WO2018142918A1 - Continuous annealing furnace - Google Patents

Continuous annealing furnace Download PDF

Info

Publication number
WO2018142918A1
WO2018142918A1 PCT/JP2018/001002 JP2018001002W WO2018142918A1 WO 2018142918 A1 WO2018142918 A1 WO 2018142918A1 JP 2018001002 W JP2018001002 W JP 2018001002W WO 2018142918 A1 WO2018142918 A1 WO 2018142918A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
cooling
continuous annealing
annealing furnace
steel plate
Prior art date
Application number
PCT/JP2018/001002
Other languages
French (fr)
Japanese (ja)
Inventor
雅資 梅本
有紀 中田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197021783A priority Critical patent/KR102304637B1/en
Priority to CN201880009466.4A priority patent/CN110234775A/en
Priority to JP2018518675A priority patent/JP6369660B1/en
Publication of WO2018142918A1 publication Critical patent/WO2018142918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • C21D9/677Arrangements of heating devices

Definitions

  • the present invention relates to a continuous annealing furnace having a pre-tropical zone.
  • a continuous annealing furnace that has a pre-tropical zone, a heating zone, a soaking zone, and a cooling zone, and that performs annealing treatment of the steel sheet while transporting the steel sheet by a hearth roll having a convex crown shape provided in each band.
  • a thermal gas is applied so that the hearth roll has a concave crown shape by blowing cooling gas to both ends in the axial direction of the hearth roll provided in the heating zone. It is known that the crown is reduced to suppress the meandering of the steel sheet (Patent Document 1, etc.).
  • the atmosphere gas in the heating zone heated by the radiant tube has been used after being cooled by exchanging heat with cooling water using a heat exchanger, so that there is a problem that energy efficiency is poor.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a continuous annealing furnace capable of suppressing meandering of a steel sheet while suppressing deterioration of energy efficiency.
  • a continuous annealing furnace is a continuous annealing furnace for steel sheets provided with a pre-tropical zone, a heating zone, a soaking zone, and a cooling zone, A cooling means is provided for cooling by blowing a cooling gas to both axial ends of the provided hearth roll, and the cooling means uses the pre-tropical atmosphere gas as the cooling gas. is there.
  • the pre-tropical zone and the heating zone communicate with each other via a communication portion that connects the pre-tropical zone and the heating zone.
  • the steel sheet is conveyed from the pre-tropical zone to the heating zone, and the cooling gas is blown to both axial ends of the hearth roll by the cooling means, so that the atmospheric gas in the heating zone is passed through the communication portion. It flows into the pre-tropical zone.
  • the pre-tropical zone uses heat of combustion exhaust gas from a radiant tube provided in the heating zone by a fan, a duct, and a heat exchanger.
  • a circulation system for circulating the pre-tropical atmosphere gas is configured, and the cooling means uses the atmosphere gas branched from the duct as the cooling gas.
  • control means for controlling whether or not the cooling means performs cooling of both ends in the axial direction of the hearth roll according to the thickness and width of the steel plate is characterized by having.
  • the subsequent steel plate is conveyed.
  • the cooling means starts to cool both ends in the axial direction of the hearth roll.
  • the cooling means blows and cools both ends in the axial direction of the hearth roll as a cooling gas using a pre-tropical atmosphere gas whose temperature is lower than that of the atmosphere gas in the heating zone.
  • FIG. 1 is a schematic diagram illustrating a configuration of a continuous annealing line according to the embodiment.
  • FIG. 2 is an explanatory diagram of a pre-tropical atmosphere gas circulation system, a hearth roll cooling device, and the like.
  • FIG. 3 is an explanatory diagram of a chamber provided in the hearth roll cooling device.
  • FIG. 4 is an explanatory view of the circulation of the atmospheric gas between the pre-tropical zone and the heating zone.
  • FIG. 5 is an explanatory diagram of the centering force acting on a narrow steel plate.
  • FIG. 6 is a graph showing the relationship between the use and non-use of the hearth roll cooling device and the plate thickness and plate width of the steel plate.
  • Fig.7 (a) is a figure which shows the case where the steel plate which precedes without using a hearth roll cooling device is conveyed.
  • FIG.7 (b) is a figure which shows the case where the steel plate wider than the preceding steel plate is carried back and conveyed.
  • FIG. 1 is a schematic view showing a configuration of a continuous annealing line 100 according to the embodiment.
  • a continuous annealing line 100 shown in FIG. 1 includes payoff reels 101a and 101b, a welding machine 102, a cleaning facility 103, a tension leveler 104, an entrance looper 105, a continuous annealing furnace 106, a water quench facility 107, an exit looper 108, and a control.
  • a pressure mill 109, a trimmer 110, an Euler 111, a shear 112, and tension reels 113a and 113b are provided.
  • the payoff reels 101a and 101b are obtained by winding a steel plate 2 that passes through the continuous annealing line 100 in a coil shape. By rewinding the payoff reels 101 a and 101 b, the steel plate 2 that passes through the continuous annealing line 100 is sequentially sent to the continuous annealing line 100. In addition, the steel plate 2 that passes through the continuous annealing line 100 is connected to the continuous annealing line 100 by welding the rear end of the preceding steel plate 2 and the front end of the subsequent steel plate 2 by the subsequent welding machine 102. Threaded.
  • the cleaning equipment 103 when the steel plate 2 passes through the liquid agent or the like at high speed, the oil and fat adhering to the steel plate 2 is removed. Thereafter, the steel plate 2 is corrected in distortion by the tension leveler 104 and is carried into the entry side looper 105.
  • the entry side looper 105 is for temporarily waiting the steel plate 2 while maintaining the tension of the steel plate 2 for the subsequent annealing process.
  • the steel plate 2 whose timing is adjusted by the entry side looper 105 is carried into the continuous annealing furnace 106.
  • a pre-tropical zone 106a, a heating zone 106b, a soaking zone 106c, and a cooling zone 106d are arranged from the upstream side to the downstream side in the steel plate conveyance direction.
  • One or more hearth rolls 16 are arranged in the upper and lower parts of the pre-tropical zone 106a, the heating zone 106b, the soaking zone 106c, and the cooling zone 106d.
  • the direction of the steel plate 2 is changed to a right angle without turning back, and the steel plate 2 is moved to the next band.
  • the hearth roll 16 has a convex crown shape with a taper such that the diameter of the central portion in the axial direction is larger than the diameter of both end portions in the axial direction on the roll surface.
  • the pre-tropical zone 106a and the heating zone 106b communicate with each other via a communication portion 106e that connects the lower portions of the respective zones, and the heating zone 106b and the soaking zone 106c are connected to the lower portions of the respective zones.
  • the soaking zone 106c and the cooling zone 106d communicate with each other via a communicating portion 106g that connects the lower portions of each zone.
  • the steel plate 2 is introduced from an opening (steel plate introduction portion) provided in the lower part thereof, and the steel plate 2 is heated by a gas that is heat-exchanged with the combustion exhaust gas of the radiant tube described later by a circulation system as described later. To do.
  • the steel plate 2 can be indirectly heated using a radiant tube (not shown) as a heating means.
  • the steel plate 2 is cooled in the cooling zone 106d.
  • the atmospheric gas temperature in the pre-tropical zone 106a is about 200 [° C.]
  • the atmospheric gas temperature in the heating zone 106b is 700 [° C.] to 800 [° C.].
  • the annealed steel plate 2 is carried into the exit side looper 108 via the water quench facility 107.
  • the exit side looper 108 is for temporarily waiting the steel plate 2 while maintaining the tension of the steel plate 2 for post-processing in the subsequent stage.
  • the pressure adjusting mill 109 is equipment for temper-rolling the steel sheet 2 sent out from the exit side looper 108.
  • the temper-rolled steel sheet 2 is wound around tension reels 113a and 113b via a post-processing unit including a trimmer 110, an oiler 111, and a shear 112.
  • the trimmer 110 cuts unnecessary portions from the steel plate 2.
  • the Euler 111 applies oil to the steel plate 2.
  • the shear 112 cuts the defective part detected in the inspection process.
  • the continuous annealing line 100 is provided with a process computer (not shown) for managing the operation of the continuous annealing line 100.
  • This process computer is, for example, the transfer sequence of the steel plates 2 rewound through the payoff reels 101a and 101b, the transfer speed of the steel plates 2, the standard, thickness, width and length of the steel plates 2 constituting the steel plates 2.
  • the furnace temperature of each zone of the continuous annealing furnace 106 is managed.
  • the temperature of the portion where the hearth roll 16 is not in contact with the steel plate 2 is heated by the atmospheric gas in the heating zone 106b and rises.
  • the temperature of the steel plate 2 entering the heating zone 106b from the pre-tropical zone 106a through the communicating portion 106e is lower than the ambient temperature of the heating zone 106b, and the steel plate 2 of the hearth roll 16 is low.
  • the temperature of the portion in contact with the steel plate is close to the temperature of the steel plate 2. Therefore, a temperature distribution in which both ends are higher than the center in the axial direction of the hearth roll 16 can be achieved.
  • the original convex crown shape of the hearth roll 16 is not maintained, and the concave surface having a taper such that the diameter of the central portion in the axial direction becomes smaller than the diameter of both end portions in the axial direction on the roll surface. If it becomes a crown shape, the steel plate 2 conveyed by the hearth roll 16 cannot be automatically centered in the axial center of the hearth roll 16, and the meandering of the steel plate 2 is likely to occur.
  • the crown which arises in the hearth roll 16 by the temperature change by the contact of the steel plate 2, etc. is called thermal crown.
  • FIG. 2 is an explanatory diagram of the atmospheric gas circulation system of the pre-tropical zone 106a, the hearth roll cooling device 80, and the like.
  • FIG. 3 is an explanatory diagram of the chamber 81 provided in the hearth roll cooling device 80.
  • the pretropical zone 106 a uses the fan 10, the circulation duct 20, and the heat exchanger 40, while utilizing the heat of the combustion exhaust gas from the radiant tube provided in the heating zone 106 b, while the pretropical zone 106 a.
  • a circulation system for circulating the atmospheric gas is configured.
  • the exhaust gas discharged from the radiant tube 60 of the heating zone 106b is passed through the heat exchanger 40, whereby the circulation gas flowing through the circulation duct 20 connected to the heat exchanger 40 is heated. And it is comprised so that the steel plate 2 may be heated by spraying the circulating gas heated in this way from the chamber 50 provided in the pre tropical zone 106a to the steel plate 2 which passes the pre tropical zone 106a.
  • a branch duct 30 branched from the circulation duct 20 is provided downstream of the fan 10 in the circulation duct 20 and upstream of the heat exchanger 40, and a part of the circulation gas flowing through the circulation duct 20 is provided. It flows into the branch duct 30.
  • the branch duct 30 is provided with a shut-off valve 91, a flow control valve 92, a pressure gauge 93, and a distribution pipe 31 connected to the chamber 81.
  • a part of the circulating gas sent from the pre-tropical zone 106 a to the circulation duct 20 by the fan 10 flows into the branch duct 30 branched from the circulation duct 20 and is sent into the chamber 81 via the distribution pipe 31. As shown in FIG.
  • the circulating gas sent into the chamber 81 is sprayed as cooling gas from both the injection ports 81a and 81b to both ends in the axial direction of the hearth roll 16, and both ends in the axial direction of the hearth roll 16 are cooled. Is done.
  • the fan 10 used in the circulation system of the pretropical zone 106a is also used as a fan for sending atmospheric gas from the pretropical zone 106a to the chamber 81 of the heating zone 106b. This eliminates the need for a dedicated fan for sending atmospheric gas from the pre-tropical zone 106a to the chamber 81 of the heating zone 106b, thereby reducing costs accordingly.
  • a heat insulating plate 70 provided with a slit through which the steel plate 2 can pass is provided between the hearth roll 16 and the radiant tube 60, and radiant heat from the radiant tube 60 is generated.
  • the heat insulating plate 70 By shielding with the heat insulating plate 70, the temperature rise of the atmospheric gas in the vicinity of the hearth roll 16 is reduced. Thereby, the temperature difference of the part which contacts the steel plate 2 of the hearth roll 16 and the part which does not contact the steel plate 2 of the hearth roll 16 is reduced rather than the case where the heat insulating board 70 is not provided.
  • the thermometer 3 is provided in the space on the hearth roll 16 side separated from the space on the radiant tube 60 side by the heat insulating plate 70.
  • a chamber 81 provided with two injection ports 81a and 81b is disposed.
  • the chamber 81 constitutes a cooling means that cools the atmosphere gas of the pre-tropic zone 106a by using the cooling gas as a cooling gas and spraying it from both the injection ports 81a and 81b to both ends of the hearth roll 16 in the axial direction.
  • the atmospheric gas in the pre-tropic zone 106a is used as a cooling gas and sprayed to both ends in the axial direction of the hearth roll 16 by the chamber 81, so that both axial ends in the axial direction of the hearth roll 16 heated by the atmospheric gas in the heating zone 106b are added. It can be cooled by the atmospheric gas (cooling gas) of the pre-tropical zone 106a, which has a lower temperature than the atmospheric gas of the tropical zone 106b, and the thermal crown of the hearth roll 16 in the heating zone 106b is reduced to suppress meandering of the steel plate 2. Can do.
  • the atmosphere gas of the pre-tropical zone 106a having a temperature lower than that of the atmosphere gas of the heating zone 106b as a cooling gas for cooling by blowing the both ends in the axial direction of the hearth roll 16
  • a radiant tube is used as the cooling gas. Since it is not necessary to cool and use the atmospheric gas in the heating zone 106b heated by 60, deterioration of energy efficiency can be suppressed. Furthermore, since a cooling device for cooling the atmosphere gas in the dedicated heating zone 106b is not required to obtain the cooling gas, the cost can be reduced and the equipment can be downsized accordingly.
  • FIG. 4 is an explanatory view of the circulation of the atmospheric gas between the pre-tropical zone 106a and the heating zone 106b.
  • the atmospheric gas in the pre-tropical zone 106a is sent from the pre-tropical zone 106a to the heating zone 106b by the fan 10 to reduce the internal pressure of the pre-tropical zone 106a and the internal pressure of the heating zone 106b. Is increased. Therefore, an air flow is generated in which the atmospheric gas in the heating zone 106b flows into the pre-tropical zone 106a through the communication portion 106e that connects the pre-tropical zone 106a and the heating zone 106b.
  • the steel plate 2 located on the exit side of the communication portion 106e and the pre-tropical zone 106a is heated before entering the heating zone 106b by the atmospheric gas in the heating zone 106b.
  • the temperature difference between the temperature and the ambient gas temperature in the heating zone 106b can be reduced. Therefore, in the vicinity of the entrance side of the heating zone 106b, the temperature difference between the temperature of the portion of the hearth roll 16 in contact with the steel plate 2 and the temperature of the portion of the hearth roll 16 not in contact with the steel plate 2 is reduced. It is possible to reduce the temperature gradient in the direction and suppress the occurrence of a thermal crown in the hearth roll 16 that has a concave crown shape due to a difference in thermal expansion.
  • FIG. 5 is an explanatory diagram of the centering force acting on a narrow steel plate.
  • the centering force of the steel plate 2 works due to the taper of the roll surface.
  • the taper of the hearth roll 16 becomes smaller as shown in FIG. Since this area is reduced and the centering force is also reduced, it becomes easier to meander.
  • the steel plate 2 is thin and has low rigidity, if the centering force at the taper of the hearth roll 16 is too strong for the rigidity of the steel plate 2, there is a possibility that buckling (squeezing) may occur in the steel plate 2. is there.
  • the axial central portion of the hearth roll 16 in contact with the steel plate 2 is more thermally expanded than both axial end portions, and a convex crown shape is formed. If the taper angle becomes large, the buckling (drawing) described above may become prominent when the thin steel plate 2 having a wide width is used.
  • the part which does not contact the steel plate 2 of the hearth roll 16 decreases as the steel plate 2 becomes wider, the temperature gradient is small in the axial direction of the hearth roll 16 and the thermal expansion difference is reduced, and the convex crown shape is maintained. And meandering is less likely to occur.
  • the heating zone 106 b is provided only when the narrow steel plate 2 that is easy to meander and is not easily drawn is passed through the continuous annealing furnace 106.
  • Cooling gas may be blown from the chamber 81 to both ends of the hearth roll 16 in the axial direction.
  • a cooling device that cools both ends in the axial direction of the hearth roll 16 is used, and the plate in other ranges
  • the cooling device that cools both axial ends of the hearth roll 16 is not used.
  • the pressure of the cooling gas blown from the chamber 81 to both ends in the axial direction of the hearth roll 16 may be set according to the conditions of the plate thickness and the plate width.
  • the pressure adjustment of the cooling gas blown from the chamber 81 to both ends in the axial direction of the hearth roll 16 can be executed by automatic control by a process computer.
  • the process computer acquires information on the thickness and width of the steel plate 2 passed through the continuous annealing furnace 106 from a database or the like, and based on the pressure of the cooling gas flowing in the branch duct 30 detected by the pressure gauge 93.
  • the pressure of the cooling gas is adjusted according to the conditions of the plate thickness and the plate width of the steel plate 2 by adjusting the opening degree of the flow control valve 92.
  • the condition 1 when the plate thickness is 0.21 [mm] or more and the plate width is 800 [mm] or less, the cooling gas pressure is 1.4 [kPa].
  • the condition 2 when the plate thickness is 0.23 [mm] or more and the plate width is 830 [mm] or less, the pressure of the cooling gas is set to 1.7 [kPa].
  • the condition 3 when the plate thickness is 0.30 [mm] or more and the plate width is 860 [mm] or less, the pressure of the cooling gas is 1.7 [kPa].
  • the shut-off valve 91 provided in the branch duct 30 can be automatically opened and closed under the control of a process computer.
  • the process computer then opens the shut-off valve 91 when passing the thick steel plate 2 through the continuous annealing furnace 106, and part of the circulating gas in the pretropical zone 106 a is heated via the branch duct 30.
  • the gas is fed into a chamber 81 provided in 106 b and cooled by blowing a cooling gas from the chamber 81 to both ends in the axial direction of the hearth roll 16.
  • the process computer closes the shut-off valve 91 and passes the circulating gas of the pretropical zone 106 a flowing into the branch duct 30 to the chamber 81 when passing the steel plate 2 other than the narrow material through the continuous annealing furnace 106.
  • the cooling gas is prevented from being blown from the chamber 81 to both ends of the hearth roll 16 in the axial direction.
  • it is possible to suppress the occurrence of meandering when the thick steel plate 2 is passed through the continuous annealing furnace 106 and annealing, and the thin steel plate 2 is passed through the continuous annealing furnace 106 for annealing. It is possible to suppress the occurrence of buckling (squeezing) when performing.
  • FIG. 7 (a) is a diagram showing a case where the preceding steel plate 2 is conveyed without using the hearth roll cooling device 80.
  • FIG. FIG. 7B is a view showing a case where the steel plate 2 wider than the preceding steel plate 2 is conveyed after being moved backward.
  • the rear end of the preceding steel plate 2 and the front end of the subsequent steel plate 2 are connected by welding with a welding machine 102.
  • the material and size of the preceding steel plate 2 and the following steel plate 2 may be different.
  • the preceding steel plate 2 has the thermal crown of the hearth roll 16 without using the hearth roll cooling device 80. Although meandering does not occur, as shown in FIG.
  • the hearth roll cooling device 80 may meander due to the thermal crown of the hearth roll 16. In this case, even if cooling of both ends in the axial direction of the hearth roll 16 is started by the hearth roll cooling device 80 after the passing of the subsequent steel plate 2 is started, the temperature at both ends in the axial direction of the hearth roll 16 is started.
  • the both ends in the axial direction of the hearth roll 16 are reduced to a temperature at which the thermal crown can be reduced to such an extent that the meandering can be suppressed before the subsequent steel plate 2 is passed through the continuous annealing furnace 106. Cooling may not be in time.
  • the process computer monitors the plate width of each of the preceding steel plate 2 and the following steel plate 2, and the subsequent steel plate 2 of the following steel plate 2 with respect to the plate width of the preceding steel plate 2 is monitored.
  • the amount of spread of the plate width is larger than a predetermined amount
  • cooling of both ends in the axial direction of the hearth roll 16 by the hearth roll cooling device 80 is started before the subsequent plate of the steel plate 2 is started. That is, before the passage of the subsequent steel plate 2 is started, the shut-off valve 91 that is closed when the preceding steel plate 2 is passed is opened, and the cooling gas is supplied from the chamber 81 to both axial ends of the hearth roll 16. Spray to start cooling.
  • the cooling of both axial ends of the hearth roll 16 can be made in time to a temperature at which the thermal crown can be reduced to such an extent that the meandering can be suppressed. it can. Therefore, meandering of the subsequent steel plate 2 that can occur when the amount of spread of the subsequent steel plate 2 relative to the width of the preceding steel plate 2 is larger than a predetermined amount can be suppressed.

Abstract

Provided is a continuous steel annealing furnace comprising a preheating zone, a heating zone, a soaking zone, and a cooling zone; the furnace having a cooling means such as a hearth roller cooling apparatus that cools by spraying cooling gas onto both axial ends of a hearth roller provided in the heating zone; the cooling means using atmospheric gas from the preheating zone as the cooling gas.

Description

連続焼鈍炉Continuous annealing furnace
 本発明は、予熱帯を擁する連続焼鈍炉に関する。 The present invention relates to a continuous annealing furnace having a pre-tropical zone.
 従来、予熱帯、加熱帯、均熱帯及び冷却帯を備えており、各帯に設けられた凸型のクラウン形状を有するハースロールによって鋼板を搬送させながら、鋼板の焼鈍処理を行う連続焼鈍炉が知られている。また、このような連続焼鈍炉においては、一般に、加熱帯に設けられたハースロールの軸方向両端部に、冷却装置によって冷却ガスを吹き付けることにより、ハースロールが凹型のクラウン形状となるようなサーマルクラウンを低減させて、鋼板が蛇行するのを抑制することが知られている(特許文献1など)。 Conventionally, a continuous annealing furnace that has a pre-tropical zone, a heating zone, a soaking zone, and a cooling zone, and that performs annealing treatment of the steel sheet while transporting the steel sheet by a hearth roll having a convex crown shape provided in each band. Are known. Further, in such a continuous annealing furnace, generally, a thermal gas is applied so that the hearth roll has a concave crown shape by blowing cooling gas to both ends in the axial direction of the hearth roll provided in the heating zone. It is known that the crown is reduced to suppress the meandering of the steel sheet (Patent Document 1, etc.).
特開平7-331336号公報JP-A-7-331336
 しかしながら、従来、前記冷却ガスとしては、ラジアントチューブによって加熱した加熱帯の雰囲気ガスを、熱交換器によって冷却水と熱交換を行い冷却して用いていたため、エネルギー効率が悪いといった問題があった。 However, conventionally, as the cooling gas, the atmosphere gas in the heating zone heated by the radiant tube has been used after being cooled by exchanging heat with cooling water using a heat exchanger, so that there is a problem that energy efficiency is poor.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、エネルギー効率の悪化を抑えつつ、鋼板の蛇行を抑制することができる連続焼鈍炉を提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a continuous annealing furnace capable of suppressing meandering of a steel sheet while suppressing deterioration of energy efficiency.
 上述した課題を解決し、目的を達成するために、本発明に係る連続焼鈍炉は、予熱帯、加熱帯、均熱帯及び冷却帯を備えた鋼板の連続焼鈍炉であって、前記加熱帯に設けられたハースロールの軸方向両端部に冷却ガスを吹き付けて冷却する冷却手段を有しており、前記冷却手段は、前記予熱帯の雰囲気ガスを前記冷却ガスとして用いることを特徴とするものである。 In order to solve the above-mentioned problems and achieve the object, a continuous annealing furnace according to the present invention is a continuous annealing furnace for steel sheets provided with a pre-tropical zone, a heating zone, a soaking zone, and a cooling zone, A cooling means is provided for cooling by blowing a cooling gas to both axial ends of the provided hearth roll, and the cooling means uses the pre-tropical atmosphere gas as the cooling gas. is there.
 また、本発明に係る連続焼鈍炉は、上記の発明において、前記予熱帯及び前記加熱帯は、該予熱帯及び該加熱帯を接続する連通部を介して連通しており、前記連通部を通って前記予熱帯から前記加熱帯に鋼板が搬送されており、前記冷却手段によって前記冷却ガスを前記ハースロールの軸方向両端部に吹き付けることで、前記連通部を介して前記加熱帯の雰囲気ガスが前記予熱帯に流入することを特徴とするものである。 In the continuous annealing furnace according to the present invention as set forth in the invention described above, the pre-tropical zone and the heating zone communicate with each other via a communication portion that connects the pre-tropical zone and the heating zone. The steel sheet is conveyed from the pre-tropical zone to the heating zone, and the cooling gas is blown to both axial ends of the hearth roll by the cooling means, so that the atmospheric gas in the heating zone is passed through the communication portion. It flows into the pre-tropical zone.
 また、本発明に係る連続焼鈍炉は、上記の発明において、前記予熱帯には、ファンとダクトと熱交換器とによって、前記加熱帯に設けられたラジアントチューブからの燃焼排ガスの熱を利用しつつ、該予熱帯の雰囲気ガスを循環させるための循環系統が構成されており、前記冷却手段は、前記ダクトから分岐させた前記雰囲気ガスを前記冷却ガスとして用いることを特徴とするものである。 In the continuous annealing furnace according to the present invention, in the above-described invention, the pre-tropical zone uses heat of combustion exhaust gas from a radiant tube provided in the heating zone by a fan, a duct, and a heat exchanger. However, a circulation system for circulating the pre-tropical atmosphere gas is configured, and the cooling means uses the atmosphere gas branched from the duct as the cooling gas.
 また、本発明に係る連続焼鈍炉は、上記の発明において、前記鋼板の板厚及び板幅に応じて、前記冷却手段による前記ハースロールの軸方向両端部の冷却の実行有無を制御する制御手段を有することを特徴とするものである。 Further, in the continuous annealing furnace according to the present invention, in the above invention, the control means for controlling whether or not the cooling means performs cooling of both ends in the axial direction of the hearth roll according to the thickness and width of the steel plate. It is characterized by having.
 また、本発明に係る連続焼鈍炉は、上記の発明において、先行する鋼板の板幅に対して後行する鋼板の板幅の広がり量が所定量よりも大きいときには、後行する鋼板の搬送が開始される前に、前記冷却手段による前記ハースロールの軸方向両端部の冷却の実行を開始することを特徴とするものである。 Further, in the continuous annealing furnace according to the present invention, in the above invention, when the spread amount of the plate width of the subsequent steel plate is larger than a predetermined amount with respect to the plate width of the preceding steel plate, the subsequent steel plate is conveyed. Before starting, the cooling means starts to cool both ends in the axial direction of the hearth roll.
 本発明に係る連続焼鈍炉においては、冷却手段が、加熱帯の雰囲気ガスよりも温度の低い予熱帯の雰囲気ガスを冷却ガスとして、ハースロールの軸方向両端部に吹き付けて冷却するため、エネルギー効率の悪化を抑えつつ、鋼板の蛇行を抑制することができるという効果を奏する。 In the continuous annealing furnace according to the present invention, the cooling means blows and cools both ends in the axial direction of the hearth roll as a cooling gas using a pre-tropical atmosphere gas whose temperature is lower than that of the atmosphere gas in the heating zone. There is an effect that the meandering of the steel sheet can be suppressed while suppressing the deterioration of the steel sheet.
図1は、実施形態に係る連続焼鈍ラインの構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of a continuous annealing line according to the embodiment. 図2は、予熱帯の雰囲気ガスの循環系統やハースロール冷却装置などの説明図である。FIG. 2 is an explanatory diagram of a pre-tropical atmosphere gas circulation system, a hearth roll cooling device, and the like. 図3は、ハースロール冷却装置に設けられたチャンバの説明図である。FIG. 3 is an explanatory diagram of a chamber provided in the hearth roll cooling device. 図4は、予熱帯と加熱帯との間での雰囲気ガスの循環についての説明図である。FIG. 4 is an explanatory view of the circulation of the atmospheric gas between the pre-tropical zone and the heating zone. 図5は、幅狭の鋼板に働くセンタリング力についての説明図である。FIG. 5 is an explanatory diagram of the centering force acting on a narrow steel plate. 図6は、ハースロール冷却装置の使用及び不使用と、鋼板の板厚及び板幅との関係を示したグラフである。FIG. 6 is a graph showing the relationship between the use and non-use of the hearth roll cooling device and the plate thickness and plate width of the steel plate. 図7(a)は、ハースロール冷却装置を不使用で先行する鋼板を搬送した場合を示す図である。図7(b)は、先行する鋼板よりも幅広の鋼板を後行させて搬送した場合を示す図である。Fig.7 (a) is a figure which shows the case where the steel plate which precedes without using a hearth roll cooling device is conveyed. FIG.7 (b) is a figure which shows the case where the steel plate wider than the preceding steel plate is carried back and conveyed.
 以下に、本発明に係る連続焼鈍炉を備えた連続焼鈍ラインの一実施形態を図面に基づいて詳細に説明する。なお、本実施形態によって本発明が限定されるものではない。 Hereinafter, an embodiment of a continuous annealing line equipped with a continuous annealing furnace according to the present invention will be described in detail based on the drawings. In addition, this invention is not limited by this embodiment.
 図1は、実施形態に係る連続焼鈍ライン100の構成を示す概略図である。図1に示される連続焼鈍ライン100は、ペイオフリール101a,101b、溶接機102、洗浄設備103、テンションレベラ104、入側ルーパ105、連続焼鈍炉106、ウォータークエンチ設備107、出側ルーパ108、調圧ミル109、トリマー110、オイラー111、シャー112、及び、テンションリール113a,113bなどを備えている。 FIG. 1 is a schematic view showing a configuration of a continuous annealing line 100 according to the embodiment. A continuous annealing line 100 shown in FIG. 1 includes payoff reels 101a and 101b, a welding machine 102, a cleaning facility 103, a tension leveler 104, an entrance looper 105, a continuous annealing furnace 106, a water quench facility 107, an exit looper 108, and a control. A pressure mill 109, a trimmer 110, an Euler 111, a shear 112, and tension reels 113a and 113b are provided.
 ペイオフリール101a,101bは、連続焼鈍ライン100に通板する鋼板2をコイル状に巻いたものである。このペイオフリール101a,101bを巻き戻すことにより、連続焼鈍ライン100に通板する鋼板2が連続焼鈍ライン100に順次送出される。また、連続焼鈍ライン100に通板する鋼板2は、先行の鋼板2の後端と後行の鋼板2の先端とを後段の溶接機102が溶接することにより、連結して連続焼鈍ライン100に通板される。 The payoff reels 101a and 101b are obtained by winding a steel plate 2 that passes through the continuous annealing line 100 in a coil shape. By rewinding the payoff reels 101 a and 101 b, the steel plate 2 that passes through the continuous annealing line 100 is sequentially sent to the continuous annealing line 100. In addition, the steel plate 2 that passes through the continuous annealing line 100 is connected to the continuous annealing line 100 by welding the rear end of the preceding steel plate 2 and the front end of the subsequent steel plate 2 by the subsequent welding machine 102. Threaded.
 洗浄設備103では、鋼板2が液剤中等を高速通板することにより、鋼板2に付着した油脂等が取り除かれる。その後、鋼板2は、テンションレベラ104により歪みを矯正して、入側ルーパ105に搬入される。 In the cleaning equipment 103, when the steel plate 2 passes through the liquid agent or the like at high speed, the oil and fat adhering to the steel plate 2 is removed. Thereafter, the steel plate 2 is corrected in distortion by the tension leveler 104 and is carried into the entry side looper 105.
 入側ルーパ105は、後段の焼鈍処理のために、鋼板2の張力を保ちながら鋼板2を一時待機させるためのものである。入側ルーパ105によってタイミング調整された鋼板2は、連続焼鈍炉106に搬入される。 The entry side looper 105 is for temporarily waiting the steel plate 2 while maintaining the tension of the steel plate 2 for the subsequent annealing process. The steel plate 2 whose timing is adjusted by the entry side looper 105 is carried into the continuous annealing furnace 106.
 連続焼鈍炉106は、鋼板搬送方向上流側から下流側に向かって、予熱帯106a、加熱帯106b、均熱帯106c及び冷却帯106dが配置されている。予熱帯106a、加熱帯106b、均熱帯106c及び冷却帯106dには、上部及び下部に1つ以上のハースロール16(図2参照)が配置されており、これらハースロール16を起点に180度折り返されることで、鋼板2は上下方向に複数回搬送され、複数パスを形成する。また、一部のハースロール16では、鋼板2を折り返すことなく直角に方向転換させて、鋼板2を次の帯へと移動させる。ハースロール16は、ロール表面に軸方向中央部の径が軸方向両端部の径よりも大きくなるようなテーパーを有する凸型のクラウン形状となっている。これにより、ハースロール16によって搬送される鋼板2を、自動的にハースロール16の軸方向中央にセンタリングさせることが可能となり、鋼板2の幅方向への蛇行を抑制することができる。 In the continuous annealing furnace 106, a pre-tropical zone 106a, a heating zone 106b, a soaking zone 106c, and a cooling zone 106d are arranged from the upstream side to the downstream side in the steel plate conveyance direction. One or more hearth rolls 16 (see FIG. 2) are arranged in the upper and lower parts of the pre-tropical zone 106a, the heating zone 106b, the soaking zone 106c, and the cooling zone 106d. As a result, the steel plate 2 is conveyed a plurality of times in the vertical direction to form a plurality of passes. Moreover, in some hearth rolls 16, the direction of the steel plate 2 is changed to a right angle without turning back, and the steel plate 2 is moved to the next band. The hearth roll 16 has a convex crown shape with a taper such that the diameter of the central portion in the axial direction is larger than the diameter of both end portions in the axial direction on the roll surface. Thereby, the steel plate 2 conveyed by the hearth roll 16 can be automatically centered in the axial center of the hearth roll 16, and the meandering in the width direction of the steel plate 2 can be suppressed.
 連続焼鈍炉106においては、予熱帯106aと加熱帯106bとは、それぞれの帯の下部同士を接続する連通部106eを介して連通し、加熱帯106bと均熱帯106cとは、それぞれの帯の下部同士を接続する連通部106fを介して連通し、均熱帯106cと冷却帯106dとは、それぞれの帯の下部同士を接続する連通部106gを介して連通している。 In the continuous annealing furnace 106, the pre-tropical zone 106a and the heating zone 106b communicate with each other via a communication portion 106e that connects the lower portions of the respective zones, and the heating zone 106b and the soaking zone 106c are connected to the lower portions of the respective zones. The soaking zone 106c and the cooling zone 106d communicate with each other via a communicating portion 106g that connects the lower portions of each zone.
  予熱帯106aでは、その下部に設けられた開口部(鋼板導入部)から鋼板2が導入され、後述するような循環系統によって、後述するラジアントチューブの燃焼排ガスと熱交換したガスにより鋼板2を加熱する。加熱帯106b及び均熱帯106cでは、加熱手段としてラジアントチューブ(不図示)を用いて、鋼板2を間接加熱することができる。鋼板2を加熱帯106b及び均熱帯106cで所定温度に加熱焼鈍した後、冷却帯106dで鋼板2を冷却する。なお、本実施形態においては、予熱帯106aにおける雰囲気ガス温度が200[℃]程度であり、加熱帯106bにおける雰囲気ガス温度が700[℃]~800[℃]である。 In the pre-tropical zone 106a, the steel plate 2 is introduced from an opening (steel plate introduction portion) provided in the lower part thereof, and the steel plate 2 is heated by a gas that is heat-exchanged with the combustion exhaust gas of the radiant tube described later by a circulation system as described later. To do. In the heating zone 106b and the soaking zone 106c, the steel plate 2 can be indirectly heated using a radiant tube (not shown) as a heating means. After the steel plate 2 is heated and annealed to a predetermined temperature in the heating zone 106b and the soaking zone 106c, the steel plate 2 is cooled in the cooling zone 106d. In the present embodiment, the atmospheric gas temperature in the pre-tropical zone 106a is about 200 [° C.], and the atmospheric gas temperature in the heating zone 106b is 700 [° C.] to 800 [° C.].
 焼鈍後の鋼板2は、ウォータークエンチ設備107を経由して、出側ルーパ108に搬入される。出側ルーパ108は、後段の後処理のために、鋼板2の張力を保ちながら鋼板2を一時待機させるためのものである。調圧ミル109は、出側ルーパ108から送出された鋼板2を調質圧延するための設備である。調質圧延された鋼板2は、トリマー110やオイラー111やシャー112で構成される後処理部を経由して、テンションリール113a,113bに巻き取られる。トリマー110は、鋼板2から不要部分を切断する。オイラー111は、鋼板2にオイルを塗る。シャー112は、検査プロセスで検出された不良部を切断する。 The annealed steel plate 2 is carried into the exit side looper 108 via the water quench facility 107. The exit side looper 108 is for temporarily waiting the steel plate 2 while maintaining the tension of the steel plate 2 for post-processing in the subsequent stage. The pressure adjusting mill 109 is equipment for temper-rolling the steel sheet 2 sent out from the exit side looper 108. The temper-rolled steel sheet 2 is wound around tension reels 113a and 113b via a post-processing unit including a trimmer 110, an oiler 111, and a shear 112. The trimmer 110 cuts unnecessary portions from the steel plate 2. The Euler 111 applies oil to the steel plate 2. The shear 112 cuts the defective part detected in the inspection process.
 また、連続焼鈍ライン100には、連続焼鈍ライン100の操業を管理するプロセスコンピュータ(不図示)が設けられている。このプロセスコンピュータは、例えば、ペイオフリール101a,101bを巻き戻して通板される鋼板2の搬送順序、鋼板2の搬送速度、鋼板2を構成する鋼板2の規格や板厚や板幅や長さ、連続焼鈍炉106の各帯の炉温などを管理している。 Further, the continuous annealing line 100 is provided with a process computer (not shown) for managing the operation of the continuous annealing line 100. This process computer is, for example, the transfer sequence of the steel plates 2 rewound through the payoff reels 101a and 101b, the transfer speed of the steel plates 2, the standard, thickness, width and length of the steel plates 2 constituting the steel plates 2. The furnace temperature of each zone of the continuous annealing furnace 106 is managed.
 ここで、加熱帯106bでは、ハースロール16が鋼板2と接触していない部分の温度は、加熱帯106bの雰囲気ガスによって加熱されて上昇する。一方、加熱帯106bの入側付近においては、加熱帯106bの雰囲気温度に比べて、予熱帯106aから連通部106eを介して加熱帯106bに入る鋼板2の温度が低く、ハースロール16の鋼板2と接触している部分の温度は、鋼板2の温度に近くなる。そのため、ハースロール16の軸方向で中央部よりも両端部のほうが高温となるような温度分布ができる。そして、熱膨張差により、ハースロール16の当初の凸型のクラウン形状が維持されず、ロール表面に軸方向中央部の径が軸方向両端部の径よりも小さくなるようなテーパーを有する凹型のクラウン形状となると、ハースロール16によって搬送される鋼板2を、自動的にハースロール16の軸方向中央にセンタリングさせることができなくなり、鋼板2の蛇行が発生しやすくなってしまう。なお、ハースロール16に予め付与したクラウンに対して、鋼板2の接触等による温度変化でハースロール16に生じるクラウンをサーマルクラウンと称する。 Here, in the heating zone 106b, the temperature of the portion where the hearth roll 16 is not in contact with the steel plate 2 is heated by the atmospheric gas in the heating zone 106b and rises. On the other hand, in the vicinity of the entrance side of the heating zone 106b, the temperature of the steel plate 2 entering the heating zone 106b from the pre-tropical zone 106a through the communicating portion 106e is lower than the ambient temperature of the heating zone 106b, and the steel plate 2 of the hearth roll 16 is low. The temperature of the portion in contact with the steel plate is close to the temperature of the steel plate 2. Therefore, a temperature distribution in which both ends are higher than the center in the axial direction of the hearth roll 16 can be achieved. Then, due to the difference in thermal expansion, the original convex crown shape of the hearth roll 16 is not maintained, and the concave surface having a taper such that the diameter of the central portion in the axial direction becomes smaller than the diameter of both end portions in the axial direction on the roll surface. If it becomes a crown shape, the steel plate 2 conveyed by the hearth roll 16 cannot be automatically centered in the axial center of the hearth roll 16, and the meandering of the steel plate 2 is likely to occur. In addition, with respect to the crown previously given to the hearth roll 16, the crown which arises in the hearth roll 16 by the temperature change by the contact of the steel plate 2, etc. is called thermal crown.
 図2は、予熱帯106aの雰囲気ガスの循環系統やハースロール冷却装置80などの説明図である。図3は、ハースロール冷却装置80に設けられたチャンバ81の説明図である。図2に示すように、予熱帯106aには、ファン10と循環ダクト20と熱交換器40とによって、加熱帯106bに設けられたラジアントチューブからの燃焼排ガスの熱を利用しつつ、予熱帯106aの雰囲気ガスを循環させるための循環系統が構成されている。この循環系統では、加熱帯106bのラジアントチューブ60などから排出される燃焼排ガスを熱交換器40に通すことによって、熱交換器40に接続された循環ダクト20を流れる循環ガスが加熱される。そして、このように加熱された循環ガスを予熱帯106a内に設けられたチャンバ50から、予熱帯106aを通過する鋼板2に吹き付けて鋼板2を加熱するように構成している。 FIG. 2 is an explanatory diagram of the atmospheric gas circulation system of the pre-tropical zone 106a, the hearth roll cooling device 80, and the like. FIG. 3 is an explanatory diagram of the chamber 81 provided in the hearth roll cooling device 80. As shown in FIG. 2, the pretropical zone 106 a uses the fan 10, the circulation duct 20, and the heat exchanger 40, while utilizing the heat of the combustion exhaust gas from the radiant tube provided in the heating zone 106 b, while the pretropical zone 106 a. A circulation system for circulating the atmospheric gas is configured. In this circulation system, the exhaust gas discharged from the radiant tube 60 of the heating zone 106b is passed through the heat exchanger 40, whereby the circulation gas flowing through the circulation duct 20 connected to the heat exchanger 40 is heated. And it is comprised so that the steel plate 2 may be heated by spraying the circulating gas heated in this way from the chamber 50 provided in the pre tropical zone 106a to the steel plate 2 which passes the pre tropical zone 106a.
 また、循環ダクト20におけるファン10よりも下流側で熱交換器40よりも上流側には、循環ダクト20から分岐する分岐ダクト30が設けられており、循環ダクト20を流れる循環ガスの一部が分岐ダクト30に流入するようになっている。なお、分岐ダクト30には、遮断弁91と、流調弁92と、圧力計93と、チャンバ81に接続された分配管31とが設けられている。予熱帯106aからファン10によって循環ダクト20に送り込まれた循環ガスの一部は、循環ダクト20から分岐する分岐ダクト30に流入し、分配管31を介してチャンバ81に送り込まれる。そして、図3に示すように、チャンバ81に送り込まれた循環ガスは、冷却ガスとして噴射口81a,81bからハースロール16の軸方向両端部に吹き付けられ、ハースロール16の軸方向両端部が冷却される。 Further, a branch duct 30 branched from the circulation duct 20 is provided downstream of the fan 10 in the circulation duct 20 and upstream of the heat exchanger 40, and a part of the circulation gas flowing through the circulation duct 20 is provided. It flows into the branch duct 30. The branch duct 30 is provided with a shut-off valve 91, a flow control valve 92, a pressure gauge 93, and a distribution pipe 31 connected to the chamber 81. A part of the circulating gas sent from the pre-tropical zone 106 a to the circulation duct 20 by the fan 10 flows into the branch duct 30 branched from the circulation duct 20 and is sent into the chamber 81 via the distribution pipe 31. As shown in FIG. 3, the circulating gas sent into the chamber 81 is sprayed as cooling gas from both the injection ports 81a and 81b to both ends in the axial direction of the hearth roll 16, and both ends in the axial direction of the hearth roll 16 are cooled. Is done.
 本実施形態においては、予熱帯106aの循環系統で用いられるファン10を、予熱帯106aから加熱帯106bのチャンバ81に雰囲気ガスを送るファンとして兼用している。よって、予熱帯106aから加熱帯106bのチャンバ81に雰囲気ガスを送るための専用のファンが不要となるため、その分、低コスト化を図ることができる。 In the present embodiment, the fan 10 used in the circulation system of the pretropical zone 106a is also used as a fan for sending atmospheric gas from the pretropical zone 106a to the chamber 81 of the heating zone 106b. This eliminates the need for a dedicated fan for sending atmospheric gas from the pre-tropical zone 106a to the chamber 81 of the heating zone 106b, thereby reducing costs accordingly.
 実施形態に係る連続焼鈍炉106においては、ハースロール16とラジアントチューブ60との間に、鋼板2が通過可能なスリットが設けられた防熱板70が設けられており、ラジアントチューブ60からの輻射熱を防熱板70で遮蔽することによって、ハースロール16近傍における雰囲気ガスの温度上昇を低減させている。これにより、防熱板70を設けない場合よりも、ハースロール16の鋼板2と接触する部分と、ハースロール16の鋼板2と接触しない部分との温度差を低減させている。なお、加熱帯106bにおいて、防熱板70によりラジアントチューブ60側の空間と区分けされたハースロール16側の空間内には温度計3が設けられている。 In the continuous annealing furnace 106 according to the embodiment, a heat insulating plate 70 provided with a slit through which the steel plate 2 can pass is provided between the hearth roll 16 and the radiant tube 60, and radiant heat from the radiant tube 60 is generated. By shielding with the heat insulating plate 70, the temperature rise of the atmospheric gas in the vicinity of the hearth roll 16 is reduced. Thereby, the temperature difference of the part which contacts the steel plate 2 of the hearth roll 16 and the part which does not contact the steel plate 2 of the hearth roll 16 is reduced rather than the case where the heat insulating board 70 is not provided. In the heating zone 106b, the thermometer 3 is provided in the space on the hearth roll 16 side separated from the space on the radiant tube 60 side by the heat insulating plate 70.
 本実施形態においては、加熱帯106bの入側付近に設けられた、ハースロール16と防熱板70との間であってハースロール16の下方に、ハースロール16の軸方向両端部に対応させて2つの噴射口81a,81bが設けられたチャンバ81が配置されている。このチャンバ81は、予熱帯106aの雰囲気ガスを冷却ガスとして、各噴射口81a,81bからハースロール16の軸方向両端部に吹き付けて冷却する冷却手段を構成している。そして、予熱帯106aの雰囲気ガスを冷却ガスとして、チャンバ81によりハースロール16の軸方向両端部に吹き付けることで、加熱帯106bの雰囲気ガスによって加熱されたハースロール16の軸方向両端部を、加熱帯106bの雰囲気ガスよりも温度の低い予熱帯106aの雰囲気ガス(冷却ガス)によって冷却することができ、加熱帯106bのハースロール16のサーマルクラウンを低減させて、鋼板2の蛇行を抑制することができる。 In the present embodiment, between the hearth roll 16 and the heat insulating plate 70 provided near the entrance side of the heating zone 106 b and below the hearth roll 16, corresponding to both axial ends of the hearth roll 16. A chamber 81 provided with two injection ports 81a and 81b is disposed. The chamber 81 constitutes a cooling means that cools the atmosphere gas of the pre-tropic zone 106a by using the cooling gas as a cooling gas and spraying it from both the injection ports 81a and 81b to both ends of the hearth roll 16 in the axial direction. Then, the atmospheric gas in the pre-tropic zone 106a is used as a cooling gas and sprayed to both ends in the axial direction of the hearth roll 16 by the chamber 81, so that both axial ends in the axial direction of the hearth roll 16 heated by the atmospheric gas in the heating zone 106b are added. It can be cooled by the atmospheric gas (cooling gas) of the pre-tropical zone 106a, which has a lower temperature than the atmospheric gas of the tropical zone 106b, and the thermal crown of the hearth roll 16 in the heating zone 106b is reduced to suppress meandering of the steel plate 2. Can do.
 また、加熱帯106bの雰囲気ガスよりも温度の低い予熱帯106aの雰囲気ガスを、ハースロール16の軸方向両端部に吹き付けて冷却するための冷却ガスとして用いることによって、前記冷却ガスとして、ラジアントチューブ60によって加熱された加熱帯106bの雰囲気ガスを冷却して用いる必要が無いため、エネルギー効率の悪化を抑制することができる。さらには、前記冷却ガスを得るため専用の加熱帯106bの雰囲気ガスを冷却する冷却装置が不要なため、その分、低コスト化や設備の小型化を図ることが可能となる。 Further, by using the atmosphere gas of the pre-tropical zone 106a having a temperature lower than that of the atmosphere gas of the heating zone 106b as a cooling gas for cooling by blowing the both ends in the axial direction of the hearth roll 16, a radiant tube is used as the cooling gas. Since it is not necessary to cool and use the atmospheric gas in the heating zone 106b heated by 60, deterioration of energy efficiency can be suppressed. Furthermore, since a cooling device for cooling the atmosphere gas in the dedicated heating zone 106b is not required to obtain the cooling gas, the cost can be reduced and the equipment can be downsized accordingly.
 図4は、予熱帯106aと加熱帯106bとの間での雰囲気ガスの循環についての説明図である。実施形態に係る連続焼鈍炉106においては、予熱帯106a内の雰囲気ガスをファン10によって予熱帯106aから加熱帯106bに送り込むことにより、予熱帯106aの内圧が減圧されるとともに、加熱帯106bの内圧が増圧される。そのため、加熱帯106bの雰囲気ガスが、予熱帯106aと加熱帯106bとを接続する連通部106eを通って、予熱帯106aに流入するような気流が発生する。これにより、連通部106eや予熱帯106aの出側に位置する鋼板2が、加熱帯106bの雰囲気ガスによって加熱帯106bに入る前に加熱されるため、加熱帯106bの入側付近における鋼板2の温度と、加熱帯106bの雰囲気ガス温度との温度差を小さくすることができる。よって、加熱帯106bの入側付近において、ハースロール16の鋼板2と接触する部分の温度と、ハースロール16の鋼板2と接触しない部分の温度との温度差が小さくなり、ハースロール16の軸方向の温度勾配を低減させ、熱膨張差により凹型のクラウン形状となるようなサーマルクラウンが、ハースロール16に生じるのを抑制することができる。 FIG. 4 is an explanatory view of the circulation of the atmospheric gas between the pre-tropical zone 106a and the heating zone 106b. In the continuous annealing furnace 106 according to the embodiment, the atmospheric gas in the pre-tropical zone 106a is sent from the pre-tropical zone 106a to the heating zone 106b by the fan 10 to reduce the internal pressure of the pre-tropical zone 106a and the internal pressure of the heating zone 106b. Is increased. Therefore, an air flow is generated in which the atmospheric gas in the heating zone 106b flows into the pre-tropical zone 106a through the communication portion 106e that connects the pre-tropical zone 106a and the heating zone 106b. As a result, the steel plate 2 located on the exit side of the communication portion 106e and the pre-tropical zone 106a is heated before entering the heating zone 106b by the atmospheric gas in the heating zone 106b. The temperature difference between the temperature and the ambient gas temperature in the heating zone 106b can be reduced. Therefore, in the vicinity of the entrance side of the heating zone 106b, the temperature difference between the temperature of the portion of the hearth roll 16 in contact with the steel plate 2 and the temperature of the portion of the hearth roll 16 not in contact with the steel plate 2 is reduced. It is possible to reduce the temperature gradient in the direction and suppress the occurrence of a thermal crown in the hearth roll 16 that has a concave crown shape due to a difference in thermal expansion.
 図5は、幅狭の鋼板に働くセンタリング力についての説明図である。凸型のクラウン形状であるハースロール16においては、ロール表面のテーパーで鋼板2をセンタリングする力が働くが、図5に示すように、鋼板2の板幅が狭いほど、ハースロール16のテーパーにかかる面積が小さくなり、センタリング力も小さくなるため蛇行しやすくなる。また、鋼板2の厚みが薄く剛性が低いと、ハースロール16のテーパーでのセンタリング力が、鋼板2の剛性に対して強すぎる場合には、鋼板2に座屈(絞り)が発生するおそれがある。特に、ハースロール16の軸方向両端部を冷却ガスによって冷却することで、鋼板2と接触するハースロール16の軸方向中央部が軸方向両端部よりも大きく熱膨張し、凸型のクラウン形状のテーパー角度が大きくなってしまうと、薄物幅広の鋼板2を用いた場合に、上述した座屈(絞り)が顕著となるおそれがある。なお、鋼板2が幅広ほど、ハースロール16の鋼板2と接触しない部分が少なくなるため、ハースロール16の軸方向で温度勾配が小さく熱膨張差も小さくなり、凸型のクラウン形状を維持することができ蛇行が生じ難くなる。 FIG. 5 is an explanatory diagram of the centering force acting on a narrow steel plate. In the hearth roll 16 having a convex crown shape, the centering force of the steel plate 2 works due to the taper of the roll surface. However, as the plate width of the steel plate 2 becomes narrower, the taper of the hearth roll 16 becomes smaller as shown in FIG. Since this area is reduced and the centering force is also reduced, it becomes easier to meander. Further, if the steel plate 2 is thin and has low rigidity, if the centering force at the taper of the hearth roll 16 is too strong for the rigidity of the steel plate 2, there is a possibility that buckling (squeezing) may occur in the steel plate 2. is there. In particular, by cooling both axial ends of the hearth roll 16 with the cooling gas, the axial central portion of the hearth roll 16 in contact with the steel plate 2 is more thermally expanded than both axial end portions, and a convex crown shape is formed. If the taper angle becomes large, the buckling (drawing) described above may become prominent when the thin steel plate 2 having a wide width is used. In addition, since the part which does not contact the steel plate 2 of the hearth roll 16 decreases as the steel plate 2 becomes wider, the temperature gradient is small in the axial direction of the hearth roll 16 and the thermal expansion difference is reduced, and the convex crown shape is maintained. And meandering is less likely to occur.
 そのため、連続焼鈍炉106に通す鋼板2のサイズから、蛇行しやすく絞りが発生しにくい厚物幅狭の鋼板2を連続焼鈍炉106に通して焼鈍を行うときにだけ、加熱帯106bに設けたチャンバ81から冷却ガスをハースロール16の軸方向両端部に吹き付けるようにしてもよい。例えば、図6中の斜線で示した範囲の板厚t及び板幅Wの関係を満たす場合には、ハースロール16の軸方向両端部を冷却する冷却装置を使用し、それ以外の範囲の板厚t及び板幅Wの関係を満たす場合には、ハースロール16の軸方向両端部を冷却する冷却装置を不使用とする。 Therefore, from the size of the steel plate 2 that is passed through the continuous annealing furnace 106, the heating zone 106 b is provided only when the narrow steel plate 2 that is easy to meander and is not easily drawn is passed through the continuous annealing furnace 106. Cooling gas may be blown from the chamber 81 to both ends of the hearth roll 16 in the axial direction. For example, in the case where the relationship between the thickness t and the width W in the range shown by oblique lines in FIG. 6 is satisfied, a cooling device that cools both ends in the axial direction of the hearth roll 16 is used, and the plate in other ranges When the relationship between the thickness t and the plate width W is satisfied, the cooling device that cools both axial ends of the hearth roll 16 is not used.
 また、冷却装置を使用する場合においては、チャンバ81からハースロール16の軸方向両端部に吹き付ける冷却ガスの圧力を、板厚及び板幅の条件に応じて設定してもよい。実施形態に係る連続焼鈍炉106においては、チャンバ81からハースロール16の軸方向両端部に吹き付けられる冷却ガスの圧力調整を、プロセスコンピュータによる自動制御で実行可能となっている。プロセスコンピュータは、連続焼鈍炉106に通板される鋼板2の板厚及び板幅に関する情報をデーターベースなどから取得し、圧力計93によって検知された分岐ダクト30内を流れる冷却ガスの圧力に基づいて、流調弁92の開度を調整することにより、鋼板2の板厚及び板幅の条件に応じた冷却ガスの圧力調整を行う。そして、例えば、条件1として、板厚が0.21[mm]以上、且つ、板幅が800[mm]以下の関係を満たす場合には、冷却ガスの圧力を1.4[kPa]とする。また、条件2として、板厚が0.23[mm]以上、且つ、板幅が830[mm]以下の関係を満たす場合には、冷却ガスの圧力を1.7[kPa]とする。また、条件3として、板厚が0.30[mm]以上、且つ、板幅が860[mm]以下の関係を満たす場合には、冷却ガスの圧力を1.7[kPa]とする。 In the case of using a cooling device, the pressure of the cooling gas blown from the chamber 81 to both ends in the axial direction of the hearth roll 16 may be set according to the conditions of the plate thickness and the plate width. In the continuous annealing furnace 106 according to the embodiment, the pressure adjustment of the cooling gas blown from the chamber 81 to both ends in the axial direction of the hearth roll 16 can be executed by automatic control by a process computer. The process computer acquires information on the thickness and width of the steel plate 2 passed through the continuous annealing furnace 106 from a database or the like, and based on the pressure of the cooling gas flowing in the branch duct 30 detected by the pressure gauge 93. Then, the pressure of the cooling gas is adjusted according to the conditions of the plate thickness and the plate width of the steel plate 2 by adjusting the opening degree of the flow control valve 92. For example, as the condition 1, when the plate thickness is 0.21 [mm] or more and the plate width is 800 [mm] or less, the cooling gas pressure is 1.4 [kPa]. . Further, as the condition 2, when the plate thickness is 0.23 [mm] or more and the plate width is 830 [mm] or less, the pressure of the cooling gas is set to 1.7 [kPa]. Further, as the condition 3, when the plate thickness is 0.30 [mm] or more and the plate width is 860 [mm] or less, the pressure of the cooling gas is 1.7 [kPa].
 実施形態に係る連続焼鈍炉106においては、分岐ダクト30に設けられた遮断弁91が、プロセスコンピュータによる制御によって自動で開閉可能になっている。そして、プロセスコンピュータは、厚物幅狭の鋼板2を連続焼鈍炉106に通すときに、遮断弁91を開状態にして、予熱帯106aの循環ガスの一部を分岐ダクト30を介して加熱帯106bに設けられたチャンバ81に送り込み、チャンバ81からハースロール16の軸方向両端部に冷却ガスを吹き付けて冷却する。一方、プロセスコンピュータは、厚物幅狭以外の鋼板2を連続焼鈍炉106に通すときに、遮断弁91を閉状態にして、分岐ダクト30に流入した予熱帯106aの循環ガスがチャンバ81に送られないようにし、チャンバ81からハースロール16の軸方向両端部に冷却ガスを吹き付けないようにする。これにより、厚物幅狭の鋼板2を連続焼鈍炉106に通して焼鈍を行うときに蛇行が発生するのを抑えることができるとともに、薄物幅広の鋼板2を連続焼鈍炉106に通して焼鈍を行うときに座屈(絞り)が発生するのを抑制することができる。 In the continuous annealing furnace 106 according to the embodiment, the shut-off valve 91 provided in the branch duct 30 can be automatically opened and closed under the control of a process computer. The process computer then opens the shut-off valve 91 when passing the thick steel plate 2 through the continuous annealing furnace 106, and part of the circulating gas in the pretropical zone 106 a is heated via the branch duct 30. The gas is fed into a chamber 81 provided in 106 b and cooled by blowing a cooling gas from the chamber 81 to both ends in the axial direction of the hearth roll 16. On the other hand, the process computer closes the shut-off valve 91 and passes the circulating gas of the pretropical zone 106 a flowing into the branch duct 30 to the chamber 81 when passing the steel plate 2 other than the narrow material through the continuous annealing furnace 106. The cooling gas is prevented from being blown from the chamber 81 to both ends of the hearth roll 16 in the axial direction. As a result, it is possible to suppress the occurrence of meandering when the thick steel plate 2 is passed through the continuous annealing furnace 106 and annealing, and the thin steel plate 2 is passed through the continuous annealing furnace 106 for annealing. It is possible to suppress the occurrence of buckling (squeezing) when performing.
 図7(a)は、ハースロール冷却装置80を不使用で先行する鋼板2を搬送した場合を示す図である。図7(b)は、先行する鋼板2よりも幅広の鋼板2を後行させて搬送した場合を示す図である。 FIG. 7 (a) is a diagram showing a case where the preceding steel plate 2 is conveyed without using the hearth roll cooling device 80. FIG. FIG. 7B is a view showing a case where the steel plate 2 wider than the preceding steel plate 2 is conveyed after being moved backward.
 連続焼鈍ライン100においては、ペイオフリール101a,101bにそれぞれ巻かれた鋼板2のうち、先行する鋼板2の後端と後行する鋼板2の先端とを溶接機102によって溶接することにより連結して通板するが、この際に、先行する鋼板2と後行する鋼板2の材質やサイズなどが異なる場合がある。そして、先行する鋼板2と後行する鋼板2との組み合わせにより、図7(a)に示すように、先行する鋼板2ではハースロール冷却装置80を使用しなくてもハースロール16のサーマルクラウンによる蛇行は発生しないが、図7(b)に示すように、先行する鋼板2の板幅に対して後行する鋼板2の板幅の広がり量が所定量よりも大きいと、後行する鋼板2ではハースロール冷却装置80を使用しないとハースロール16のサーマルクラウンによって蛇行する場合がある。この場合に、後行する鋼板2の通板が開始されてから、ハースロール冷却装置80によってハースロール16の軸方向両端部の冷却を開始しても、ハースロール16の軸方向両端部の温度を下げるには時間がかかるため、後行する鋼板2が連続焼鈍炉106に通板されるまでに、蛇行を抑制できる程度にサーマルクラウンを低減できる温度まで、ハースロール16の軸方向両端部の冷却が間に合わないおそれがある。 In the continuous annealing line 100, among the steel plates 2 wound on the payoff reels 101a and 101b, the rear end of the preceding steel plate 2 and the front end of the subsequent steel plate 2 are connected by welding with a welding machine 102. In this case, the material and size of the preceding steel plate 2 and the following steel plate 2 may be different. And by the combination of the preceding steel plate 2 and the following steel plate 2, as shown in FIG. 7 (a), the preceding steel plate 2 has the thermal crown of the hearth roll 16 without using the hearth roll cooling device 80. Although meandering does not occur, as shown in FIG. 7 (b), if the amount of spread of the plate width of the subsequent steel plate 2 with respect to the plate width of the preceding steel plate 2 is larger than a predetermined amount, the subsequent steel plate 2 Then, if the hearth roll cooling device 80 is not used, it may meander due to the thermal crown of the hearth roll 16. In this case, even if cooling of both ends in the axial direction of the hearth roll 16 is started by the hearth roll cooling device 80 after the passing of the subsequent steel plate 2 is started, the temperature at both ends in the axial direction of the hearth roll 16 is started. Since it takes time to lower the steel sheet 2, the both ends in the axial direction of the hearth roll 16 are reduced to a temperature at which the thermal crown can be reduced to such an extent that the meandering can be suppressed before the subsequent steel plate 2 is passed through the continuous annealing furnace 106. Cooling may not be in time.
 そのため、実施形態に係る連続焼鈍ライン100においては、プロセスコンピュータが先行する鋼板2と後行する鋼板2それぞれの板幅を監視しており、先行する鋼板2の板幅に対する後行する鋼板2の板幅の広がり量が所定量よりも大きいときには、後行する鋼板2の通板が開始される前に、ハースロール冷却装置80によるハースロール16の軸方向両端部の冷却を開始する。すなわち、後行する鋼板2の通板が開始される前に、先行する鋼板2の通板時には閉じていた遮断弁91を開けて、チャンバ81からハースロール16の軸方向両端部に冷却ガスを吹き付けて冷却を開始する。これにより、後行する鋼板2が連続焼鈍炉106に通板される前に、蛇行を抑制できる程度にサーマルクラウンを低減できる温度まで、ハースロール16の軸方向両端部の冷却を間に合わせることができる。よって、先行する鋼板2の板幅に対して後行する鋼板2の板幅の広がり量が所定量よりも大きい場合に生じ得る、後行する鋼板2の蛇行を抑制することができる。 Therefore, in the continuous annealing line 100 according to the embodiment, the process computer monitors the plate width of each of the preceding steel plate 2 and the following steel plate 2, and the subsequent steel plate 2 of the following steel plate 2 with respect to the plate width of the preceding steel plate 2 is monitored. When the amount of spread of the plate width is larger than a predetermined amount, cooling of both ends in the axial direction of the hearth roll 16 by the hearth roll cooling device 80 is started before the subsequent plate of the steel plate 2 is started. That is, before the passage of the subsequent steel plate 2 is started, the shut-off valve 91 that is closed when the preceding steel plate 2 is passed is opened, and the cooling gas is supplied from the chamber 81 to both axial ends of the hearth roll 16. Spray to start cooling. Thus, before the subsequent steel plate 2 is passed through the continuous annealing furnace 106, the cooling of both axial ends of the hearth roll 16 can be made in time to a temperature at which the thermal crown can be reduced to such an extent that the meandering can be suppressed. it can. Therefore, meandering of the subsequent steel plate 2 that can occur when the amount of spread of the subsequent steel plate 2 relative to the width of the preceding steel plate 2 is larger than a predetermined amount can be suppressed.
 本発明によれば、エネルギー効率の悪化を抑えつつ、鋼板の蛇行を抑制することができる連続焼鈍炉を提供することができる。 According to the present invention, it is possible to provide a continuous annealing furnace capable of suppressing meandering of a steel sheet while suppressing deterioration of energy efficiency.
2    鋼板
3    温度計
10   ファン
16   ハースロール
20   循環ダクト
30   分岐ダクト
31   分配管
40   熱交換器
50   チャンバ
60   ラジアントチューブ
70   防熱板
80   ハースロール冷却装置
81   チャンバ
81a  噴射口
81b  噴射口
91   遮断弁
92   流調弁
93   圧力計
100  連続焼鈍ライン
101a ペイオフリール
101b ペイオフリール
102  溶接機
103  洗浄設備
104  テンションレベラ
105  入側ルーパ
106  連続焼鈍炉
106a 予熱帯
106b 加熱帯
106c 均熱帯
106d 冷却帯
107  ウォータークエンチ設備
108  出側ルーパ
109  調圧ミル
110  トリマー
111  オイラー
112  シャー
113a テンションリール
113b テンションリール
2 Steel plate 3 Thermometer 10 Fan 16 Hearth roll 20 Circulation duct 30 Branch duct 31 Distribution pipe 40 Heat exchanger 50 Chamber 60 Radiant tube 70 Heat shield plate 80 Hearth roll cooling device 81 Chamber 81a Injection port 81b Injection port 91 Shut-off valve 92 Flow control Valve 93 Pressure gauge 100 Continuous annealing line 101a Payoff reel 101b Payoff reel 102 Welding machine 103 Cleaning equipment 104 Tension leveler 105 Inlet looper 106 Continuous annealing furnace 106a Pre-tropical 106b Heating zone 106c Soaking zone 106d Cooling zone 107 Water quenching facility 108 Outlet Looper 109 Pressure adjusting mill 110 Trimmer 111 Euler 112 Shear 113a Tension reel 113b Tension reel

Claims (5)

  1.  予熱帯、加熱帯、均熱帯及び冷却帯を備えた鋼板の連続焼鈍炉であって、
     前記加熱帯に設けられたハースロールの軸方向両端部に冷却ガスを吹き付けて冷却する冷却手段を有しており、
     前記冷却手段は、前記予熱帯の雰囲気ガスを前記冷却ガスとして用いることを特徴とする連続焼鈍炉。
    A steel sheet continuous annealing furnace with a pre-tropical zone, heating zone, soaking zone and cooling zone,
    A cooling means for cooling by blowing cooling gas to both axial ends of the hearth roll provided in the heating zone;
    The continuous annealing furnace, wherein the cooling means uses the pre-tropical atmosphere gas as the cooling gas.
  2.  請求項1に記載の連続焼鈍炉において、
     前記予熱帯及び前記加熱帯は、該予熱帯及び該加熱帯を接続する連通部を介して連通しており、
     前記連通部を通って前記予熱帯から前記加熱帯に鋼板が搬送されており、
     前記冷却手段によって前記冷却ガスを前記ハースロールの軸方向両端部に吹き付けることで、前記連通部を介して前記加熱帯の雰囲気ガスが前記予熱帯に流入することを特徴とする連続焼鈍炉。
    In the continuous annealing furnace according to claim 1,
    The pre-tropical zone and the heating zone communicate with each other via a communication portion that connects the pre-tropical zone and the heating zone,
    A steel plate is conveyed from the pre-tropical zone to the heating zone through the communication part,
    A continuous annealing furnace characterized in that the atmosphere gas in the heating zone flows into the pre-tropical zone through the communication portion by blowing the cooling gas to both axial ends of the hearth roll by the cooling means.
  3.  請求項1または2に記載の連続焼鈍炉において、
     前記予熱帯には、ファンとダクトと熱交換器とによって、前記加熱帯に設けられたラジアントチューブからの燃焼排ガスの熱を利用しつつ、該予熱帯の雰囲気ガスを循環させるための循環系統が構成されており、
     前記冷却手段は、前記ダクトから分岐させた前記雰囲気ガスを前記冷却ガスとして用いることを特徴とする連続焼鈍炉。
    In the continuous annealing furnace according to claim 1 or 2,
    In the pre-tropics, there is a circulation system for circulating the pre-tropical atmosphere gas using the heat of the combustion exhaust gas from the radiant tube provided in the heating zone by a fan, a duct and a heat exchanger. Configured,
    The continuous annealing furnace, wherein the cooling means uses the atmospheric gas branched from the duct as the cooling gas.
  4.  請求項1乃至3のいずれか1つに記載の連続焼鈍炉において、
     前記鋼板の板厚及び板幅に応じて、前記冷却手段による前記ハースロールの軸方向両端部の冷却の実行有無を制御する制御手段を有することを特徴とする連続焼鈍炉。
    In the continuous annealing furnace according to any one of claims 1 to 3,
    A continuous annealing furnace comprising control means for controlling whether or not cooling of both ends in the axial direction of the hearth roll by the cooling means is performed according to the thickness and width of the steel sheet.
  5.  請求項4に記載の連続焼鈍炉において、
     先行する鋼板の板幅に対して後行する鋼板の板幅の広がり量が所定量よりも大きいときには、後行する鋼板の搬送が開始される前に、前記冷却手段による前記ハースロールの軸方向両端部の冷却を開始することを特徴とする連続焼鈍炉。
    In the continuous annealing furnace according to claim 4,
    The axial direction of the hearth roll by the cooling means before the conveyance of the subsequent steel sheet is started when the amount of spread of the steel sheet following the sheet width of the preceding steel sheet is larger than a predetermined amount. A continuous annealing furnace characterized by starting cooling of both ends.
PCT/JP2018/001002 2017-02-02 2018-01-16 Continuous annealing furnace WO2018142918A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197021783A KR102304637B1 (en) 2017-02-02 2018-01-16 Continuous Annealing Furnace
CN201880009466.4A CN110234775A (en) 2017-02-02 2018-01-16 Continuous annealing furnace
JP2018518675A JP6369660B1 (en) 2017-02-02 2018-01-16 Continuous annealing furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-017251 2017-02-02
JP2017017251 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018142918A1 true WO2018142918A1 (en) 2018-08-09

Family

ID=63040611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001002 WO2018142918A1 (en) 2017-02-02 2018-01-16 Continuous annealing furnace

Country Status (4)

Country Link
JP (1) JP6369660B1 (en)
KR (1) KR102304637B1 (en)
CN (1) CN110234775A (en)
WO (1) WO2018142918A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184555A (en) * 2019-06-22 2019-08-30 浙江东南新材科技有限公司 A kind of alloying technology and alloying furnace of hot galvanized layer
CN111996360A (en) * 2020-09-25 2020-11-27 张家港扬子江冷轧板有限公司 Automatic deviation prevention device and method for furnace roller of annealing furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236621B1 (en) * 2019-09-30 2021-04-08 주식회사 삼우에코 Steel plate continuous heat treatment system to establish heat treatment conditions
CN111996361A (en) * 2020-09-08 2020-11-27 白建生 Annealing furnace for enameled wire production
CN112301201A (en) * 2020-09-27 2021-02-02 甘肃酒钢集团宏兴钢铁股份有限公司 Continuous annealing furnace and method for continuous solution treatment of medium plate by using same
CN112813250A (en) * 2021-01-04 2021-05-18 宝钢湛江钢铁有限公司 Water-cooled temperature control device and method for furnace top roller chamber of direct-fired furnace
CN112853083A (en) * 2021-01-04 2021-05-28 宝钢湛江钢铁有限公司 Air cooling type temperature control device and method for furnace top roller chamber of direct-fired furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732334A (en) * 1980-07-31 1982-02-22 Nippon Steel Corp Continuous heat treatment furnace for metallic strip
JPH01255629A (en) * 1988-04-05 1989-10-12 Sumitomo Metal Ind Ltd Method for passing steel sheet in continuous annealing furnace
JP2005256093A (en) * 2004-03-11 2005-09-22 Nippon Steel Corp Apparatus for controlling thermal-crown

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126909A (en) * 1981-01-31 1982-08-06 Chugai Ro Kogyo Kaisha Ltd Continuous annealing furnace
JP3116725B2 (en) 1994-06-03 2000-12-11 日本鋼管株式会社 Roll crown adjustment device in furnace of heating furnace
JP4575612B2 (en) * 2001-03-28 2010-11-04 日新製鋼株式会社 Vertical continuous annealing equipment
CN201952463U (en) * 2010-12-17 2011-08-31 无锡市新科冶金设备有限公司 Thermal treatment furnace for steel wire continuous heating and cooling cyclic utilization
CN202989241U (en) * 2012-12-14 2013-06-12 中冶南方(武汉)威仕工业炉有限公司 Device for inhibiting thermal crown change of furnace rollers
CN205774666U (en) * 2016-05-31 2016-12-07 本钢板材股份有限公司 A kind of continuous annealing unit of cold-rolled products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732334A (en) * 1980-07-31 1982-02-22 Nippon Steel Corp Continuous heat treatment furnace for metallic strip
JPH01255629A (en) * 1988-04-05 1989-10-12 Sumitomo Metal Ind Ltd Method for passing steel sheet in continuous annealing furnace
JP2005256093A (en) * 2004-03-11 2005-09-22 Nippon Steel Corp Apparatus for controlling thermal-crown

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184555A (en) * 2019-06-22 2019-08-30 浙江东南新材科技有限公司 A kind of alloying technology and alloying furnace of hot galvanized layer
CN111996360A (en) * 2020-09-25 2020-11-27 张家港扬子江冷轧板有限公司 Automatic deviation prevention device and method for furnace roller of annealing furnace
CN111996360B (en) * 2020-09-25 2022-05-13 张家港扬子江冷轧板有限公司 Automatic deviation prevention device and method for furnace roller of annealing furnace

Also Published As

Publication number Publication date
KR102304637B1 (en) 2021-09-23
JPWO2018142918A1 (en) 2019-02-14
JP6369660B1 (en) 2018-08-08
KR20190096422A (en) 2019-08-19
CN110234775A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
JP6369660B1 (en) Continuous annealing furnace
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
JP5130733B2 (en) Continuous annealing equipment
JP4903913B2 (en) Method and apparatus for cooling hot-rolled steel sheet
WO2014041868A1 (en) Nozzle header, cooling device, device for producing hot-rolled steel sheet, and method for producing hot-rolled steel sheet
JP5000116B2 (en) Soaking furnace operation method in steel strip continuous treatment equipment
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
JP2008194733A (en) Cooling device and method for work roll of metal plate rolling mill, and metal plate manufacturing method using the same cooling method
JPH10291021A (en) Method for cooling high-temperature steel sheet and device for cooling high-temperature steel sheet
JP3722101B2 (en) Cooling control method for hot-rolled steel strip
JP2575873B2 (en) Continuous annealing equipment for thin steel sheets
JP4352953B2 (en) Method of suppressing thermal crown of hearth roll and method of continuous annealing of steel plate
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
JP2004143528A (en) Method and apparatus for heat treatment of steel plate
JPH0225523A (en) Direct heating type continuous heat-treatment furnace for metal strip
JP2005232495A (en) Facility and method for heat-treating metal strip
JPH02277758A (en) Alloying furnace and its operation
JPH06306485A (en) Heat treating device for metallic belt
JP2001323325A (en) Apparatus and method for cooling metal strip
JP3106848B2 (en) Gas header and method of preventing temperature difference deformation of roll using the same
JP2001073041A (en) Method for controlling temperature of steel sheet and temperature controlling device
JP2003328038A (en) Process for cooling cylindrical metal coil
JPH05263148A (en) Method for controlling cooling furnace for strip continuous heat treating device
JP5940900B2 (en) Cold rolling equipment
JPH06306488A (en) Continuous heat treating furnace for steel strip preventing generation of drawing on steel strip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748825

Country of ref document: EP

Kind code of ref document: A1