WO2018150829A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2018150829A1
WO2018150829A1 PCT/JP2018/002138 JP2018002138W WO2018150829A1 WO 2018150829 A1 WO2018150829 A1 WO 2018150829A1 JP 2018002138 W JP2018002138 W JP 2018002138W WO 2018150829 A1 WO2018150829 A1 WO 2018150829A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
storage device
treatment layer
power storage
surface treatment
Prior art date
Application number
PCT/JP2018/002138
Other languages
French (fr)
Japanese (ja)
Inventor
中村 知広
貴之 弘瀬
耕二郎 田丸
祐樹 杉本
泰有 秋山
素宜 奥村
卓郎 菊池
秀典 ▲高▼橋
伸烈 芳賀
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017126614A external-priority patent/JP6855339B2/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN201880011738.4A priority Critical patent/CN110301061B/en
Priority to DE112018000865.7T priority patent/DE112018000865T5/en
Priority to US16/486,087 priority patent/US10910644B2/en
Publication of WO2018150829A1 publication Critical patent/WO2018150829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a power storage device.
  • Patent Document 1 describes a bipolar secondary battery.
  • This bipolar secondary battery includes a bipolar electrode provided with a positive electrode on one surface of a metal current collector and a negative electrode on the other surface, a separator sandwiched between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and a separator. And a frame-shaped sealing material that surrounds the constructed unit cell and is pressure-bonded between the current collectors.
  • the sealing material is made of resin, and the sealing material has a high pressure bonding part surrounding the periphery of the unit cell.
  • an object of one aspect of the present invention is to provide a power storage device that can ensure strength and liquid tightness between a metal current collector and a resin member.
  • a power storage device includes a metal current collector, a plurality of electrodes that are stacked in a first direction, a separator that is disposed between adjacent electrodes, and an electrode
  • a plurality of resin members that are disposed along the peripheral edge of the electrode and maintain a distance between adjacent electrodes, and a surface treatment layer that covers the surface of the current collector at least at the peripheral edge of the electrode, It has a plurality of protrusions arranged along the second direction intersecting the first direction and protruding from the surface in the first direction, and the protrusion has a portion that becomes tapered from the proximal end side toward the distal end side.
  • a part of the resin member is interposed between the adjacent protrusions from the distal end side to the proximal end side.
  • a part of the resin member is interposed between the adjacent protrusions from the distal end side to the proximal end side.
  • the protrusion has a portion that tapers from the proximal end side toward the distal end side. Therefore, it is controlled that a part of resin member interposed between adjacent protrusions moves in the direction away from the base end. Therefore, since the resin member is prevented from peeling from the surface treatment layer, it is possible to ensure the strength and liquid tightness between the metal current collector and the resin member.
  • the surface treatment layer may further cover the surface of the current collector at the center of the electrode.
  • the surface treatment layer since the surface of the current collector in the central portion of the electrode is covered with the surface treatment layer, for example, when an active material that functions as a positive electrode layer or a negative electrode layer is provided in the central portion of the current collector, Adhesion between the surface and the active material is improved.
  • the current collector may be an electrolytic foil
  • the surface treatment layer may be an electrolytic plating layer.
  • the current collector is an electrolytic foil
  • fine convex portions are formed on at least one surface of the current collector.
  • the surface treatment layer is an electroplating layer, current concentration occurs in this convex portion.
  • the surface treatment layer may cover the surface of the current collector on one side in the first direction.
  • the resin member since the resin member is disposed on the surface of the current collector on one side in the first direction, it is possible to reliably avoid a short circuit between the electrodes.
  • the electrode may further include a positive electrode layer provided on one surface of the current collector and a negative electrode layer provided on the other surface of the current collector. Good. In this case, for example, it is possible to ensure the strength and liquid tightness between the peripheral portion of the bipolar electrode and the resin member.
  • a power storage device that can ensure strength and liquid tightness between a metal current collector and a resin member.
  • FIG. 1 is a cross-sectional view schematically showing a power storage device according to an embodiment.
  • FIG. 2A is an enlarged cross-sectional view of the peripheral edge of the electrode.
  • FIG. 2B is an enlarged sectional view of the surface of the current collector and the surface treatment layer.
  • FIG. 3 is a schematic view illustrating the manufacturing process of the electrolytic foil.
  • FIG. 4 is a schematic view illustrating the manufacturing process of the electrolytic plating layer.
  • FIGS. 5A to 5C are enlarged sectional views of the peripheral edge portion of the electrode according to the modification.
  • FIG. 1 and 2 show an XYZ rectangular coordinate system for convenience of explanation.
  • FIG. 1 is a cross-sectional view schematically showing a power storage device according to an embodiment.
  • the power storage device 1 is, for example, a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery, or an electric double layer capacitor.
  • the power storage device 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • the electrical storage apparatus 1 is a nickel hydride secondary battery is demonstrated as an example.
  • the power storage device 1 is a bipolar battery including a laminate 2 of bipolar electrodes (electrodes) 3.
  • the power storage device 1 includes a laminated body 2 of bipolar electrodes 3, a case 5 that holds the laminated body 2, and a restraining body 6 that restrains the laminated body 2.
  • the laminate 2 is configured by laminating a plurality of bipolar electrodes 3 along the first direction D1 with separators 7 interposed therebetween.
  • the first direction D1 is a direction along the Z-axis direction.
  • Each of the bipolar electrodes 3 includes a current collector 11, a positive electrode layer 12 provided on one surface (surface) 11 a of the current collector 11, and a negative electrode layer 13 provided on the other surface 11 b of the current collector 11. And have.
  • the positive electrode layer 12 and the negative electrode layer 13 are provided at least in the central portion M of the current collector 11.
  • the positive electrode layer 12 of one bipolar electrode 3 faces the negative electrode layer 13 of one bipolar electrode 3 adjacent in the first direction D1, and the negative electrode layer 13 of one bipolar electrode 3 is in the first direction.
  • the laminate 2 has a plurality of spacers (resin members) 4.
  • the spacer 4 is disposed along the peripheral edge portion 11 c of the bipolar electrode 3 and maintains a distance between adjacent bipolar electrodes 3.
  • the current collector 11 is a metal foil made of nickel, for example.
  • the thickness of the current collector 11 is, for example, about 0.1 ⁇ m to 1000 ⁇ m.
  • An example of the positive electrode active material constituting the positive electrode layer 12 is nickel hydroxide.
  • a negative electrode active material which comprises the negative electrode layer 13 a hydrogen storage alloy is mentioned, for example.
  • the formation region of the negative electrode layer 13 on the other surface 11 b of the current collector 11 may be slightly larger than the formation region of the positive electrode layer 12 on one surface 11 a of the current collector 11.
  • the peripheral portion 11c of the current collector 11 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated.
  • the peripheral edge portion 11 c is held by the case 5 in a state where it is buried in the inner wall 5 a of the case 5.
  • a spacer 4 is interposed between one surface 11a of the peripheral edge portion 11c and the inner wall 5a.
  • a space partitioned by the current collectors 11 and 11 and the inner wall 5a of the case 5 is formed between the current collectors 11 and 11 adjacent in the first direction D1.
  • an electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated.
  • the space for accommodating the electrolytic solution formed between the bipolar electrodes 3 and 3 is separated (sealed) by a spacer 4 in a liquid-tight manner.
  • a current collector 111A in which only the negative electrode layer 13 is provided on one side is laminated on one side of the laminated body 2 (positive in the Z-axis direction).
  • the current collector 111 ⁇ / b> A is arranged so that the negative electrode layer 13 and the positive electrode layer 12 of the uppermost bipolar electrode 3 face each other with the separator 7 interposed therebetween.
  • a current collector 111B provided with only the positive electrode layer 12 is stacked on the other stacked end of the stacked body 2 (in the negative Z-axis direction).
  • the current collector 111B is disposed so that the positive electrode layer 12 and the negative electrode layer 13 of the lowermost bipolar electrode 3 face each other with the separator 7 interposed therebetween.
  • the edges of the current collectors 111 ⁇ / b> A and 111 ⁇ / b> B are held by the case 5 in a state of being buried in the inner wall 5 a of the case 5, as with the current collector 11 of the bipolar electrode 3.
  • a spacer 4 is interposed between one surface of the edges of the current collectors 111A and 111B and the inner wall 5a.
  • the current collectors 111 ⁇ / b> A and 111 ⁇ / b> B may be formed thicker than the current collector 11 of the bipolar electrode 3.
  • the separator 7 is formed in a sheet shape, for example.
  • the material for forming the separator include a porous film made of a polyolefin-based resin such as polyethylene (PE) and polypropylene (PP), and a woven or non-woven fabric made of polypropylene.
  • the separator 7 may be reinforced with a vinylidene fluoride resin compound or the like.
  • the separator 7 is not limited to a sheet shape but may be a bag shape.
  • the case 5 is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin.
  • the resin material constituting the resinous case 5 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), and modified polyphenylene sulfide (modified PPS).
  • the case 5 is a member that surrounds and holds the side surface 2 a of the stacked body 2 formed by stacking the bipolar electrodes 3.
  • the restraint body 6 is constituted by a pair of restraint plates 21 and 21 and a connecting member (bolt 22 and nut 23) for joining the restraint plates 21 and 21 together.
  • the restraint plate 21 is formed in a flat plate shape with a metal such as iron.
  • An insertion hole 21 a through which the bolt 22 is inserted is provided at a position on the outer side of the case 5 at the edge of the restraint plate 21.
  • the inner peripheral surface of the insertion hole 21a and the bolt seat surface in the restricting body 6 are insulated.
  • a terminal member 25 (terminal member 25 ⁇ / b> A, terminal member 25 ⁇ / b> B) is coupled to one surface side of the restraining plate 21 via an insulating member 24. Examples of a material for forming the insulating member 24 interposed between the restraint plate 21 and the terminal member 25 include a fluorine-based resin or a polyethylene resin.
  • One constraining plate 21 is abutted against one end surface of the case 5 so that the terminal member 25 ⁇ / b> A and the current collector 111 ⁇ / b> A are in contact with each other inside the case 5, and the other constraining plate 21 is a terminal member inside the case 5.
  • 25B and the current collector 111B are abutted against the other end surface of the case 5 so as to be in contact with each other.
  • the bolt 22 is passed through the insertion hole 21a from one restraint plate 21 side to the other restraint plate 21 side, and a nut 23 is screwed onto the tip of the bolt 22 protruding from the other restraint plate 21. Yes.
  • the laminate 2, the current collectors 111A and 111B, and the case 5 are sandwiched and unitized, and a restraining load is applied.
  • the terminal member 25A and the terminal member 25B are disposed between the restraint plate 21 and the laminated body 2 so as to sandwich the laminated body 2 in the first direction D1.
  • a lead part 26 is connected to the terminal member 25A, and a lead part 27 is connected to the terminal member 25B.
  • the power storage device 1 can be charged / discharged by the drawing unit 26 and the drawing unit 27.
  • the configuration of the junction between the current collectors 11, 111 ⁇ / b> A, 111 ⁇ / b> B and the spacer 4 in the power storage device 1 described above will be described in more detail.
  • the current collector 11 will be described, but the current collectors 111A and 111B have the same configuration.
  • a surface treatment layer 30 that covers one surface 11a of the current collector 11 is formed on the peripheral edge portion 11c of the current collector 11. As shown in FIG. The peripheral edge 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30.
  • the surface treatment layer 30 is provided in order to ensure strength and liquid tightness between the current collector 11 made of metal and the spacer 4 that is a resin member.
  • the surface treatment layer 30 can be formed by an electrolytic plating process on the current collector 11.
  • the thickness of the surface treatment layer 30 is not particularly limited, the thickness of the current collector 11 may be set to 0.1 ⁇ m to 1000 ⁇ m, whereas the thickness of the surface treatment layer 30 may be set to 0.1 ⁇ m to 30 ⁇ m. .
  • the surface treatment layer 30 has a plurality of protrusions 31 protruding from the one surface 11a in the first direction D1.
  • Each protrusion 31 reaches the tip 33 along the first direction D1 with a convex portion 11d (described later) of the current collector 11 as a base end 32.
  • the protrusion 31 is disposed along a second direction D2 that intersects the first direction D1.
  • the second direction D2 is a direction along the XY plane.
  • Each projection 31 includes a plurality of substantially spherical deposited metals (provided materials) formed by electrolytic plating.
  • the deposited metal overlaps with each other, so that an enlarged portion 34 in which the length dimension of the protrusion 31 in the second direction D ⁇ b> 2 is larger than the length dimension of the base end 32 in the second direction D ⁇ b> 2 is formed.
  • the protrusion 31 has a portion that becomes tapered from the proximal end 32 side toward the distal end 33 side.
  • the position of the enlarged portion 34 in the protrusion 31 does not necessarily have to be at the distal end 33, but is at least located closer to the distal end 33 than the base end 32.
  • the position of the enlarged portion 34 in the projection 31 may be different for each projection 31 depending on the overlapping manner of the deposited metal.
  • a part 4 a of the spacer 4 is interposed between the adjacent protrusions 31.
  • the spacer 4 that is a resin member is molded such that a part 4 a of the spacer 4 is interposed between the protrusions 31 during molding.
  • the adjacent protrusion 31 restricts the movement of the part 4 a of the intervening spacer 4 in the direction away from the base end 32.
  • the cross-sectional shape between the adjacent protrusions 31 is an undercut shape that exhibits an anchor effect.
  • a surface treatment layer 30 that covers one surface 11a of the current collector 11 is formed in the central portion M (see FIG. 1) of the bipolar electrode 3, a surface treatment layer 30 that covers one surface 11a of the current collector 11 is formed.
  • the central portion M of the current collector 11 is bonded to the positive electrode active material of the positive electrode layer 12 through the surface treatment layer 30.
  • the surface treatment layer 30 is continuously formed on one surface 11 a of the current collector 11 from the peripheral edge portion 11 c to the central portion M.
  • the surface treatment layer 30 covers the surface of one side (Z-axis direction positive direction) of the first direction D1 in any of the plurality of current collectors 11.
  • the spacer 4 is disposed on one surface 11 a of the current collector 11 via the surface treatment layer 30.
  • the spacer 4 of the one surface 11a of the current collector 11 and the other surface 11b of the current collector 11 face each other in the first direction D1. That is, in the adjacent bipolar electrode 3, the insulating surface is ensured by the spacer 4 that is a resin member without directly facing the one surface 11 a of the current collector 11 and the other surface 11 b of the current collector 11. Has been.
  • an electrolytic foil 11x constituting the current collector 11 is prepared.
  • a part of the drum DR1 and the anode 50 are immersed in an electrolytic solution L1 containing nickel cations.
  • a predetermined current flows between the drum DR1 and the anode 50.
  • nickel is deposited on the surface of the drum DR1.
  • the electrolytic foil 11x is obtained by precipitating nickel on the surface of the drum DR1 until it has a certain thickness. When nickel is deposited on the surface of the drum DR1, fine convex portions 11d are formed on the surface of the electrolytic foil 11x opposite to the surface of the drum DR1. The produced electrolytic foil 11x is wound around the drum DR2 to become a roll R1.
  • an electrolytic plating layer 30x constituting the surface treatment layer 30 is formed.
  • the electrolytic foil 11x drawn from the roll R1 by the drum DR3 is transported along the surface of the drum DR4.
  • a part of the drum DR4 and the anode 51 are immersed in an electrolytic solution L2 containing nickel cations.
  • a predetermined current flows between the drum DR4 and the anode 51.
  • nickel deposits on the surface of the electrolytic foil 11x on the drum DR4.
  • the electrolytic plating layer 30x is a roughened plating layer obtained by depositing nickel on the surface of the electrolytic foil 11x on the drum DR4 until it has a certain thickness.
  • nickel is deposited on the surface of the electrolytic foil 11x on the drum DR4
  • nickel is deposited on the convex portion 11d of the electrolytic foil 11x.
  • current concentration occurs in the convex portion 11d, and nickel is selectively deposited so that the convex portion 11d serves as the base end 32.
  • the protrusion 31 grows in the electrolytic plating layer 30x, and the surface treatment layer 30 is formed.
  • the electrolytic foil 11x and the electrolytic plating layer 30x are conveyed as the rough plating foil 11y, wound around the drum DR5, and become the roll R2.
  • a part 4 a of the spacer 4 is interposed between the adjacent protrusions 31 from the tip 33 side to the base end 32 side of the protrusion 31.
  • the protrusion 31 has a portion that tapers from the proximal end 32 side toward the distal end 33 side. This restricts the movement of the part 4 a of the spacer 4 interposed between the adjacent protrusions 31 in the direction away from the base end 32. Therefore, since the spacer 4 is prevented from peeling off from the surface treatment layer 30, it is possible to ensure strength and liquid tightness between the metal current collectors 11, 111 ⁇ / b> A, 111 ⁇ / b> B and the spacer 4.
  • the surface treatment layer 30 further covers the surface of the current collector 11 at the central portion M of the bipolar electrode 3. Thereby, since one surface 11a of the current collector 11 in the central portion M of the bipolar electrode 3 is covered with the surface treatment layer 30, the positive electrode layer 12 or the negative electrode layer is provided in the central portion M of the current collector 11. The adhesion between the active material functioning as 13 and the bipolar electrode 3 is improved.
  • the current collector 11 is an electrolytic foil 11x
  • the surface treatment layer 30 is an electrolytic plating layer 30x. Since the current collector 11 is the electrolytic foil 11x, a fine convex portion 11d is formed on at least one surface of the current collector 11. Further, since the surface treatment layer 30 is the electrolytic plating layer 30x, current concentration occurs in the convex portion 11d. Thereby, the protrusion 31 of the surface treatment layer 30 can be grown selectively using the current concentration on the convex portion 11d so that the convex portion 11d becomes the base end 32.
  • the surface treatment layer 30 covers the surfaces of the current collectors 11, 111 ⁇ / b> A, and 111 ⁇ / b> B on one side of the first direction D ⁇ b> 1 (positive direction in the Z-axis direction).
  • the bipolar electrode 3 has a positive electrode layer 12 provided on one surface 11 a of the current collector 11 and a negative electrode layer 13 provided on the other surface 11 b of the current collector 11. Thereby, it is possible to ensure the strength and liquid tightness between the peripheral edge portion 11 c of the bipolar electrode 3 and the spacer 4.
  • One aspect of the present invention is not limited to the above embodiment.
  • a surface treatment layer 30 that covers one surface 11 a of the current collector 11 is formed on the peripheral edge portion 11 c of the current collector 11.
  • one surface 11a of the peripheral edge portion 11c of the body 11 has been described with reference to the example in which the spacer 4 is disposed via the surface treatment layer 30, one aspect of the present invention is not limited thereto.
  • the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, one surface 11 a of the peripheral edge portion 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30, and the other surface 11 a of the peripheral edge portion 11 c of the current collector 11 is covered with the spacer 4. It is good also as 1 A of electrical storage apparatuses provided with.
  • the temperature change heats, cooling, Current collector 11, positive electrode layer caused by difference in expansion or contraction between spacer 4 and current collector 11 due to reaction heat generation of bipolar electrode 3, change in outside air temperature, etc.
  • humidity absorption change in outside air temperature, etc.
  • 12 or the negative electrode layer 13 can be reduced in distortion or warpage.
  • the surface treatment layer 30 is provided on one surface (surface) 11 a of the current collector 11, but the one surface 11 a and the other surface 11 b It may be provided on both sides. Also in this case, as shown in FIG. 5B, the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, it is good also as the electrical storage apparatus 1B provided with the structure by which both surfaces 11a and 11b of the peripheral part 11c of the electrical power collector 11 are couple
  • the surface treatment layer 30 was provided in one surface (surface) 11a of the electrical power collector 11, the surface treatment layer 30 is one surface 11a. It may be provided only on the other surface 11b. Also in this case, as shown in FIG. 5C, the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, one surface 11 a of the peripheral portion 11 c of the current collector 11 is covered with the spacer 4, and the other surface 11 b of the peripheral portion 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30.
  • a power storage device 1C having a configuration may be used.
  • the current collector 11 is a metal foil made of nickel, but may be an aluminum foil or a copper foil.
  • the current collector 11 may be a rolled plate or a rolled foil.
  • the protrusions 31 of the surface treatment layer 30 are configured by a plurality of substantially spherical deposited metals formed by electrolytic plating.
  • a plurality of metal particles are collected from the current collector 11 by a process such as sputtering.
  • the protrusion 31 of the surface treatment layer 30 may be configured by applying to the surface.
  • the shape of the protrusion 31 is not particularly limited as long as it has at least part of a tapered shape that is tapered from the proximal end 32 side toward the distal end 33 side.

Abstract

This power storage device (1) comprises: a plurality of electrodes disposed so as to be layered along a first direction (D1), each having a metallic collector (11); a separator disposed between adjacent electrodes; a plurality of spacers (4) disposed along a peripheral edge section (11c) of the electrode, maintaining a spacing between adjacent electrodes; and a surface-treatment layer (30) covering one surface (11a) of the collector (11) in at least the peripheral edge section (11c) of the electrode. The surface-treatment layer (30) has a plurality of projections (31) disposed along a second direction (D2) intersecting with the first direction (D1), and protruding from the one surface (11a) in the first direction (D1). Each of the projections (31) has a portion that widens to the front, from a base end (32) side to a forward end (33) side. Between adjacent projections (31), a portion (4a) from the spacer (4) is interposed from the forward end (33) side to the base end (32) side throughout.

Description

蓄電装置Power storage device
 本発明の一側面は、蓄電装置に関する。 One aspect of the present invention relates to a power storage device.
 特許文献1には、バイポーラ型二次電池が記載されている。このバイポーラ型二次電池は、金属製の集電体の一面に正極を設けると共に他面に負極を設けたバイポーラ電極と、正極及び負極の間に挟まれたセパレータと、正極、負極及びセパレータによって構成された単電池の周囲を取り囲むと共に集電体の間に圧着された枠状のシール材とを含む。このバイポーラ型二次電池では、シール材は樹脂製であり、シール材は単電池の周囲を取り囲む高圧着部位を有する。 Patent Document 1 describes a bipolar secondary battery. This bipolar secondary battery includes a bipolar electrode provided with a positive electrode on one surface of a metal current collector and a negative electrode on the other surface, a separator sandwiched between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and a separator. And a frame-shaped sealing material that surrounds the constructed unit cell and is pressure-bonded between the current collectors. In this bipolar secondary battery, the sealing material is made of resin, and the sealing material has a high pressure bonding part surrounding the periphery of the unit cell.
特開2014-56799号公報JP 2014-56799 A
 上記従来技術では、金属製の集電体と樹脂製のシール材との間から電解液が漏れることを十分に抑制するために、シール材に高圧着部位が形成されている。このように、当該技術分野では、金属製の集電体と樹脂部材との間において強度及び液密性が確保されることが要されている。 In the above prior art, in order to sufficiently suppress the leakage of the electrolyte from between the metal current collector and the resin sealing material, a high pressure bonding portion is formed in the sealing material. Thus, in this technical field, it is necessary to ensure strength and liquid tightness between a metal current collector and a resin member.
 そこで、本発明の一側面は、金属製の集電体と樹脂部材との間における強度及び液密性の確保が可能となる蓄電装置を提供することを目的とする。 Therefore, an object of one aspect of the present invention is to provide a power storage device that can ensure strength and liquid tightness between a metal current collector and a resin member.
 本発明の一側面に係る蓄電装置は、金属製の集電体を有し、第1方向に沿って積層して配置される複数の電極と、隣接する電極間に配置されるセパレータと、電極の周縁部に沿って配置され、隣接する電極同士の間隔を保持する複数の樹脂部材と、電極の少なくとも周縁部において集電体の表面を覆う表面処理層と、を備え、表面処理層は、第1方向に交差する第2方向に沿って配置され、表面から第1方向に突出する複数の突起を有し、突起は、基端側から先端側に向かって先太りとなる部分を有し、隣接する突起の間には、先端側から基端側にわたって樹脂部材の一部が介在されている。 A power storage device according to one aspect of the present invention includes a metal current collector, a plurality of electrodes that are stacked in a first direction, a separator that is disposed between adjacent electrodes, and an electrode A plurality of resin members that are disposed along the peripheral edge of the electrode and maintain a distance between adjacent electrodes, and a surface treatment layer that covers the surface of the current collector at least at the peripheral edge of the electrode, It has a plurality of protrusions arranged along the second direction intersecting the first direction and protruding from the surface in the first direction, and the protrusion has a portion that becomes tapered from the proximal end side toward the distal end side. A part of the resin member is interposed between the adjacent protrusions from the distal end side to the proximal end side.
 この蓄電装置では、隣接する突起の間には、突起の先端側から基端側にわたって樹脂部材の一部が介在されている。突起は、基端側から先端側に向かって先太りとなる部分を有している。これにより、隣接する突起の間に介在される樹脂部材の一部が基端から離れる方向へ移動することが規制される。したがって、樹脂部材が表面処理層から剥離することが抑制されるため、金属製の集電体と樹脂部材との間における強度及び液密性の確保が可能となる。 In this power storage device, a part of the resin member is interposed between the adjacent protrusions from the distal end side to the proximal end side. The protrusion has a portion that tapers from the proximal end side toward the distal end side. Thereby, it is controlled that a part of resin member interposed between adjacent protrusions moves in the direction away from the base end. Therefore, since the resin member is prevented from peeling from the surface treatment layer, it is possible to ensure the strength and liquid tightness between the metal current collector and the resin member.
 本発明の一側面に係る蓄電装置では、表面処理層は、電極の中央部において集電体の表面を更に覆ってもよい。この場合、電極の中央部における集電体の表面が表面処理層により覆われているため、例えば正極層又は負極層として機能する活物質を集電体の中央部に設ける場合、集電体の表面と活物質との密着性が向上される。 In the power storage device according to one aspect of the present invention, the surface treatment layer may further cover the surface of the current collector at the center of the electrode. In this case, since the surface of the current collector in the central portion of the electrode is covered with the surface treatment layer, for example, when an active material that functions as a positive electrode layer or a negative electrode layer is provided in the central portion of the current collector, Adhesion between the surface and the active material is improved.
 本発明の一側面に係る蓄電装置では、集電体は、電解箔であり、表面処理層は、電解メッキ層であってもよい。この場合、集電体が電解箔であるため、集電体の少なくとも一方の面には微細な凸部が形成されている。また、表面処理層が電解メッキ層であるため、この凸部には、電流集中が生じる。これにより、凸部への電流集中を利用して、選択的に当該凸部を基端とするように表面処理層の突起を成長させることができる。 In the power storage device according to one aspect of the present invention, the current collector may be an electrolytic foil, and the surface treatment layer may be an electrolytic plating layer. In this case, since the current collector is an electrolytic foil, fine convex portions are formed on at least one surface of the current collector. Moreover, since the surface treatment layer is an electroplating layer, current concentration occurs in this convex portion. Thereby, the protrusion of the surface treatment layer can be grown selectively using the current concentration on the convex portion so that the convex portion is the base end.
 本発明の一側面に係る蓄電装置では、表面処理層は、第1方向の一方側において集電体の表面を覆ってもよい。この場合、第1方向の一方側において集電体の表面に樹脂部材が配置されることとなるため、電極同士の短絡を確実に回避することができる。 In the power storage device according to one aspect of the present invention, the surface treatment layer may cover the surface of the current collector on one side in the first direction. In this case, since the resin member is disposed on the surface of the current collector on one side in the first direction, it is possible to reliably avoid a short circuit between the electrodes.
 本発明の一側面に係る蓄電装置では、電極は、集電体の一方の面に設けられた正極層と、集電体の他方の面に設けられた負極層と、を更に有してもよい。この場合、例えばバイポーラ電極の周縁部と樹脂部材との間における強度及び液密性の確保が可能となる。 In the power storage device according to one aspect of the present invention, the electrode may further include a positive electrode layer provided on one surface of the current collector and a negative electrode layer provided on the other surface of the current collector. Good. In this case, for example, it is possible to ensure the strength and liquid tightness between the peripheral portion of the bipolar electrode and the resin member.
 本発明の一側面によれば、金属製の集電体と樹脂部材との間における強度及び液密性の確保が可能となる蓄電装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a power storage device that can ensure strength and liquid tightness between a metal current collector and a resin member.
図1は、一実施形態に係る蓄電装置を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a power storage device according to an embodiment. 図2の(a)は、電極の周縁部の拡大断面図である。図2の(b)は、集電体の表面及び表面処理層の拡大断面図である。FIG. 2A is an enlarged cross-sectional view of the peripheral edge of the electrode. FIG. 2B is an enlarged sectional view of the surface of the current collector and the surface treatment layer. 図3は、電解箔の製造工程を例示する模式図である。FIG. 3 is a schematic view illustrating the manufacturing process of the electrolytic foil. 図4は、電解メッキ層の製造工程を例示する模式図である。FIG. 4 is a schematic view illustrating the manufacturing process of the electrolytic plating layer. 図5の(a)~(c)は、変形例に係る電極の周縁部の拡大断面図である。FIGS. 5A to 5C are enlarged sectional views of the peripheral edge portion of the electrode according to the modification.
 以下、図面を参照しながら、本発明の一側面に係る蓄電装置の実施形態について詳細に説明する。図1及び図2には、説明の便宜のため、XYZ直交座標系が示されている。 Hereinafter, an embodiment of a power storage device according to one aspect of the present invention will be described in detail with reference to the drawings. 1 and 2 show an XYZ rectangular coordinate system for convenience of explanation.
 図1は、一実施形態に係る蓄電装置を模式的に示す断面図である。蓄電装置1は、例えばニッケル水素二次電池、リチウムイオン二次電池などの二次電池、或いは電気二重層キャパシタである。蓄電装置1は、例えばフォークリフト、ハイブリッド自動車、電気自動車などの各種車両のバッテリとして用いられる。以下、一例として、蓄電装置1がニッケル水素二次電池である場合について説明する。 FIG. 1 is a cross-sectional view schematically showing a power storage device according to an embodiment. The power storage device 1 is, for example, a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery, or an electric double layer capacitor. The power storage device 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. Hereinafter, the case where the electrical storage apparatus 1 is a nickel hydride secondary battery is demonstrated as an example.
 蓄電装置1は、バイポーラ電極(電極)3の積層体2を備えたバイポーラ電池である。蓄電装置1は、バイポーラ電極3の積層体2と、積層体2を保持するケース5と、積層体2を拘束する拘束体6とを備えている。 The power storage device 1 is a bipolar battery including a laminate 2 of bipolar electrodes (electrodes) 3. The power storage device 1 includes a laminated body 2 of bipolar electrodes 3, a case 5 that holds the laminated body 2, and a restraining body 6 that restrains the laminated body 2.
 積層体2は、セパレータ7を介して複数のバイポーラ電極3を第1方向D1に沿って積層することによって構成されている。第1方向D1は、ここではZ軸方向に沿う方向である。バイポーラ電極3のそれぞれは、集電体11と、集電体11の一方の面(表面)11aに設けられた正極層12と、集電体11の他方の面11bに設けられた負極層13とを有している。正極層12及び負極層13は、集電体11の少なくとも中央部Mに設けられている。積層体2において、一のバイポーラ電極3の正極層12は、第1方向D1に隣り合う一方のバイポーラ電極3の負極層13と対向し、一のバイポーラ電極3の負極層13は、第1方向D1に隣り合う他方のバイポーラ電極の正極層12と対向している。積層体2は、複数のスペーサ(樹脂部材)4を有する。スペーサ4は、バイポーラ電極3の周縁部11cに沿って配置され、隣接するバイポーラ電極3同士の間隔を保持する。 The laminate 2 is configured by laminating a plurality of bipolar electrodes 3 along the first direction D1 with separators 7 interposed therebetween. Here, the first direction D1 is a direction along the Z-axis direction. Each of the bipolar electrodes 3 includes a current collector 11, a positive electrode layer 12 provided on one surface (surface) 11 a of the current collector 11, and a negative electrode layer 13 provided on the other surface 11 b of the current collector 11. And have. The positive electrode layer 12 and the negative electrode layer 13 are provided at least in the central portion M of the current collector 11. In the laminate 2, the positive electrode layer 12 of one bipolar electrode 3 faces the negative electrode layer 13 of one bipolar electrode 3 adjacent in the first direction D1, and the negative electrode layer 13 of one bipolar electrode 3 is in the first direction. It faces the positive electrode layer 12 of the other bipolar electrode adjacent to D1. The laminate 2 has a plurality of spacers (resin members) 4. The spacer 4 is disposed along the peripheral edge portion 11 c of the bipolar electrode 3 and maintains a distance between adjacent bipolar electrodes 3.
 集電体11は、例えばニッケルからなる金属箔である。集電体11の厚さは、例えば0.1μm~1000μm程度となっている。正極層12を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極層13を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。集電体11の他方の面11bにおける負極層13の形成領域は、集電体11の一方の面11aにおける正極層12の形成領域に対して一回り大きくてもよい。 The current collector 11 is a metal foil made of nickel, for example. The thickness of the current collector 11 is, for example, about 0.1 μm to 1000 μm. An example of the positive electrode active material constituting the positive electrode layer 12 is nickel hydroxide. As a negative electrode active material which comprises the negative electrode layer 13, a hydrogen storage alloy is mentioned, for example. The formation region of the negative electrode layer 13 on the other surface 11 b of the current collector 11 may be slightly larger than the formation region of the positive electrode layer 12 on one surface 11 a of the current collector 11.
 集電体11の周縁部11cは、正極活物質及び負極活物質の塗工されない未塗工領域となっている。周縁部11cは、ケース5の内壁5aに埋没した状態でケース5に保持されている。周縁部11cの一方の面11aと内壁5aとの間には、スペーサ4が介在されている。これにより、第1方向D1に隣り合う集電体11,11間には、当該集電体11,11とケース5の内壁5aとによって仕切られた空間が形成されている。当該空間には、例えば水酸化カリウム水溶液などのアルカリ溶液からなる電解液(不図示)が収容されている。バイポーラ電極3,3間に形成される電解液の収容空間は、スペーサ4によって互いに液密に分離(シール)されている。 The peripheral portion 11c of the current collector 11 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated. The peripheral edge portion 11 c is held by the case 5 in a state where it is buried in the inner wall 5 a of the case 5. A spacer 4 is interposed between one surface 11a of the peripheral edge portion 11c and the inner wall 5a. Thus, a space partitioned by the current collectors 11 and 11 and the inner wall 5a of the case 5 is formed between the current collectors 11 and 11 adjacent in the first direction D1. In the space, an electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated. The space for accommodating the electrolytic solution formed between the bipolar electrodes 3 and 3 is separated (sealed) by a spacer 4 in a liquid-tight manner.
 積層体2の一方(Z軸方向正方向)の積層端には、片面に負極層13のみが設けられた集電体111Aが積層されている。当該集電体111Aは、セパレータ7を介して負極層13と最上層のバイポーラ電極3の正極層12とが対向するように配置されている。また、積層体2の他方(Z軸方向負方向)の積層端には、正極層12のみが設けられた集電体111Bが積層されている。当該集電体111Bは、セパレータ7を介して正極層12と最下層のバイポーラ電極3の負極層13とが対向するように配置されている。集電体111A,111Bの縁部は、バイポーラ電極3の集電体11と同様に、ケース5の内壁5aに埋没した状態でケース5に保持されている。集電体111A,111Bの縁部の一方の面と内壁5aとの間には、スペーサ4が介在されている。なお、集電体111A,111Bは、バイポーラ電極3の集電体11に比べて厚く形成されていてもよい。 A current collector 111A in which only the negative electrode layer 13 is provided on one side is laminated on one side of the laminated body 2 (positive in the Z-axis direction). The current collector 111 </ b> A is arranged so that the negative electrode layer 13 and the positive electrode layer 12 of the uppermost bipolar electrode 3 face each other with the separator 7 interposed therebetween. In addition, a current collector 111B provided with only the positive electrode layer 12 is stacked on the other stacked end of the stacked body 2 (in the negative Z-axis direction). The current collector 111B is disposed so that the positive electrode layer 12 and the negative electrode layer 13 of the lowermost bipolar electrode 3 face each other with the separator 7 interposed therebetween. The edges of the current collectors 111 </ b> A and 111 </ b> B are held by the case 5 in a state of being buried in the inner wall 5 a of the case 5, as with the current collector 11 of the bipolar electrode 3. A spacer 4 is interposed between one surface of the edges of the current collectors 111A and 111B and the inner wall 5a. The current collectors 111 </ b> A and 111 </ b> B may be formed thicker than the current collector 11 of the bipolar electrode 3.
 セパレータ7は、例えばシート状に形成されている。セパレータの形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレンなどからなる織布又は不織布などが例示される。また、セパレータ7は、フッ化ビニリデン樹脂化合物などで補強されていてもよい。なお、セパレータ7は、シート状に限られず、袋状であってもよい。 The separator 7 is formed in a sheet shape, for example. Examples of the material for forming the separator include a porous film made of a polyolefin-based resin such as polyethylene (PE) and polypropylene (PP), and a woven or non-woven fabric made of polypropylene. Moreover, the separator 7 may be reinforced with a vinylidene fluoride resin compound or the like. The separator 7 is not limited to a sheet shape but may be a bag shape.
 ケース5は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。樹脂性のケース5を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、変性ポリフェニレンエーテル(変性PPE)又は変性ポリフェニレンサルファイド(変性PPS)などが挙げられる。ケース5は、バイポーラ電極3の積層によって形成される積層体2の側面2aを取り囲んで保持する部材である。 The case 5 is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin. Examples of the resin material constituting the resinous case 5 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), and modified polyphenylene sulfide (modified PPS). The case 5 is a member that surrounds and holds the side surface 2 a of the stacked body 2 formed by stacking the bipolar electrodes 3.
 拘束体6は、一対の拘束プレート21,21と、拘束プレート21,21同士を連結する連結部材(ボルト22及びナット23)とによって構成されている。拘束プレート21は、例えば鉄などの金属によって平板状に形成されている。拘束プレート21の縁部には、ボルト22を挿通させる挿通孔21aがケース5よりも外側となる位置に設けられている。拘束体6における挿通孔21aの内周面及びボルト座面は、絶縁処理されている。また、拘束プレート21の一面側には、絶縁性部材24を介して端子部材25(端子部材25A,端子部材25B)が結合されている。拘束プレート21と端子部材25との間に介在させる絶縁性部材24の形成材料としては、例えばフッ素系樹脂又はポリエチレン樹脂が挙げられる。 The restraint body 6 is constituted by a pair of restraint plates 21 and 21 and a connecting member (bolt 22 and nut 23) for joining the restraint plates 21 and 21 together. The restraint plate 21 is formed in a flat plate shape with a metal such as iron. An insertion hole 21 a through which the bolt 22 is inserted is provided at a position on the outer side of the case 5 at the edge of the restraint plate 21. The inner peripheral surface of the insertion hole 21a and the bolt seat surface in the restricting body 6 are insulated. A terminal member 25 (terminal member 25 </ b> A, terminal member 25 </ b> B) is coupled to one surface side of the restraining plate 21 via an insulating member 24. Examples of a material for forming the insulating member 24 interposed between the restraint plate 21 and the terminal member 25 include a fluorine-based resin or a polyethylene resin.
 一方の拘束プレート21は、ケース5の内側で端子部材25Aと集電体111Aとが当接するようにケース5の一端面に突き当てられ、他方の拘束プレート21は、ケース5の内側で端子部材25Bと集電体111Bとが当接するようにケース5の他端面に突き当てられている。ボルト22は、例えば一方の拘束プレート21側から他方の拘束プレート21側に向かって挿通孔21aに通され、他方の拘束プレート21から突出するボルト22の先端には、ナット23が螺合されている。 One constraining plate 21 is abutted against one end surface of the case 5 so that the terminal member 25 </ b> A and the current collector 111 </ b> A are in contact with each other inside the case 5, and the other constraining plate 21 is a terminal member inside the case 5. 25B and the current collector 111B are abutted against the other end surface of the case 5 so as to be in contact with each other. For example, the bolt 22 is passed through the insertion hole 21a from one restraint plate 21 side to the other restraint plate 21 side, and a nut 23 is screwed onto the tip of the bolt 22 protruding from the other restraint plate 21. Yes.
 これにより、積層体2、集電体111A,111B、及びケース5が挟持されてユニット化されると共に、拘束荷重が付加される。また、端子部材25A及び端子部材25Bは、積層体2を第1方向D1に挟むように拘束プレート21と積層体2との間に配置される。端子部材25Aには、引出部26が接続され、端子部材25Bには、引出部27が接続されている。引出部26及び引出部27により、蓄電装置1の充放電を行うことができる。 Thereby, the laminate 2, the current collectors 111A and 111B, and the case 5 are sandwiched and unitized, and a restraining load is applied. Further, the terminal member 25A and the terminal member 25B are disposed between the restraint plate 21 and the laminated body 2 so as to sandwich the laminated body 2 in the first direction D1. A lead part 26 is connected to the terminal member 25A, and a lead part 27 is connected to the terminal member 25B. The power storage device 1 can be charged / discharged by the drawing unit 26 and the drawing unit 27.
 続いて、上述した蓄電装置1における集電体11,111A,111Bとスペーサ4との接合部の構成について、更に詳細に説明する。なお、以下の説明においては、集電体11について説明を行うが、集電体111A,111Bについても同様の構成を有する。 Subsequently, the configuration of the junction between the current collectors 11, 111 </ b> A, 111 </ b> B and the spacer 4 in the power storage device 1 described above will be described in more detail. In the following description, the current collector 11 will be described, but the current collectors 111A and 111B have the same configuration.
 図2の(a)に示されるように、集電体11の周縁部11cには、集電体11の一方の面11aを覆う表面処理層30が形成されている。集電体11の周縁部11cは、表面処理層30を介してスペーサ4と結合されている。表面処理層30は、金属製である集電体11と樹脂部材であるスペーサ4との間における強度及び液密性を確保するために設けられている。集電体11が電解箔の場合、表面処理層30は、集電体11に対する電解メッキ処理により形成することができる。表面処理層30の厚みは特に限定されないが、集電体11の厚みが0.1μm~1000μmであるのに対して、表面処理層30の厚みが0.1μm~30μmに設定されていてもよい。 2A, a surface treatment layer 30 that covers one surface 11a of the current collector 11 is formed on the peripheral edge portion 11c of the current collector 11. As shown in FIG. The peripheral edge 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30. The surface treatment layer 30 is provided in order to ensure strength and liquid tightness between the current collector 11 made of metal and the spacer 4 that is a resin member. When the current collector 11 is an electrolytic foil, the surface treatment layer 30 can be formed by an electrolytic plating process on the current collector 11. Although the thickness of the surface treatment layer 30 is not particularly limited, the thickness of the current collector 11 may be set to 0.1 μm to 1000 μm, whereas the thickness of the surface treatment layer 30 may be set to 0.1 μm to 30 μm. .
 図2の(b)に示されるように、表面処理層30は、一方の面11aから第1方向D1に突出する複数の突起31を有する。それぞれの突起31は、集電体11の凸部11d(後述)を基端32として、第1方向D1に沿って先端33に至る。突起31は、第1方向D1に交差する第2方向D2に沿って配置されている。第2方向D2は、ここではXY平面に沿う方向である。 As shown in FIG. 2B, the surface treatment layer 30 has a plurality of protrusions 31 protruding from the one surface 11a in the first direction D1. Each protrusion 31 reaches the tip 33 along the first direction D1 with a convex portion 11d (described later) of the current collector 11 as a base end 32. The protrusion 31 is disposed along a second direction D2 that intersects the first direction D1. Here, the second direction D2 is a direction along the XY plane.
 それぞれの突起31は、電解メッキ処理により形成された複数の略球状の析出金属(付与物)を含む。突起31では、この析出金属が互いに重複することにより、当該突起31の第2方向D2の長さ寸法が基端32における第2方向D2の長さ寸法よりも大きい拡大部34が形成されている。すなわち、突起31は、基端32側から先端33側に向かって先太りとなる部分を有している。突起31における拡大部34の位置は、必ずしも先端33でなくてもよいが、少なくとも基端32よりも先端33側に位置している。突起31における拡大部34の位置は、析出金属の重複態様により突起31ごとに異なってもよい。 Each projection 31 includes a plurality of substantially spherical deposited metals (provided materials) formed by electrolytic plating. In the protrusion 31, the deposited metal overlaps with each other, so that an enlarged portion 34 in which the length dimension of the protrusion 31 in the second direction D <b> 2 is larger than the length dimension of the base end 32 in the second direction D <b> 2 is formed. . That is, the protrusion 31 has a portion that becomes tapered from the proximal end 32 side toward the distal end 33 side. The position of the enlarged portion 34 in the protrusion 31 does not necessarily have to be at the distal end 33, but is at least located closer to the distal end 33 than the base end 32. The position of the enlarged portion 34 in the projection 31 may be different for each projection 31 depending on the overlapping manner of the deposited metal.
 隣接する突起31の間には、スペーサ4の一部4aが介在されている。具体的には、樹脂部材であるスペーサ4は、その成形時にスペーサ4の一部4aが突起31の間に介在されるように成形されている。これにより、隣接する突起31は、介在されるスペーサ4の一部4aが基端32から離れる方向へ移動することを規制する。換言すれば、隣接する突起31の間の断面形状は、アンカー効果を奏するアンダーカット形状となっている。 A part 4 a of the spacer 4 is interposed between the adjacent protrusions 31. Specifically, the spacer 4 that is a resin member is molded such that a part 4 a of the spacer 4 is interposed between the protrusions 31 during molding. Thereby, the adjacent protrusion 31 restricts the movement of the part 4 a of the intervening spacer 4 in the direction away from the base end 32. In other words, the cross-sectional shape between the adjacent protrusions 31 is an undercut shape that exhibits an anchor effect.
 バイポーラ電極3の中央部M(図1参照)では、集電体11の一方の面11aを覆う表面処理層30が形成されている。集電体11の中央部Mは、表面処理層30を介して正極層12の正極活物質と結合されている。ここでは、一例として、表面処理層30は、周縁部11cから中央部Mにわたって集電体11の一方の面11aに連続的に形成されている。 In the central portion M (see FIG. 1) of the bipolar electrode 3, a surface treatment layer 30 that covers one surface 11a of the current collector 11 is formed. The central portion M of the current collector 11 is bonded to the positive electrode active material of the positive electrode layer 12 through the surface treatment layer 30. Here, as an example, the surface treatment layer 30 is continuously formed on one surface 11 a of the current collector 11 from the peripheral edge portion 11 c to the central portion M.
 表面処理層30は、複数の集電体11のいずれにおいても、第1方向D1の一方側(Z軸方向正方向)の表面を覆っている。スペーサ4は、複数の集電体11のいずれにおいても、集電体11の一方の面11aに表面処理層30を介して配置されている。これにより、隣接するバイポーラ電極3においては、集電体11の一方の面11aのスペーサ4と、集電体11の他方の面11bと、が第1方向D1において対向している。つまり、隣接するバイポーラ電極3においては、集電体11の一方の面11aと、集電体11の他方の面11bと、が直接対向することなく、樹脂部材であるスペーサ4により絶縁性が確保されている。 The surface treatment layer 30 covers the surface of one side (Z-axis direction positive direction) of the first direction D1 in any of the plurality of current collectors 11. In any of the plurality of current collectors 11, the spacer 4 is disposed on one surface 11 a of the current collector 11 via the surface treatment layer 30. Thereby, in the adjacent bipolar electrode 3, the spacer 4 of the one surface 11a of the current collector 11 and the other surface 11b of the current collector 11 face each other in the first direction D1. That is, in the adjacent bipolar electrode 3, the insulating surface is ensured by the spacer 4 that is a resin member without directly facing the one surface 11 a of the current collector 11 and the other surface 11 b of the current collector 11. Has been.
 次に、表面処理層30における突起31の形成方法について説明する。 Next, a method for forming the protrusion 31 in the surface treatment layer 30 will be described.
 まず、図3に示されるように、集電体11を構成する電解箔11xを作成する。図3の例では、ドラムDR1の一部及び陽極50は、ニッケル陽イオンを含む電解液L1中に浸漬されている。ドラムDR1及び陽極50との間には、所定の電流が流される。これにより、ドラムDR1表面にニッケルが析出する。 First, as shown in FIG. 3, an electrolytic foil 11x constituting the current collector 11 is prepared. In the example of FIG. 3, a part of the drum DR1 and the anode 50 are immersed in an electrolytic solution L1 containing nickel cations. A predetermined current flows between the drum DR1 and the anode 50. As a result, nickel is deposited on the surface of the drum DR1.
 電解箔11xは、一定の厚さとなるまでドラムDR1表面にニッケルを析出させることにより得られる。ドラムDR1表面にニッケルが析出する際、電解箔11xにおけるドラムDR1面とは反対側の面に、微細な凸部11dが形成される。作成された電解箔11xは、ドラムDR2に巻き取られてロールR1となる。 The electrolytic foil 11x is obtained by precipitating nickel on the surface of the drum DR1 until it has a certain thickness. When nickel is deposited on the surface of the drum DR1, fine convex portions 11d are formed on the surface of the electrolytic foil 11x opposite to the surface of the drum DR1. The produced electrolytic foil 11x is wound around the drum DR2 to become a roll R1.
 次に、図4に示されるように、表面処理層30を構成する電解メッキ層30xを作成する。図4の例では、ドラムDR3によりロールR1から引き出された電解箔11xは、ドラムDR4の表面に沿って搬送される。ドラムDR4の一部及び陽極51は、ニッケル陽イオンを含む電解液L2中に浸漬されている。ドラムDR4及び陽極51との間には、所定の電流が流される。これにより、ドラムDR4上の電解箔11x表面にニッケルが析出する。 Next, as shown in FIG. 4, an electrolytic plating layer 30x constituting the surface treatment layer 30 is formed. In the example of FIG. 4, the electrolytic foil 11x drawn from the roll R1 by the drum DR3 is transported along the surface of the drum DR4. A part of the drum DR4 and the anode 51 are immersed in an electrolytic solution L2 containing nickel cations. A predetermined current flows between the drum DR4 and the anode 51. Thereby, nickel deposits on the surface of the electrolytic foil 11x on the drum DR4.
 電解メッキ層30xは、一定の厚さとなるまでドラムDR4上の電解箔11x表面にニッケルを析出させることにより得られる粗化メッキ層である。ドラムDR4上の電解箔11x表面にニッケルが析出する際、電解箔11xにおける凸部11dに、ニッケルが析出する。具体的には、この凸部11dには、電流集中が生じており、当該凸部11dを基端32とするように選択的にニッケルが析出する。これにより、電解メッキ層30xにおいて突起31が成長し、表面処理層30が形成される。電解箔11x及び電解メッキ層30xは、粗化メッキ箔11yとして搬送され、ドラムDR5に巻き取られてロールR2となる。 The electrolytic plating layer 30x is a roughened plating layer obtained by depositing nickel on the surface of the electrolytic foil 11x on the drum DR4 until it has a certain thickness. When nickel is deposited on the surface of the electrolytic foil 11x on the drum DR4, nickel is deposited on the convex portion 11d of the electrolytic foil 11x. Specifically, current concentration occurs in the convex portion 11d, and nickel is selectively deposited so that the convex portion 11d serves as the base end 32. Thereby, the protrusion 31 grows in the electrolytic plating layer 30x, and the surface treatment layer 30 is formed. The electrolytic foil 11x and the electrolytic plating layer 30x are conveyed as the rough plating foil 11y, wound around the drum DR5, and become the roll R2.
 次に、本実施形態に係る蓄電装置1の作用・効果について説明する。 Next, functions and effects of the power storage device 1 according to this embodiment will be described.
 この蓄電装置1では、隣接する突起31の間には、突起31の先端33側から基端32側にわたってスペーサ4の一部4aが介在されている。突起31は、基端32側から先端33側に向かって先太りとなる部分を有している。これにより、隣接する突起31の間に介在されるスペーサ4の一部4aが基端32から離れる方向へ移動することが規制される。したがって、スペーサ4が表面処理層30から剥離することが抑制されるため、金属製の集電体11,111A,111Bとスペーサ4との間における強度及び液密性の確保が可能となる。 In this power storage device 1, a part 4 a of the spacer 4 is interposed between the adjacent protrusions 31 from the tip 33 side to the base end 32 side of the protrusion 31. The protrusion 31 has a portion that tapers from the proximal end 32 side toward the distal end 33 side. This restricts the movement of the part 4 a of the spacer 4 interposed between the adjacent protrusions 31 in the direction away from the base end 32. Therefore, since the spacer 4 is prevented from peeling off from the surface treatment layer 30, it is possible to ensure strength and liquid tightness between the metal current collectors 11, 111 </ b> A, 111 </ b> B and the spacer 4.
 この蓄電装置1では、表面処理層30は、バイポーラ電極3の中央部Mにおいて集電体11の表面を更に覆っている。これにより、バイポーラ電極3の中央部Mにおける集電体11の一方の面11aが表面処理層30により覆われているため、集電体11の中央部Mに設けられ、正極層12又は負極層13として機能する活物質とバイポーラ電極3との密着性が向上される。 In this power storage device 1, the surface treatment layer 30 further covers the surface of the current collector 11 at the central portion M of the bipolar electrode 3. Thereby, since one surface 11a of the current collector 11 in the central portion M of the bipolar electrode 3 is covered with the surface treatment layer 30, the positive electrode layer 12 or the negative electrode layer is provided in the central portion M of the current collector 11. The adhesion between the active material functioning as 13 and the bipolar electrode 3 is improved.
 この蓄電装置1では、集電体11は、電解箔11xであり、表面処理層30は、電解メッキ層30xである。集電体11が電解箔11xであるため、集電体11の少なくとも一方の面には微細な凸部11dが形成されている。また、表面処理層30が電解メッキ層30xであるため、この凸部11dには、電流集中が生じる。これにより、凸部11dへの電流集中を利用して、選択的に当該凸部11dを基端32とするように表面処理層30の突起31を成長させることができる。 In this power storage device 1, the current collector 11 is an electrolytic foil 11x, and the surface treatment layer 30 is an electrolytic plating layer 30x. Since the current collector 11 is the electrolytic foil 11x, a fine convex portion 11d is formed on at least one surface of the current collector 11. Further, since the surface treatment layer 30 is the electrolytic plating layer 30x, current concentration occurs in the convex portion 11d. Thereby, the protrusion 31 of the surface treatment layer 30 can be grown selectively using the current concentration on the convex portion 11d so that the convex portion 11d becomes the base end 32.
 この蓄電装置1では、表面処理層30は、第1方向D1の一方側(Z軸方向正方向)において集電体11,111A,111Bの表面を覆っている。これにより、第1方向D1の一方側において集電体11の一方の面11aにスペーサ4が配置されることとなるため、バイポーラ電極3同士の短絡を確実に回避することができる。 In this power storage device 1, the surface treatment layer 30 covers the surfaces of the current collectors 11, 111 </ b> A, and 111 </ b> B on one side of the first direction D <b> 1 (positive direction in the Z-axis direction). Thereby, since the spacer 4 will be arrange | positioned in the one surface 11a of the electrical power collector 11 in the one side of the 1st direction D1, the short circuit of bipolar electrodes 3 can be avoided reliably.
 この蓄電装置1では、バイポーラ電極3は、集電体11の一方の面11aに設けられた正極層12と、集電体11の他方の面11bに設けられた負極層13と、を有する。これにより、バイポーラ電極3の周縁部11cとスペーサ4との間における強度及び液密性の確保が可能となる。 In this power storage device 1, the bipolar electrode 3 has a positive electrode layer 12 provided on one surface 11 a of the current collector 11 and a negative electrode layer 13 provided on the other surface 11 b of the current collector 11. Thereby, it is possible to ensure the strength and liquid tightness between the peripheral edge portion 11 c of the bipolar electrode 3 and the spacer 4.
 本発明の一側面は上記実施形態に限定されない。 One aspect of the present invention is not limited to the above embodiment.
 上記実施形態では、図2の(a)に示されるように、集電体11の周縁部11cには、集電体11の一方の面11aを覆う表面処理層30が形成され、当該集電体11の周縁部11cの一方の面11aが、表面処理層30を介してスペーサ4が配置されている例を挙げて説明したが、本発明の一側面はこれに限定されない。例えば、図5(a)に示されるように、スペーサ4は、集電体11の両方の面11a,11bに配置されてもよい。すなわち、集電体11の周縁部11cの一方の面11aが表面処理層30を介してスペーサ4と結合され、当該集電体11の周縁部11cの他方の面11aがスペーサ4により覆われる構成を備える蓄電装置1Aとしてもよい。 In the above embodiment, as shown in FIG. 2A, a surface treatment layer 30 that covers one surface 11 a of the current collector 11 is formed on the peripheral edge portion 11 c of the current collector 11. Although one surface 11a of the peripheral edge portion 11c of the body 11 has been described with reference to the example in which the spacer 4 is disposed via the surface treatment layer 30, one aspect of the present invention is not limited thereto. For example, as illustrated in FIG. 5A, the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, one surface 11 a of the peripheral edge portion 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30, and the other surface 11 a of the peripheral edge portion 11 c of the current collector 11 is covered with the spacer 4. It is good also as 1 A of electrical storage apparatuses provided with.
 更には、図5(a)に示されるように、スペーサ4が集電体11の両方の面11a、11bに配置される場合、温度変化(蓄電装置1Aの作成工程時での加熱、冷却、バイポーラ電極3の反応発熱、外気温の変化などにもたらされる)、湿度吸収、又は経年劣化に対するスペーサ4と集電体11との間の膨張差又は収縮差によって生じる、集電体11、正極層12、又は負極層13の歪又は反りを低減することが可能になる。 Further, as shown in FIG. 5A, when the spacer 4 is disposed on both surfaces 11a and 11b of the current collector 11, the temperature change (heating, cooling, Current collector 11, positive electrode layer caused by difference in expansion or contraction between spacer 4 and current collector 11 due to reaction heat generation of bipolar electrode 3, change in outside air temperature, etc.), humidity absorption, or aging degradation. 12 or the negative electrode layer 13 can be reduced in distortion or warpage.
 上記実施形態では、図2(a)に示されるように、表面処理層30が集電体11の一方の面(表面)11aに設けられていたが、一方の面11a及び他方の面11bの双方に設けられていてもよい。また、この場合も、図5(b)に示されるように、スペーサ4は、集電体11の両方の面11a,11bに配置されてもよい。すなわち、集電体11の周縁部11cの両方の面11a,11bが、表面処理層30を介してスペーサ4と結合される構成を備える蓄電装置1Bとしてもよい。 In the above embodiment, as shown in FIG. 2A, the surface treatment layer 30 is provided on one surface (surface) 11 a of the current collector 11, but the one surface 11 a and the other surface 11 b It may be provided on both sides. Also in this case, as shown in FIG. 5B, the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, it is good also as the electrical storage apparatus 1B provided with the structure by which both surfaces 11a and 11b of the peripheral part 11c of the electrical power collector 11 are couple | bonded with the spacer 4 via the surface treatment layer 30.
 上記実施形態では、図2(a)に示されるように、表面処理層30が集電体11の一方の面(表面)11aに設けられていたが、表面処理層30は、一方の面11aに設けられず他方の面11bのみに設けられていてもよい。また、この場合も、図5(c)に示されるように、スペーサ4は、集電体11の両方の面11a,11bに配置されてもよい。すなわち、集電体11の周縁部11cの一方の面11aがスペーサ4により覆われ、当該集電体11の周縁部11cの他方の面11bが表面処理層30を介してスペーサ4と結合される構成を備える蓄電装置1Cとしてもよい。 In the said embodiment, as FIG. 2 (a) showed, although the surface treatment layer 30 was provided in one surface (surface) 11a of the electrical power collector 11, the surface treatment layer 30 is one surface 11a. It may be provided only on the other surface 11b. Also in this case, as shown in FIG. 5C, the spacer 4 may be disposed on both surfaces 11 a and 11 b of the current collector 11. That is, one surface 11 a of the peripheral portion 11 c of the current collector 11 is covered with the spacer 4, and the other surface 11 b of the peripheral portion 11 c of the current collector 11 is coupled to the spacer 4 via the surface treatment layer 30. A power storage device 1C having a configuration may be used.
 上記実施形態では、集電体11は、ニッケルからなる金属箔であったが、アルミ箔又は銅箔などであってもよい。集電体11は、圧延板又は圧延箔であってもよい。 In the above embodiment, the current collector 11 is a metal foil made of nickel, but may be an aluminum foil or a copper foil. The current collector 11 may be a rolled plate or a rolled foil.
 上記実施形態では、電解メッキ処理により形成された複数の略球状の析出金属により、表面処理層30の突起31が構成されていたが、例えばスパッタなどの処理により複数の金属粒子を集電体11の表面に付与することで、表面処理層30の突起31が構成されていてもよい。また、基端32側から先端33側に向かって先太りする先太り形状を少なくとも一部に有していれば、突起31の形状は、特に限定されない。 In the above-described embodiment, the protrusions 31 of the surface treatment layer 30 are configured by a plurality of substantially spherical deposited metals formed by electrolytic plating. However, for example, a plurality of metal particles are collected from the current collector 11 by a process such as sputtering. The protrusion 31 of the surface treatment layer 30 may be configured by applying to the surface. In addition, the shape of the protrusion 31 is not particularly limited as long as it has at least part of a tapered shape that is tapered from the proximal end 32 side toward the distal end 33 side.
 1,1A,1B,1C…蓄電装置、3…バイポーラ電極(電極)、4…スペーサ(樹脂部材)、4a…一部、7…セパレータ、11,111A,111B…集電体、11a…一方の面(表面)、11b…他方の面(表面)、11c…周縁部、11x…電解箔、12…正極層、13…負極層、30…表面処理層、30x…電解メッキ層、31…突起、32…基端、33…先端、34…拡大部。 DESCRIPTION OF SYMBOLS 1,1A, 1B, 1C ... Power storage device, 3 ... Bipolar electrode (electrode), 4 ... Spacer (resin member), 4a ... Part, 7 ... Separator, 11, 111A, 111B ... Current collector, 11a ... One Surface (front surface), 11b ... the other surface (surface), 11c ... peripheral edge, 11x ... electrolytic foil, 12 ... positive electrode layer, 13 ... negative electrode layer, 30 ... surface treatment layer, 30x ... electrolytic plating layer, 31 ... protrusion, 32 ... proximal end, 33 ... distal end, 34 ... enlarged portion.

Claims (5)

  1.  金属製の集電体を有し、第1方向に沿って積層して配置される複数の電極と、
     隣接する前記電極間に配置されるセパレータと、
     前記電極の周縁部に沿って配置され、隣接する前記電極同士の間隔を保持する複数の樹脂部材と、
     前記電極の少なくとも前記周縁部において前記集電体の表面を覆う表面処理層と、を備え、
     前記表面処理層は、前記第1方向に交差する第2方向に沿って配置され、前記表面から前記第1方向に突出する複数の突起を有し、
     前記突起は、基端側から先端側に向かって先太りする部分を有し、
     隣接する前記突起の間には、前記先端側から前記基端側にわたって前記樹脂部材の一部が介在されている、蓄電装置。
    A plurality of electrodes that have a current collector made of metal and are stacked along the first direction;
    A separator disposed between adjacent electrodes;
    A plurality of resin members disposed along the peripheral edge of the electrode, and holding a distance between the adjacent electrodes;
    A surface treatment layer covering the surface of the current collector at least at the peripheral edge of the electrode,
    The surface treatment layer is disposed along a second direction intersecting the first direction, and has a plurality of protrusions protruding from the surface in the first direction,
    The protrusion has a portion that tapers from the proximal end side toward the distal end side,
    A power storage device, wherein a part of the resin member is interposed between the adjacent protrusions from the distal end side to the proximal end side.
  2.  前記表面処理層は、前記電極の中央部において前記集電体の前記表面を更に覆う、請求項1に記載の蓄電装置。 The power storage device according to claim 1, wherein the surface treatment layer further covers the surface of the current collector at a central portion of the electrode.
  3.  前記集電体は、電解箔であり、
     前記表面処理層は、電解メッキ層である、請求項1又は2に記載の蓄電装置。
    The current collector is an electrolytic foil;
    The power storage device according to claim 1, wherein the surface treatment layer is an electrolytic plating layer.
  4.  前記表面処理層は、前記第1方向の一方側において前記集電体の前記表面を覆う、請求項1~3の何れか一項に記載の蓄電装置。 The power storage device according to any one of claims 1 to 3, wherein the surface treatment layer covers the surface of the current collector on one side in the first direction.
  5.  前記電極は、前記集電体の一方の面に設けられた正極層と、前記集電体の他方の面に設けられた負極層と、を更に有する、請求項1~4の何れか一項に記載の蓄電装置。 The electrode according to any one of claims 1 to 4, further comprising a positive electrode layer provided on one surface of the current collector and a negative electrode layer provided on the other surface of the current collector. The power storage device described in 1.
PCT/JP2018/002138 2017-02-15 2018-01-24 Power storage device WO2018150829A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880011738.4A CN110301061B (en) 2017-02-15 2018-01-24 Nickel-hydrogen battery
DE112018000865.7T DE112018000865T5 (en) 2017-02-15 2018-01-24 Power storage device
US16/486,087 US10910644B2 (en) 2017-02-15 2018-01-24 Power storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-026044 2017-02-15
JP2017026044 2017-02-15
JP2017126614A JP6855339B2 (en) 2017-02-15 2017-06-28 Nickel metal hydride battery
JP2017-126614 2017-06-28

Publications (1)

Publication Number Publication Date
WO2018150829A1 true WO2018150829A1 (en) 2018-08-23

Family

ID=63170213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002138 WO2018150829A1 (en) 2017-02-15 2018-01-24 Power storage device

Country Status (1)

Country Link
WO (1) WO2018150829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039987A1 (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP2020061238A (en) * 2018-10-09 2020-04-16 株式会社豊田自動織機 Power storage device and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229772A (en) * 1986-03-31 1987-10-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPH10154515A (en) * 1996-11-26 1998-06-09 Sumitomo Electric Ind Ltd Electrode substrate for alkaline secondary battery and alkaline secondary battery using electrode formed by filling this electrode substrate with active material
JP2004296386A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Anode for lithium secondary battery and its manufacturing method
JP2005135764A (en) * 2003-10-30 2005-05-26 Kawasaki Heavy Ind Ltd Layer-built cell of bipolar plate method
JP2006012589A (en) * 2004-06-25 2006-01-12 Sanyo Electric Co Ltd Battery, its manufacturing method, and battery pack using the battery
JP2007036026A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Electric double layer capacitor and electrolyte battery
JP2009215604A (en) * 2008-03-10 2009-09-24 Hitachi Cable Ltd Copper foil and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229772A (en) * 1986-03-31 1987-10-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPH10154515A (en) * 1996-11-26 1998-06-09 Sumitomo Electric Ind Ltd Electrode substrate for alkaline secondary battery and alkaline secondary battery using electrode formed by filling this electrode substrate with active material
JP2004296386A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Anode for lithium secondary battery and its manufacturing method
JP2005135764A (en) * 2003-10-30 2005-05-26 Kawasaki Heavy Ind Ltd Layer-built cell of bipolar plate method
JP2006012589A (en) * 2004-06-25 2006-01-12 Sanyo Electric Co Ltd Battery, its manufacturing method, and battery pack using the battery
JP2007036026A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Electric double layer capacitor and electrolyte battery
JP2009215604A (en) * 2008-03-10 2009-09-24 Hitachi Cable Ltd Copper foil and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039987A1 (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP2020061238A (en) * 2018-10-09 2020-04-16 株式会社豊田自動織機 Power storage device and manufacturing method thereof
JP7103138B2 (en) 2018-10-09 2022-07-20 株式会社豊田自動織機 Power storage device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6855339B2 (en) Nickel metal hydride battery
JP6586969B2 (en) Power storage module
WO2018150723A1 (en) Power storage module
JP6683084B2 (en) Power storage device
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
JP2018125142A (en) Power storge module
JP2018060670A (en) Power storage device
JP2018120818A (en) Power storge module and manufacturing method thereof
WO2018123503A1 (en) Electricity storage module, and method for manufacturing electricity storage module
WO2018150829A1 (en) Power storage device
US20200280029A1 (en) Power storage module
WO2018116729A1 (en) Power storage module
CN112585799B (en) Power storage module and method for manufacturing power storage module
JP2020064845A (en) Power storage module
JP2018018666A (en) Power storage device and method for manufacturing power storage device
JP6683089B2 (en) Power storage device
CN111755257B (en) Electrochemical device
JP6967156B2 (en) Power storage module
JP2018073508A (en) Power storage device and manufacturing method of power storage device
JP7103138B2 (en) Power storage device and its manufacturing method
JP2021174726A (en) Power storage cell and power storage device
JP2020030983A (en) Power storage module
JP7172904B2 (en) Storage module and method for manufacturing storage module
WO2024057710A1 (en) Bipolar electrode, bipolar battery, and bipolar electrode manufacturing method
JP2018085253A (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754788

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18754788

Country of ref document: EP

Kind code of ref document: A1