WO2018142747A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018142747A1
WO2018142747A1 PCT/JP2017/043313 JP2017043313W WO2018142747A1 WO 2018142747 A1 WO2018142747 A1 WO 2018142747A1 JP 2017043313 W JP2017043313 W JP 2017043313W WO 2018142747 A1 WO2018142747 A1 WO 2018142747A1
Authority
WO
WIPO (PCT)
Prior art keywords
demodulation
pattern
extension
basic pattern
layer
Prior art date
Application number
PCT/JP2017/043313
Other languages
English (en)
French (fr)
Inventor
敬佑 齊藤
和晃 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/483,061 priority Critical patent/US11076410B2/en
Priority to JP2018565962A priority patent/JP7195153B2/ja
Publication of WO2018142747A1 publication Critical patent/WO2018142747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + ( 5G (plus) and New-RAT (Radio Access Technology) are also being considered.
  • LTE-A LTE-Advanced
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • 5G + 5G (plus)
  • New-RAT Radio Access Technology
  • DL downlink
  • UL uplink
  • antenna ports for example, 8 ports
  • An object of one embodiment of the present invention is to provide a user terminal and a wireless communication method capable of realizing a configuration such as a reference signal suitable for expansion of the number of ports in a future wireless communication system.
  • the user terminal includes: a receiving unit that receives a downlink signal including a demodulation reference signal; and the downlink based on an extension pattern obtained by extending a basic pattern by applying a set extension method
  • a control unit that controls reception of the demodulation reference signal from a signal, wherein the basic pattern indicates a resource element to which an 8-layer demodulation reference signal is mapped, and the extension pattern is a 16-layer demodulation A resource element to which a reference signal for use is mapped is shown.
  • the radio communication system includes at least radio base station 10 shown in FIG. 1 and user terminal 20 shown in FIG. The user terminal 20 is connected (accessed) to the radio base station 10.
  • the radio base station 10 transmits a DL control signal to the user terminal 20 using a downlink control channel (for example, PDCCH: PhysicalPhysDownlink Control Channel), and a downlink data channel (for example, downlink shared channel: PDSCH: Physical Downlink).
  • DL data signal and demodulation RS are transmitted using Shared Channel.
  • the user terminal 20 transmits an UL control signal to the radio base station 10 using an uplink control channel (for example, PUCCH: Physical-Uplink-Control-Channel), and an uplink data channel (for example, an uplink shared channel: PUSCH:
  • the UL data signal and the demodulation RS are transmitted using Physical (Uplink-Shared-Channel).
  • the downlink channel and uplink channel transmitted and received by the radio base station 10 and the user terminal 20 are not limited to the above PDCCH, PDSCH, PUCCH, PUSCH, and the like, for example, PBCH (Physical Broadcast Channel), RACH (Random Access Channel). Other channels may be used.
  • PBCH Physical Broadcast Channel
  • RACH Random Access Channel
  • the DL / UL signal waveform generated in the radio base station 10 and the user terminal 20 may be a signal waveform based on OFDM (Orthogonal (Frequency Division Multiplexing) modulation, and may be SC-FDMA (Single Carrier). -Frequency (Division-Multiple Access) or DFT-S-OFDM (DFT-Spread-OFDM)), or other signal waveforms.
  • OFDM Orthogonal (Frequency Division Multiplexing) modulation
  • SC-FDMA Single Carrier
  • -Frequency (Division-Multiple Access) or DFT-S-OFDM (DFT-Spread-OFDM)) or other signal waveforms.
  • description of components for generating a signal waveform for example, IFFT processing unit, CP adding unit, CP removing unit, FFT processing unit, etc. is omitted.
  • transmission / reception using an antenna port (8 ports) with 8 ports is supported, and transmission / reception using an antenna port (16 ports) with 16 ports is supported.
  • transmission / reception using 16 ports is supported by extending transmission / reception of 8-layer signals to transmission / reception of 16 layers.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a radio base station 10 according to the present embodiment.
  • a radio base station 10 illustrated in FIG. 1 includes a scheduler 101, a transmission signal generation unit 102, an encoding / modulation unit 103, a mapping unit 104, a transmission unit 105, an antenna 106, a reception unit 107, and a control unit. 108 and a demodulator / decoder 109 are employed.
  • the scheduler 101 performs scheduling (for example, resource allocation, antenna port allocation) of DL signals (DL data signals, DL control signals, demodulation RSs, and the like). In addition, the scheduler 101 performs scheduling (for example, resource allocation, antenna port allocation) of UL signals (UL data signal, UL control signal, demodulation RS, and the like).
  • the scheduler 101 applies a predetermined (predefined) extension method to map demodulation RSs of 8 layers (layer # 1 to layer # 8) within one RU (1RU).
  • the mapping pattern indicating the resource element is expanded to the mapping pattern indicating the resource element to which the demodulation RS of 16 layers (layer # 1 to layer # 16) is mapped.
  • mapping pattern indicating a resource element to which 8-layer demodulation RS is mapped in one RU is referred to as a basic pattern
  • mapping pattern indicating a resource element to which 16-layer demodulation RS is mapped is referred to as an extension pattern.
  • the scheduler 101 schedules demodulation RSs for each layer (that is, layer # 1 to layer # 16) based on the extended pattern.
  • the scheduler 101 outputs scheduling information indicating a scheduling result to the transmission signal generation unit 102, the mapping unit 104, and the control unit 108.
  • the scheduler 101 sets the MCS (coding rate, modulation scheme, etc.) of the DL data signal and the UL data signal based on the channel quality between the radio base station 10 and the user terminal 20, for example, and MCS information Are output to the transmission signal generation unit 102 and the encoding / modulation unit 103.
  • MCS is not limited to being set by the radio base station 10 and may be set by the user terminal 20.
  • the radio base station 10 may receive MCS information from the user terminal 20 (not shown).
  • the transmission signal generation unit 102 generates a transmission signal (including a DL data signal and a DL control signal).
  • the DL control signal includes scheduling information output from the scheduler 101 (eg, DL data signal resource allocation information) or downlink control information (DCI: Downlink Control Information) including MCS information.
  • DCI Downlink Control Information
  • the transmission signal generation unit 102 outputs the generated transmission signal to the encoding / modulation unit 103.
  • the encoding / modulation unit 103 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 102 based on the MCS information input from the scheduler 101, for example. Encoding / modulating section 103 outputs the modulated transmission signal to mapping section 104.
  • mapping section 104 Based on the scheduling information (for example, DL resource allocation and / or port allocation) input from scheduler 101, mapping section 104 converts a transmission signal input from encoding / modulation section 103 to a predetermined radio resource (DL resource). ). Further, the mapping unit 104 maps a reference signal (for example, a demodulation RS) to a predetermined radio resource (DL resource) based on the scheduling information. The mapping unit 104 outputs the DL signal mapped to the radio resource to the transmission unit 105.
  • DL resource for example, DL resource allocation and / or port allocation
  • the transmission unit 105 performs transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104 and transmits a radio frequency signal (DL signal) from the antenna 106.
  • transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104 and transmits a radio frequency signal (DL signal) from the antenna 106.
  • DL signal radio frequency signal
  • the reception unit 107 performs reception processing such as amplification and down-conversion on the radio frequency signal (UL signal) received by the antenna 106 and outputs the UL signal to the control unit 108.
  • reception processing such as amplification and down-conversion on the radio frequency signal (UL signal) received by the antenna 106 and outputs the UL signal to the control unit 108.
  • the control unit 108 separates (demaps) the UL data signal and the demodulation RS from the UL signal input from the receiving unit 107 based on the scheduling information (UL resource allocation and / or port allocation) input from the scheduler 101. ) Then, the control unit 108 outputs the UL data signal to the demodulation / decoding unit 109.
  • control unit 108 performs channel estimation using the demodulation RS, and outputs a channel estimation value that is an estimation result to the demodulation / decoding unit 109.
  • the demodulation / decoding unit 109 performs demodulation and decoding processing on the UL data signal input from the control unit 108 based on the channel estimation value input from the control unit 108.
  • the demodulation / decoding unit 109 transfers the demodulated UL data signal to an application unit (not shown).
  • the application unit performs processing related to a layer higher than the physical layer or the MAC layer.
  • FIG. 2 is a diagram illustrating an example of the overall configuration of the user terminal 20 according to the present embodiment.
  • the user terminal 20 illustrated in FIG. 2 includes an antenna 201, a reception unit 202, a control unit 203, a demodulation / decoding unit 204, a transmission signal generation unit 205, an encoding / modulation unit 206, a mapping unit 207, A configuration including the transmission unit 208 is adopted.
  • user terminal 20 performs reception processing of a radio frequency signal received at an antenna port assigned to user terminal 20 itself.
  • the receiving unit 202 performs reception processing such as amplification and down-conversion on the radio frequency signal (DL signal) received by the antenna 201, and outputs the DL signal to the control unit 203.
  • the DL signal includes at least a DL data signal and a demodulation RS.
  • the control unit 203 separates (demappings) the DL control signal and the demodulation RS from the DL signal input from the receiving unit 202. Then, the control unit 203 outputs the DL control signal to the demodulation / decoding unit 205.
  • control unit 203 controls reception of the demodulation RS from the DL signal based on the extended pattern obtained by extending the basic pattern by applying a preset extension method.
  • the control unit 203 also demultiplexes the DL data signal from the DL signal based on the scheduling information (for example, DL resource allocation information) input from the demodulation / decoding unit 204, and demodulates the DL data signal. Output to the decoding unit 204.
  • the scheduling information for example, DL resource allocation information
  • control unit 203 performs channel estimation using the separated demodulation RS, and outputs a channel estimation value as an estimation result to the demodulation / decoding unit 204.
  • the demodulation / decoding unit 204 demodulates the DL control signal input from the control unit 203. Further, the demodulation / decoding unit 204 performs a decoding process (for example, a blind detection process) on the demodulated DL control signal. Demodulation / decoding section 204 outputs scheduling information (DL / UL resource allocation or demodulation RS mapping setting) addressed to itself obtained by decoding the DL control signal to control section 203 and mapping section 207. The MCS information for the UL data signal is output to the encoding / modulation unit 206.
  • a decoding process for example, a blind detection process
  • the demodulation / decoding unit 204 demodulates the DL data signal input from the control unit 203 based on the channel estimation value input from the control unit 203 and the MCS information for the DL data signal included in the DL control signal. And decryption processing. Further, the demodulation / decoding unit 204 transfers the demodulated DL data signal to an application unit (not shown). The application unit performs processing related to a layer higher than the physical layer or the MAC layer.
  • the transmission signal generation unit 205 generates a transmission signal (including a UL data signal or a UL control signal), and outputs the generated transmission signal to the encoding / modulation unit 206.
  • the encoding / modulation unit 206 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 205 based on the MCS information input from the demodulation / decoding unit 204, for example.
  • the encoding / modulation unit 206 outputs the modulated transmission signal to the mapping unit 207.
  • mapping section 207 maps the transmission signal input from encoding / modulation section 206 to a predetermined radio resource (UL resource). . Also, the mapping unit 207 maps a reference signal (for example, demodulation RS) to a predetermined radio resource (UL resource) based on scheduling information (for example, demodulation RS mapping setting).
  • a reference signal for example, demodulation RS
  • the transmission unit 208 performs transmission processing such as up-conversion and amplification on the UL signal (including at least the UL data signal and the demodulation RS) input from the mapping unit 207, and transmits the radio frequency signal (UL signal) to the antenna. 201 to transmit.
  • the scheduler 101 of the radio base station 10 applies a predetermined (predefined) extension method to extend the basic pattern to the extension pattern.
  • the basic pattern extension method will be described by showing an example of a basic pattern and an extended pattern obtained by extending the basic pattern.
  • FIG. 3 is a diagram illustrating an example of the expansion method (1) in the present embodiment.
  • FIG. 3 shows a basic pattern and an extended pattern obtained by extending the basic pattern by applying the extension method (1).
  • the basic pattern shown in FIG. 3 is a control channel (PDCCH) and eight layers (layer # 1 to layer # 8) in a resource unit (RU: Resource Unit) (also called a resource block, resource block pair, etc.) that is a resource allocation unit. ) Of the demodulating RS (Layer # 1- # 8).
  • RU Resource Unit
  • One RU has a configuration in which 168 resource elements (RE: Resource Element) are arranged in the frequency direction and 14 in the time direction.
  • RE is a radio resource area defined by one subcarrier and one symbol. That is, one RU in FIG. 3 includes 12 subcarriers and 14 symbols.
  • the extension pattern to which the extension method (1) is applied includes a control channel (PDCCH), RS for demodulation of 8 layers (layer # 1 to layer # 8), and demodulation of 8 layers (layer # 9 to layer # 16).
  • the resource element to which the RS (Layer # 9- # 16) is mapped is indicated.
  • layers # 1 to # 8 are referred to as first layer groups, and layers # 9 to # 16 are referred to as second layer groups.
  • the demodulation RS of the first layer group and the demodulation RS of the second layer group are multiplexed using frequency division multiplexing (FDM) in two RUs. Is done.
  • FDM frequency division multiplexing
  • the demodulation RS of the first layer group is mapped to the resource element indicated by the basic pattern, and the RU (which is different from the RU to which the demodulation RS of the first layer group is mapped) In the RU adjacent in the frequency direction), the demodulation RS of the second layer group is mapped to the resource element indicated in the basic pattern.
  • the method of multiplexing the RSs for demodulation of the eight layers in the first layer group is not particularly limited.
  • the RS for demodulation of the eight layers (layer # 1 to layer # 8) is one or more of code division multiplexing (CDM: Code Division Multiplexing), time division multiplexing (TDM: Time Division Division Multiplexing), and FDM. Multiplexing may be performed using a multiplexing method combining the above.
  • the method for multiplexing the RSs for demodulation of the eight layers in the second layer group is not particularly limited.
  • the RSs for demodulation of the eight layers (layer # 9 to layer # 16) may be multiplexed by combining any one or two or more of CDM, TDM, and FDM.
  • the extension method (1) as shown in FIG. 3 reduces the number of multiple layers of demodulation RSs in the same resource element as compared with the data channel, thereby enabling power boost.
  • FIG. 4 is a diagram illustrating an example of the expansion method (2) in the present embodiment.
  • FIG. 4 shows a basic pattern and two expansion patterns obtained by extending the basic pattern by applying the expansion method (2).
  • the pattern indicates resource elements to which the control channel (PDCCH), the first layer group demodulation RS, and the second layer group demodulation RS (Layer # 9- # 16) are mapped.
  • the basic pattern shown in FIG. 4 is the same as the basic pattern shown in FIG.
  • the demodulation RS of the first layer group and the demodulation RS of the second layer group are multiplexed using FDM in two RUs.
  • the extension pattern to which the extension method (2) is applied 16 layers of demodulation RSs are mapped using two RUs, similarly to the extension pattern to which the extension method (1) is applied. And in the extended pattern to which the extended method (2) is applied, in the extended pattern to which the extended method (1) is applied, the mapping of a part of the mapping position of the demodulation RS of the first layer group and the demodulation RS of the second layer group Part of the position has been replaced.
  • the replacement is performed in consideration of the CDM range of the first layer group. Is desirable.
  • the basic pattern of FIG. 4 shows pattern 1 and pattern 2 as the CDM range. Then, by performing replacement in consideration of pattern 1 or pattern 2, expansion is performed to expansion pattern 1 and expansion pattern 2 to which expansion method (2) is applied.
  • the expansion method (2) as shown in FIG. 4 reduces the number of multiple layers of demodulation RSs in the same resource element as compared with the data channel, and thus enables power boost. Further, since the demodulation RSs in each layer are mapped in the frequency direction and mapped, the tolerance to the frequency selective channel is increased.
  • the replacement of a part of the mapping position of the demodulation RS of the first layer group and a part of the mapping position of the demodulation RS of the second layer group in FIG. 4 is merely an example.
  • the position to be replaced is not particularly limited.
  • FIG. 5 is a diagram illustrating an example of the expansion method (3) in the present embodiment.
  • FIG. 5 shows a basic pattern and two extension patterns obtained by extending the basic pattern by applying the extension method (3).
  • resource elements to which the control channel (PDCCH) and the RS for demodulating the first layer group (Layer # 1- # 8) are mapped are shown, which are expanded by applying the expansion method (3).
  • One extension pattern indicates resource elements to which the control channel (PDCCH), the first layer group demodulation RS, and the second layer group demodulation RS (Layer # 9- # 16) are mapped. 5 is the same as the basic pattern shown in FIG.
  • the demodulation RS of the first layer group and the demodulation RS of the second layer group are multiplexed using CDM in two or one RU.
  • the resource element indicated by the basic pattern includes the RS for demodulation of the first layer group and the RS for demodulation of the second layer group.
  • a sequence used for CDM is a sequence having a length twice that of a sequence used when multiplexing 8-layer demodulation RSs using CDM.
  • the range of CDM is expanded by multiplexing using a sequence having twice the length.
  • the basic pattern shows a range B as an 8-layer CDM range.
  • the range C is shown as a 16-layer CDM range.
  • the resource elements indicated in the basic pattern within 1RU include the demodulation RS of the first layer group (Layer # 1- # 8) and the second layer group (Layer # 9- # 16).
  • the demodulation RS is multiplexed by CDM.
  • a sequence used for CDM is a sequence having a length twice as long as a sequence used when multiplexing 8-layer demodulation RSs by CDM.
  • the demodulation RS of the first layer group (Layer # 1- # 8) and the demodulation RS of the second layer group (Layer # 9- # 16) are multiplexed within one RU, a part of the demodulation RS The RS is multiplexed in duplicate. That is, the series is calculated redundantly for some demodulation RSs.
  • a range D is shown as a 16-layer CDM range in the extended pattern to which the extension method (3) is applied using 1 RU.
  • Resource elements to which demodulation RSs included in both of the two ranges D are mapped are multiplexed using CDM.
  • the expansion method (3) as shown in FIG. 5 reduces the number of multiple layers of demodulation RSs in the same resource element as compared with the data channel, so that power boost is possible. Further, since the demodulation RS is expanded and mapped in the frequency direction, resistance to the frequency selective channel is increased.
  • FIG. 6 is a diagram illustrating an example of the expansion method (4) in the present embodiment.
  • FIG. 6 shows a basic pattern and an extended pattern obtained by extending the basic pattern by applying the extension method (4).
  • the basic pattern indicates resource elements to which the control channel (PDCCH) and the RS for demodulating the first layer group (Layer # 1- # 8) are mapped, and is extended by applying the extension method (4).
  • the pattern indicates resource elements to which the control channel (PDCCH), the first layer group demodulation RS, and the second layer group demodulation RS (Layer # 9- # 16) are mapped.
  • the basic pattern in FIG. 6 is the same as the basic pattern shown in FIG.
  • the demodulation RS of the first layer group and the demodulation RS of the second layer group are multiplexed using TDM in one RU.
  • the demodulation RS of the first layer group is mapped to the resource element indicated by the basic pattern. Then, in the same RU, the resource element shown in the basic pattern is demodulated in the second layer group into the resource element shifted in the time direction so as not to overlap with the resource element to which the demodulation RS in the first layer group is mapped. RS is mapped.
  • the channel estimation accuracy using the demodulation RS of the second layer group and the channel estimation accuracy using the demodulation RS of the first layer group are based on the basic pattern.
  • the channel estimation accuracy using the mapped demodulation RS can be made equivalent. Also, since 16 layers of demodulation RSs can be mapped in one RU, the number of RUs used during expansion can be reduced.
  • FIG. 6 shows an example in which the RS for demodulation of the first layer group is mapped adjacent to the RS for demodulation of the second layer group in the time direction in the extended pattern to which the extension method (4) is applied.
  • one or more resource element intervals may be provided in the time direction between the demodulation RS of the first layer group and the demodulation RS of the second layer group.
  • FIG. 7 is a diagram illustrating an example of the expansion method (5) in the present embodiment.
  • FIG. 7 shows a basic pattern and an extended pattern obtained by extending the basic pattern by applying the extension method (5).
  • resource elements to which the control channel (PDCCH) and the RS for demodulating the first layer group (Layer # 1- # 8) are mapped are shown, which are expanded by applying the expansion method (5).
  • One extension pattern indicates resource elements to which the control channel (PDCCH), the first layer group demodulation RS, and the second layer group demodulation RS (Layer # 9- # 16) are mapped. 7 is the same as the basic pattern shown in FIG.
  • the demodulation RS of the first layer group and the demodulation RS of the second layer group are multiplexed using FDM within one RU.
  • the resource element indicated by the basic pattern is shifted to the low frequency side (downward in the figure) by one resource element in the frequency direction, and the demodulating RS of the first layer group Are mapped. Then, in the same RU, the resource element shown in the basic pattern is demodulated in the second layer group into the resource element shifted in the frequency direction so as not to overlap the resource element to which the demodulation RS in the first layer group is mapped. RS is mapped.
  • the channel estimation accuracy using the demodulation RS of the second layer group and the channel estimation accuracy using the demodulation RS of the first layer group are based on the basic pattern.
  • the channel estimation accuracy using the mapped demodulation RS can be made equivalent. Also, since 16 layers of demodulation RSs can be mapped in one RU, the number of RUs used during expansion can be reduced.
  • FIG. 7 illustrates an example in which the demodulation RS of the first layer group is mapped adjacent to the demodulation RS of the second layer group adjacent to each other in the frequency direction in the expansion pattern to which the expansion method (5) is applied. It was.
  • the present invention is not limited to this.
  • one or more resource element intervals may be provided in the frequency direction between the demodulation RS of the first layer group and the demodulation RS of the second layer group.
  • the demodulating RS of the first layer group is mapped to a resource element obtained by shifting the resource element shown in the basic pattern by one resource element to the low frequency side in the frequency direction (downward in the figure). showed that.
  • the present invention is not limited to this.
  • the shifting direction may be on the high frequency side, and the number of resource elements to be shifted may be two or more.
  • the demodulation RS of the first layer group may be mapped without shifting the resource elements indicated in the basic pattern.
  • FIG. 8 is a diagram illustrating a first example of an extension pattern to which the basic pattern and each extension method are applied.
  • the 8-layer demodulation RS is mapped by the method of extending the basic pattern by applying any one of the expansion methods (1) to (5) shown in FIGS.
  • the mapping pattern (basic pattern) indicating the resource element to be extended is extended to the mapping pattern (extended pattern) indicating the resource element mapping the 16-layer demodulation RS.
  • each extended method is applied to one identical basic pattern.
  • the basic pattern is not limited to the illustrated pattern, and various basic patterns may be used.
  • variation 1 an example of a variation of a basic pattern and an expansion pattern that is expanded by applying the expansion method (1) to the expansion method (5) to the basic pattern will be described.
  • 9A and 9B are diagrams illustrating a second example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 10 is a diagram illustrating a third example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 11 is a diagram illustrating a fourth example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIGS. 9A, 9B, 10 and 11 show a basic pattern and an extended pattern obtained by extending the basic pattern by applying the extension method (1) to the extension method (5).
  • FIGS. 9A and 9B the same basic pattern and an extended pattern obtained by extending the basic pattern are shown separately.
  • the basic pattern resource elements to which the control channel (PDCCH) and the first layer group demodulation RS (Layer # 1- # 8) are mapped are shown.
  • a plurality of patterns are shown as examples in which a plurality of different patterns are obtained when applying the expansion method (2).
  • FIG. 9A, FIG. 9B, FIG. 10, and FIG. 11 by applying each expansion method to one basic pattern, it is possible to perform expansion to various expansion patterns.
  • expansion methods (1) to (5) may be applied.
  • variations 2 and 3 a basic pattern to which a part of the expansion methods (1) to (5) is applied and an extended pattern obtained by extending the basic pattern will be described.
  • ⁇ Variation 2> For example, in the basic pattern, when the resource elements for mapping the 8-layer demodulation RS are relatively large (dense) in the frequency direction, the extension methods (1) to (4) are applied. Hereinafter, an example in which the expansion methods (1) to (4) are applied will be described.
  • FIGS. 12A and 12B are diagrams illustrating a fifth example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 13 is a diagram illustrating a sixth example of an extension pattern to which the basic pattern and each extension method are applied.
  • 14A and 14B are diagrams illustrating a seventh example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 12A, FIG. 12B, FIG. 13, FIG. 14A, and FIG. 14B show a basic pattern and an extended pattern obtained by extending the basic pattern by applying the extension method (1) to the extension method (4).
  • FIG. 12A and FIG. 12B the same basic pattern and an extended pattern obtained by extending the basic pattern are shown separately.
  • FIGS. 14A and 14B the same basic pattern and an extended pattern obtained by extending the basic pattern are shown separately.
  • resource elements to which the control channel (PDCCH) and the first layer group demodulation RS (Layer # 1- # 8) are mapped are shown.
  • FIG. 12A, FIG. 12B, FIG. 13, FIG. 14A, and FIG. 14B it is possible to perform expansion to various expansion patterns by applying each expansion method to one basic pattern.
  • ⁇ Variation 3> For example, in the basic pattern, when the resource elements for mapping the RSs for demodulation of 8 layers are relatively few (relatively sparse), the extension method applying the extension method (3) in 1 RU is excluded. Hereinafter, an example in which an extension method other than the extension method (3) in 1RU is applied will be described.
  • FIG. 15A and 15B are diagrams showing an eighth example of an extended pattern to which the basic pattern and each extended method are applied.
  • FIG. 16 is a diagram illustrating a ninth example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 17 is a diagram illustrating a tenth example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 18 is a diagram illustrating an eleventh example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIG. 19 is a diagram illustrating a twelfth example of an extension pattern to which the basic pattern and each extension method are applied.
  • FIGS. 15A, 15B, and FIGS. 16 to 19 show a basic pattern and an extended pattern obtained by extending the basic pattern by applying an extension method excluding the extension method (3) in 1RU.
  • FIGS. 15A and 15B the same basic pattern and an extended pattern obtained by extending the basic pattern are shown separately.
  • the basic pattern shows resource elements to which the control channel (PDCCH) and the RS for demodulating the first layer group (Layer # 1- # 8) are mapped, and is extended by applying the extension method (5).
  • the pattern indicates resource elements to which the control channel (PDCCH), the first layer group demodulation RS, and the second layer group demodulation RS (Layer # 9- # 16) are mapped.
  • a plurality of patterns are shown as examples in which a plurality of different patterns are obtained when applying the expansion method (2).
  • the CDM is used to add 16 layers to the resource elements indicated by the basic pattern. Cannot be multiplexed. Therefore, in the basic patterns shown in FIG. 15A, FIG. 15B, and FIGS. 16 to 19, the extension method excluding the extension method (3) in 1RU is applied.
  • FIGS. 9A to 19 are merely examples, and the basic patterns used in the present invention are not limited to these. Also, the extended pattern is merely an example, and the extended pattern in the present invention is not limited to these.
  • mapping pattern extension method and the variations between the basic pattern and the extension pattern in the present embodiment have been described.
  • the radio base station 10 can perform one extension from a plurality of extension methods.
  • a method may be selected, and the selected expansion method may be set.
  • a common expansion method may be set with respect to the user terminal 20 located in the same cell, and a different expansion method may be set for every user terminal 20. Further, different extension methods may be set for the user terminals 20 located in different cells.
  • the applied extension method may be set according to the data channel.
  • the extension method applied to the mapping pattern for mapping the demodulation RS of the subframe including a specific data channel may be a predetermined extension method.
  • the specific data channel for example, a data channel including SystemSRInformation, a data channel including SRB (Signaling Radio Bearer), a data channel including Hand over command, and DCI (Downlink Control Information) transmitted in Common search space are used. Scheduled data channels, and data channels including Activation commands.
  • an extension method and / or a control method applied to a broadcast channel are respectively They may be set independently or may be set together.
  • a broadcast channel or a notification channel such as PBCH), a control channel (for example, PDCCH), and a data channel are respectively They may be set independently or may be set together.
  • a plurality of extension method indexes may be notified to each of them, or the plurality of extension methods may be combined.
  • One index may be set and one index may be notified.
  • the value that the radio base station 10 boosts may be signaled, or the user terminal 20 may determine Implicit.
  • the radio base station 10 signals a boost value the notified value may be a boost value or an index value associated with a plurality of boost value candidates.
  • the radio base station 10 selects one extension method from a plurality of extension methods.
  • the selected expansion method may be applied.
  • the selected extension method is notified to the user terminal 20.
  • the radio base station 10 may notify the user terminal 20 of the information indicating the extension method explicitly or implicitly.
  • the radio base station 10 when the extension method is notified explicitly, the radio base station 10 notifies the user terminal 20 of the extension method using RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, PHY (physical layer) signaling, or the like. May be.
  • the radio base station 10 transmits a MIB (Master Information Block) transmitted using PBCH, a RACH message 2 (also called Random Access Response: RAR) used in random access processing, a RACH message 3 and a RACH message.
  • the expansion method may be notified to the user terminal 20 using the message 4, SIB (System Information Block), RRC, DCI (Downlink Control Information), or the like.
  • the radio base station 10 and the user terminal 20 for example, the configuration of a synchronization signal (Synchronization Signal: SS), PBCH, SIB, or RACH, and the extension method (for example, the extension method ( 1) to (5)) may be associated one-to-one.
  • a synchronization signal Synchronization Signal: SS
  • PBCH Packet Control Channel
  • SIB Session Control Signal
  • RACH Radio Access Control Channel
  • the radio base station 10 transmits a group signal associated with the extension method set in the user terminal 20 to the user terminal 20. Then, the user terminal 20 specifies the extension method associated with the group to which the signal transmitted from the radio base station 10 belongs as the extension method set in the own device. Thereby, since the extension method is notified implicitly by the existing signal, new signaling for notifying the extension method becomes unnecessary.
  • the radio base station 10 applies any one of a plurality of extension methods to extend the basic pattern, maps the demodulation RS based on the extension pattern, and performs the user It transmits to the terminal 20.
  • the user terminal 20 performs an estimation process (estimated blindly) assuming that the demodulation RS is mapped in a symbol to which the demodulation RS may be mapped. You may specify the symbol by which RS was mapped. This eliminates the need for new signaling for notifying the extension method.
  • the notification of the extension method from the radio base station 10 to the user terminal 20 may be performed periodically or dynamically.
  • the notification to the user terminal 20 may be a combination of an extension method and a basic pattern to which the extension method is applied, or may be only one of them.
  • the notification to the user terminal 20 may be an index indicating an extended pattern obtained by applying an extended method to the basic pattern.
  • a PN Pulseudo Noise sequence is generated with a sequence seed of any one of PCID (Physical Cell Identities), VCID (Virtual Cell Identities), UE-ID (User Equipment Identifications), or a combination thereof.
  • a demodulation RS may be generated using the PN sequence.
  • the demodulation RS may be generated using another sequence such as a Zadoff-Chu sequence instead of the PN sequence.
  • the demodulation RS described above may be referred to as DMRS. Further, the demodulation RS may be referred to as a reference signal, RS, or the like.
  • downlink communication from the radio base station 10 to the user terminal 20 has been described.
  • the above embodiment also applies to uplink communication from the user terminal 20 to the radio base station 10.
  • the configuration of the radio base station 10 shown in FIG. 1 (configuration on the transmission side of the DL signal demodulation RS) is replaced with the configuration of the user terminal in the uplink
  • the configuration of the user terminal 20 shown in FIG. The configuration on the receiving side of the demodulation RS) may be replaced with the configuration of the radio base station in the uplink.
  • the radio base station notifies the user terminal of an index indicating a predetermined (predefined) or selected extension method. Then, the user terminal transmits a UL signal to the radio resource based on an extended pattern that is predetermined (predefined) or extended by applying an extension method indicated by an index notified from the radio base station.
  • the demodulating RS is mapped and transmitted to the radio base station.
  • the radio base station separates (demaps) the demodulation RS from the UL signal based on the extension pattern obtained by extending the basic pattern by applying the selected extension method, and performs channel estimation using the separated demodulation RS. .
  • the radio base station selects the extension method in the case of uplink
  • the user terminal may select the extension method.
  • the user terminal notifies the radio base station of an index indicating the selected mapping pattern.
  • the user terminal maps the demodulation RS of the UL signal to the radio resource based on the extension pattern obtained by extending the basic pattern by applying the selected extension method, and transmits the radio signal to the radio base station.
  • the radio base station separates (demaps) the demodulation RS from the UL signal based on the extension pattern obtained by extending the basic pattern by applying the extension method indicated by the index notified from the terminal. Channel estimation.
  • the demodulation RS is extended to 16 ports is taken as an example, but the extension to 16 ports is applied to some demodulation RSs (DMRS). May be.
  • DMRS demodulation RSs
  • Basic DMRS Front-loaded DMRS
  • Additional DMRS may remain 8 ports without expansion.
  • 16 layer multiplexing when 16 layer multiplexing is performed in SU-MIMO (Single-Use-Multiple-Input-Multiple-Output), it is expanded to 16 ports, and each user layer is expanded in MU-MIMO (Multi-User-Multiple-Input-Multiple-Output). If the number is 8 layers or less, it is not necessary to expand to 16 ports. In that case, beams may be multiplexed between users.
  • SU-MIMO Single-Use-Multiple-Input-Multiple-Output
  • MU-MIMO Multi-User-Multiple-Input-Multiple-Output
  • the RS for demodulation transmitted / received by extending to 16 ports may be specified in advance or may be switched according to the situation. In the case of switching, a notification method similar to the notification method of the extension method described above may be used.
  • the mapping pattern of the demodulation RS that supports transmission / reception of 8 ports is expanded by applying an appropriate expansion method, so that 16 A demodulation RS mapping pattern that supports port transmission / reception can be set. Then, the user terminal 20 separates the demodulation RS based on the demodulation RS mapping pattern that supports 16-port transmission / reception, and demodulates the data signal using the demodulation RS.
  • the extension method from the basic pattern to the extension pattern is specified in advance, or when implicit notification is made in association with the existing signal, a new method for notifying the extension method is provided. Signaling is unnecessary, and an increase in signaling overhead can be prevented.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a wireless base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs computation and communication by the communication device 1004, or This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described scheduler 101, control units 108 and 203, transmission signal generation units 102 and 205, encoding / modulation units 103 and 206, mapping units 104 and 207, demodulation / decoding units 109 and 204 are realized by the processor 1001. May be.
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the scheduler 101 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission units 105 and 209, the antennas 107 and 201, the reception units 107 and 202, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation assumed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and / or other network nodes other than the base station (e.g., It is obvious that this can be performed by MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • Input / output information and the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • Information, signal Information, signals, etc. described herein may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • radio resource may be indicated by an index.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage. Further, the terms “base station”, “eNB”, “cell”, and “sector” may be used interchangeably herein.
  • a base station may also be referred to in terms such as a fixed station, NodeB, eNodeB (eNB), access point, femtocell, small cell, and the like.
  • a user terminal is a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile by a person skilled in the art It may also be referred to as a terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, UE (User Equipment), or some other appropriate terminology.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, looking up (eg, table , Searching in a database or another data structure), considering ascertaining as “determining”, “deciding”, and the like.
  • determination and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • connection means any direct or indirect connection or coupling between two or more elements and It can include the presence of one or more intermediate elements between two “connected” or “coupled” elements.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples
  • electromagnetic energy such as electromagnetic energy having a wavelength in the region, microwave region, and light (both visible and invisible) region, it can be considered to be “connected” or “coupled” to each other.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot depending on an applied standard. Further, the demodulation RS may be another corresponding name.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the radio frame may be composed of one or a plurality of frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, etc.
  • a subframe may further be composed of one or more slots in the time domain.
  • the slot may be further configured with one or a plurality of symbols (OFDM (Orthogonal-Frequency-Division-Multiplexing) symbol, SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) symbol, etc.) in the time domain.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • the radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. Radio frames, subframes, slots, minislots, and symbols may be called differently corresponding to each.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each mobile station) to each mobile station.
  • the minimum time unit of scheduling may be called TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • one minislot may be called a TTI
  • the resource unit is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. In the time domain of the resource unit, it may include one or a plurality of symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource units.
  • the resource unit may also be called a resource block (RB: Resource Block), a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, a scheduling unit, a frequency unit, or a subband. Further, the resource unit may be composed of one or a plurality of REs.
  • 1 RE may be any resource (for example, the smallest resource unit) smaller than a resource unit serving as a resource allocation unit, and is not limited to the name RE.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, the symbols and resource blocks included in the slots, The number and the number of subcarriers included in the resource block can be variously changed.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • One embodiment of the present invention is useful for a mobile communication system.
  • radio base station 20 user terminal 101 scheduler 108, 203 control unit 102, 205 transmission signal generation unit 103, 206 encoding / modulation unit 104, 207 mapping unit 105, 208 transmission unit 106, 201 antenna 107, 202 reception unit 109, 204 Demodulator / Decoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末は、復調用参照信号を含む下りリンク信号を受信する受信部と、設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、下りリンク信号から復調用参照信号を分離する信号分離部と、復調用参照信号を用いてチャネル推定値を算出するチャネル推定部と、を具備する。基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれる)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、無線基地局とユーザ端末間で、複数のアンテナポート(例えば、8ポート)を用いた下りリンク(DL)送信及び上りリンク(UL)送信がサポートされる。
 将来の無線通信システム(例えば、5G)では、超高速、大容量化などの要求を達成するために、16ポートのアンテナポートの数をサポートすることが想定されている。
 しかしながら、アンテナポートの数を8ポートから16ポートに拡張する場合の適切な方法は検討されていない。
 本発明の一態様は、将来の無線通信システムにおけるポート数の拡張に適する参照信号等の構成を実現可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明の一態様に係るユーザ端末は、復調用参照信号を含む下りリンク信号を受信する受信部と、設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、前記下りリンク信号から前記復調用参照信号の受信を制御する制御部と、を具備し、前記基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、前記拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す。
 本発明の一態様によれば、将来の無線通信システムにおけるポート数の拡張に適する参照信号等の構成を実現できる。
本発明の一実施の形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施の形態における拡張方法(1)の一例を示す図である。 本発明の一実施の形態における拡張方法(2)の一例を示す図である。 本発明の一実施の形態における拡張方法(3)の一例を示す図である。 本発明の一実施の形態における拡張方法(4)の一例を示す図である。 本発明の一実施の形態における拡張方法(5)の一例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第1例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第2例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第2例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第3例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第4例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第5例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第5例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第6例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第7例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第7例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第8例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第8例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第9例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第10例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第11例を示す図である。 基本パターンと各拡張方法を適用した拡張パターンの第12例を示す図である。 本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(一実施の形態)
 本実施の形態に係る無線通信システムは、少なくとも、図1に示す無線基地局10、及び、図2に示すユーザ端末20を備える。ユーザ端末20は、無線基地局10に接続(アクセス)している。
 無線基地局10は、ユーザ端末20に対して、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)を用いてDL制御信号を送信し、下りデータチャネル(例えば、下り共有チャネル:PDSCH:Physical Downlink Shared Channel)を用いてDLデータ信号及び復調用RSを送信する。また、ユーザ端末20は、無線基地局10に対して、上り制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)を用いてUL制御信号を送信し、上りデータチャネル(例えば、上り共有チャネル:PUSCH:Physical Uplink Shared Channel)を用いてULデータ信号及び復調用RSを送信する。
 なお、無線基地局10及びユーザ端末20が送受信する下りチャネル及び上りチャネルは、上記のPDCCH、PDSCH、PUCCH、PUSCH等に限定されず、例えば、PBCH(Physical Broadcast Channel)、RACH(Random Access Channel)等の他のチャネルでもよい。
 また、図1及び図2では、無線基地局10及びユーザ端末20において生成されるDL/ULの信号波形は、OFDM(Orthogonal Frequency Division Multiplexing)変調に基づく信号波形でもよく、SC-FDMA(Single Carrier-Frequency Division Multiple Access)又はDFT-S-OFDM(DFT-Spread-OFDM))に基づく信号波形でもよく、他の信号波形でもよい。図1及び図2では、信号波形を生成するための構成部(例えば、IFFT処理部、CP付加部、CP除去部、FFT処理部等)の記載を省略している。
 また、本実施の形態に係る無線通信システムでは、ポート数8のアンテナポート(8ポート)を用いた送受信がサポートされると共に、ポート数16のアンテナポート(16ポート)を用いた送受信がサポートされる。
 以下では、1ポートに対して1レイヤの信号の送受信を行う例について説明する。そして、本実施の形態では、8レイヤの信号の送受信を16レイヤの送受信に拡張することにより、16ポートを用いた送受信をサポートする。
 <無線基地局>
 図1は、本実施の形態に係る無線基地局10の全体構成の一例を示す図である。図1に示す無線基地局10は、スケジューラ101と、送信信号生成部102と、符号化・変調部103と、マッピング部104と、送信部105と、アンテナ106と、受信部107と、制御部108と、復調・復号部109と、を含む構成を採る。
 スケジューラ101は、DL信号(DLデータ信号、DL制御信号及び復調用RS等)のスケジューリング(例えば、リソース割当、アンテナポートの割当)を行う。また、スケジューラ101は、UL信号(ULデータ信号、UL制御信号及び復調用RS等)のスケジューリング(例えば、リソース割当、アンテナポートの割当)を行う。
 スケジューリングの際、スケジューラ101は、予め決められた(Predefineされた)拡張方法を適用して、1つのRU(1RU)内において8レイヤ(レイヤ#1~レイヤ#8)の復調用RSがマッピングされるリソース要素を示すマッピングパターンを、16レイヤ(レイヤ#1~レイヤ#16)の復調用RSがマッピングされるリソース要素を示すマッピングパターンへ拡張する。
 以下では、1RU内において8レイヤの復調用RSがマッピングされるリソース要素を示すマッピングパターンを基本パターンと呼び、16レイヤの復調用RSがマッピングされるリソース要素を示すマッピングパターンを拡張パターンと呼ぶ。
 そして、スケジューラ101は、拡張パターンに基づいて、各レイヤ(つまり、レイヤ#1~レイヤ#16)の復調用RSのスケジューリングを行う。
 なお、基本パターンの拡張方法の詳細については後述する。
 スケジューラ101は、スケジューリング結果を示すスケジューリング情報を送信信号生成部102、マッピング部104及び制御部108に出力する。
 また、スケジューラ101は、例えば、無線基地局10とユーザ端末20との間のチャネル品質に基づいて、DLデータ信号及びULデータ信号のMCS(符号化率、変調方式等)を設定し、MCS情報を送信信号生成部102及び符号化・変調部103へ出力する。なお、MCSは、無線基地局10が設定する場合に限定されず、ユーザ端末20が設定してもよい。ユーザ端末20がMCSを設定する場合、無線基地局10は、ユーザ端末20からMCS情報を受信すればよい(図示せず)。
 送信信号生成部102は、送信信号(DLデータ信号、DL制御信号を含む)を生成する。例えば、DL制御信号には、スケジューラ101から出力されたスケジューリング情報(例えば、DLデータ信号のリソース割当情報)又はMCS情報を含む下り制御情報(DCI:Downlink Control Information)が含まれる。送信信号生成部102は、生成した送信信号を符号化・変調部103に出力する。
 符号化・変調部103は、例えば、スケジューラ101から入力されるMCS情報に基づいて、送信信号生成部102から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部103は、変調後の送信信号をマッピング部104に出力する。
 マッピング部104は、スケジューラ101から入力されるスケジューリング情報(例えば、DLのリソース割当及び/又はポート割当)に基づいて、符号化・変調部103から入力される送信信号を所定の無線リソース(DLリソース)にマッピングする。また、マッピング部104は、スケジューリング情報に基づいて、参照信号(例えば、復調用RS)を所定の無線リソース(DLリソース)にマッピングする。マッピング部104は、無線リソースにマッピングされたDL信号を送信部105に出力する。
 送信部105は、マッピング部104から入力されるDL信号に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(DL信号)をアンテナ106から送信する。
 受信部107は、アンテナ106において受信された無線周波数信号(UL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、UL信号を制御部108に出力する。
 制御部108は、スケジューラ101から入力されるスケジューリング情報(ULのリソース割当及び/又はポート割当)に基づいて、受信部107から入力されるUL信号からULデータ信号及び復調用RSを分離(デマッピング)する。そして、制御部108は、ULデータ信号を復調・復号部109に出力する。
 また、制御部108は、復調用RSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部109に出力する。
 復調・復号部109は、制御部108から入力されるチャネル推定値に基づいて、制御部108から入力されるULデータ信号に対して復調及び復号処理を行う。復調・復号部109は、復調後のULデータ信号を、アプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。
 <ユーザ端末>
 図2は、本実施の形態に係るユーザ端末20の全体構成の一例を示す図である。図2に示すユーザ端末20は、アンテナ201と、受信部202と、制御部203と、復調・復号部204と、送信信号生成部205と、符号化・変調部206と、マッピング部207と、送信部208と、を含む構成を採る。そして、ユーザ端末20は、ユーザ端末20自身に割り当てられたアンテナポートにて受信した無線周波数信号の受信処理を行う。
 受信部202は、アンテナ201において受信された無線周波数信号(DL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、DL信号を制御部203に出力する。DL信号には、少なくとも、DLデータ信号及び復調用RSが含まれる。
 制御部203は、受信部202から入力されるDL信号からDL制御信号及び復調用RSを分離(デマッピング)する。そして、制御部203は、DL制御信号を復調・復号部205に出力する。
 その際、制御部203は、予め設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、DL信号から復調用RSの受信を制御する。
 また、制御部203は、復調・復号部204から入力されるスケジューリング情報(例えば、DLのリソース割当情報)に基づいて、DL信号からDLデータ信号を分離(デマッピング)し、DLデータ信号を復調・復号部204に出力する。
 また、制御部203は、分離した復調用RSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部204に出力する。
 復調・復号部204は、制御部203から入力されるDL制御信号を復調する。また、復調・復号部204は、復調後のDL制御信号に対して復号処理(例えば、ブラインド検出処理)を行う。復調・復号部204は、DL制御信号を復号することによって得られた自機宛てのスケジューリング情報(DL/ULのリソース割当又は復調用RSのマッピング設定)を制御部203及びマッピング部207に出力し、ULデータ信号に対するMCS情報を符号化・変調部206へ出力する。
 また、復調・復号部204は、制御部203から入力されるチャネル推定値及びDL制御信号に含まれるDLデータ信号に対するMCS情報に基づいて、制御部203から入力されるDLデータ信号に対して復調及び復号処理を行う。また、復調・復号部204は、復調後のDLデータ信号をアプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。
 送信信号生成部205は、送信信号(ULデータ信号又はUL制御信号を含む)を生成し、生成した送信信号を符号化・変調部206に出力する。
 符号化・変調部206は、例えば、復調・復号部204から入力されるMCS情報に基づいて、送信信号生成部205から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部206は、変調後の送信信号をマッピング部207に出力する。
 マッピング部207は、復調・復号部204から入力されるスケジューリング情報(ULのリソース割当)に基づいて、符号化・変調部206から入力される送信信号を所定の無線リソース(ULリソース)にマッピングする。また、マッピング部207は、スケジューリング情報(例えば、復調用RSのマッピング設定)に基づいて、参照信号(例えば、復調用RS)を所定の無線リソース(ULリソース)にマッピングする。
 送信部208は、マッピング部207から入力されるUL信号(少なくともULデータ信号及び復調用RSを含む)に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(UL信号)をアンテナ201から送信する。
<基本パターンの拡張方法>
 次に、基本パターンの拡張方法について説明する。
 前述の通り、無線基地局10のスケジューラ101は、予め決められた(Predefineされた)拡張方法を適用して、基本パターンを拡張パターンへ拡張する。
 以下では、基本パターンの一例と、その基本パターンを拡張した拡張パターンとを示すことによって、基本パターンの拡張方法について説明する。
 [拡張方法(1)]
 図3は、本実施の形態における拡張方法(1)の一例を示す図である。図3には、基本パターンと、拡張方法(1)を適用して基本パターンを拡張した拡張パターンとが示される。
 図3に示す基本パターンは、リソース割り当て単位となるリソースユニット(RU:Resource Unit)(リソースブロック、リソースブロックペア等とも呼ばれる)における、制御チャネル(PDCCH)および8レイヤ(レイヤ#1~レイヤ#8)の復調用RS(Layer#1-#8)のマッピング位置を示す。1つのRUは、168個のリソース要素(RE:Resource Element)が周波数方向に12個、時間方向に14個並んだ構成を有する。1REは、1サブキャリアと1シンボルとにより定義される無線リソース領域である。つまり、図3における1つのRUは、12サブキャリアと14シンボルとにより構成される。
 拡張方法(1)を適用した拡張パターンには、制御チャネル(PDCCH)と8つのレイヤ(レイヤ#1~レイヤ#8)の復調用RSと8つのレイヤ(レイヤ#9~レイヤ#16)の復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。
 なお、以下では、レイヤ#1~レイヤ#8を第1レイヤグループと呼び、レイヤ#9~レイヤ#16を第2レイヤグループと呼ぶ。
 拡張方法(1)を適用した拡張パターンでは、2つのRU内において周波数分割多重(FDM:Frequency Division Multiplexing)を用いて第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとが多重される。
 具体的には、1つのRU内において、基本パターンに示されるリソース要素に第1レイヤグループの復調用RSがマッピングされ、第1レイヤグループの復調用RSがマッピングされるRUとは別のRU(周波数方向において隣り合うRU)内において、基本パターンに示されるリソース要素に第2レイヤグループの復調用RSがマッピングされる。
 なお、第1レイヤグループ内の8つのレイヤの復調用RSの多重方法は、特に限定されない。8つのレイヤ(レイヤ#1~レイヤ#8)の復調用RSは、符号分割多重(CDM:Code Division Multiplexing)、時分割多重(TDM:Time Division Multiplexing)、FDMのいずれか1つまたは2つ以上を組み合わせた多重方法を用いて多重されても良い。また、第2レイヤグループ内の8つのレイヤの復調用RSの多重方法も、特に限定されない。8つのレイヤ(レイヤ#9~レイヤ#16)の復調用RSは、CDM、TDM、FDMのいずれか1つまたは2つ以上を組み合わせて多重されても良い。
 図3に示すような拡張方法(1)により、データチャネルと比較して同一のリソース要素における復調用RSの多重レイヤ数が減少するため、電力ブーストが可能となる。
 [拡張方法(2)]
 図4は、本実施の形態における拡張方法(2)の一例を示す図である。図4には、基本パターンと拡張方法(2)を適用して基本パターンを拡張した2つの拡張パターンとが示される。
 基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、拡張方法(2)を適用して拡張した拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。なお、図4の基本パターンは、図3に示した基本パターンと同じである。
 拡張方法(2)を適用した拡張パターンでは、2つのRU内においてFDMを用いて第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとが多重される。
 具体的には、拡張方法(2)を適用した拡張パターンでは、拡張方法(1)を適用した拡張パターンと同様に、2つのRUを用いて16レイヤの復調用RSがマッピングされる。そして、拡張方法(2)を適用した拡張パターンでは、拡張方法(1)を適用した拡張パターンにおいて第1レイヤグループの復調用RSのマッピング位置の一部と第2レイヤグループの復調用RSのマッピング位置との一部とが、置き換わっている。
 第1レイヤグループの復調用RSのマッピング位置の一部と第2レイヤグループの復調用RSのマッピング位置との一部との置き換えの際、第1レイヤグループのCDMの範囲を考慮して置き換えることが望ましい。
 一例として、図4の基本パターンには、CDMの範囲として、パターン1、パターン2とが示される。そして、パターン1またはパターン2を考慮した置き換えを行う事によって、拡張方法(2)を適用した拡張パターン1と拡張パターン2とに拡張される。
 図4に示すような拡張方法(2)により、データチャネルと比較して同一のリソース要素における復調用RSの多重レイヤ数が減少するため、電力ブーストが可能となる。また、各レイヤの復調用RSが、周波数方向に広がってマッピングされるため、周波数選択性チャネルに対する耐性が強くなる。
 なお、図4における第1レイヤグループの復調用RSのマッピング位置の一部と第2レイヤグループの復調用RSのマッピング位置との一部との置き換えは、あくまで一例である。置き換えられる位置は、特に限定されない。
 [拡張方法(3)]
 図5は、本実施の形態における拡張方法(3)の一例を示す図である。図5には、基本パターンと拡張方法(3)を適用して基本パターンを拡張した2つの拡張パターンとが示される。
 基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、拡張方法(3)を適用して拡張した2つの拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。なお、図5の基本パターンは、図3に示した基本パターンと同じである。
 拡張方法(3)を適用した拡張パターンでは、2つまたは1つのRU内においてCDMを用いて第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとが多重される。
 具体的には、2RUを使用する場合、(周波数方向において隣り合う)2RUそれぞれにおいて、基本パターンに示されるリソース要素に第1レイヤグループの復調用RSと、第2レイヤグループの復調用RSとが、CDMを用いて多重される。その際、CDMに用いられる系列は、CDMを用いて8レイヤの復調用RSを多重する際に用いられる系列の2倍の長さを有する系列である。
 2倍の長さを有する系列を用いて多重することにより、CDMの範囲が拡大する。例えば、図5において、基本パターンには、8レイヤのCDMの範囲として、範囲Bが示される。範囲Bに対して、2RUを使用して拡張方法(3)を適用した拡張パターンには、16レイヤのCDMの範囲として、範囲Cが示される。
 また、1RUを使用する場合、1RU内において基本パターンに示されるリソース要素に第1レイヤグループ(Layer#1-#8)の復調用RSと、第2レイヤグループ(Layer#9-#16)の復調用RSとが、CDMにより多重される。その際、CDMに用いられる系列は、8レイヤの復調用RSをCDMにより多重する際に用いられる系列の2倍の長さを有する系列である。また、1RU内において第1レイヤグループ(Layer#1-#8)の復調用RSと、第2レイヤグループ(Layer#9-#16)の復調用RSとを多重するため、一部の復調用RSには、重複して多重される。つまり、一部の復調用RSには、重複して系列が演算される。
 例えば、図5の場合、1RUを使用して拡張方法(3)を適用した拡張パターンには、16レイヤのCDMの範囲として、範囲Dが示される。2つの範囲Dの両方に含まれる復調用RSがマッピングされるリソース要素では、重複してCDMを用いて多重される。
 図5に示すような拡張方法(3)により、データチャネルと比較して同一のリソース要素における復調用RSの多重レイヤ数が減少するため、電力ブーストが可能となる。また、復調用RSが、周波数方向に拡張してマッピングされるため、周波数選択性チャネルに対する耐性が強くなる。
 [拡張方法(4)]
 図6は、本実施の形態における拡張方法(4)の一例を示す図である。図6には、基本パターンと拡張方法(4)を適用して基本パターンを拡張した拡張パターンとが示される。
 基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、拡張方法(4)を適用して拡張した拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。なお、図6の基本パターンは、図3に示した基本パターンと同じである。
 拡張方法(4)を適用した拡張パターンでは、1つのRU内においてTDMを用いて第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとが多重される。
 具体的には、1つのRU内において、基本パターンに示されるリソース要素に第1レイヤグループの復調用RSがマッピングされる。そして、同じRU内において、基本パターンに示されるリソース要素を第1レイヤグループの復調用RSがマッピングされるリソース要素と重複しないように時間方向へシフトさせたリソース要素に、第2レイヤグループの復調用RSがマッピングされる。
 図6に示すような拡張方法(4)により、第2レイヤグループの復調用RSを用いたチャネル推定精度と第1レイヤグループの復調用RSを用いたチャネル推定精度とは、基本パターンに基づいてマッピングされた復調用RSを用いたチャネル推定精度と同等にできる。また、1つのRU内に16レイヤの復調用RSをマッピングできるため、拡張時にRUを使用する数を減らせる。
 なお、図6では、拡張方法(4)を適用した拡張パターンにおいて、第1レイヤグループの復調用RSが第2レイヤグループの復調用RSと時間方向において隙間なく隣り合ってマッピングされる例を示したが、第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとの間に、時間方向において1以上のリソース要素の間隔が設けられても良い。
 [拡張方法(5)]
 図7は、本実施の形態における拡張方法(5)の一例を示す図である。図7には、基本パターンと拡張方法(5)を適用して基本パターンを拡張した拡張パターンとが示される。
 基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、拡張方法(5)を適用して拡張した2つの拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。なお、図7の基本パターンは、図3に示した基本パターンと同じである。
 拡張方法(5)を適用した拡張パターンでは、1つのRU内においてFDMを用いて第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとが多重される。
 具体的には、1つのRU内において、基本パターンに示されるリソース要素を周波数方向において低周波数側へ(図の下方へ)1リソース要素分シフトさせたリソース要素に第1レイヤグループの復調用RSがマッピングされる。そして、同じRU内において、基本パターンに示されるリソース要素を第1レイヤグループの復調用RSがマッピングされるリソース要素と重複しないように周波数方向へシフトさせたリソース要素に、第2レイヤグループの復調用RSがマッピングされる。
 図7に示すような拡張方法(5)で、第2レイヤグループの復調用RSを用いたチャネル推定精度と第1レイヤグループの復調用RSを用いたチャネル推定精度とは、基本パターンに基づいてマッピングされた復調用RSを用いたチャネル推定精度と同等にできる。また、1つのRU内に16レイヤの復調用RSをマッピングできるため、拡張時にRUを使用する数を減らせる。
 なお、図7では、拡張方法(5)を適用した拡張パターンにおいて、第1レイヤグループの復調用RSが第2レイヤグループの復調用RSと周波数方向において隙間なく隣り合ってマッピングされる例を示した。本発明は、これに限定されない。例えば、第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとの間に、周波数方向において1以上のリソース要素の間隔が設けられても良い。
 また、図7では、基本パターンに示されるリソース要素を周波数方向における低周波数側へ(図の下方へ)1リソース要素分シフトさせたリソース要素に第1レイヤグループの復調用RSがマッピングされる例を示した。本発明は、これに限定されない。例えば、シフトさせる方向は高周波数側であっても良いし、シフトするリソース要素の数は2以上であっても良い。あるいは、基本パターンに示されるリソース要素をシフトさせることなく第1レイヤグループの復調用RSがマッピングされても良い。
 図3~図7にそれぞれ示した基本パターンと拡張パターンとを纏めて図8に示す。図8は、基本パターンと各拡張方法を適用した拡張パターンの第1例を示す図である。
 以上、図3~図7にそれぞれ示した拡張方法(1)~拡張方法(5)のうち、いずれかの拡張方法を適用して基本パターンを拡張する方法で、8レイヤの復調用RSをマッピングするリソース要素を示すマッピングパターン(基本パターン)を16レイヤの復調用RSをマッピングするリソース要素を示すマッピングパターン(拡張パターン)へ拡張する。
 なお、図3~図7では、1つの同一の基本パターンに対して各拡張方法を適用して拡張した拡張パターンを示した。基本パターンは、例示したパターンに限定されず、様々な基本パターンを用いてもよい。以下では、バリエーション1として、基本パターンのバリエーションの一例と、その基本パターンに対して拡張方法(1)~拡張方法(5)を適用して拡張した拡張パターンについて説明する。
<バリエーション1>
 図9A、図9Bは、基本パターンと各拡張方法を適用した拡張パターンの第2例を示す図である。図10は、基本パターンと各拡張方法を適用した拡張パターンの第3例を示す図である。図11は、基本パターンと各拡張方法を適用した拡張パターンの第4例を示す図である。
 図9A、図9B、図10、図11には、基本パターンと拡張方法(1)~拡張方法(5)を適用して基本パターンを拡張した拡張パターンとが示されている。なお、図9A、図9Bについては、同一の基本パターンと、その基本パターンを拡張した拡張パターンとが分かれて示されている。基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、各拡張方法を適用して拡張した拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。また、拡張方法(2)を適用する際に、複数の異なるパターンが得られる例については、複数のパターンが示される。
 図9A、図9B、図10、図11に示すように、1つの基本パターンに対して、各拡張方法を適用することによって、様々な拡張パターンへの拡張を行う事ができる。
 なお、基本パターンによっては、拡張方法(1)~(5)の全てでは無く、一部が適用される場合がある。以下では、バリエーション2、バリエーション3として、拡張方法(1)~(5)の一部が適用される基本パターンとその基本パターンを拡張した拡張パターンとを説明する。
<バリエーション2>
 例えば、基本パターンにおいて、8レイヤの復調用RSをマッピングするリソース要素が周波数方向に比較的多い(密である)場合、拡張方法(1)~(4)が適用される。以下では、拡張方法(1)~(4)が適用される例について説明する。
 図12A、図12Bは、基本パターンと各拡張方法を適用した拡張パターンの第5例を示す図である。図13は、基本パターンと各拡張方法を適用した拡張パターンの第6例を示す図である。図14A、図14Bは、基本パターンと各拡張方法を適用した拡張パターンの第7例を示す図である。
 図12A、図12B、図13、図14A、図14Bには、基本パターンと拡張方法(1)~拡張方法(4)を適用して基本パターンを拡張した拡張パターンとが示されている。なお、図12A、図12Bについては、同一の基本パターンと、その基本パターンを拡張した拡張パターンが分かれて示されている。同様に、図14A、図14Bには、同一の基本パターンと、その基本パターンを拡張した拡張パターンが分かれて示されている。基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、各拡張方法を適用して拡張した拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。また、拡張方法(2)を適用する際に、複数の異なるパターンが得られる例については、複数のパターンが示される。
 図12A、図12B、図13、図14A、図14Bに示す基本パターンでは、同一シンボル内のリソース要素のうち、半分より多いリソース要素に8レイヤの復調用RSがマッピングされる。そのため、拡張方法(5)のように、同一シンボル内に第1レイヤグループの復調用RSと第2レイヤグループの復調用RSとをマッピングするリソース要素が不足する。そのため、図12A、図12B、図13、図14A、図14Bに示す基本パターンでは、拡張方法(5)を除く拡張方法(1)~拡張方法(4)が適用される。
 図12A、図12B、図13、図14A、図14Bに示すように、1つの基本パターンに対して、各拡張方法を適用することによって、様々な拡張パターンへの拡張を行う事ができる。
<バリエーション3>
 例えば、基本パターンにおいて、8レイヤの復調用RSをマッピングするリソース要素が比較的少ない(比較的疎である)場合、1RU内における拡張方法(3)を適用する拡張方法が除外される。以下では、1RU内における拡張方法(3)を除く拡張方法が適用される例について説明する。
 図15A、図15Bは、基本パターンと各拡張方法を適用した拡張パターンの第8例を示す図である。図16は、基本パターンと各拡張方法を適用した拡張パターンの第9例を示す図である。図17は、基本パターンと各拡張方法を適用した拡張パターンの第10例を示す図である。図18は、基本パターンと各拡張方法を適用した拡張パターンの第11例を示す図である。図19は、基本パターンと各拡張方法を適用した拡張パターンの第12例を示す図である。
 図15A、図15B、図16~図19には、基本パターンと1RU内における拡張方法(3)を除く拡張方法を適用して基本パターンを拡張した拡張パターンとが示されている。なお、図15A、図15Bについては、同一の基本パターンと、その基本パターンを拡張した拡張パターンが分かれて示されている。基本パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RS(Layer#1-#8)とがマッピングされるリソース要素が示され、拡張方法(5)を適用して拡張した拡張パターンには、制御チャネル(PDCCH)と第1レイヤグループの復調用RSと第2レイヤグループの復調用RS(Layer#9-#16)とがマッピングされるリソース要素が示される。また、拡張方法(2)を適用する際に、複数の異なるパターンが得られる例については、複数のパターンが示される。
 図15A、図15B、図16~図19に示す基本パターンでは、8レイヤの復調用RSをマッピングするリソース要素の数が比較的少ないため、CDMを用いて、基本パターンが示すリソース要素に16レイヤの復調用RSを多重できない。そのため、図15A、図15B、図16~図19に示す基本パターンでは、1RU内における拡張方法(3)を除く拡張方法が適用される。
 図15A、図15B、図16~図19に示すように、1つの基本パターンに対して、各拡張方法を適用することによって、様々な拡張パターンへの拡張を行う事ができる。
 なお、図9A~図19に示した基本パターンは、あくまで例示であり、本発明において用いる基本パターンはこれらに限定されない。また、拡張パターンについても、あくまで例示であり、本発明における拡張パターンはこれらに限定されない。
 以上、本実施の形態におけるマッピングパターンの拡張方法と、基本パターンと拡張パターンとのバリエーションについて説明した。
 なお、上述した実施の形態では、無線基地局10が、予め設定された拡張方法を用いて、基本パターンを拡張する例について説明したが、無線基地局10は、複数の拡張方法から1つの拡張方法を選択し、選択した拡張方法を設定しても良い。
 なお、マッピングパターンの拡張方法について、同一セル内に位置するユーザ端末20に対して共通の拡張方法が設定されてもよく、ユーザ端末20毎に異なる拡張方法が設定されてもよい。また、異なるセル内にそれぞれ位置するユーザ端末20に対して異なる拡張方法が設定されてもよい。
 また、適用される拡張方法は、データチャネルに応じて設定されても良い。例えば、特定のデータチャネルを含むサブフレームの復調用RSをマッピングするマッピングパターンに適用される拡張方法は、予め決められた拡張方法であっても良い。特定のデータチャネルとは、例えば、System Informationを含むデータチャネル、SRB(Signaling Radio Bearer)を含むデータチャネル、Hand over commandを含むデータチャネル、Common search spaceで送信されたDCI(Downlink Control Information)を用いてスケジューリングされたデータチャネル、および、Activation commandを含むデータチャネル等である。
 また、報知チャネル(例えば、PBCHなどのブロードキャスト用のチャネルまたは通知用のチャネル)と制御チャネル(例えば、PDCCH)とデータチャネル(例えば、PDSCH)に適用される拡張方法および/または制御方法は、それぞれ独立に設定されても良いし、まとめて設定されても良い。報知チャネルと制御チャネルとデータチャネルに適用される拡張方法がまとめて設定される場合、それぞれに与えられた拡張方法のインデックス(index)を複数通知しても良いし、複数の拡張方法をまとめて1つのインデックスを設定し、1つのインデックスを通知しても良い。
 また、復調用RSをブーストできる値を可変とできる構成の場合、無線基地局10がブーストする値をシグナリングしても良いし、ユーザ端末20がImplicitに判断しても良い。無線基地局10がブーストする値をシグナリングする場合、通知する値は、ブースト値もしくは複数のブースト値候補に結び付けられたインデックス値であっても良い。
 なお、上述した実施の形態では、無線基地局10が、予め設定された拡張方法を基本パターンに適用する例について説明したが、無線基地局10は、複数の拡張方法から1つの拡張方法を選択し、選択した拡張方法を適用しても良い。その場合、選択した拡張方法は、ユーザ端末20に通知される。
 次に、ユーザ端末20に対する拡張方法の通知方法について説明する。
 無線基地局10は、ユーザ端末20に対して拡張方法を示す情報を、明示的(explicit)に通知してもよく、暗黙的(implicit)に通知してもよい。
 例えば、拡張方法をexplicitに通知する場合、無線基地局10は、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、PHY(物理レイヤ)シグナリング等によって拡張方法をユーザ端末20へ通知してもよい。一例として、無線基地局10は、PBCHを用いて送信されるMIB(Master Information Block)、ランダムアクセス処理において用いられるRACHメッセージ2(Random Access Response:RARと呼ばれることもある)、RACHメッセージ3、RACHメッセージ4、SIB(System Information Block)、RRC、又は、DCI(Downlink Control Information)等を用いて拡張方法をユーザ端末20へ通知してもよい。
 また、拡張方法をimplicitに通知する場合、無線基地局10及びユーザ端末20は、例えば、同期信号(Synchronization Signal:SS)、PBCH、SIB又はRACHの構成等と、拡張方法(例えば、拡張方法(1)~(5))とを1対1で関連付けてもよい。例えば、SS、PBCH、SIB、RACHの各々の構成として複数のパターンがそれぞれ規定されている場合に、複数のパターンが、各拡張方法に関連付けられるグループにグループ分けされてもよい。グループ分けの際、各パターン(例えば、SSのサブキャリア間隔が異なる各パターン)に対して、当該パターンが使用される通信環境に適した拡張方法が関連付けられてもよい。
 無線基地局10は、ユーザ端末20に設定した拡張方法に関連付けられたグループの信号をユーザ端末20へ送信する。そして、ユーザ端末20は、無線基地局10から送信された信号が属するグループに関連付けられた拡張方法を、自機に設定された拡張方法として特定する。これにより、拡張方法が既存の信号によってimplicitに通知されるので、拡張方法を通知するための新たなシグナリングが不要となる。
 または、拡張方法をimplicitに通知する方法として、無線基地局10は、複数の拡張方法の何れか1つを適用して基本パターンを拡張し、拡張パターンに基づいて復調用RSをマッピングしてユーザ端末20へ送信する。ユーザ端末20は、複数の拡張方法それぞれについて、復調用RSがマッピングされる可能性のあるシンボルにおいて復調用RSがマッピングされていると仮定して推定処理を行い(ブラインドで推定し)、復調用RSがマッピングされたシンボルを特定してもよい。これにより、拡張方法を通知するための新たなシグナリングが不要となる。
 なお、無線基地局10からユーザ端末20への拡張方法の通知は、周期的に行われてもよく、動的に行われてもよい。
 ユーザ端末20への通知は、拡張方法と拡張方法が適用される基本パターンとの組み合わせであっても良いし、いずれか一方のみであっても良い。あるいは、ユーザ端末20への通知は、基本パターンに拡張方法を適用して拡張した拡張パターンを示すインデックスであっても良い。
 また、本実施の形態では、復調用RSの系列生成手順に関しても特に制限は無い。例えば、PCID(Physical Cell Identities)、VCID(Virtual Cell Identities)、UE-ID(User Equipment Identities)のいずか又はそれら内の複数の組み合わせを系列シードとするPN(Pseudo Noise)系列を生成し、当該PN系列を用いて復調用RSを生成しても良い。あるいは、PN系列の代わりに、Zadoff-Chu系列等の他の系列を用いて復調用RSを生成しても良い。
 なお、上述した復調用RSは、DMRSと呼ばれても良い。また、復調用RSは、参照信号、RS等と呼ばれても良い。
 また、上記の説明では、無線基地局10からユーザ端末20への下りリンクの通信について説明したが、上記実施の形態は、ユーザ端末20から無線基地局10への上りリンクの通信に対しても適用してもよい。この場合、図1に示す無線基地局10の構成(DL信号の復調用RSの送信側の構成)を上りリンクにおけるユーザ端末の構成に置き換え、図2に示すユーザ端末20の構成(DL信号の復調用RSの受信側の構成)を上りリンクにおける無線基地局の構成に置き換えてもよい。
 上りリンクの場合、具体的には、無線基地局は、予め決められた(Predefineされた)あるいは、選択した拡張方法を示すインデックスを、ユーザ端末に通知する。そして、ユーザ端末は、予め決められた(Predefineされた)、あるいは、無線基地局から通知されるインデックスが示す拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、無線リソースにUL信号の復調用RSをマッピングし、無線基地局へ送信する。無線基地局は、選択した拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、UL信号から復調用RSを分離(デマッピング)し、分離した復調用RSを用いてチャネル推定を行う。
 なお、上記の説明では、上りリンクの場合に、無線基地局が、拡張方法を選択する例について説明したが、ユーザ端末が拡張方法を選択しても良い。この場合、ユーザ端末は、選択したマッピングパターンを示すインデックスを無線基地局へ通知する。そして、ユーザ端末は、選択した拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、無線リソースにUL信号の復調用RSをマッピングし、無線基地局へ送信する。無線基地局は、端末から通知されるインデックスが示す拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、UL信号から復調用RSを分離(デマッピング)し、分離した復調用RSを用いてチャネル推定を行う。
 また、上記の説明では、復調用RSに対して、16ポートへの拡張を行う場合を例に挙げたが、16ポートへの拡張は、一部の復調用RS(DMRS)に対して適用されても良い。
 例えば、Basic DMRS(Front-loaded DMRS)のみ16ポートに拡張し、Additional DMRSは、拡張せずに8ポートのままであっても良い。
 あるいは、SU-MIMO(Single Use- Multiple-Input Multiple-Output)において、16レイヤ多重を行う場合は、16ポートに拡張し、MU-MIMO(Multi User Multiple-Input Multiple-Output)において各ユーザのレイヤ数が8レイヤ以下の場合は、16ポートへ拡張しなくても良い。その場合、ユーザ間は、ビーム多重されても良い。
 16ポートへ拡張して送受信される復調用RSは、予め規定されても良いし、状況に応じて切替えられても良い。切替えられる場合は、上述した拡張方法の通知方法と同様の通知方法が用いられても良い。
<本実施の形態の効果>
 本実施の形態では、アンテナポートの数が8ポートから16ポートに拡張する場合に、8ポートの送受信をサポートする復調用RSのマッピングパターンを適切な拡張方法を適用して拡張することにより、16ポートの送受信をサポートする復調用RSのマッピングパターンが設定できる。そして、ユーザ端末20は、16ポートの送受信をサポートする復調用RSのマッピングパターンに基づいて、復調用RSを分離し、復調用RSを用いてデータ信号を復調する。
 上述した方法を用いることで、本実施の形態によれば、将来の無線通信システムにおけるポート数の拡張に適する参照信号等の構成を実現でき、ユーザ端末20は、将来の無線通信システムにおけるポート数の拡張に対応できる。
 また、本実施の形態によれば、基本パターンから拡張パターンへの拡張方法が予め規定される場合、又は、既存信号に関連付けてimplicitに通知される場合には、拡張方法を通知するための新たなシグナリングが不要となり、シグナリングオーバーヘッドが増大することを防ぐことができる。
 以上、本発明の各実施の形態について説明した。
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本発明の一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のスケジューラ101、制御部108,203、送信信号生成部102,205、符号化・変調部103,206、マッピング部104,207、復調・復号部109,204などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10のスケジューラ101は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部105,209、アンテナ107,201、受信部107,202などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、復調用RSは、対応する別の呼び方であってもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよいし、1ミニスロットをTTIと呼んでもよい。
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本特許出願は、2017年2月3日に出願した日本国特許出願第2017-019119号に基づきその優先権を主張するものであり、日本国特許出願第2017-019119号の全内容を本願に援用する。
 本発明の一態様は、移動通信システムに有用である。
 10 無線基地局
 20 ユーザ端末
 101 スケジューラ
 108,203 制御部
 102,205 送信信号生成部
 103,206 符号化・変調部
 104,207 マッピング部
 105,208 送信部
 106,201 アンテナ
 107,202 受信部
 109,204 復調・復号部
 

Claims (6)

  1.  復調用参照信号を含む下りリンク信号を受信する受信部と、
     設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、前記下りリンク信号から前記復調用参照信号の受信を制御する制御部と、を具備し、
     前記基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、
     前記拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す、
     ユーザ端末。
  2.  設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、復調用参照信号をマッピングするマッピング部と、
     前記復調用参照信号を含む上りリンク信号を送信する送信部と、
     を具備し、
     前記基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、
     前記拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す、
     ユーザ端末。
  3.  前記ユーザ端末に対して、前記拡張方法が予め規定されている、
     請求項1又は2に記載のユーザ端末。
  4.  前記拡張方法が、前記ユーザ端末に通知される、
     請求項1又は2に記載のユーザ端末。
  5.  復調用参照信号を含む下りリンク信号を受信し、
     設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、前記下りリンク信号から前記復調用参照信号の受信を制御する、無線通信方法であって、
     前記基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、
     前記拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す、
     無線通信方法。
  6.  設定された拡張方法を適用して基本パターンを拡張した拡張パターンに基づいて、復調用参照信号をマッピングし、
     前記復調用参照信号を含む上りリンク信号を送信する、
     無線通信方法であって、
     前記基本パターンは、8レイヤの復調用参照信号がマッピングされるリソース要素を示し、
     前記拡張パターンは、16レイヤの復調用参照信号がマッピングされるリソース要素を示す、
     無線通信方法。
PCT/JP2017/043313 2017-02-03 2017-12-01 ユーザ端末及び無線通信方法 WO2018142747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/483,061 US11076410B2 (en) 2017-02-03 2017-12-01 User terminal and radio communication method
JP2018565962A JP7195153B2 (ja) 2017-02-03 2017-12-01 ユーザ端末及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019119 2017-02-03
JP2017-019119 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018142747A1 true WO2018142747A1 (ja) 2018-08-09

Family

ID=63040484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043313 WO2018142747A1 (ja) 2017-02-03 2017-12-01 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US11076410B2 (ja)
JP (1) JP7195153B2 (ja)
WO (1) WO2018142747A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10925078B2 (en) 2018-02-16 2021-02-16 Apple Inc. Two-tone physical uplink shared channel for machine type communications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265955A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539327B (zh) * 2009-04-15 2019-11-22 Lg电子株式会社 发射、接收参考信号的方法和设备
EP2524482B1 (en) * 2010-01-12 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for channel estimation and detection in mimo system
CN102237945A (zh) * 2010-05-06 2011-11-09 松下电器产业株式会社 基于正交编码的码分复用方法、码分复用设备和解复用设备
CN104137461B (zh) * 2012-02-20 2017-11-17 Lg 电子株式会社 无线通信***中传送上行链路信号的方法和设备
US9723598B2 (en) * 2012-02-20 2017-08-01 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
EP2893660B1 (en) * 2012-09-05 2018-12-12 LG Electronics Inc. Method and apparatus for transmitting downlink signal in wireless communication system
BR112016028057B1 (pt) * 2014-06-12 2023-02-23 Huawei Technoligies Co., Ltd Método de alocação de recursos e estação base
US10250366B2 (en) * 2014-09-24 2019-04-02 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
US10447447B2 (en) * 2016-04-05 2019-10-15 Qualcomm Incorporated Methods and apparatus for multiplexing reference signals for multiple input multiple output (MIMO) layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265955A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI ELECTRIC: "DMRS designs for NR MIMO", 3GPP TSG-RAN WG1 NR AH R1-1700874, 20 January 2017 (2017-01-20), XP051208391, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/R1-1700874.zip> *
MITSUBISHI ELECTRIC: "Performance evaluations of DMRS designs for NR MIMO", 3GPP TSG-RAN WG1 NR AH R1-1700875, 20 January 2017 (2017-01-20), XP051208392, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/R1-1700875.zip> *
NOKIA ET AL.: "On the DL DMRS structure for NR physical data channels", 3GPP TSG-RAN WG1 NR AD-HOC MEETING R1-1701103, 20 January 2017 (2017-01-20), XP051208617, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1701/Docs/R1-1701103.zip> *

Also Published As

Publication number Publication date
US20190373596A1 (en) 2019-12-05
US11076410B2 (en) 2021-07-27
JP7195153B2 (ja) 2022-12-23
JPWO2018142747A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
CN110999236B (zh) 终端以及终端的通信方法
WO2018123441A1 (ja) ユーザ端末及び無線通信方法
JP7470513B2 (ja) 端末及び基地局
US11336382B2 (en) Terminal, radio communication system, and radio communication method to reduce an increase in signaling overhead
US11637672B2 (en) Terminal and wireless communication method for receiving a demodulation reference signal
JP2021101550A (ja) 端末及び無線通信システム
WO2019102531A1 (ja) 無線送信装置および無線受信装置
WO2018083863A1 (ja) ユーザ装置
WO2018203395A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018143325A1 (ja) ユーザ端末及び無線通信方法
WO2018030243A1 (ja) ユーザ端末及び無線通信方法
CN112352406B (zh) 用户终端以及无线通信方法
US11477773B2 (en) User terminal, base station, and radio communication method for mapping a demodulation reference signal
WO2019138562A1 (ja) 無線通信装置
WO2018229956A1 (ja) ユーザ端末及び無線通信方法
WO2018142747A1 (ja) ユーザ端末及び無線通信方法
WO2018229957A1 (ja) ユーザ端末及びチャネル推定方法
WO2019163113A1 (ja) ユーザ端末及び無線通信方法
WO2019097700A1 (ja) 無線送信装置および無線受信装置
WO2019159341A1 (ja) 無線送信装置
CN111295910A (zh) 扩频序列选择方法、发射功率的调整方法和通信装置
WO2019012596A1 (ja) ユーザ端末及び無線通信方法
WO2019012594A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895372

Country of ref document: EP

Kind code of ref document: A1