WO2018150797A1 - メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法 - Google Patents

メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2018150797A1
WO2018150797A1 PCT/JP2018/001397 JP2018001397W WO2018150797A1 WO 2018150797 A1 WO2018150797 A1 WO 2018150797A1 JP 2018001397 W JP2018001397 W JP 2018001397W WO 2018150797 A1 WO2018150797 A1 WO 2018150797A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic acid
catalyst
producing
slurry
catalyst precursor
Prior art date
Application number
PCT/JP2018/001397
Other languages
English (en)
French (fr)
Inventor
純 平田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2018568053A priority Critical patent/JP6819699B2/ja
Priority to MYPI2019003714A priority patent/MY192057A/en
Priority to CN201880012149.8A priority patent/CN110300622B/zh
Priority to KR1020197021407A priority patent/KR102310395B1/ko
Publication of WO2018150797A1 publication Critical patent/WO2018150797A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst for producing methacrylic acid, a catalyst precursor for producing methacrylic acid, a method for producing them, a method for producing methacrylic acid, and a method for producing a methacrylic acid ester.
  • Examples of a catalyst for producing methacrylic acid used in the production of methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen include, for example, a heteropolyacid containing molybdenum element and phosphorus element System catalysts.
  • heteropolyacid catalyst examples include a proton type heteropolyacid whose counter cation is a proton and a heteropoly acid salt obtained by substituting a part of the proton with a cation other than a proton (hereinafter referred to simply as “heteropolyacid” and Also referred to as “heteropolyacid salt.” Both are also referred to as “heteropolyacid (salt).”
  • Non-Patent Document 1 discloses that the heteropolyacid (salt) has a heterogeneous element (hereinafter referred to as a central element) at the center, and the condensed acid group is condensed by sharing oxygen. It describes that it has a mononuclear or binuclear complex ion to be formed, several types of condensation are known, and that phosphorus, arsenic, silicon, germanium, titanium, and the like can be the central element.
  • Non-Patent Document 2 various structures such as keggin, deficient keggin, dawson, deficient dawson exist as the structure of the heteropolyacid (salt), and these structures are controlled by controlling the pH during the preparation process. It is described that Keggin type heteropolyacid (salt) can be prepared by adjusting the pH of the preparation process to 6 or less.
  • Patent Document 1 discloses a catalyst represented by the following formula (I) as a catalyst having a high selectivity for methacrylic acid.
  • Mo a P b V c Cu d Sb e Nb f X g Y h Z i O j (I) (In the formula (I), Mo, P, V, Cu, Sb, Nb and O each represent molybdenum, phosphorus, vanadium, copper, antimony, niobium and oxygen, and X is a group consisting of iron, cobalt, nickel and zinc.
  • J is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
  • the present invention relates to a catalyst capable of producing methacrylic acid with high selectivity by gas phase catalytic oxidation of methacrolein, a catalyst precursor, a production method thereof, a production method of methacrylic acid using the catalyst, and a methacrylate ester.
  • An object is to provide a manufacturing method.
  • the present invention includes the following [1] to [11].
  • a catalyst for producing methacrylic acid having a composition represented by the following formula (1), which is used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen.
  • a catalyst precursor for producing methacrylic acid having a composition
  • [5] A method for producing a catalyst precursor for producing methacrylic acid according to [2] or [4], (I) preparing a slurry (I) or a solution (I) containing at least a raw material of molybdenum; (Ii) adding an ammonium compound to the slurry (I) or the solution (I) to prepare a slurry (II) containing an ammonium salt; (Iii) drying the slurry (II) to obtain a catalyst precursor for producing methacrylic acid having the Keggin structure; Including A catalyst for producing methacrylic acid, which maintains the pH of the slurry (I), the solution (I), and the slurry (II) within the range of 0.1 to 6.5 in the steps (i) and (ii) A method for producing a precursor.
  • a method for producing a catalyst for producing methacrylic acid comprising a step of calcining a catalyst precursor for producing methacrylic acid produced by the method according to [5].
  • [7] A method for producing methacrylic acid, which uses the catalyst for producing methacrylic acid according to [1] or [3] to produce methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen.
  • a catalyst for producing methacrylic acid is produced by the method according to [6], and methacrolein is produced in a gas phase catalytic oxidation with molecular oxygen using the catalyst for producing methacrylic acid to produce methacrylic acid. Production method.
  • [10] A method for producing a methacrylic acid ester obtained by esterifying methacrylic acid produced by the method according to any one of [7] to [9].
  • [11] A method for producing methacrylic acid ester, wherein methacrylic acid is produced by the method according to any one of [7] to [9], and the methacrylic acid is esterified.
  • a catalyst capable of producing methacrylic acid with high selectivity by gas phase catalytic oxidation of methacrolein, a catalyst precursor, a production method thereof, a production method of methacrylic acid using the catalyst, and methacrylic acid A method for producing an ester can be provided.
  • the catalyst for producing methacrylic acid according to the present invention is used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen and has a composition represented by the following formula (1).
  • P, Mo, V, Nb, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, niobium, copper, ammonium root and oxygen, respectively.
  • A represents at least one element selected from the group consisting of silicon, germanium, arsenic and antimony.
  • E is bismuth, zirconium, tellurium, silver, selenium, tungsten, boron, iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, indium, sulfur, palladium, And at least one element selected from the group consisting of gallium, cerium, and lanthanum.
  • G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • ammonium root is a general term for ammonium (NH 3 ) that can be an ammonium ion (NH 4 + ) and ammonium contained in an ammonium-containing compound such as an ammonium salt.
  • the molar ratio of each element is a value obtained by analyzing a component in which a catalyst or a catalyst precursor is dissolved in aqueous ammonia by ICP emission analysis.
  • the molar ratio of the ammonium radical is a value obtained by analyzing the catalyst or catalyst precursor by the Kjeldahl method.
  • the selectivity of methacrylic acid is improved by using the catalyst having the composition represented by the formula (1).
  • the catalyst according to the present invention suppresses this sequential oxidation reaction, it is considered that the selectivity of methacrylic acid is improved.
  • the selectivity of methacrylic acid as the target product is lowered.
  • a + f which is the total amount of phosphorus and A satisfies 0.5 ⁇ a + f ⁇ 2.1.
  • the lower limit of a + f is preferably 0.6 or more, more preferably 0.8 or more, further preferably 0.9 or more, and most preferably 1.3 or more.
  • the upper limit of a + f is preferably 2.0 or less, more preferably 1.9 or less, and even more preferably 1.8 or less.
  • a satisfies 0.5 ⁇ a.
  • the lower limit of a is preferably 0.6 or more, and more preferably 0.7 or more.
  • the upper limit of a is preferably 1.9 or less, and more preferably 1.8 or less.
  • f satisfies 0 ⁇ f.
  • the lower limit of f is preferably 0.01 or more, and more preferably 0.1 or more.
  • the upper limit of f is preferably 1.0 or less, and more preferably 0.9 or less.
  • c + d which is the total amount of V and Nb, satisfies 0.01 ⁇ c + d ⁇ 3.
  • the catalyst contains at least Nb, and 0 ⁇ c and 0.01 ⁇ d ⁇ 3.
  • the lower limit of c + d is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit of c + d is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1 or less.
  • the lower limit of d is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit of d is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1 or less.
  • d / (c + d) preferably satisfies 0.35 ⁇ d / (c + d) ⁇ 1. This further improves the selectivity of methacrylic acid.
  • the lower limit of d / (c + d) is more preferably 0.5 or more, further preferably 0.75 or more, and particularly preferably 0.9 or more.
  • E satisfies 0.005 ⁇ e ⁇ 3.
  • the lower limit of e is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
  • the upper limit of e is preferably 2 or less, more preferably 1 or less, and further preferably 0.5 or less.
  • G satisfies 0 ⁇ g ⁇ 3.
  • h satisfies 0.01 ⁇ h ⁇ 3.
  • the lower limit of h is preferably 0.1 or more, more preferably 0.3 or more, and further preferably 0.5 or more.
  • the upper limit of h is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less.
  • i satisfies 0 ⁇ i ⁇ 5.
  • the upper limit of i is preferably 3 or less, and more preferably 2 or less.
  • the catalyst precursor for producing methacrylic acid according to the present invention (hereinafter also referred to as catalyst precursor) is a precursor of a catalyst used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. And it has a Keggin structure and has a composition represented by the following formula (2).
  • P, Mo, V, Nb, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, niobium, copper, ammonium root and oxygen, respectively.
  • A represents at least one element selected from the group consisting of silicon, germanium, arsenic and antimony.
  • E is bismuth, zirconium, tellurium, silver, selenium, tungsten, boron, iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, indium, sulfur, palladium, And at least one element selected from the group consisting of gallium, cerium, and lanthanum.
  • G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • a to j represent the molar ratio of each component.
  • the selectivity of methacrylic acid is improved by using a catalyst obtained from the catalyst precursor having the composition represented by the formula (2).
  • a catalyst obtained from the catalyst precursor having the composition represented by the formula (2) Normally, after methacrolein is oxidized to methacrylic acid, a sequential oxidation reaction occurs in which the oxidation reaction is continued to produce carbon monoxide, carbon dioxide, and the like.
  • the catalyst obtained from the catalyst precursor according to the present invention suppresses this sequential oxidation reaction, it is considered that the selectivity of methacrylic acid is improved.
  • the selectivity of the target product methacrylic acid decreases.
  • a + f which is the total amount of phosphorus and A satisfies 0.5 ⁇ a + f ⁇ 2.4.
  • the selectivity for methacrylic acid is significantly reduced.
  • the lower limit of a + f is preferably 0.6 or more, more preferably 0.8 or more, further preferably 0.9 or more, and most preferably 1.3 or more.
  • the upper limit of a + f is preferably 2.2 or less, more preferably 2.0 or less, and even more preferably 1.8 or less.
  • a satisfies 0.5 ⁇ a.
  • the lower limit of a is preferably 0.6 or more, and more preferably 0.7 or more.
  • the upper limit of a is preferably 1.9 or less, and more preferably 1.8 or less.
  • f satisfies 0 ⁇ f.
  • the lower limit of f is preferably 0.01 or more, and more preferably 0.1 or more.
  • the upper limit of f is preferably 1.0 or less, and more preferably 0.9 or less.
  • c + d which is the total amount of V and Nb, satisfies 0.01 ⁇ c + d ⁇ 3.
  • the catalyst precursor contains at least Nb, and 0 ⁇ c and 0.01 ⁇ d ⁇ 3.
  • the lower limit of c + d is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit of c + d is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1 or less.
  • the lower limit of d is preferably 0.1 or more, more preferably 0.15 or more, and further preferably 0.2 or more.
  • the upper limit of d is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1 or less.
  • d / (c + d) preferably satisfies 0.35 ⁇ d / (c + d) ⁇ 1. This further improves the selectivity of methacrylic acid.
  • the lower limit of d / (c + d) is more preferably 0.5 or more, further preferably 0.75 or more, and particularly preferably 0.9 or more.
  • E satisfies 0.005 ⁇ e ⁇ 3.
  • the lower limit of e is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
  • the upper limit of e is preferably 2 or less, more preferably 1 or less, and further preferably 0.5 or less.
  • G satisfies 0 ⁇ g ⁇ 3.
  • h satisfies 0.01 ⁇ h ⁇ 3.
  • the lower limit of h is preferably 0.1 or more, more preferably 0.3 or more, and further preferably 0.5 or more.
  • the upper limit of h is preferably 2.5 or less, more preferably 2 or less, and even more preferably 1.5 or less.
  • i satisfies 0.1 ⁇ i ⁇ 20.
  • the lower limit of i is preferably 0.5 or more, and more preferably 1 or more.
  • the upper limit of i is preferably 18 or less, and more preferably 16 or less.
  • the catalyst precursor for methacrylic acid production according to the present invention has a Keggin type structure.
  • methacrolein exhibits high activity when producing methacrylic acid by vapor-phase catalytic oxidation with molecular oxygen.
  • the structure of the catalyst precursor can be determined by infrared absorption analysis measurement.
  • the catalyst precursor has a Keggin structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm ⁇ 1 .
  • the catalyst for methacrylic acid production according to the present invention has a composition represented by the following formula (3), it is preferable to satisfy the following atomic ratio.
  • P, Mo, V, Nb, Cu, Sb, and O represent phosphorus, molybdenum, vanadium, niobium, copper, antimony, and oxygen, respectively.
  • X represents at least one element selected from the group consisting of silicon, titanium, germanium, arsenic, tellurium and selenium.
  • Z represents at least one element selected from the group consisting of potassium, rubidium and cesium.
  • a to h represent the atomic ratio of each element.
  • a satisfies 0.5 ⁇ a ⁇ 3, preferably satisfies 0.6 ⁇ a ⁇ 2.5, and more preferably satisfies 0.8 ⁇ a ⁇ 2. More preferably 0.9 ⁇ a ⁇ 1.3.
  • c + d satisfies 0.01 ⁇ c + d ⁇ 3, preferably satisfies 0.1 ⁇ c + d ⁇ 2.5, more preferably satisfies 0.15 ⁇ c + d ⁇ 2, and further preferably satisfies 0.2 ⁇ c + d ⁇ 1.
  • d satisfies 0.01 ⁇ d ⁇ 3, preferably satisfies 0.1 ⁇ d ⁇ 2.5, more preferably satisfies 0.15 ⁇ d ⁇ 2, more preferably 0.2 ⁇ d ⁇ 1.
  • e satisfies 0.01 ⁇ e ⁇ 2, preferably satisfies 0.03 ⁇ e ⁇ 1.5, more preferably satisfies 0.04 ⁇ e ⁇ 1, and more preferably 0.05 ⁇ e ⁇ 0. .5 is satisfied.
  • g satisfies 0.01 ⁇ g ⁇ 3, preferably satisfies 0.1 ⁇ g ⁇ 2.5, more preferably satisfies 0.3 ⁇ g ⁇ 2, and more preferably 0.5 ⁇ g ⁇ 1.
  • h satisfies 0.01 ⁇ h ⁇ 3, preferably satisfies 0.1 ⁇ h ⁇ 2.5, more preferably satisfies 0.3 ⁇ h ⁇ 2, and more preferably 0.5 ⁇ h ⁇ 1. .5 is satisfied.
  • the selectivity of methacrylic acid that is the target product may decrease.
  • the reaction rate of methacrolein decreases.
  • d / (c + d) preferably satisfies 0.5 ⁇ d / (c + d) ⁇ 1, more preferably satisfies 0.75 ⁇ d / (c + d) ⁇ 1, and 0.9 ⁇ More preferably, d / (c + d) ⁇ 1 is satisfied.
  • 0.5 ⁇ d / (c + d) ⁇ 1 the selectivity of methacrylic acid is further improved.
  • the method for producing a catalyst precursor for producing methacrylic acid according to the present invention includes the following steps (i) to (iii), and in the steps (i) and (ii), the slurry (I), the solution ( The pH of I) and the slurry (II) is maintained within the range of 0.1 to 6.5.
  • a step of drying the slurry (II) to obtain a catalyst precursor for producing methacrylic acid having the Keggin structure.
  • the method for producing a catalyst precursor for producing methacrylic acid according to the present invention may further include a molding step described later. According to this method, the catalyst precursor for methacrylic acid production according to the present invention can be suitably produced.
  • slurry (I) or solution (I) containing at least a raw material of molybdenum is prepared.
  • the slurry (I) or the solution (I) may be either, for example, the slurry (I) is dissolved in the solvent by suspending the raw material compound of the catalyst component in the solvent using a preparation container.
  • Solution (I) can be prepared respectively.
  • the slurry (I) or the solution (I) contains at least a molybdenum raw material, can contain a component contained in the composition represented by the formula (2), and preferably contains a niobium raw material.
  • the raw material compound used is not particularly limited, and examples thereof include nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids and oxoacid salts of each element, which may be used in combination. it can.
  • the molybdenum raw material include ammonium paramolybdate, molybdenum trioxide, molybdic acid, and molybdenum chloride.
  • Examples of the phosphorus raw material include orthophosphoric acid, phosphorus pentoxide, or phosphates such as ammonium phosphate and cesium phosphate.
  • Examples of the copper raw material include copper sulfate, copper nitrate, copper oxide, copper carbonate, copper acetate, and copper chloride.
  • Examples of the vanadium raw material include phosphovanadomolybdic acid, ammonium metavanadate, vanadium pentoxide, and vanadium chloride.
  • phosphovanadomolybdic acid is used as the vanadium raw material, since molybdenum element and phosphorus element are simultaneously contained in phosphovanadmolybdic acid, the target catalyst precursor composition is obtained according to the amount of phosphovanadomolybdic acid added.
  • the addition amount of molybdenum raw material and phosphorus raw material is adjusted.
  • niobium raw material examples include niobic acid, niobium pentoxide, niobium chloride, niobium hydrogen oxalate, and ammonium oxalate niobate.
  • a water-soluble raw material such as niobium hydrogen oxalate or ammonium niobate oxalate is preferably used as the niobium raw material.
  • a water-insoluble raw material such as niobium pentoxide
  • a preparation method in which the niobium raw material is dissolved in water such as by adding oxalic acid or hydrogen peroxide to water.
  • the slurry (I) or the solution (I) can be obtained by adding a raw material containing an element constituting the catalyst precursor to a solvent and mixing it.
  • a solvent water, an organic solvent or the like can be used, but water is preferably used from an industrial viewpoint. Moreover, you may heat-process the said slurry (I) or the said solution (I) as needed.
  • the order of addition of the raw materials during the preparation is not particularly limited, but in the step (i), the raw material is prepared while maintaining the pH of the slurry (I) or the solution (I) at 0.1 to 6.5. This improves the selectivity of methacrylic acid.
  • the lower limit of the pH is preferably 0.5 or more, and more preferably 1.0 or more.
  • the upper limit of the pH is preferably 6 or less.
  • the pH of the slurry (I) or the solution (I) can be measured with a portable pH meter D-72 (trade name) manufactured by HORIBA.
  • a method for controlling the pH of the slurry (I) or the solution (I) the raw material of each component constituting the catalyst precursor, the addition amount of ammonium root, etc. are appropriately selected, and nitric acid, oxalic acid, etc. are added as appropriate. The method of doing is mentioned.
  • step (ii) an ammonium compound is added to the slurry (I) or the solution (I) to prepare a slurry (II) containing an ammonium salt.
  • the ammonium compound include ammonium hydrogen carbonate, ammonium carbonate, ammonium nitrate, and aqueous ammonia. These ammonium compounds may be used alone or in combination of two or more.
  • a metal cation-containing compound in addition to the ammonium compound.
  • the metal cation-containing compound a compound containing at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium (corresponding to G in the formula (2)) is preferably used.
  • the temperature of the heat treatment is not particularly limited, but it is preferable to heat to a temperature at which the compound containing molybdenum, niobium, copper, phosphorus and, if necessary, other metal elements can be dissolved or reacted with other compounds. ⁇ 130 ° C is preferable, and 95-130 ° C is more preferable. Depending on the vapor pressure of the solvent used, it may be concentrated and refluxed during heating, or may be heat-treated under pressure conditions by operating in a closed container.
  • the rate of temperature increase is not particularly limited, but is preferably 0.8 to 15 ° C./min. When the rate of temperature increase is 0.8 ° C./min or more, the slurry preparation time can be shortened. Moreover, when the rate of temperature increase is 15 ° C./min or less, the temperature can be increased using normal temperature increasing equipment.
  • the slurry (II) is prepared while maintaining the pH at 0.1 to 6.5. This improves the selectivity of methacrylic acid.
  • the lower limit of the pH is preferably 0.5 or more, and more preferably 1.0 or more.
  • the upper limit is preferably 6.0 or less.
  • the pH of the resulting slurry (II) after heat treatment is preferably 0.1 to 3.0, the lower limit is 1.0 or more, and the upper limit is 2. 5 or less is more preferable.
  • the pH of the slurry (II) can be measured with a portable pH meter D-72 (trade name) manufactured by HORIBA.
  • Examples of a method for controlling the pH of the slurry (II) include a method in which raw materials of the respective components constituting the catalyst precursor, an addition amount of ammonium root, and the like are appropriately selected, and nitric acid, oxalic acid, and the like are appropriately added. Thereby, the catalyst precursor which has a preferable structure in the process (iii) mentioned later can be obtained.
  • step (iii) the slurry (II) is dried to obtain a catalyst precursor for producing methacrylic acid having the Keggin structure.
  • drying method There is no particular limitation on the drying method, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Of these, drum drying, spray drying or evaporation to dryness is preferred in the method according to the present invention.
  • the pH of the slurry (II) after the heat treatment obtained in the step (ii) is adjusted to 3 or less, preferably 2.5 or less.
  • the method of doing is mentioned.
  • the structure of the catalyst precursor can be determined by infrared absorption analysis measurement. When the catalyst precursor has a Keggin structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm ⁇ 1 .
  • the catalyst precursor or the catalyst after calcination obtained in the calcination step described later is formed.
  • the shape of the catalyst is appropriately selected from shapes suitable for each reaction mode. do it.
  • the method for forming the catalyst used in the fixed bed reactor is not particularly limited, and can be appropriately selected from known methods. However, it is preferable to form the catalyst so that the pressure loss during the reaction does not increase.
  • the molding method include tableting molding, wet molding, pressure molding, rolling granulation, and the like, and a suitable size and shape may be used depending on the use conditions.
  • the method for producing a catalyst for producing methacrylic acid comprises a catalyst precursor obtained in the step (iii) or a molded product of the catalyst precursor obtained in the molding step (hereinafter collectively referred to as catalyst precursor).
  • Step) (hereinafter also referred to as a firing step).
  • the catalyst precursor is fired to obtain a catalyst for producing methacrylic acid.
  • a suitable method may be appropriately selected from stationary firing, fluidized firing, and the like.
  • the stationary firing include a firing method using a box-type electric furnace, an annular firing furnace, or the like.
  • fluidized firing include a method of firing using a fluidized firing furnace, a rotary kiln, or the like.
  • the firing gas can be appropriately selected from air, nitrogen and the like. If the desired firing gas atmosphere can be maintained, the firing gas may or may not be circulated.
  • the firing temperature is preferably 200 to 500 ° C, the lower limit is preferably 300 ° C or higher, and the upper limit is more preferably 450 ° C or lower.
  • the firing time is preferably 0.5 to 40 hours, more preferably 1 to 40 hours, and even more preferably 2 to 40 hours.
  • the obtained catalyst may be used alone, but may be supported on an inert carrier such as silica, alumina, silica / alumina, silicon carbide, or mixed with these. Moreover, you may mix and use with the catalyst manufactured by methods other than the manufacturing method which concerns on this invention.
  • the method for producing methacrylic acid according to the present invention produces methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the catalyst for methacrylic acid production according to the present invention.
  • the method for producing methacrylic acid according to the present invention comprises producing a catalyst for producing methacrylic acid by the method according to the present invention, and subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen using the catalyst for producing methacrylic acid. Produces methacrylic acid.
  • the method for producing methacrylic acid according to the present invention produces methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the methacrylic acid production catalyst produced by the method according to the present invention. According to these methods, methacrylic acid can be produced with high selectivity.
  • the method can be carried out by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the methacrylic acid production catalyst.
  • concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3 to 10% by volume.
  • the raw material methacrolein may contain a small amount of impurities such as water and lower saturated aldehydes that do not substantially affect the present reaction.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol, more preferably 0.5 to 3 mol, per 1 mol of methacrolein.
  • the molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the raw material gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water, methacrylic acid can be obtained with higher selectivity and higher yield.
  • concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, more preferably 1 to 40% by volume.
  • the contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds, and more preferably 2 to 10 seconds.
  • the reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means a gauge pressure.
  • the reaction temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C.
  • methacrylic acid produced by the method according to the present invention is esterified.
  • the manufacturing method of the methacrylic acid ester which concerns on this invention manufactures methacrylic acid by the method which concerns on this invention, and esterifies this methacrylic acid.
  • a methacrylic acid ester can be obtained using methacrylic acid obtained by gas phase catalytic oxidation of methacrolein.
  • the alcohol to be reacted with methacrylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • Examples of the resulting methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • composition ratio of each element in the catalyst precursor and the catalyst was determined by analyzing the catalyst or a component obtained by dissolving the catalyst precursor in aqueous ammonia by ICP emission analysis.
  • the molar ratio of the ammonium root was determined by analyzing the catalyst or catalyst precursor by the Kjeldahl method. Further, the pH of the slurry and the solution was measured using a portable pH meter D-72 (trade name) manufactured by HORIBA.
  • the raw material gas and the product were analyzed using gas chromatography. From the results of gas chromatography, the reaction rate of methacrolein and the selectivity of methacrylic acid were determined by the following formula.
  • Reaction rate (%) of methacrolein number of moles of reacted methacrolein / number of moles of methacrolein supplied ⁇ 100
  • Methacrylic acid selectivity (%) number of moles of methacrylic acid produced / number of moles of reacted methacrolein ⁇ 100.
  • Example 1 A diluted product of 1200 parts of pure water at room temperature, 300 parts of molybdenum trioxide, 21 parts of ammonium niobate oxalate, and 20.1 parts of 85 mass% phosphoric acid aqueous solution with 18 parts of pure water, 24 mass% arsenic acid aqueous solution A dilution obtained by diluting 6 parts with 18 parts of pure water and a solution obtained by dissolving 4.2 parts of copper (II) nitrate trihydrate in 9.0 parts of pure water were mixed to obtain slurry (I). It was.
  • the pH was in the range of 1.4 to 2.5.
  • the slurry (II) was heated and evaporated to dryness to obtain a catalyst precursor.
  • Table 1 shows the composition ratio of the obtained catalyst precursor excluding oxygen. Further, the catalyst precursor had a Keggin type structure.
  • the obtained catalyst precursor is pressure-molded, crushed, and classified using a sieve so that the particle size is in the range of 710 ⁇ m to 2.36 mm, and calcined at 380 ° C. for 5 hours under air flow.
  • Table 2 shows the composition ratio of the obtained catalyst excluding oxygen.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • the catalyst was charged into the reactor, and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen was circulated, and the reaction was evaluated at a reaction temperature of 285 ° C.
  • the catalyst loading was adjusted so that the reaction rate of methacrolein was within a range of 13 to 27%.
  • the gas after the reaction was collected and analyzed by gas chromatography to calculate methacrolein reaction rate and methacrylic acid selectivity. The results are shown in Table 2.
  • Example 2 the catalyst precursor was prepared in the same manner as in Example 1, except that the amount of ammonium niobate oxalate was changed to 17 parts and the amount of 60% by mass aqueous arsenic acid solution was changed to 20.5 parts. Manufactured. In the preparation of the slurry (I) and the slurry (II), the pH of the slurry (I) and the slurry (II) was changed within the range of 1.4 to 5.6, and the slurry (II) obtained after heating and stirring was changed. The pH was in the range of 1.4 to 2.5. The composition ratio of the obtained catalyst precursor excluding oxygen is shown in Table 1. Further, the catalyst precursor had a Keggin type structure.
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • Example 3 Diluted product obtained by diluting 300 parts of molybdenum trioxide, 0.22 part of ammonium metavanadate, 13 parts of ammonium niobate oxalate, and 20.1 parts of 85 mass% phosphoric acid aqueous solution with 18 parts of pure water to 1200 parts of pure water at room temperature , 24.6 parts of a 60 mass% arsenic acid aqueous solution diluted with 18 parts of pure water, and a solution obtained by dissolving 4.2 parts of copper (II) nitrate trihydrate in 9.0 parts of pure water Thus, slurry (I) was obtained.
  • slurry (I) While the slurry (I) is stirred at room temperature, a solution obtained by dissolving 33.6 parts of cesium bicarbonate in 60 parts of pure water at room temperature and a solution obtained by dissolving 27.5 parts of ammonium carbonate in 73 parts of pure water at room temperature was added dropwise to obtain slurry (II).
  • the resulting slurry (II) was heated at 2 ° C./min, and heated and stirred at 95 ° C. for 2 hours.
  • the pH of the slurry (I) and the slurry (II) was changed within the range of 1.4 to 5.6, and the slurry (II) obtained after heating and stirring was changed.
  • the pH was in the range of 1.4 to 2.5.
  • the slurry (II) was heated and evaporated to dryness to obtain a catalyst precursor.
  • Table 1 shows the composition ratio of the obtained catalyst precursor excluding oxygen. Further, the catalyst precursor had a Keggin type structure.
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • Example 4 In Example 3, a catalyst precursor was produced in the same manner as in Example 3 except that the amount of ammonium metavanadate was changed to 2 parts.
  • the pH of the slurry (I) and the slurry (II) was changed within the range of 1.5 to 5.7, and the slurry (II) obtained after heating and stirring was changed.
  • the pH was in the range of 1.5 to 2.5.
  • Table 1 shows the composition ratio of the obtained catalyst precursor excluding oxygen. Further, the catalyst precursor had a Keggin type structure.
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • Example 5 To 1200 parts of pure water at room temperature, 300 parts of molybdenum trioxide, 4.1 parts of ammonium metavanadate, 10.5 parts of ammonium niobate oxalate, and 20.1 parts of 85 mass% phosphoric acid aqueous solution were diluted with 18 parts of pure water. Diluted product, diluted product obtained by diluting 24.6 parts of 60 mass% arsenic acid aqueous solution with 18 parts of pure water, and dissolved product obtained by dissolving 4.2 parts of copper (II) nitrate trihydrate in 9.0 parts of pure water Were mixed to obtain slurry (I).
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • Example 5 In Example 5, the amount of ammonium metavanadate was changed to 8.2 parts, the amount of cesium bicarbonate was changed to 23.5 parts, and the amount of potassium bicarbonate was changed to 5.2 parts.
  • a catalyst precursor was produced in the same manner as in Example 5 except that ammonium was not used.
  • the pH of the slurry (I) and the slurry (II) was changed within the range of 1.5 to 5.7, and the slurry (II) obtained after heating and stirring was changed. The pH was in the range of 1.5 to 2.5.
  • Table 1 shows the composition ratio of the obtained catalyst precursor excluding oxygen. Further, the catalyst precursor had a Keggin type structure.
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • the resulting catalyst precursor was molded and calcined in the same manner as in Example 1 to produce a catalyst, and the reaction was evaluated in the same manner as in Example 1 using this catalyst.
  • Table 2 shows the composition ratio of the catalyst excluding oxygen and the reaction evaluation results.
  • the molar ratio of ammonium radicals in the catalyst was 0 ⁇ i ⁇ 1.
  • a methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in this example.
  • the catalyst for producing methacrylic acid according to the present invention can produce methacrylic acid with high selectivity, it is useful when producing methacrylic acid industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

メタクロレインを気相接触酸化してメタクリル酸を高選択率で製造できる触媒を提供する。メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる下記式の組成を有するメタクリル酸製造用触媒。 PaMobVcNbdCueAfEgGh(NH4)iOj (AはSi、Ge、AsおよびSbの少なくとも1種、EはBi、Zr、Te、Ag、Se、W、B、Fe、Zn、Cr、Mg、Ca、Sr、Ta、Co、Ni、Mn、Ba、Ti、Sn、Pb、In、S、Pd、Ga、CeおよびLaの少なくとも1種、GはLi、Na、K、Rb、CsおよびTlの少なくとも1種を表す。b=12の時、0.5≦a+f≦2.1、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0≦i≦5を満たし、jは各成分の価数を満足する酸素のモル比率である。)

Description

メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
 本発明は、メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法に関する。
 メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒(以下、単に「触媒」とも記す)としては、例えばモリブデン元素およびリン元素を含むヘテロポリ酸系触媒が挙げられる。該ヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸と、そのプロトンの一部をプロトン以外のカチオンで置換したヘテロポリ酸塩が挙げられる(以下、これらを単に「ヘテロポリ酸」および「ヘテロポリ酸塩」とも言う。また両者を併せて「ヘテロポリ酸(塩)」とも言う)。
 ヘテロポリ酸(塩)の構造に関して、非特許文献1には、ヘテロポリ酸(塩)はその中心に異種元素(以下中心元素という)を有し、また酸素を共有して縮合酸基が縮合して形成される単核または複核の錯イオンを有していること、縮合形態は数種類知られていること、リン、ヒ素、ケイ素、ゲルマニウム、チタン等が中心元素になり得ることが記載されている。
 また、非特許文献2には、ヘテロポリ酸(塩)の構造としては、ケギン、欠損型ケギン、ドーソン、欠損型ドーソンなど種々の構造が存在し、調製過程のpHを制御することでこれらの構造を作り分けることができること、ケギン型ヘテロポリ酸(塩)は調製過程のpHを6以下とすることで調製できることが記載されている。
 ヘテロポリ酸系触媒を用いてメタクロレインからメタクリル酸を製造する際に、メタクリル酸の選択率が高い触媒として、特許文献1には下記式(I)で表される触媒が開示されている。
  MoCuSbNb  (I)
(式(I)中、Mo、P、V、Cu、Sb、Nb及びOはそれぞれモリブデン、リン、バナジウム、銅、アンチモン、ニオブ及び酸素を表し、Xは鉄、コバルト、ニッケル及び亜鉛からなる群より選ばれた少なくとも1種の元素、Yはマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、ビスマス、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれた少なくとも1種の元素、Zはナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、g、h及びiは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦2、0.01≦e≦3、0.01≦f≦3、0.01≦g≦3、0≦h≦3、0.01≦i≦3であり、jは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
特開平11-228487号公報
大竹正之、小野田武、触媒、vol.18、No.6(1976) Lege Pattersson、Ingerarb Andersson、Lars-Olof Ohman、Inorganic Chemistry、vol.25、4726-4733(1986)
 しかしながら、前記触媒を用いてメタクリル酸の製造を行ってもメタクリル酸の選択率の点でまだ不十分であり、工業的見地から更なる改良が望まれている。
 本発明は、メタクロレインを気相接触酸化してメタクリル酸を高選択率で製造できる触媒、触媒前駆体、およびそれらの製造方法、該触媒を用いたメタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法を提供することを目的とする。
 本発明は、以下の[1]~[11]である。
 [1]メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、下記式(1)で表される組成を有するメタクリル酸製造用触媒。
  PMoNbCu(NH  (1)
(式(1)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.1、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0≦i≦5を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。)。
 [2]メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒の、前駆体であって、ケギン型構造を有し、下記式(2)で表される組成を有するメタクリル酸製造用触媒前駆体。
  PMoNbCu(NH  (2)
(式(2)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.4、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0.1≦i≦20を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。)。
 [3]前記式(1)において、0.35≦d/(c+d)≦1を満たす[1]に記載のメタクリル酸製造用触媒。
 [4]前記式(2)において、0.35≦d/(c+d)≦1を満たす[2]に記載のメタクリル酸製造用触媒前駆体。
 [5][2]または[4]に記載のメタクリル酸製造用触媒前駆体の製造方法であって、
(i)少なくともモリブデンの原料を含むスラリー(I)または溶液(I)を調製する工程と、
(ii)前記スラリー(I)または前記溶液(I)にアンモニウム化合物を添加して、アンモニウム塩を含むスラリー(II)を調製する工程と、
(iii)前記スラリー(II)を乾燥し、前記ケギン型構造を有するメタクリル酸製造用触媒前駆体を得る工程と、
を含み、
 前記工程(i)および(ii)において、前記スラリー(I)、前記溶液(I)、および前記スラリー(II)のpHを0.1~6.5の範囲内に維持するメタクリル酸製造用触媒前駆体の製造方法。
 [6][5]に記載の方法により製造したメタクリル酸製造用触媒前駆体を焼成する工程を含むメタクリル酸製造用触媒の製造方法。
 [7][1]または[3]に記載のメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
 [8][6]に記載の方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
 [9][6]に記載の方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
 [10][7]から[9]のいずれかに記載の方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。
 [11][7]から[9]のいずれかに記載の方法によりメタクリル酸を製造し、該メタクリル酸をエステル化するメタクリル酸エステルの製造方法。
 本発明によれば、メタクロレインを気相接触酸化してメタクリル酸を高選択率で製造できる触媒、触媒前駆体、およびそれらの製造方法、該触媒を用いたメタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法を提供することができる。
 [メタクリル酸製造用触媒]
 本発明に係るメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられ、下記式(1)で表される組成を有する。
  PMoNbCu(NH  (1)
 式(1)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.1、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0≦i≦5を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。
 なお、本発明において「アンモニウム根」とは、アンモニウムイオン(NH )になり得るアンモニア(NH)、およびアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称である。
 また、各元素のモル比率は、触媒または触媒前駆体をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた値とする。またアンモニウム根のモル比率は、触媒または触媒前駆体をケルダール法で分析することによって求めた値とする。
 本発明によれば、前記式(1)で表される組成を有する触媒を用いることで、メタクリル酸の選択率が向上する。通常、メタクロレインが酸化されメタクリル酸となった後、さらに酸化反応が継続して一酸化炭素や二酸化炭素等が生成する逐次酸化反応が起こる。しかしながら、本発明に係る触媒はこの逐次酸化反応を抑制するため、メタクリル酸の選択率が向上すると考えられる。
 前記メタクリル酸製造用触媒において、各成分のモル比率が前記式(1)で規定される範囲から外れると、目的生成物であるメタクリル酸の選択率が低下する。前記式(1)において、b=12の時、リンとAの合計量であるa+fは0.5≦a+f≦2.1を満たす。特に、2.1<a+fの場合はメタクリル酸の選択率が大幅に低下する。a+fの下限は0.6以上が好ましく、0.8以上がより好ましく、0.9以上がさらに好ましく、1.3以上が最も好ましい。またa+fの上限は2.0以下が好ましく、1.9以下がより好ましく、1.8以下がさらに好ましい。aは0.5≦aを満たす。aの下限は0.6以上が好ましく、0.7以上がより好ましい。aの上限は1.9以下が好ましく、1.8以下がより好ましい。fは0≦fを満たす。fの下限は0.01以上が好ましく、0.1以上がより好ましい。fの上限は1.0以下が好ましく、0.9以下がより好ましい。
 また、VとNbの合計量であるc+dは0.01≦c+d≦3を満たす。ただし、触媒はNbを少なくとも含み、0≦c、0.01≦d≦3である。c+dの下限は0.1以上が好ましく、0.15以上がより好ましく、0.2以上がさらに好ましい。またc+dの上限は2.5以下が好ましく、2以下がより好ましく、1以下がさらに好ましい。dの下限は0.1以上が好ましく、0.15以上がより好ましく、0.2以上がさらに好ましい。またdの上限は2.5以下が好ましく、2以下がより好ましく、1以下がさらに好ましい。d/(c+d)は0.35≦d/(c+d)≦1を満たすことが好ましい。これによりメタクリル酸の選択率がより向上する。d/(c+d)の下限は0.5以上がより好ましく、0.75以上がさらに好ましく、0.9以上が特に好ましい。
 eは0.005≦e≦3を満たす。特に、e<0.005の場合はメタクロレインの反応率が低下する。eの下限は0.01以上が好ましく、0.03以上がより好ましく、0.05以上がさらに好ましい。またeの上限は2以下が好ましく、1以下がより好ましく、0.5以下がさらに好ましい。
 gは0≦g≦3を満たす。hは0.01≦h≦3を満たす。hの下限は0.1以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましい。またhの上限は2.5以下が好ましく、2以下がより好ましく、1.5以下がさらに好ましい。iは0≦i≦5を満たす。iの上限は3以下が好ましく、2以下がより好ましい。
 [メタクリル酸製造用触媒前駆体]
 また本発明に係るメタクリル酸製造用触媒前駆体(以下、触媒前駆体とも言う)は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒の、前駆体であって、ケギン型構造を有し、下記式(2)で表される組成を有する。
  PMoNbCu(NH  (2)
 式(2)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.4、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0.1≦i≦20を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。
 本発明によれば、前記式(2)で表される組成を有する触媒前駆体から得られる触媒を用いることで、メタクリル酸の選択率が向上する。通常、メタクロレインが酸化されメタクリル酸となった後、さらに酸化反応が継続して一酸化炭素や二酸化炭素等が生成する逐次酸化反応が起こる。しかしながら、本発明に係る触媒前駆体から得られる触媒はこの逐次酸化反応を抑制するため、メタクリル酸の選択率が向上すると考えられる。
 前記メタクリル酸製造用触媒前駆体において、各成分のモル比率が前記式(2)で規定される範囲から外れると、目的生成物であるメタクリル酸の選択率が低下する。前記式(2)において、b=12の時、リンとAの合計量であるa+fは0.5≦a+f≦2.4を満たす。特に、2.4<a+fの場合はメタクリル酸の選択率が大幅に低下する。a+fの下限は0.6以上が好ましく、0.8以上がより好ましく、0.9以上がさらに好ましく、1.3以上が最も好ましい。またa+fの上限は2.2以下が好ましく、2.0以下がより好ましく、1.8以下がさらに好ましい。aは0.5≦aを満たす。aの下限は0.6以上が好ましく、0.7以上がより好ましい。aの上限は1.9以下が好ましく、1.8以下がより好ましい。fは0≦fを満たす。fの下限は0.01以上が好ましく、0.1以上がより好ましい。fの上限は1.0以下が好ましく、0.9以下がより好ましい。
 また、VとNbの合計量であるc+dは0.01≦c+d≦3を満たす。ただし、触媒前駆体はNbを少なくとも含み、0≦c、0.01≦d≦3である。c+dの下限は0.1以上が好ましく、0.15以上がより好ましく、0.2以上がさらに好ましい。またc+dの上限は2.5以下が好ましく、2以下がより好ましく、1以下がさらに好ましい。dの下限は0.1以上が好ましく、0.15以上がより好ましく、0.2以上がさらに好ましい。またdの上限は2.5以下が好ましく、2以下がより好ましく、1以下がさらに好ましい。d/(c+d)は0.35≦d/(c+d)≦1を満たすことが好ましい。これによりメタクリル酸の選択率がより向上する。d/(c+d)の下限は0.5以上がより好ましく、0.75以上がさらに好ましく、0.9以上が特に好ましい。
 eは0.005≦e≦3を満たす。e<0.005の場合はメタクロレインの反応率が低下する。eの下限は0.01以上が好ましく、0.03以上がより好ましく、0.05以上がさらに好ましい。またeの上限は2以下が好ましく、1以下がより好ましく、0.5以下がさらに好ましい。
 gは0≦g≦3を満たす。hは0.01≦h≦3を満たす。hの下限は0.1以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましい。またhの上限は2.5以下が好ましく、2以下がより好ましく、1.5以下がさらに好ましい。iは0.1≦i≦20を満たす。iの下限は0.5以上が好ましく、1以上がより好ましい。iの上限は18以下が好ましく、16以下がより好ましい。
 本発明に係るメタクリル酸製造用触媒前駆体は、ケギン型構造を有する。これによりメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に高い活性を示す。該触媒前駆体の構造は、赤外吸収分析測定により判断することができる。触媒前駆体がケギン型構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。
 なお、本発明に係るメタクリル酸製造用触媒が下記式(3)で表される組成を有する場合は、下記の原子比率を満たすことが好ましい。
  PMoNbCuSb  (3)
 式(3)中、P、Mo、V、Nb、Cu、SbおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンチモンおよび酸素を表す。Xはケイ素、チタン、ゲルマニウム、ヒ素、テルルおよびセレンからなる群から選択される少なくとも1種の元素を表す。Zはカリウム、ルビジウムおよびセシウムからなる群から選択される少なくとも1種の元素を表す。a~hは、各元素の原子比率を表し、b=12の時、0.5≦a≦3、0.01≦c+d≦3、0.01≦d≦3、0.01≦e≦2、0≦f<0.01、0.01≦g≦3、0.01≦h≦3を満たし、iは前記各元素の原子価を満足するのに必要な酸素の原子比率である。
 前記式(3)において、b=12の時、aは0.5≦a≦3を満たし、好ましくは0.6≦a≦2.5を満たし、より好ましくは0.8≦a≦2を満たし、さらに好ましくは0.9≦a≦1.3を満たす。c+dは、0.01≦c+d≦3を満たし、好ましくは0.1≦c+d≦2.5を満たし、より好ましくは0.15≦c+d≦2を満たし、さらに好ましくは0.2≦c+d≦1を満たす。dは、0.01≦d≦3を満たし、好ましくは0.1≦d≦2.5を満たし、より好ましくは0.15≦d≦2を満たし、さらに好ましくは0.2≦d≦1を満たす。eは、0.01≦e≦2を満たし、好ましくは0.03≦e≦1.5を満たし、より好ましくは0.04≦e≦1を満たし、さらに好ましくは0.05≦e≦0.5を満たす。fは、0≦f<0.01を満たし、好ましくは0≦f≦0.005を満たし、より好ましくは0≦f≦0.001を満たし、さらに好ましくはf=0を満たす。gは、0.01≦g≦3を満たし、好ましくは0.1≦g≦2.5を満たし、より好ましくは0.3≦g≦2を満たし、さらに好ましくは0.5≦g≦1を満たす。hは、0.01≦h≦3を満たし、好ましくは0.1≦h≦2.5を満たし、より好ましくは0.3≦h≦2を満たし、さらに好ましくは0.5≦h≦1.5を満たす。
 各元素の原子比率が前記式(3)で規定される範囲から外れると、目的生成物であるメタクリル酸の選択率が低下する場合がある。特に、メタクリル酸の選択率向上の観点から、アンチモンを含まない、すなわちf=0が好ましい。なお、3<dの場合、メタクロレインの反応率が低下する。
 また、d/(c+d)の値は、0.5≦d/(c+d)≦1を満たすことが好ましく、0.75≦d/(c+d)≦1を満たすことがより好ましく、0.9≦d/(c+d)≦1を満たすことがさらに好ましい。0.5≦d/(c+d)≦1を満たすことにより、メタクリル酸の選択率がより向上する。
 [メタクリル酸製造用触媒前駆体の製造方法]
 本発明に係るメタクリル酸製造用触媒前駆体の製造方法は、以下の工程(i)から(iii)を含み、かつ前記工程(i)および(ii)において、前記スラリー(I)、前記溶液(I)および前記スラリー(II)のpHを0.1~6.5の範囲内に維持する。
(i)少なくともモリブデンの原料を含むスラリー(I)または溶液(I)を調製する工程。
(ii)前記スラリー(I)または前記溶液(I)にアンモニウム化合物を添加して、アンモニウム塩を含むスラリー(II)を調製する工程。
(iii)前記スラリー(II)を乾燥し、前記ケギン型構造を有するメタクリル酸製造用触媒前駆体を得る工程。
 また、本発明に係るメタクリル酸製造用触媒前駆体の製造方法は、後述する成形工程をさらに有してもよい。該方法によれば、本発明に係るメタクリル酸製造用触媒前駆体を好適に製造することができる。
 (工程(i))
 工程(i)では、少なくともモリブデンの原料を含むスラリー(I)または溶液(I)を調製する。前記スラリー(I)または前記溶液(I)はいずれであっても良く、例えば、調製容器を用いて触媒成分の原料化合物を溶媒に懸濁させることでスラリー(I)を、溶媒に溶解させることで溶液(I)を、それぞれ調製することができる。前記スラリー(I)または前記溶液(I)は少なくともモリブデンの原料を含み、前記式(2)で表される組成に含まれる成分を含むことができ、ニオブの原料を含むことが好ましい。
 使用する原料化合物としては特に限定はなく、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩などが挙げられ、それらを組み合わせて使用することもできる。モリブデン原料としては、例えばパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデンなどが挙げられる。リン原料としては、例えば正リン酸、五酸化リン、又は、リン酸アンモニウム、リン酸セシウム等のリン酸塩などが挙げられる。銅原料としては、例えば硫酸銅、硝酸銅、酸化銅、炭酸銅、酢酸銅、塩化銅などが挙げられる。バナジウム原料としては、例えばリンバナドモリブデン酸、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウムなどが挙げられる。ただし、バナジウム原料としてリンバナドモリブデン酸を用いる場合、リンバナドモリブデン酸中には、モリブデン元素およびリン元素が同時に含まれるため、リンバナドモリブデン酸の添加量に応じて目標の触媒前駆体組成となるようにモリブデン原料、リン原料の添加量を調整する。ニオブ原料としては、例えばニオブ酸、五酸化ニオブ、塩化ニオブ、シュウ酸水素ニオブ、ニオブ酸シュウ酸アンモニウムなどが挙げられる。触媒前駆体の調製時の溶媒として水を用いる場合には、ニオブ原料としてシュウ酸水素ニオブ、ニオブ酸シュウ酸アンモニウム等の水溶性原料を用いることが好ましい。一方、例えば五酸化ニオブのような非水溶性原料を用いる場合には、水にシュウ酸や過酸化水素を添加するなどニオブ原料が水に溶解する調製方法を選択することが好ましい。これにより、後述する工程(iii)において好ましい構造を有する触媒前駆体を得ることができる。
 前記スラリー(I)または前記溶液(I)は、触媒前駆体を構成する元素を含有する原料を溶媒へ添加し、混合して得ることができる。該溶媒としては、水、有機溶媒等を使用できるが、工業的な観点から水を使用することが好ましい。また、必要に応じて前記スラリー(I)または前記溶液(I)を加熱処理してもよい。調製時の原料の添加順序は特に限定されないが、工程(i)において、前記スラリー(I)または前記溶液(I)のpHは0.1~6.5に維持しながら調製する。これによりメタクリル酸の選択率が向上する。該pHの下限は0.5以上が好ましく、1.0以上がより好ましい。また該pHの上限は6以下が好ましい。なお、前記スラリー(I)または前記溶液(I)のpHは、HORIBA製ポータブル型pHメータD-72(商品名)等により測定することができる。前記スラリー(I)または前記溶液(I)のpHを制御する方法としては、触媒前駆体を構成する各成分の原料やアンモニウム根の添加量等を適宜選択し、硝酸、シュウ酸等を適宜添加する方法が挙げられる。
 (工程(ii))
 工程(ii)では、前記スラリー(I)または前記溶液(I)にアンモニウム化合物を添加して、アンモニウム塩を含むスラリー(II)を調製する。アンモニウム化合物としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウム、アンモニア水等が挙げられる。これらのアンモニウム化合物は、一種を用いてもよく、二種以上を併用してもよい。また工程(ii)では、アンモニウム化合物に加えて金属カチオン含有化合物を添加することが好ましい。金属カチオン含有化合物としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素(前記式(2)のGに相当)を含む化合物を用いることが好ましい。
 また、前記スラリー(II)を加熱処理することが好ましい。加熱処理の温度は特に限定されないが、モリブデン、ニオブ、銅、リンおよび必要により他の金属元素を含有する化合物が溶解または他の化合物と反応できる温度まで加熱することが好ましく、具体的には75~130℃が好ましく、95~130℃がより好ましい。用いる溶媒の蒸気圧に応じて、加熱時に濃縮、還流したり、密閉容器の中で操作することにより加圧条件にて加熱処理したりしてもよい。昇温速度は特に限定されないが、0.8~15℃/分が好ましい。昇温速度が0.8℃/分以上であることにより、スラリー調製時間を短縮できる。また、昇温速度が15℃/分以下であることにより、通常の昇温設備を用いて昇温を行うことができる。
 工程(ii)において、前記スラリー(II)のpHを0.1~6.5に維持しながら調製する。これによりメタクリル酸の選択率が向上する。該pHの下限は0.5以上が好ましく、1.0以上がより好ましい。また上限は6.0以下が好ましい。工程(ii)において加熱処理を行った場合、得られる加熱処理後のスラリー(II)のpHは、0.1~3.0であることが好ましく、下限は1.0以上、上限は2.5以下がより好ましい。なお、前記スラリー(II)のpHは、HORIBA製ポータブル型pHメータD-72(商品名)等により測定することができる。前記スラリー(II)のpHを制御する方法としては、触媒前駆体を構成する各成分の原料やアンモニウム根の添加量等を適宜選択し、硝酸、シュウ酸等を適宜添加する方法が挙げられる。これにより、後述する工程(iii)において好ましい構造を有する触媒前駆体を得ることができる。
 (工程(iii))
 工程(iii)では、前記スラリー(II)を乾燥し、前記ケギン型構造を有するメタクリル酸製造用触媒前駆体を得る。乾燥方法に特に制限はなく、ドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明に係る方法では、ドラム乾燥、噴霧乾燥または蒸発乾固が好ましい。
 工程(iii)においてケギン型構造を有する触媒前駆体を得る方法としては、前記工程(ii)において得られる加熱処理後の前記スラリー(II)のpHを3以下、好ましくは2.5以下に調整する方法が挙げられる。該触媒前駆体の構造は、赤外吸収分析測定により判断することができる。該触媒前駆体がケギン型構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。
 (成形工程)
 成形工程では、前記触媒前駆体または後述する焼成工程で得られる焼成後の触媒を成形する。本発明に係る方法により製造される触媒は、固定床型反応器や流動床型反応器のいずれでも使用することができるため、該触媒の形状はそれぞれの反応の形態に好適な形状から適宜選択すればよい。例えば固定床型反応器で使用される触媒の成形方法は特に限定はなく、公知の方法から適宜選択することができるが、反応時の圧力損失が大きくならない形状に成形することが好ましい。成形方法としては、打錠成形、湿式成形、加圧成形、転動造粒等が挙げられ、使用条件に応じて好適な大きさおよび形状とすればよい。また、例えば流動床型反応器で使用される触媒を製造する場合には、噴霧乾燥により微粉とした触媒前駆体を湿式成形することが好ましい。
 [メタクリル酸製造用触媒の製造方法]
 本発明に係るメタクリル酸製造用触媒の製造方法は、前記工程(iii)で得られた触媒前駆体、または前記成形工程で得られた触媒前駆体の成形物(以下、まとめて触媒前駆体とも言う)を焼成する工程(以下、焼成工程とも言う)を含む。
 (焼成工程)
 焼成工程では、前記触媒前駆体を焼成し、メタクリル酸製造用触媒を得る。焼成方法に特に限定はなく、静置焼成、流動焼成等から好適な方法を適宜選択すればよい。静置焼成としては、例えば箱型電気炉、環状焼成炉等を用いて焼成する方法が挙げられる。流動焼成としては、例えば流動焼成炉、ロータリーキルン等を用いて焼成する方法が挙げられる。焼成ガスは、空気、窒素等から適宜選択することができる。なお、所望の焼成ガス雰囲気が維持できれば、焼成ガスは流通させても、流通させなくてもよい。触媒活性およびメタクリル酸選択率が高い触媒が得られる観点から、焼成温度は200~500℃が好ましく、下限は300℃以上、上限は450℃以下がより好ましい。焼成時間は0.5~40時間が好ましく、1~40時間がより好ましく、2~40時間がさらに好ましい。
 なお、得られる触媒は単体で用いてもよいが、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイド等の不活性担体に担持させるか、またはこれらと混合して用いてもよい。また、本発明に係る製造方法以外の方法で製造された触媒と混合して用いても良い。
 [メタクリル酸の製造方法]
 本発明に係るメタクリル酸の製造方法は、本発明に係るメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。また、本発明に係るメタクリル酸の製造方法は、本発明に係る方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。また、本発明に係るメタクリル酸の製造方法は、本発明に係る方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する。これらの方法によれば、高選択率でメタクリル酸を製造することができる。
 前記方法は、メタクロレインと分子状酸素とを含む原料ガスを前記メタクリル酸製造用触媒に接触させて行うことができる。原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、3~10容量%がより好ましい。原料であるメタクロレインは、水、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。
 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、0.5~3モルがより好ましい。分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水の存在下で反応を行うことにより、メタクリル酸をより高選択率、高収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、1~40容量%がより好ましい。
 原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15秒が好ましく、2~10秒がより好ましい。反応圧力は、0.1~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、250~400℃がより好ましい。
 [メタクリル酸エステルの製造方法]
 本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法により製造されたメタクリル酸をエステル化する。また、本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法によりメタクリル酸を製造し、該メタクリル酸をエステル化する。これらの方法によれば、メタクロレインの気相接触酸化により得られるメタクリル酸を用いて、メタクリル酸エステルを得ることができる。メタクリル酸と反応させるアルコールとしては特に限定されず、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例中の「部」は質量部を意味する。
 触媒前駆体および触媒における各元素の組成比は、触媒または触媒前駆体をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた。またアンモニウム根のモル比率は、触媒または触媒前駆体をケルダール法で分析することによって求めた。また、スラリーおよび溶液のpHは、HORIBA製ポータブル型pHメータD-72(商品名)を用いて測定した。
 原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの反応率およびメタクリル酸の選択率を下記式にて求めた。
  メタクロレインの反応率(%)=反応したメタクロレインのモル数/供給したメタクロレインのモル数×100
  メタクリル酸の選択率(%)=生成したメタクリル酸のモル数/反応したメタクロレインのモル数×100。
 [実施例1]
 室温の純水1200部に、三酸化モリブデン300部、ニオブ酸シュウ酸アンモニウム21部、85質量%リン酸水溶液20.1部を純水18部で希釈した希釈物、60質量%ヒ酸水溶液24.6部を純水18部で希釈した希釈物、および硝酸銅(II)三水和物4.2部を純水9.0部に溶解した溶解物を混合し、スラリー(I)を得た。スラリー(I)を室温で撹拌しながら、重炭酸セシウム23.5部および重炭酸カリウム5.2部を室温の純水60部に溶解した溶解物と、炭酸アンモニウム27.5部を室温の純水73部に溶解した溶解物を滴下し、スラリー(II)を得た。得られたスラリー(II)を2℃/分で昇温し、95℃にて2時間加熱撹拌した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.4~5.5の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.4~2.5の範囲内であった。該スラリー(II)を加熱して蒸発乾固させ、触媒前駆体を得た。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を加圧成形し、破砕し、粒径が710μm~2.36mmの範囲内になるように篩いを用いて分級したものを、空気流通下、380℃で5時間焼成することで、触媒を製造した。得られた触媒の酸素を除く組成比を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 前記触媒を反応器に充填して、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを流通させ、反応温度285℃にて反応評価を行った。なお触媒充填量は、メタクロレインの反応率が13~27%の範囲内となるように調節した。反応後のガスを捕集し、ガスクロマトグラフィーで分析してメタクロレイン反応率とメタクリル酸選択率を算出した。結果を表2に示す。
 [実施例2]
 実施例1において、ニオブ酸シュウ酸アンモニウムの仕込み量を17部に、60質量%ヒ酸水溶液の仕込み量を20.5部に変更した点以外は、実施例1と同様の方法で触媒前駆体を製造した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.4~5.6の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.4~2.5の範囲内であった。また、得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 [実施例3]
 室温の純水1200部に、三酸化モリブデン300部、メタバナジン酸アンモニウム0.22部、ニオブ酸シュウ酸アンモニウム13部、85質量%リン酸水溶液20.1部を純水18部で希釈した希釈物、60質量%ヒ酸水溶液24.6部を純水18部で希釈した希釈物、および硝酸銅(II)三水和物4.2部を純水9.0部に溶解した溶解物を混合し、スラリー(I)を得た。スラリー(I)を室温で撹拌しながら、重炭酸セシウム33.6部を室温の純水60部に溶解した溶解物と、炭酸アンモニウム27.5部を室温の純水73部に溶解した溶解物を滴下し、スラリー(II)を得た。得られたスラリー(II)を2℃/分で昇温し、95℃にて2時間加熱撹拌した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.4~5.6の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.4~2.5の範囲内であった。該スラリー(II)を加熱して蒸発乾固させ、触媒前駆体を得た。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 [実施例4]
 実施例3において、メタバナジン酸アンモニウムの仕込み量を2部に変更した点以外は、実施例3と同様の方法で触媒前駆体を製造した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.5~5.7の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.5~2.5の範囲内であった。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 [実施例5]
 室温の純水1200部に、三酸化モリブデン300部、メタバナジン酸アンモニウム4.1部、ニオブ酸シュウ酸アンモニウム10.5部、85質量%リン酸水溶液20.1部を純水18部で希釈した希釈物、60質量%ヒ酸水溶液24.6部を純水18部で希釈した希釈物、および硝酸銅(II)三水和物4.2部を純水9.0部に溶解した溶解物を混合し、スラリー(I)を得た。スラリー(I)を室温で撹拌しながら、重炭酸セシウム30.3部および重炭酸カリウム1.7部を室温の純水60部に溶解した溶解物と、炭酸アンモニウム27.5部を室温の純水73部に溶解した溶解物を滴下し、スラリー(II)を得た。得られたスラリー(II)を2℃/分で昇温し、95℃にて2時間加熱撹拌した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.5~5.7の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.5~2.5の範囲内であった。該スラリー(II)を加熱して蒸発乾固させ、触媒前駆体を得た。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 [比較例1]
 実施例5において、メタバナジン酸アンモニウムの仕込み量を8.2部に、重炭酸セシウムの仕込み量を23.5部に、重炭酸カリウムの仕込み量を5.2部に変更し、ニオブ酸シュウ酸アンモニウムを用いなかった点以外は、実施例5と同様の方法で触媒前駆体を製造した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.5~5.7の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.5~2.5の範囲内であった。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
 [比較例2]
 純水1200部に、三酸化モリブデン300部、メタバナジン酸アンモニウム4.1部、ニオブ酸シュウ酸アンモニウム10.5部、五酸化アンチモン22.8部、85質量%リン酸水溶液20.1部を純水18部で希釈した希釈物、60質量%ヒ酸水溶液24.6部を純水18部で希釈した希釈物、および硝酸銅(II)三水和物4.2部を純水9.0部に溶解した溶解物を混合し、スラリー(I)を得た。スラリー(I)を室温で撹拌しながら、重炭酸セシウム30.3部および重炭酸カリウム1.7部を室温の純水60部に溶解した溶解物と、炭酸アンモニウム27.5部を室温の純水73部に溶解した溶解物を滴下し、スラリー(II)を得た。得られたスラリー(II)を2℃/分で昇温し、95℃にて2時間加熱撹拌した。スラリー(I)およびスラリー(II)の調製において、スラリー(I)およびスラリー(II)のpHは1.5~5.7の範囲内で変化し、加熱撹拌後に得られたスラリー(II)のpHは1.5~2.5の範囲内であった。該スラリー(II)を加熱して蒸発乾固させ、触媒前駆体を得た。得られた触媒前駆体の酸素を除く組成比を表1に示す。また、該触媒前駆体はケギン型構造を有していた。
 得られた触媒前駆体を、実施例1と同様の方法で成形および焼成して触媒を製造し、該触媒を用いて実施例1と同様の方法で反応評価を行った。触媒の酸素を除く組成比および反応評価結果を表2に示す。なお、該触媒におけるアンモニウム根のモル比率は0≦i≦1であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されるように、実施例1~5では、触媒前駆体および触媒の組成比が本発明の範囲内にあり、メタクリル酸選択率が高い触媒であることが確認された。一方、ニオブ組成比が本発明の範囲外である比較例1およびa+fの値が本発明の範囲外である比較例2は、実施例1~5と比較してメタクリル酸選択率が低い結果となった。
 なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。
 この出願は、2017年2月17日に出願された日本出願特願2017-028174を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明に係るメタクリル酸製造用触媒は、高い選択率でメタクリル酸を製造することができるため、工業的にメタクリル酸を製造する際に有用である。

Claims (11)

  1.  メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、下記式(1)で表される組成を有するメタクリル酸製造用触媒。
      PMoNbCu(NH  (1)
    (式(1)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.1、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0≦i≦5を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  2.  メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒の、前駆体であって、ケギン型構造を有し、下記式(2)で表される組成を有するメタクリル酸製造用触媒前駆体。
      PMoNbCu(NH  (2)
    (式(2)中、P、Mo、V、Nb、Cu、NHおよびOは、それぞれ、リン、モリブデン、バナジウム、ニオブ、銅、アンモニウム根および酸素を表す。Aはケイ素、ゲルマニウム、ヒ素およびアンチモンからなる群から選択される少なくとも1種の元素を表す。Eはビスマス、ジルコニウム、テルル、銀、セレン、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を表す。a~jは、各成分のモル比率を表し、b=12の時、0.5≦a+f≦2.4、0.01≦c+d≦3、0.5≦a、0≦c、0.01≦d≦3、0.005≦e≦3、0≦f、0≦g≦3、0.01≦h≦3、0.1≦i≦20を満たし、jは前記各成分の価数を満足するのに必要な酸素のモル比率である。)
  3.  前記式(1)において、0.35≦d/(c+d)≦1を満たす請求項1に記載のメタクリル酸製造用触媒。
  4.  前記式(2)において、0.35≦d/(c+d)≦1を満たす請求項2に記載のメタクリル酸製造用触媒前駆体。
  5.  請求項2または4に記載のメタクリル酸製造用触媒前駆体の製造方法であって、
    (i)少なくともモリブデンの原料を含むスラリー(I)または溶液(I)を調製する工程と、
    (ii)前記スラリー(I)または前記溶液(I)にアンモニウム化合物を添加して、アンモニウム塩を含むスラリー(II)を調製する工程と、
    (iii)前記スラリー(II)を乾燥し、前記ケギン型構造を有するメタクリル酸製造用触媒前駆体を得る工程と、
    を含み、
     前記工程(i)および(ii)において、前記スラリー(I)、前記溶液(I)、および前記スラリー(II)のpHを0.1~6.5の範囲内に維持するメタクリル酸製造用触媒前駆体の製造方法。
  6.  請求項5に記載の方法により製造したメタクリル酸製造用触媒前駆体を焼成する工程を含むメタクリル酸製造用触媒の製造方法。
  7.  請求項1または3に記載のメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
  8.  請求項6に記載の方法によりメタクリル酸製造用触媒を製造し、該メタクリル酸製造用触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
  9.  請求項6に記載の方法により製造されたメタクリル酸製造用触媒を用いて、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するメタクリル酸の製造方法。
  10.  請求項7から9のいずれか1項に記載の方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。
  11.  請求項7から9のいずれか1項に記載の方法によりメタクリル酸を製造し、該メタクリル酸をエステル化するメタクリル酸エステルの製造方法。
PCT/JP2018/001397 2017-02-17 2018-01-18 メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法 WO2018150797A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018568053A JP6819699B2 (ja) 2017-02-17 2018-01-18 メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
MYPI2019003714A MY192057A (en) 2017-02-17 2018-01-18 Catalyst for production of methacrylic acid, catalyst precursor for production of methacrylic acid, method for producing said catalyst and catalyst precursor, method for producing methacrylic acid, and method for producing methacrylate ester
CN201880012149.8A CN110300622B (zh) 2017-02-17 2018-01-18 甲基丙烯酸制造用催化剂、甲基丙烯酸制造用催化剂前体和它们的制造方法、甲基丙烯酸的制造方法以及甲基丙烯酸酯的制造方法
KR1020197021407A KR102310395B1 (ko) 2017-02-17 2018-01-18 메타크릴산 제조용 촉매, 메타크릴산 제조용 촉매 전구체 및 그들의 제조 방법, 메타크릴산의 제조 방법, 및 메타크릴산 에스터의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028174 2017-02-17
JP2017-028174 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150797A1 true WO2018150797A1 (ja) 2018-08-23

Family

ID=63170598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001397 WO2018150797A1 (ja) 2017-02-17 2018-01-18 メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法

Country Status (6)

Country Link
JP (1) JP6819699B2 (ja)
KR (1) KR102310395B1 (ja)
CN (1) CN110300622B (ja)
MY (1) MY192057A (ja)
SA (1) SA519402151B1 (ja)
WO (1) WO2018150797A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805090A (zh) * 2018-09-18 2021-05-14 三菱化学株式会社 甲基丙烯酸制造用催化剂及其制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
WO2021226172A1 (en) * 2020-05-08 2021-11-11 Air Company Holdings, Inc. Molybdenum-based catalysts for carbon dioxide conversion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201155A1 (ja) * 2020-03-31 2021-10-07 三菱ケミカル株式会社 触媒、イソブチルアルデヒドおよびメタクロレインの製造方法、メタクリル酸の製造方法、及びメタクリル酸エステルの製造方法
CN113976179B (zh) * 2021-11-04 2024-02-09 淄博市翔力致高新材料有限责任公司 一种空心结构催化剂及其制备方法和用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105641A (en) * 1978-12-26 1980-08-13 Halcon International Inc Manufacture of methacrylic acid and catalyst suitable therefor
JPH0242033A (ja) * 1988-04-05 1990-02-13 Asahi Chem Ind Co Ltd メタクリル酸および/またはメタクロレインの製造方法
JPH11179209A (ja) * 1997-12-25 1999-07-06 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびそれを用いたメタクリル酸の製造法
JP2006314923A (ja) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
JP2012102129A (ja) * 2012-01-05 2012-05-31 Mitsubishi Rayon Co Ltd メタクリル酸の精製方法
JP2013192989A (ja) * 2012-03-16 2013-09-30 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法
JP2013203668A (ja) * 2012-03-27 2013-10-07 Sumitomo Chemical Co Ltd メタクリル酸の製造方法
JP2014161776A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Chemicals Corp 酸化物触媒及びその製造方法、並びに不飽和アルデヒドの製造方法
WO2016002649A1 (ja) * 2014-07-02 2016-01-07 三菱レイヨン株式会社 イソブチレンの製造方法、メタクリル酸の製造方法、およびメタクリル酸メチルの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228487A (ja) 1998-02-18 1999-08-24 Mitsubishi Rayon Co Ltd メタクリル酸の製造法
JP4045693B2 (ja) * 1999-04-27 2008-02-13 住友化学株式会社 メタクリル酸の製造方法
JP4222721B2 (ja) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 メタクリル酸の製造方法
WO2005039760A1 (ja) * 2003-10-27 2005-05-06 Mitsubishi Rayon Co., Ltd. メタクリル酸製造用触媒の製造方法、メタクリル酸製造用触媒、メタクリル酸の製造方法
JP2014226614A (ja) * 2013-05-23 2014-12-08 住友化学株式会社 メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105641A (en) * 1978-12-26 1980-08-13 Halcon International Inc Manufacture of methacrylic acid and catalyst suitable therefor
JPH0242033A (ja) * 1988-04-05 1990-02-13 Asahi Chem Ind Co Ltd メタクリル酸および/またはメタクロレインの製造方法
JPH11179209A (ja) * 1997-12-25 1999-07-06 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびそれを用いたメタクリル酸の製造法
JP2006314923A (ja) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
JP2012102129A (ja) * 2012-01-05 2012-05-31 Mitsubishi Rayon Co Ltd メタクリル酸の精製方法
JP2013192989A (ja) * 2012-03-16 2013-09-30 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法
JP2013203668A (ja) * 2012-03-27 2013-10-07 Sumitomo Chemical Co Ltd メタクリル酸の製造方法
JP2014161776A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Chemicals Corp 酸化物触媒及びその製造方法、並びに不飽和アルデヒドの製造方法
WO2016002649A1 (ja) * 2014-07-02 2016-01-07 三菱レイヨン株式会社 イソブチレンの製造方法、メタクリル酸の製造方法、およびメタクリル酸メチルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NINOMIYA, WATARU: "Industrialised polyoxometalate catalyst: heteropolyacid catalyst for selective oxidation of methacrolein to methacrylic acid", CATALYST, December 2014 (2014-12-01), pages 360 - 366 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805090A (zh) * 2018-09-18 2021-05-14 三菱化学株式会社 甲基丙烯酸制造用催化剂及其制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
WO2021226172A1 (en) * 2020-05-08 2021-11-11 Air Company Holdings, Inc. Molybdenum-based catalysts for carbon dioxide conversion

Also Published As

Publication number Publication date
CN110300622B (zh) 2022-08-26
SA519402151B1 (ar) 2023-02-15
KR102310395B1 (ko) 2021-10-07
JP6819699B2 (ja) 2021-01-27
KR20190095448A (ko) 2019-08-14
JPWO2018150797A1 (ja) 2019-12-26
CN110300622A (zh) 2019-10-01
MY192057A (en) 2022-07-25

Similar Documents

Publication Publication Date Title
KR102310395B1 (ko) 메타크릴산 제조용 촉매, 메타크릴산 제조용 촉매 전구체 및 그들의 제조 방법, 메타크릴산의 제조 방법, 및 메타크릴산 에스터의 제조 방법
JP5919870B2 (ja) アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
US20070021629A1 (en) Catalyst for methacrolein oxidation and method for making and using same
KR101593723B1 (ko) 메타크릴산 제조용 촉매 및 그의 제조방법, 및 메타크릴산의 제조방법
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
US20140316160A1 (en) Catalyst For Methacrylic Acid Production And Process For Producing Methacrylic Acid
JP5335490B2 (ja) メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法
JP5214500B2 (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP5362370B2 (ja) メタクリル酸合成用触媒の製造方法
JP5560596B2 (ja) メタクリル酸製造用触媒の製造方法
JP2008284439A (ja) メタクリル酸製造用ヘテロポリ酸系触媒
JP2002306970A (ja) メタクリル酸製造用触媒、その製造方法、および、メタクリル酸の製造方法
CN110062656B (zh) α,β-不饱和羧酸制造用催化剂前体的制造方法
JP5885019B2 (ja) メタクリル酸製造用触媒の製造方法
JP4629886B2 (ja) メタクロレインおよび/またはメタクリル酸製造用触媒、その製造方法、および、メタクロレインおよび/またはメタクリル酸の製造方法
JP2004268027A (ja) メタクリル酸製造用触媒の製造方法
JP2008229515A (ja) メタクリル酸製造用触媒の製造方法
JP7031737B2 (ja) メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP5861267B2 (ja) メタクリル酸製造用触媒の製造方法
JP2013000734A (ja) メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法
JP5424914B2 (ja) メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
JP5214499B2 (ja) メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法
JP2013180251A (ja) メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
KR20200069340A (ko) α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법
WO2019026640A1 (ja) 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021407

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018568053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753789

Country of ref document: EP

Kind code of ref document: A1