WO2018148884A1 - 一种位移传感器、检测装置及具有其的电子设备 - Google Patents

一种位移传感器、检测装置及具有其的电子设备 Download PDF

Info

Publication number
WO2018148884A1
WO2018148884A1 PCT/CN2017/073598 CN2017073598W WO2018148884A1 WO 2018148884 A1 WO2018148884 A1 WO 2018148884A1 CN 2017073598 W CN2017073598 W CN 2017073598W WO 2018148884 A1 WO2018148884 A1 WO 2018148884A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
magnet
bracket
displacement sensor
resistor
Prior art date
Application number
PCT/CN2017/073598
Other languages
English (en)
French (fr)
Inventor
黄映峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201790000016.XU priority Critical patent/CN208999970U/zh
Priority to PCT/CN2017/073598 priority patent/WO2018148884A1/zh
Publication of WO2018148884A1 publication Critical patent/WO2018148884A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor

Definitions

  • the present invention relates to the field of sensing devices, and in particular, to a displacement sensor, a detecting device, and an electronic device therewith.
  • the scheme for detecting small displacement on the market is mainly detected by a resistive sensor, and the resistive sensor is based on a varistor to detect the magnitude of the deformation, as shown in FIG. 1 , which is a schematic diagram of the displacement detection of the existing resistive sensor.
  • 101 and 102 are pressure brackets respectively
  • 104 is a varistor
  • 103 is a resistor
  • 105 is an amplifier
  • 106 is a DC power source.
  • the distance between the pressure brackets 102 and 101 is slightly deformed, and the deformation causes a change in the resistance of the varistor 104, and the corresponding voltage value is output through the amplifier 105, and the curve of the calibration voltage value and the deformation magnitude is The magnitude of the deformation displacement can be known.
  • the displacement detection method by the resistive sensor has low sensitivity and a narrow displacement range (generally only a few tens of micrometers), and therefore, the application range is small.
  • the embodiment of the invention provides a displacement sensor, a detecting device and an electronic device therewith, and aims to solve the technical problem that the displacement detecting method of the prior resistive sensor has low sensitivity, narrow displacement range and small applicable range.
  • the technical solutions adopted by the embodiments of the present invention include:
  • a displacement sensor comprising: a first bracket, a magnet, an inductor, and a detecting circuit for detecting an amount of change in an inductance value of the inductor and calculating a displacement of the magnet according to the amount of change in the inductance; a first bracket is in contact, the inductor is located on the other side of the magnet, the magnet is spaced apart from the inductor, the detecting circuit is electrically connected to the inductor; when the first bracket is subjected to external pressure, The first bracket drives the magnet to move, causing a change in the distance between the magnet and the inductor and causing a change in the inductance value of the inductor.
  • the detecting circuit includes:
  • a processing unit for processing the displacement based on a frequency of a resonant signal of the LC oscillator.
  • the LC oscillator includes a resonant capacitor, a first resistor, a second resistor, a first field effect transistor, a second field effect transistor, and a constant current source
  • the first The drain of the FET is respectively connected to the gate of the second FET, one end of the first resistor, and one end of the inductor, and the gate of the first FET and the drain of the second FET are respectively One end of the second resistor is connected to the other end of the inductor, and the source of the first field effect transistor is respectively connected to the source of the second field effect transistor and one end of the constant current source
  • the second field effect transistor The drain is respectively connected to the gate of the first FET, the second resistor and the inductor; the other end of the first resistor is simultaneously connected to the other end of the second resistor and the power source;
  • the resonant capacitor and the inductor The devices are connected in parallel to form an LC resonant network, the other end of which is grounded
  • the technical solution adopted by the embodiment of the present invention further includes: the feedback unit includes a signal buffer and a filter, an input end of the signal buffer is connected to another end of the inductor, and an output end of the signal buffer is connected to the
  • the filter has an output connected to a constant current source.
  • the detecting circuit further includes a signal shaper, one end of the resonant capacitor is connected to an input end of the signal shaper, and the input end of the signal shaper is also respectively connected to the inductor One end, one end of the first resistor, the drain of the first field effect transistor, and the gate of the second field effect transistor are connected; the output of the signal shaper is connected to the processing unit.
  • the technical solution adopted by the embodiment of the present invention further includes: a spacing distance between the magnet and the inductor is within 2 mm.
  • the technical solution adopted by the embodiment of the present invention further includes a second bracket, and the first bracket, the magnet, the inductor, and the detecting circuit are respectively mounted on the second bracket.
  • a detecting device comprising the displacement sensor as described above and the calculation unit to be measured according to the displacement calculation process acquired by the displacement sensor.
  • the technical solution adopted by the embodiment of the present invention further includes: the detecting device is a device having a pressure detecting function, the calculating unit calculates a pressure to be tested according to the displacement; or the detecting device is a device having an angle detecting function, The calculation unit calculates the angle to be measured according to the displacement.
  • Another technical solution adopted by the embodiment of the present invention is an electronic device including the detecting device as described above.
  • the technical solution adopted by the embodiment of the present invention further includes: the electronic device is an active pen.
  • the beneficial effects of the embodiments of the present invention are: the displacement sensor, the detecting device and the electronic device having the same according to the embodiment of the present invention, the magnetic field of the magnet is caused by the magnetic field of the magnet by setting the magnet and the inductor at a close distance.
  • the internal magnetic flux changes drastically.
  • the magnet is subjected to external pressure and the distance between the inductor and the inductor changes, the inductor inductance value changes, and the inductance of the inductor is detected in real time through the detection circuit to calculate the displacement or The size of the pressure.
  • the invention has novel structural principles, high sensitivity and detection precision, wide detection range, wide application range and low cost.
  • FIG. 1 is a schematic diagram of displacement detection of a conventional resistive sensor
  • FIG. 2 is a schematic structural view of a displacement sensor according to a first embodiment of the present invention
  • FIG. 3 is a circuit diagram of a detecting circuit according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a detecting device designed by using the displacement sensor principle of the first embodiment according to a second embodiment of the present invention
  • Figure 5 is a schematic diagram showing the relationship between the displacement distance and the inductance in the pressure sensor
  • FIG. 6 is a schematic structural view of a detecting device designed by using the displacement sensor principle of the first embodiment according to a third embodiment of the present invention.
  • Figure 7 is a diagram showing an electronic design using the principle of the detecting device of the second embodiment of the fourth embodiment of the present invention. Schematic diagram of the structure.
  • the displacement sensor of the first embodiment of the present invention includes a first bracket 201, a magnet 202, an inductor 203, a detecting circuit 204, and a second bracket 205.
  • the first bracket 201, the magnet 202 and the inductor 203 are respectively mounted on the second bracket 205.
  • the first bracket 201 is located at one end of the second bracket 205, and one side of the magnet 202 is in close contact with the inner side of the first bracket 201, and The other side of the magnet 202 has a certain distance between the inductor 203 and the inductor 203.
  • the detecting circuit 204 is mounted on the second bracket 205, and the two ends of the inductor 203 are respectively connected to the detecting circuit 204.
  • the first bracket 201 is a movable bracket
  • the second bracket 205 is a fixed bracket.
  • the magnet 202 in contact therewith is pushed to move horizontally along the second bracket 205. Since the inductance value of the inductor 203 is closely related to the internal magnetic flux thereof, the magnetic field of the magnet 202 causes the inductance.
  • the internal magnetic flux of the device 203 changes drastically, thereby causing a change in the inductance value of the inductor 203, and the displacement of the magnet 202 can be obtained by detecting the amount of change in the inductance value of the inductor 203 in real time by the detecting circuit 204.
  • the displacement sensor of the embodiment of the invention has higher sensitivity and detection precision, and has wider application range and lower cost.
  • the detection circuit 204 uses the LC resonance principle to detect the inductance value of the inductor 203.
  • the detecting circuit 204 includes a resonant capacitor 2042, a first resistor 2043a, a second resistor 2043b, a first NMOS FET 2044a, a second NMOS FET 2044b, a signal buffer 2045, a low pass filter 2046, A voltage controlled constant current source 2047, a signal shaper 2048, and a processing unit (MCU) 2049.
  • MCU processing unit
  • the drains of the first NMOS FETs 2044a are respectively connected to the gates of the second NMOS FETs 2044b, the first resistors 2043a, the inductors 203, and the signal shaper 2048.
  • the first NMOS FET 2044a The gates are respectively connected to the drains of the second NMOS FETs 2044b, the second resistors 2043b and the inductors 203, the sources of the first NMOS FETs 2044a and the sources of the second NMOS FETs 2044b, respectively.
  • the voltage-controlled constant current source 2047 is connected; the drain of the second NMOS FET 2044b is respectively connected to the gate of the first NMOS FET 2044a, the second resistor 2043b and the inductor 203, and the second NMOS FET 2044a
  • the gates are respectively connected to the drains of the first NMOS FET 2044b, the first resistor 2043a, the inductor 203, and the signal shaper 2048, and the sources of the second NMOS FET 2044b and the first NMOS field effect, respectively.
  • the source of the tube 2044b is connected to a voltage controlled constant current source 2047.
  • the other end of the first resistor 2043a is connected to the second resistor 2043b and VCC (power source), and the other end of the second resistor 2043b is connected to the first resistor 2043a and VCC (power source), being the first NMOS FET 2044a and the first
  • the two NMOS FETs 2044b provide a bias current; the inductor 203 is connected in parallel with the resonant capacitor 2042 and is connected to the drains of the first NMOS FET 2044a and the second NMOS FET 2044b, respectively.
  • the input end of the signal buffer 2045 is connected to the other end of the inductor 203, the output end is connected to the low pass filter 2046, and the output end of the low pass filter 2046 is connected to the voltage controlled constant current source 2047, and output through the low pass filter 2046.
  • the signal enters the voltage controlled constant current source 2047, and the other end of the voltage controlled constant current source 2047 is grounded.
  • One end of the resonant capacitor 2042 is coupled to the input of the signal shaper 2048, and the input of the signal shaper 2048 is also coupled to the inductor 203, the first resistor 2043a, the drain of the first NMOS FET 2044a, and the second NMOS field, respectively. Grid of effect tube 2044a
  • the terminals of the signal shaper 2048 are connected to the processing unit 2049.
  • the inductor 203 and the resonant capacitor 2042 constitute a parallel LC resonant network (inductive-capacitor resonant network); the LC resonant network and the first resistor 2043a, the second resistor 2043b, the first NMOS FET 2044a, and the second NMOS FET
  • the 2044b and the voltage-controlled constant current source 2047 constitute a differential type LC oscillator; the differential type LC oscillator has the characteristics of good output waveform symmetry, so that the charging current of the resonant current tends to be uniform in the same period, and the charging and discharging time of the inductor 203 is not uniform. Residual magnetism is generated to achieve high displacement detection accuracy.
  • the differential LC oscillator has the characteristics of small oscillation waveform jitter, which helps to further improve the displacement detection accuracy.
  • the signal buffer 2045 and the low-pass filter 2046 form an AGC (Automatic Gain Control) feedback unit for regulating the resonant current of the LC resonant network.
  • AGC Automatic Gain Control
  • the signal shaper 2048 and the processing unit 2049 form a frequency detecting circuit.
  • the resonant voltage is shaped by the signal shaper 2048 to output a square wave signal, and the square wave signal is sent to the processing unit 2049 for frequency detection, thereby knowing the current inductance value.
  • the current displacement is obtained by calibration.
  • the distance between the magnet 202 and the inductor 203 is within 2 mm, which can be specifically set according to the detection requirements.
  • FIG. 4 it is a schematic structural view of a detecting device designed by using the displacement sensor principle of the first embodiment of the second embodiment of the present invention.
  • the detecting device of the second embodiment of the present invention includes the displacement sensor and the calculating unit in the first embodiment (not shown, in the embodiment of the present invention, the computing unit is integrated in the MCU of the detecting circuit).
  • the detection device is a pressure sensor.
  • the pressure sensor includes a first bracket 301, a second bracket 302, a detecting circuit 303, a neodymium iron boron 304, and a laminated inductor 305.
  • the second bracket 302 is a frame structure with one side open (in the embodiment of the present invention, The second bracket 302 is mounted on the opening of the second bracket 302.
  • the neodymium iron boron 304 is mounted on the lower surface of the first bracket 301.
  • the second bracket 302 further includes an inner bracket 306.
  • the layer inductor 305 is mounted on the inner bracket 306, and located below the neodymium iron boron 304, the neodymium iron boron magnetic 304 and the laminated inductor 305 have a certain separation distance;
  • the detecting circuit 303 is installed in the second bracket 302, and the two laminated inductors 305 The terminals are connected to the detection circuit 303, respectively.
  • the first bracket 301 is a deformation material bracket
  • the second bracket 302 is a fixed bracket
  • the working principle of the detecting device of the second embodiment of the present invention is: because the neodymium iron boron 304 is installed at a position very close to the laminated inductor 305, the laminated inductor 305 at this time is in a critical saturation state of the magnetic flux, and the laminated inductor The inductance of the 305 is very sensitive to changes in the external magnetic flux.
  • the external pressure presses the first bracket 301 the first bracket 301 is deformed, and the neodymium iron boron 304 mounted on the first bracket 301 moves downward, between the neodymium iron boron 304 and the laminated inductor 305.
  • the distance of the laminated inductor 305 changes correspondingly, and the change amount of the inductance value of the laminated inductor 305 is detected in real time by the detecting circuit 303, and the calculating unit integrated in the detecting circuit 303 passes the calibration first.
  • the pressure curve of the bracket 301 can detect the corresponding pressure. Please refer to FIG. 5 together, which is a schematic diagram of the relationship between the displacement distance and the inductance in the pressure sensor. In the range of 2mm displacement, the rate of change of inductance reaches 1000%. This behavior provides an important basis for the high sensitivity of the sensor.
  • FIG. 6 is a structural diagram of a detecting apparatus designed by using the displacement sensor principle of the first embodiment according to a third embodiment of the present invention.
  • the detecting device of the third embodiment of the present invention includes the displacement sensor and the calculating unit of the first embodiment (not shown, in the embodiment of the present invention, the computing unit is integrated in the MCU of the detecting circuit).
  • the detection device is an angle sensor.
  • the angle sensor includes an angle spiral caliper 501, a second bracket 502, an inner bracket 503, a neodymium iron boron 504, a laminated inductor 505, and a detection circuit 506.
  • the second bracket 502 is a cylindrical structure with an upper opening
  • the angle spiral caliper 501 is installed at an opening above the second bracket 502
  • the neodymium iron boron 504 is mounted on the lower surface of the angle spiral caliper 501
  • the inner bracket 503 is horizontally mounted on the In the inner middle of the second bracket 502
  • the laminated inductor 505 is mounted on the inner bracket 503 and located under the neodymium iron boron 504.
  • the neodymium iron boron 504 and the laminated inductor 505 can be adjusted by adjusting the mounting position of the inner bracket 503.
  • the spacing between the neodymium iron boron 504 and the laminated inductor 505 is within 2 mm; the detecting circuit 506 is mounted on the second branch.
  • the 502 is located below the stacked inductor 505, and both ends of the laminated inductor 505 are connected to the detecting circuit 506.
  • the working principle of the detecting device of the third embodiment of the present invention is: NdFeB magnet 504 is installed within 2 mm above the laminated inductor 505, and the NdFeB is mounted under the angle spiral caliper 501 when the angle spiral caliper 501 is rotated.
  • the magnetic 504 will move downward (the angle spiral caliper 501 is rotated by 180°, the neodymium iron boron 504 will move downward by 1 mm), and the distance between the neodymium iron boron 504 and the laminated inductor 505 changes, resulting in lamination.
  • the inductance value of the inductor 505 changes correspondingly, and the inductance value of the current laminated inductor 505 is measured by the detecting circuit 506.
  • the calculation unit integrated in the detecting circuit 506 can obtain the rotation of the angle spiral caliper 501 by calibrating the distance and the inductance curve. angle.
  • the electronic device of the fourth embodiment of the present invention is an active pen.
  • the active pen includes a housing 610 and a pen head 601 disposed inside the housing 610, a first bracket 602, a magnet 603, an inductor 604, a second bracket 605, a conductive connector 606, a main control board 607, a battery 608, and a first The elastic member 609 and the second elastic member 611.
  • the front end of the outer casing 610 has a tapered structure, the rear end has a cylindrical structure, the pen tip 601 is located in the tapered structure of the outer casing 610, and the front end of the pen tip 601 protrudes outside the outer casing 610.
  • the first bracket 602 is mounted on the joint of the tapered structure and the cylindrical structure in the outer casing 610, and the middle of the first bracket 602 is a through hole structure, and the rear end of the pen head 601 extends beyond the first bracket 602 through the through hole structure.
  • the first elastic member 609 is also mounted on the pen head 601 located in the tapered structure.
  • the first elastic member 609 has a tapered structure. The large diameter end of the first elastic member 609 is in close contact with the first bracket 602.
  • the first bracket 602 is passed through the first bracket 602.
  • the pen tip 601 is restrained and fixed with the first elastic member 609.
  • the magnet 603, the inductor 604, the second bracket 605, the conductive connector 606, the main control board 607, the battery 608, and the second elastic member 611 are respectively located in a cylindrical structure at the rear end of the outer casing 610; wherein the magnet 603 and the inductor 604 pass through A metal casing (not shown) is assembled into a unit, and the magnet 603 and the inductor 604 have a separation distance of 2 mm or less.
  • One end of the pen head 601 extending beyond the first bracket 602 is in close contact with the magnet 603, the second bracket 605 is located between the inductor 604 and the main control board 607, and the inductor 604 is in close contact with the second bracket 605, and the pen head 601 is under pressure.
  • the entire body can be slightly deformed, and at this time, the whole is fixed by the second bracket 605.
  • One end of the inductor 604 is connected to the main control board 607 through the conductive connector 606.
  • the main control board 607 is provided with a detection circuit (not shown).
  • the other end of the main control board 607 is connected to the battery 608, and is controlled by the battery 608.
  • the plate 607 is powered; the second elastic member 611 is fixed to the rear end of the outer casing 610, and one end is connected to the battery 608 for fixing the battery 608 and the main control plate 607.
  • the first elastic member 609 and the second elastic member 611 are respectively springs.
  • the working principle of the active pen according to the fourth embodiment of the present invention is that when the active pen is written, the front end of the pen tip 601 is moved backward, and the first elastic member 609 mounted on the pen tip 601 is contracted, and passes through the first bracket 602. And the first elastic member 609 limits the pen tip 601; at this time, the magnet 603 that is in contact with the rear end of the pen tip 601 also moves backward, resulting in a change in the distance between the magnet 603 and the inductor 604, once the magnet 603 and the inductor The distance between the 604 changes, and the inductance value of the inductor 604 also changes accordingly.
  • the detection value in the main control board 607 detects the change in the inductance value of the inductor 604 in real time, thereby calculating the current pressure.
  • the pressure at the front end of the pen tip 601 disappears, the first elastic member 609 rebounds by the resistance of the first bracket 602, and the pen tip 610 is reset.
  • the displacement sensor, the detecting device and the electronic device having the same set the magnet and the inductor at a close distance, and the magnetic flux of the magnet causes the internal magnetic flux of the inductor to change drastically when the magnet is subjected to external pressure and the inductor
  • the distance between the two changes the inductance value of the inductor changes, and the amount of change in the inductance value of the inductor is detected in real time by the detecting circuit, thereby calculating the displacement or the magnitude of the pressure.
  • the invention has novel structural principles, high sensitivity and detection precision, wide detection range, wide application range and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种位移传感器、检测装置及具有其的电子设备,涉及传感设备技术领域。所述位移传感器包括:第一支架(201)、磁体(202)、电感器(203)和检测电路(204);所述磁体(202)的一侧与第一支架(201)接触,所述电感器(203)位于磁体(202)的另一侧,所述磁体(202)与电感器(203)相互间隔,所述检测电路(204)与电感器(203)电连接;当所述第一支架(201)受到外部压力时,所述第一支架(201)带动所述磁体(202)移动,使所述磁体(202)与电感器(203)之间的距离发生变化并导致所述电感器(203)的电感值发生改变。该位移传感器结构简单,检测的灵敏度与精度高,检测范围宽,适用范围广且成本较低。

Description

一种位移传感器、检测装置及具有其的电子设备 【技术领域】
本发明涉及传感设备技术领域,尤其涉及一种位移传感器、检测装置及具有其的电子设备。
【背景技术】
目前市面上检测微小位移的方案主要是通过电阻式传感器进行检测,电阻式传感器是基于压敏电阻来检测形变的大小,具体如图1所示,其为现有电阻式传感器的位移检测示意图。其中,101与102分别为压力支架、104为压敏电阻、103为电阻器、105为放大器、106为直流电源。当外部受到压力时,压力支架102与101的距离会发生微小的形变,形变引发压敏电阻104阻值的变化,并经过放大器105输出相应的电压值,通过校准电压值与形变大小的曲线就可得知形变位移大小。
但这种通过电阻式传感器进行位移检测的方式灵敏度低,且位移范围较窄(一般只有几十微米),因此,适用范围较小。
【发明内容】
本发明实施例提供了一种位移传感器、检测装置及具有其的电子设备,旨在解决现有电阻式传感器的位移检测方式灵敏度低、位移范围窄、适用范围较小的技术问题。
为了解决以上提出的问题,本发明实施例采用的技术方案包括:
一种位移传感器,包括:第一支架、磁体、电感器和用于检测电感器的电感值变化量并根据所述电感变化量计算所述磁体的位移的检测电路;所述磁体的一侧与第一支架接触,所述电感器位于磁体的另一侧,所述磁体与电感器相互间隔,所述检测电路与电感器电连接;当所述第一支架受到外部压力时,所 述第一支架带动所述磁体移动,使所述磁体与电感器之间的距离发生变化并导致所述电感器的电感值发生改变。
本发明实施例采取的技术方案还包括:所述检测电路包括:
与所述电感器形成谐振的LC振荡器;及
用于调控LC谐振网络的谐振电流的反馈单元;及
用于根据所述LC振荡器的谐振信号的频率处理得到所述位移的处理单元。
本发明实施例采取的技术方案还包括:所述LC振荡器包括谐振电容、第一电阻器、第二电阻器、第一场效应管、第二场效应管和恒流源,所述第一场效应管的漏极分别与第二场效应管的栅极、第一电阻器的一端和电感器的一端连接,所述第一场效应管的栅极分别与第二场效应管的漏极、第二电阻器的一端和电感器的另一端连接,所述第一场效应管的源极分别与第二场效应管的源极和恒流源的一端连接;所述第二场效应管的漏极分别与第一场效应管的栅极、第二电阻器和电感器连接;所述第一电阻器的另一端同时连接第二电阻器的另一端和电源;所述谐振电容与电感器并联形成LC谐振网络,所述恒流源的另一端接地。
本发明实施例采取的技术方案还包括:所述反馈单元包括信号缓冲器和滤波器,所述信号缓冲器的输入端连接所述电感器的另一端,所述信号缓冲器的输出端连接所述滤波器,所述滤波器的输出端与恒流源连接。
本发明实施例采取的技术方案还包括:所述检测电路还包括信号整形器,所述谐振电容的一端连接到信号整形器的输入端,所述信号整形器的输入端还分别与电感器的一端、第一电阻器的一端、第一场效应管的漏极和第二场效应管的栅极相连;所述信号整形器的输出端与处理单元相连。
本发明实施例采取的技术方案还包括:所述磁体与电感器之间的间隔距离为2mm以内。
本发明实施例采取的技术方案还包括第二支架,所述第一支架、磁体、电感器和检测电路分别安装于第二支架上。
本发明实施例采取的另一技术方案为:一种检测装置,包括如上所述的位移传感器及根据所述位移传感器获取的位移计算处理得到待测量的计算单元。
本发明实施例采取的技术方案还包括:所述检测装置为具有压力检测功能的装置,所述计算单元根据所述位移计算得到待测压力;或者所述检测装置为具有角度检测功能的装置,所述计算单元根据所述位移计算得到待测角度。
本发明实施例采取的又一技术方案为:一种电子设备,包括如上所述的检测装置。
本发明实施例采取的技术方案还包括:所述电子设备为主动笔。
与现有技术相比,本发明实施例的有益效果在于:本发明实施例的位移传感器、检测装置及具有其的电子设备通过将磁体与电感器近距离设置,由于磁体的磁场会使电感器的内部磁通量发生剧烈变化,当磁体受到外界压力并与电感器之间的距离发生变化时,导致电感器电感值发生变化,并通过检测电路实时检测电感器的电感值变化量,从而计算位移或压力大小。相对于现有技术,本发明结构原理新颖,灵敏度与检测精度高,检测范围宽,适用范围广且成本较低。
【附图说明】
图1为现有电阻式传感器的位移检测示意图;
图2为本发明第一实施例的位移传感器的结构示意图;
图3为本发明第一实施例的检测电路的电路图;
图4为本发明第二实施例的利用第一实施例的位移传感器原理设计的检测装置的结构示意图;
图5为压力传感器内位移距离与电感量的关系曲线示意图;
图6为本发明第三实施例的利用第一实施例的位移传感器原理设计的检测装置的结构示意图;
图7是本发明第四实施例的利用第二实施例的检测装置原理设计的电子设 备的结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图2,是本发明第一实施例的位移传感器的结构示意图。本发明第一实施例的位移传感器包括第一支架201、磁体202、电感器203、检测电路204和第二支架205。其中,第一支架201、磁体202和电感器203分别安装于第二支架205上,第一支架201位于第二支架205的一端,磁体202的一侧与第一支架201的内侧紧密接触,且磁体202的另一侧与电感器203之间具有一定的间隔距离;检测电路204安装于第二支架205上,电感器203的两端分别与检测电路204连接。其中,第一支架201为活动支架,第二支架205为固定支架。当第一支架201的外侧受到外部压力时,会推动与之接触的磁体202沿第二支架205进行水平移动,由于电感器203的电感值与其内部磁通量有密切关系,磁体202的磁场会使电感器203的内部磁通量发生剧烈变化,从而导致电感器203的电感值发生改变,通过检测电路204实时检测电感器203的电感值变化量即可得到磁体202的位移大小。
在本发明实施例中,由于磁体202与电感器203的安装距离非常近,且磁体202的磁感应强度是电感器203内部铁氧体磁感应强度的数倍,当第一支架201推动磁体水平移动时,电感器203内部的铁氧体处于临界磁饱和状态,对外部磁感应强度反应极其剧烈,即使磁体202与电感器203之间有非常微小的位 移都能够使电感器203的电感值发生明显的变化,因此即使外部有微小的位移都能够检测出来。相对于现有的电阻式位移传感器,本发明实施例的位移传感器具有更高的灵敏度与检测精度,适用范围广且成本较低。
请一并参阅图3,是本发明第一实施例的检测电路的电路图。检测电路204利用LC谐振原理来检测电感器203的电感值。具体地,检测电路204包括谐振电容2042、第一电阻器2043a、第二电阻器2043b、第一NMOS场效应管2044a、第二NMOS场效应管2044b、信号缓冲器2045、低通滤波器2046、压控恒流源2047、信号整形器2048和处理单元(MCU)2049。其中,第一NMOS场效应管2044a的漏极分别与第二NMOS场效应管2044b的栅极、第一电阻器2043a、电感器203和信号整形器2048输入端连接,第一NMOS场效应管2044a的栅极分别与第二NMOS场效应管2044b的漏极、第二电阻器2043b和电感器203连接,第一NMOS场效应管2044a的源极分别与第二NMOS场效应管2044b的源极和压控恒流源2047连接;第二NMOS场效应管2044b的漏极分别与第一NMOS场效应管2044a的栅极、第二电阻器2043b和电感器203连接,第二NMOS场效应管2044a的栅极分别与第一NMOS场效应管2044b的漏极、第一电阻器2043a、电感器203和信号整形器2048输入端连接,第二NMOS场效应管2044b的源极分别与第一NMOS场效应管2044b的源极和压控恒流源2047连接。第一电阻器2043a的另一端连接第二电阻器2043b和VCC(电源),第二电阻器2043b的另一端连接第一电阻器2043a和VCC(电源),为第一NMOS场效应管2044a和第二NMOS场效应管2044b提供偏置电流;电感器203与谐振电容2042并联连接后分别连接到第一NMOS场效应管2044a和第二NMOS场效应管2044b的漏极。信号缓冲器2045的输入端连接电感器203的另一端,输出端连接到低通滤波器2046,低通滤波器2046的输出端与压控恒流源2047连接,经低通滤波器2046输出的信号进入压控恒流源2047,压控恒流源2047的另一端接地。谐振电容2042的一端连接到信号整形器2048的输入端,信号整形器2048的输入端还分别与电感器203、第一电阻器2043a、第一NMOS场效应管2044a的漏极和第二NMOS场效应管2044a的栅 极相连,信号整形器2048的输出端与处理单元2049相连。
电感器203与谐振电容2042组成并联型LC谐振网络(电感电容谐振网络);LC谐振网络与第一电阻器2043a、第二电阻器2043b、第一NMOS场效应管2044a、第二NMOS场效应管2044b和压控恒流源2047组成差分型LC振荡器;差分型LC振荡器具有输出波形对称度好的特点,使谐振电流在同一周期内对电感器203的充放电时间趋于一致,不会产生剩磁,从而达到位移检测精度高的目的。此外差分型LC振荡器还有振荡波形抖动小的特点,有助于进一步提高位移检测精度。
信号缓冲器2045与低通滤波器2046组成AGC(自动增益控制)反馈单元,用于调控LC谐振网络的谐振电流,过大的谐振电流会增加电感器203的磁损导致电感器203发热,影响检测精度。当谐振电压过大时,电压信号经过信号缓冲器2045与低通滤波器2046之后输出一直流电压控制压控恒流源2047,使差分型LC振荡器的静态工作电流减小,从而减少谐振时流过电感器203的电流。
信号整形器2048和处理单元2049组成频率检测电路,谐振电压经过信号整形器2048进行整形之后输出方波信号,并将方波信号送入处理单元2049进行频率检测,从而得知当前的电感值,通过校准后即可得到当前的位移大小。
在本发明第一实施例中,磁体202与电感器203之间的间隔距离为2mm之内,具体可根据检测需求进行设定。
请参阅图4,是本发明第二实施例的利用第一实施例的位移传感器原理设计的检测装置的结构示意图。本发明第二实施例的检测装置包括第一实施例中的位移传感器以及计算单元(图未示,本发明实施例中,计算单元集成于检测电路的MCU中)。该检测装置为压力传感器。压力传感器包括第一支架301、第二支架302、检测电路303、钕铁硼磁304和叠层电感器305;第二支架302为一侧开口的框型结构(在本发明实施例中,第二支架302为上方开口),第一支架301安装于第二支架302的开口处,钕铁硼磁304安装于第一支架301的下表面;第二支架302内部还包括一内部支架306,叠层电感器305安装于该内部支架 306上,并位于钕铁硼磁304的下方,钕铁硼磁304与叠层电感器305之间具有一定的间隔距离;检测电路303安装于第二支架302内,叠层电感器305的两端分别与检测电路303连接。
在本发明第二实施例中,第一支架301为形变材料支架,第二支架302为固定支架。
本发明第二实施例的检测装置的工作原理为:因为钕铁硼磁304安装在距离叠层电感器305非常近的位置,此时的叠层电感器305处于磁通量临界饱和状态,叠层电感器305的电感值对外界磁通量的变化是非常敏感的。当外部压力按压第一支架301时,第一支架301会发生形变,而安装在第一支架301上的钕铁硼磁304会向下移动,钕铁硼磁304与叠层电感器305之间的距离会发生变化,导致叠层电感器305的电感值发生相应的变化,通过检测电路303实时检测叠层电感器305电感值的变化量,集成于检测电路303内的计算单元通过校准第一支架301的压力曲线即可检测出相应的压力大小。请一并参阅图5,是压力传感器内位移距离与电感量的关系曲线示意图。在2mm的位移范围内电感量的变化率达到1000%,这种行为特性为传感器的高灵敏度提供了重要依据。
请参阅图6,是为本发明第三实施例的利用第一实施例的位移传感器原理设计的检测装置的结构示意图。本发明第三实施例的检测装置包括第一实施例的位移传感器及计算单元(图未示,本发明实施例中,计算单元集成于检测电路的MCU中)。该检测装置为角度传感器。角度传感器包括角度螺旋卡尺501、第二支架502、内部支架503钕铁硼磁504、叠层电感器505和检测电路506。其中,第二支架502为上方开口的圆柱结构,角度螺旋卡尺501安装在第二支架502上方的开口处,钕铁硼磁504安装于角度螺旋卡尺501的下表面;内部支架503水平安装于第二支架502的内部中间,叠层电感器505安装于内部支架503上,并位于钕铁硼磁504的下方,可通过调整内部支架503的安装位置调节钕铁硼磁504与叠层电感器505之间的间隔距离,在本发明实施例中,钕铁硼磁504与叠层电感器505之间的间隔距离为2mm之内;检测电路506安装在第二支 架502内,并位于叠层电感器505的下方,叠层电感器505的两端分别与检测电路506连接。
本发明第三实施例的检测装置的工作原理为:钕铁硼磁504安装在叠层电感器505的上方2mm之内,角度螺旋卡尺501转动时,安装于角度螺旋卡尺501下方的钕铁硼磁504就会向下移动(角度螺旋卡尺501转动180°,钕铁硼磁504会向下移动1mm),钕铁硼磁504与叠层电感器505之间的距离会发生变化,导致叠层电感器505的电感值发生相应的变化,通过检测电路506测定当前叠层电感器505的电感值,集成于检测电路506内的计算单元通过校准距离与电感曲线就能得到角度螺旋卡尺501的转动角度。
请参阅图7,是本发明第四实施例的利用第二实施例的检测装置原理设计的电子设备的结构示意图。本发明第四实施例的电子设备为主动笔。所述主动笔包括外壳610以及分别设于外壳610内部的笔头601、第一支架602、磁体603、电感器604、第二支架605、导电连接器606、主控板607、电池608、第一弹性件609和第二弹性件611。其中,外壳610的前端为锥形结构,后端为圆柱结构,笔头601位于外壳610的锥形结构内,且笔头601的前端突出于外壳610之外。第一支架602安装于外壳610内锥形结构与圆柱结构的连接处,且第一支架602的中间为通孔结构,笔头601的后端通过该通孔结构延伸至第一支架602之外。位于锥形结构内的笔头601上还安装有第一弹性件609,第一弹性件609为锥形结构,第一弹性件609的大直径端与第一支架602紧密接触;通过第一支架602与第一弹性件609对笔头601进行限位固定。
磁体603、电感器604、第二支架605、导电连接器606、主控板607、电池608和第二弹性件611分别位于外壳610后端的圆柱结构内;其中,磁体603与电感器604通过一金属外壳(图未示)组装成一个整体,且磁体603与电感器604具有2mm以内的间隔距离。笔头601延伸至第一支架602之外的一端与磁体603紧密接触,第二支架605位于电感器604与主控板607之间,电感器604与第二支架605紧密接触,在笔头601受到压力时,磁体603与电感器604组成 的整体能够发生微小的形变,此时,通过第二支架605对该整体进行固定。电感器604的一端通过导电连接器606与主控板607连接,主控板607内设有检测电路(图未示);主控板607的另一端与电池608连接,通过电池608向主控板607供电;第二弹性件611固定在外壳610的后端,且一端与电池608连接,用于对电池608与主控板607进行固定。
在本发明第四实施例中,第一弹性件609和第二弹性件611分别为弹簧。
本发明第四实施例的主动笔的工作原理为:主动笔书写时,笔头601的前端受到压力后会向后移动,导致安装在笔头601上的第一弹性件609收缩,通过第一支架602及第一弹性件609对笔头601限位;此时,与笔头601后端接触的磁体603也会向后移动,导致磁体603与电感器604之间的距离发生变化,一旦磁体603与电感器604之间的距离发生变化,电感器604的电感值也会发生相应变化,通过主控板607内的检测电路实时检测电感器604的电感值变化量,从而计算出当前的压力大小。当主动笔停止书写时,笔头601前端的压力消失,通过第一支架602的阻力使第一弹性件609回弹,并使笔头610复位。
本发明实施例的位移传感器、检测装置及具有其的电子设备通过将磁体与电感器近距离设置,由于磁体的磁场会使电感器的内部磁通量发生剧烈变化,当磁体受到外界压力并与电感器之间的距离发生变化时,导致电感器电感值发生变化,并通过检测电路实时检测电感器的电感值变化量,从而计算位移或压力大小。相对于现有技术,本发明结构原理新颖,灵敏度与检测精度高,检测范围宽,适用范围广且成本较低。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (11)

  1. 一种位移传感器,其特征在于,包括:第一支架、磁体、电感器和用于检测电感器的电感值变化量并根据所述电感变化量计算所述磁体的位移的检测电路;所述磁体的一侧与第一支架接触,所述电感器位于磁体的另一侧,所述磁体与电感器相互间隔,所述检测电路与电感器电连接;当所述第一支架受到外部压力时,所述第一支架带动所述磁体移动,使所述磁体与电感器之间的距离发生变化并导致所述电感器的电感值发生改变。
  2. 根据权利要求1所述的位移传感器,其特征在于:所述检测电路包括:
    与所述电感器形成谐振的LC振荡器;及
    用于调控LC谐振网络的谐振电流的反馈单元;及
    用于根据所述LC振荡器的谐振信号的频率处理得到所述位移的处理单元。
  3. 根据权利要求2所述的位移传感器,其特征在于:所述LC振荡器包括谐振电容、第一电阻器、第二电阻器、第一场效应管、第二场效应管和恒流源,所述第一场效应管的漏极分别与第二场效应管的栅极、第一电阻器的一端和电感器的一端连接,所述第一场效应管的栅极分别与第二场效应管的漏极、第二电阻器的一端和电感器的另一端连接,所述第一场效应管的源极分别与第二场效应管的源极和恒流源的一端连接;所述第二场效应管的漏极分别与第一场效应管的栅极、第二电阻器和电感器连接;所述第一电阻器的另一端同时连接第二电阻器的另一端和电源;所述谐振电容与电感器并联形成LC谐振网络,所述恒流源的另一端接地。
  4. 根据权利要求3所述的位移传感器,其特征在于:所述反馈单元包括信号缓冲器和滤波器,所述信号缓冲器的输入端连接所述电感器的另一端,所述信号缓冲器的输出端连接所述滤波器,所述滤波器的输出端与恒流源连接。
  5. 根据权利要求4所述的位移传感器,其特征在于:所述检测电路还包括信号整形器,所述谐振电容的一端连接到信号整形器的输入端,所述信号整形器的输入端还分别与电感器的一端、第一电阻器的一端、第一场效应管的漏极 和第二场效应管的栅极相连;所述信号整形器的输出端与处理单元相连。
  6. 根据权利要求1所述的位移传感器,其特征在于:所述磁体与电感器之间的间隔距离为2mm以内。
  7. 根据权利要求6所述的位移传感器,其特征在于:还包括第二支架,所述第一支架、磁体、电感器和检测电路分别安装于第二支架上。
  8. 一种检测装置,其特征在于:包括权利要求1-7任一项所述的位移传感器及根据所述位移传感器获取的位移计算处理得到待测量的计算单元。
  9. 根据权利要求8所述的检测装置,其特征在于:所述检测装置为具有压力检测功能的装置,所述计算单元根据所述位移计算得到待测压力;或者所述检测装置为具有角度检测功能的装置,所述计算单元根据所述位移计算得到待测角度。
  10. 一种电子设备,其特征在于,包括权利要求8或9所述的检测装置。
  11. 根据权利要求10所述的电子设备,其特征在于,所述电子设备为主动笔。
PCT/CN2017/073598 2017-02-15 2017-02-15 一种位移传感器、检测装置及具有其的电子设备 WO2018148884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000016.XU CN208999970U (zh) 2017-02-15 2017-02-15 一种位移传感器、检测装置及具有其的电子设备
PCT/CN2017/073598 WO2018148884A1 (zh) 2017-02-15 2017-02-15 一种位移传感器、检测装置及具有其的电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073598 WO2018148884A1 (zh) 2017-02-15 2017-02-15 一种位移传感器、检测装置及具有其的电子设备

Publications (1)

Publication Number Publication Date
WO2018148884A1 true WO2018148884A1 (zh) 2018-08-23

Family

ID=63170058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073598 WO2018148884A1 (zh) 2017-02-15 2017-02-15 一种位移传感器、检测装置及具有其的电子设备

Country Status (2)

Country Link
CN (1) CN208999970U (zh)
WO (1) WO2018148884A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610467B (zh) * 2020-05-19 2022-08-26 上海舒盈科技股份有限公司 一种自动检测触头啮合状态的开关柜及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565632A (en) * 1995-02-20 1996-10-15 Wacom Co., Ltd. Pressure sensitive stylus pen
CN1264217A (zh) * 1999-02-17 2000-08-23 株式会社村田制作所 振荡器和压控振荡器
CN1437095A (zh) * 2002-02-07 2003-08-20 天瀚科技股份有限公司 具有追踪轨迹与感测压力的数字笔
CN101727218A (zh) * 2010-01-27 2010-06-09 北京爱易玛克科技有限公司 具有压力值检测功能的电子手写笔
CN202711187U (zh) * 2012-08-10 2013-01-30 太瀚科技股份有限公司 电磁式指标装置
CN205192679U (zh) * 2015-10-28 2016-04-27 思达文电器(深圳)有限公司 一种微压传感器的控制电路及其微压传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565632A (en) * 1995-02-20 1996-10-15 Wacom Co., Ltd. Pressure sensitive stylus pen
CN1264217A (zh) * 1999-02-17 2000-08-23 株式会社村田制作所 振荡器和压控振荡器
CN1437095A (zh) * 2002-02-07 2003-08-20 天瀚科技股份有限公司 具有追踪轨迹与感测压力的数字笔
CN101727218A (zh) * 2010-01-27 2010-06-09 北京爱易玛克科技有限公司 具有压力值检测功能的电子手写笔
CN202711187U (zh) * 2012-08-10 2013-01-30 太瀚科技股份有限公司 电磁式指标装置
CN205192679U (zh) * 2015-10-28 2016-04-27 思达文电器(深圳)有限公司 一种微压传感器的控制电路及其微压传感器

Also Published As

Publication number Publication date
CN208999970U (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
CN101960319B (zh) 具有自动灵敏度调节的磁场传感器
US9097558B2 (en) Position sensor
KR20150127619A (ko) 오디오 시스템에서의 오디오 왜곡 감소
CN108809278B (zh) 一种窄脉冲峰值采样保持电路
CN103616550A (zh) 巨磁阻电流传感器
ATE463748T1 (de) Servo-beschleunigungsmesser
CN101944886A (zh) 自适应微电流放大器
CN102566639A (zh) 电压调节器
WO2018148884A1 (zh) 一种位移传感器、检测装置及具有其的电子设备
CN109444513A (zh) 一种双磁芯低温漂霍尔电流传感器
US6384596B1 (en) Variable inductance transducer circuit producing an electrical current and voltage output
JP5678358B2 (ja) 磁気検出装置
CN203630195U (zh) 巨磁阻电流传感器
WO2012176451A1 (ja) 磁界検出方法及び磁界検出回路
CN107317567A (zh) 低温度系数输出频率的rc振荡电路
CN112486243A (zh) 一种基于磁场反馈的磁调谐器件激励电路
CN204556037U (zh) 一种电磁流量计高精度可调励磁电路
CN105259521A (zh) 巨磁电阻传感器差分驱动与磁场偏置电路及偏置方法
TWI463144B (zh) 可偵測突波訊號特性之突波偵測裝置
CN205563794U (zh) 一种电涡流原理实现的钞票厚度检测电路
CN208849744U (zh) 一种窄脉冲峰值采样保持电路
TWI628576B (zh) 主動式電容觸控裝置
US20160241957A1 (en) Capacitive Displacement Sensing Circuit With A Guard Voltage Source
CN111913044A (zh) PoE***中受电设备阻抗检测方法及检测电路
CN112747797B (zh) 流量计量电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897110

Country of ref document: EP

Kind code of ref document: A1