WO2018147485A1 - Tower-type waste water treatment apparatus - Google Patents

Tower-type waste water treatment apparatus Download PDF

Info

Publication number
WO2018147485A1
WO2018147485A1 PCT/KR2017/001458 KR2017001458W WO2018147485A1 WO 2018147485 A1 WO2018147485 A1 WO 2018147485A1 KR 2017001458 W KR2017001458 W KR 2017001458W WO 2018147485 A1 WO2018147485 A1 WO 2018147485A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
waste water
nozzle
main nozzle
chamber
Prior art date
Application number
PCT/KR2017/001458
Other languages
French (fr)
Korean (ko)
Inventor
이호준
Original Assignee
(주)비텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비텍코리아 filed Critical (주)비텍코리아
Priority to PCT/KR2017/001458 priority Critical patent/WO2018147485A1/en
Publication of WO2018147485A1 publication Critical patent/WO2018147485A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a tower type wastewater treatment apparatus capable of enhancing gas-liquid mixing and oxygen transfer rate while circulating a square orbit of liquid and gas.
  • Wastewater is water that is mixed with liquid or solid waste and cannot be used as it is. Wastewater is required to be treated for discharge or reuse.
  • wastewater from various industrial sites contains complex synthetic organic substances, which can cause depletion of dissolved oxygen and toxic effects on aquatic animals in the water system, or promote the growth and eutrophication of algae and aquatic plants, causing enormous damage to water resources. Will be affected.
  • the methods for the treatment of wastewater include physical methods such as precipitation, flotation, filtration, chemical methods such as oxidation, reduction, neutralization, and ion exchange, and biological methods using microorganisms such as activated sludge, water spraying, and digestion. There is this.
  • the biological method is a biochemical method using bacteria to remove dissolved organic matter in the wastewater, and can be divided into aerobic wastewater treatment that requires oxygen supply and anaerobic wastewater treatment that blocks oxygen contact.
  • the anaerobic wastewater treatment method does not require oxygen supply and has the advantage of obtaining combustible methane gas as energy, but has a disadvantage of having a long reaction period and generating an odor.
  • the aerobic wastewater treatment method can provide a form suitable for use in the workplace due to advantages such as short reaction time and complete organic material removal.
  • the aeration tank a mixed tank type reactor used as an aerobic wastewater treatment facility
  • high oxygen consumption is required due to the low oxygen utilization rate, which requires a large amount of air injection, and oxygen, wastewater and microorganisms are not sufficiently mixed in the aeration tank, resulting in an anoxic zone or a high concentration zone of influent harmful substances, resulting in a reduction in removal efficiency.
  • a large amount of odor is released as a large amount of air is supplied and opened for the acid.
  • Tower type wastewater treatment device is formed to have a high depth compared to the diameter is formed to have a deep water, Bio-Tower reactor, Loop reactor, High-efficiency Jet Loop reactor (High-performance Compact Reactor) has been developed and utilized.
  • the tower type wastewater treatment device includes a draft tube inside the reaction space, and is configured to improve gas-liquid mixing and oxygen transfer rate while circulating a square orbit of liquid and gas.
  • FIG. 1 shows an example of a tower type wastewater treatment apparatus according to the prior art.
  • a draft tube having both ends opened vertically in a space inside a reactor is installed vertically, and a two phase nozzle for supplying liquid and air to the upper side of the reactor is provided. It is provided.
  • the two-phase nozzle is provided with an air tube through which the air flows into the center of the conical, and includes a fluid tube through which water passes along the edge of the air tube.
  • an air tube through which the air flows into the center of the conical, and includes a fluid tube through which water passes along the edge of the air tube.
  • the liquid jet and the fine bubbles generated as described above form a through flow (F1) while descending to the bottom of the reactor along the induction pipe, and at the bottom of the reactor, the liquid jet collides with the bottom of the reactor and rises again. Circulation flow (F2) is formed.
  • the circulating flow (F2) is raised again outside the induction pipe by the momentum transfer of the through-flow (F1), a part of the gas included in the upward flow is discharged to the exhaust gas (Exhaust gas) to the top of the reactor In addition, the remaining part is recycled back into the inlet by the nozzle so that a total flow (F3) having a square circulation path inside / outside the induction pipe flows.
  • the three-phase mixture of liquid, air, and microorganisms is ideally mixed by the total flow (F3) which forms a strong turbulence, thereby maximizing mass transfer between these phases.
  • the injected fluid and gas are minutely split by the speed and frictional resistance.
  • the primary dispersion (Primary Dispersion) phenomenon occurs in which air is diffused and transferred to the microorganisms in the reactor to decompose the organic matter. Gases and liquids that pass through the interior as they rise together to form a gas mass larger than the initial state.
  • the gas and liquid which are elevated are drawn again by the injection force of the nozzle from the upper side of the induction pipe and reintroduced into the inside of the induction pipe.
  • the gas and liquid are moved by the strong turbulence and shear force while passing through the boundary region of the first dispersion.
  • Secondary dispersion (Secondary Dispersion) phenomenon that the liquid is finely split is appeared, the specific surface area of the microorganism is increased by the first and second dispersion, and the oxygen transfer efficiency is maximized.
  • dead zones (D) having no bubbles or very low concentrations are generated without rising flow (F2) formed around the bottom of the reactor, thereby depositing on the bottom of the reactor. As this is accumulated, there is a problem that the processing efficiency is lowered.
  • Tower type wastewater treatment apparatus includes a reaction chamber formed of a ratio of height and diameter of 5 to 7: 1, and a degassing chamber provided on the upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside A chamber, a wastewater pipe which is vertically introduced from the upper side of the degassing chamber toward the reaction chamber, and the wastewater pipe into which the wastewater flows in, and is located at the central portion of the wastewater pipe and is surrounded by the wastewater pipe and is subject to pressure change due to the supply of wastewater.
  • a main nozzle including an air pipe for supplying air together along the wastewater pipe, and a draft tube installed at a lower side of the main nozzle so that both ends are open and positioned on an axis line with the main nozzle in the reaction chamber ( Draft tube), an inlet which is introduced parallel to the bottom of the reaction chamber at the side of the reaction chamber, and vertically downward from the end of the inlet And a sub-nozzle having a curved portion formed on the axis of the main nozzle, wherein the injection portion is disposed closer to the draft tube between the bottom surface of the reaction chamber and the lower end of the draft tube. do.
  • the sub-nozzle further includes an air inlet part which is inserted in parallel with the inlet part at the side of the reaction chamber, and is formed to be bent vertically downward from an end of the air inlet part and installed to penetrate the axis of the injection part. It is characterized by.
  • the discharge pressure of the air discharge portion of the sub nozzle is controlled to a pressure of 50 to 80% of the air pressure injected from the main nozzle.
  • the reaction chamber is formed of a height and diameter ratio of 5 to 7: 1, and is provided on the upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside
  • a draft tube to be installed an inlet which is introduced in parallel with a bottom surface of the reaction chamber at a side of the reaction chamber, and at an end of the inlet
  • a sub-nozzle including a spraying portion bent vertically downward and positioned on an axis of the main nozzle, wherein the spraying portion is installed closer to the draft tube between the bottom of the reaction chamber and the lower end of the draft tube;
  • a square total flow (F3) is formed to circulate inside and outside of the draft tube, and the total flow (F3) of the gas-liquid mixture injected into the draft tube through the main nozzle
  • the through-flow F1, the auxiliary flow F1 'formed toward the bottom of the reaction chamber by the fluid discharged from the injection portion of the sub-nozzle, and the gas-liquid mixture injected along the through-flow F1 are drafted.
  • the tower-type wastewater treatment apparatus includes a reaction chamber having a height and diameter ratio of 5 to 7: 1, and a degassing gas provided at an upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside.
  • the chamber includes a chamber, a wastewater pipe flowing vertically from the upper side of the degassing chamber toward the reaction chamber, and a wastewater pipe into which the wastewater flows in, and located at a central portion of the wastewater pipe and surrounded by the wastewater pipe,
  • a main nozzle including an air pipe through which air is supplied along the waste water pipe due to a pressure change, and both ends of the main nozzle are opened and installed below the main nozzle so as to be positioned on an axis line with the main nozzle in the reaction chamber;
  • a draft tube an inlet which is introduced parallel to the bottom of the reaction chamber at the side of the reaction chamber, and an end of the inlet.
  • a sub-nozzle including a spraying portion which is bent vertically downward and positioned on an axis of the main nozzle, wherein the reaction chamber has a diameter of 1200 mm, a height of 8000 mm, and a height of the draft tube of 6000 mm.
  • the part is characterized in that located at a height of 2500mm from the bottom of the reaction chamber.
  • the sub-nozzle further includes an air inlet part which is inserted in parallel with the inlet part at the side of the reaction chamber, and is formed to be bent vertically downward from an end of the air inlet part and installed to penetrate the axis of the injection part.
  • the discharge pressure of the air discharge portion of the sub nozzle is controlled to a pressure of 50 to 80% of the air pressure injected from the main nozzle.
  • the injection portion of the subnozzle is positioned on the same axis as the main nozzle at a fixed height from the bottom of the chamber. Accordingly, the sub-nozzle effectively compensates for the decrease of the through flow F1 by the main nozzle toward the bottom of the chamber, and thus, an overall square gas-liquid mixed flow can be formed in the chamber.
  • the inflow portion of the sub-nozzle flows in parallel with the bottom surface, and the injection portion is located on the same line as the axis of the main nozzle, without interfering with the through flow (F1) of the main nozzle.
  • an overall gas-liquid circulation flow is formed in the chamber internal space, thereby preventing deposits from accumulating on the bottom of the chamber, thereby significantly increasing the volume load and throughput.
  • FIG. 1 is a view showing an example of a tower type wastewater treatment apparatus according to the prior art.
  • Figure 2 is a cross-sectional view showing an embodiment of the tower-type wastewater treatment apparatus according to the present invention.
  • Figure 3 is a sectional view showing another embodiment of the tower wastewater treatment apparatus according to the present invention.
  • FIG. 4 and 5 are views for showing the gas-liquid mixing flow formed through the embodiment of FIG.
  • 6 to 9 is a test report performed to evaluate the treatment performance of the tower wastewater treatment apparatus according to the present invention.
  • Figure 2 is a cross-sectional view showing an embodiment of the tower wastewater treatment apparatus according to the present invention.
  • the tower-type wastewater treatment device 100 is a high concentration of wastewater requiring biological treatment such as food waste, animal husbandry wastewater, industrial wastewater, etc. by supplying air (oxygen) with the wastewater and dissolving as much as possible. Process.
  • the tower type wastewater treatment apparatus 100 includes a chamber 200 forming a treatment space, a main nozzle 320 for supplying air (oxygen) together with the wastewater to the chamber 200, and the main nozzle ( Draft tube 400 and between the draft tube 400 and the bottom of the chamber 200 such that the gas-liquid mixed fluid supplied through 320 forms an ordered flow inside the chamber 200. It comprises a sub-nozzle 340 is located.
  • the chamber 200 is provided with a reaction chamber 220 having a height and diameter ratio of 5 to 7: 1 and a gas discharged from the reaction chamber 200 provided at an upper side of the reaction chamber 200.
  • Degassing chamber 240 is discharged to include.
  • the reaction chamber 220 has a cylindrical shape formed long in the longitudinal direction and has a size of 1200 mm in diameter and 8000 mm in height in this embodiment.
  • the degassing chamber 240 is installed to be in communication with the reaction chamber 220 in the upper portion of the reaction chamber 220, it is formed larger than the diameter of the reaction chamber 220.
  • the degassing chamber 240 has a diameter of 2200 mm and a height of 1200 mm to protrude outward from the reaction chamber 220 to provide a predetermined space in which waste water is accommodated.
  • one side of the degassing chamber 240 is provided with a discharge path for discharging the purified wastewater (Effluent), the other side to form a circulation path for the wastewater supplied to the main nozzle 320 and the circulation pipe for flowing it 150 and a circulation pump 160 connected to the circulation pipe 150 is further provided, and the main nozzle 320 is introduced into the upper center portion.
  • the circulation pipe 150 is a sludge return pump for supplying sludge so that a certain microorganism can be maintained in the wastewater pump 140 and the reaction chamber 220 for supplying wastewater from the outside of the chamber 200. 120 is connected to allow the waste water and microorganisms to be supplied into the reaction chamber 220 through the main nozzle 320.
  • the main nozzle 320 is inverted perpendicularly to the upper center portion of the degassing chamber 240, the lower end of the injected main nozzle 320 is inserted into the upper portion of the draft tube (400).
  • the main nozzle 320 installed as described above includes a wastewater pipe 324 for receiving and spraying wastewater from the circulation pipe 150, and an air pipe 322 provided in a form surrounded by the wastewater pipe 324. To form a double tube structure.
  • the inflowing wastewater is injected at a high speed to form a liquid jet, thereby forming a negative pressure at the bottom of the air pipe 322. As the air is sucked in to inject a mixture of gas and liquid.
  • the draft tube 400 is for guiding the flow of the gas-liquid mixture injected through the main nozzle 320, and is installed perpendicular to a central portion of the inner space of the reaction chamber 220, and the main nozzle 320. An end of the inner side of the lower end is spaced apart from the bottom of the reaction chamber 220.
  • the draft tube 400 is installed so that the upper and lower ends are spaced apart from the upper side and the lower side of the inner space of the reaction chamber 220 to guide the movement of the gas-liquid mixture injected from the main nozzle 320. do.
  • the gas, liquid, and microbial three-phase mixtures are ideally mixed in the reaction chamber 220. Maximize mass transfer between phases.
  • the sub-nozzle 340 is further provided between the draft tube 400 and the bottom of the reaction chamber 220.
  • the sub-nozzle 340 is inlet portion 342 is inserted in parallel with the bottom surface of the reaction chamber 220 at the side of the reaction chamber 220, and vertically downward from the end of the inlet portion 342 It is formed to be bent to include a spraying portion 344 is located on the axis of the main nozzle 320, although not shown, is connected to the degassing chamber 240 through a pipe and a pump to spray waste water do.
  • the sub-nozzle 340 is configured to inject the waste water vertically to the bottom of the reaction chamber 220 directly below the draft tube 400, thereby circulating the bottom of the reaction chamber 220 Flow for this is formed.
  • the sub-nozzle 340 is controlled to have a discharge pressure of 50 to 80% based on the pressure injected from the main nozzle 320, this control range can be determined in consideration of the purification efficiency and energy consumption. have.
  • the sub-nozzle 340 is formed smaller than the diameter of the draft tube 400 so as to prevent collision with the flow of the fluid discharged through the draft tube 400 to the maximum.
  • the inlet 342 is introduced from the bottom of the reaction chamber 220 at a height that does not interfere with the draft tube 400, the injector 344 and the bottom of the reaction chamber 220 It is installed to form a certain height (A).
  • the installation height (A) of the injection unit 344 may be determined through repeated experiments, in this embodiment, the diameter of the reaction chamber through the experiment is 1200mm, the height is 8000mm, the draft tube 400 When the height of is 6000mm, it was confirmed that the installation height (A) of the injection portion 344 exerts the optimum performance at 2500mm height.
  • the installation height (A) of the injection portion 344 is located above the more than 2500mm, the pressure discharged from the sub-nozzle 340 to the bottom of the reaction chamber 220 is reduced because the pressure
  • the injection unit 344 may be most effectively installed at a fixed position according to the size of the reaction chamber 220 and the draft tube 400.
  • the sub-nozzle 340 may be configured to spray the waste water and air together.
  • Figure 3 is a cross-sectional view showing another embodiment of the tower-type wastewater treatment apparatus according to the present invention.
  • the sub-nozzle 340 is provided with an air inlet 346 which is inserted in parallel with the inlet 342 at the side of the reaction chamber 220, the air inlet
  • the air discharge part 348 is further formed to be bent vertically downward from the end of the portion 346, and installed to penetrate along the axis of the injection portion 344.
  • the reaction efficiency inside the reaction chamber 220 is further improved.
  • such a sub-nozzle 340 is formed in a double pipe structure, as in the main nozzle 320, it is also possible to form the air is automatically introduced by the negative pressure when spraying by supplying waste water at high speed.
  • FIG. 4 and 5 are diagrams for showing the gas-liquid mixing flow formed through the embodiment of FIG.
  • a square total flow F3 circulating inside and outside of the draft tube 400 is formed inside the reaction chamber 220 of the tower type wastewater separation apparatus 100 according to the present invention.
  • the reaction chamber 220 has a through-flow (F1) of the gas-liquid mixture injected into the draft tube 400 through the main nozzle 320, and the injection portion of the sub-nozzle (340)
  • An auxiliary flow F1 'formed toward the bottom of the reaction chamber by the fluid discharged from 344 is formed along the central axis of the reaction chamber 220.
  • the total flow (F3) is the reaction chamber 220 as the through-flow (F1) and the turning flow (F2) and the auxiliary flow (F1 ') and the sub-nozzle turning flow (F2') is added together
  • the reaction takes place in the entire inner space of.
  • a reaction chamber with a diameter of 12m and a height of 9m is equipped with wastewater from Daegu Metropolitan City, which is equipped with a tower-type wastewater treatment device with a daily waste water capacity of 20 tons, a volume load of 25 kg / m3 and a daily treatment capacity of 20 tons.
  • the injection portion of the sub-nozzle to which the air is injected was sprayed at a height of 2.5m from the bottom of the reaction chamber, and the results are shown in Table 1 below.
  • the volume load is increased to 45 kg / m 3 as the flow by the sub-nozzle 340 joins the flow by the main nozzle 320 to form the entire flow.
  • the daily treatment capacity is also increased to 35 tons (ton) to reduce the operating cost, and according to the improvement of the precipitation effect has the effect of reducing chemicals during chemical treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present invention relates to a tower-type waste water treatment apparatus in which liquid and gas circulate along an ordered track, thereby improving liquid-gas mixture and oxygen transfer rate. The tower-type waste water treatment apparatus according to the present invention comprises: a chamber; a main nozzle; a draft tube; and a sub-nozzle. The chamber comprises: a reaction chamber in which the ratio of the height and diameter thereof is configured to be 5 to 7:1; and a deaeration chamber, which is provided on the upper side of the reaction chamber, for discharging gas discharged from the reaction chamber to the outside. The main nozzle comprises: a waste water tube which vertically penetrates through the reaction chamber from the upper side of the deaeration chamber and in which waste water is introduced; and an air tube, which is positioned in the center of the waste tube so as to be covered by the waste tube, for enabling air to be supplied together through the waste tube by means of a pressure change resulting from the supply of waste water. The draft tube has both ends open, and is installed on the lower side of the main nozzle so as to be positioned on the axial line with the main nozzle in the reaction chamber. The sub-nozzle comprises: an inlet which penetrates the reaction chamber from the side surface of the reaction chamber so as to be parallel with the lower surface of the reaction chamber; and an injection part which is vertically bent downwards from an end of the inlet and is positioned on the axial line of the main nozzle. When the diameter of the reaction chamber is 1200 mm and the height thereof is 8000 mm, the injection part is positioned at a height which is 2500 mm from the lower surface of the reaction chamber. According to the present invention, sediment is prevented from being piled up on the lower surface of the reaction chamber, and thus it is possible to remarkably increase volumetric loading and throughput.

Description

타워형 폐수처리 장치Tower Wastewater Treatment System
본 발명은 액체와 기체가 정연한 궤도를 순환하면서 기-액 혼합과 산소전달률을 증진시킬 수 있는 타워형 폐수처리장치에 관한 것이다.The present invention relates to a tower type wastewater treatment apparatus capable of enhancing gas-liquid mixing and oxygen transfer rate while circulating a square orbit of liquid and gas.
폐수(Wastewater)는 액체성 또는 고체성 폐기물이 혼입되어 그대로 사용할 수 없는 물로, 방류 또는 재사용을 위한 처리조작이 요구된다. Wastewater is water that is mixed with liquid or solid waste and cannot be used as it is. Wastewater is required to be treated for discharge or reuse.
특히, 다양한 산업장에서 발생 되는 폐수에는 복잡한 합성 유기물질들이 포함되어 수계에서 용존산소의 고갈 및 수생 동물에 독성 영향을 미치거나, 조류와 수생식물의 증식을 촉진하고 부영양화를 일으켜 수자원에 막대한 피해를 끼치게 된다.In particular, wastewater from various industrial sites contains complex synthetic organic substances, which can cause depletion of dissolved oxygen and toxic effects on aquatic animals in the water system, or promote the growth and eutrophication of algae and aquatic plants, causing enormous damage to water resources. Will be affected.
따라서 선진 각국에서는 이들의 배출수 허용농도를 엄격하게 규제하고 있으며, 국내에서도 2003년 1월 1일부터 생활하수 및 모든 산업폐수를 대상으로 규제를 시작하여 규제 강도가 꾸준히 높아지고 있다.Therefore, developed countries strictly regulate their allowable concentrations of discharged water, and from January 1, 2003, regulations on living sewage and all industrial wastewater have been steadily increasing in Korea.
한편, 폐수의 처리를 위한 방법에는 침전, 부상 분리, 여과 등의 물리적 방법과, 산화, 환원, 중화, 이온 교환법 등의 화학적 방법 및 활성오니법, 살수여상법, 소화 등 미생물을 사용하는 생물학적 방법이 있다.On the other hand, the methods for the treatment of wastewater include physical methods such as precipitation, flotation, filtration, chemical methods such as oxidation, reduction, neutralization, and ion exchange, and biological methods using microorganisms such as activated sludge, water spraying, and digestion. There is this.
이 중 생물학적 방법은 설치공간 확보와 시설비 및 운전비용 측면에서 물리/화학적 방법에 비해 경제적인 방법으로 다양한 산업장에 적용되고 있다.Among them, biological methods are applied to various industrial fields in an economical way compared with physical / chemical methods in terms of installation space, facility cost, and operation cost.
상기 생물학적 방법은 세균을 이용한 생화학적 방법으로 폐수 중의 용존유기물질을 제거하며, 크게 산소공급을 필요로 하는 호기성 폐수처리와 산소접촉을 차단하는 혐기성 폐수처리로 나눌 수 있다.The biological method is a biochemical method using bacteria to remove dissolved organic matter in the wastewater, and can be divided into aerobic wastewater treatment that requires oxygen supply and anaerobic wastewater treatment that blocks oxygen contact.
상기 혐기성 폐수처리 방법은 산소공급이 필요 없고, 에너지로서 가연성 메테인가스를 얻을 수 있는 장점이 있지만 반응기간이 길고 냄새가 발생하는 등의 단점을 가진다. 반면, 호기성 폐수처리 방법은 짧은 반응시간과 완전한 유기물질의 제거 등의 장점으로 인해 사업장에서 사용하기에 적합한 형태를 제공할 수 있다.The anaerobic wastewater treatment method does not require oxygen supply and has the advantage of obtaining combustible methane gas as energy, but has a disadvantage of having a long reaction period and generating an odor. On the other hand, the aerobic wastewater treatment method can provide a form suitable for use in the workplace due to advantages such as short reaction time and complete organic material removal.
한편, 호기성 폐수처리 시설로 이용되는 혼합탱크형 반응기인 포기조는 낮은 용적부하율로 조의 용량이 크게 요구되며, 수심이 낮아 넓은 부지면적이 소요된다. 또한, 낮은 산소 이용률로 많은 양의 공기 주입이 요구되어 에너지 소비가 크며, 산소와 폐수 그리고 미생물들이 포기조에서 충분히 혼합되지 않아 충격부하에서 무산소 구역 또는 유입유해물질의 고농도 구역이 발생되어 제거효율이 저하됨은 물론 산기를 위하여 많은 양의 공기가 공급되고 개방됨에 따라 다량의 악취가 방출되는 문제점을 가진다.On the other hand, the aeration tank, a mixed tank type reactor used as an aerobic wastewater treatment facility, requires a large capacity of the tank at a low volume load rate, and requires a large area due to its low water depth. In addition, high oxygen consumption is required due to the low oxygen utilization rate, which requires a large amount of air injection, and oxygen, wastewater and microorganisms are not sufficiently mixed in the aeration tank, resulting in an anoxic zone or a high concentration zone of influent harmful substances, resulting in a reduction in removal efficiency. Of course, there is a problem that a large amount of odor is released as a large amount of air is supplied and opened for the acid.
따라서, 설치요구 면적이 상대적으로 좁고 산소 전달률을 향상시킬 수 있는 호기성 폐수처리 시설이 요구되어, 포기조의 단점을 보완한 타워형 폐수처리 장치가 연구 개발되어 활용되고 있다.Therefore, the aerobic wastewater treatment facility that can be relatively small installation area and can improve the oxygen transfer rate is required, the tower type wastewater treatment apparatus to supplement the shortcomings of the aeration tank has been researched and developed.
타워형 폐수처리 장치는 직경에 비해 높이가 높게 형성되어 깊은 수심을 가지도록 형성되며, Bio-Tower 반응기, Loop 반응기, 고효율 Jet Loop 반응기(High-performance Compact Reactor) 등이 개발되어 활용되고 있다.Tower type wastewater treatment device is formed to have a high depth compared to the diameter is formed to have a deep water, Bio-Tower reactor, Loop reactor, High-efficiency Jet Loop reactor (High-performance Compact Reactor) has been developed and utilized.
일반적으로 타워형 폐수처리장치는 반응공간 내부에 유도관(Draft tube)을 구비하여 액체와 기체가 정연한 궤도를 순환하면서 기-액 혼합과 산소전달률을 증진시키도록 구성된다. In general, the tower type wastewater treatment device includes a draft tube inside the reaction space, and is configured to improve gas-liquid mixing and oxygen transfer rate while circulating a square orbit of liquid and gas.
도 1 에는 종래 기술에 따른 타워형 폐수처리장치의 일 예가 도시되어 있다. 1 shows an example of a tower type wastewater treatment apparatus according to the prior art.
도 1 에 도시된 타워형 폐수처리장치는 반응기 내부공간에 양단이 개방된 유도관(Draft tube)가 수직으로 설치되고, 유도관 상측으로 액체와 공기를 공급하기 위한 2상 노즐(Two Phase Nozzle)이 구비된다. In the tower type wastewater treatment apparatus shown in FIG. 1, a draft tube having both ends opened vertically in a space inside a reactor is installed vertically, and a two phase nozzle for supplying liquid and air to the upper side of the reactor is provided. It is provided.
상기 2상 노즐은 원추형 중심에 공기가 유입되는 공기관이 구비되고, 상기 공기관의 가장자리를 따라 물이 통과하는 유체관을 포함하며, 상기 유체관을 통해 빠른 속도로 액체가 주입되면 외기가 공기관을 통해 함께 유입되어 분사되면서 노즐 단부에서 액체제트(Liquid jet)와 미세 기포(Micro bubble)를 생성하게 된다.The two-phase nozzle is provided with an air tube through which the air flows into the center of the conical, and includes a fluid tube through which water passes along the edge of the air tube. When liquid is injected at a high speed through the fluid tube, the outside air passes through the air tube. As it is introduced and injected together, liquid jet and micro bubbles are generated at the nozzle end.
상기와 같이 생성되는 액체제트와 미세 기포는 상기 유도관을 따라 반응기 하단으로 내려가면서 관통 유동(Through flow, F1)을 형성하게 되며, 반응기 하단에서는 액체제트가 반응기 저면과 부딪혀 다시 상승하는 순환 유동(Circulation flow, F2)이 형성된다.The liquid jet and the fine bubbles generated as described above form a through flow (F1) while descending to the bottom of the reactor along the induction pipe, and at the bottom of the reactor, the liquid jet collides with the bottom of the reactor and rises again. Circulation flow (F2) is formed.
그리고, 상기 순환 유동(F2)은 상기 관통 유동(F1)의 운동량 전달에 의하여 유도관 외측에서 다시 상승하게 되며, 상승 흐름에 포함된 기체의 일부는 반응기 상부로 배기가스(Exhaust gas)로 배출되고, 나머지 일부는 노즐에 의해 다시 유입부 내부로 재순환됨으로써 상기 유도관의 내/외측에서 정연한 순환 경로를 가지는 전체 유동(Total flow, F3)이 흐르게 된다.In addition, the circulating flow (F2) is raised again outside the induction pipe by the momentum transfer of the through-flow (F1), a part of the gas included in the upward flow is discharged to the exhaust gas (Exhaust gas) to the top of the reactor In addition, the remaining part is recycled back into the inlet by the nozzle so that a total flow (F3) having a square circulation path inside / outside the induction pipe flows.
따라서, 상기 2상 노즐에서 유체를 강하게 분사하게 되면 강한 난류를 형성하는 전체 유동(F3)에 의해 액체, 공기 및 미생물의 3상 혼합물이 이상적으로 혼합되어 이들 상(Phase)간의 물질전달을 극대화시킨다.Therefore, when the fluid is strongly injected from the two-phase nozzle, the three-phase mixture of liquid, air, and microorganisms is ideally mixed by the total flow (F3) which forms a strong turbulence, thereby maximizing mass transfer between these phases. .
그 결과, 분사된 유체와 기체는 속도와 마찰저항에 의해 미세하게 쪼개어지는데, 이 과정에서 반응기 내 미생물로 공기가 확산 및 전달되어 유기를 분해하는 1차 분산(Primary Dispersion) 현상이 나타나며, 유도관 내부를 통과한 기체 및 액체는 상승하면서 기체끼리 뭉쳐 처음 상태보다 큰 기체 덩어리를 형성하게 된다.As a result, the injected fluid and gas are minutely split by the speed and frictional resistance. In this process, the primary dispersion (Primary Dispersion) phenomenon occurs in which air is diffused and transferred to the microorganisms in the reactor to decompose the organic matter. Gases and liquids that pass through the interior as they rise together to form a gas mass larger than the initial state.
그리고, 상승한 기체와 액체는 전술한 바와 같이 유도관 상측에서 다시 노즐의 분사력에 의해 다시 이끌려 유도관 내부로 재유입되며, 이때, 1차 분산의 경계구역을 통과하면서 강한 난류와 전단력에 의해 기체와 액체가 미세하게 쪼개지는 2차 분산(Secondary Dispersion) 현상이 나타나게 되어 1, 2차 분산에 의해 미생물의 비표면적이 증대되고 산소의 전달 효율이 극대화 된다.As described above, the gas and liquid which are elevated are drawn again by the injection force of the nozzle from the upper side of the induction pipe and reintroduced into the inside of the induction pipe. In this case, the gas and liquid are moved by the strong turbulence and shear force while passing through the boundary region of the first dispersion. Secondary dispersion (Secondary Dispersion) phenomenon that the liquid is finely split is appeared, the specific surface area of the microorganism is increased by the first and second dispersion, and the oxygen transfer efficiency is maximized.
하지만, 상기와 같은 종래 기술에서는 2상 노즐이 반응기의 상부에 위치됨에 따라 반응기 하부로 갈수록 공기압이 낮아지게 된다. However, in the prior art as described above, as the two-phase nozzle is located at the top of the reactor, the air pressure decreases toward the bottom of the reactor.
따라서, 도 1 에 도시된 바와 같이 반응기 저면 주변으로 상승 흐름(F2)이 형성되지 못하면서 기포가 존재하지 않거나 농도가 매우 낮은 사영역(Dead Zone, D)이 발생하게 되며, 이로 인해 반응기 저면에 퇴적물이 쌓이게 되면서 처리 효율이 저하되는 문제점을 가진다.Therefore, as shown in FIG. 1, dead zones (D) having no bubbles or very low concentrations are generated without rising flow (F2) formed around the bottom of the reactor, thereby depositing on the bottom of the reactor. As this is accumulated, there is a problem that the processing efficiency is lowered.
본 발명의 목적은 챔버의 상부에 구비되는 메인노즐의 기-액 혼합 흐름의 감소를 보상하기 위하여 메인노즐과 축선이 동일 선상에 위치하면서 챔버 저면으로부터 고정된 높이에 서브노즐을 더 구비함으로써 챔버의 저면까지 기-액 혼합 흐름이 정연한 궤도를 형성할 수 있도록 하는 타워형 폐수처리 장치를 제공하는 것이다.It is an object of the present invention to further reduce the gas-liquid mixing flow of the main nozzle provided in the upper part of the chamber by further providing a sub-nozzle at a fixed height from the bottom of the chamber while the main nozzle and the axis are co-linear. It is to provide a tower-type wastewater treatment device that allows the gas-liquid mixing flow to form a square orbit to the bottom.
본 발명에 따른 타워형 폐수처리 장치는 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버와, 상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐과, 양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube)와, 상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐을 포함하며, 상기 분사부는 상기 반응챔버의 저면과 상기 드래프트 튜브의 하단 사이에서 상기 드래프트 튜브와 보다 인접하도록 설치되는 것을 특징으로 한다.Tower type wastewater treatment apparatus according to the present invention includes a reaction chamber formed of a ratio of height and diameter of 5 to 7: 1, and a degassing chamber provided on the upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside A chamber, a wastewater pipe which is vertically introduced from the upper side of the degassing chamber toward the reaction chamber, and the wastewater pipe into which the wastewater flows in, and is located at the central portion of the wastewater pipe and is surrounded by the wastewater pipe and is subject to pressure change due to the supply of wastewater. A main nozzle including an air pipe for supplying air together along the wastewater pipe, and a draft tube installed at a lower side of the main nozzle so that both ends are open and positioned on an axis line with the main nozzle in the reaction chamber ( Draft tube), an inlet which is introduced parallel to the bottom of the reaction chamber at the side of the reaction chamber, and vertically downward from the end of the inlet And a sub-nozzle having a curved portion formed on the axis of the main nozzle, wherein the injection portion is disposed closer to the draft tube between the bottom surface of the reaction chamber and the lower end of the draft tube. do.
상기 서브노즐에는 상기 반응챔버의 측면에서 상기 유입부와 나란하게 관입되는 공기유입부와, 상기 공기유입부의 단부에서 수직 하방으로 절곡 형성되며, 상기 분사부의 축선을 관통하도록 설치되는 공기토출부가 더 포함되는 것을 특징으로 한다.The sub-nozzle further includes an air inlet part which is inserted in parallel with the inlet part at the side of the reaction chamber, and is formed to be bent vertically downward from an end of the air inlet part and installed to penetrate the axis of the injection part. It is characterized by.
상기 서브노즐의 공기토출부 토출압은 상기 메인노즐에서 분사되는 공기압의 50 내지 80% 크기의 압력으로 제어되는 것을 특징으로 한다.The discharge pressure of the air discharge portion of the sub nozzle is controlled to a pressure of 50 to 80% of the air pressure injected from the main nozzle.
다른 측면에서, 본 발명에 따른 타워형 폐수처리 장치는, 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버와, 상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐과, 양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube)와, 상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐을 포함하며, 상기 분사부는 상기 반응챔버의 저면과 상기 드래프트 튜브의 하단 사이에서 상기 드래프트 튜브와 보다 인접하도록 설치되고, 상기 반응챔버 내부에는 상기 드래프트 튜브의 내측과 외측을 순환하는 정연된 전체 유동(F3)이 형성되며, 상기 전체 유동(F3)은 상기 메인노즐을 통해 상기 드래프트 튜브로 분사되는 기-액 혼합체의 관통 유동(F1)과, 상기 서브노즐의 분사부에서 토출되는 유체에 의해 반응챔버 저면을 향해 형성되는 보조 유동(F1´)과, 상기 관통 유동(F1)을 따라 분사되는 기-액 혼합체가 드래프트 튜브의 하단에서 드래프트 튜브의 외측으로 선회하여 다시 상승하게 되는 선회 유동(F2) 및 상기 보조 유동(F1´)이 반응챔버 저면과 부딪히며 형성되는 서브노즐 선회 유동(F2´)이 상기 메인노즐의 선회 유동(F2)에 합류하여 형성되는 것을 특징으로 한다.In another aspect, the tower wastewater treatment apparatus according to the present invention, the reaction chamber is formed of a height and diameter ratio of 5 to 7: 1, and is provided on the upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside A chamber including the degassing chamber, a vertical inlet toward the reaction chamber from the upper side of the degassing chamber, a wastewater pipe into which the wastewater flows in, and a central portion of the wastewater pipe, which is surrounded by the wastewater pipe and supplied to the wastewater supply. A main nozzle including an air pipe through which air is supplied together along the waste water pipe by the pressure change, and both ends of the main nozzle are open and positioned below the main nozzle in an axis of the reaction chamber. A draft tube to be installed, an inlet which is introduced in parallel with a bottom surface of the reaction chamber at a side of the reaction chamber, and at an end of the inlet A sub-nozzle including a spraying portion bent vertically downward and positioned on an axis of the main nozzle, wherein the spraying portion is installed closer to the draft tube between the bottom of the reaction chamber and the lower end of the draft tube; In the reaction chamber, a square total flow (F3) is formed to circulate inside and outside of the draft tube, and the total flow (F3) of the gas-liquid mixture injected into the draft tube through the main nozzle The through-flow F1, the auxiliary flow F1 'formed toward the bottom of the reaction chamber by the fluid discharged from the injection portion of the sub-nozzle, and the gas-liquid mixture injected along the through-flow F1 are drafted. The swing flow (F2) and the auxiliary flow (F1 '), which will swing outward from the draft tube and rise again, will collide with the bottom of the reaction chamber. Characterized in that said sub-nozzle revolving flow is formed (F2') is formed by joining the turning flow (F2) of the main nozzle.
또 다른 측면에서 본 발명에 따른 타워형 폐수처리 장치는 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버와, 상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐과, 양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube)와, 상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐을 포함하며, 상기 반응챔버의 직경이 1200mm 이고, 높이가 8000mm이며, 상기 드래프트 튜브의 높이가 6000mm 일 경우 상기 분사부는 상기 반응챔버의 저면으로부터 2500mm 높이에 위치되는 것을 특징으로 한다.In another aspect, the tower-type wastewater treatment apparatus according to the present invention includes a reaction chamber having a height and diameter ratio of 5 to 7: 1, and a degassing gas provided at an upper side of the reaction chamber to discharge the gas discharged from the reaction chamber to the outside. The chamber includes a chamber, a wastewater pipe flowing vertically from the upper side of the degassing chamber toward the reaction chamber, and a wastewater pipe into which the wastewater flows in, and located at a central portion of the wastewater pipe and surrounded by the wastewater pipe, A main nozzle including an air pipe through which air is supplied along the waste water pipe due to a pressure change, and both ends of the main nozzle are opened and installed below the main nozzle so as to be positioned on an axis line with the main nozzle in the reaction chamber; A draft tube, an inlet which is introduced parallel to the bottom of the reaction chamber at the side of the reaction chamber, and an end of the inlet. And a sub-nozzle including a spraying portion which is bent vertically downward and positioned on an axis of the main nozzle, wherein the reaction chamber has a diameter of 1200 mm, a height of 8000 mm, and a height of the draft tube of 6000 mm. The part is characterized in that located at a height of 2500mm from the bottom of the reaction chamber.
상기 서브노즐에는 상기 반응챔버의 측면에서 상기 유입부와 나란하게 관입되는 공기유입부와, 상기 공기유입부의 단부에서 수직 하방으로 절곡 형성되며, 상기 분사부의 축선을 관통하도록 설치되는 공기토출부가 더 포함되며, 상기 서브노즐의 공기토출부 토출압은 상기 메인노즐에서 분사되는 공기압의 50 내지 80% 크기의 압력으로 제어되는 것을 특징으로 한다.The sub-nozzle further includes an air inlet part which is inserted in parallel with the inlet part at the side of the reaction chamber, and is formed to be bent vertically downward from an end of the air inlet part and installed to penetrate the axis of the injection part. The discharge pressure of the air discharge portion of the sub nozzle is controlled to a pressure of 50 to 80% of the air pressure injected from the main nozzle.
본 발명에 따른 타워형 폐수처리 장치에서는 챔버의 저면으로부터 고정된 높이에서 메인노즐과 동일한 축선 상에 서브노즐의 분사부가 위치된다. 따라서, 메인노즐에 의한 관통 유동(F1)이 챔버의 하부로 갈수록 줄어드는 것을 서브노즐을 통해 효과적으로 보상하여 챔버 내부공간에서 전체적으로 정연한 기-액 혼합 흐름이 형성될 수 있는 이점을 가진다. In the tower type wastewater treatment apparatus according to the present invention, the injection portion of the subnozzle is positioned on the same axis as the main nozzle at a fixed height from the bottom of the chamber. Accordingly, the sub-nozzle effectively compensates for the decrease of the through flow F1 by the main nozzle toward the bottom of the chamber, and thus, an overall square gas-liquid mixed flow can be formed in the chamber.
또한, 본 발명에 따른 타워형 폐수처리 장치에서는 상기 서브노즐의 유입부가 저면과 평행하게 유입되고, 분사부가 메인노즐의 축선과 동일 선상에 위치됨에 따라 메인노즐의 관통 유동(F1)을 거스르지 않으면서, 서브노즐의 보조 유동(F1´)이 형성될 뿐만 아니라, 챔버 저면에 부딪히며 형성되는 서브노즐 선회 유동(F2´)이 안정적으로 메인 노즐의 선회 유동(F2)에 합류하여 전체 유동(F3=F1+F1´+F2+F2´)을 형성하게 된다. In addition, in the tower-type wastewater treatment apparatus according to the present invention, the inflow portion of the sub-nozzle flows in parallel with the bottom surface, and the injection portion is located on the same line as the axis of the main nozzle, without interfering with the through flow (F1) of the main nozzle. In addition to the formation of the auxiliary flow (F1´) of the subnozzle, the subnozzle turning flow (F2 ') formed while hitting the bottom of the chamber stably joins the turning flow (F2) of the main nozzle so that the entire flow (F3 = F1 +). F1´ + F2 + F2´).
따라서, 본 발명에 따르면, 챔버 내부공간에 전체적으로 정연한 기-액 순환 흐름이 형성되어 챔버 저면에 퇴적물이 쌓이는 것을 방지함으로써 용적부하 및 처리량을 현저히 증가시킬 수 있는 효과를 가진다.Therefore, according to the present invention, an overall gas-liquid circulation flow is formed in the chamber internal space, thereby preventing deposits from accumulating on the bottom of the chamber, thereby significantly increasing the volume load and throughput.
도 1 은 종래기술에 따른 타워형 폐수처리 장치의 일 예를 보인 도면.1 is a view showing an example of a tower type wastewater treatment apparatus according to the prior art.
도 2 는 본 발명에 따른 타워형 폐수처리 장치의 일실시 예를 보인 단면도.Figure 2 is a cross-sectional view showing an embodiment of the tower-type wastewater treatment apparatus according to the present invention.
도 3 은 본 발명에 따른 타워형 폐수처리 장치의 다른 실시 예를 보인 단면도.Figure 3 is a sectional view showing another embodiment of the tower wastewater treatment apparatus according to the present invention.
도 4 및 도 5 는 도 3의 실시 예를 통해 형성되는 기-액 혼합 흐름을 보이기 위한 도면.4 and 5 are views for showing the gas-liquid mixing flow formed through the embodiment of FIG.
도 6 내지 9 는 본 발명에 따른 타워형 폐수처리 장치의 처리 성능을 평가하기 위해 수행된 시험성적서.6 to 9 is a test report performed to evaluate the treatment performance of the tower wastewater treatment apparatus according to the present invention.
이하에서는 도면을 참조하여, 본 발명의 구체적인 실시 예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시 예를 용이하게 제안할 수 있을 것이다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the spirit of the present invention is not limited to the embodiments presented, and those skilled in the art who understand the spirit of the present invention can easily suggest other embodiments within the scope of the same idea.
도 2 에는 본 발명에 따른 타워형 폐수처리 장치의 일실시 예를 보인 단면도가 도시되어 있다.Figure 2 is a cross-sectional view showing an embodiment of the tower wastewater treatment apparatus according to the present invention.
도면을 참조하면, 본 발명에 따른 타워형 폐수처리 장치(100)는 폐수와 함께 공기(산소)가 공급되어 최대한 용존되도록 하여 음식쓰레기나 축산 폐수, 산업 폐수 등의 생물학적 처리가 요구되는 고농도의 폐수를 처리한다. Referring to the drawings, the tower-type wastewater treatment device 100 according to the present invention is a high concentration of wastewater requiring biological treatment such as food waste, animal husbandry wastewater, industrial wastewater, etc. by supplying air (oxygen) with the wastewater and dissolving as much as possible. Process.
이를 위해 상기 타워형 폐수처리 장치(100)는 처리공간을 형성하는 챔버(200)와, 상기 챔버(200)에 폐수와 함께 공기(산소)를 공급하기 위한 메인노즐(320)과, 상기 메인노즐(320)을 통해 공급되는 기-액 혼합유체가 챔버(200) 내부에서 정연한(Ordered) 유동을 형성하도록 하는 드래프트 튜브(Draft tube, 400) 및 상기 드래프트 튜브(400)와 챔버(200) 저면 사이에 위치되는 서브노즐(340)을 포함하여 구성된다. To this end, the tower type wastewater treatment apparatus 100 includes a chamber 200 forming a treatment space, a main nozzle 320 for supplying air (oxygen) together with the wastewater to the chamber 200, and the main nozzle ( Draft tube 400 and between the draft tube 400 and the bottom of the chamber 200 such that the gas-liquid mixed fluid supplied through 320 forms an ordered flow inside the chamber 200. It comprises a sub-nozzle 340 is located.
상세히, 상기 챔버(200)에는 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버(220)와, 상기 반응챔버(200)의 상측에 구비되어 반응챔버(200)에서 배출되는 가스를 외부로 배출하는 탈기챔버(240)가 포함된다.In detail, the chamber 200 is provided with a reaction chamber 220 having a height and diameter ratio of 5 to 7: 1 and a gas discharged from the reaction chamber 200 provided at an upper side of the reaction chamber 200. Degassing chamber 240 is discharged to include.
즉, 상기 반응챔버(220)는 세로 방향으로 길게 형성되는 통 형상이며 본 실시 예에서는 직경 1200mm, 높이 8000mm의 크기를 가진다. That is, the reaction chamber 220 has a cylindrical shape formed long in the longitudinal direction and has a size of 1200 mm in diameter and 8000 mm in height in this embodiment.
상기 탈기챔버(240)는 상기 반응챔버(220)의 상부에서 반응챔버(220)와 연통가능하도록 설치되며, 상기 반응챔버(220)의 직경보다 크게 형성된다. 본 실시 예에서 상기 탈기챔버(240)는 직경 2200mm, 높이 1200mm로 형성되어 상기 반응챔버(220) 보다 측면이 외측으로 돌출됨으로써 폐수가 수용되는 소정의 공간을 제공한다.The degassing chamber 240 is installed to be in communication with the reaction chamber 220 in the upper portion of the reaction chamber 220, it is formed larger than the diameter of the reaction chamber 220. In the present embodiment, the degassing chamber 240 has a diameter of 2200 mm and a height of 1200 mm to protrude outward from the reaction chamber 220 to provide a predetermined space in which waste water is accommodated.
또한, 상기 탈기챔버(240)의 일측에는 정화된 폐수(Effluent)가 배출되는 배출경로가 마련되고, 타측에는 상기 메인노즐(320)로 공급되는 폐수의 순환경로를 형성하고 이를 유동시키기 위한 순환배관(150) 및 상기 순환배관(150)과 연결되는 순환펌프(160)가 더 구비되며, 상단 중앙 부분에는 상기 메인노즐(320)이 관입된다.In addition, one side of the degassing chamber 240 is provided with a discharge path for discharging the purified wastewater (Effluent), the other side to form a circulation path for the wastewater supplied to the main nozzle 320 and the circulation pipe for flowing it 150 and a circulation pump 160 connected to the circulation pipe 150 is further provided, and the main nozzle 320 is introduced into the upper center portion.
그리고, 상기 순환배관(150)에는 상기 챔버(200) 외부에서 폐수를 공급하기 위한 폐수펌프(140) 및 상기 반응챔버(220) 내부에 일정한 미생물이 유지될 수 있도록 슬러지를 공급하기 위한 슬러지 리턴펌프(120)가 연결되어 상기 메인노즐(320)을 통해 반응챔버(220) 내부로 폐수와 미생물이 공급될 수 있도록 한다.In addition, the circulation pipe 150 is a sludge return pump for supplying sludge so that a certain microorganism can be maintained in the wastewater pump 140 and the reaction chamber 220 for supplying wastewater from the outside of the chamber 200. 120 is connected to allow the waste water and microorganisms to be supplied into the reaction chamber 220 through the main nozzle 320.
한편, 상기 메인노즐(320)은 상기 탈기챔버(240)의 상단 중앙 부분에 수직으로 관입되며, 관입된 메인노즐(320)의 하단은 상기 드래프트 튜브(400)의 상부로 삽입된다.On the other hand, the main nozzle 320 is inverted perpendicularly to the upper center portion of the degassing chamber 240, the lower end of the injected main nozzle 320 is inserted into the upper portion of the draft tube (400).
이와 같이 설치되는 메인노즐(320)은 상기 순환배관(150)으로부터 폐수를 공급받아 분사하는 폐수관(324)과, 상기 폐수관(324)에 의해 감싸지는 형태로 구비되는 공기관(322)을 포함하여 이중관 구조로 형성된다.The main nozzle 320 installed as described above includes a wastewater pipe 324 for receiving and spraying wastewater from the circulation pipe 150, and an air pipe 322 provided in a form surrounded by the wastewater pipe 324. To form a double tube structure.
상기와 같이 구성되는 메인노즐(320)의 폐수관(324)에서는 유입되는 폐수가 빠른 속도로 분사되어 액체제트(Liquid Jet)를 형성하게 되며, 이로 인해 상기 공기관(322)의 하단에서는 음압이 형성되어 공기가 흡입되면서 기체와 액체의 혼합체를 분사하게 된다.In the wastewater pipe 324 of the main nozzle 320 configured as described above, the inflowing wastewater is injected at a high speed to form a liquid jet, thereby forming a negative pressure at the bottom of the air pipe 322. As the air is sucked in to inject a mixture of gas and liquid.
상기 드래프트 튜브(400)는 상기 메인노즐(320)을 통해 분사되는 기-액 혼합체의 흐름을 가이드 하기 위한 것으로, 상기 반응챔버(220) 내부공간 중앙 부분에 수직으로 설치되어 상기 메인노즐(320)의 단부를 내측에 수용하며, 하단은 상기 반응챔버(220)의 저면으로부터 이격된다.The draft tube 400 is for guiding the flow of the gas-liquid mixture injected through the main nozzle 320, and is installed perpendicular to a central portion of the inner space of the reaction chamber 220, and the main nozzle 320. An end of the inner side of the lower end is spaced apart from the bottom of the reaction chamber 220.
즉, 상기 드래프트 튜브(400)는 상단과 하단이 반응챔버(220)의 내부공간 상측과 하측으로부터 이격된 위치를 가지도록 설치되어 상기 메인노즐(320)에서 분사되는 기-액 혼합체의 이동을 가이드 한다. That is, the draft tube 400 is installed so that the upper and lower ends are spaced apart from the upper side and the lower side of the inner space of the reaction chamber 220 to guide the movement of the gas-liquid mixture injected from the main nozzle 320. do.
따라서, 상기 드래프트 튜브(400)의 내/외측에는 기-액 혼합체가 정연한 유동(Flow) 궤적을 형성함에 따라 반응챔버(220) 내부에서 기체와 액체 및 미생물 3상 혼합물이 이상적으로 혼합되어 이들 상(Phase)간의 물질전달을 극대화시킬 수 있다.Therefore, as the gas-liquid mixture forms a square flow trajectory inside / outside the draft tube 400, the gas, liquid, and microbial three-phase mixtures are ideally mixed in the reaction chamber 220. Maximize mass transfer between phases.
한편, 전술한 바와 같이 상기 드래프트 튜브(400)가 반응챔버(220)의 저면과 이격 설치됨에 따라 메인노즐(320)을 통해 유입되는 공기의 양이 부족할 경우 기-액 혼합체의 유동이 반응챔버(220)의 저면에 도달하지 못하게 된다. On the other hand, as described above, when the draft tube 400 is spaced apart from the bottom of the reaction chamber 220, when the amount of air flowing through the main nozzle 320 is insufficient, the flow of the gas-liquid mixture is the reaction chamber ( 220) will not reach the bottom.
따라서, 반응챔버(220) 저면에 퇴적물이 쌓일 수 있으므로 본 발명에서는 상기 드래프트 튜브(400)와 반응챔버(220) 저면 사이에 서브노즐(340)이 더 구비된다.Therefore, since deposits may accumulate on the bottom of the reaction chamber 220, the sub-nozzle 340 is further provided between the draft tube 400 and the bottom of the reaction chamber 220.
본 실시 예에서 상기 서브노즐(340)은 상기 반응챔버(220)의 측면에서 반응챔버(220)의 저면과 나란하게 관입되는 유입부(342)와, 상기 유입부(342)의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐(320)의 축선 상에 위치되는 분사부(344)를 포함하여 구성되며, 도시되지는 않았지만, 상기 탈기챔버(240)와 배관 및 펌프를 통해 연결되어 폐수를 분사하게 된다.In the present embodiment, the sub-nozzle 340 is inlet portion 342 is inserted in parallel with the bottom surface of the reaction chamber 220 at the side of the reaction chamber 220, and vertically downward from the end of the inlet portion 342 It is formed to be bent to include a spraying portion 344 is located on the axis of the main nozzle 320, although not shown, is connected to the degassing chamber 240 through a pipe and a pump to spray waste water do.
따라서, 상기와 같이 구성되는 서브노즐(340)은 상기 드래프트 튜브(400)의 직하방에서 반응챔버(220)의 저면으로 폐수를 수직으로 분사하게 되며, 이로 인해 반응챔버(220) 저면에서도 순환을 위한 유동(Flow)이 형성된다.Therefore, the sub-nozzle 340 is configured to inject the waste water vertically to the bottom of the reaction chamber 220 directly below the draft tube 400, thereby circulating the bottom of the reaction chamber 220 Flow for this is formed.
여기서, 상기 서브노즐(340)은 상기 메인노즐(320)에서 분사되는 압력을 기준으로 50 내지 80% 의 토출압력을 가지도록 제어되며, 이와 같은 제어범위는 정화효율과 에너지 소모를 고려하여 결정될 수 있다.Here, the sub-nozzle 340 is controlled to have a discharge pressure of 50 to 80% based on the pressure injected from the main nozzle 320, this control range can be determined in consideration of the purification efficiency and energy consumption. have.
또한, 상기 서브노즐(340)은 상기 드래프트 튜브(400)의 직경보다 작게 형성되어 상기 드래프트 튜브(400)를 통해 배출되는 유체의 흐름과 충돌하는 것이 최대한 방지되도록 한다. In addition, the sub-nozzle 340 is formed smaller than the diameter of the draft tube 400 so as to prevent collision with the flow of the fluid discharged through the draft tube 400 to the maximum.
이를 위해 상기 유입부(342)는 상기 반응챔버(220)의 저면으로부터 상기 드래프트 튜브(400)는 하단과 간섭되지 않는 높이에서 관입 되며, 상기 분사부(344)는 반응챔버(220)의 저면과 일정 높이(A)를 형성하도록 설치된다.To this end, the inlet 342 is introduced from the bottom of the reaction chamber 220 at a height that does not interfere with the draft tube 400, the injector 344 and the bottom of the reaction chamber 220 It is installed to form a certain height (A).
여기서, 상기 분사부(344)의 설치 높이(A)는 반복된 실험을 통해 결정될 수 있으며, 본 실시 예에서는 실험을 통해 반응챔버의 직경이 1200mm 이고, 높이가 8000mm이며, 상기 드래프트 튜브(400)의 높이가 6000mm 일 경우 상기 분사부(344)의 설치 높이(A)가 2500mm 높이에서 최적의 성능을 발휘하는 것으로 확인되었다. Here, the installation height (A) of the injection unit 344 may be determined through repeated experiments, in this embodiment, the diameter of the reaction chamber through the experiment is 1200mm, the height is 8000mm, the draft tube 400 When the height of is 6000mm, it was confirmed that the installation height (A) of the injection portion 344 exerts the optimum performance at 2500mm height.
즉, 반복된 실험에서는 상기 분사부(344)의 설치 높이(A)가 2500mm 미만일 경우 상기 드래프트 튜브(400)에서 배출되는 기-액 혼합체의 유동과 서브노즐(340)에 의해 형성되는 유체의 흐름이 효과적으로 연동하지 못하여 순환흐름이 크게 개선되지 않는 것으로 나타났다. That is, in the repeated experiment, when the installation height A of the injection unit 344 is less than 2500 mm, the flow of the gas-liquid mixture discharged from the draft tube 400 and the flow of the fluid formed by the sub-nozzle 340 It was found that the circulation flow did not improve significantly because of this failure.
반면, 상기 분사부(344)의 설치 높이(A)가 2500mm를 초과하여 보다 상측에 위치하게 되면, 서브노즐(340)에서 배출되는 유체가 반응챔버(220) 저면과 부딪히는 압력이 줄어들기 때문에 상기 분사부(344)는 반응챔버(220) 및 드래프트 튜브(400)의 크기에 따라 고정된 위치에 설치되는 것이 가장 효과적일 수 있다.On the other hand, if the installation height (A) of the injection portion 344 is located above the more than 2500mm, the pressure discharged from the sub-nozzle 340 to the bottom of the reaction chamber 220 is reduced because the pressure The injection unit 344 may be most effectively installed at a fixed position according to the size of the reaction chamber 220 and the draft tube 400.
한편, 상기 서브노즐(340)은 폐수와 공기를 함께 분사하도록 구성될 수 있다.On the other hand, the sub-nozzle 340 may be configured to spray the waste water and air together.
도 3 에는 본 발명에 따른 타워형 폐수처리 장치의 다른 실시 예를 보인 단면도가 도시되어 있다.Figure 3 is a cross-sectional view showing another embodiment of the tower-type wastewater treatment apparatus according to the present invention.
도면을 참조하면, 본 발명의 다른 실시 예에서 상기 서브노즐(340)에는 상기 반응챔버(220)의 측면에서 상기 유입부(342)와 나란하게 관입되는 공기유입부(346)와, 상기 공기유입부(346)의 단부에서 수직 하방으로 절곡 형성되며, 상기 분사부(344)의 축선을 따라 관통하도록 설치되는 공기토출부(348)가 더 포함된다. Referring to the drawings, in another embodiment of the present invention, the sub-nozzle 340 is provided with an air inlet 346 which is inserted in parallel with the inlet 342 at the side of the reaction chamber 220, the air inlet The air discharge part 348 is further formed to be bent vertically downward from the end of the portion 346, and installed to penetrate along the axis of the injection portion 344.
즉, 본 실시 예에서는 상기 서브노즐(340)이 폐수와 함께 공기를 분사할 수 있도록 함으로써 반응챔버(220) 내부의 반응 효율을 보다 향상시킨다. That is, in the present embodiment, by allowing the sub-nozzle 340 to inject air together with the waste water, the reaction efficiency inside the reaction chamber 220 is further improved.
또한, 이와 같은 서브노즐(340)은 상기 메인노즐(320)과 마찬가지로 이중관 구조로 형성됨으로써 폐수를 고속으로 공급하여 분사할 경우 음압에 의해 공기가 자동으로 유입되는 형태도 가능할 것이다.In addition, such a sub-nozzle 340 is formed in a double pipe structure, as in the main nozzle 320, it is also possible to form the air is automatically introduced by the negative pressure when spraying by supplying waste water at high speed.
도 4 및 도 5 에는 도 3의 실시 예를 통해 형성되는 기-액 혼합 흐름을 보이기 위한 도면이 도시되어 있다.4 and 5 are diagrams for showing the gas-liquid mixing flow formed through the embodiment of FIG.
이들 도면을 참조하면, 본 발명에 따른 타워형 폐수분리 장치(100)의 반응챔버(220) 내부에는 상기 드래프트 튜브(400)의 내측과 외측을 순환하는 정연된 전체 유동(F3)이 형성된다. Referring to these drawings, a square total flow F3 circulating inside and outside of the draft tube 400 is formed inside the reaction chamber 220 of the tower type wastewater separation apparatus 100 according to the present invention.
상세히, 상기 반응챔버(220)의 내부에는 상기 메인노즐(320)을 통해 상기 드래프트 튜브(400)로 분사되는 기-액 혼합체의 관통 유동(F1)과, 상기 서브노즐(340)의 분사부(344)에서 토출되는 유체에 의해 반응챔버 저면을 향해 형성되는 보조 유동(F1´)이 반응챔버(220) 중앙 축선을 따라 형성된다.In detail, the reaction chamber 220 has a through-flow (F1) of the gas-liquid mixture injected into the draft tube 400 through the main nozzle 320, and the injection portion of the sub-nozzle (340) An auxiliary flow F1 'formed toward the bottom of the reaction chamber by the fluid discharged from 344 is formed along the central axis of the reaction chamber 220.
그리고, 상기 관통 유동(F1)을 따라 분사되는 기-액 혼합체는 드래프트 튜브(400)의 하단에서 드래프트 튜브(400)의 외측으로 선회하여 상기 관통 유동(F1)의 운동량 전달에 의하여 다시 상승하게 되는 선회 유동(F2)을 형성한다. And, the gas-liquid mixture injected along the through flow (F1) is rotated to the outside of the draft tube 400 at the bottom of the draft tube 400 is raised again by the momentum transfer of the through flow (F1) Forms swirl flow F2.
또한, 상기 보조 유동(F1´)에 의해 반응챔버(220)의 저면과 부딪히며 형성되는 서브노즐 선회 유동(F2´)은 상기 메인노즐의 선회 유동(F2)과 합류하여 상승함으로써 전체 유동(F3)을 형성하게 된다. In addition, the sub-nozzle swing flow F2 'formed by colliding with the bottom surface of the reaction chamber 220 by the auxiliary flow F1' is combined with the swing flow F2 of the main nozzle to rise, thereby increasing the total flow F3. Will form.
즉, 본 발명에서는 상기 전체 유동(F3)은 관통 유동(F1)과 선회 유동(F2) 및 보조 유동(F1´)과 서브노즐 선회 유동(F2´)을 모두 합하여 이루어짐에 따라 반응챔버(220)의 내부공간 전 영역에서 반응이 이루어지게 된다.That is, in the present invention, the total flow (F3) is the reaction chamber 220 as the through-flow (F1) and the turning flow (F2) and the auxiliary flow (F1 ') and the sub-nozzle turning flow (F2') is added together The reaction takes place in the entire inner space of.
이하에서는 본 발명에 따른 타워형 폐수처리 장치(100)의 효율을 검증하기 위한 실험예 및 비교예 및 시험성적서를 통해 본 발명의 작용 효과를 상세히 설명한다.Hereinafter, the operation and effect of the present invention will be described in detail through experimental examples and comparative examples and test reports for verifying the efficiency of the tower type wastewater treatment apparatus 100 according to the present invention.
[실험예 1]Experimental Example 1
지름 12m, 높이 9m 인 반응챔버가 구비되며, 일일 폐수량 20톤(ton), 용적부하량 25 kg/㎥, 일일 처리용량 20톤(ton)인 타워형 폐수처리 장치가 설치된 대구광역시 소재의 제지회사에서 폐수 처리 실험을 하였다. 여기서, 공기가 분사되는 서브노즐의 분사부가 반응챔버의 저면으로부터 2.5m 높이에서 분사하도록 하였으며, 그 결과는 아래 [표 1]과 같이 나타났다.(단위-PPM)A reaction chamber with a diameter of 12m and a height of 9m is equipped with wastewater from Daegu Metropolitan City, which is equipped with a tower-type wastewater treatment device with a daily waste water capacity of 20 tons, a volume load of 25 kg / m3 and a daily treatment capacity of 20 tons. Treatment experiments were conducted. Here, the injection portion of the sub-nozzle to which the air is injected was sprayed at a height of 2.5m from the bottom of the reaction chamber, and the results are shown in Table 1 below.
표 1
부하량 일일부하량 침전조 화학처리후 방류기준
BOD 25000 500 200 90 150
COD 25000 500 180 100 150
T-N(질소) 25000 500 120 110 150
P(인) 2000 100 - - -
SS(부유물질) 25000 500 10 5 -
Table 1
Load Daily load Sedimentation tank After chemical treatment Discharge standard
BOD 25000 500 200 90 150
COD 25000 500 180 100 150
TN (nitrogen) 25000 500 120 110 150
P (person) 2000 100 - - -
SS (floating matter) 25000 500 10 5 -
[비교예 1]Comparative Example 1
상기 [실험예 1]에서 서브노즐이 설치되지 않은 기존 방식으로 폐수를 처리한 것을 제외하고 동일한 방식으로 폐수를 처리하였으며, 그 결과는 아래 [표 2]와 같이 나타났다.(단위-PPM)In Experimental Example 1, the wastewater was treated in the same manner except that the wastewater was treated in a conventional manner in which the sub-nozzle was not installed. The results are shown in Table 2 below. (Unit-PPM)
표 2
부하량 일일부하량 침전조 화학처리후 방류기준
BOD 25000 500 300 140 150
COD 25000 500 300 140 150
T-N(질소) 25000 500 250 120 150
P(인) 2000 100 - 20 -
SS(부유물질) 25000 500 120 20 -
TABLE 2
Load Daily load Sedimentation tank After chemical treatment Discharge standard
BOD 25000 500 300 140 150
COD 25000 500 300 140 150
TN (nitrogen) 25000 500 250 120 150
P (person) 2000 100 - 20 -
SS (floating matter) 25000 500 120 20 -
[비교예 2]Comparative Example 2
상기 [실험예 1]에서 서브노즐이 드래프트 튜브 내에 설치되는 것을 제외하고 동일한 방식으로 폐수를 처리하였으며, 그 결과는 아래 [표 3]과 같이 나타났다. (단위-PPM)In Experimental Example 1, the wastewater was treated in the same manner except that the sub-nozzle was installed in the draft tube, and the results are shown in Table 3 below. (Unit-PPM)
표 3
부하량 일일부하량 침전조 화학처리후 방류기준
BOD 25000 500 300 140 150
COD 25000 500 300 140 150
T-N(질소) 25000 500 250 120 150
P(인) 5000 100 - - -
SS(부유물질) 25000 500 120 20 -
TABLE 3
Load Daily load Sedimentation tank After chemical treatment Discharge standard
BOD 25000 500 300 140 150
COD 25000 500 300 140 150
TN (nitrogen) 25000 500 250 120 150
P (person) 5000 100 - - -
SS (floating matter) 25000 500 120 20 -
상기 [표 1] 내지 [표 3]에서 확인할 수 있듯이 본 발명에 따라 서브노즐이 설치된 타워형 폐수처리 장치를 거쳐 침전조로 공급된 폐수 및 화학처리후의 폐수는 BOD, COD, T-N, SS 항목에서 [비교예 1] 및 [비교예 2]에 비해 현저히 감소하였으며, 도 6 내지 도 9에 도시된 시험성적서를 통해서도 효과가 확인된다.As can be seen from the above [Table 1] to [Table 3], the wastewater supplied to the sedimentation tank through the tower type wastewater treatment device equipped with sub-nozzles according to the present invention and the wastewater after chemical treatment were compared in the BOD, COD, TN, and SS items. Compared with Example 1] and [Comparative Example 2] was significantly reduced, the effect is also confirmed through the test report shown in FIGS.
결국, 본 발명에 따른 타워형 폐수처리 장치(100)에서는 상기 서브노즐(340)에 의한 유동이 메인노즐(320)에 의한 유동과 합류하여 전체 유동을 형성함에 따라 용적부하량이 45kg/㎥로 증가되고, 일일 처리용량도 35톤(ton)으로 증가하여 운전비용을 절감할 수 있고, 침전효과 개선에 따라 화학 처리시 화공약품을 절감할 수 있는 효과를 가진다. As a result, in the tower type wastewater treatment apparatus 100 according to the present invention, the volume load is increased to 45 kg / m 3 as the flow by the sub-nozzle 340 joins the flow by the main nozzle 320 to form the entire flow. In addition, the daily treatment capacity is also increased to 35 tons (ton) to reduce the operating cost, and according to the improvement of the precipitation effect has the effect of reducing chemicals during chemical treatment.

Claims (6)

  1. 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버;A chamber including a reaction chamber having a height and diameter ratio of 5 to 7: 1 and a degassing chamber provided above the reaction chamber to discharge gas discharged from the reaction chamber to the outside;
    상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐;The upper part of the degassing chamber is vertically introduced into the reaction chamber, the waste water pipe into which the waste water flows in, and is located in the central portion of the waste water pipe, is surrounded by the waste water pipe, and the air is changed by the pressure change according to the supply of the waste water. Main nozzle including an air pipe to be supplied together along the waste water pipe;
    양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube);A draft tube which is open at both ends and is installed at a lower side of the main nozzle so as to be positioned on an axis line with the main nozzle in the reaction chamber;
    상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐;을 포함하며,And a sub-nozzle including an inlet portion introduced in parallel with a bottom surface of the reaction chamber at a side of the reaction chamber, and a spraying portion bent vertically downward from an end portion of the inlet portion and positioned on an axis of the main nozzle.
    상기 분사부는 상기 반응챔버의 저면과 상기 드래프트 튜브의 하단 사이에서 상기 드래프트 튜브와 보다 인접하도록 설치되는 것을 특징으로 하는 타워형 폐수처리 장치.The spraying unit is characterized in that the tower is disposed closer to the draft tube between the bottom of the reaction chamber and the lower end of the draft tube.
  2. 제 1 항에 있어서, 상기 서브노즐에는,The method of claim 1, wherein the sub-nozzle,
    상기 반응챔버의 측면에서 상기 유입부와 나란하게 관입되는 공기유입부와,An air inlet part parallel to the inlet part at the side of the reaction chamber;
    상기 공기유입부의 단부에서 수직 하방으로 절곡 형성되며, 상기 분사부의 축선을 따라 관통하도록 설치되는 공기토출부가 더 포함되는 것을 특징으로 하는 타워형 폐수처리 장치.The tower type wastewater treatment device, characterized in that the air inlet is bent in a vertical downward direction, the air discharge unit is installed to penetrate along the axis of the injection unit.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 서브노즐의 공기토출부 토출압은 상기 메인노즐에서 분사되는 공기압의 50 내지 80% 크기의 압력으로 제어되는 것을 특징으로 하는 타워형 폐수처리 장치.The discharge pressure of the air discharge portion of the sub-nozzle is a tower type wastewater treatment apparatus, characterized in that controlled to 50 to 80% of the pressure of the air pressure injected from the main nozzle.
  4. 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버;A chamber including a reaction chamber having a height and diameter ratio of 5 to 7: 1 and a degassing chamber provided above the reaction chamber to discharge gas discharged from the reaction chamber to the outside;
    상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐;The upper part of the degassing chamber is vertically introduced into the reaction chamber, the waste water pipe into which the waste water flows in, and is located in the central portion of the waste water pipe, is surrounded by the waste water pipe, and the air is changed by the pressure change according to the supply of the waste water. Main nozzle including an air pipe to be supplied together along the waste water pipe;
    양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube);A draft tube which is open at both ends and is installed at a lower side of the main nozzle so as to be positioned on an axis line with the main nozzle in the reaction chamber;
    상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐;을 포함하며,And a sub-nozzle including an inlet portion introduced in parallel with a bottom surface of the reaction chamber at a side of the reaction chamber, and a spraying portion bent vertically downward from an end portion of the inlet portion and positioned on an axis of the main nozzle.
    상기 분사부는 상기 반응챔버의 저면과 상기 드래프트 튜브의 하단 사이에서 상기 드래프트 튜브와 보다 인접하도록 설치되고,The injection unit is installed to be closer to the draft tube between the bottom of the reaction chamber and the lower end of the draft tube,
    상기 반응챔버 내부에는 상기 드래프트 튜브의 내측과 외측을 순환하는 정연된 전체 유동(F3)이 형성되며, Inside the reaction chamber is formed a square total flow (F3) circulating inside and outside of the draft tube,
    상기 전체 유동(F3)은,The total flow (F3),
    상기 메인노즐을 통해 상기 드래프트 튜브로 분사되는 기-액 혼합체의 관통 유동(F1)과, 상기 서브노즐의 분사부에서 토출되는 유체에 의해 반응챔버 저면을 향해 형성되는 보조 유동(F1´)과, 상기 관통 유동(F1)을 따라 분사되는 기-액 혼합체가 드래프트 튜브의 하단에서 드래프트 튜브의 외측으로 선회하여 다시 상승하게 되는 선회 유동(F2) 및 상기 보조 유동(F1´)이 반응챔버 저면과 부딪히며 형성되는 서브노즐 선회 유동(F2´)이 상기 메인노즐의 선회 유동(F2)에 합류하여 형성되는 것을 특징으로 하는 타워형 폐수처리 장치.Through flow (F1) of the gas-liquid mixture injected into the draft tube through the main nozzle, the auxiliary flow (F1 ') formed toward the bottom of the reaction chamber by the fluid discharged from the injection portion of the sub-nozzle, The swirling flow (F2) and the auxiliary flow (F1 ') that the gas-liquid mixture sprayed along the through-flow (F1) is rotated from the bottom of the draft tube to the outside of the draft tube to rise again hit the bottom of the reaction chamber Tower wastewater treatment device, characterized in that the formed sub-nozzle swing flow (F2 ') is formed by joining the swing flow (F2) of the main nozzle.
  5. 높이와 직경의 비가 5 내지 7 : 1로 형성되는 반응챔버와, 상기 반응챔버의 상측에 구비되어 반응챔버에서 배출되는 가스를 외부로 배출하는 탈기챔버가 포함되는 챔버;A chamber including a reaction chamber having a height and diameter ratio of 5 to 7: 1 and a degassing chamber provided above the reaction chamber to discharge gas discharged from the reaction chamber to the outside;
    상기 탈기챔버의 상측에서 반응챔버를 향해 수직하게 관입되며, 폐수가 유입되는 폐수관과, 상기 폐수관의 중앙 부분에 위치되어 폐수관에 의해 감싸지며 폐수의 공급에 따른 압력 변화에 의해 공기가 상기 폐수관을 따라 함께 공급되도록 하는 공기관을 포함하는 메인노즐;The upper part of the degassing chamber is vertically introduced into the reaction chamber, the waste water pipe into which the waste water flows in, and is located in the central portion of the waste water pipe, is surrounded by the waste water pipe, and the air is changed by the pressure change according to the supply of the waste water. Main nozzle including an air pipe to be supplied together along the waste water pipe;
    양단이 개방되며, 상기 반응챔버의 내부에서 상기 메인노즐과 축선 상에 위치하도록 상기 메인노즐의 하측에 설치되는 드래프트 튜브(Draft tube);A draft tube which is open at both ends and is installed at a lower side of the main nozzle so as to be positioned on an axis line with the main nozzle in the reaction chamber;
    상기 반응챔버의 측면에서 반응챔버의 저면과 나란하게 관입 되는 유입부와, 상기 유입부의 단부에서 수직 하방으로 절곡 형성되어 상기 메인노즐의 축선 상에 위치되는 분사부를 포함하는 서브노즐;을 포함하며,And a sub-nozzle including an inlet portion introduced in parallel with a bottom surface of the reaction chamber at a side of the reaction chamber, and a spraying portion bent vertically downward from an end portion of the inlet portion and positioned on an axis of the main nozzle.
    상기 반응챔버의 직경이 1200mm 이고, 높이가 8000mm이며, 상기 드래프트 튜브의 높이가 6000mm 일 경우 상기 분사부는 상기 반응챔버의 저면으로부터 2500mm 높이에 위치되는 것을 특징으로 하는 타워형 폐수처리 장치.The diameter of the reaction chamber is 1200mm, the height is 8000mm, when the height of the draft tube is 6000mm The tower type wastewater treatment apparatus, characterized in that the injection portion is located at a height of 2500mm from the bottom of the reaction chamber.
  6. 제 4 항 또는 제 5 항에 있어서, The method according to claim 4 or 5,
    상기 서브노즐에는 상기 반응챔버의 측면에서 상기 유입부와 나란하게 관입되는 공기유입부와, 상기 공기유입부의 단부에서 수직 하방으로 절곡 형성되며, 상기 분사부의 축선을 따라 관통하도록 설치되는 공기토출부가 더 포함되며,The sub-nozzle has an air inlet part which is inserted in parallel with the inlet part at the side of the reaction chamber, and is bent vertically downward from the end of the air inlet part, and an air discharge part which is installed to penetrate along the axis of the injection part is further provided. Included,
    상기 서브노즐의 공기토출부 토출압은 상기 메인노즐에서 분사되는 공기압의 50 내지 80% 크기의 압력으로 제어되는 것을 특징으로 하는 타워형 폐수처리 장치.The discharge pressure of the air discharge portion of the sub-nozzle is a tower type wastewater treatment apparatus, characterized in that controlled to 50 to 80% of the pressure of the air pressure injected from the main nozzle.
PCT/KR2017/001458 2017-02-10 2017-02-10 Tower-type waste water treatment apparatus WO2018147485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/001458 WO2018147485A1 (en) 2017-02-10 2017-02-10 Tower-type waste water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/001458 WO2018147485A1 (en) 2017-02-10 2017-02-10 Tower-type waste water treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/898,558 Continuation US11707402B2 (en) 2017-12-12 2020-06-11 Vision training device for fusional vergence and spatial vision training

Publications (1)

Publication Number Publication Date
WO2018147485A1 true WO2018147485A1 (en) 2018-08-16

Family

ID=63106841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001458 WO2018147485A1 (en) 2017-02-10 2017-02-10 Tower-type waste water treatment apparatus

Country Status (1)

Country Link
WO (1) WO2018147485A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000851A (en) * 1998-06-03 2000-01-15 임정홍 Upright aerator for treating organic wastewater
KR20000024239A (en) * 2000-01-31 2000-05-06 이승열 Equipment and treatment method for wastewater
KR200276093Y1 (en) * 2001-03-21 2002-05-18 정진도 Highly concentrated waste water disposal system
KR101045124B1 (en) * 2010-07-15 2011-06-30 김선옥 Treatment method and treatment unit for organic waste water
KR101678202B1 (en) * 2016-02-19 2016-11-21 우진건설주식회사 Leachate treatment system for waste landfill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000851A (en) * 1998-06-03 2000-01-15 임정홍 Upright aerator for treating organic wastewater
KR20000024239A (en) * 2000-01-31 2000-05-06 이승열 Equipment and treatment method for wastewater
KR200276093Y1 (en) * 2001-03-21 2002-05-18 정진도 Highly concentrated waste water disposal system
KR101045124B1 (en) * 2010-07-15 2011-06-30 김선옥 Treatment method and treatment unit for organic waste water
KR101678202B1 (en) * 2016-02-19 2016-11-21 우진건설주식회사 Leachate treatment system for waste landfill

Similar Documents

Publication Publication Date Title
CN102190365B (en) Three-phase bicirculating ozone catalytic fluidized bed and wastewater treatment method thereof
CN102161554A (en) Anaerobic hydrolysis-acidification and anoxic-aerobic process-sequencing batch reactor (AO-SBR) integrated sewage treatment reaction tank
CN206345720U (en) Nitration denitrification integrated bioreactor
CN212050834U (en) Coke quenching waste water ozone catalytic oxidation device
KR101304329B1 (en) Micro Bubble Reactor for Treatment of Wastewater Using Micro Bubble Diffuser With Cleaning Function
CN101693580A (en) Efficient compound biological treatment device
WO2018147485A1 (en) Tower-type waste water treatment apparatus
CN108623001B (en) Denitrification aerobic granular sludge sequencing batch reactor and working method thereof
CN212222543U (en) Synthesize ozone fenton fluidized bed reactor for sewage treatment
CN105060465A (en) Synchronous carbon and nitrogen removing reactor
CN204999682U (en) Synchronous carbon denitrogenation reactor that removes
CN113292195A (en) AnOnSewage treatment equipment
CN107381817A (en) A kind of micro- oxygen denitrification reactor of cavitation-preventive
ITMI961291A1 (en) REACTOR FOR PURIFYING POLLUTED RESIDUAL WATERS
RU173044U1 (en) DEVELOPMENT OF BIOLOGICAL WASTE WATER TREATMENT
CN111470737A (en) Sewage treatment equipment
KR101106761B1 (en) Separator circulation type activated sludge aeration tank and water treatment method using the same
KR20090083141A (en) Method for removal of ammonia from waste water
CN211946460U (en) C-AnOnSewage treatment device
KR100227819B1 (en) Equipment and treatment method for wastewater treatment
CN213060353U (en) Vertical circulation small-size integrated sewage treatment plant
CN217627784U (en) Novel preaeration biochemical reaction tank
CN214829743U (en) Nitrogen and phosphorus removal integrated reaction device suitable for rural domestic sewage treatment
KR100626180B1 (en) Method and Apparatus for the Biological Wastewater Treatment
CN213475518U (en) Integrated telescopic MBR (membrane bioreactor) integrated equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895694

Country of ref document: EP

Kind code of ref document: A1