WO2018147702A1 - 글래스 코팅 구조물 및 이의 형성 방법 - Google Patents

글래스 코팅 구조물 및 이의 형성 방법 Download PDF

Info

Publication number
WO2018147702A1
WO2018147702A1 PCT/KR2018/001837 KR2018001837W WO2018147702A1 WO 2018147702 A1 WO2018147702 A1 WO 2018147702A1 KR 2018001837 W KR2018001837 W KR 2018001837W WO 2018147702 A1 WO2018147702 A1 WO 2018147702A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
coating layer
sio
zno
base material
Prior art date
Application number
PCT/KR2018/001837
Other languages
English (en)
French (fr)
Inventor
박재혁
김병기
Original Assignee
아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이원스 주식회사 filed Critical 아이원스 주식회사
Priority claimed from KR1020180016908A external-priority patent/KR20180092900A/ko
Publication of WO2018147702A1 publication Critical patent/WO2018147702A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention relates to a glass coating structure and a method of forming the same.
  • a thermal spray coating process a thin film process such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), and a solution-based solution process are used.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the coating layer formed by such a conventional coating process has a grain boundary in most cases, the material properties inherent in the coating layer is lowered, and there is a problem of making the base material to be coated opaque.
  • the present invention is to overcome the above-mentioned conventional problems, an object of the present invention is to coat the glass powder on the base material by the vacuum injection method at room temperature, and then performing a heat treatment process, glass coating having a high light transmittance without grain boundary It is to provide a structure and a method of forming the same.
  • an object of the present invention is to include various plasma materials as glass powder, thereby forming a glass coating structure having excellent plasma resistance and corrosion resistance on the surface of a semiconductor or display processing apparatus on which plasma etching is performed and its formation To provide a method.
  • Glass coating structure according to the present invention to achieve the above object is a base material; And a transparent coating layer having no grain boundary formed by heat-treating an opaque coating layer having grain boundaries formed by mechanical impact of glass powder on the base material.
  • the base material is glass, tempered glass, quartz glass, quartz, epoxy, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zinc oxide (ZnO), aluminum nitride (AlN), aluminum (Al), copper (Cu) , Tungsten (W), stainless steel (SUS), PC (Polycarbonate), PET (Polyethylene terephthalate), PI (Polyamide), PMMA (Polymethyl Methacrylat), PBT (Polybutylene terephthalate), PU (Polyurethane), PVA (Polyvinyl alcohol) Or polyvinyl butyral (PVB).
  • the glass powder is Bi 2 O 3 -B 2 O 3 -BaO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO, B 2 O 3 -SiO 2 -Al 2 O 3 , ZnO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 -R 2 O, ZnO-B 2 O 3 -P 2 O 5 , PbO- It may be at least one selected from B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3 -ZnO and PbO-SiO 2 -B 2 O 3 .
  • the glass powder may comprise a plasma resistant material.
  • the plasma material is Al 2 O 3 , TiO 2 , AlN, ZrO 2 , CaO, SiC, SiO 2 , Si 3 N 4 , B 2 C, BN, TiN, Y 2 O 3 , Y 2 O 3 -Al 2 O 3, YOF, Y 5 O 4 F 7, Y 6 O 5 F 8, Y 7 O 6 F 9, Y 17 O 14 F 23, YF 3, YCl 3, YBr 3, LaF 3, LaCl 3, LaBr 3 , YOCl, YOBr, YOFCl, YOBrCl, rare earth series (element series from 57 to 71 including Y and Sc) oxide, rare earth series (element series from 57 to 71 including Y and Sc) fluoride , Rare earth series (element series from 57 to 71 including Y and Sc) chloride, MgF 3 , AlF 3 , CaF 3 , BaF 3 , YAG (Y 3 Al 5 O 12 ) and
  • the transparent coating layer may be an X-ray peak does not appear when X-Ray Diffrectometer (XRD) measurement.
  • XRD X-Ray Diffrectometer
  • Glass coating structure according to the present invention to achieve the above object is a base material; And the glass powder on the base material may include a transparent coating layer without a grain boundary formed by mechanical impact.
  • a method of manufacturing a glass coating structure according to the present invention includes providing a base material; Mechanically impacting the glass powder on the base material to form an opaque coating layer having grain boundaries; And annealing the opaque coating layer having the grain boundary to amorphize the transparent coating layer without the grain boundary.
  • the glass powder may have a particle size range of 1 nm to 50 ⁇ m.
  • Mechanically impacting the glass powder to form an opaque coating layer having grain boundaries may be made by impacting the base material at a speed of 100 m / s to 1500 m / s by making the glass powder in an aerosol state.
  • Amorphizing the transparent coating layer without grain boundary by heat treatment may include laser beam heat treatment apparatus, rapid thermal annealing system, electric heat treatment apparatus, induction heating apparatus, steam heat treatment apparatus, plasma heat treatment apparatus, and flash lamp heat treatment apparatus. It may be carried out by one or two selected.
  • the light transmittance of the opaque coating layer may be 0.1% to 60%, and the light transmittance of the transparent coating layer may be 30% to 95%.
  • the present invention provides a glass coating structure having a high light transmittance without grain boundaries and a method of forming the same by coating the glass powder on a base material by a vacuum injection method at room temperature, and then performing a heat treatment process.
  • the present invention forms a opaque coating layer having a plurality of grains and grain boundaries by making the glass powder in an aerosol state and then impacting the base material by a normal temperature vacuum injection method, and then heat treating or annealing the opaque coating layer in various ways,
  • the opaque coating layer having grains and grain boundaries of is made to be amorphous with a transparent coating layer having no grains and grain boundaries.
  • the present invention is because the coating layer does not have grain and grain boundaries, the coating layer expresses the inherent characteristics of materials such as bulk, and the coating layer has a high light transmittance, thereby realizing the color of the base material.
  • the present invention further comprises a variety of plasma materials as the glass powder, the glass coating structure having a plasma resistance excellent in corrosion resistance and plasma etching characteristics on the surface of the semiconductor or display processing apparatus is subjected to plasma etching and a method of forming the same
  • the present invention provides a film of rare earth-based (element-based atomic number 57 to 71, including Y and Sc) oxides, fluorides, or chlorides as a corrosion resistant coating layer of a semiconductor or display processing apparatus, thereby improving plasma characteristics. It provides a coating structure and a method of forming the same.
  • FIG. 1 is a flowchart illustrating a method of forming a glass coating structure according to an embodiment of the present invention.
  • FIGS. 2A and 2B are schematic views illustrating a room temperature spraying apparatus and a heat treatment apparatus, respectively, for forming a glass coating structure according to an embodiment of the present invention.
  • 3A to 3C are schematic views illustrating a method of forming a glass coating structure according to an embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, component, region, layer or portion described below may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • FIG. 1 is a flowchart illustrating a method of forming a glass coating structure according to an embodiment of the present invention.
  • the method of forming the glass coating structure according to the embodiment of the present invention does not have a base material providing step S1, an opaque coating layer forming step having grain boundaries S2, and a grain boundary (that is, having no grain boundaries).
  • Amorphous transparent coating layer conversion step (S3) is included.
  • a base material having a predetermined thickness and a predetermined width is provided.
  • the base material may be, for example, but not limited to, a flat plate form, or may be in various forms in two or three dimensions.
  • a base material is, for example, but not limited to, glass, tempered glass, quartz glass, quartz, epoxy, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zinc oxide (ZnO), aluminum nitride (AlN).
  • PU Polyurethane
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • the glass powder is mechanically impacted on the base material to form an opaque coating layer having grains and grain boundaries.
  • the step of forming an opaque coating layer having grains and grain boundaries may be achieved by impacting the base metal at a speed of approximately 100 m / s to 1500 m / s in an aerosol glass powder. That is, the present invention can form an opaque coating layer having a grain boundary by impacting the glass substrate in the aerosol state by the normal temperature vacuum injection method.
  • Glass powders include, but are not limited to, Bi 2 O 3 -B 2 O 3 -BaO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO, B 2 O 3 -SiO 2 -Al 2 O 3 , ZnO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 -R 2 O, ZnO-B 2 O At least one selected from 3 -P 2 O 5 , PbO-B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3 , and equivalents thereof.
  • the glass powder may further include a plasma resistant material.
  • Plasma-resistant materials are, for example, but not limited to Al 2 O 3 , TiO 2 , AlN, ZrO 2 , CaO, SiC, SiO 2 , Si 3 N 4 , B 2 C, BN, TiN, Y 2 O 3 , Y 2 O 3 -Al 2 O 3 , YOF, Y 5 O 4 F 7 , Y 6 O 5 F 8 , Y 7 O 6 F 9 , Y 17 O 14 F 23 , YF 3 , YCl 3 , YBr 3 , LaF 3 , LaCl 3 , LaBr 3 , YOCl, YOBr, YOFCl, YOBrCl, rare earth series (element series from atomic number 57 to 71 including Y and Sc) oxide, rare earth series (atomic number including Y and Sc) Elemental compounds from 57 to 71) fluoride, rare earths (elements from
  • the above-mentioned plasma-resistant material is used alone or the above-mentioned Bi 2 O 3 -B 2 O 3 -BaO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO, B 2 O 3 -SiO 2 -Al 2 O 3 , ZnO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 -R 2 O, ZnO- Mixed with one or two selected from B 2 O 3 -P 2 O 5 , PbO-B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3 -ZnO and PbO-SiO 2 -B 2 O 3 Can be used.
  • the present invention provides a coating having improved plasma resistance by forming a rare earth (oxide based element number from 57 to 71 including Y and Sc) oxide, fluoride or chloride coating layers as a corrosion resistant coating layer of a semiconductor or display processing apparatus. It provides a structure and a method of forming the same.
  • the glass powder may have a particle size range of approximately 1 nm to 50 ⁇ m.
  • the particle size range of the glass powder is less than about 1 nm, a substantially opaque coating layer may not be formed.
  • the particle size range of the glass powder exceeds approximately 50 ⁇ m, the base material may be etched, and the porosity of the opaque layer may be too large.
  • the light transmittance of the opaque coating layer may be approximately 0.1% to 60%.
  • Such light transmittance is considered to be a phenomenon due to the formation of many pores inside the opaque coating layer.
  • the opaque coating layer having grains and grain boundaries is heat-treated to form an amorphous transparent coating layer having no grains or grain boundaries. That is, the opaque coating layer having grains and grain boundaries is converted to an amorphous transparent coating layer having no grains or grain boundaries.
  • the transparent coating layer shows an amorphous property when measured by using X-Ray Diffrectometer (XRD) and / or Transmission Electro Microscopy (TEM).
  • XRD X-Ray Diffrectometer
  • TEM Transmission Electro Microscopy
  • the measuring method using XRD is a method of measuring the intensity of X-rays reflected from the transparent coating layer by radiating X-rays (X-ray) to the transparent coating layer.
  • X-ray X-ray
  • the intensity of the double reflected X-rays may be measured to determine whether the transparent coating layer is amorphous.
  • the reflected X-rays can be analyzed to determine the direction of the crystal plane. However, when the X-rays encounter an amorphous portion, the reflected X-rays do not show a peak or show a peak in a broad range different from that reflected by meeting the crystal plane (i.e., no characteristic peaks appear at all).
  • the method of using a TEM is a method of cutting a transparent coating layer and observing the image of the cross section, Even with this method, a transparent coating layer is considered amorphous.
  • the heat treatment is, for example, but not limited to one selected from a laser beam heat treatment apparatus, a rapid heat treatment apparatus, an electric heat treatment apparatus, an induction heating apparatus, a steam heat treatment apparatus, a plasma heat treatment apparatus and / or a flash lamp heat treatment apparatus, or It can be performed by two species.
  • a transparent coating layer is obtained which is substantially free of grain or grain boundaries and has little air porosity (less than about 0.01%).
  • the light transmittance of the transparent coating layer may range from approximately 30% to 95%.
  • the present invention is to provide a glass coating structure having a high light transmittance without grain boundary by coating the glass powder on the base material by the vacuum injection method at room temperature, and then performing a heat treatment process, and a method of forming the same.
  • the opaque coating layer is formed by the vacuum injection at room temperature, the thickness control is easy, and the internal structure of the opaque coating layer and / or the transparent coating layer can be controlled as desired by controlling the particle size range and heat treatment temperature of the glass powder. It becomes possible.
  • FIGS. 2A and 2B are schematic views illustrating a room temperature spraying apparatus and a heat treatment apparatus, respectively, for forming a glass coating structure according to an embodiment of the present invention.
  • the room temperature injection apparatus 100 transfers the glass powder from the transport gas supply unit 110, a powder supply unit 120 storing and supplying glass powder, and a powder supply unit 120.
  • Transfer tube 122 to transfer at a high speed by using, a nozzle 132 for coating / laminating or spraying the glass powder from the transfer tube 122 to the base material 310, the glass powder from the nozzle 132
  • it may include a process chamber 130 to form an opaque coating layer having a certain thickness, grains and grain boundaries.
  • the transport gas stored in the transport gas supply unit 110 may be, for example, but not limited to, one or two mixtures selected from the group consisting of oxygen, helium, nitrogen, argon, carbon dioxide, hydrogen, and equivalents thereof. Can be.
  • the transfer gas is directly supplied from the transfer gas supply unit 110 to the powder supply unit 120 through the pipe 111, and the flow rate and pressure may be adjusted by the flow controller 150.
  • the powder supply unit 120 stores and supplies a large amount of glass powder, wherein the particle diameter range of the glass powder is about 1 nm to 50 ⁇ m, preferably about 1 nm to 30 ⁇ m, more preferably about 1 nm to 10 ⁇ m.
  • the thickness is about 1 nm to 100 nm, and more preferably, about 1 nm to 100 nm, an opaque coating layer having a relatively low porosity (porosity or porosity) (relatively high density) and easy control of the glass powder can be obtained.
  • the particle size range of the glass powder is smaller than about 1 nm, an opaque coating layer may not be formed, and due to the aggregation phenomenon during storage and feeding of the glass powder, the powder may be smaller than 1 nm when spraying, colliding, crushing and / or grinding
  • the green compact which is a form in which particles are agglomerated, is not only easily formed, but also has a disadvantage in that a large area opaque coating layer is difficult to form.
  • the particle size range of the glass powder is greater than about 50 ⁇ m, sand blasting may be easily generated to shave the base material during the injection, impact crushing, and / or pulverization of the powder.
  • the above-mentioned glass powder may be in the form of granules that maintain the state of aggregation with each other.
  • the glass powder may agglomerate and become approximately 10 to 200 times larger than the powder size, which may be redried to obtain glass granules. By this granulation, the glass granules become a porous structure, and thus the formation of an opaque coating layer can be made easier.
  • Such glass granules may have a particle size ranging from approximately 10 nm to 50 ⁇ m.
  • the process chamber 130 maintains a vacuum while forming the opaque coating layer, and may be connected to the vacuum unit 140 for this purpose. More specifically, the pressure of the process chamber 130 by driving the vacuum unit 140 is approximately 1 Pascal to 800 Pascals, and the pressure of the glass powder conveyed by the high speed feed tube 122 is approximately 1500 Pascals to 2000 It may be Pascal. However, in any case, the pressure of the high speed transfer pipe 122 should be higher than that of the process chamber 130.
  • the internal temperature range of the process chamber 130 is maintained at room temperature, that is, approximately 0 ° C. to 30 ° C., and thus, there may be no member for increasing or decreasing the internal temperature of the process chamber 130 separately. That is, the conveying gas and / or the base material can be maintained at a temperature of 0 ° C to 30 ° C without being heated separately. Therefore, in the present invention, the base material is not thermally impacted.
  • the transport gas or / and the base material may be heated to a temperature of approximately 30 ° C to 1000 ° C. That is, the transfer gas in the transfer gas supply unit 110 may be heated by a separate not shown heater, or the base material 310 in the process chamber 130 may be heated by a separate not shown heater.
  • the stress applied to the glass powder in the formation of the opaque coating layer by heating of the carrier gas and / or the base material is reduced, thereby obtaining a small porosity and a dense opaque coating layer.
  • the glass powder melts causing a sharp phase transition, thereby increasing the porosity of the opaque coating layer (lower filling) and the internal structure of the opaque coating layer It may become unstable.
  • the present invention is not limited to this temperature range, and the internal temperature range of the transfer gas, the base material and / or the process chamber may be adjusted between 0 ° C and 1000 ° C, depending on the characteristics of the base material on which the opaque coating layer is to be formed.
  • a process temperature of approximately 0 ° C. to 30 ° C. may be provided to coat a window of the display device, and a process temperature of approximately 0 ° C. to 1000 ° C. may be provided to coat a semiconductor / display processing equipment. .
  • the pressure difference between the process chamber 130 and the high speed transfer pipe 122 may be approximately 1.5 times to 2000 times. If the pressure difference is less than approximately 1.5 times, the high speed conveyance of the powder may be difficult, and if the pressure difference is greater than approximately 2000 times, the surface of the base material may be excessively etched by the powder.
  • the powder from the powder supply unit 120 is sprayed through the transfer tube 122 and simultaneously transferred to the process chamber 130 at high speed.
  • the process chamber 130 is provided with a nozzle 132 connected to the transfer pipe 122, by impinging the glass powder on the surface of the base material 310 at a speed of approximately 100 to 1500m / s, to form an opaque coating layer do. That is, the glass powder through the nozzle 132 is crushed by the kinetic energy obtained during the transfer and the collision energy generated during the high-speed collision to form an opaque coating layer of a predetermined thickness on the surface of the base material 310.
  • the opaque coating layer may have nano or micro pores therein and may also be stacked by mechanical impact, and thus, a plurality of grains and grain boundaries may be observed when viewed in the normal direction or the planar direction of the base material.
  • the particle size of the particles forming the opaque coating layer has a smaller size than the particle size of the glass powder for forming the opaque coating layer.
  • the base material 310 may be made of at least one selected from ceramic, glass, tempered glass, quartz glass, quartz, plastic, metal, epoxy, and equivalents thereof. That is, the base material 310 may be a single layer base material made of one material, or a multilayer base material in which two or more materials are stacked. For example, the base material 310 may be a single layer base material made of tempered glass or a multilayer base material in which ceramics are laminated on the glass. In particular, the base material 310 may have a surface roughness of 0.1 ⁇ m or more, or an organic material or a plastic material.
  • the ceramic may be at least one of alumina (Al 2 O 3 ), zirconia (ZrO 2 ), zinc oxide (ZnO), and aluminum nitride (AlN).
  • the metal may be any one of aluminum (Al), copper (Cu), tungsten (W), and stainless steel (SUS).
  • Plastics include PC (Polycarbonate), PET (Polyethylene terephthalate), PI (Polyamide), PMMA (Polymethyl Methacrylat), PBT (Polybutylene terephthalate), PU (Polyurethane), PVA (Polyvinyl alcohol), PVB (Polyvinyl butyral) and It may be any one of the equivalents.
  • Glass powder for forming the opaque coating layer for example, but not limited to, Bi 2 O 3 -B 2 O 3 -BaO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO-SiO 2 , Bi 2 O 3 -B 2 O 3 -ZnO, B 2 O 3 -SiO 2 -Al 2 O 3 , ZnO-B 2 O 3 -SiO 2 , Bi 2 O 3 -B 2 O 3 -SiO 2 -R 2 At least selected from O, ZnO-B 2 O 3 -P 2 O 5 , PbO-B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3 -ZnO, PbO-SiO 2 -B 2 O 3, and their equivalents It may be one kind.
  • the glass powder may further include a plasma resistant material.
  • Plasma-resistant materials are, for example, but not limited to Al 2 O 3 , TiO 2 , AlN, ZrO 2 , CaO, SiC, SiO 2 , Si 3 N 4 , B 2 C, BN, TiN, Y 2 O 3 , Y 2 O 3 -Al 2 O 3 , YOF, Y 5 O 4 F 7 , Y 6 O 5 F 8 , Y 7 O 6 F 9 , Y 17 O 14 F 23 , YF 3 , YCl 3 , YBr 3 , LaF 3 , LaCl 3 , LaBr 3 , YOCl, YOBr, YOFCl, YOBrCl, rare earth series (element series from atomic number 57 to 71 including Y and Sc) oxide, rare earth series (atomic number including Y and Sc) Elemental compounds from 57 to 71) fluoride, rare earths (elements from
  • the heat treatment apparatus 200 may include a process chamber 210, a heater 220 located inside the process chamber 210, and at least one flash located above the heater 220.
  • the lamp 230 may include a reflector 240 positioned above the flash lamp 230.
  • the heat treatment apparatus 200 is only an example for understanding the present invention, and the present invention should not be limited to such a heat treatment apparatus.
  • the heater 220 may be omitted in some cases.
  • the base material 310 having an opaque layer (not shown) having grain boundaries may be positioned on the heater 220 of the chamber 210, and may be preheated to a predetermined temperature.
  • the flash lamp 230 operates to transmit high energy only to the opaque layer formed on the base material 310.
  • the opaque layer may be heat treated or annealed by flash lamp 230 after preheating for approximately 0.1 to 10 minutes at each temperature between approximately 0 ° C. and 400 ° C.
  • the preheating temperature can be increased to approximately 1500 ° C. when the energy density of the flash lamp being scanned is low or the power is low.
  • the preheating may be performed in an inert nitrogen (N 2 ) atmosphere.
  • the flash lamp 230 may be irradiated at least once in a shot. When the number of times of irradiation of the flash lamp 230 is one or more times, the conversion efficiency of the opaque layer having grain boundaries to the transparent coating layer having no grain boundaries is increased.
  • the one shot irradiated from the flash lamp 230 preferably has an energy density of approximately 1 to 50 J / cm 2. If the energy density of the one shot irradiated from the flash lamp 230 is too low, the conversion efficiency (opacity-> transparent) becomes too low. In addition, if the energy density of the light irradiated from the flash lamp 230 is too high, the opaque coating layer may only partially melt. In addition, the one-shot shot irradiated from the flash lamp 230 may have a full width at half maximum of about 1 msec to 20 msec when applied as a sine wave.
  • One shot irradiated from such a flash lamp may have a pulse width of approximately 1 ms to 50 msec regardless of the waveform.
  • One shot irradiated from the flash lamp may have a pulse width of approximately 1 msec.
  • the full width at half maximum or pulse width of a single shot affects the conversion efficiency from the opaque coating layer to the transparent coating layer. If it is too short, the conversion efficiency is low, and if it is too long, the characteristics of the transparent coating layer may be affected.
  • heat treatment / annealing with such a flash lamp resulted in a light transmittance of approximately 0.1% to 60% of the opaque coating layer and a light transmission of 30% to 95% of the transparent coating layer.
  • the opaque coating layer is converted into a transparent coating layer having no grains or grain boundaries, so that the transparent coating layer not only has excellent light transmittance, but also has excellent magnetic properties, corrosion resistance, wear resistance, high strength, hardness and toughness, and high specific resistance. .
  • 3A to 3C are schematic views illustrating a method of forming a glass coating structure according to an embodiment of the present invention.
  • a substrate 310 in the form of a substantially flat plate is provided.
  • the glass powder in an aerosol state is sprayed onto the base material 310 through a room temperature spraying process, thereby forming an opaque coating layer 320 having grain boundaries.
  • the heat treatment process is performed to convert the opaque coating layer 320 having the grain boundary into the transparent coating layer 330 having no grain boundary.
  • the present invention provides a glass coating structure 300 having a high light transmittance without grain boundary and a method of forming the same by coating the glass powder on a base material by a normal temperature vacuum spraying method, and then performing a heat treatment process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 글래스 코팅 구조물 및 이의 형성 방법에 관한 것으로, 해결하고자 하는 기술적 과제는 글래스 파우더를 모재에 상온 진공 분사 방식으로 코팅하고, 이어서 열처리 공정을 수행함으로써, 그레인 바운더리가 없는 높은 광 투과도를 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공하는데 있다. 이를 위해 본 발명은 모재; 및 상기 모재 상에 글래스 파우더가 기계적 충격에 의해서 형성된 그레인 바운더리를 갖는 불투명 코팅층이 열처리됨으로써 형성된 그레인 바운더리가 없는 투명 코팅층을 포함하는 글래스 코팅 구조물 및 이의 형성 방법을 개시한다.

Description

글래스 코팅 구조물 및 이의 형성 방법
본 발명은 글래스 코팅 구조물 및 이의 형성 방법에 관한 것이다.
현재 다양한 산업분야에서 내화학성, 내마모성, 발수성 등의 특성 발현을 위해 세라믹 소재를 이용한 코팅층의 형성에 대한 요구가 늘어나고 있다. 세라믹 코팅층을 형성하는 공정에는 크게 용사 코팅 공정, CVD(Chemical Vapor Deposition) 또는 PVD(Physicla Vapor Deposition) 등의 박막 공정 그리고 용액 기반의 용액 공정 등이 널이 이용되고 있다.
그러나 이러한 종래의 코팅 공정에 의해 형성된 코팅층은 대부분 그레인 바운더리를 가짐으로써 코팅층 고유의 소재 특성이 저하되고, 또한 코팅되는 모재를 불투명하게 하는 문제가 있었다.
본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명의 목적은 글래스 파우더를 모재에 상온 진공 분사 방식으로 코팅하고, 이어서 열처리 공정을 수행함으로써, 그레인 바운더리가 없는 높은 광 투과도를 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공하는데 있다.
또한, 본 발명의 목적은 글래스 파우더로서 다양한 내플라즈마 재료를 포함함으로써, 플라즈마 에칭이 수행되는 반도체 또는 디스플레이 가공 장치의 표면에 내식성이나 내플라즈마 에칭 특성이 우수한 내플라즈마 특성을 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공하는데 있다.
상기한 목적을 달성하기 위해 본 발명에 의한 글래스 코팅 구조물은 모재; 및 상기 모재 상에 글래스 파우더가 기계적 충격에 의해서 형성된 그레인 바운더리를 갖는 불투명 코팅층이 열처리됨으로써 형성된 그레인 바운더리가 없는 투명 코팅층을 포함한다.
상기 모재는 글래스, 강화 글래스, 석영 글래스, 석영, 에폭시, 알루미나(Al2O3), 지르코니아(ZrO2), 산화아연(ZnO), 질화알루미늄(AlN), 알루미늄(Al), 구리(Cu), 텅스텐(W), 스테인레스강(SUS), PC(Polycarbonate), PET(Polyethylene terephthalate), PI(Polyamide), PMMA(Polymethyl Methacrylat), PBT(Polybutylene terephthalate), PU(Polyurethane), PVA(Polyvinyl alcohol) 또는 PVB(Polyvinyl butyral)를포함할 수 있다.
상기 글래스 파우더는 Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO 및 PbO-SiO2-B2O3중에서 선택된 적어도 1종일 수 있다.
상기 글래스 파우더는 내플라즈마 재료를 포함할 수 있다.
상기 내플라즈마 재료는 Al2O3, TiO2, AlN, ZrO2, CaO, SiC, SiO2, Si3N4, B2C, BN, TiN, Y2O3, Y2O3-Al2O3, YOF, Y5O4F7, Y6O5F8, Y7O6F9, Y17O14F23, YF3, YCl3, YBr3, LaF3, LaCl3, LaBr3, YOCl, YOBr, YOFCl, YOBrCl, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 불화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 염화물, MgF3, AlF3, CaF3, BaF3, YAG(Y3Al5O12) 및 YSG(Yttria stabilized Zirconia) 중에서 선택된 적어도 1종일 수 있다.
상기 투명 코팅층은 XRD(X-Ray Diffrectometer) 측정 시 X선 피크가 나타나지 않는 것일 수 있다.
상기한 목적을 달성하기 위해 본 발명에 의한 글래스 코팅 구조물은 모재; 및 상기 모재 상에 글래스 파우더가 기계적 충격에 의해서 형성된 그레인 바운더리가 없는 투명 코팅층을 포함할 수 있다.
상기한 목적을 달성하기 위해 본 발명에 의한 글래스 코팅 구조물의 제조 방법은 모재를 제공하는 단계; 상기 모재 상에 글래스 파우더를 기계적으로 충격시켜 그레인 바운더리를 갖는 불투명 코팅층을 형성하는 단계; 및 상기 그레인 바운더리를 갖는 불투명 코팅층을 열처리하여 그레인 바운더리가 없는 투명 코팅층으로 비정질화시키는 단계를 포함할 수 있다.
상기 글래스 파우더는 1 nm 내지 50 ㎛의 입경 범위를 가질 수 있다.
상기 글래스 파우더를 기계적으로 충격시켜 그레인 바운더리를 갖는 불투명 코팅층을 형성하는 단계는 상기 글래스 파우더를 에어로졸 상태로 만들어 100 m/s 내지 1500 m/s의 속도로 상기 모재에 충격시켜 이루어질 수 있다.
상기 열처리하여 그레인 바운더리가 없는 투명 코팅층으로 비정질화시키는 단계는 레이저 빔 열처리 장치, 급속 열처리 장치(Rapid Thermal Annealing system), 전기 열처리 장치, 유도가열장치, 증기 열처리 장치, 플라즈마 열처리 장치 및 플래시 램프 열처리 장치 중에서 선택된 1종 또는 2종에 의해 수행될 수 있다.
상기 불투명 코팅층의 광 투과도는 0.1% 내지 60%이고, 상기 투명 코팅층의 광 투과도는 30% 내지 95%일 수 있다.
본 발명은 글래스 파우더를 모재에 상온 진공 분사 방식으로 코팅하고, 이어서 열처리 공정을 수행함으로써, 그레인 바운더리가 없는 높은 광 투과도를 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공한다.
즉, 본 발명은 글래스 파우더를 에어로졸 상태로 만든 다음 상온 진공 분사 방식으로 모재에 충격하여 다수의 그레인과 그레인 바운더리를 갖는 불투명 코팅층을 형성하고, 이어서 상기 불투명 코팅층을 다양한 방식으로 열처리 또는 어닐링함으로써, 다수의 그레인 및 그레인 바운더리를 갖는 불투명 코팅층이 그레인 및 그레인 바운더리를 갖지 않는 투명 코팅층으로 비정질화되도록 한다.
이와 같이 하여, 본 발명은 코팅층이 그레인과 그레인 바운더리를 갖지 않음으로써 코팅층이 마치 벌크와 같은 소재 고유의 특성을 발현하게 되고, 또한 코팅층이 높은 광 투과도를 가짐으로써 모재의 색상이 그대로 구현되게 된다.
또한, 본 발명은 글래스 파우더로서 다양한 내플라즈마 재료를 더 포함함으로써, 플라즈마 에칭이 수행되는 반도체 또는 디스플레이 가공 장치의 표면에 내식성이나 내플라즈마 에칭 특성이 우수한 내플라즈마 특성을 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공한다. 일례로, 본 발명은 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 불화물 또는 염화물의 피막을 반도체 또는 디스플레이 가공 장치의 내식성 코팅층으로 형성함으로써, 내플라즈마 특성이 향상된 코팅 구조물 및 이의 형성 방법을 제공한다.
도 1은 본 발명의 일 실시예에 따른 글래스 코팅 구조물의 형성 방법을 도시한 순서도이다.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 글래스 코팅 구조물을 형성하기 위한 상온 분사 장치 및 열처리 장치를 각각 도시한 개략도이다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 글래스 코팅 구조물의 형성 방법을 도시한 개략도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정 하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
도 1은 본 발명의 일 실시예에 따른 글래스 코팅 구조물의 형성 방법을 도시한 순서도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 글래스 코팅 구조물의 형성 방법은 모재 제공 단계(S1), 그레인 바운더리를 갖는 불투명 코팅층 형성 단계(S2), 및 그레인 바운더리를 갖지 않는(즉, 비정질(Amorphous)인) 투명 코팅층 변환 단계(S3)를 포함한다.
모재 제공 단계(S1)에서, 일정 두께 및 일정 넓이를 갖는 모재가 제공된다. 여기서, 모재는, 예를 들면, 한정하는 것은 아니지만, 평판 형태이거나, 2차원 또는 3차원의 다양한 형태일 수 있다. 또한, 모재는, 예를 들면, 한정하는 것은 아니지만, 글래스, 강화 글래스, 석영 글래스, 석영, 에폭시, 알루미나(Al2O3), 지르코니아(ZrO2), 산화아연(ZnO), 질화알루미늄(AlN), 알루미늄(Al), 구리(Cu), 텅스텐(W), 스테인레스강(SUS), PC(Polycarbonate), PET(Polyethylene terephthalate), PI(Polyamide), PMMA(Polymethyl Methacrylat), PBT(Polybutylene terephthalate), PU(Polyurethane), PVA(Polyvinyl alcohol), PVB(Polyvinyl butyral)및 그 등가물 중에서 선택된 적어도 1종일 수 있다.
그레인 바운더리를 갖는 불투명 코팅층 형성 단계(S2)에서, 모재 상에 글래스 파우더를 기계적으로 충격시켜 그레인 및 그레인 바운더리를 갖는 불투명 코팅층을 형성한다.
여기서, 그레인 및 그레인 바운더리를 갖는 불투명 코팅층을 형성하는 단계는 에어로졸 상태의 글래스 파우더를 대략 100 m/s 내지 1500 m/s의 속도로 모재에 충격시켜 이루어질 수 있다. 즉, 본 발명은 상온 진공 분사 방식으로 에어로졸 상태의 글래스 파우더를 모재에 충격시켜 그레인 바운더리를 갖는 불투명 코팅층을 형성할 수 있다.
글래스 파우더는, 예를 들면, 한정하는 것은 아니지만, Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO, PbO-SiO2-B2O3, 및 그 등가물중에서 선택된 적어도 1종일 수 있다.
또한, 글래스 파우더는 내플라즈마 재료를 더 포함할 수 있다. 내플라즈마 재료는, 예를 들면, 한정하는 것은 아니지만, Al2O3, TiO2, AlN, ZrO2, CaO, SiC, SiO2, Si3N4, B2C, BN, TiN, Y2O3, Y2O3-Al2O3, YOF, Y5O4F7, Y6O5F8, Y7O6F9, Y17O14F23, YF3, YCl3, YBr3, LaF3, LaCl3, LaBr3, YOCl, YOBr, YOFCl, YOBrCl, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 불화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 염화물, MgF3, AlF3, CaF3, BaF3, YAG(Y3Al5O12), YSG(Yttria stabilized Zirconia) 및 그 등가물 중에서 선택된 적어도 1종일 수 있다.
여기서, 상술한 내플라즈마 재료는 단독으로 이용되거나, 또는 상술한 Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO 및 PbO-SiO2-B2O3중에서 선택된 1종 또는 2종과 함께 혼합되어 이용될 수 있다.
이와 같이, 글래스 파우더로서 다양한 내플라즈마 재료를 포함함으로써, 플라즈마 에칭이 수행되는 반도체 또는 디스플레이 가공 장치의 표면에 내식성이나 내플라즈마 에칭 특성이 우수한 내플라즈마 특성을 갖는 글래스 코팅 구조물 및 이의 형성 방법이 제공될 수 있다. 일례로, 본 발명은 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 불화물 또는 염화물 코팅층을 반도체 또는 디스플레이 가공 장치의 내식성 피복층으로 형성함으로써, 내플라즈마 특성이 향상된 코팅 구조물 및 이의 형성 방법을 제공한다.
또한, 글래스 파우더는 대략 1 nm 내지 50 ㎛의 입경 범위를 가질 수 있다. 글래스 파우더의 입경 범위가 대략 1 nm 미만일 경우에는 실질적으로 불투명 코팅층이 형성되지 않을 수 있다. 더불어, 글래스 파우더의 입경 범위가 대략 50 ㎛를 초과할 경우에는 모재가 식각될 수 있고, 또한 불투명층의 기공도가 너무 커질 수 있다.
한편, 이러한 공정에 의해 불투명 코팅층의 광 투과도는 대략 0.1% 내지 60%일 수 있다. 이과 같은 광 투과도는 불투명 코팅층의 내부에 많은 기공이 형성되었기 때문에 나타나는 현상으로 판단된다.
그레인 바운더리를 갖지 않는 투명 코팅층 변환 단계(S3)에서, 그레인 및 그레인 바운더리를 갖는 불투명 코팅층을 열처리하여 그레인 또는 그레인 바운더리를 갖지 않는 즉, 비정질의 투명 코팅층을 형성한다. 즉, 그레인 및 그레인 바운더리를 갖는 불투명 코팅층을 그레인 또는 그레인 바운더리를 갖지 않는, 비정질의 투명 코팅층으로 변환시킨다.
여기서, 투명 코팅층은 XRD(X-Ray Diffrectometer) 및/또는 TEM(Transmission Electro Microscopy)을 이용하여 측정했을 때 비정질 특성을 보인다.
일례로, XRD를 이용한 측정 방법은 엑스 선(X-ray)을 투명 코팅층에 조사하여 투명 코팅층으로부터 반사되는 엑스 선의 세기를 측정하는 방법이다. 구체적으로, 엑스 선원으로부터 엑스 선을 발생시켜서 측정하고자 하는 투명 코팅층에 여러 각도로 조사한 경우, 조사된 엑스 선중 일부는 투과되고 일부는 반사된다. 이중 반사된 엑스 선의 세기를 측정하여 투명 코팅층이 비정질인지 아닌지 확인할 수 있다. 투명 코팅층에 조사된 엑스 선이 임의의 결정면으로부터 반사되는 경우 브래그(Bragg)의 법칙에 따라 반사된 엑스 선의 세기는 보강 또는 상쇄된다. 반사된 엑스 선을 분석하여 결정면의 방향을 알 수 있다. 그러나, 엑스 선이 비정질 부분을 만나게 되면, 반사된 엑스 선은 피크(peak)를 나타내지 않거나 결정면을 만나서 반사된 것과는 다른 광범위한 형태로 피크를 나타낸다(즉, 특징적인 피크가 전혀 나타나지 않는다). 또한, TEM을 이용하는 방법은 투명 코팅층을 잘라 그 단면의 상을 관찰하는 방법인데, 이 방법으로도 투명 코팅층은 비정질로 파악된다.
여기서, 열처리는, 예를 들면, 한정하는 것은 아니지만, 레이저 빔 열처리 장치, 급속 열처리 장치, 전기 열처리 장치, 유도가열장치, 증기 열처리 장치, 플라즈마 열처리 장치 및/또는 플래시 램프 열처리 장치 중에서 선택된 1종 또는 2종에 의해 수행될 수 있다.
이러한 열처리에 의해, 실질적으로 그레인 또는 그레인 바운더리를 갖지 않고, 기공도(air porosity)가 거의 없는(대략 0.01% 미만) 투명한 코팅층이 얻어진다. 일례로, 한정하는 것은 아니지만, 투명 코팅층의 광 투과도는 대략 30% 내지 95%에 이를 수 있다.
이와 같이 하여, 본 발명은 글래스 파우더를 모재에 상온 진공 분사 방식으로 코팅하고, 이어서 열처리 공정을 수행함으로써, 그레인 바운더리가 없는 높은 광 투과도를 갖는 글래스 코팅 구조물 및 이의 형성 방법을 제공하게 된다. 특히, 본 발명에서는 상온 진공 분사 방식으로 불투명 코팅층을 형성하기 때문에 그 두께 제어가 용이하고, 또한 글래스 파우더의 입경 범위와 열처리 온도의 제어로 불투명 코팅층 및/또는 투명 코팅층의 내부 구조를 원하는 대로 제어할 수 있게 된다.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 글래스 코팅 구조물을 형성하기 위한 상온 분사 장치 및 열처리 장치를 각각 도시한 개략도이다.
도 2a에 도시된 바와 같이, 상온 분사 장치(100)는 이송 가스 공급부(110), 글래스 분말(glass powder)을 보관 및 공급하는 분말 공급부(120), 분말 공급부(120)로부터 글래스 분말을 이송 가스를 이용하여 고속으로 이송하는 이송관(122), 이송관(122)으로부터의 글래스 분말을 모재(310)에 코팅/적층 또는 스프레잉하는 노즐(132), 노즐(132)로부터의 글래스 분말이 모재(310)의 표면에 기계적으로 충돌 및 파쇄되도록 함으로써, 일정 두께, 그레인 및 그레인 바운더리를 갖는 불투명 코팅층이 형성되도록 하는 공정 챔버(130)를 포함할 수 있다.
이러한 상온 분사 장치(100)에 의해 모재(310) 상에 그레인과 그레인 바운더리를 갖는 불투명 코팅층이 형성되는 과정을 설명한다.
우선 이송 가스 공급부(110)에 저장된 이송 가스는, 예를 들면, 한정하는 것은 아니지만, 산소, 헬륨, 질소, 아르곤, 이산화탄소, 수소 및 그 등가물로 이루어지는 그룹으로부터 선택되는 1종 또는 2종의 혼합물일 수 있다. 이송 가스는 이송 가스 공급부(110)로부터 파이프(111)를 통해 분말 공급부(120)로 직접 공급되며, 유량 조절기(150)에 의해 그 유량 및 압력이 조절될 수 있다.
상기 분말 공급부(120)는 다량의 글래스 분말을 보관 및 공급하는데, 이러한 글래스 분말의 입경 범위는 대략 1 nm 내지 50 ㎛, 바람직하기로 대략 1 nm 내지 30 ㎛, 더욱 바람직하기로 대략 1 nm 내지 10 ㎛, 더 더욱 바람직하기로 대략 1 nm 내지 100 nm일 경우, 기공도(기공율 또는 공극율)가 상대적으로 작고(치밀도가 상대적으로 높고), 글래스 분말의 제어가 용이한 불투명 코팅층을 얻을 수 있다.
글래스 분말의 입경 범위가 대략 1 nm 보다 작을 경우, 불투명 코팅층이 형성되지 않을 수 있고, 글래스 분말의 보관 및 공급 중 응집 현상으로 인해, 분말의 분사, 충돌, 파쇄 및/또는 분쇄 시 1 nm 보다 작은 입자들이 뭉쳐져 있는 형태인 압분체가 형성되기 쉬울 뿐만 아니라 대면적의 불투명 코팅층 형성이 어려운 단점이 있다.
또한, 글래스 분말의 입경 범위가 대략 50 ㎛보다 클 경우, 분말의 분사, 충돌 파쇄 및/또는 분쇄 시 모재를 깎아 내는 샌드블라스팅(sand blasting) 현상이 발생하기 쉬울 수 있다.
더욱이, 상술한 글래스 분말은 상호간 응집 상태를 유지하는 과립 형태일 수 있다. 일례로, 글래스 분말은 응집되어 분말 크기 대비 대략 10배 내지 200배로 커질 수 있는데, 이것이 재건조됨으로써 글래스 과립이 얻어질 수 있다. 이러한 과립화에 의해 글래스 과립은 다공질 구조가 되고, 이에 따라 불투명 코팅층의 형성이 더욱 용이해질 수 있다. 이러한 글래스 과립은 입경 범위가 대략 10 nm 내지 50 ㎛일 수 있다.
공정 챔버(130)는 불투명 코팅층을 형성하는 중에 진공 상태를 유지하며, 이를 위해 진공 유닛(140)과 연결될 수 있다. 좀 더 구체적으로, 진공 유닛(140)의 구동에 의해서 공정 챔버(130)의 압력은 대략 1 파스칼 내지 800 파스칼이고, 고속 이송관(122)에 의해 이송되는 글래스 분말의 압력은 대략 1500 파스칼 내지 2000 파스칼일 수 있다. 다만, 어떠한 경우에도, 공정 챔버(130)의 압력에 비해 고속 이송관(122)의 압력이 높아야 한다.
더불어, 공정 챔버(130)의 내부 온도 범위는 상온, 즉 대략 0 ℃ 내지 30 ℃로 유지되며, 따라서 별도로 공정 챔버(130)의 내부 온도를 증가시키거나 감소시키기 위한 부재가 없어도 좋다. 즉, 이송 가스 또는/및 모재가 별도로 가열되지 않고, 0 ℃ 내지 30 ℃의 온도로 유지될 수 있다. 따라서, 본 발명에서는 모재가 열적으로 충격을 받지 않게 된다.
그러나, 경우에 따라 불투명 코팅층의 증착 효율 및 치밀도 향상을 위해, 이송 가스 또는/및 모재가 대략 30 ℃ 내지 1000 ℃의 온도로 가열될 수도 있다. 즉, 별도의 도시되지 않은 히터에 의해 이송 가스 공급부(110) 내의 이송 가스가 가열되거나, 또는 별도의 도시되지 않은 히터에 의해 공정 챔버(130) 내의 모재(310)가 가열될 수 있다. 이러한 이송 가스 또는/및 모재의 가열에 의해 불투명 코팅층의 형성 시 글래스 분말에 가해지는 스트레스가 감소함으로써, 기공도가 작고 치밀한 불투명 코팅층이 얻어진다. 여기서, 이송 가스 또는/및 모재가 대략 1000 ℃의 온도보다 높을 경우, 글래스 분말이 용융되면서 급격한 상전이를 일으키고, 이에 따라 불투명 코팅층의 기공도가 높아지고(충진도가 낮아지고) 불투명 코팅층의 내부 구조가 불안정해질 수 있다.
그러나, 본 발명에서 이러한 온도 범위를 한정하는 것은 아니며, 불투명 코팅층이 형성될 모재의 특성에 따라 이송 가스, 모재 및/또는 공정 챔버의 내부 온도 범위는 0 ℃ 내지 1000 ℃ 사이에서 조정될 수 있다. 예를 들어, 표시 장치의 윈도우를 코팅하기 위해서는 대략 0 ℃ 내지 30 ℃의 공정 온도가 제공될 수 있고, 반도체/디스플레이 공정 장비를 코팅하기 위해서는 대략 0 ℃ 내지 1000 ℃의 공정 온도가 제공될 수 있다.
한편, 상기 공정 챔버(130)와 고속 이송관(122)(또는 이송 가스 공급부(110) 또는 분말 공급부(120)) 사이의 압력 차이는 대략 1.5배 내지 2000배 일 수 있다. 압력 차이가 대략 1.5배보다 작을 경우 분말의 고속 이송이 어려울 수 있고, 압력 차이가 대략 2000배보다 클 경우 분말에 의해 오히려 모재의 표면이 과도하게 식각될 수 있다.
이러한 공정 챔버(130)와 이송관(122)의 압력 차이에 따라, 분말 공급부(120)로부터의 분말은 이송관(122)을 통해 분사하는 동시에, 고속으로 공정 챔버(130)에 전달된다.
또한, 공정 챔버(130) 내에는 이송관(122)에 연결된 노즐(132)이 구비되어, 대략 100 내지 1500m/s의 속도로 글래스 분말을 모재(310)의 표면에 충돌시킴으로써, 불투명 코팅층을 형성한다. 즉, 노즐(132)을 통한 글래스 분말은 이송 중 얻은 운동 에너지와 고속 충돌 시 발생하는 충돌 에너지에 의해 파쇄되면서 모재(310)의 표면에 일정 두께의 불투명 코팅층을 형성한다.
여기서, 불투명 코팅층은 내부에 나노 또는 마이크로 단위의 기공이 있을 수 있으며 또한 기계적 충격에 의해 적층된 것이므로 모재의 법선 방향 또는 평면 방향에서 보았을 때 다수의 그레인과 그레인 바운더리가 관측될 수 있다.
글래스 분말이 노즐을 통해 분사되어, 모재(310)에 충돌하면서 파쇄되어 불투명 코팅층을 형성하게 되므로, 불투명 코팅층을 이루는 입자의 입경은 불투명 코팅층을 형성하기 위한 글래스 분말의 입경에 비해서 더 작은 크기를 갖는다.
상기 모재(310)는 세라믹, 글래스, 강화 글래스, 석영 글래스, 석영, 플라스틱, 금속, 에폭시 및 그 등가물중 선택된 적어도 하나로 이루어질 수 있다. 즉, 모재(310)는 하나의 재질로 이루어진 단층 모재이거나, 2개의 재질 이상이 적층된 복층 모재일 수 있다. 예를 들어, 모재(310)는 강화 글래스로 이루어진 단층 모재이거나, 글래스에 세라믹이 적층된 복층 모재일 수 있다. 특히, 모재(310)는 표면 조도가 0.1 ㎛ 이상이거나, 유기 소재 또는 플라스틱 소재로 된 것일 수 있다.
상기 세라믹은 알루미나(Al2O3), 지르코니아(ZrO2), 산화아연(ZnO), 질화알루미늄(AlN) 중 적어도 하나일 수 있다. 상기 금속은 알루미늄(Al), 구리(Cu), 텅스텐(W), 스테인레스강(SUS)중 어느 하나일 수 있다. 또한 플라스틱은 PC(Polycarbonate)계열, PET(Polyethylene terephthalate), PI(Polyamide)계열, PMMA(Polymethyl Methacrylat), PBT(Polybutylene terephthalate), PU(Polyurethane), PVA(Polyvinyl alcohol), PVB(Polyvinyl butyral)및 그 등가물 중 어느 하나일 수 있다.
상기 불투명 코팅층을 형성하기 위한 글래스 파우더는, 예를 들면, 한정하는 것은 아니지만, Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO, PbO-SiO2-B2O3 및 그 등가물중에서 선택된 적어도 1종일 수 있다.
또한, 글래스 파우더는 내플라즈마 재료를 더 포함할 수 있다. 내플라즈마 재료는, 예를 들면, 한정하는 것은 아니지만, Al2O3, TiO2, AlN, ZrO2, CaO, SiC, SiO2, Si3N4, B2C, BN, TiN, Y2O3, Y2O3-Al2O3, YOF, Y5O4F7, Y6O5F8, Y7O6F9, Y17O14F23, YF3, YCl3, YBr3, LaF3, LaCl3, LaBr3, YOCl, YOBr, YOFCl, YOBrCl, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 불화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 염화물, MgF3, AlF3, CaF3, BaF3, YAG(Y3Al5O12), YSG(Yttria stabilized Zirconia) 및 그 등가물 중에서 선택된 적어도 1종일 수 있다. 이러한 내플라즈마 재료는 상술한 글래스 파우더의 재료와 혼합되어 이용될 수 있다.
한편, 도 2b에 도시된 바와 같이 열처리 장치(200)는, 공정 챔버(210), 공정 챔버(210)의 내측에 위치된 히터(220), 히터(220)의 상부에 위치된 적어도 하나의 플래시 램프(230), 플래시 램프(230)의 상부에 위치된 리플렉터(240)를 포함할 수 있다.
여기서, 이러한 열처리 장치(200)는 본 발명의 이해를 위한 일례에 불과하며, 이러한 열처리 장치로 본 발명이 한정되어서는 안된다. 또한, 히터(220)는 경우에 따라 생략될 수도 있다.
상술한 바와 같이, 그레인 바운더리를 갖는 불투명층(도시되지 않음)이 형성된 모재(310)가 챔버(210)의 히터(220) 위에 위치되어, 소정 온도로 예비 가열될 수 있다. 이어서 플래시 램프(230)가 동작함으로써, 모재(310)에 형성된 불투명층에만 고에너지가 전달될 수 있다. 예를 들면, 불투명층은 대략 0℃ 내지 400℃ 사이에서 각 온도 별로 대략 0.1분 내지 10분 동안 예비 가열 후, 플래시 램프(230)에 의해 열처리 또는 어닐링될 수 있다. 또한, 예비 가열 온도는 주사되는 플래시 램프의 에너지 밀도가 낮거나 파워가 낮은 경우에 대략 1500℃까지 증가될 수 있다. 더불어, 예비 가열은 불활성 질소(N2) 분위기에서 진행될 수 있다.
플래시 램프(230)는 적어도 1회 샷(shot)으로 조사될 수 있다. 플래시 램프(230)의 조사 횟수가 1회 이상이면 그레인 바운더리를 갖는 불투명층이 그레인 바운더리를 갖지 않는 투명 코팅층으로의 변환 효율이 증가된다. 플래시 램프(230)에서 조사되는 1회 샷은 대략 1 내지 50 J/㎠의 에너지 밀도를 갖는 것이 바람직하다. 플래시 램프(230)에서 조사되는 1회 샷의 에너지 밀도가 너무 낮으면 변환 효율(불투명-->투명)이 너무 낮게 된다. 또한, 플래시 램프(230)에서 조사되는 광의 에너지 밀도가 너무 높으면 불투명 코팅층이 부분적으로만 용융될 수 있다. 또한, 플래시 램프(230)에서 조사되는 1회 샷은 사인파로 인가되는 경우에 반치전폭이 대략 1㎲ec 내지 20 msec일수 있다.
이러한 플래시 램프에서 조사되는 1회 샷은 파형에 관계없이 펄스 폭이 대략 1㎲ec 내지 50 msec일 수 있다. 플래시 램프에서 조사되는 1회 샷은 펄스 폭이 대략 1 msec 일 수 있다. 1회 샷의 반치전폭 또는 펄스 폭은 불투명 코팅층에서 투명 코팅층으로의 변환 효율에 영향을 주며, 너무 짧으면 변환 효율이 낮게 되며, 너무 길면 투명 코팅층의 특성에 영향을 줄 수 있다.
일례로, 이러한 플래시 램프에 의한 열처리/어닐링 결과, 불투명 코팅층의 광 투과도는 대략 0.1% 내지 60%였고, 투명 코팅층의 광 투과도는 30% 내지 95%로 관측되었다.
즉, 불투명 코팅층은 그레인 또는 그레인 바운더리를 갖지 않는 투명 코팅층으로 변환됨으로써, 투명 코팅층이 우수한 광투과도를 가질 뿐만 아니라, 뛰어난 자기적 특성, 내식성, 내마모성, 고강도, 경도와 인성, 고비저항 등을 갖게 된다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 글래스 코팅 구조물의 형성 방법을 도시한 개략도이다.
도 3a에 도시된 바와 같이, 예를 들면, 한정하는 것은 아니지만 대략 평판 형태의 모재(310)가 제공된다. 이어서, 도 3b에 도시된 바와 같이, 상온 분사 공정을 통하여 모재(310) 위에 에어로졸 상태의 글래스 파우더가 분사됨으로써, 그레인 바운더리를 갖는 불투명 코팅층(320)이 형성된다. 마지막으로, 도 3c에 도시된 바와 같이, 열처리 공정이 수행됨으로써 그레인 바운더리를 갖는 불투명 코팅층(320)이 그레인 바운더리를 갖지 않는 투명 코팅층(330)으로 변환된다.
이와 같이, 본 발명은 글래스 파우더를 모재에 상온 진공 분사 방식으로 코팅하고, 이어서 열처리 공정을 수행함으로써, 그레인 바운더리가 없는 높은 광 투과도를 갖는 글래스 코팅 구조물(300)과 이의 형성 방법을 제공하게 된다.
이상에서 설명한 것은 본 발명에 의한 글래스 코팅 구조물 및 이의 형성 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (17)

  1. 모재; 및
    상기 모재 상에 글래스 파우더가 기계적 충격에 의해서 형성된 그레인 바운더리를 갖는 불투명 코팅층이 열처리됨으로써 형성된 그레인 바운더리가 없는 투명 코팅층을 포함함을 특징으로 하는 글래스 코팅 구조물.
  2. 제 1 항에 있어서,
    상기 모재는 글래스, 강화 글래스, 석영 글래스, 석영, 에폭시, 알루미나(Al2O3), 지르코니아(ZrO2), 산화아연(ZnO), 질화알루미늄(AlN), 알루미늄(Al), 구리(Cu), 텅스텐(W), 스테인레스강(SUS), PC(Polycarbonate), PET(Polyethylene terephthalate), PI(Polyamide), PMMA(Polymethyl Methacrylat), PBT(Polybutylene terephthalate), PU(Polyurethane), PVA(Polyvinyl alcohol) 또는 PVB(Polyvinyl butyral)를 포함하는 것을 특징으로 하는 글래스 코팅 구조물.
  3. 제 1 항에 있어서,
    상기 글래스 파우더는 Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO 및 PbO-SiO2-B2O3중에서 선택된 적어도 1종인 것인 것을 특징으로 하는 글래스 코팅 구조물.
  4. 제 1 항에 있어서,
    상기 글래스 파우더는 내플라즈마 재료를 포함하는 것을 특징으로 하는 글래스 코팅 구조물.
  5. 제 4 항에 있어서,
    상기 내플라즈마 재료는 Al2O3, TiO2, AlN, ZrO2, CaO, SiC, SiO2, Si3N4, B2C, BN, TiN, Y2O3, Y2O3-Al2O3, YOF, Y5O4F7, Y6O5F8, Y7O6F9, Y17O14F23, YF3, YCl3, YBr3, LaF3, LaCl3, LaBr3, YOCl, YOBr, YOFCl, YOBrCl, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 불화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 염화물, MgF3, AlF3, CaF3, BaF3, YAG(Y3Al5O12) 및 YSG(Yttria stabilized Zirconia) 중에서 선택된 적어도 1종인 것을 특징으로 하는 글래스 코팅 구조물.
  6. 제 1 항에 있어서,
    상기 투명 코팅층은 XRD(X-Ray Diffrectometer) 측정 시 X선 피크가 나타나지 않는 것을 특징으로 하는 글래스 코팅 구조물.
  7. 모재; 및
    상기 모재 상에 글래스 파우더가 기계적 충격에 의해서 형성된 그레인 바운더리가 없는 투명 코팅층을 포함함을 특징으로 하는 글래스 코팅 구조물.
  8. 모재를 제공하는 단계;
    상기 모재 상에 글래스 파우더를 기계적으로 충격시켜 그레인 바운더리를 갖는 불투명 코팅층을 형성하는 단계; 및
    상기 그레인 바운더리를 갖는 불투명 코팅층을 열처리하여 그레인 바운더리가 없는 투명 코팅층으로 비정질화시키는 단계를 포함함을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  9. 제 8 항에 있어서,
    상기 글래스 파우더는 1 nm 내지 50 ㎛의 입경 범위를 갖는 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  10. 제 8 항에 있어서,
    상기 글래스 파우더를 기계적으로 충격시켜 그레인 바운더리를 갖는 불투명 코팅층을 형성하는 단계는 상기 글래스 파우더를 에어로졸 상태로 만들어 100 m/s 내지 1500 m/s의 속도로 상기 모재에 충격시켜 이루어짐을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  11. 제 8 항에 있어서,
    상기 열처리하여 그레인 바운더리가 없는 투명 코팅층으로 비정질화시키는 단계는 레이저 빔 열처리 장치, 급속 열처리 장치(Rapid Thermal Annealing system), 전기 열처리 장치, 유도가열장치, 증기 열처리 장치, 플라즈마 열처리 장치 및 플래시 램프 열처리 장치 중에서 선택된 1종 또는 2종에 의해 수행됨을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  12. 제 8 항에 있어서,
    상기 불투명 코팅층의 광 투과도는 0.1% 내지 60%이고,
    상기 투명 코팅층의 광 투과도는 30% 내지 95%인 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  13. 제 8 항에 있어서,
    상기 모재는 글래스, 강화 글래스, 석영 글래스, 석영, 에폭시, 알루미나(Al2O3), 지르코니아(ZrO2), 산화아연(ZnO), 질화알루미늄(AlN), 알루미늄(Al), 구리(Cu), 텅스텐(W), 스테인레스강(SUS), PC(Polycarbonate), PET(Polyethylene terephthalate), PI(Polyamide), PMMA(Polymethyl Methacrylat), PBT(Polybutylene terephthalate), PU(Polyurethane), PVA(Polyvinyl alcohol) 또는 PVB(Polyvinyl butyral)를 포함하는 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  14. 제 8 항에 있어서,
    상기 글래스 파우더는 Bi2O3-B2O3-BaO-SiO2, Bi2O3-B2O3-ZnO-SiO2, Bi2O3-B2O3-ZnO, B2O3-SiO2-Al2O3, ZnO-B2O3-SiO2, Bi2O3-B2O3-SiO2-R2O, ZnO-B2O3-P2O5, PbO-B2O3-ZnO, PbO-SiO2-B2O3-ZnO 및 PbO-SiO2-B2O3중에서 선택된 적어도 1종인 것인 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  15. 제 8 항에 있어서,
    상기 글래스 파우더는 내플라즈마 재료를 포함하는 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  16. 제 15 항에 있어서,
    상기 내플라즈마 재료는 Al2O3, TiO2, AlN, ZrO2, CaO, SiC, SiO2, Si3N4, B2C, BN, TiN, Y2O3, Y2O3-Al2O3, YOF, Y5O4F7, Y6O5F8, Y7O6F9, Y17O14F23, YF3, YCl3, YBr3, LaF3, LaCl3, LaBr3, YOCl, YOBr, YOFCl, YOBrCl, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 산화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 불화물, 희토류 계열(Y 및 Sc을 포함하여 원자번호 57부터 71까지의 원소 계열) 염화물, MgF3, AlF3, CaF3, BaF3, YAG(Y3Al5O12) 및 YSG(Yttria stabilized Zirconia) 중에서 선택된 적어도 1종인 것을 특징으로 하는 글래스 코팅 구조물의 형성 방법.
  17. 제 8 항에 있어서,
    상기 투명 코팅층은 XRD(X-Ray Diffrectometer) 측정 시 X선 피크가 나타나지 않는 것을 특징으로 하는 글래스 코팅 구조물.
PCT/KR2018/001837 2017-02-10 2018-02-12 글래스 코팅 구조물 및 이의 형성 방법 WO2018147702A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0018488 2017-02-10
KR20170018488 2017-02-10
KR1020180016908A KR20180092900A (ko) 2017-02-10 2018-02-12 글래스 코팅 구조물 및 이의 형성 방법
KR10-2018-0016908 2018-02-12

Publications (1)

Publication Number Publication Date
WO2018147702A1 true WO2018147702A1 (ko) 2018-08-16

Family

ID=63106883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001837 WO2018147702A1 (ko) 2017-02-10 2018-02-12 글래스 코팅 구조물 및 이의 형성 방법

Country Status (1)

Country Link
WO (1) WO2018147702A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775164A (en) * 1971-05-10 1973-11-27 Sybron Corp Method of controlling crystallization of glass
JPH1160277A (ja) * 1997-08-18 1999-03-02 Nippon Electric Glass Co Ltd 抗菌性結晶化ガラス物品及びその製造方法
KR20020045782A (ko) * 2000-12-11 2002-06-20 전창오 글래스 코팅막을 갖는 세라믹 칩 소자 및 그의 제조방법
KR100833519B1 (ko) * 2003-10-25 2008-05-29 손명모 저융점 투명 프리트 유리의 제조방법
KR101476603B1 (ko) * 2014-01-17 2014-12-24 아이원스 주식회사 플라즈마 저항성이 향상된 세라믹 피막의 형성 방법 및 이에 따른 세라믹 피막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775164A (en) * 1971-05-10 1973-11-27 Sybron Corp Method of controlling crystallization of glass
JPH1160277A (ja) * 1997-08-18 1999-03-02 Nippon Electric Glass Co Ltd 抗菌性結晶化ガラス物品及びその製造方法
KR20020045782A (ko) * 2000-12-11 2002-06-20 전창오 글래스 코팅막을 갖는 세라믹 칩 소자 및 그의 제조방법
KR100833519B1 (ko) * 2003-10-25 2008-05-29 손명모 저융점 투명 프리트 유리의 제조방법
KR101476603B1 (ko) * 2014-01-17 2014-12-24 아이원스 주식회사 플라즈마 저항성이 향상된 세라믹 피막의 형성 방법 및 이에 따른 세라믹 피막

Similar Documents

Publication Publication Date Title
CN105658592B (zh) 制造涂覆有包括导电透明氧化物膜的叠层的基底的方法
WO2015108277A1 (ko) 플라즈마 저항성이 향상된 세라믹 피막의 형성 방법 및 이에 따른 세라믹 피막
CN100559513C (zh) 透明导电膜
CN106104775A (zh) 腔室涂层
CN101998937B (zh) 用于薄层沉积的方法
TW201829355A (zh) 燒結系統與燒結物件
US11668011B2 (en) Forming method of yttrium oxide fluoride coating film and yttrium oxide fluoride coating film prepared thereby
JP2019155478A (ja) 被膜の熱処理方法
US20130252002A1 (en) Gas barrier film, method of producing a gas barrier film, and electronic device
US5427823A (en) Laser densification of glass ceramic coatings on carbon-carbon composite materials
WO2010011113A2 (ko) 내 플라즈마성 갖는 세라믹 코팅체
WO1997037051A1 (fr) Procede de fabrication d'un substrat a couche mince et dispositif de fabrication
KR102106533B1 (ko) 플로라이드화 이트륨 옥사이드 코팅막의 형성 방법 및 이에 따른 플로라이드화 이트륨 옥사이드 코팅막
WO2021177502A1 (ko) 챔버 코팅재 및 그 제조 방법
WO2018147702A1 (ko) 글래스 코팅 구조물 및 이의 형성 방법
WO2018124739A1 (ko) 투명 불소계 박막의 형성 방법 및 이에 따른 투명 불소계 박막
US20220251702A1 (en) Method of making composite articles from silicon carbide
CN111025434A (zh) 防反射玻璃
KR20180092900A (ko) 글래스 코팅 구조물 및 이의 형성 방법
US20050003104A1 (en) Method for producing a uv-absorbing transparent wear protection layer
KR20190067199A (ko) 유기 발광 다이오드를 위한 광 추출 기판의 제조 방법 및 이를 포함하는 제품
JP2005169267A (ja) 成膜装置および成膜方法
JP4686956B2 (ja) 機能体の形成方法
Lebedev et al. Optically transparent, dense α-Al2O3 thick films deposited on glass at room temperature
US20040126625A1 (en) High dielectric strength member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750799

Country of ref document: EP

Kind code of ref document: A1