있으며, 상기 왕복식에는 구동원의 구동력을 크랭크를 사용하여 복수개의 피스톤으로 전달하는 크랭크식과, 사판이 설치된 회전축으로 전달하는 사판식과, 워블 플레이트를 사용하는 워블 플레이트식이 있다.The compressor has a reciprocating type that performs the compression while the drive source for the compression to the refrigerant reciprocating and a rotary type that performs the compression while rotating, the reciprocating type to transfer the driving force of the drive source to the plurality of pistons using the crank There are a crank type, a swash plate type to be transmitted to a rotating shaft provided with a swash plate, and a wobble plate type using a wobble plate.
회전식에는 회전하는 로터리축과 베인을 사용하는 베인로터리식과, 회전스크롤과 고정스크롤을 사용하는 스크롤식이 있으며 상기 회전식과 사판식 및 워블 플레이트식 모두 고압의 냉매가 토출실로 토출되면서 진동이 발생되는데, 상기 진동이 특정 시간이상 지속되면서 감쇄되지 못할 경우 토출실을 갖는 리어 하우징에서 진동 소음으로 인한 맥동(pulsation) 현상이 유발되었다.In the rotary type, there is a vane rotary type using a rotary rotary shaft and vanes, and a scroll type using a rotating scroll and a fixed scroll, and both the rotary, swash plate, and wobble plate types generate vibrations as high-pressure refrigerant is discharged into the discharge chamber. If the vibration is not attenuated for a certain time, pulsation due to vibration noise is caused in the rear housing having the discharge chamber.
첨부된 도 1을 참조하면, 전동 압축기는 냉매가 토출되는 토출 챔버(11)가 형성된 리어 하우징(10)이 구비된다. 상기 리어 하우징(10)은 상기 전동 압축기의 외측에서 바라볼 때 평평하게 형성된 평판으로 이루어지므로 상기 토출 챔버(11)의 부피는 한정된 부피를 갖게 된다. 또한 상기 리어 하우징(10)에 유분리기(20)가 도면에 도시된 바와 같이 경사지게 배치된다.Referring to FIG. 1, the electric compressor is provided with a rear housing 10 in which a discharge chamber 11 through which refrigerant is discharged is formed. Since the rear housing 10 is made of a flat plate formed flat when viewed from the outside of the electric compressor, the volume of the discharge chamber 11 has a limited volume. In addition, the oil separator 20 is disposed obliquely on the rear housing 10 as shown in the drawing.
이 경우 위에서 설명한 바와 같이 고압의 냉매가 토출 챔버(11)로 토출될 경우 상기 리어 하우징(10)의 떨림으로 인한 진동 소음이 발생되고 이로 인해 상기 전동 압축기가 장착된 차량 또는 공조시스템의 이상 진동을 유발하는 요인으로 작용하여 이에 대한 대책이 필요하게 되었다.In this case, as described above, when the high-pressure refrigerant is discharged into the discharge chamber 11, vibration noise is generated due to the tremor of the rear housing 10, which causes abnormal vibration of the vehicle or the air conditioning system equipped with the electric compressor. It acts as an inducing factor and needs countermeasures.
본 발명의 실시 예들은 전동압축기에서 냉매의 토출로 인한 진동 및 소음을 최소화 할 수 있도록 리어 하우징의 토출 챔버의 내부 부피를 증가시켜 이상 진동 및 소음이 최소화 된 전동 압축기를 제공하고자 한다.Embodiments of the present invention provide an electric compressor in which abnormal vibration and noise are minimized by increasing the internal volume of the discharge chamber of the rear housing so as to minimize vibration and noise caused by the discharge of the refrigerant in the electric compressor.
본 발명의 일 실시 예에 의한 전동압축기는 냉매가 토출되는 토출챔버(110)가 형성된 리어 하우징(100); 및 상기 토출챔버(110)에 배치되고 상기 냉매가 유입되는 냉매 유입 홀(202)이 형성된 유분리기(200)를 포함하고, 상기 토출챔버(110)는 상기 리어 하우징(100)의 외측으로 부피가 증가되어 다단으로 돌출되되, 상기 유분리기(200)를 기준으로 상기 토출챔버(110)의 내부가 서로 다른 체적으로 분할된 것을 특징으로 한다.An electric compressor according to an embodiment of the present invention includes a rear housing 100 having a discharge chamber 110 through which a refrigerant is discharged; And an oil separator 200 disposed in the discharge chamber 110 and having a coolant inlet hole 202 for introducing the coolant therein, wherein the discharge chamber 110 has a volume outside the rear housing 100. Increased and protruded in multiple stages, characterized in that the interior of the discharge chamber 110 is divided into different volumes based on the oil separator 200.
상기 토출 챔버(110)는 상기 리어 하우징(100)에서 돌출 방향을 향해 소정의 길이로 부분 돌출된 제1 챔버(112); 상기 유분리기(200)를 경계로 일측에서 상기 제1 챔버(112)의 돌출된 단부에서 부분 돌출된 제2 챔버(114); 상기 유분리기(200)를 경계로 타측에서 돌출 방향으로 직접 돌출된 제3 챔버(116)를 포함한다.The discharge chamber 110 may include a first chamber 112 partially protruding from the rear housing 100 in a protruding direction; A second chamber 114 partially protruding from the protruding end of the first chamber 112 at one side of the oil separator 200; And a third chamber 116 directly protruding in the protruding direction from the other side of the oil separator 200.
상기 제2 챔버(114)는 상기 제1 챔버(112) 또는 제3 챔버(116)보다 부피가 크게 이루어진 것을 특징으로 한다.The second chamber 114 is larger in volume than the first chamber 112 or the third chamber 116.
상기 제2 챔버(114)는 상기 제1,3 챔버(112, 116)가 돌출된 길이 보다 상기 리어 하우징(100)의 돌출 방향으로 길게 돌출된다.The second chamber 114 protrudes longer in the protruding direction of the rear housing 100 than the length from which the first and third chambers 112 and 116 protrude.
상기 제2 챔버(114)에는 내측에 상기 리어 하우징(100)의 원주 방향으로 연장된 리브(300)가 구비된 것을 특징으로 한다.The second chamber 114 is provided with a rib 300 extending in the circumferential direction of the rear housing 100 inside.
상기 리브(300)는 상기 제2 챔버(114)에 링 형태로 형성된 제1 리브(310); 상기 제1 리브(310)에서 방사 형태로 다수개가 연장된 제2 리브(320)를 포함한다.The rib 300 includes a first rib 310 formed in a ring shape in the second chamber 114; The second rib 320 includes a plurality of second ribs 320 extending in a radial form from the first rib 310.
상기 제2 챔버(114)에는 내측 원주 방향을 따라 다수개로 분할된 제3 리브(330)가 구비된 것을 특징으로 한다.The second chamber 114 is provided with a third rib 330 divided into a plurality in the inner circumferential direction.
상기 제1 리브(310)와 상기 제2 리브(320)는 서로 다른 두께로 이루어진 것을 특징으로 한다.The first rib 310 and the second rib 320 may be formed in different thicknesses.
상기 제1 리브(310)는 상기 제2 리브(320) 보다 두껍게 이루어진 것을 특징으로 한다.The first rib 310 is thicker than the second rib 320.
상기 유분리기(200)는 상기 리어 하우징(100)의 중앙을 기준으로 일측에 편심되게 배치된 것을 특징으로 한다.The oil separator 200 is characterized in that it is disposed eccentrically on one side with respect to the center of the rear housing (100).
상기 토출챔버(110)의 일측에 위치되고, 상기 토출챔버(110)의 내부를 서로 다른 영역으로 구획하는 격벽(400)이 구비된 것을 특징으로 한다.Located at one side of the discharge chamber 110, it is characterized in that the partition 400 for partitioning the interior of the discharge chamber 110 into different areas.
상기 격벽(400)에는 서로 다른 위치에 연통부(410)가 형성된 것을 특징으로 한다.The partition 400 is characterized in that the communication portion 410 is formed in different positions.
상기 토출챔버(110)는 소정의 크기로 이루어진 내부 체적(V1)과 상기 토출챔버(110)로 냉매가 토출되는 냉매 토출용량(cc)에 따라 토출챔버의 체적 비율이 설정되되, 상기 토출챔버(110)의 체적 비율은 상기 토출챔버(110)의 내부 체적(V1)을 상기 냉매 토출용량(cc)으로 나눈값으로 계산되고, 상기 토출챔버(110)의 체적 비율은 2.0 ~ 3.2배중의 어느 하나의 비율로 구성된 것을 특징으로 한다.The discharge chamber 110 is a volume ratio of the discharge chamber is set according to the internal volume (V1) of a predetermined size and the refrigerant discharge capacity (cc) of the refrigerant discharged to the discharge chamber 110, the discharge chamber ( The volume ratio of 110 is calculated by dividing the internal volume V1 of the discharge chamber 110 by the refrigerant discharge capacity cc, and the volume ratio of the discharge chamber 110 is any one of 2.0 to 3.2 times. Characterized in that the ratio of.
상기 토출챔버(110)는 상기 유분리기(200)에 의해 서로 다른 위치에 위치된 복수개의 영역 중 가장 큰 영역을 갖는 제1 영역(S1); 상기 제1 영역(S1)보다 상대적으로 작은 영역을 갖는 제2 영역(S2); 상기 냉매 유입홀(202)과 인접하고 상기 제2 영역(S2)과 이웃하여 위치된 제3 영역(S3)을 포함한다.The discharge chamber 110 may include a first region S1 having a largest region among a plurality of regions located at different positions by the oil separator 200; A second region S2 having a region relatively smaller than the first region S1; And a third region S3 adjacent to the refrigerant inlet hole 202 and located adjacent to the second region S2.
상기 제1 영역(S1)은 반원판 형태로 형성되고, 상기 제1 영역(S1)으로 토출된 냉매가 상기 제1 영역(S1)의 내측에서 확산되거나 원주 방향을 따라 이동하면서 소음 감쇠가 이루어지는 것을 특징으로 한다.The first region S1 is formed in the shape of a semi-circle, and the refrigerant discharged into the first region S1 diffuses inside the first region S1 or moves along the circumferential direction to reduce noise. It features.
상기 토출챔버(110)는 상기 유분리기(200)와 인접한 일측에 상기 리브(300)가 형성되고, 상기 유분리기(300)의 타측에는 상기 리브(300)가 미 형성된것을 특징으로 한다.The discharge chamber 110 is characterized in that the rib 300 is formed on one side adjacent to the oil separator 200, the rib 300 is not formed on the other side of the oil separator 300.
본 실시 예에 의한 전동압축기는 차량용 공조시스템에 장착된다.The electric compressor according to the present embodiment is mounted in a vehicle air conditioning system.
본 발명의 실시 예들은 전동압축기의 작동 매체인 냉매의 토출로 인한 진동 및 소음을 최소화 하고, 맥동압으로 인한 문제점이 발생되지 않도록 하여 상기 전동압축기가 설치된 설치 대상물의 정숙한 작동을 도모할 수 있다.Embodiments of the present invention can minimize the vibration and noise caused by the discharge of the refrigerant which is the operating medium of the electric compressor, and can prevent the problem caused by the pulsating pressure to achieve a quiet operation of the installation object is installed. .
본 발명의 실시 예들은 토출챔버의 부피 증가와 강성 보강을 동시에 달성할 수 있도록 구조를 변경하여 리어 하우징의 전체적인 구조적 강도를 향상 시킬 수 있다.Embodiments of the present invention can improve the overall structural strength of the rear housing by changing the structure to achieve the volume increase and rigidity reinforcement of the discharge chamber at the same time.
도 1은 종래의 전동 압축기에 구비된 리어 하우징을 도시한 도면.1 is a view showing a rear housing provided in a conventional electric compressor.
도 2는 본 발명의 일 실시 예에 따른 전동 압축기를 도시한 단면도.2 is a cross-sectional view showing an electric compressor according to an embodiment of the present invention.
도 3 은 본 발명의 일 실시 예에 따른 전동 압축기의 리어 하우징을 도시한 측면도.3 is a side view showing a rear housing of the electric compressor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따른 전동 압축기의 리어 하우징의 내측을 도시한 도면.4 is a view showing the inside of the rear housing of the electric compressor according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시 예에 의한 전동 압축기의 리어 하우징에 구비된 제3 리브를 도시한 도면.5 is a view showing a third rib provided in the rear housing of the electric compressor according to another embodiment of the present invention.
도 6은 리어 하우징에 형성된 토출 챔버의 다양한 실시 예를 도시한 측면도.6 is a side view illustrating various embodiments of a discharge chamber formed in the rear housing.
도 7은 본 발명의 일 실시 예에 의한 토출챔버의 체적 비율에 따른 소음 저감 효과를 도시한 그래프.7 is a graph showing the noise reduction effect according to the volume ratio of the discharge chamber according to an embodiment of the present invention.
도 8은 본 발명의 일 실시 예에 의한 토출챔버의 체적 비율에 따른 중량을 도시한 그래프.8 is a graph showing the weight according to the volume ratio of the discharge chamber according to an embodiment of the present invention.
본 발명의 일 실시 예에 따른 전동 압축기에 대해 도면을 참조하여 설명한다. 참고로 도 2는 본 발명의 일 실시 예에 따른 전동 압축기를 도시한 단면도이고, 도 3은 본 발명의 일 실시 예에 따른 전동 압축기의 리어 하우징을 도시한 도면이며, 도 4는 본 발명의 일 실시 예에 따른 전동 압축기의 리어 하우징의 내측을 도시한 도면이다.An electric compressor according to an embodiment of the present invention will be described with reference to the drawings. For reference, Figure 2 is a cross-sectional view showing a motor-driven compressor according to an embodiment of the present invention, Figure 3 is a view showing a rear housing of the motor-driven compressor according to an embodiment of the present invention, Figure 4 is a view of the present invention The figure shows the inside of the rear housing of the electric compressor according to the embodiment.
첨부된 도 2 내지 도 4를 참조하면, 본 발명의 일 실시 예에 의한 전동압축기(1)는 냉매에 포함된 오일의 유분리가 이루어지고 상기 냉매의 토출에 의해 리어 하우징(100)에서의 진동 또는 소음의 발생을 최소화하기 위해 토출챔버(110)의 내부 부피를 증가시켜 진동으로 인한 문제점을 예방하고자 한다.2 to 4, the motor-driven compressor 1 according to an embodiment of the present invention performs oil separation of oil contained in a coolant and vibrates in the rear housing 100 by discharge of the coolant. Or to minimize the occurrence of noise to increase the internal volume of the discharge chamber 110 to prevent problems caused by vibration.
또한 본 발명은 전동 압축기가 장착된 차량용 공조 시스템에 장착하여 사용하는 것으로 한정하나, 공업용 압축유닛 또는 가정용 공조 시스템에 적용하여 사용 가능함을 밝혀둔다.In addition, the present invention is limited to use in a vehicle air conditioning system equipped with a motor-driven compressor, it turns out that it can be applied to industrial compression unit or home air conditioning system.
전동압축기(1)는 외형을 이루며 냉매가 흡입되는 흡입구 위치에 형성된 전방 하우징(2a)과, 중간 하우징(2b) 및 리어 하우징(100)으로 구성되고, 상기 중간 하우징(2b)에는 내부에 구동부(3)와 압축 유닛(5)이 내장되며, 상기 구동부(3)는 고정자와 회전자 및 상기 회전자의 중앙에 삽입된 회전축(4)을 포함하여 구성된다.Electric compressor (1) is formed of a front housing (2a) and the intermediate housing (2b) and the rear housing (100) formed in the inlet position where the refrigerant is sucked to form an outer shape, the intermediate housing (2b) has a drive unit (inside) 3) and a compression unit 5 are built in, and the drive part 3 comprises a stator, a rotor, and a rotating shaft 4 inserted in the center of the rotor.
상기 모터부(3)에서 발생된 회전력은 압축 유닛(5)에 전달되어 냉매에 대한 압축과 토출이 이루어지는데 상기 압축 유닛(5)은 고정 스크롤과 선회 스크롤을 포함하여 구성된다.The rotational force generated by the motor unit 3 is transmitted to the compression unit 5 to compress and discharge the refrigerant. The compression unit 5 includes a fixed scroll and a swing scroll.
상기 고정 스크롤은 전동압축기(1)에서 고정된 상태가 유지되고, 상기 선회 스크롤은 상기 고정 스크롤에 대해 편심 회전 가능하게 설치되어 상대 이동이 이루어지면서 냉매를 압축한다.The fixed scroll is maintained in a fixed state in the electric compressor (1), the pivoting scroll is installed so as to be eccentrically rotatable with respect to the fixed scroll to compress the refrigerant while the relative movement is made.
리어 하우징(100)은 상기 중간 하우징(2b)의 일측 단부에 위치되는데 보다 상세하게는 도면을 기준으로 우측 단부에 밀착된 상태로 상기 중간 하우징(2b)에 선택적으로 탈부착 가능하게 장착되고, 상기 압축유닛(5)에서 토출된 냉매는 배압실을 경유하여 토출 홀을 통해서 토출챔버(110)를 향해 소정의 압력으로 토출된다. 그리고 상기 토출챔버(110)로 토출된 냉매의 압력은 30bar 전후의 압력으로 토출이 이루어지므로 소음이 발생될 수 있다.The rear housing 100 is located at one end of the intermediate housing 2b. More specifically, the rear housing 100 is selectively detachably mounted to the intermediate housing 2b while being in close contact with the right end with reference to the drawings. The refrigerant discharged from the unit 5 is discharged at a predetermined pressure toward the discharge chamber 110 through the discharge hole via the back pressure chamber. And the pressure of the refrigerant discharged to the discharge chamber 110 is discharged at a pressure of about 30bar or so may generate noise.
본 발명의 일 실시 예에 의한 전동압축기(1)는 냉매가 토출되는 토출챔버(110)가 형성된 리어 하우징(100)과, 상기 토출챔버(110)에 배치되고 상기 냉매가 유입되는 냉매 유입 홀(202)이 형성된 유분리기(200)를 포함하고, 상기 토출챔버(110)는 상기 리어 하우징(100)의 외측으로 부피가 증가되어 다단으로 돌출되되, 상기 유분리기(200)를 기준으로 상기 토출챔버(110)의 내부가 서로 다른 체적으로 분할된다. Electric compressor 1 according to an embodiment of the present invention is a rear housing 100 is formed with a discharge chamber 110 for discharging the refrigerant, and the refrigerant inlet hole disposed in the discharge chamber 110 and the refrigerant flows ( 202 is formed, the oil separator 200 is formed, the discharge chamber 110 is increased in volume to the outside of the rear housing 100 protrudes in multiple stages, the discharge chamber based on the oil separator 200 The interior of 110 is divided into different volumes.
상기 토출 챔버(110)는 상기 리어 하우징(100)에서 돌출 방향을 향해 소정의 길이로 부분 돌출된 제1 챔버(112)와, 상기 유분리기(200)를 경계로 일측에서 상기 제1 챔버(112)의 돌출된 단부에서 부분 돌출된 제2 챔버(114)와, 상기 유분리기(200)를 경계로 타측에서 돌출 방향으로 직접 돌출된 제3 챔버(116)를 포함한다.The discharge chamber 110 may include a first chamber 112 partially protruding from the rear housing 100 in a protruding direction from the rear housing 100 and the first chamber 112 at one side of the oil separator 200. The second chamber 114 partially protrudes from the protruding end of the) and the third chamber 116 protrudes directly in the protruding direction from the other side of the oil separator 200.
제1 내지 제3 챔버(112, 114, 116)은 모두 냉매가 토출될 경우 체적 증가를 통해 소음 감소를 유도하는데, 종래와 같이 한정된 체적을 갖지 않고 특정 비율을 갖는 토출 챔버(110)로 구성하여 냉매 토출로 인한 진동 소음을 저감하고자 한다.The first to third chambers 112, 114, and 116 all induce noise reduction through volume increase when the refrigerant is discharged. The first to third chambers 112, 114, and 116 do not have a limited volume and have a discharge chamber 110 having a specific ratio. To reduce the vibration noise caused by the refrigerant discharge.
본 실시 예에 의한 제1 챔버(112)는 제2 챔버(114)와 이웃하여 위치되고 상기 토출 챔버(110)의 중앙을 기준으로 일측에 소정의 크기로 형성된다. 상기 제1 챔버(112)는 일 예로 리어 하우징(100)의 외측으로 초승달 형태로 돌출될 수 있다.The first chamber 112 according to the present embodiment is positioned adjacent to the second chamber 114 and is formed in a predetermined size on one side with respect to the center of the discharge chamber 110. For example, the first chamber 112 may protrude in a crescent form to the outside of the rear housing 100.
토출챔버(110)는 냉매가 토출될 경우 전술한 압력 범위에 해당되는 충격이 가해지므로 상기 토출챔버(110)의 부피를 증가시킬 경우 확산 효과로 인해 소음이 저감될 수 있다.Since the discharge chamber 110 is subjected to an impact corresponding to the aforementioned pressure range when the refrigerant is discharged, noise may be reduced due to a diffusion effect when the volume of the discharge chamber 110 is increased.
또한 냉매 토출로 인해 발생된 소음 및 진동으로 인한 리어 하우징(100)의 강성 보강을 위해 후술할 리브(300)에 의해 안정적으로 지지될 수 있어 구조적인 안전성도 동시에 향상시킬 수 있다.In addition, it can be stably supported by the rib 300, which will be described later, to reinforce rigidity of the rear housing 100 due to noise and vibration generated by the refrigerant discharge, thereby improving structural safety.
제2 챔버(114)는 제1 챔버(112)와 이웃하여 토출 챔버(110)의 중앙에 위치되는데, 일 예로 유분리기(200)의 일측에 위치된다. 상기 제2 챔버(114)는 상기 제1 챔버(112) 또는 제3 챔버(116)보다 부피가 크게 이루어지는데, 상기 제2 챔버(114)와 미주보는 위치에서 냉매의 토출이 이루어지므로 제일 큰 부피로 구성된다.The second chamber 114 is located at the center of the discharge chamber 110 adjacent to the first chamber 112, for example, is located at one side of the oil separator 200. The second chamber 114 has a volume larger than that of the first chamber 112 or the third chamber 116. The second chamber 114 has the largest volume since the refrigerant is discharged at a position not seen with the second chamber 114. It consists of.
제2 챔버(114)는 냉매가 토출챔버(110)로 토출될 경우 마주보는 위치에서 방사 형태로 확산시켜 소음 및 진동 감소 효과를 보다 유리하게 유도할 수 있어 전술한 위치에 형성되는 것이 바람직하다. 또한 리어 하우징(110)의 레이아웃을 복잡하게 하지 않고 간단하면서도 소음 감쇠 효과를 향상시킬 수 있어 도면에 도시된 배치 상태가 유지되는 것이 바람직할 수 있다.When the refrigerant is discharged to the discharge chamber 110, the second chamber 114 may be formed in the above-described position because the second chamber 114 may diffuse in a radial form at an opposite position to induce a noise and vibration reduction effect more advantageously. In addition, it is preferable that the layout of the rear housing 110 can be improved without complicating the layout of the rear housing 110, so that the noise attenuation effect can be improved.
제2 챔버(114)는 상기 제1 챔버(112)보다 부피가 크게 이루어지므로 냉매가 토출될 경우 확산을 위한 공간이 안정적으로 유지될 수 있어 소음 감쇠 효과가 향상된다.Since the second chamber 114 has a larger volume than the first chamber 112, the space for diffusion can be stably maintained when the refrigerant is discharged, thereby improving the noise attenuation effect.
상기 제2 챔버(114)는 제1 챔버(112)에 의해 원주 방향에서 부분적으로 둘러싸인 배치 형태가 유지된다. 이 경우 냉매의 토출에 따른 압력 변동이 1차로 상기 제1 챔버(112)에서 확산된 후에 상기 제2 챔버(114)에서 추가로 확산되면서 진동 및 소음 감소에 유리해 진다.The second chamber 114 is maintained in an arrangement form partially surrounded by the first chamber 112 in the circumferential direction. In this case, the pressure fluctuation due to the discharge of the refrigerant is primarily diffused in the first chamber 112 and then further diffused in the second chamber 114, which is advantageous in reducing vibration and noise.
상기 제2 챔버(114)는 상기 제1,3 챔버(112, 116)의 돌출된 길이 보다 상기 리어 하우징(100)의 돌출 방향으로 길게 돌출된다. 상기 제2 챔버(114)는 돌출된 길이가 특정 길이 범위로 돌출되며 전동 압축기의 사양에 따라 변동된다.The second chamber 114 protrudes longer in the protruding direction of the rear housing 100 than the protruding lengths of the first and third chambers 112 and 116. The second chamber 114 has a protruding length protruding in a specific length range and varies according to the specifications of the electric compressor.
제3 챔버(116)는 도면 기준으로 유분리기(200)의 타측에 위치되고 제1,2 챔버(112, 114)보다 작은 체적으로 구성된다. 상기 제3 챔버(116)는 리어 하우징(100)의 한정된 레이아웃을 고려하여 냉매의 토출에 따른 소음 저감을 위해 리어 하우징(100)의 가장 자리에 위치되며 형태는 도면에 도시된 형태로 한정하지 않는다.The third chamber 116 is located on the other side of the oil separator 200 on the basis of the drawing and is composed of a smaller volume than the first and second chambers 112 and 114. The third chamber 116 is positioned at the edge of the rear housing 100 to reduce noise due to the discharge of the refrigerant in consideration of the limited layout of the rear housing 100, and the shape is not limited to the shape shown in the drawings. .
리어 하우징(100)은 토출챔버(110)에서 토출된 냉매의 토출 압력으로 인한 진동 발생이 최소화 되도록 상기 제2 챔버(114)의 내측에 상기 리어 하우징(100)의 원주 방향으로 연장된 리브(300)가 구비된다.The rear housing 100 has ribs 300 extending in the circumferential direction of the rear housing 100 inside the second chamber 114 to minimize vibration caused by the discharge pressure of the refrigerant discharged from the discharge chamber 110. ) Is provided.
상기 리브(300)가 제2 챔버(114)의 내측에 위치되는 이유는 상기 위치로 냉매가 토출되면서 진동 및 소음이 가장 많이 발생되고 이로 인한 충격이 직접적으로 전달되는 위치에 해당되기 때문이다. 따라서 상기 위치에 리브(300)를 형성하여 냉매의 토출로 인한 진동 또는 소음 발생을 억제 또는 지지하여 강성 보강을 도모할 수 있다.The reason why the rib 300 is located inside the second chamber 114 is because the vibration and noise are most generated as the refrigerant is discharged to the position and the shock is directly transmitted. Accordingly, the rib 300 may be formed at the position to suppress or support vibration or noise generated by the discharge of the refrigerant, thereby achieving rigid reinforcement.
상기 리브(300)는 상기 제2 챔버(114)에 링 형태로 형성된 제1 리브(310)와, 상기 제1 리브(310)에서 방사 형태로 다수개가 연장된 제2 리브(320)를 포함한다.The rib 300 includes a first rib 310 formed in a ring shape in the second chamber 114, and a plurality of second ribs 320 extending radially from the first rib 310. .
상기 제1 리브(310)는 링 형태로 이루어지므로 상기 제1 리브(310)에 진동이 전달될 경우 후술할 상기 제2 리브(320)로 진동이 부분적으로 전달되면서 상기 리어 하우징(100)의 반경 방향으로 진동이 확산 될 수 있어 상기 리어 하우징(100)에서의 전체적인 진동이 감쇠된다.Since the first rib 310 is formed in a ring shape, when vibration is transmitted to the first rib 310, the vibration of the rear housing 100 is partially transmitted to the second rib 320, which will be described later. Vibration may be diffused in the direction so that the overall vibration in the rear housing 100 is attenuated.
상기 제1 리브(310)는 냉매 유입 홀(202)보다 낮은 위치에 위치된다. 이 경우 제2 리브(320)는 상기 냉매 유입 홀(202)과 이격된 위치에 위치되어 상기 냉매 유입 홀(202)로 진동이 전달되지 않도록 하여 냉매 가스의 안정적인 이동을 도모한다.The first rib 310 is located at a lower position than the refrigerant inlet hole 202. In this case, the second rib 320 is positioned at a position spaced apart from the refrigerant inlet hole 202 to prevent vibration from being transmitted to the refrigerant inlet hole 202, thereby promoting stable movement of the refrigerant gas.
또한 제1 리브(310)의 위치가 전술한 위치에 위치될 경우 리어 하우징(100)의 대부분의 면적을 차지하는 제2 챔버(114)에서 발생되는 진동 및 소음을 최소화 할 수 있다.In addition, when the position of the first rib 310 is located at the position described above, vibration and noise generated in the second chamber 114 occupying most of the area of the rear housing 100 may be minimized.
본 실시 예에 의한 제1 리브(310)와 상기 제2 리브(320)는 서로 다른 두께로 이루어지거나 동일 두께로 이루어질 수 있다. 동일 두께의 경우 진동이 전달될 경우 위치에 따라 진동이 전달되는 시간과 감쇠량이 달라질 수 있어 정확한 두께는 다수의 실험을 통해 전동 압축기의 용량에 따라 변경될 수 있다.The first rib 310 and the second rib 320 according to the present embodiment may have different thicknesses or the same thickness. In the case of the same thickness, when the vibration is transmitted, the time and attenuation amount of the vibration are transmitted may vary depending on the position, so the exact thickness may be changed according to the capacity of the electric compressor through a plurality of experiments.
또한 제1,2 리브(310, 320)는 도면에 도시된 형태 또는 다른 형태로 변경될 수 있다. 예를 들면 단면이 반원 또는 타원 또는 다각 형태 중의 어느 하나의 형태로 이루어진다.In addition, the first and second ribs 310 and 320 may be changed to the shapes shown in the drawings or other shapes. For example, the cross section is in the form of either a semi-circle or an ellipse or a polygonal shape.
제2 리브(320)는 제1 리브(310)에서 연장될 경우 서로 간에 벌어진 각도가 일정하게 유지되는 것이 바람직하고, 만약 서로 상이할 경우에도 서로 간에 상이한 각도차가 최소한으로 유지되는 것이 바람직하다.When the second rib 320 extends from the first rib 310, the angles formed between the two ribs 320 may be maintained at a constant level. If the second ribs 320 are different from each other, the second ribs 320 may have different angles.
제2 챔버(114)에 제2 리브(320)가 도면에 도시된 바와 같이 연장될 경우 상기 제2 챔버(114)는 상기 제2 리브(320)에 의해 동일 면적으로 분할되는 것이 냉매의 토출로 인한 진동 저감에 가장 유리할 수 있다.When the second ribs 320 are extended to the second chamber 114 as shown in the drawing, the second chambers 114 are divided into the same area by the second ribs 320 to discharge the refrigerant. It may be most advantageous for reducing vibrations.
다만 제2 챔버(114)와 유분리기(200)는 서로 간의 배치로 인해 상기 유분리기(200)가 위치된 곳으로 연장된 제2 리브(320)의 길이가 다른 곳으로 연장된 제2 리브에 비해 짧게 연장되고, 상기 유분리기(200)로 연장된 제2 리브(320)에 의해 구획된 면적이 다른 곳 보다 작은 면적으로 구성될 수 있다.However, due to the arrangement between the second chamber 114 and the oil separator 200, the length of the second rib 320 extending to the place where the oil separator 200 is located is extended to the second rib extending to another place. Compared with a shorter length, the area partitioned by the second rib 320 extending to the oil separator 200 may be configured to have a smaller area than other places.
상기 제1 리브(310)는 상기 제2 리브(320) 보다 두껍게 이루어질 수 있으며, 상기 제2 챔버(114)의 강도 보강을 위해 다수의 실험을 통해 최종 두께가 설정된다.The first rib 310 may be thicker than the second rib 320, and the final thickness is set through a plurality of experiments to reinforce the strength of the second chamber 114.
일 예로 상기 제1 리브(310)는 리어 하우징(100)을 향해 냉매가 토출된 후에 발생되는 진동의 정도에 따라 특정 위치에서의 두께가 두껍게 또는 얇게 구성될 수 있다.For example, the first rib 310 may be thick or thin at a specific position according to the degree of vibration generated after the refrigerant is discharged toward the rear housing 100.
도면에는 미 도시하였으나, 상기 제2 리브(320) 또한 진동이 많이 발생되는 위치의 두께가 두껍게 형성되고 상대적으로 진동이 적게 발생되는 위치에서는 두께가 얇게 형성될 수 있다. 따라서 리어 하우징(100)의 위치별로 진동이 많이 발생되는 위치에 제2 리브(320)의 두께를 변화시켜 진동 발생을 최소화 할 수 있다.Although not shown in the drawing, the second rib 320 may also be formed to have a thick thickness at a location where a lot of vibration is generated and to be thin at a location where a vibration is relatively low. Accordingly, the occurrence of vibration may be minimized by changing the thickness of the second rib 320 at a location where a lot of vibration is generated for each position of the rear housing 100.
본 실시 예에 의한 제2 챔버(114)에는 상기 제1 리브(310)에서 상기 유분리기(200)를 향해 제4 리브(340)가 연장된다. 상기 제4 리브(340)는 리어 하우징(100)의 레이아웃으로 인해 도면에 도시된 길이로 연장되나 증가된 길이로 연장되는 것도 가능할 수 있다.In the second chamber 114 according to the present embodiment, the fourth rib 340 extends from the first rib 310 toward the oil separator 200. The fourth rib 340 may extend to the length shown in the drawing due to the layout of the rear housing 100, but may also be extended to an increased length.
상기 제4 리브(340)는 상기 냉매 유입 홀(202)보다 하측에 위치된다. 왜냐하면, 냉매가 냉매 유입 홀(202)을 향해 안정적으로 이동하기 위해서는 이동하는 경로에 별도의 장애물이 배치되는 것은 바람직하지 않기 때문에 도면 기준으로 냉매 유입 홀(202)의 하측에 위치된다.The fourth rib 340 is located below the refrigerant inlet hole 202. In order to stably move the refrigerant toward the refrigerant inlet hole 202, it is not preferable that a separate obstacle is disposed in the moving path, so that the refrigerant is positioned below the refrigerant inlet hole 202 on the basis of the drawing.
상기 토출챔버(110)는 상기 유분리기(200)와 인접한 일측에 상기 리브(300)가 형성되고, 상기 유분리기(300)의 타측에는 상기 리브(300)가 미 형성된다.The discharge chamber 110 has the rib 300 formed at one side adjacent to the oil separator 200, and the rib 300 is not formed at the other side of the oil separator 300.
리브(300)는 구조적인 강성을 보강하기는 하나 리어 하우징(100)의 레이아웃과 공간의 한정적인 사항을 고려하여 위와 같이 배치된다.The rib 300 is arranged as above in consideration of the layout and space limitations of the rear housing 100 to reinforce structural rigidity.
첨부된 도 5를 참조하면, 본 실시 예에 의한 제2 챔버(114)에는 내측 원주 방향을 따라 다수개로 분할된 제3 리브(330)가 구비된다. 상기 제3 리브(330)는 리어 하우징(100)의 센터 위치에서의 강성 보강을 위해 도면에 도시된 형태로 배치된다.Referring to FIG. 5, the second chamber 114 according to the present embodiment is provided with a plurality of third ribs 330 divided along the inner circumferential direction. The third rib 330 is disposed in the form shown in the figure for rigid reinforcement at the center position of the rear housing 100.
제3 리브(330)는 다수개가 일정 간격으로 분할되며 형태는 도면에 도시된 형태 이외에도 다양하게 변경될 수 있다.The plurality of third ribs 330 may be divided at regular intervals, and the shape may be variously changed in addition to the shape shown in the drawings.
리어 하우징(100)은 원판 형태로 형성되는데, 중간 하우징(2b)에 장착되기 위해 원주 방향에 볼팅 결합을 위한 마운팅 홀이 다수개가 형성되고, 내부에 상기 토출챔버(110)가 별도의 영역으로 형성되며, 씰링부재(미도시)를 매개로 냉매의 외부 누출이 방지되도록 씰링 처리되므로 고압의 냉매가 토출챔버(110)로 토출되는 경우에도 누설(leaking)이 발생되지 않는다.The rear housing 100 is formed in a disc shape, and a plurality of mounting holes for bolting coupling are formed in the circumferential direction to be mounted on the intermediate housing 2b, and the discharge chamber 110 is formed in a separate area therein. In addition, since the sealing process is performed to prevent external leakage of the refrigerant through a sealing member (not shown), even when a high-pressure refrigerant is discharged into the discharge chamber 110, leakage does not occur.
리어 하우징(100)에는 토출챔버(110)에 배치되고 상기 토출챔버(110)로 이동된 냉매가 유입되는 냉매 유입 홀(202)이 형성된 유분리기(200)가 구비되는데, 상기 유분리기(200)는 리어 하우징(100)의 일측에 편심된 상태로 배치되는 것으로 한정하며 상기 유분리기(200)의 길이 방향을 기준으로 중간 상측에 냉매 유입 홀이 2개가 형성된 것으로 도시하였으나 개수는 변동 가능함을 밝혀둔다.The rear housing 100 includes an oil separator 200 disposed in the discharge chamber 110 and having a refrigerant inlet hole 202 for introducing the refrigerant moved into the discharge chamber 110. It is limited to being disposed in an eccentric state on one side of the rear housing 100 and shown as having two refrigerant inlet holes formed in the upper middle on the basis of the longitudinal direction of the oil separator 200, but the number can be changed. .
또한 유분리기(200)는 리어 하우징(100)에 경사지게 배치되는 것으로 한정하며, 씰링부재에 의해 구획횐 토출챔버(110)의 내측을 향해 돌출된 상태로 리어 하우징(100)에 형성된다.In addition, the oil separator 200 is limited to be inclined to the rear housing 100, and is formed in the rear housing 100 in a state of protruding toward the inner side of the discharge chamber 110 partitioned by the sealing member.
상기 유분리기(200)는 내부가 중공 상태로 이루어질 수 있으며 상기 냉매 유입 홀(202)로 유입된 냉매에 포함된 오일은 비중 차이에 의해 상대적으로 무거운 오일은 유분리기(200)의 하측으로 이동되고 냉매는 상기 유분리기(200)의 내측 상부를 통해 이동된다.The oil separator 200 may be formed in a hollow state, and the oil contained in the refrigerant introduced into the refrigerant inlet hole 202 may move to a lower side of the oil separator 200 due to the difference in specific gravity. The refrigerant is moved through the inner upper portion of the oil separator 200.
본 실시 예에 의한 격벽(400)은 유분리기(200)를 경유하여 상기 토출챔버(110)의 내부 영역을 구획하고, 상기 냉매 유입 홀(202)로 유입되는 냉매의 이동 시간이 서로 상이하도록 서로 다른 위치에 연통부(410)가 형성된다.The partition wall 400 according to the present embodiment partitions an inner region of the discharge chamber 110 via the oil separator 200, and the movement time of the refrigerant flowing into the refrigerant inlet hole 202 is different from each other. The communicating part 410 is formed in another position.
격벽(400)에는 연통부(410)가 형성되고, 상기 연통부(410)을 통해 냉매 유동이 이루어지는데, 상기 토출 챔버(110)에서 연통부(410)로 유입되는 냉매의 상이한 유입 시간으로 인한 위상차가 발생하여 맥동 소음이 저감된다.A communication part 410 is formed in the partition wall 400, and refrigerant flows through the communication part 410 due to different inflow times of the refrigerant flowing into the communication part 410 from the discharge chamber 110. Phase difference occurs and pulsation noise is reduced.
냉매가 유분리기(200)에 형성된 냉매 유입 홀(202)로 유입된 후에 비중 차이에 의해 오일이 안정적으로 분리되기 위해서는 상기 유분리기(200)의 길이 방향을 기준으로 냉매 유입 홀(202)이 상측에 위치되는 것이 바람직하다. After the refrigerant flows into the refrigerant inlet hole 202 formed in the oil separator 200, in order to stably separate oil due to the difference in specific gravity, the refrigerant inlet hole 202 is located on the upper side of the oil separator 200 based on the length direction. It is preferably located at.
왜냐하면 냉매가 유분리기(200)의 길이 방향을 따라 하측으로 이동하면서 오일의 안정적인 분리와 가스 상태의 순수한 냉매를 회수하는데 상대적으로 유리해지기 때문이다. This is because the refrigerant moves relatively downward along the longitudinal direction of the oil separator 200, which is relatively advantageous for stable separation of oil and recovery of pure refrigerant in gas state.
격벽(400)은 절삭 가공 방식을 통해 도면에 도시된 형태로 가공되며 연통부(410)는 드릴을 통해 1차로 홀 가공이 이루어진 이후에 추가 가공을 통해 제작된다.The partition wall 400 is processed in the form shown in the drawings through a cutting method and the communication unit 410 is manufactured through additional processing after the hole processing is primarily made through a drill.
전동압축기(1)는 유분리기(200)를 경유하여 분리된 오일이 필터링되는 필터유닛(30)이 배치되는데, 상기 필터유닛(30)은 유분리기(200)를 통해 분리된 오일에 포함된 이물질을 필터링하기 위해 구비되며 상기 필터유닛(30)은 메쉬 형태로 구성된 필터본체가 안착된 필터 프레임을 포함하여 구성된다.The electric compressor (1) is provided with a filter unit 30 for filtering the separated oil via the oil separator 200, the filter unit 30 is foreign matter contained in the oil separated through the oil separator (200) It is provided to filter the filter unit 30 is configured to include a filter frame seated on the filter body consisting of a mesh form.
필터유닛(30)은 전술한 유분리기(200)의 하측에 형성된 오일 배출 홀(미도시)을 통해 배출된 오일이 전동압축기(1)의 구동부(3)로 공급되기 이전에 냉매에서 분리된 오일에 대한 필터링을 위해 유분리기(200)의 위치에 따라 토출챔버(110)에서의 설치 위치가 변동된다. The filter unit 30 is oil separated from the refrigerant before the oil discharged through the oil discharge hole (not shown) formed at the lower side of the oil separator 200 is supplied to the drive unit 3 of the electric compressor 1. The installation position in the discharge chamber 110 is changed according to the position of the oil separator 200 for filtering on.
본 발명의 일 실시 예와 같이 유분리기(200)가 토출챔버(110)의 일측에 편심된 상태로 위치될 경우 필터유닛(30) 또한 도면에 도시된 바와 같이 유분리기(200)의 일측에 해당되는 우측에 위치된다.When the oil separator 200 is positioned eccentrically to one side of the discharge chamber 110 as in an embodiment of the present invention, the filter unit 30 also corresponds to one side of the oil separator 200 as shown in the drawing. Is located on the right side.
본 실시 예에 의한 전동압축기(1)는 차량용 공조시스템에 장착되므로, 차 실내로 진동 및 소음 전달이 최소화되어 정숙한 운행이 유지된다.Since the electric compressor 1 according to the present embodiment is mounted in a vehicle air conditioning system, vibration and noise transmission are minimized to the interior of the vehicle, thereby maintaining quiet operation.
상기 토출챔버(110)는 상기 유분리기(200)에 의해 서로 다른 위치에 위치된 복수개의 영역 중 가장 큰 영역을 갖는 제1 영역(S1)과, 상기 제1 영역(S1)보다 상대적으로 작은 영역을 갖는 제2 영역(S2)과, 상기 냉매 유입홀(202)과 인접하고 상기 제2 영역(S2)과 이웃하여 위치된 제3 영역(S3)을 포함한다.The discharge chamber 110 includes a first region S1 having the largest region among a plurality of regions located at different positions by the oil separator 200, and a region relatively smaller than the first region S1. And a third region S3 adjacent to the refrigerant inlet hole 202 and located adjacent to the second region S2.
상기 제1 내지 제3 영역(S1 ~ S3)은 동일 영역으로 유지되나 유분리기(200)를 기준으로 도면에 도시된 영역으로 구획되며 상기 제1,2 영역(S1, S2)에서 주로 소음 감쇠가 이루어질 수 있다. 그리고 상기 제3 영역(S3)은 냉매가 냉매 유입 홀(202)로 유입되는 동안 발생되는 소음을 저감할 수 있으나, 상기 제1,2 영역(S1, S2)과 함께 보조적으로 소음을 저감하는 역할도 이루어질 수 있다.The first to third regions S1 to S3 are maintained in the same region, but are divided into regions shown in the drawing based on the oil separator 200, and noise attenuation is mainly performed in the first and second regions S1 and S2. Can be done. The third region S3 may reduce noise generated while the refrigerant is introduced into the refrigerant inlet hole 202, but assists noise reduction with the first and second regions S1 and S2. It can also be done.
상기 제1 영역(S1)은 반원판 형태로 형성되고, 상기 제1 영역(S1)으로 토출된 냉매가 상기 제1 영역(S1)의 내측에서 확산되거나 원주 방향을 따라 이동하면서 소음 감쇠가 이루어질 수 있다.The first region S1 may be formed in a semi-circle shape, and noise may be attenuated while the refrigerant discharged to the first region S1 diffuses inside the first region S1 or moves along the circumferential direction. have.
첨부된 도 6을 참조하면, 본 실시 예에 의한 토출챔버(110)는 소정의 크기로 이루어진 내부 체적(V1)과 상기 토출챔버(110)로 냉매가 토출되는 냉매 토출용량(cc)에 따라 토출챔버의 체적 비율이 설정된다. Referring to FIG. 6, the discharge chamber 110 according to the present embodiment is discharged according to an internal volume V1 having a predetermined size and a refrigerant discharge capacity cc in which refrigerant is discharged to the discharge chamber 110. The volume ratio of the chamber is set.
일 예로 상기 토출챔버(110)의 체적 비율은 상기 토출챔버(110)의 내부 체적(V1)을 상기 냉매 토출용량(cc)으로 나눈값으로 계산되고, 상기 토출챔버(110)의 체적 비율은 2.0 ~ 3.2배중의 어느 하나의 비율로 구성된다.For example, the volume ratio of the discharge chamber 110 is calculated by dividing the internal volume V1 of the discharge chamber 110 by the refrigerant discharge capacity cc, and the volume ratio of the discharge chamber 110 is 2.0. It consists of any one of ˜3.2 times.
전동 압축기에 구비된 리어 하우징은 A 타입에서부터 E 타입까지 다수개의 타입으로 구성될 수 있는데, 상기 A 타입에 도시된 리어 하우징(100)은 토출량이 거의 없는 형태에 해당된다. The rear housing provided in the electric compressor may be composed of a plurality of types from the A type to the E type, and the rear housing 100 shown in the A type corresponds to a form in which the discharge amount is almost absent.
그리고 B타입에 도시된 리어 하우징(100)은 토출챔버(110)에 구비되고 토출 길이는 e1에 해당되는 길이로 도출된다. C타입에 도시된 리어 하우징(100)은 토출챔버(110)가 e2에 해당되는 길이로 도출되고, D타입에 도시된 리어 하우징(100)은 토출챔버(110)가 e3에 해당되는 길이로 도출되며, E타입에 도시된 리어 하우징(100)은 토출챔버(110)가 e4에 해당되는 길이로 도출된다.And the rear housing 100 shown in the B type is provided in the discharge chamber 110 and the discharge length is derived to a length corresponding to e1. The rear housing 100 shown in type C has a discharge chamber 110 with a length corresponding to e2, and the rear housing 100 shown in a D type has a discharge chamber 110 with a length corresponding to e3. In the rear housing 100 shown in the E type, the discharge chamber 110 is drawn to a length corresponding to e4.
상기 A 내지 E타입에 도시된 리어 하우징(100)은 모두 내부 체적과 냉매 토출용량이 서로 상이한데, 상기 냉매의 토출용량은 모두 일정하나 상기 리어 하우징(100)의 내부 체적은 서로 상이한 체적이 유지된다.The rear housing 100 shown in Types A to E all have different internal volumes and refrigerant discharge capacities. The discharge capacities of the refrigerants are all constant, but the internal volumes of the rear housing 100 are different from each other. do.
일 예로 상기 A타입의 리어 하우징(100)의 내부 체적이 61cc로 가장 작은 체적이 유지되고, 상기 D타입의 리어 하우징(100)의 내부 체적이 117cc로 가장 큰 체적이 유지된다. 또한 A 내지 E타입에 따른 리어 하우징의 중량은 서로 상이한데 상기 A타입의 리어 하우징(100)의 중량이 462g으로 가장 적은 중량이 유지되고, 상기 D타입의 리어 하우징(100)의 중량이 가장 큰 중량이 유지된다.For example, the smallest internal volume of the rear housing 100 of the A type is maintained at 61 cc, and the largest internal volume of the rear housing 100 of the D type is maintained at 117 cc. In addition, the weight of the rear housing according to the A to E type is different from each other, the weight of the A-type rear housing 100 is maintained at the lowest 462g, the weight of the D type rear housing 100 is the largest The weight is maintained.
상기 토출챔버(110)는 리어 하우징(100)의 외측으로 도출된 길이에 따라 상기 토출탬버(110)의 체적 비율이 2.0 ~ 3.2배중의 어느 하나의 비율로 구성되는데 각각의 서로 다른 비율에 따른 최대 소음 저감 성능이 유지되는 리어 하우징을 설계할 수 있다.The discharge chamber 110 is composed of any one of the ratio of the volume of the discharge tamper 110 is 2.0 to 3.2 times the length derived to the outside of the rear housing 100, the maximum according to each different ratio The rear housing can be designed in which noise reduction performance is maintained.
또한 리어 하우징(100)은 토출챔버(110)의 체적 비율이 2.0배 미만일 경우 과도한 소음이 발생할 수 있고, 3.2배 초과일 경우 소음이 오히려 증가되므로 전술한 체적 비율이 유지되는 리어 하우징9100)을 사용하는 것이 가장 바람직함을 알 수 있다.In addition, the rear housing 100 may generate excessive noise when the volume ratio of the discharge chamber 110 is less than 2.0 times, and when the volume ratio exceeds 3.2 times, the rear housing 100 may use the rear housing 9100 in which the above volume ratio is maintained. It can be seen that it is most preferable to do.
첨부된 도 7을 참조하면, 본 실시 예에 의한 토출챔버(110)는 소정의 크기로 이루어진 내부 체적(V1)과 상기 토출챔버(110)로 냉매가 토출되는 냉매 토출용량(cc)에 따라 토출챔버의 체적 비율이 설정된다.Referring to FIG. 7, the discharge chamber 110 according to the present embodiment is discharged according to an internal volume V1 having a predetermined size and a refrigerant discharge capacity cc in which refrigerant is discharged to the discharge chamber 110. The volume ratio of the chamber is set.
그래프에 도시된 바와 같이 X축에 도시된 냉매 토출용량 대비 Y축에 도시된 소음은 3.1배 위치에서 리어 하우징에서 발생되는 소음이 제일 감소하게 된다.As shown in the graph, the noise shown in the Y-axis relative to the refrigerant discharge capacity shown in the X-axis is the noise generated in the rear housing at the 3.1 times the position is most reduced.
따라서 상기 비율을 갖는 리어 하우징을 선택하여 전동 압축기에 적용할 경우 냉매의 토출에 따른 소음 저감 효과를 유도할 수 있다.Therefore, when the rear housing having the ratio is selected and applied to the electric compressor, a noise reduction effect due to the discharge of the refrigerant can be induced.
첨부된 도 8을 참조하면, 리어 하우징의 중량에 따른 냉매 토출용량 대비 소음을 비교해 보면 3.0에서 3.15의 비율 사이에 해당되는 리어 하우징이 냉매의 토출에 따른 소음 저감 효과가 우수함을 알 수 있다. 또한 리어 하우징은 토출챔버(110)의 체적 비율이 3.15배 또는 3.2배 이상일 경우 소음이 오히려 증가되므로 전술한 체적 비율이 유지되는 리어 하우징을 사용하는 것이 가장 바람직함을 알 수 있다.Referring to FIG. 8, when comparing the noise to the refrigerant discharge capacity according to the weight of the rear housing, it can be seen that the rear housing corresponding to the ratio of 3.0 to 3.15 has an excellent noise reduction effect due to the discharge of the refrigerant. In addition, since the noise is increased when the volume ratio of the discharge chamber 110 is 3.15 times or 3.2 times or more, it can be seen that it is most preferable to use the rear housing in which the above-described volume ratio is maintained.
본 실시 예에 의한 토출챔버(110)는 상기 리어 하우징(100)의 외측으로 돌출된 길이가 최소 14mm 이상 최대 30mm 이내의 범위에서 돌출되며 상기 범위 이내에서 냉매의 토출에 따른 소음 저감 효과가 가장 저감된다.The discharge chamber 110 according to the present embodiment protrudes in a range of at least 14 mm and at most 30 mm, the length of which protrudes to the outside of the rear housing 100, and the noise reduction effect due to the discharge of the refrigerant within the above range is most reduced. do.
본 실시 예들은 전동압축기에서 냉매의 토출로 인해 발생되는 진동 및 소음발생을 감소시켜 사용할 수 있다.The present embodiments can be used to reduce the vibration and noise generated by the discharge of the refrigerant in the electric compressor.

Claims (16)

  1. 냉매가 토출되는 토출챔버(110)가 형성된 리어 하우징(100); 및A rear housing 100 in which a discharge chamber 110 through which the coolant is discharged is formed; And
    상기 토출챔버(110)에 배치되고 상기 냉매가 유입되는 냉매 유입 홀(202)이 형성된 유분리기(200)를 포함하고,An oil separator 200 disposed in the discharge chamber 110 and having a coolant inlet hole 202 through which the coolant flows;
    상기 토출챔버(110)는 상기 리어 하우징(100)의 외측으로 부피가 증가되어 다단으로 돌출되되, 상기 유분리기(200)를 기준으로 상기 토출챔버(110)의 내부가 서로 다른 체적으로 분할된 것을 특징으로 하는 전동압축기.The discharge chamber 110 is increased in volume to the outside of the rear housing 100 to protrude in multiple stages, the interior of the discharge chamber 110 is divided into different volumes based on the oil separator (200). Electric compressor.
  2. 제1 항에 있어서,According to claim 1,
    상기 토출 챔버(110)는 The discharge chamber 110 is
    상기 리어 하우징(100)에서 돌출 방향을 향해 소정의 길이로 부분 돌출된 제1 챔버(112);A first chamber 112 partially protruding from the rear housing 100 in a protruding direction;
    상기 유분리기(200)를 경계로 일측에서 상기 제1 챔버(112)의 돌출된 단부에서 부분 돌출된 제2 챔버(114);A second chamber 114 partially protruding from the protruding end of the first chamber 112 at one side of the oil separator 200;
    상기 유분리기(200)를 경계로 타측에서 돌출 방향으로 직접 돌출된 제3 챔버(116)를 포함하는 전동압축기.And a third chamber (116) directly protruding in the protruding direction from the other side of the oil separator (200) as a boundary.
  3. 제2 항에 있어서,The method of claim 2,
    상기 제2 챔버(114)는 상기 제1 챔버(112) 또는 제3 챔버(116)보다 부피가 크게 이루어진 것을 특징으로 하는 전동압축기.The second chamber (114) is an electric compressor, characterized in that the volume is made larger than the first chamber (112) or the third chamber (116).
  4. 제2 항에 있어서,The method of claim 2,
    상기 제2 챔버(114)는 상기 제1,3 챔버(112, 116)가 돌출된 길이 보다 상기 리어 하우징(100)의 돌출 방향으로 길게 돌출된 전동압축기.The second chamber (114) is an electric compressor that protrudes longer in the protruding direction of the rear housing (100) than the length of the first and third chambers (112, 116) protruding.
  5. 제2 항에 있어서,The method of claim 2,
    상기 제2 챔버(114)에는 내측에 상기 리어 하우징(100)의 원주 방향으로 연장된 리브(300)가 구비된 것을 특징으로 하는 전동압축기.The second chamber (114) is an electric compressor, characterized in that provided with a rib (300) extending in the circumferential direction of the rear housing (100) inside.
  6. 제5 항에 있어서,The method of claim 5,
    상기 리브(300)는 상기 제2 챔버(114)에 링 형태로 형성된 제1 리브(310);The rib 300 includes a first rib 310 formed in a ring shape in the second chamber 114;
    상기 제1 리브(310)에서 방사 형태로 다수개가 연장된 제2 리브(320)를 포함하는 전동압축기.Electric compressor including a plurality of second ribs (320) extending radially from the first rib (310).
  7. 제5 항에 있어서,The method of claim 5,
    상기 제2 챔버(114)에는 내측 원주 방향을 따라 다수개로 분할된 제3 리브(330)가 구비된 것을 특징으로 하는 전동압축기.The second chamber (114) is an electric compressor, characterized in that provided with a plurality of third ribs (330) divided along the inner circumferential direction.
  8. 제6 항에 있어서,The method of claim 6,
    상기 제1 리브(310)와 상기 제2 리브(320)는 서로 다른 두께로 이루어진 것을 특징으로 하는 전동압축기.The first rib 310 and the second rib 320 is an electric compressor, characterized in that made of different thickness.
  9. 제6 항에 있어서,The method of claim 6,
    상기 제1 리브(310)는 상기 제2 리브(320) 보다 두껍게 이루어진 것을 특징으로 하는 전동압축기.The first rib (310) is an electric compressor, characterized in that made thicker than the second rib (320).
  10. 제1 항에 있어서,According to claim 1,
    상기 유분리기(200)는,The oil separator 200,
    상기 리어 하우징(100)의 중앙을 기준으로 일측에 편심되게 배치된 것을 특징으로 하는 전동압축기.Electric compressor, characterized in that the eccentrically arranged on one side with respect to the center of the rear housing (100).
  11. 제1 항에 있어서,According to claim 1,
    상기 토출챔버(110)의 일측에 위치되고, 상기 토출챔버(110)의 내부를 서로 다른 영역으로 구획하는 격벽(400)이 구비된 것을 특징으로 하는 전동압축기.The compressor is located on one side of the discharge chamber 110, characterized in that the partition wall 400 for partitioning the interior of the discharge chamber 110 into different areas are provided.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 격벽(400)에는 서로 다른 위치에 연통부(410)가 형성된 것을 특징으로 하는 전동압축기.The partition 400 is an electric compressor, characterized in that the communication portion 410 is formed at different positions.
  13. 제1 항에 있어서,According to claim 1,
    상기 토출챔버(110)는 소정의 크기로 이루어진 내부 체적(V1)과 상기 토출챔버(110)로 냉매가 토출되는 냉매 토출용량(cc)에 따라 토출챔버의 체적 비율이 설정되되,The discharge chamber 110 is a volume ratio of the discharge chamber is set according to the internal volume (V1) having a predetermined size and the refrigerant discharge capacity (cc) of the refrigerant discharged to the discharge chamber 110,
    상기 토출챔버(110)의 체적 비율은 상기 토출챔버(110)의 내부 체적(V1)을 상기 냉매 토출용량(cc)으로 나눈값으로 계산되고, 상기 토출챔버(110)의 체적 비율은 2.0 ~ 3.2배 중의 어느 하나의 비율로 구성된 것을 특징으로 하는 전동압축기.The volume ratio of the discharge chamber 110 is calculated by dividing the internal volume V1 of the discharge chamber 110 by the refrigerant discharge capacity cc, and the volume ratio of the discharge chamber 110 is 2.0 to 3.2. Electric compressor, characterized in that composed of any one of the ratio of the ship.
  14. 제1 항에 있어서,According to claim 1,
    상기 토출챔버(110)는 상기 유분리기(200)에 의해 서로 다른 위치에 위치된 복수개의 영역 중 가장 큰 영역을 갖는 제1 영역(S1);The discharge chamber 110 may include a first region S1 having a largest region among a plurality of regions located at different positions by the oil separator 200;
    상기 제1 영역(S1)보다 상대적으로 작은 영역을 갖는 제2 영역(S2);A second region S2 having a region relatively smaller than the first region S1;
    상기 냉매 유입홀(202)과 인접하고 상기 제2 영역(S2)과 이웃하여 위치된 제3 영역(S3)을 포함하는 전동압축기.And a third region (S3) adjacent to the refrigerant inlet hole (202) and located adjacent to the second region (S2).
  15. 제14 항에 있어서,The method of claim 14,
    상기 제1 영역(S1)은 반원판 형태로 형성되고, 상기 제1 영역(S1)으로 토출된 냉매가 상기 제1 영역(S1)의 내측에서 확산되거나 원주 방향을 따라 이동하면서 소음 감쇠가 이루어지는 것을 특징으로 하는 전동압축기.The first region S1 is formed in the shape of a semi-circle, and the refrigerant discharged into the first region S1 diffuses inside the first region S1 or moves along the circumferential direction to reduce noise. Electric compressor.
  16. 제5 항에 있어서,The method of claim 5,
    상기 토출챔버(110)는 상기 유분리기(200)와 인접한 일측에 상기 리브(300)가 형성되고, 상기 유분리기(300)의 타측에는 상기 리브(300)가 미 형성된것을 특징으로 하는 전동압축기.The discharge chamber (110) is characterized in that the rib 300 is formed on one side adjacent to the oil separator (200), the rib 300 is not formed on the other side of the oil separator (300).
PCT/KR2018/001951 2016-11-30 2018-02-14 Electric compressor WO2018151538A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019500564A JP6742499B2 (en) 2016-11-30 2018-02-14 Electric compressor
CN201880002829.1A CN109477483B (en) 2016-11-30 2018-02-14 Electric compressor
US16/314,566 US11073316B2 (en) 2016-11-30 2018-02-14 Electric compressor
DE112018000059.1T DE112018000059T5 (en) 2016-11-30 2018-02-14 ELECTRICAL COMPRESSOR

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160161105 2016-11-30
KR1020170022412A KR102530820B1 (en) 2016-11-30 2017-02-20 Compressor
KR10-2017-0022412 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151538A1 true WO2018151538A1 (en) 2018-08-23

Family

ID=67309881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001951 WO2018151538A1 (en) 2016-11-30 2018-02-14 Electric compressor

Country Status (4)

Country Link
JP (1) JP6742499B2 (en)
CN (1) CN109477483B (en)
DE (1) DE112018000059T5 (en)
WO (1) WO2018151538A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210023228A (en) * 2019-08-22 2021-03-04 현대자동차주식회사 Device of multi-stage compression and control method of the same
JP6985625B2 (en) * 2020-03-31 2021-12-22 ダイキン工業株式会社 Oil separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778585B2 (en) * 1996-06-14 1998-07-23 松下電器産業株式会社 Scroll gas compressor
KR20100103139A (en) * 2009-03-13 2010-09-27 한국델파이주식회사 Scroll type compressor
KR20140127081A (en) * 2013-04-24 2014-11-03 엘지전자 주식회사 Muffler for compressor and compressor having the same
KR20160108036A (en) * 2015-03-06 2016-09-19 한온시스템 주식회사 Compressor
KR101681590B1 (en) * 2015-09-09 2016-12-01 엘지전자 주식회사 Scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594196B2 (en) * 2011-03-14 2014-09-24 株式会社豊田自動織機 Scroll compressor for vehicles
KR102080621B1 (en) * 2015-03-06 2020-04-14 한온시스템 주식회사 Method of oil separator of the compressor processing and compressor
KR102379705B1 (en) 2015-08-20 2022-03-28 삼성전자주식회사 Memory device having GND switch
CN106286294B (en) * 2016-09-19 2019-06-07 珠海格力电器股份有限公司 Screw compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778585B2 (en) * 1996-06-14 1998-07-23 松下電器産業株式会社 Scroll gas compressor
KR20100103139A (en) * 2009-03-13 2010-09-27 한국델파이주식회사 Scroll type compressor
KR20140127081A (en) * 2013-04-24 2014-11-03 엘지전자 주식회사 Muffler for compressor and compressor having the same
KR20160108036A (en) * 2015-03-06 2016-09-19 한온시스템 주식회사 Compressor
KR101681590B1 (en) * 2015-09-09 2016-12-01 엘지전자 주식회사 Scroll compressor

Also Published As

Publication number Publication date
DE112018000059T5 (en) 2019-03-07
CN109477483A (en) 2019-03-15
JP6742499B2 (en) 2020-08-19
JP2019520520A (en) 2019-07-18
CN109477483B (en) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2016190490A1 (en) Compressor having oil recovery means
JP5828863B2 (en) Gas compressor
WO2017188558A1 (en) Scroll compressor
WO2016108444A1 (en) Scroll compressor and air conditioner having the same
WO2018131827A1 (en) Turbo compressor
WO2011019116A1 (en) Compressor
EP1339987B1 (en) Hermetic compressor
WO2018194294A1 (en) Rotary compressor
WO2012091388A1 (en) Compressor
WO2016143951A1 (en) Electric compressor
WO2009110690A2 (en) Hermetic compressor
WO2011019113A1 (en) Compressor
WO2018151538A1 (en) Electric compressor
WO2019045454A1 (en) Scroll compressor
WO2012091386A1 (en) Compressor
WO2014014182A1 (en) Vane rotary compressor
WO2013005906A1 (en) Scroll compressor
WO2010011082A2 (en) Variable capacity type rotary compressor
WO2016043455A1 (en) Compressor
WO2017164539A1 (en) Compressor
WO2011019115A1 (en) Compressor
WO2018216916A1 (en) Rotary compressor
KR20180062314A (en) Compressor
WO2016099002A1 (en) Rotating-type compressor
JP2003227486A (en) Double cylinder rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500564

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18753954

Country of ref document: EP

Kind code of ref document: A1