WO2018146817A1 - Vacuum device - Google Patents

Vacuum device Download PDF

Info

Publication number
WO2018146817A1
WO2018146817A1 PCT/JP2017/005172 JP2017005172W WO2018146817A1 WO 2018146817 A1 WO2018146817 A1 WO 2018146817A1 JP 2017005172 W JP2017005172 W JP 2017005172W WO 2018146817 A1 WO2018146817 A1 WO 2018146817A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular groove
lid
opening
wall surface
end surface
Prior art date
Application number
PCT/JP2017/005172
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 庄司
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2017/005172 priority Critical patent/WO2018146817A1/en
Publication of WO2018146817A1 publication Critical patent/WO2018146817A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Definitions

  • the present invention relates to a vacuum apparatus such as a CVD (Chemical Vapor Deposition) apparatus, a sputtering apparatus, and a dry etching apparatus.
  • a vacuum apparatus such as a CVD (Chemical Vapor Deposition) apparatus, a sputtering apparatus, and a dry etching apparatus.
  • the chamber of the sputtering apparatus includes a lid 1101 that opens and closes an opening (not shown) of the chamber body.
  • An annular groove 1103 in which the seal member 1102 is disposed is provided on an end surface of the lid body 1101 on the chamber body side (upper side in FIG. 11).
  • the radially inner wall surface 1103 a of the annular groove 1103 has a circular arc cross section and is in contact with the seal member 1102.
  • the radially outer wall surface 1103b of the annular groove 1103 is formed to have a linear cross section and is inclined with respect to the bottom surface 1103c of the annular groove 1103.
  • the end of the wall surface 1103b on the chamber main body side is located on the radially inner side of the end of the wall surface 1103b opposite to the chamber main body (the lower side in FIG. 11) and contacts the seal member 1102. is doing.
  • the end of the wall surface 1103b on the chamber main body side contacts the seal member 1102, but the end of the wall surface 1103b opposite to the chamber main body side (the lower side in FIG. 11) is the seal member 1102. Not touching.
  • a space may be formed between the end of the wall surface 1103b opposite to the chamber body and the seal member 1102, and particles may accumulate in the space.
  • the particles accumulated in the space may move inward in the radial direction when the chamber is evacuated, for example, when the chamber is evacuated, and may contaminate the chamber.
  • an object of the present invention is to provide a vacuum apparatus that can reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
  • a vacuum apparatus includes a chamber having an opening, a chamber having a lid that opens and closes the opening, an end surface of the opening on the lid, and the chamber body of the lid. And a sealing member that seals between the end surface on the side, and the sealing member is disposed on one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body.
  • An annular groove is provided, and the inner wall surface in the radial direction of the annular groove is formed so that the cross section has an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove,
  • the lid When the lid is closed, it contacts the sealing member, and the radially outer wall surface of the annular groove is the other side of the end surface of the opening on the lid side and the end surface of the lid on the chamber body side Is located between the end of the seal member It is formed so as to have a gap, and during closing the opening of the lid, is characterized in that no contact with the sealing member.
  • a vacuum apparatus includes a chamber having a chamber body having an opening, a lid that opens and closes the opening, an end surface of the opening on the lid side, and the chamber of the lid.
  • a seal member that seals between the end surface on the main body side, and the seal member is disposed on one of the end surface on the lid body side of the opening and the end surface on the chamber main body side of the lid body.
  • a first annular groove and a second annular groove located radially inward of the first annular groove, and an end surface of the opening on the lid body side and the lid body on the chamber body side are provided.
  • the other of the end faces is provided with an annular wall that is inserted into the second annular groove when the opening is covered with the lid.
  • the vacuum device of the present invention can reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
  • FIG. 1 is a schematic view of a plasma CVD apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the process chamber main body of the first embodiment.
  • 3 is a schematic cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining a state when the lid body of the first embodiment is closed.
  • FIG. 5 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment.
  • FIG. 1 is a schematic view of a plasma CVD apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the process chamber main body of the first embodiment.
  • 3 is a schematic
  • FIG. 8 is a schematic perspective view of a lid of a plasma CVD apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a schematic perspective view of a process chamber main body of the plasma CVD apparatus according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view for explaining a state when the lid of the second embodiment is closed.
  • FIG. 11 is a schematic cross-sectional view of a main part of a conventional sputtering apparatus.
  • FIG. 1 is a schematic diagram for illustrating a schematic configuration of a plasma CVD apparatus according to a first embodiment of the present invention.
  • the plasma CVD apparatus includes a process chamber 1 that accommodates a rectangular substrate 10 in plan view, a gas supply mechanism 2 that supplies a source gas into the process chamber 1, and an exhaust mechanism 3 that exhausts the gas in the process chamber 1. It has.
  • the substrate size of the rectangular substrate 10 in plan view is, for example, 2880 mm ⁇ 3130 mm.
  • the process chamber 1 is an example of a chamber.
  • the process chamber 1 includes a container-shaped process chamber main body 11 having an opening 11a and a container-shaped lid 12 that opens and closes the opening 11a. Further, the process chamber body 11 and the lid body 12 are each grounded and formed of a metal such as aluminum so as to exhibit a bottomed rectangular tube shape.
  • the process chamber body 11 is an example of a chamber body.
  • a lower electrode 5 and an upper electrode 6 are provided to form parallel plate electrodes.
  • the lower electrode 5 faces the upper electrode 6 and has a mounting surface on the upper side on which the substrate 10 is mounted. Similarly to the substrate 10, the lower electrode 5 is also formed in a rectangular shape in plan view. More specifically, since the entire lower surface of the substrate 10 is supported by the lower electrode 5, the planar view shape of the lower electrode 5 is larger than the planar view shape of the substrate 10.
  • the upper electrode 6 is supported by the backing plate 7 and faces the lower electrode 5.
  • the source gas from the gas supply mechanism 2 is diffused in the diffusion space between the backing plate 7 and the upper electrode 6 and then supplied into the process chamber 1 from a plurality of discharge ports (not shown) of the upper electrode 6.
  • the backing plate 7 is grounded via the matching circuit 3 and a high-frequency power source 4 connected in series to the matching circuit 3.
  • a dielectric 8 made of ceramics is filled between the backing plate 7 and the process chamber 1.
  • the exhaust mechanism 3 has a vacuum pump, a pressure adjustment valve, and the like in order to set the degree of vacuum in the process chamber 1 to a desired value.
  • the substrate 10 When performing plasma processing using such a plasma processing apparatus, first, the substrate 10 is loaded into the process chamber 1 from a loading / unloading port (not shown) and mounted on the mounting surface of the lower electrode 5. Then, the source gas is introduced into the process chamber 1 from the gas supply mechanism 2 through the upper electrode 6 while the gas in the process chamber 1 is exhausted by the exhaust mechanism 3. After controlling the pressure of the raw material gas introduced into the process chamber 1, the high frequency power supply 4 applies high frequency power to the backing plate 7 through the matching circuit 3 to generate plasma in the process chamber 1. The substrate 10 is subjected to plasma treatment with plasma.
  • FIG. 2 is a schematic view when the process chamber body 11 is viewed from above.
  • illustration of the O-ring 13 as an example of a sealing member is abbreviate
  • annular groove 14 in which the O-ring 13 is disposed is provided on the upper end surface 51 of the opening 11a of the process chamber body 11.
  • the annular groove 14 extends along the outer side surface and the inner side surface of the process chamber body 11 while maintaining a certain distance from the outer side surface and the inner side surface of the process chamber body 11.
  • the annular groove 14 is formed to have the same depth at each part of the bottom surface of the annular groove 14.
  • the O-ring 13 seals between the upper end surface 51 of the opening 11a of the process chamber body 11 and the lower end surface 52 (shown in FIG. 1) of the side portion 12a of the lid 12 when the lid 12 is closed.
  • FIG. 3 is a schematic diagram showing a cross section when viewed from line III-III in FIG.
  • the O-ring 13 is molded using an elastic material excellent in plasma resistance, heat resistance, chemical resistance, etc., for example, a fluorine-based rubber material, and can be elastically deformed.
  • the center O of the cross section of the O-ring 13 is positioned below the upper end of the annular groove 14 when the lid 12 is opened. In other words, the depth of the annular groove 14 is set so that the center O of the cross section of the O-ring 13 is located in the annular groove 14.
  • the annular groove 14 includes a radially inner wall surface 14a (hereinafter referred to as “inner wall surface 14a”), a radially outer wall surface 14b (hereinafter referred to as “outer wall surface 14b”), and a bottom surface 14c.
  • inner wall surface 14a a radially inner wall surface 14a
  • outer wall surface 14b a radially outer wall surface 14b
  • bottom surface 14c a bottom surface 14c.
  • the radially inner end of the bottom surface 14c is connected to the lower end of the inner wall surface 14a.
  • the radially outer end of the bottom surface 14c is connected to the lower end of the outer wall surface 14b.
  • the inner wall surface 14 a of the annular groove 14 is a curved surface that is recessed toward the inside of the process chamber 1. More specifically, the cross-sectional shape of the inner wall surface 14a of the annular groove 14 is an elliptical arc shape.
  • the inner wall surface 14a of the annular groove 14 is not in contact with the O-ring 13 when the lid body 12 is opened, but when the lid body 12 is closed, as shown in FIG. It is formed to contact.
  • the inner wall surface 14a of the annular groove 14 and its peripheral portion, and the outer wall surface 14b of the annular groove 14 and its peripheral portion are all made of a metal such as aluminum. That is, the inner wall surface 14a of the annular groove 14 and its peripheral part are formed of the same metal material as the metal material of the outer wall surface 14b of the annular groove 14 and its peripheral part.
  • the outer wall surface 14 b of the annular groove 14 is formed so that the cross section has a linear shape. More specifically, the outer wall surface 14b of the annular groove 14 is a surface perpendicular to the bottom surface 14c, for example.
  • the outer wall surface 14b of the annular groove 14 is formed to have a gap with the O-ring 13 when the lid 12 is opened and closed. That is, there is a gap between the outer wall surface 14 b of the annular groove 14 and the O-ring 13, whether or not the opening 11 a of the process chamber body 11 is closed by the lid 12.
  • the O-ring 13 is elastically deformed.
  • the clearance between the outer wall surface 14 b of the annular groove 14 and the O-ring 13 is not limited to that of the process chamber body 11. This is smaller than when the opening 11a is not closed by the lid 12.
  • the outer wall surface 14b of the annular groove 14 may be a surface substantially perpendicular to the bottom surface 14c, or may be a surface inclined by a predetermined angle with respect to a surface perpendicular to the bottom surface 14c.
  • the bottom surface 14 c of the annular groove 14 is formed so that the cross section is a linear shape, and is a surface perpendicular to the central axis of the process chamber body 11.
  • the bottom surface 14c of the annular groove 14 may be a surface that is substantially perpendicular to the central axis of the process chamber body 11, or is inclined at a predetermined angle with respect to a surface that is perpendicular to the central axis of the process chamber body 11. It may be the surface.
  • the outer wall surface 14b of the annular groove 14 when the lid 12 is opened, the outer wall surface 14b of the annular groove 14 is not in contact with the O-ring 13 as shown in FIG. That is, the outer wall surface 14 b of the annular groove 14 has a space between the upper end and the lower end 13 with the O-ring 13. Therefore, even if particles accumulate in the space between the lower end portion of the outer wall surface 14b of the annular groove 14 and the O-ring 13, between the upper end portion of the outer wall surface 14b of the annular groove 14 and the O-ring 13 during maintenance. Therefore, the particles can be easily removed. As a result, particles between the lower end portion of the outer wall surface 14 b of the annular groove 14 and the O-ring 13 can be prevented from flowing into the process chamber 1. Therefore, the possibility that the inside of the chamber is contaminated with particles around the O-ring 13 can be reduced.
  • the lid 12 when the lid 12 is opened, there is a space between the outer wall surface 14 b of the annular groove 14 and the O-ring 13. Thereby, when the lid 12 is closed, as shown in FIG. 4, a part of the elastically deformed O-ring 13 is positioned in the space. That is, due to the presence of the space, large deformation of the O-ring 13 is allowed. Therefore, the O-ring 13 can be greatly deformed to increase the contact area between the lower end surface 52 of the side portion 12 a of the lid 12 and the O-ring 13. As a result, the sealing performance between the lower end surface 52 of the side 12 a of the lid 12 and the O-ring 13 can be enhanced.
  • the left side of the O-ring 13 in FIG. 4 becomes the vacuum side, while the right side of the O-ring 13 in FIG. Become.
  • the space between the outer wall surface 14b of the annular groove 14 and the O-ring 13 is an open space, and the atmospheric pressure is atmospheric pressure.
  • the area of the O-ring 13 that receives atmospheric pressure increases, so that the O-ring 13 can be strongly pressed against the inner wall surface 14a of the annular groove 14. That is, the O-ring 13 can be firmly adhered to the inner wall surface 14 a of the annular groove 14. Therefore, the sealing performance between the inner wall surface 14a of the annular groove 14 and the O-ring 13 can be enhanced.
  • the opening 11a of the process chamber main body 11 is opened and closed by the container-shaped lid 12, but may be opened and closed by a plate-shaped lid, for example.
  • the annular groove 14 is provided on the upper end surface 51 of the opening 11 a of the process chamber body 11.
  • the annular groove 14 may be provided on the lower end surface 52 of the side 12 a of the lid 12. Good.
  • the upper end surface 51 of the opening 11a of the process chamber body 11 is made flat, and the O-ring 13 is inserted into the annular groove provided in the lower end surface 52 of the side 12a of the lid 12. You may arrange.
  • a configuration in which the configuration of the upper end surface 51 of the opening 11a of the process chamber body 11 and the configuration of the lower end surface 52 of the side 12a of the lid 12 are interchanged may be used as an embodiment of the present invention.
  • the inner wall surface 14a of the annular groove 14 and the peripheral portion thereof are formed of the same metal material as the outer wall surface 14b of the annular groove 14 and the peripheral portion thereof. You may form with the material different from the metal material of the wall surface 14b and its peripheral part.
  • the inner wall surface 24a of the annular groove 24 and its peripheral portion are made of resin such as silicon resin, while the outer wall surface 24b of the annular groove 24 and its The peripheral part is made of a metal such as aluminum.
  • the inner wall surface 24a of the annular groove 24 and its peripheral portion can be formed by retrofitting parts, so that the conventional general plasma CVD apparatus can be modified to the plasma CVD apparatus of one embodiment of the present invention at low cost.
  • the bottom surface 14c of the annular groove 14 is formed to have a linear cross section, but as shown in FIG. 6, the curved surface is the same as or similar to the inner wall surface 34a of the annular groove 34. It is good. More specifically, the bottom surface 34c of the annular groove 34 is a curved surface formed in the region A2.
  • the region A2 is a region located on the radially outer side than the contact region A1 that contacts the seal member 13 when the lid 12 is closed. This area A2 is deeper than the contact area A1. Thereby, since the particles accumulate on the area A2 outside the contact area A1, the particles can be separated from the O-ring 13. As a result, particles on the bottom surface 34c of the annular groove 34 are less likely to adhere to the O-ring 13, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.
  • the inner wall surface 14a of the annular groove 14 formed so that the cross-sectional shape is an elliptical arc shape is used.
  • the cross-sectional shape is relative to the bottom surface 44c of the annular groove 44 as shown in FIG.
  • an inner wall surface 44a of the annular groove 44 formed to have a linear shape that is inclined may be used. In such a case, the groove width of the annular groove 44 is wider on the opening side than on the bottom side, as in the first embodiment.
  • annular groove 44 having a circular cross section may be used.
  • FIG. 8 is a schematic diagram when the lid 212 of the plasma CVD apparatus according to the second embodiment of the present invention is viewed obliquely from below.
  • the side portion 212 a and the annular wall 216 of the lid 212 are exaggerated and thickly shown for easy understanding of the structure.
  • the lid 212 constitutes the upper part of the process chamber 201, and differs from the lid 1 of the first embodiment only in that it has a square tubular annular wall 216 on the lower end surface. Yes.
  • the annular wall 216 is formed of a metal such as aluminum, for example, in the same manner as the portion other than the annular wall 216 of the lid 212, and is more radial than the center in the width direction of the lower end surface 252 of the side portion 212 a of the lid 212.
  • a backing plate, an upper electrode, a dielectric, and the like are provided in the lid 212 as in the first embodiment.
  • FIG. 9 is a schematic diagram showing a state when the process chamber main body 211 having the opening 211a opened and closed by the lid body 212 is viewed obliquely from above.
  • the opening 211a is exaggerated and thick for easy understanding of the structure.
  • illustration of the O-ring 13 as an example of a sealing member is omitted.
  • the process chamber body 211 is an example of a chamber body.
  • the process chamber main body 211 constitutes a lower part of the process chamber 201 and has an upper end surface 251 of an opening 211a.
  • a first annular groove 214 and a second annular groove 215 located radially inward of the first annular groove 214 are provided on the upper end surface 251 of the opening 211a.
  • the second annular groove 215 is an example of an inner annular groove.
  • the first and second annular grooves 214 and 215 respectively extend along the outer side surface and the inner side surface of the process chamber body 211 while maintaining a certain distance from the outer side surface and the inner side surface of the process chamber body 211. ing.
  • the first and second annular grooves 214 and 215 are formed so that the depths of the respective portions of the bottom surfaces 214c and 215c are the same.
  • FIG. 10 is a schematic cross-sectional view for explaining a state when the lid 212 is closed.
  • the O-ring 13 is molded using an elastic material excellent in plasma resistance, heat resistance, chemical resistance, etc., for example, a fluorine-based rubber material, and can be elastically deformed.
  • the O-ring 13 seals between the upper end surface 251 of the opening 211 a of the process chamber body 211 and the lower end surface 252 of the side portion 212 a of the lid 212 when the lid 212 is closed.
  • the center of the cross section of the O-ring 13 is located below the upper end of the first annular groove 214 when the lid 212 is opened. In other words, the depth of the first annular groove 214 is set so that the center of the cross section of the O-ring 13 is located in the first annular groove 214.
  • the first and second annular grooves 214 and 215 and their peripheral parts are made of the same metal material (for example, aluminum).
  • the first and second annular grooves 214 and 215 include radially inner wall surfaces 214a and 215a (hereinafter referred to as “inner wall surfaces 214a and 215a”) and radially outer wall surfaces 214b and 215b (hereinafter referred to as “ “Outer wall surfaces 214b and 215b”) and bottom surfaces 214c and 215c.
  • the inner wall surfaces 214a and 215a, the outer wall surfaces 214b and 215b, and the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are formed so as to have a linear cross section.
  • the inner wall surfaces 214 a and 215 a and the outer wall surfaces 214 b and 215 b of the first and second annular grooves 214 and 215 are parallel to the central axis of the process chamber body 211.
  • the bottom surface of the annular groove is a surface perpendicular to the central axis of the process chamber body 211.
  • the inner wall surfaces 214a and 215a and the outer wall surfaces 214b and 215b of the first and second annular grooves 214 and 215 may be substantially parallel to the central axis of the process chamber body 211, or the process chamber body.
  • a surface inclined by a predetermined angle with respect to a surface parallel to the central axis of 211 may be used.
  • the bottom surfaces 214c and 215c of the annular grooves 214 and 215 may be surfaces that are substantially perpendicular to the central axis of the process chamber main body 211, or may be surfaces that are perpendicular to the central axis of the process chamber main body 211.
  • the surface may be inclined at a predetermined angle.
  • the first and second annular grooves 214 and 215 are formed so that the depth of the second annular groove 215 is deeper than the depth of the first annular groove 214.
  • the depth of the second annular groove 215 is set to a depth that is twice or more the depth of the first annular groove 214.
  • the radially inner ends of the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are connected to the lower ends of the inner wall surfaces 214a and 215a.
  • the radially outer ends of the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are connected to the lower ends of the outer wall surfaces 214b and 215b.
  • the radial length of the bottom surface 214c is set to be longer than the axial lengths of the inner wall surface 214a and the outer wall surface 214b of the first annular groove 214. Further, the inner wall surface 214a and the outer wall surface 214b of the first annular groove 214 do not come into contact with the O-ring 13 when the lid 212 is opened and closed. The inner wall surface 214a and the outer wall surface 214b of the first annular groove 214 do not contact the O-ring 13 when the lid body 212 is opened, but may contact the O-ring 13 when the lid body 212 is closed. .
  • the length in the radial direction of the bottom surface 215c is set to be shorter than the length in the axial direction of the inner wall surface 215a and the outer wall surface 215b of the second annular groove 215. Further, most of the annular wall 216 is inserted into the second annular groove 215 when the lid 212 is closed. At this time, the annular wall 216 has a gap in the range of, for example, 0.1 mm to 0.3 mm between the inner wall surface 215a, the outer wall surface 215b, and the bottom surface 215c.
  • the annular wall 216 is inserted into the second annular groove 215 when the opening 211a of the process chamber body 211 is closed by the lid 212. Accordingly, even if particles around the O-ring 13 move toward the process chamber 201, the particles can be captured between the annular wall 216 and the second annular groove 215. As a result, the possibility that the inside of the process chamber 201 is contaminated with particles around the O-ring 13 can be reduced.
  • the depth of the second annular groove 215 is deeper than the depth of the first annular groove 214, there is a possibility that particles from the O-ring 13 side are trapped between the annular wall 216 and the second annular groove 215. Can be increased. That is, it becomes difficult for the particles on the O-ring 13 side to pass between the annular wall 216 and the second annular groove 215.
  • the first and second annular grooves 214 and 215 are provided on the upper end surface 251 of the opening 211 a of the process chamber body 211, but on the lower end surface 252 of the side portion 212 a of the lid 212. It may be provided. In this case, the annular wall 216 may be provided on the upper end surface 251 of the opening 211 a of the process chamber body 211.
  • the configuration of the upper end surface of the opening 211 a of the process chamber body 211 and the configuration of the lower end surface of the lid 211 may be interchanged.
  • the annular wall 216 may be formed integrally with the side portion 212a of the lid body 212, or after being molded separately from the side portion 212a of the lid body 212, the side portion of the lid body 212. It may be fixed to the lower end surface 52 of 212a.
  • the inner wall surfaces 34a, 44a of the annular grooves 34, 44 and their peripheral portions in FIGS. 6 and 7 are made of resin such as silicon resin, while the outer wall surfaces 34b, 44b of the annular grooves 34, 44 are
  • the peripheral portion may be made of a metal such as aluminum.
  • the second annular groove 215 of the second embodiment may be provided on the radially inner side of the annular grooves 14, 24, 34, 44 of the first embodiment and its modifications.
  • the annular wall 216 of the second embodiment inserted into the second annular groove 215 may be provided on the upper end surface 51 of the opening 11 a of the process chamber body 11.
  • the depth of the second annular groove 215 may be deeper than the depth of the annular grooves 14, 24, 34, 44.
  • first annular groove 214 of the second embodiment may be modified as the annular grooves 14, 24, 34, 44 of the first embodiment and its modifications.
  • first annular groove 214 is deformed in this way, the high sealing performance described in the first embodiment can be obtained also in the first annular groove 214 after deformation.
  • a vacuum apparatus is A chamber having a chamber body having an opening, and a lid for opening and closing the opening; A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side;
  • An annular groove in which the seal member is disposed is provided in one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body,
  • the wall surface on the radially inner side of the annular groove is formed so that the cross section has an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, and contacts the seal member
  • the wall surface on the radially outer side of the annular groove is formed such that an end portion located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is between the seal member and the seal member. It is characterized by not having contact with the sealing member.
  • the radially outer wall surface of the annular groove is formed such that the other end has a gap between the seal member and does not contact the seal member.
  • the space between the radially outer wall surface of the annular groove and the seal member is an open space. Therefore, when particles accumulate in the space between the radially outer wall surface of the annular groove and the seal member, the particles can be easily cleaned and removed during maintenance. As a result, the possibility that the inside of the chamber is contaminated with particles around the seal member can be reduced.
  • the radially outer wall surface of the annular groove is formed as described above, the amount of deformation of the seal member increases when the opening of the chamber body is closed with a lid.
  • the contact area of the other of the end surface by the side of the cover body of the opening part and the end surface by the side of the chamber body of a cover body can be increased. . Therefore, the sealing performance between the other and the sealing member can be enhanced.
  • the radially inner wall surface of the annular groove is located on the vacuum side.
  • the radially outer wall surface of the annular groove is located on the atmosphere side.
  • the wall surface on the radially inner side of the annular groove and its peripheral part are formed of a material different from the wall surface on the radially outer side of the annular groove and its peripheral part.
  • the material of the radially inner wall surface and its peripheral portion of the annular groove and the material of the radially outer wall surface and its peripheral portion of the annular groove are different from each other.
  • the wall on the inner side in the direction and its peripheral part can be used as retrofitting parts.
  • the annular groove has a region deeper than the contact region on a radially outer side than a contact region that contacts the seal member.
  • the particles can be separated from the seal member by collecting particles on a region deeper than the contact region outside the contact region in the radial direction. As a result, the particles are less likely to adhere to the seal member, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.
  • the one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is provided with an inner annular groove positioned radially inward of the annular groove,
  • an annular wall inserted into the inner annular groove when the opening is covered with the lid. Is provided.
  • the annular wall is inserted into the inner annular groove located radially inward of the annular groove.
  • the inner annular groove is deeper than the annular groove.
  • the depth of the inner annular groove is deeper than the depth of the annular groove located on the radially outer side of the inner annular groove, the particles pass between the annular wall and the inner annular groove. It becomes difficult to advance into the chamber.
  • a vacuum apparatus is A chamber having a chamber body having an opening, and a lid for opening and closing the opening; A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side; A first annular groove in which the seal member is disposed on one of the end surface on the lid side of the opening and the end surface on the chamber body side of the lid, and a radial direction relative to the first annular groove A second annular groove located on the inner side, An annular wall that is inserted into the second annular groove when the opening is covered with the other of the end face on the lid side of the opening and the end face on the chamber body side of the lid. It is characterized by being provided.
  • the annular wall is inserted into the second annular groove located radially inward of the first annular groove. Therefore, even if the particles around the seal member move toward the chamber, the particles can be captured between the annular wall and the second annular groove. Therefore, it is possible to reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
  • the depth of the second annular groove is deeper than the depth of the first annular groove.
  • the depth of the second annular groove is deeper than the depth of the first annular groove, it is difficult for particles to pass between the annular wall and the second annular groove and enter the chamber.
  • the radially inner wall surface of the first annular groove is formed to have an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, and when the lid is closed, Contacting the sealing member,
  • the wall surface on the radially outer side of the first annular groove has an end located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body, and the seal member. Is formed so as to have a gap therebetween, and does not contact the sealing member when the lid is opened and closed.
  • the radially outer wall surface of the first annular groove is formed such that the other end has a gap between the seal member and does not contact the seal member.
  • the space between the radially outer wall surface of the first annular groove and the seal member is an open space. Therefore, when particles accumulate in the space between the radially outer wall surface of the first annular groove and the seal member, the particles can be easily cleaned and removed during maintenance. As a result, the possibility that the inside of the chamber is contaminated with particles around the seal member can be further reduced.
  • the radially outer wall surface of the first annular groove is formed as described above, when the opening of the chamber body is closed with the lid, the deformation amount of the seal member increases. Thereby, when the opening part of the said chamber main body is closed with a cover body, the contact area of the other of the end surface by the side of the cover body of the opening part and the end surface by the side of the chamber body of a cover body can be increased. . Therefore, the sealing performance between the other and the sealing member can be enhanced.
  • the radially inner wall surface of the first annular groove is located on the vacuum side.
  • the radially outer wall surface of the first annular groove is located on the atmosphere side.
  • the radially inner wall surface and its peripheral portion of the first annular groove are formed of a material different from the radially outer wall surface and its peripheral portion of the first annular groove.
  • the radially inner wall surface of the first annular groove and the peripheral material thereof are different from the radially outer wall surface of the first annular groove and the peripheral material thereof.
  • the wall surface on the radially inner side of the first annular groove and its peripheral portion can be used as a retrofit component.
  • the first annular groove has a region deeper than the contact region on a radially outer side than a contact region that contacts the seal member.
  • the particles can be separated from the seal member by collecting particles on a region deeper than the contact region outside the contact region in the radial direction. As a result, the particles are less likely to adhere to the seal member, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

In the present invention, a chamber body has an opening (11a). A lid body opens and closes the opening (11a). An annular groove 14, in which a seal member (13) is disposed, is provided in one of a lid-body-side end face of the opening (11a) and a chamber-body-side end face of the lid body. A wall surface (14a) on the inner side in the radial direction of the annular groove (14) is formed such that a cross-section thereof has an elliptic arc shape, a circular arc shape, or a linear shape inclined with respect to a bottom surface of the annular groove (14), and is in contact with the seal member (13). A wall surface (14b) on the outer side in the radial direction of the annular groove (14) is formed so as to have a gap between the seal member (13) and an end section located on the other side of the lid-body-side end face of the opening (11a) and the chamber-body-side end face of the lid body, and is not in contact with the seal member (13).

Description

真空装置Vacuum equipment
 この発明は、例えば、CVD(Chemical Vapor Deposition)装置、スパッタリング装置、ドライエッチング装置などの真空装置に関する。 The present invention relates to a vacuum apparatus such as a CVD (Chemical Vapor Deposition) apparatus, a sputtering apparatus, and a dry etching apparatus.
 従来、真空装置としては、特開2004‐143480号公報(特許文献1)に開示されたスパッタリング装置がある。より詳しくは、上記スパッタリング装置のチャンバは、図11に示すように、チャンバ本体の開口部(図示せず)を開閉する蓋体1101を備えている。この蓋体1101のチャンバ本体側(図11中の上側)の端面には、シール部材1102が配置される環状溝1103が設けられている。 Conventionally, as a vacuum apparatus, there is a sputtering apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-143480 (Patent Document 1). More specifically, as shown in FIG. 11, the chamber of the sputtering apparatus includes a lid 1101 that opens and closes an opening (not shown) of the chamber body. An annular groove 1103 in which the seal member 1102 is disposed is provided on an end surface of the lid body 1101 on the chamber body side (upper side in FIG. 11).
 環状溝1103の径方向内側の壁面1103aは、断面円弧形状を有し、シール部材1102に接触している。一方、環状溝1103の径方向外側の壁面1103bは、断面が直線形状となるように形成され、環状溝1103の底面1103cに対して傾斜している。このとき、壁面1103bのチャンバ本体側の端部は、壁面1103bのチャンバ本体側とは反対側(図11中の下側)の端部よりも径方向内側に位置して、シール部材1102に接触している。 The radially inner wall surface 1103 a of the annular groove 1103 has a circular arc cross section and is in contact with the seal member 1102. On the other hand, the radially outer wall surface 1103b of the annular groove 1103 is formed to have a linear cross section and is inclined with respect to the bottom surface 1103c of the annular groove 1103. At this time, the end of the wall surface 1103b on the chamber main body side is located on the radially inner side of the end of the wall surface 1103b opposite to the chamber main body (the lower side in FIG. 11) and contacts the seal member 1102. is doing.
特開2004‐143480号公報JP 2004-143480 A
 ところで、上記スパッタリング装置では、壁面1103bのチャンバ本体側の端部はシール部材1102に接触するが、壁面1103bのチャンバ本体側とは反対側(図11中の下側)の端部はシール部材1102に接触していない。その結果、壁面1103bのチャンバ本体側とは反対側の端部とシール部材1102との間に空間が形成され、パーティクルが上記空間に溜まってしまうことがある。 By the way, in the sputtering apparatus, the end of the wall surface 1103b on the chamber main body side contacts the seal member 1102, but the end of the wall surface 1103b opposite to the chamber main body side (the lower side in FIG. 11) is the seal member 1102. Not touching. As a result, a space may be formed between the end of the wall surface 1103b opposite to the chamber body and the seal member 1102, and particles may accumulate in the space.
 したがって、上記空間に溜まったパーティクルは、何らかの拍子、例えばチャンバ内の真空引きを行った際に径方向内側に移動して、チャンバ内を汚染する可能性があるという問題がある。 Therefore, there is a problem that the particles accumulated in the space may move inward in the radial direction when the chamber is evacuated, for example, when the chamber is evacuated, and may contaminate the chamber.
 そこで、この発明の課題は、シール部材周辺のパーティクルでチャンバ内が汚染される可能性を下げることができる真空装置を提供することにある。 Therefore, an object of the present invention is to provide a vacuum apparatus that can reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
 この発明の一態様に係る真空装置は、開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材とを備え、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される環状溝が設けられており、上記環状溝の径方向内側の壁面は、断面が、楕円弧形状、円弧形状、または、上記環状溝の底面に対して傾斜する直線形状になるように形成されて、蓋体の閉鎖時、上記シール部材に接触し、上記環状溝の径方向外側の壁面は、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方側に位置する端部が、上記シール部材との間に隙間を有するように形成されて、蓋体の開放時および閉鎖時、上記シール部材に接触しないことを特徴としている。 A vacuum apparatus according to one aspect of the present invention includes a chamber having an opening, a chamber having a lid that opens and closes the opening, an end surface of the opening on the lid, and the chamber body of the lid. And a sealing member that seals between the end surface on the side, and the sealing member is disposed on one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body. An annular groove is provided, and the inner wall surface in the radial direction of the annular groove is formed so that the cross section has an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, When the lid is closed, it contacts the sealing member, and the radially outer wall surface of the annular groove is the other side of the end surface of the opening on the lid side and the end surface of the lid on the chamber body side Is located between the end of the seal member It is formed so as to have a gap, and during closing the opening of the lid, is characterized in that no contact with the sealing member.
 この発明の他の態様に係る真空装置は、開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材とを備え、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される第1環状溝と、この第1環状溝よりも径方向内側に位置する第2環状溝とが設けられており、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方には、上記開口部を上記蓋体したときに上記第2環状溝内に挿入される環状壁が設けられていることを特徴としている。 A vacuum apparatus according to another aspect of the present invention includes a chamber having a chamber body having an opening, a lid that opens and closes the opening, an end surface of the opening on the lid side, and the chamber of the lid. A seal member that seals between the end surface on the main body side, and the seal member is disposed on one of the end surface on the lid body side of the opening and the end surface on the chamber main body side of the lid body. A first annular groove and a second annular groove located radially inward of the first annular groove, and an end surface of the opening on the lid body side and the lid body on the chamber body side are provided. The other of the end faces is provided with an annular wall that is inserted into the second annular groove when the opening is covered with the lid.
 この発明の真空装置は、シール部材周辺のパーティクルでチャンバ内が汚染される可能性を下げることができる。 The vacuum device of the present invention can reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
図1はこの発明の第1実施形態のプラズマCVD装置の模式図である。FIG. 1 is a schematic view of a plasma CVD apparatus according to the first embodiment of the present invention. 図2は上記第1実施形態のプロセスチャンバ本体の概略平面図である。FIG. 2 is a schematic plan view of the process chamber main body of the first embodiment. 図3は図2のIII-III線矢視の模式断面図である。3 is a schematic cross-sectional view taken along the line III-III in FIG. 図4は上記第1実施形態の蓋体の閉鎖時の状態を説明するための模式断面図である。FIG. 4 is a schematic cross-sectional view for explaining a state when the lid body of the first embodiment is closed. 図5は上記第1実施形態の一変形例の環状溝およびその周辺部の模式断面図である。FIG. 5 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment. 図6は上記第1実施形態の一変形例の環状溝およびその周辺部の模式断面図である。FIG. 6 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment. 図7は上記第1実施形態の一変形例の環状溝およびその周辺部の模式断面図である。FIG. 7 is a schematic cross-sectional view of an annular groove and its peripheral portion according to a modification of the first embodiment. 図8はこの発明の第2実施形態のプラズマCVD装置の蓋体の模式斜視図である。FIG. 8 is a schematic perspective view of a lid of a plasma CVD apparatus according to the second embodiment of the present invention. 図9は上記第2実施形態のプラズマCVD装置のプロセスチャンバ本体の模式斜視図である。FIG. 9 is a schematic perspective view of a process chamber main body of the plasma CVD apparatus according to the second embodiment. 図10は上記第2実施形態の蓋体の閉鎖時の状態を説明するための模式断面図である。FIG. 10 is a schematic cross-sectional view for explaining a state when the lid of the second embodiment is closed. 図11は従来のスパッタリング装置の主要部の模式断面図である。FIG. 11 is a schematic cross-sectional view of a main part of a conventional sputtering apparatus.
 〔第1実施形態〕
 図1は、この発明の第1実施形態のプラズマCVD装置の概略構成を示すための模式図である。
[First Embodiment]
FIG. 1 is a schematic diagram for illustrating a schematic configuration of a plasma CVD apparatus according to a first embodiment of the present invention.
 上記プラズマCVD装置は、平面視矩形状の基板10を収容するプロセスチャンバ1と、プロセスチャンバ1内に原料ガスを供給するガス供給機構2と、プロセスチャンバ1内の気体を排気する排気機構3とを備えている。平面視矩形状の基板10の基板サイズは、例えば2880mm×3130mmなどである。なお、プロセスチャンバ1はチャンバの一例である。 The plasma CVD apparatus includes a process chamber 1 that accommodates a rectangular substrate 10 in plan view, a gas supply mechanism 2 that supplies a source gas into the process chamber 1, and an exhaust mechanism 3 that exhausts the gas in the process chamber 1. It has. The substrate size of the rectangular substrate 10 in plan view is, for example, 2880 mm × 3130 mm. The process chamber 1 is an example of a chamber.
 プロセスチャンバ1は、開口部11aを有する容器形状のプロセスチャンバ本体11と、その開口部11aを開閉する容器形状の蓋体12とを有する。また、プロセスチャンバ本体11および蓋体12は、それぞれ、接地されていると共に、有底四角筒形状を呈するように、例えばアルミなどの金属で形成されている。なお、プロセスチャンバ本体11はチャンバ本体の一例である。 The process chamber 1 includes a container-shaped process chamber main body 11 having an opening 11a and a container-shaped lid 12 that opens and closes the opening 11a. Further, the process chamber body 11 and the lid body 12 are each grounded and formed of a metal such as aluminum so as to exhibit a bottomed rectangular tube shape. The process chamber body 11 is an example of a chamber body.
 また、プロセスチャンバ1内には、下部電極5および上部電極6が平行平板電極を構成するために設けられている。 Also, in the process chamber 1, a lower electrode 5 and an upper electrode 6 are provided to form parallel plate electrodes.
 下部電極5は、上部電極6に対向し、基板10が載置される載置面を上側に有している。また、下部電極5も、基板10と同様に、平面視矩形状となるように形成されている。より詳しくは、基板10の下面の全部を下部電極5で支持するため、下部電極5の平面視形状は基板10の平面視形状よりも大きくなっている。 The lower electrode 5 faces the upper electrode 6 and has a mounting surface on the upper side on which the substrate 10 is mounted. Similarly to the substrate 10, the lower electrode 5 is also formed in a rectangular shape in plan view. More specifically, since the entire lower surface of the substrate 10 is supported by the lower electrode 5, the planar view shape of the lower electrode 5 is larger than the planar view shape of the substrate 10.
 一方、上部電極6は、バッキングプレート7に支持され、下部電極5に対向している。ガス供給機構2からの原料ガスは、バッキングプレート7と上部電極6の間の拡散空間で拡散した後、上部電極6の複数の吐出口(図示せず)からプロセスチャンバ1内に供給される。 On the other hand, the upper electrode 6 is supported by the backing plate 7 and faces the lower electrode 5. The source gas from the gas supply mechanism 2 is diffused in the diffusion space between the backing plate 7 and the upper electrode 6 and then supplied into the process chamber 1 from a plurality of discharge ports (not shown) of the upper electrode 6.
 バッキングプレート7は、マッチング回路3と、このマッチング回路3に直列に接続された高周波電源4を介して接地されている。また、バッキングプレート7とプロセスチャンバ1の間には、セラミックス等からなる誘電体8が充填されている。 The backing plate 7 is grounded via the matching circuit 3 and a high-frequency power source 4 connected in series to the matching circuit 3. A dielectric 8 made of ceramics is filled between the backing plate 7 and the process chamber 1.
 排気機構3は、プロセスチャンバ1内の真空度を所望値にするために、真空ポンプ、圧力調整バルブなどを有する。 The exhaust mechanism 3 has a vacuum pump, a pressure adjustment valve, and the like in order to set the degree of vacuum in the process chamber 1 to a desired value.
 このようなプラズマ処理装置を用いてプラズマ処理を行う場合、まず、図示しない搬入出口からプロセスチャンバ1内に基板10を搬入して下部電極5の載置面上に載置する。そして、排気機構3によりプロセスチャンバ1内の気体を排気しつつガス供給機構2から原料ガスを上部電極6を介してプロセスチャンバ1内に導入する。プロセスチャンバ1内に導入した原料ガスの圧力を制御した後、高周波電源4が、マッチング回路3を介して、バッキングプレート7に高周波電力を印加することでプロセスチャンバ1内にプラズマを発生させ、このプラズマで基板10をプラズマ処理する。 When performing plasma processing using such a plasma processing apparatus, first, the substrate 10 is loaded into the process chamber 1 from a loading / unloading port (not shown) and mounted on the mounting surface of the lower electrode 5. Then, the source gas is introduced into the process chamber 1 from the gas supply mechanism 2 through the upper electrode 6 while the gas in the process chamber 1 is exhausted by the exhaust mechanism 3. After controlling the pressure of the raw material gas introduced into the process chamber 1, the high frequency power supply 4 applies high frequency power to the backing plate 7 through the matching circuit 3 to generate plasma in the process chamber 1. The substrate 10 is subjected to plasma treatment with plasma.
 図2は、プロセスチャンバ本体11を上方から見たときの概略図である。なお、図2では、シール部材の一例としてのオーリング13の図示を省略している。 FIG. 2 is a schematic view when the process chamber body 11 is viewed from above. In addition, in FIG. 2, illustration of the O-ring 13 as an example of a sealing member is abbreviate | omitted.
 プロセスチャンバ本体11の開口部11aの上端面51には、オーリング13が配置される環状溝14が設けられている。この環状溝14は、プロセスチャンバ本体11の外側側面および内側側面に対して一定の距離を保ちつつ、プロセスチャンバ本体11の外側側面および内側側面に沿って延在している。例えば、環状溝14は、環状溝14の底面の各部で深さが同一となるように形成されている。 An annular groove 14 in which the O-ring 13 is disposed is provided on the upper end surface 51 of the opening 11a of the process chamber body 11. The annular groove 14 extends along the outer side surface and the inner side surface of the process chamber body 11 while maintaining a certain distance from the outer side surface and the inner side surface of the process chamber body 11. For example, the annular groove 14 is formed to have the same depth at each part of the bottom surface of the annular groove 14.
 オーリング13は、蓋体12の閉鎖時、プロセスチャンバ本体11の開口部11aの上端面51と蓋体12の側部12aの下端面52(図1に示す)との間をシールする。 The O-ring 13 seals between the upper end surface 51 of the opening 11a of the process chamber body 11 and the lower end surface 52 (shown in FIG. 1) of the side portion 12a of the lid 12 when the lid 12 is closed.
 図3は、図2のIII-III線から見たときの断面を示す模式図である。 FIG. 3 is a schematic diagram showing a cross section when viewed from line III-III in FIG.
 オーリング13は、耐プラズマ性、耐熱性、耐薬品性などに優れた弾性材料、例えばフッ素系のゴム材料を用いて成形されて、弾性変形可能になっている。また、オーリング13の断面の中心Oは、蓋体12の開放時、環状溝14の上端よりも下側に位置している。別の言い方をすれば、オーリング13の断面の中心Oが環状溝14内に位置するように、環状溝14の深さが設定されている。 The O-ring 13 is molded using an elastic material excellent in plasma resistance, heat resistance, chemical resistance, etc., for example, a fluorine-based rubber material, and can be elastically deformed. The center O of the cross section of the O-ring 13 is positioned below the upper end of the annular groove 14 when the lid 12 is opened. In other words, the depth of the annular groove 14 is set so that the center O of the cross section of the O-ring 13 is located in the annular groove 14.
 環状溝14は、径方向内側の壁面14a(以下、「内側壁面14a」と言う。)と、径方向外側の壁面14b(以下、「外側壁面14b」と言う。)と、底面14cとで構成されている。この底面14cの径方向内側の端は内側壁面14aの下端に接続されている。一方、底面14cの径方向外側の端は外側壁面14bの下端に接続されている。 The annular groove 14 includes a radially inner wall surface 14a (hereinafter referred to as “inner wall surface 14a”), a radially outer wall surface 14b (hereinafter referred to as “outer wall surface 14b”), and a bottom surface 14c. Has been. The radially inner end of the bottom surface 14c is connected to the lower end of the inner wall surface 14a. On the other hand, the radially outer end of the bottom surface 14c is connected to the lower end of the outer wall surface 14b.
 環状溝14の内側壁面14aは、プロセスチャンバ1の内部側に向かって窪む湾曲面である。より詳しくは、環状溝14の内側壁面14aの断面形状は楕円弧形状となっている。このような環状溝14の内側壁面14aは、蓋体12の開放時、オーリング13と接触していないが、蓋体12の閉鎖時、図4に示すように、弾性変形したオーリング13と接触するように形成されている。 The inner wall surface 14 a of the annular groove 14 is a curved surface that is recessed toward the inside of the process chamber 1. More specifically, the cross-sectional shape of the inner wall surface 14a of the annular groove 14 is an elliptical arc shape. The inner wall surface 14a of the annular groove 14 is not in contact with the O-ring 13 when the lid body 12 is opened, but when the lid body 12 is closed, as shown in FIG. It is formed to contact.
 また、環状溝14の内側壁面14aおよびその周辺部と、環状溝14の外側壁面14bおよびその周辺部とは、全て、例えばアルミなどの金属からなっている。すなわち、環状溝14の内側壁面14aおよびその周辺部は、環状溝14の外側壁面14bおよびその周辺部の金属材料と同じ金属材料で形成されている。 The inner wall surface 14a of the annular groove 14 and its peripheral portion, and the outer wall surface 14b of the annular groove 14 and its peripheral portion are all made of a metal such as aluminum. That is, the inner wall surface 14a of the annular groove 14 and its peripheral part are formed of the same metal material as the metal material of the outer wall surface 14b of the annular groove 14 and its peripheral part.
 環状溝14の外側壁面14bは、図3,図4に示すように、断面が直線形状となるように形成されている。より詳しくは、環状溝14の外側壁面14bは、例えば、底面14cに対して垂直な面である。そして、環状溝14の外側壁面14bは、蓋体12の開放時および閉鎖時、オーリング13との間に隙間を有するように形成されている。すなわち、プロセスチャンバ本体11の開口部11aを蓋体12で閉鎖してもしなくても、環状溝14の外側壁面14bとオーリング13との間には隙間が存在する。勿論、プロセスチャンバ本体11の開口部11aを蓋体12で閉鎖すると、オーリング13が弾性変形するので、環状溝14の外側壁面14bとオーリング13との間の隙間は、プロセスチャンバ本体11の開口部11aを蓋体12で閉鎖していないときと比べて、小さくなる。なお、環状溝14の外側壁面14bは、底面14cに対して略垂直な面であってもよいし、底面14cに対して垂直な面に対し、所定角度傾斜した面であってもよい。 As shown in FIGS. 3 and 4, the outer wall surface 14 b of the annular groove 14 is formed so that the cross section has a linear shape. More specifically, the outer wall surface 14b of the annular groove 14 is a surface perpendicular to the bottom surface 14c, for example. The outer wall surface 14b of the annular groove 14 is formed to have a gap with the O-ring 13 when the lid 12 is opened and closed. That is, there is a gap between the outer wall surface 14 b of the annular groove 14 and the O-ring 13, whether or not the opening 11 a of the process chamber body 11 is closed by the lid 12. Of course, when the opening 11 a of the process chamber body 11 is closed with the lid body 12, the O-ring 13 is elastically deformed. Therefore, the clearance between the outer wall surface 14 b of the annular groove 14 and the O-ring 13 is not limited to that of the process chamber body 11. This is smaller than when the opening 11a is not closed by the lid 12. The outer wall surface 14b of the annular groove 14 may be a surface substantially perpendicular to the bottom surface 14c, or may be a surface inclined by a predetermined angle with respect to a surface perpendicular to the bottom surface 14c.
 環状溝14の底面14cは、断面が直線形状となるように形成されて、プロセスチャンバ本体11の中心軸に対して垂直な面となっている。なお、環状溝14の底面14cは、プロセスチャンバ本体11の中心軸に対して略垂直な面であってもよいし、プロセスチャンバ本体11の中心軸に対して垂直な面に対し、所定角度傾斜した面であってもよい。 The bottom surface 14 c of the annular groove 14 is formed so that the cross section is a linear shape, and is a surface perpendicular to the central axis of the process chamber body 11. The bottom surface 14c of the annular groove 14 may be a surface that is substantially perpendicular to the central axis of the process chamber body 11, or is inclined at a predetermined angle with respect to a surface that is perpendicular to the central axis of the process chamber body 11. It may be the surface.
 上記構成のプラズマCVD装置では、蓋体12の開放時、図3に示すように、環状溝14の外側壁面14bはオーリング13と接触していない。すなわち、環状溝14の外側壁面14bは上端部から下端部にわたってオーリング13との間に空間を有している。したがって、環状溝14の外側壁面14bの下端部とオーリング13との間の空間にパーティクルが溜まったとしても、メンテナンス時、環状溝14の外側壁面14bの上端部とオーリング13との間を介して、そのパーティクルを容易に取り除くことができる。その結果、環状溝14の外側壁面14bの下端部とオーリング13との間のパーティクルがプロセスチャンバ1内へ流れるのを防ぐことができる。したがって、オーリング13周辺のパーティクルでチャンバ内が汚染される可能性を下げることができる。 In the plasma CVD apparatus configured as described above, when the lid 12 is opened, the outer wall surface 14b of the annular groove 14 is not in contact with the O-ring 13 as shown in FIG. That is, the outer wall surface 14 b of the annular groove 14 has a space between the upper end and the lower end 13 with the O-ring 13. Therefore, even if particles accumulate in the space between the lower end portion of the outer wall surface 14b of the annular groove 14 and the O-ring 13, between the upper end portion of the outer wall surface 14b of the annular groove 14 and the O-ring 13 during maintenance. Therefore, the particles can be easily removed. As a result, particles between the lower end portion of the outer wall surface 14 b of the annular groove 14 and the O-ring 13 can be prevented from flowing into the process chamber 1. Therefore, the possibility that the inside of the chamber is contaminated with particles around the O-ring 13 can be reduced.
 もし、環状溝14の外側壁面14bの上端部がオーリング13に接触していれば、環状溝14の外側壁面14bの下端部とオーリング13との間のパーティクルの取り出しが困難となる。その結果、メンテンナンスを行ったとしても、パーティクルが環状溝14の外側壁面14bの下端部とオーリング13との間に残る可能性が高くなる。 If the upper end portion of the outer wall surface 14 b of the annular groove 14 is in contact with the O-ring 13, it becomes difficult to take out particles between the lower end portion of the outer wall surface 14 b of the annular groove 14 and the O-ring 13. As a result, even if maintenance is performed, there is a high possibility that particles remain between the lower end of the outer wall surface 14b of the annular groove 14 and the O-ring 13.
 また、蓋体12の開放時、環状溝14の外側壁面14bとオーリング13との間に空間がある。これにより、蓋体12の閉鎖時、図4に示すように、弾性変形したオーリング13の一部が上記空間に位置する。すなわち、上記空間があることによって、オーリング13の大きな変形が許容される。したがって、オーリング13を大きく変形させて、蓋体12の側部の12aの下端面52とオーリング13の接触面積を増やすことができる。その結果、蓋体12の側部の12aの下端面52とオーリング13のシール性を高めることができる。 Further, when the lid 12 is opened, there is a space between the outer wall surface 14 b of the annular groove 14 and the O-ring 13. Thereby, when the lid 12 is closed, as shown in FIG. 4, a part of the elastically deformed O-ring 13 is positioned in the space. That is, due to the presence of the space, large deformation of the O-ring 13 is allowed. Therefore, the O-ring 13 can be greatly deformed to increase the contact area between the lower end surface 52 of the side portion 12 a of the lid 12 and the O-ring 13. As a result, the sealing performance between the lower end surface 52 of the side 12 a of the lid 12 and the O-ring 13 can be enhanced.
 もし、環状溝14の外側壁面14bの上端部がオーリング13に接触していれば、環状溝14の外側壁面14bとオーリング13との間の空間が図3のときと比べて小さくなってしまう。この空間が小さいと、オーリング13の大きな変形が許容されないため、オーリング13を大きく変形させることができない。したがって、蓋体12の側部の12aの下端面52とオーリング13の接触面積を増やすことができない。 If the upper end of the outer wall surface 14b of the annular groove 14 is in contact with the O-ring 13, the space between the outer wall surface 14b of the annular groove 14 and the O-ring 13 is smaller than that in FIG. End up. If this space is small, large deformation of the O-ring 13 is not allowed, so that the O-ring 13 cannot be greatly deformed. Therefore, the contact area between the lower end surface 52 of the side 12a of the lid 12 and the O-ring 13 cannot be increased.
 また、排気機構3を駆動させて、プロセスチャンバ1内の真空引きを行うと、オーリング13の図4中の左側は真空側となる一方、オーリング13の図4中の右側は大気側となる。このとき、環状溝14の外側壁面14bとオーリング13との間の空間は、開放空間で、気圧が大気圧である。その結果、オーリング13において大気圧を受ける面積が増えるので、環状溝14の内側壁面14aにオーリング13を強く押し付けることができる。すなわち、環状溝14の内側壁面14aにしてオーリング13を強固に密着させることができる。したがって、環状溝14の内側壁面14aとオーリング13との間のシール性を高めることができる。 Further, when the exhaust mechanism 3 is driven and the process chamber 1 is evacuated, the left side of the O-ring 13 in FIG. 4 becomes the vacuum side, while the right side of the O-ring 13 in FIG. Become. At this time, the space between the outer wall surface 14b of the annular groove 14 and the O-ring 13 is an open space, and the atmospheric pressure is atmospheric pressure. As a result, the area of the O-ring 13 that receives atmospheric pressure increases, so that the O-ring 13 can be strongly pressed against the inner wall surface 14a of the annular groove 14. That is, the O-ring 13 can be firmly adhered to the inner wall surface 14 a of the annular groove 14. Therefore, the sealing performance between the inner wall surface 14a of the annular groove 14 and the O-ring 13 can be enhanced.
 もし、環状溝14の外側壁面14bの上端部がオーリング13に接触していれば、環状溝14の外側壁面14bの上端部以外の部分とオーリング13との間の空間の気圧は大気圧とならない。その結果、図3のときと比較して、オーリング13において大気圧を受ける面積が小さくなるので、環状溝14の内側壁面14aに対するオーリング13の密着力も弱くなってしまう。 If the upper end portion of the outer wall surface 14b of the annular groove 14 is in contact with the O-ring 13, the atmospheric pressure in the space between the O-ring 13 and the portion other than the upper end portion of the outer wall surface 14b of the annular groove 14 is atmospheric pressure. Not. As a result, compared with the case of FIG. 3, since the area which receives atmospheric pressure in O-ring 13 becomes small, the contact | adherence force of O-ring 13 with respect to the inner wall surface 14a of the annular groove 14 will also become weak.
 上記第1実施形態では、プロセスチャンバ本体11の開口部11aは、容器形状の蓋体12で開閉されていたが、例えば板形状などの蓋体で開閉されるようにしてもよい。 In the first embodiment, the opening 11a of the process chamber main body 11 is opened and closed by the container-shaped lid 12, but may be opened and closed by a plate-shaped lid, for example.
 上記第1実施形態では、環状溝14は、プロセスチャンバ本体11の開口部11aの上端面51に設けられていたが、蓋体12の側部の12aの下端面52に設けられるようにしてもよい。このようにする場合、例えば、プロセスチャンバ本体11の開口部11aの上端面51は平坦面にすると共に、蓋体12の側部の12aの下端面52に設けられた環状溝にオーリング13を配置してもよい。 In the first embodiment, the annular groove 14 is provided on the upper end surface 51 of the opening 11 a of the process chamber body 11. However, the annular groove 14 may be provided on the lower end surface 52 of the side 12 a of the lid 12. Good. In this case, for example, the upper end surface 51 of the opening 11a of the process chamber body 11 is made flat, and the O-ring 13 is inserted into the annular groove provided in the lower end surface 52 of the side 12a of the lid 12. You may arrange.
 すなわち、プロセスチャンバ本体11の開口部11aの上端面51の構成と、蓋体12の側部の12aの下端面52の構成とを、互いに入れ換えたものを、この発明の一実施形態としてもよい。 That is, a configuration in which the configuration of the upper end surface 51 of the opening 11a of the process chamber body 11 and the configuration of the lower end surface 52 of the side 12a of the lid 12 are interchanged may be used as an embodiment of the present invention. .
 上記第1実施形態では、環状溝14の内側壁面14aおよびその周辺部を、環状溝14の外側壁面14bおよびその周辺部の金属材料と同じ金属材料で形成していたが、環状溝14の外側壁面14bおよびその周辺部の金属材料と異なる材料で形成してもよい。 In the first embodiment, the inner wall surface 14a of the annular groove 14 and the peripheral portion thereof are formed of the same metal material as the outer wall surface 14b of the annular groove 14 and the peripheral portion thereof. You may form with the material different from the metal material of the wall surface 14b and its peripheral part.
 すなわち、この発明の一変形例では、図5に示すように、環状溝24の内側壁面24aおよびその周辺部を、例えばシリコン樹脂などの樹脂で構成する一方、環状溝24の外側壁面24bおよびその周辺部を、例えばアルミなどの金属で構成する。その結果、環状溝24の内側壁面24aおよびその周辺部を後付け部品で形成できるので、従来の一般的なプラズマCVD装置をこの発明の一実施形態のプラズマCVD装置に低コストで改造できる。 That is, in one modification of the present invention, as shown in FIG. 5, the inner wall surface 24a of the annular groove 24 and its peripheral portion are made of resin such as silicon resin, while the outer wall surface 24b of the annular groove 24 and its The peripheral part is made of a metal such as aluminum. As a result, the inner wall surface 24a of the annular groove 24 and its peripheral portion can be formed by retrofitting parts, so that the conventional general plasma CVD apparatus can be modified to the plasma CVD apparatus of one embodiment of the present invention at low cost.
 上記第1実施形態では、環状溝14の底面14cは、断面が直線形状となるように形成されていたが、図6に示すように、環状溝34の内側壁面34aと同じまたは類似する湾曲面としてもよい。より詳しくは、環状溝34の底面34cは、領域A2に形成された湾曲面である。ここで、領域A2とは、蓋体12の閉鎖時にシール部材13に接触する接触領域A1よりも径方向外側に位置する領域である。この領域A2は接触領域A1よりも深くなっている。これにより、接触領域A1よりも径方向外側では、パーティクルは領域A2上に溜まるので、オーリング13からパーティクルを離すことができる。その結果、環状溝34の底面34c上のパーティクルはオーリング13に付着し難くなるので、パーティクルの拡散を抑制することができる。したがって、メンテナンス時の負担を低減できる。 In the first embodiment, the bottom surface 14c of the annular groove 14 is formed to have a linear cross section, but as shown in FIG. 6, the curved surface is the same as or similar to the inner wall surface 34a of the annular groove 34. It is good. More specifically, the bottom surface 34c of the annular groove 34 is a curved surface formed in the region A2. Here, the region A2 is a region located on the radially outer side than the contact region A1 that contacts the seal member 13 when the lid 12 is closed. This area A2 is deeper than the contact area A1. Thereby, since the particles accumulate on the area A2 outside the contact area A1, the particles can be separated from the O-ring 13. As a result, particles on the bottom surface 34c of the annular groove 34 are less likely to adhere to the O-ring 13, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.
 上記第1実施形態では、断面形状が楕円弧形状となるように形成された環状溝14の内側壁面14aを用いていたが、図7に示すように、断面形状が環状溝44の底面44cに対して傾斜する直線形状となるように形成された環状溝44の内側壁面44aを用いてもよい。このようにした場合、環状溝44の溝幅は、上記第1実施形態と同様に、底側よりも開口側の方が広くなる。 In the first embodiment, the inner wall surface 14a of the annular groove 14 formed so that the cross-sectional shape is an elliptical arc shape is used. However, the cross-sectional shape is relative to the bottom surface 44c of the annular groove 44 as shown in FIG. Alternatively, an inner wall surface 44a of the annular groove 44 formed to have a linear shape that is inclined may be used. In such a case, the groove width of the annular groove 44 is wider on the opening side than on the bottom side, as in the first embodiment.
 あるいは、図示しないが、断面形状が円弧形状となる環状溝44の内側壁面44aを用いてもよい。 Alternatively, although not shown, an inner wall surface 44a of the annular groove 44 having a circular cross section may be used.
 〔第2実施形態〕
 図8は、この発明の第2実施形態のプラズマCVD装置の蓋体212を斜め下方から見たときの模式図である。なお、図9では、構造を分かり易くするため、蓋体212の側部212aおよび環状壁216は誇張して厚く図示している。
[Second Embodiment]
FIG. 8 is a schematic diagram when the lid 212 of the plasma CVD apparatus according to the second embodiment of the present invention is viewed obliquely from below. In FIG. 9, the side portion 212 a and the annular wall 216 of the lid 212 are exaggerated and thickly shown for easy understanding of the structure.
 蓋体212は、プロセスチャンバ201の上側の部分を構成するものであって、四角筒形状の環状壁216を下端面に有している点だけ、上記第1実施形態の蓋体1と異なっている。 The lid 212 constitutes the upper part of the process chamber 201, and differs from the lid 1 of the first embodiment only in that it has a square tubular annular wall 216 on the lower end surface. Yes.
 環状壁216は、蓋体212の環状壁216以外の部分と同様に、例えばアルミなどの金属で形成されていて、蓋体212の側部212aの下端面252の幅方向の中央よりも径方向内側に位置している。また、図示しないが、蓋体212内には、上記第1実施形態と同様に、バッキングプレート、上部電極、誘電体などが設けられている。 The annular wall 216 is formed of a metal such as aluminum, for example, in the same manner as the portion other than the annular wall 216 of the lid 212, and is more radial than the center in the width direction of the lower end surface 252 of the side portion 212 a of the lid 212. Located inside. Although not shown, a backing plate, an upper electrode, a dielectric, and the like are provided in the lid 212 as in the first embodiment.
 図9は、上記蓋体212で開閉される開口部211aを有するプロセスチャンバ本体211を斜め上方から見たときの様子を示す模式図である。なお、図9では、構造を分かり易くするため、開口部211aは誇張して厚く図示している。また、図9では、シール部材の一例としてのオーリング13の図示を省略している。また、プロセスチャンバ本体211はチャンバ本体の一例である。 FIG. 9 is a schematic diagram showing a state when the process chamber main body 211 having the opening 211a opened and closed by the lid body 212 is viewed obliquely from above. In FIG. 9, the opening 211a is exaggerated and thick for easy understanding of the structure. Moreover, in FIG. 9, illustration of the O-ring 13 as an example of a sealing member is omitted. The process chamber body 211 is an example of a chamber body.
 プロセスチャンバ本体211は、プロセスチャンバ201の下側の部分を構成するものであって、開口部211aの上端面251を有している。この開口部211aの上端面251には、第1環状溝214と、この第1環状溝214よりも径方向内側に位置する第2環状溝215とが設けられている。なお、第2環状溝215は内側環状溝の一例である。 The process chamber main body 211 constitutes a lower part of the process chamber 201 and has an upper end surface 251 of an opening 211a. A first annular groove 214 and a second annular groove 215 located radially inward of the first annular groove 214 are provided on the upper end surface 251 of the opening 211a. The second annular groove 215 is an example of an inner annular groove.
 第1,第2環状溝214,215は、それぞれ、プロセスチャンバ本体211の外側側面および内側側面に対して一定の距離を保ちつつ、プロセスチャンバ本体211の外側側面および内側側面に沿って延在している。例えば、第1,第2環状溝214,215は、それぞれ、底面214c,215cの各部の深さが同一となるように形成されている。 The first and second annular grooves 214 and 215 respectively extend along the outer side surface and the inner side surface of the process chamber body 211 while maintaining a certain distance from the outer side surface and the inner side surface of the process chamber body 211. ing. For example, the first and second annular grooves 214 and 215 are formed so that the depths of the respective portions of the bottom surfaces 214c and 215c are the same.
 図10は蓋体212の閉鎖時の状態を説明するための模式断面図である。 FIG. 10 is a schematic cross-sectional view for explaining a state when the lid 212 is closed.
 オーリング13は、耐プラズマ性、耐熱性、耐薬品性などに優れた弾性材料、例えばフッ素系のゴム材料を用いて成形されて、弾性変形可能になっている。このオーリング13は、蓋体212の閉鎖時、プロセスチャンバ本体211の開口部211aの上端面251と蓋体212の側部212aの下端面252との間をシールする。また、オーリング13の断面の中心は、蓋体212の開放時、第1環状溝214の上端よりも下側に位置している。別の言い方をすれば、オーリング13の断面の中心が第1環状溝214内に位置するように、第1環状溝214の深さが設定されている。 The O-ring 13 is molded using an elastic material excellent in plasma resistance, heat resistance, chemical resistance, etc., for example, a fluorine-based rubber material, and can be elastically deformed. The O-ring 13 seals between the upper end surface 251 of the opening 211 a of the process chamber body 211 and the lower end surface 252 of the side portion 212 a of the lid 212 when the lid 212 is closed. The center of the cross section of the O-ring 13 is located below the upper end of the first annular groove 214 when the lid 212 is opened. In other words, the depth of the first annular groove 214 is set so that the center of the cross section of the O-ring 13 is located in the first annular groove 214.
 第1,第2環状溝214,215およびその周辺部は、同一の金属材料(例えばアルミ)からなっている。また、第1,第2環状溝214,215は、径方向内側の壁面214a,215a(以下、「内側壁面214a,215a」と言う。)と、径方向外側の壁面214b,215b(以下、「外側壁面214b,215b」と言う。)と、底面214c,215cとで構成されている。 The first and second annular grooves 214 and 215 and their peripheral parts are made of the same metal material (for example, aluminum). The first and second annular grooves 214 and 215 include radially inner wall surfaces 214a and 215a (hereinafter referred to as “ inner wall surfaces 214a and 215a”) and radially outer wall surfaces 214b and 215b (hereinafter referred to as “ "Outer wall surfaces 214b and 215b") and bottom surfaces 214c and 215c.
 第1,第2環状溝214,215の内側壁面214a,215a、外側壁面214b,215bおよび底面214c,215cは、それぞれ、断面が直線形状となるように形成されている。この第1,第2環状溝214,215の内側壁面214a,215aおよび外側壁面214b,215bは、プロセスチャンバ本体211の中心軸に対して平行な面となっている。一方、環状溝の底面は、プロセスチャンバ本体211の中心軸に対して垂直な面となっている。なお、第1,第2環状溝214,215の内側壁面214a,215aおよび外側壁面214b,215bは、プロセスチャンバ本体211の中心軸に対して略平行な面であってもよいし、プロセスチャンバ本体211の中心軸に対して平行な面に対し、所定角度傾斜した面であってもよい。また、環状溝214,215の底面214c,215cは、プロセスチャンバ本体211の中心軸に対して略垂直な面であってもよいし、プロセスチャンバ本体211の中心軸に対して垂直な面に対し、所定角度傾斜した面であってもよい。 The inner wall surfaces 214a and 215a, the outer wall surfaces 214b and 215b, and the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are formed so as to have a linear cross section. The inner wall surfaces 214 a and 215 a and the outer wall surfaces 214 b and 215 b of the first and second annular grooves 214 and 215 are parallel to the central axis of the process chamber body 211. On the other hand, the bottom surface of the annular groove is a surface perpendicular to the central axis of the process chamber body 211. The inner wall surfaces 214a and 215a and the outer wall surfaces 214b and 215b of the first and second annular grooves 214 and 215 may be substantially parallel to the central axis of the process chamber body 211, or the process chamber body. A surface inclined by a predetermined angle with respect to a surface parallel to the central axis of 211 may be used. Further, the bottom surfaces 214c and 215c of the annular grooves 214 and 215 may be surfaces that are substantially perpendicular to the central axis of the process chamber main body 211, or may be surfaces that are perpendicular to the central axis of the process chamber main body 211. The surface may be inclined at a predetermined angle.
 また、第1,第2環状溝214,215は、第2環状溝215の深さが第1環状溝214の深さよりも深くなるように形成されている。例えば、第2環状溝215の深さは、第1環状溝214の深さの2倍以上の深さに設定される。 The first and second annular grooves 214 and 215 are formed so that the depth of the second annular groove 215 is deeper than the depth of the first annular groove 214. For example, the depth of the second annular groove 215 is set to a depth that is twice or more the depth of the first annular groove 214.
 また、第1,第2環状溝214,215の底面214c,215cの径方向内側の端は内側壁面214a,215aの下端に接続されている。一方、第1,第2環状溝214,215の底面214c,215cの径方向外側の端は外側壁面214b,215bの下端に接続されている。 Further, the radially inner ends of the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are connected to the lower ends of the inner wall surfaces 214a and 215a. On the other hand, the radially outer ends of the bottom surfaces 214c and 215c of the first and second annular grooves 214 and 215 are connected to the lower ends of the outer wall surfaces 214b and 215b.
 第1環状溝214では、底面214cの径方向の長さが第1環状溝214の内側壁面214aおよび外側壁面214bの軸方向の長さよりも長くなるように設定されている。また、第1環状溝214の内側壁面214aおよび外側壁面214bは、蓋体212の開放時および閉鎖時、オーリング13と接触しないようになっている。なお、第1環状溝214の内側壁面214aおよび外側壁面214bは、蓋体212の開放時、オーリング13と接触しないが、蓋体212の閉鎖時、オーリング13と接触するようにしてもよい。 In the first annular groove 214, the radial length of the bottom surface 214c is set to be longer than the axial lengths of the inner wall surface 214a and the outer wall surface 214b of the first annular groove 214. Further, the inner wall surface 214a and the outer wall surface 214b of the first annular groove 214 do not come into contact with the O-ring 13 when the lid 212 is opened and closed. The inner wall surface 214a and the outer wall surface 214b of the first annular groove 214 do not contact the O-ring 13 when the lid body 212 is opened, but may contact the O-ring 13 when the lid body 212 is closed. .
 第2環状溝215では、底面215cの径方向の長さが第2環状溝215の内側壁面215aおよび外側壁面215bの軸方向の長さよりも短くなるように設定されている。また、第2環状溝215内には、蓋体212の閉鎖時、環状壁216の大部分が挿入される。このとき、環状壁216は、内側壁面215a、外側壁面215bおよび底面215cとの間に、例えば0.1mm~0.3mmの範囲内の隙間を有する。 In the second annular groove 215, the length in the radial direction of the bottom surface 215c is set to be shorter than the length in the axial direction of the inner wall surface 215a and the outer wall surface 215b of the second annular groove 215. Further, most of the annular wall 216 is inserted into the second annular groove 215 when the lid 212 is closed. At this time, the annular wall 216 has a gap in the range of, for example, 0.1 mm to 0.3 mm between the inner wall surface 215a, the outer wall surface 215b, and the bottom surface 215c.
 上記構成のプラズマCVD装置によれば、プロセスチャンバ本体211の開口部211aを蓋体212で閉鎖すると、環状壁216が第2環状溝215内に挿入される。これにより、オーリング13周辺のパーティクルがプロセスチャンバ201内に向かって移動したとしても、そのパーティクルを環状壁216と第2環状溝215との間で捕捉できる。その結果、オーリング13周辺のパーティクルでプロセスチャンバ201内が汚染される可能性を下げることができる。 According to the plasma CVD apparatus configured as described above, the annular wall 216 is inserted into the second annular groove 215 when the opening 211a of the process chamber body 211 is closed by the lid 212. Accordingly, even if particles around the O-ring 13 move toward the process chamber 201, the particles can be captured between the annular wall 216 and the second annular groove 215. As a result, the possibility that the inside of the process chamber 201 is contaminated with particles around the O-ring 13 can be reduced.
 また、第2環状溝215の深さは第1環状溝214の深さよりも深いので、オーリング13側からのパーティクルが環状壁216と第2環状溝215との間で捕捉される可能性を高めることができる。すなわち、オーリング13側のパーティクルは環状壁216と第2環状溝215との間を通過し難くなる。 Further, since the depth of the second annular groove 215 is deeper than the depth of the first annular groove 214, there is a possibility that particles from the O-ring 13 side are trapped between the annular wall 216 and the second annular groove 215. Can be increased. That is, it becomes difficult for the particles on the O-ring 13 side to pass between the annular wall 216 and the second annular groove 215.
 上記第2実施形態では、第1,第2環状溝214,215は、プロセスチャンバ本体211の開口部211aの上端面251に設けられていたが、蓋体212の側部212aの下端面252に設けられるようにしてもよい。このようにする場合、環状壁216はプロセスチャンバ本体211の開口部211aの上端面251に設けてもよい。 In the second embodiment, the first and second annular grooves 214 and 215 are provided on the upper end surface 251 of the opening 211 a of the process chamber body 211, but on the lower end surface 252 of the side portion 212 a of the lid 212. It may be provided. In this case, the annular wall 216 may be provided on the upper end surface 251 of the opening 211 a of the process chamber body 211.
 すなわち、プロセスチャンバ本体211の開口部211aの上端面の構成と、蓋体211の下端面の構成とを、互いに入れ換えてもよい。 That is, the configuration of the upper end surface of the opening 211 a of the process chamber body 211 and the configuration of the lower end surface of the lid 211 may be interchanged.
 上記第2実施形態では、環状壁216は、蓋体212の側部212aと一体に成形されてもよいし、蓋体212の側部212aとは別に成形された後、蓋体212の側部212aの下端面52に固定されてもよい。 In the second embodiment, the annular wall 216 may be formed integrally with the side portion 212a of the lid body 212, or after being molded separately from the side portion 212a of the lid body 212, the side portion of the lid body 212. It may be fixed to the lower end surface 52 of 212a.
 以上、この発明の具体的な実施形態およびその変形例について説明したが、この発明は上記実施形態および変形例に限定されるものではなく、上記実施形態および変形例をこの発明の範囲内で種々変更して実施することができる。 As mentioned above, specific embodiments of the present invention and modifications thereof have been described, but the present invention is not limited to the above embodiments and modifications, and various modifications can be made within the scope of the present invention. It can be changed and implemented.
 例えば、図6,図7の環状溝34,44の内側壁面34a,44aおよびはその周辺部は、例えばシリコン樹脂などの樹脂で構成する一方、環状溝34,44の外側壁面34b,44bおよびはその周辺部は、例えばアルミなどの金属で構成してもよい。 For example, the inner wall surfaces 34a, 44a of the annular grooves 34, 44 and their peripheral portions in FIGS. 6 and 7 are made of resin such as silicon resin, while the outer wall surfaces 34b, 44b of the annular grooves 34, 44 are The peripheral portion may be made of a metal such as aluminum.
 上記第1実施形態およびその変形例で記載した内容と、上記第2実施形態およびその変形例で記載した内容とを、適宜組み合わせて、さらに、必要に応じて一部を変形または削除して、この発明の一実施形態を作成してもよい。 The contents described in the first embodiment and the modification thereof and the contents described in the second embodiment and the modification are appropriately combined, and further, a part is modified or deleted as necessary. An embodiment of the present invention may be created.
 例えば、上記第1実施形態およびその変形例の環状溝14,24,34,44の径方向内側に、上記第2実施形態の第2環状溝215を設けてもよい。このとき、プロセスチャンバ本体11の開口部11aの上端面51に、第2環状溝215に挿入される第2実施形態の環状壁216を設けてもよい。また、第2環状溝215の深さは環状溝14,24,34,44の深さより深くしてもよい。 For example, the second annular groove 215 of the second embodiment may be provided on the radially inner side of the annular grooves 14, 24, 34, 44 of the first embodiment and its modifications. At this time, the annular wall 216 of the second embodiment inserted into the second annular groove 215 may be provided on the upper end surface 51 of the opening 11 a of the process chamber body 11. The depth of the second annular groove 215 may be deeper than the depth of the annular grooves 14, 24, 34, 44.
 例えば、上記第2実施形態の第1環状溝214を、上記第1実施形態およびその変形例の環状溝14,24,34,44のように変形してもよい。このように第1環状溝214を変形させた場合、上記第1実施形態で説明した高シール性が変形後の第1環状溝214でも得られる。 For example, the first annular groove 214 of the second embodiment may be modified as the annular grooves 14, 24, 34, 44 of the first embodiment and its modifications. When the first annular groove 214 is deformed in this way, the high sealing performance described in the first embodiment can be obtained also in the first annular groove 214 after deformation.
 すなわち、上述の開示を纏めると、次のようになる。 That is, the above disclosure can be summarized as follows.
 この発明の一局面に係る真空装置は、
 開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材と
を備え、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される環状溝が設けられており、
 上記環状溝の径方向内側の壁面は、断面が、楕円弧形状、円弧形状、または、上記環状溝の底面に対して傾斜する直線形状になるように形成されて、上記シール部材に接触し、
 上記環状溝の径方向外側の壁面は、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方側に位置する端部が、上記シール部材との間に隙間を有するように形成されて、上記シール部材に接触しないことを特徴としている。
A vacuum apparatus according to one aspect of the present invention is
A chamber having a chamber body having an opening, and a lid for opening and closing the opening;
A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side;
An annular groove in which the seal member is disposed is provided in one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body,
The wall surface on the radially inner side of the annular groove is formed so that the cross section has an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, and contacts the seal member,
The wall surface on the radially outer side of the annular groove is formed such that an end portion located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is between the seal member and the seal member. It is characterized by not having contact with the sealing member.
 上記構成によれば、上記環状溝の径方向外側の壁面は、上記他方側の端部がシール部材との間に隙間を有するように形成されて、シール部材に接触しない。これにより、上記環状溝の径方向外側の壁面とシール部材との間の空間は、開放空間となっている。したがって、上記環状溝の径方向外側の壁面とシール部材との間の空間にパーティクルが溜まった場合、そのパーティクルをメンテナンス時に容易に清掃して除去できる。その結果、上記シール部材周辺のパーティクルでチャンバ内が汚染される可能性を下げることができる。 According to the above-described configuration, the radially outer wall surface of the annular groove is formed such that the other end has a gap between the seal member and does not contact the seal member. Thereby, the space between the radially outer wall surface of the annular groove and the seal member is an open space. Therefore, when particles accumulate in the space between the radially outer wall surface of the annular groove and the seal member, the particles can be easily cleaned and removed during maintenance. As a result, the possibility that the inside of the chamber is contaminated with particles around the seal member can be reduced.
 また、上記環状溝の径方向外側の壁面が上述のように形成されているので、チャンバ本体の開口部を蓋体で閉鎖したとき、シール部材の変形量は大きくなる。これにより、上記チャンバ本体の開口部を蓋体で閉鎖したとき、開口部の蓋体側の端面と蓋体のチャンバ本体側の端面との内の他方と、シール部材との接触面積を増やすことできる。したがって、上記他方とシール部材との間のシール性を高めることができる。 Also, since the radially outer wall surface of the annular groove is formed as described above, the amount of deformation of the seal member increases when the opening of the chamber body is closed with a lid. Thereby, when the opening part of the said chamber main body is closed with a cover body, the contact area of the other of the end surface by the side of the cover body of the opening part and the end surface by the side of the chamber body of a cover body can be increased. . Therefore, the sealing performance between the other and the sealing member can be enhanced.
 また、上記チャンバ内を真空にした場合、環状溝の径方向内側の壁面は真空側に位置する。一方、環状溝の径方向外側の壁面は大気側に位置する。これにより、上記環状溝の径方向外側の壁面とシール部材との間の空間の気圧は大気圧となる。その結果、シール部材において大気圧を受ける面積が増えるので、環状溝の径方向内側の壁面にシール部材を強く押し付けることができる。したがって、上記環状溝の径方向内側の壁面とシール部材との間のシール性を高めることができる。 Also, when the inside of the chamber is evacuated, the radially inner wall surface of the annular groove is located on the vacuum side. On the other hand, the radially outer wall surface of the annular groove is located on the atmosphere side. Thereby, the atmospheric pressure in the space between the radially outer wall surface of the annular groove and the sealing member becomes atmospheric pressure. As a result, since the area that receives atmospheric pressure increases in the seal member, the seal member can be strongly pressed against the radially inner wall surface of the annular groove. Therefore, the sealing performance between the radially inner wall surface of the annular groove and the sealing member can be enhanced.
 一実施形態の真空装置では、
 上記環状溝の径方向内側の壁面およびその周辺部は、上記環状溝の径方向外側の壁面およびその周辺部とは異なる材料で形成されている。
In one embodiment of the vacuum apparatus,
The wall surface on the radially inner side of the annular groove and its peripheral part are formed of a material different from the wall surface on the radially outer side of the annular groove and its peripheral part.
 上記実施形態によれば、上記環状溝の径方向内側の壁面およびその周辺部の材料と、上記環状溝の径方向外側の壁面およびその周辺部の材料とが、互いに異なるので、環状溝の径方向内側の壁面およびその周辺部を後付け部品とすることができる。 According to the above embodiment, the material of the radially inner wall surface and its peripheral portion of the annular groove and the material of the radially outer wall surface and its peripheral portion of the annular groove are different from each other. The wall on the inner side in the direction and its peripheral part can be used as retrofitting parts.
 一実施形態の真空装置では、
 上記環状溝は、上記シール部材に接触する接触領域よりも径方向外側に、上記接触領域よりも深い領域を有する。
In one embodiment of the vacuum apparatus,
The annular groove has a region deeper than the contact region on a radially outer side than a contact region that contacts the seal member.
 上記実施形態によれば、上記接触領域よりも径方向外側では、接触領域よりも深い領域上に、パーティクルが溜まることにより、シール部材からパーティクルを離すことができる。その結果、上記パーティクルはシール部材に付着し難くなるので、パーティクルの拡散を抑制することができる。したがって、メンテナンス時の負担を低減できる。 According to the embodiment, the particles can be separated from the seal member by collecting particles on a region deeper than the contact region outside the contact region in the radial direction. As a result, the particles are less likely to adhere to the seal member, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.
 一実施形態の真空装置では、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の上記一方には、上記環状溝よりも径方向内側に位置する内側環状溝が設けられており、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方には、上記開口部を上記蓋体したときに上記内側環状溝内に挿入される環状壁が設けられている。
In one embodiment of the vacuum apparatus,
The one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is provided with an inner annular groove positioned radially inward of the annular groove,
On the other of the end surface on the lid side of the opening and the end surface on the chamber body side of the lid, there is an annular wall inserted into the inner annular groove when the opening is covered with the lid. Is provided.
 上記実施形態によれば、上記チャンバ本体の開口部を蓋部で閉鎖すると、環状壁が、環状溝よりも径方向内側に位置する内側環状溝内に挿入される。これにより、上記シール部材周辺のパーティクルがチャンバ内に向かって移動したとしても、そのパーティクルを環状壁と内側環状溝との間で捕捉できる。したがって、上記シール部材周辺のパーティクルでチャンバ内が汚染される可能性をさらに下げることができる。 According to the above embodiment, when the opening of the chamber body is closed with the lid, the annular wall is inserted into the inner annular groove located radially inward of the annular groove. Thereby, even if the particles around the seal member move toward the chamber, the particles can be captured between the annular wall and the inner annular groove. Therefore, the possibility that the inside of the chamber is contaminated with particles around the seal member can be further reduced.
 一実施形態の真空装置では、
 上記内側環状溝の深さは上記環状溝の深さよりも深い。
In one embodiment of the vacuum apparatus,
The inner annular groove is deeper than the annular groove.
 上記実施形態によれば、上記内側環状溝の径方向外側に位置する環状溝の深さよりも、内側環状溝の深さが深いので、パーティクルが環状壁と内側環状溝との間を通過してチャンバ内に進み難くなる。 According to the embodiment, since the depth of the inner annular groove is deeper than the depth of the annular groove located on the radially outer side of the inner annular groove, the particles pass between the annular wall and the inner annular groove. It becomes difficult to advance into the chamber.
 この発明の一局面に係る真空装置は、
 開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材と
を備え、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される第1環状溝と、この第1環状溝よりも径方向内側に位置する第2環状溝とが設けられており、
 上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方には、上記開口部を上記蓋体したときに上記第2環状溝内に挿入される環状壁が設けられていることを特徴としている。
A vacuum apparatus according to one aspect of the present invention is
A chamber having a chamber body having an opening, and a lid for opening and closing the opening;
A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side;
A first annular groove in which the seal member is disposed on one of the end surface on the lid side of the opening and the end surface on the chamber body side of the lid, and a radial direction relative to the first annular groove A second annular groove located on the inner side,
An annular wall that is inserted into the second annular groove when the opening is covered with the other of the end face on the lid side of the opening and the end face on the chamber body side of the lid. It is characterized by being provided.
 上記構成によれば、上記チャンバ本体の開口部を蓋部で閉鎖すると、環状壁が、第1環状溝よりも径方向内側に位置する第2環状溝内に挿入される。これにより、上記シール部材周辺のパーティクルがチャンバ内に向かって移動したとしても、そのパーティクルを環状壁と第2環状溝との間で捕捉できる。したがって、上記シール部材周辺のパーティクルでチャンバ内が汚染される可能性を下げることができる。 According to the above configuration, when the opening of the chamber main body is closed with the lid, the annular wall is inserted into the second annular groove located radially inward of the first annular groove. Thereby, even if the particles around the seal member move toward the chamber, the particles can be captured between the annular wall and the second annular groove. Therefore, it is possible to reduce the possibility that the inside of the chamber is contaminated with particles around the seal member.
 一実施形態の真空装置では、
 上記第2環状溝の深さは上記第1環状溝の深さよりも深い。
In one embodiment of the vacuum apparatus,
The depth of the second annular groove is deeper than the depth of the first annular groove.
 上記実施形態によれば、上記第2環状溝の深さは第1環状溝の深さよりも深いので、パーティクルが環状壁と第2環状溝との間を通過してチャンバ内に進み難くなる。 According to the embodiment, since the depth of the second annular groove is deeper than the depth of the first annular groove, it is difficult for particles to pass between the annular wall and the second annular groove and enter the chamber.
 一実施形態の真空装置では、
 上記第1環状溝の径方向内側の壁面は、断面が、楕円弧形状、円弧形状、または、上記環状溝の底面に対して傾斜する直線形状になるように形成されて、蓋体の閉鎖時、上記シール部材に接触し、
 上記第1環状溝の径方向外側の壁面は、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方側に位置する端部が、上記シール部材との間に隙間を有するように形成されて、蓋体の開放時および閉鎖時、上記シール部材に接触しない。
In one embodiment of the vacuum apparatus,
The radially inner wall surface of the first annular groove is formed to have an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, and when the lid is closed, Contacting the sealing member,
The wall surface on the radially outer side of the first annular groove has an end located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body, and the seal member. Is formed so as to have a gap therebetween, and does not contact the sealing member when the lid is opened and closed.
 上記実施形態によれば、上記第1環状溝の径方向外側の壁面は、上記他方側の端部がシール部材との間に隙間を有するように形成されて、シール部材に接触しない。これにより、上記第1環状溝の径方向外側の壁面とシール部材との間の空間は、開放空間となっている。したがって、上記第1環状溝の径方向外側の壁面とシール部材との間の空間にパーティクルが溜まった場合、そのパーティクルをメンテナンス時に容易に清掃して除去できる。その結果、上記シール部材周辺のパーティクルでチャンバ内が汚染される可能性をさらに下げることができる。 According to the above embodiment, the radially outer wall surface of the first annular groove is formed such that the other end has a gap between the seal member and does not contact the seal member. Thereby, the space between the radially outer wall surface of the first annular groove and the seal member is an open space. Therefore, when particles accumulate in the space between the radially outer wall surface of the first annular groove and the seal member, the particles can be easily cleaned and removed during maintenance. As a result, the possibility that the inside of the chamber is contaminated with particles around the seal member can be further reduced.
 また、上記第1環状溝の径方向外側の壁面が上述のように形成されているので、チャンバ本体の開口部を蓋体で閉鎖したとき、シール部材の変形量は大きくなる。これにより、上記チャンバ本体の開口部を蓋体で閉鎖したとき、開口部の蓋体側の端面と蓋体のチャンバ本体側の端面との内の他方と、シール部材との接触面積を増やすことできる。したがって、上記他方とシール部材との間のシール性を高めることができる。 Further, since the radially outer wall surface of the first annular groove is formed as described above, when the opening of the chamber body is closed with the lid, the deformation amount of the seal member increases. Thereby, when the opening part of the said chamber main body is closed with a cover body, the contact area of the other of the end surface by the side of the cover body of the opening part and the end surface by the side of the chamber body of a cover body can be increased. . Therefore, the sealing performance between the other and the sealing member can be enhanced.
 また、上記チャンバ内を真空にした場合、第1環状溝の径方向内側の壁面は真空側に位置する。一方、第1環状溝の径方向外側の壁面は大気側に位置する。これにより、上記第1環状溝の径方向外側の壁面とシール部材との間の空間の気圧は大気圧となる。その結果、シール部材において大気圧を受ける面積が増えるので、第1環状溝の径方向内側の壁面にシール部材を強く押し付けることができる。したがって、上記第1環状溝の径方向内側の壁面とシール部材との間のシール性を高めることができる。 When the inside of the chamber is evacuated, the radially inner wall surface of the first annular groove is located on the vacuum side. On the other hand, the radially outer wall surface of the first annular groove is located on the atmosphere side. Thereby, the atmospheric pressure in the space between the radially outer wall surface of the first annular groove and the seal member becomes atmospheric pressure. As a result, since the area that receives atmospheric pressure increases in the seal member, the seal member can be strongly pressed against the radially inner wall surface of the first annular groove. Therefore, the sealing performance between the radially inner wall surface of the first annular groove and the seal member can be enhanced.
 一実施形態の真空装置では、
 上記第1環状溝の径方向内側の壁面およびその周辺部は、上記第1環状溝の径方向外側の壁面およびその周辺部とは異なる材料で形成されている。
In one embodiment of the vacuum apparatus,
The radially inner wall surface and its peripheral portion of the first annular groove are formed of a material different from the radially outer wall surface and its peripheral portion of the first annular groove.
 上記実施形態によれば、上記第1環状溝の径方向内側の壁面およびその周辺部の材料と、上記第1環状溝の径方向外側の壁面およびその周辺部の材料とが、互いに異なるので、第1環状溝の径方向内側の壁面およびその周辺部を後付け部品とすることができる。 According to the above embodiment, the radially inner wall surface of the first annular groove and the peripheral material thereof are different from the radially outer wall surface of the first annular groove and the peripheral material thereof. The wall surface on the radially inner side of the first annular groove and its peripheral portion can be used as a retrofit component.
 一実施形態の真空装置では、
 上記第1環状溝は、上記シール部材に接触する接触領域よりも径方向外側に、上記接触領域よりも深い領域を有する。
In one embodiment of the vacuum apparatus,
The first annular groove has a region deeper than the contact region on a radially outer side than a contact region that contacts the seal member.
 上記実施形態によれば、上記接触領域よりも径方向外側では、接触領域よりも深い領域上に、パーティクルが溜まることにより、シール部材からパーティクルを離すことができる。その結果、上記パーティクルはシール部材に付着し難くなるので、パーティクルの拡散を抑制することができる。したがって、メンテナンス時の負担を低減できる。 According to the embodiment, the particles can be separated from the seal member by collecting particles on a region deeper than the contact region outside the contact region in the radial direction. As a result, the particles are less likely to adhere to the seal member, so that particle diffusion can be suppressed. Therefore, the burden at the time of maintenance can be reduced.
 1,201 プロセスチャンバ
 10 基板
 11,211 プロセスチャンバ本体
 11a,211a 開口部
 12,212 蓋体
 13 オーリング
 14,24,34,44 環状溝
 14a,24a,34a,44a,214a 内側壁面
 14b,24b,34b,44b,214b 外側壁面
 14c,24c,34c,44c,214c 底面
 51 上端面
 52 下端面
 214 第1環状溝
 215 第2環状溝
 216 環状壁
 A1 接触領域
 A2 領域
1,201 Process chamber 10 Substrate 11, 211 Process chamber body 11a, 211a Opening 12, 212 Lid 13 O- ring 14, 24, 34, 44 Annular groove 14a, 24a, 34a, 44a, 214a Inner wall surface 14b, 24b, 34b, 44b, 214b Outer wall surface 14c, 24c, 34c, 44c, 214c Bottom surface 51 Upper end surface 52 Lower end surface 214 First annular groove 215 Second annular groove 216 Annular wall A1 Contact area A2 area

Claims (10)

  1.  開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材と
    を備え、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される環状溝が設けられており、
     上記環状溝の径方向内側の壁面は、断面が、楕円弧形状、円弧形状、または、上記環状溝の底面に対して傾斜する直線形状になるように形成されて、蓋体の閉鎖時、上記シール部材に接触し、
     上記環状溝の径方向外側の壁面は、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方側に位置する端部が、上記シール部材との間に隙間を有するように形成されて、蓋体の開放時および閉鎖時、上記シール部材に接触しないことを特徴とする真空装置。
    A chamber having a chamber body having an opening, and a lid for opening and closing the opening;
    A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side;
    An annular groove in which the seal member is disposed is provided in one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body,
    The wall surface on the radially inner side of the annular groove is formed so that the cross section has an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove. Contact the member,
    The wall surface on the radially outer side of the annular groove is formed such that an end portion located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is between the seal member and The vacuum apparatus is characterized in that it is formed so as to have a gap and does not come into contact with the sealing member when the lid is opened and closed.
  2.  請求項1に記載の真空装置において、
     上記環状溝の径方向内側の壁面およびその周辺部は、上記環状溝の径方向外側の壁面およびその周辺部とは異なる材料で形成されていることを特徴とする真空装置。
    The vacuum apparatus according to claim 1, wherein
    The vacuum apparatus characterized in that the radially inner wall surface and its peripheral portion of the annular groove are made of a material different from the radially outer wall surface and peripheral portion of the annular groove.
  3.  請求項1または2に記載の真空装置において、
     上記環状溝は、上記シール部材に接触する接触領域よりも径方向外側に、上記接触領域よりも深い領域を有することを特徴とする真空装置。
    The vacuum apparatus according to claim 1 or 2,
    The vacuum apparatus, wherein the annular groove has a region deeper than the contact region on a radially outer side than a contact region that contacts the seal member.
  4.  請求項1から3までのいずれか一項に記載の真空装置において、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の上記一方には、上記環状溝よりも径方向内側に位置する内側環状溝が設けられており、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方には、上記開口部を上記蓋体したときに上記内側環状溝内に挿入される環状壁が設けられていることを特徴とする真空装置。
    The vacuum apparatus according to any one of claims 1 to 3,
    The one of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body is provided with an inner annular groove positioned radially inward of the annular groove,
    On the other of the end surface on the lid side of the opening and the end surface on the chamber body side of the lid, there is an annular wall inserted into the inner annular groove when the opening is covered with the lid. A vacuum apparatus characterized by being provided.
  5.  請求項4に記載の真空装置において、
     上記内側環状溝の深さは上記環状溝の深さよりも深いことを特徴とする真空装置。
    The vacuum apparatus according to claim 4,
    The vacuum apparatus characterized in that a depth of the inner annular groove is deeper than a depth of the annular groove.
  6.  開口部を有するチャンバ本体と、上記開口部を開閉する蓋体とを有するチャンバと、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との間をシールするシール部材と
    を備え、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の一方には、上記シール部材が配置される第1環状溝と、この第1環状溝よりも径方向内側に位置する第2環状溝とが設けられており、
     上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方には、上記開口部を上記蓋体したときに上記第2環状溝内に挿入される環状壁が設けられていることを特徴とする真空装置。
    A chamber having a chamber body having an opening, and a lid for opening and closing the opening;
    A seal member that seals between the end surface of the opening on the lid body side and the end surface of the lid on the chamber body side;
    A first annular groove in which the seal member is disposed on one of the end surface on the lid side of the opening and the end surface on the chamber body side of the lid, and a radial direction relative to the first annular groove A second annular groove located on the inner side,
    An annular wall that is inserted into the second annular groove when the opening is covered with the other of the end face on the lid side of the opening and the end face on the chamber body side of the lid. A vacuum apparatus characterized by that.
  7.  請求項6に記載の真空装置において、
     上記第2環状溝の深さは上記第1環状溝の深さよりも深いことを特徴とする真空装置。
    The vacuum apparatus according to claim 6.
    The vacuum apparatus characterized in that a depth of the second annular groove is deeper than a depth of the first annular groove.
  8.  請求項6または7に記載の真空装置において、
     上記第1環状溝の径方向内側の壁面は、断面が、楕円弧形状、円弧形状、または、上記環状溝の底面に対して傾斜する直線形状になるように形成されて、蓋体の閉鎖時、上記シール部材に接触し、
     上記第1環状溝の径方向外側の壁面は、上記開口部の上記蓋体側の端面と上記蓋体の上記チャンバ本体側の端面との内の他方側に位置する端部が、上記シール部材との間に隙間を有するように形成されて、蓋体の開放時および閉鎖時、上記シール部材に接触しないことを特徴とする真空装置。
    The vacuum apparatus according to claim 6 or 7,
    The radially inner wall surface of the first annular groove is formed to have an elliptical arc shape, an arc shape, or a linear shape inclined with respect to the bottom surface of the annular groove, and when the lid is closed, Contacting the sealing member,
    The wall surface on the radially outer side of the first annular groove has an end located on the other side of the end surface on the lid body side of the opening and the end surface on the chamber body side of the lid body, and the seal member. A vacuum apparatus characterized in that it is formed so as to have a gap therebetween, and does not contact the sealing member when the lid is opened and closed.
  9.  請求項8に記載の真空装置において、
     上記第1環状溝の径方向内側の壁面およびその周辺部は、上記第1環状溝の径方向外側の壁面およびその周辺部とは異なる材料で形成されていることを特徴とする真空装置。
    The vacuum apparatus according to claim 8,
    The vacuum apparatus characterized in that the radially inner wall surface and its peripheral portion of the first annular groove are formed of a material different from the radially outer wall surface and peripheral portion of the first annular groove.
  10.  請求項8または9に記載の真空装置において、
     上記第1環状溝は、上記シール部材に接触する接触領域よりも径方向外側に、上記接触領域よりも深い領域を有することを特徴とする真空装置。
    The vacuum apparatus according to claim 8 or 9,
    The vacuum apparatus, wherein the first annular groove has a region deeper than the contact region on a radially outer side than a contact region contacting the seal member.
PCT/JP2017/005172 2017-02-13 2017-02-13 Vacuum device WO2018146817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005172 WO2018146817A1 (en) 2017-02-13 2017-02-13 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005172 WO2018146817A1 (en) 2017-02-13 2017-02-13 Vacuum device

Publications (1)

Publication Number Publication Date
WO2018146817A1 true WO2018146817A1 (en) 2018-08-16

Family

ID=63107296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005172 WO2018146817A1 (en) 2017-02-13 2017-02-13 Vacuum device

Country Status (1)

Country Link
WO (1) WO2018146817A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118063U (en) * 1984-01-19 1985-08-09 三菱電機株式会社 vacuum flange
WO2004038781A1 (en) * 2002-10-25 2004-05-06 Nok Corporation Plasma resistant seal
JP2005298893A (en) * 2004-04-12 2005-10-27 Sony Corp Vessel member having dent structure for detaching o ring
WO2007088593A1 (en) * 2006-01-31 2007-08-09 Shi Mechanical & Equipment Inc. Seal structure of pressure vessel
WO2009113417A1 (en) * 2008-03-13 2009-09-17 日本バルカー工業株式会社 Seal
JP2010060107A (en) * 2008-09-05 2010-03-18 Nippon Valqua Ind Ltd Compound seal member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118063U (en) * 1984-01-19 1985-08-09 三菱電機株式会社 vacuum flange
WO2004038781A1 (en) * 2002-10-25 2004-05-06 Nok Corporation Plasma resistant seal
JP2005298893A (en) * 2004-04-12 2005-10-27 Sony Corp Vessel member having dent structure for detaching o ring
WO2007088593A1 (en) * 2006-01-31 2007-08-09 Shi Mechanical & Equipment Inc. Seal structure of pressure vessel
WO2009113417A1 (en) * 2008-03-13 2009-09-17 日本バルカー工業株式会社 Seal
JP2010060107A (en) * 2008-09-05 2010-03-18 Nippon Valqua Ind Ltd Compound seal member

Similar Documents

Publication Publication Date Title
US20210035786A1 (en) Substrate processing apparatus
KR100793553B1 (en) Sealing part and substrate processing apparatus
JP5227197B2 (en) Focus ring and plasma processing apparatus
CN112309900A (en) Substrate processing apparatus
JP5308679B2 (en) Seal mechanism, seal groove, seal member, and substrate processing apparatus
US9550194B2 (en) Gas shower structure and substrate processing apparatus
JP2009290087A (en) Focus ring, and plasma processing apparatus
JP6463755B2 (en) Sealing groove method for semiconductor devices
US10801521B2 (en) Heating device and turbo molecular pump
KR101204160B1 (en) Vacuum processing apparatus
KR101541817B1 (en) Plasma reactor for purifying exhaust gas of the process facility
KR101061657B1 (en) Plasma processing apparatus and method and baffle plate of plasma processing apparatus
JP2009068105A (en) Film coating system and isolating device thereof
WO2020116246A1 (en) Shower plate, plasma processing apparatus and plasma processing method
TWI640030B (en) Surface processing method for upper electrode, and plasma processing device
WO2018146817A1 (en) Vacuum device
CN114107951B (en) Exhaust pipe device
US20210062337A1 (en) Exhaust pipe device
US20180019104A1 (en) Substrate processing chamber component assembly with plasma resistant seal
JP6566686B2 (en) Equipment for film formation in containers
KR101713983B1 (en) Plasma generating device having differential pumping structure
US20120145724A1 (en) Vacuum container
JP2008192802A (en) Semiconductor manufacturing device, and its manufacturing method
US8092750B2 (en) Plasma system
WO2023228232A1 (en) Method for reproducing inner wall member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP