WO2018142465A1 - Axial gap-type rotary electrical machine - Google Patents

Axial gap-type rotary electrical machine Download PDF

Info

Publication number
WO2018142465A1
WO2018142465A1 PCT/JP2017/003411 JP2017003411W WO2018142465A1 WO 2018142465 A1 WO2018142465 A1 WO 2018142465A1 JP 2017003411 W JP2017003411 W JP 2017003411W WO 2018142465 A1 WO2018142465 A1 WO 2018142465A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
axial gap
core
gap type
electrical machine
Prior art date
Application number
PCT/JP2017/003411
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀一
恭永 米岡
利文 鈴木
山崎 克之
大輔 倉井
潤 櫻井
田村 均
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2017/003411 priority Critical patent/WO2018142465A1/en
Priority to CN201780077026.8A priority patent/CN110073578A/en
Priority to JP2018565105A priority patent/JPWO2018142465A1/en
Publication of WO2018142465A1 publication Critical patent/WO2018142465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • the present invention relates to an axial gap type rotating electrical machine, and more particularly to an axial gap type rotating electrical machine that molds a stator (stator).
  • An axial gap type rotating electrical machine is a device in which a cylindrical stator and a disk-shaped rotor are arranged face-to-face with a predetermined air gap in the direction of the rotation axis.
  • the stator includes a plurality of iron cores arranged to warp in the inner peripheral direction of the housing portion, and a coil wound around the cores.
  • the gap surface that generates torque increases in proportion to the square of the diameter. Therefore, the axial gap type rotating electrical machine is more efficient and thinner than the radial gap type mechanism that has a gap in the radial direction. It is considered a suitable rotating electrical machine.
  • a double rotor type axial gap type rotating electrical machine in which a single stator is sandwiched between two rotors can secure twice the gap area, and thus may have better characteristics. It is attracting attention as a structure.
  • this double rotor type axial gap type rotating electrical machine since the iron core and the coil are arranged independently, they are often supported and fixed to the housing by a mold resin.
  • the housing has a hole portion that communicates with the outside on the surface facing the stator, and the stator has a plurality of core units facing the inner peripheral surface of the housing and the holes.
  • An axial air gap type rotating electrical machine in which a resin is filled in a part and molded integrally is disclosed (FIG. 4, paragraph number 0024).
  • Patent Document 1 by providing a hole for fixing the resin mold in the housing, a tensile force acting on the tip of the resin filled in the hole along with the force acting in the rotation axis direction and the rotation axis radial direction. It is said that the housing can be prevented and damage to the housing can be prevented.
  • thermosetting resin In general, a thermosetting resin is often used when molding with a resin mold. When such a resin is used, in the latter half of the resin encapsulation process, the resin injected earlier begins to cure, and it is necessary to encapsulate the resin at a high pressure in order to fill the resin to every corner.
  • An axial gap type rotating electrical machine that can be easily manufactured by making the resin mold easy to flow when the stator is formed by molding is desired.
  • the axial gap type rotating electrical machine preferably includes a stator in which a plurality of core units formed of a core, a coil, and a bobbin are annularly arranged along the inner peripheral surface of the housing with a rotation axis as a center.
  • An axial gap type rotating electrical machine having a rotor facing the end face of the core through a predetermined gap in the axial diameter direction, wherein the housing has an outlet for drawing the wiring to the rotor to the outside.
  • an inclined surface is formed on the lower side of the outlet of the housing so that the inner peripheral side is downward.
  • the housing has a recess under the outlet, and the inclined surface and the recess are integrated.
  • the stator when the stator is molded, it is possible to provide an axial gap type rotating electrical machine that can easily flow through the resin mold and avoid breakage of the bobbin of the core unit.
  • FIG. 5 is a BB cross-sectional view of a stator portion of the axial gap type rotating electric machine of FIG. 4 when a resin mold is filled.
  • FIG. 5 is an enlarged cross-sectional view of a main part around a core unit and a housing of the axial gap type rotating electric machine of FIG. 4 when a resin mold is filled. It is the principal part enlarged view of the core unit and housing periphery of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 1).
  • FIG. 3 is an enlarged view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment (No. 2).
  • FIG. 3 is a perspective view of the vicinity of the drawer opening of the housing of the axial gap type rotating electric machine according to the first embodiment.
  • FIG. 6 is an enlarged cross-sectional view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment when the resin mold is filled (part 2). It is the principal part enlarged view of the core unit and housing periphery of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 1).
  • FIG. 3 is an enlarged view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment (No. 2).
  • FIG. 3 is a perspective view of the vicinity of the drawer opening of the housing of the axial gap type rotating electric machine according to the first embodiment. It is the core unit of the axial gap type rotary electric machine which concerns on Embodiment 1 when satisfy
  • FIG. 6 is an enlarged cross-sectional view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment when the resin mold is filled (part 2).
  • Embodiment 1 according to the present invention will be described with reference to FIGS. 1A to 9B.
  • FIG. 1A shows a schematic configuration of a double rotor type axial gap type permanent magnet synchronous motor 1 (hereinafter sometimes simply referred to as “motor 1”) according to the first embodiment.
  • the motor 1 includes a doughnut-shaped stator 19 disposed along the inner peripheral surface of the housing 50, and two disk-shaped rotors 30 having predetermined air pressure in the rotational axis radial direction. They are arranged so as to face each other with a gap interposed therebetween.
  • the housing 50 is formed by, for example, aluminum die casting.
  • the rotor 30 has a disk center fixed to the rotating shaft 40.
  • the rotating shaft 40 is disposed through the central portion of the stator 19, and both end portions thereof are rotatably fixed to the end bracket 60 via bearings 70.
  • the end bracket 60 is fixed in the vicinity of both opening ends of the housing 50 having a substantially cylindrical shape.
  • the rotor 30 is provided with a permanent magnet 31 via a rotor base 32 on a circular yoke 33.
  • the yoke 33 may not be provided, and the rotor base 32 may be made of a material that functions as a yoke.
  • the permanent magnet is composed of a plurality of flat-plate magnets having a substantially sector shape centering on the direction of the rotation axis 40, and magnets having different polarities are arranged in the rotation direction.
  • the permanent magnet 31 shall apply a ferrite, it is not restricted to this.
  • the armature configuration of the motor 1 is as shown in the perspective view of FIG. 1B.
  • the stator 19 is composed of twelve core units 20 arranged along the inner periphery of the housing 50 with the rotation axis A as the center direction.
  • One core unit 20 constitutes one slot.
  • the core units 20 and the inner peripheral surface of the housing 50 are formed integrally with each other by a resin mold and fixed to a stator (described later).
  • the core unit 20 includes a bobbin 22, a core 21, and a coil 23 as shown in FIG.
  • the core 21 is an amorphous metal mainly composed of iron having a substantially trapezoidal or triangular prism shape formed by sequentially laminating metal plates formed so as to gradually increase in width in the radial direction.
  • the cross-sectional shape of the core 21 may be a cross-section having two oblique sides having intersections in the extending direction other than the general trapezoidal shape or the triangular shape.
  • the metal plate to be laminated may be iron or the like, but in this embodiment, the metal containing amorphous is thinned into a tape shape, and the core 21 is obtained by sequentially laminating the width in the rotation direction. It has become.
  • the housing 50 When resin molding is performed so as to be integrated with the core units 20 and the inner periphery of the housing 50, as shown in FIG. 3, the housing 50 is inserted into a lower mold 62 having substantially the same inner diameter.
  • a cylindrical middle mold 61 for forming an axial space through which the rotating shaft passes later is disposed in the center of the lower mold 62 from the opposite opening.
  • the core units 20 are arranged in an annular shape around the middle mold 61.
  • the flange portion 22b of the bobbin performs positioning in the radial direction and positioning in the rotation axis rotation direction with the adjacent core unit 20.
  • an upper mold having an outer diameter substantially matching the inner diameter of the housing 50 and having a cylindrical space in the center for penetrating the middle mold 61 is inserted from the housing opening opposite to the lower mold 62, and the core The unit 20 is sandwiched and supported.
  • the mold resin 80 is sealed from the opposing surfaces of the upper mold and the lower mold 62.
  • the mold resin is filled between the core units 20, the inner peripheral surface of the housing 50, the direction of the middle mold 61, and the surface facing the rotor 30 of the collar portion 22 b of the bobbin with almost no gap.
  • a thermosetting unsaturated polyester resin for example, BMC (Bulk Molding Compound) having a low molding shrinkage ratio and high dimensional stability is usually used.
  • stator part of the axial gap type rotating electrical machine When the stator part of the axial gap type rotating electrical machine is viewed from the cross section, it is as shown in FIG. 4, and the cross sectional view taken along the line BB in FIG. 4 is as shown in FIG.
  • a recess 51 for fixing the mold resin 80 and the stator 19 is provided on the inner periphery of the housing 50 at intervals of 90 degrees.
  • a recess-shaped outlet 52 is provided at one location on the inner peripheral side of the housing 50, for example, above the recess 51.
  • a wiring hole 53 is provided from the outlet 52 to connect the wiring from the outside to the stator coil 23. It can be connected.
  • the mold resin 80 is filled up to the line MM in FIGS. 4 and 6, that is, the upper part of the core unit 20 is sufficiently filled. Is filled.
  • the viscosity of the resin increases as the previously injected resin begins to harden, and the pressure applied to the surrounding structure increases, so that the collar of the bobbin 22 of the core unit 20 increases.
  • the portion 22B is likely to be damaged by the influence of high temperature and high pressure.
  • the lower side is expanded at the outlet 52, and the inclined surface 54 is formed on the lower side of the outlet 52 as shown in FIGS. 7A and 8.
  • the mold resin 80 flows into this portion, the sealing pressure is lowered, and the bobbin 22 of the core unit 20 can be prevented from being damaged.
  • the inclined surface provided on the lower side of the outlet 52 is not limited to a flat surface as shown in FIGS. 7B and 9B, and may be an upwardly convex R (round) surface 55. Further, the shape of the slope formed at the outlet 52 is not limited to a flat slope or R surface, but may be a stepped shape, a planar slope, or an inclined shape with gradually different inclination angles.
  • Embodiment 2 to which the present invention is applied will be described below with reference to FIGS. 10A to 12B.
  • an inclined surface for allowing the mold resin 80 to escape is formed on the lower side of the outlet 52 at the final stage of filling with the mold resin 80.
  • an inclined surface for allowing the mold resin 80 to escape is formed on the lower side of the outlet 52, but the shapes of the outlet 52 and the recess 51 are different.
  • the inclined surface provided on the lower side of the outlet 52 is not limited to a flat surface, and may be an upwardly convex R surface 55. It may be a stepped shape, a flat slope, or an inclined shape with gradually different inclination angles.
  • SYMBOLS 1 Motor, 19 ... Stator, 20 ... Core unit, 21 ... Core, 22 ... Bobbin, 23 ... Coil, 30 ... Rotor, 31 ... Permanent magnet, 32 ... Rotor base, 33 ... Yoke, 40 ... Rotating shaft, DESCRIPTION OF SYMBOLS 50 ... Housing, 51, 51a ... Recessed part, 52 ... Outlet, 53 ... Wiring hole, 54, 54a ... Inclined surface, 55 ... R surface, 60 ... End bracket, 70 ... Bearing, 80 ... Mold resin

Abstract

This axial gap-type rotary electrical machine has: a stator in which a plurality of core units each configured from a core, a coil, and a bobbin are disposed, centering around a rotating shaft, in an annular shape along the inner peripheral surface of a housing; and a rotor that is face-to-face with a cross-sectional surface of the core through a predetermined gap in a radial direction of the rotating shaft. The housing has an extraction hole for extracting a wire for the rotor to the outside, and is provided, with an inclined surface on the lower side of the extraction hole of the housing, such that the inner peripheral side of the inclined surface becomes lower. In addition, the housing has a recess part under the extraction hole, wherein the inclined surface and the recess part are integrated. Accordingly, when the stator is formed by molding, a resin mold is made to easily flow, and damage to the bobbin of the core unit can be avoided.

Description

アキシャルギャップ型回転電機Axial gap type rotating electrical machine
 本発明は、アキシャルギャップ型回転電機に係り、特に、ステータ(固定子)をモールド成形するアキシャルギャップ型回転電機に関する。 The present invention relates to an axial gap type rotating electrical machine, and more particularly to an axial gap type rotating electrical machine that molds a stator (stator).
 アキシャルギャップ型回転電機は,円筒状の固定子と円盤状の回転子を、回転軸方向に所定のエアギャップを介して面対向して配置したものである。固定子は、ハウジング部内周方向に反って配置した複数の鉄心と、これに巻き回されたコイルとを含む。アキシャルギャップ型回転電機は、トルクを発生するギャップ面が、おおよそ径の2乗に比例して増加するため、径方向にギャップを有する機構のラジアルギャップ型と比較して、高能率で薄型形状に好適な回転電機と考えられている。 An axial gap type rotating electrical machine is a device in which a cylindrical stator and a disk-shaped rotor are arranged face-to-face with a predetermined air gap in the direction of the rotation axis. The stator includes a plurality of iron cores arranged to warp in the inner peripheral direction of the housing portion, and a coil wound around the cores. In the axial gap type rotating electrical machine, the gap surface that generates torque increases in proportion to the square of the diameter. Therefore, the axial gap type rotating electrical machine is more efficient and thinner than the radial gap type mechanism that has a gap in the radial direction. It is considered a suitable rotating electrical machine.
 特に、2枚の回転子で一つの固定子を挟み込んだダブルロータ型のアキシャルギャップ型回転電機は,2倍のギャップ面積を確保することができるため、より優れた特性を得られる可能性がある構造として注目されている。このダブルロータ型のアキシャルギャップ型回転電機では、鉄心及びコイルが独立して配置されるため、モールド樹脂でこれらをハウジングに支持固定することが多い。 In particular, a double rotor type axial gap type rotating electrical machine in which a single stator is sandwiched between two rotors can secure twice the gap area, and thus may have better characteristics. It is attracting attention as a structure. In this double rotor type axial gap type rotating electrical machine, since the iron core and the coil are arranged independently, they are often supported and fixed to the housing by a mold resin.
 例えば、特許文献1には、ハウジングが、固定子と対向する面に、外部と連通する穴部を有するようにして、固定子が、複数のコアユニットがハウジング内周面との対向側面と穴部に樹脂が充填されて一体的にモールドしたアキシャルエアギャップ型回転電機が開示されている(図4、段落番号0024)。 For example, in Patent Document 1, the housing has a hole portion that communicates with the outside on the surface facing the stator, and the stator has a plurality of core units facing the inner peripheral surface of the housing and the holes. An axial air gap type rotating electrical machine in which a resin is filled in a part and molded integrally is disclosed (FIG. 4, paragraph number 0024).
国際公開第2015/162819号公報International Publication No. 2015/162819
 上記特許文献1は、ハウジングに樹脂モールドを固定する穴部を設けることにより、回転軸方向及び回転軸径方向に働く力に伴い、当該穴部に充填された樹脂の先端部に作用する引張力を逃がすことができ、ハウジングの損傷を防止することができるとしている。 In Patent Document 1, by providing a hole for fixing the resin mold in the housing, a tensile force acting on the tip of the resin filled in the hole along with the force acting in the rotation axis direction and the rotation axis radial direction. It is said that the housing can be prevented and damage to the housing can be prevented.
 一般に、樹脂モールドによって成形する場合には熱硬化性樹脂が使用されることが多い。このような樹脂を用いた場合、樹脂封入工程の後半では、先に注入した樹脂の硬化が始まり隅々まで樹脂を充填するには高圧で樹脂封入をする必要がある。 In general, a thermosetting resin is often used when molding with a resin mold. When such a resin is used, in the latter half of the resin encapsulation process, the resin injected earlier begins to cure, and it is necessary to encapsulate the resin at a high pressure in order to fill the resin to every corner.
 モールドによってステータを成形する際に、樹脂モールドを流れやすくして簡便に製造できるアキシャルギャップ型回転電機が望まれる。 An axial gap type rotating electrical machine that can be easily manufactured by making the resin mold easy to flow when the stator is formed by molding is desired.
 本発明のアキシャルギャップ型回転電機は、好ましくは、コアとコイルとボビンにより形成される複数のコアユニットが、回転軸を中心としてハウジング内周面に沿って環状に配置された固定子と、回転軸径方向に所定のギャップを介してコアの端面と面対向する回転子とを有するアキシャルギャップ型回転電機であって、ハウジングは、前記回転子への配線を外部に引き出すための引出口を有し、ハウジングの引出口の下辺に内周側が下になるような傾斜面を形成するようにしたものである。 The axial gap type rotating electrical machine according to the present invention preferably includes a stator in which a plurality of core units formed of a core, a coil, and a bobbin are annularly arranged along the inner peripheral surface of the housing with a rotation axis as a center. An axial gap type rotating electrical machine having a rotor facing the end face of the core through a predetermined gap in the axial diameter direction, wherein the housing has an outlet for drawing the wiring to the rotor to the outside. In addition, an inclined surface is formed on the lower side of the outlet of the housing so that the inner peripheral side is downward.
 また、好ましくは、ハウジングは、引出口の下に凹部を有し、傾斜面と凹部が一体となるようにしたものである。 Preferably, the housing has a recess under the outlet, and the inclined surface and the recess are integrated.
 本発明によれば、ステータをモールド成形する場合に、樹脂モールドを流れやすくして、コアユニットのボビンの破損を回避することのできるアキシャルギャップ型回転電機を提供することができる。 According to the present invention, when the stator is molded, it is possible to provide an axial gap type rotating electrical machine that can easily flow through the resin mold and avoid breakage of the bobbin of the core unit.
実施形態1に係るアキシャルギャップ型回転電機の概要構成図である(その一)。It is a schematic block diagram of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 1). 実施形態1に係るアキシャルギャップ型回転電機の概要構成図である(その二)。It is a schematic block diagram of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 2). コアユニットの斜視図である。It is a perspective view of a core unit. 固定子の樹脂モールド成形の様子を示す図である。It is a figure which shows the mode of the resin mold shaping | molding of a stator. 従来技術のアキシャルギャップ型回転電機の固定子部分を詳細に描いた断面図である。It is sectional drawing which drawn in detail the stator part of the axial gap type rotary electric machine of a prior art. 樹脂モールドを満たしたときの図4のアキシャルギャップ型回転電機の固定子部分のB-B断面図である。FIG. 5 is a BB cross-sectional view of a stator portion of the axial gap type rotating electric machine of FIG. 4 when a resin mold is filled. 樹脂モールドを満たしたときの図4のアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of a main part around a core unit and a housing of the axial gap type rotating electric machine of FIG. 4 when a resin mold is filled. 実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大図である(その一)。It is the principal part enlarged view of the core unit and housing periphery of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 1). 実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大図である(その二)。FIG. 3 is an enlarged view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment (No. 2). 実施形態1に係るアキシャルギャップ型回転電機のハウジングの引き出し口近傍の斜視図である。FIG. 3 is a perspective view of the vicinity of the drawer opening of the housing of the axial gap type rotating electric machine according to the first embodiment. 樹脂モールドを満たしたときの実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大した断面図である(その一)。It is the core unit of the axial gap type rotary electric machine which concerns on Embodiment 1 when satisfy | filling the resin mold, and sectional drawing to which the principal part periphery of a housing was expanded (the 1). 樹脂モールドを満たしたときの実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大した断面図である(その二)。FIG. 6 is an enlarged cross-sectional view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment when the resin mold is filled (part 2). 実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大図である(その一)。It is the principal part enlarged view of the core unit and housing periphery of the axial gap type rotary electric machine which concerns on Embodiment 1 (the 1). 実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大図である(その二)。FIG. 3 is an enlarged view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment (No. 2). 実施形態1に係るアキシャルギャップ型回転電機のハウジングの引き出し口近傍の斜視図である。FIG. 3 is a perspective view of the vicinity of the drawer opening of the housing of the axial gap type rotating electric machine according to the first embodiment. 樹脂モールドを満たしたときの実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大した断面図である(その一)。It is the core unit of the axial gap type rotary electric machine which concerns on Embodiment 1 when satisfy | filling the resin mold, and sectional drawing to which the principal part periphery of a housing was expanded (the 1). 樹脂モールドを満たしたときの実施形態1に係るアキシャルギャップ型回転電機のコアユニットとハウジング周辺の要部拡大した断面図である(その二)。FIG. 6 is an enlarged cross-sectional view of a main part around the core unit and the housing of the axial gap type rotating electric machine according to the first embodiment when the resin mold is filled (part 2).
 以下、本発明を適用した各実施形態を、図1Aないし図12Bを用いて説明する。 Hereinafter, each embodiment to which the present invention is applied will be described with reference to FIGS. 1A to 12B.
実施形態1Embodiment 1
 以下、本発明に係る実施形態1を、図1Aないし図9Bを用いて説明する。 Hereinafter, Embodiment 1 according to the present invention will be described with reference to FIGS. 1A to 9B.
 先ず、図1A及び図1Bを用いて実施形態1に係るアキシャルギャップ型回転電機の全体構成について説明する。 First, the overall configuration of the axial gap rotating electrical machine according to the first embodiment will be described with reference to FIGS. 1A and 1B.
 図1Aの断面図は、実施形態1に係るダブルロータ型アキシャルギャップ型永久磁石同期モータ1(以下、単に「モータ1」という場合がある。)の概要構成を表わしている。 1A shows a schematic configuration of a double rotor type axial gap type permanent magnet synchronous motor 1 (hereinafter sometimes simply referred to as “motor 1”) according to the first embodiment.
 モータ1は、図1Aに示されるように、ハウジング50の内周面に沿って配置されたドーナツ形状の固定子19を、円盤状の2つの回転子30が、回転軸径方向に所定のエアギャップを介してはさむようにして、それぞれ面対向して配置されている。ここで、ハウジング50は、例えばアルミダイキャスト鋳造により成形される。 As shown in FIG. 1A, the motor 1 includes a doughnut-shaped stator 19 disposed along the inner peripheral surface of the housing 50, and two disk-shaped rotors 30 having predetermined air pressure in the rotational axis radial direction. They are arranged so as to face each other with a gap interposed therebetween. Here, the housing 50 is formed by, for example, aluminum die casting.
 回転子30は、円盤中央が回転軸40と固定されている。そして、回転軸40は、固定子19の中央部分を貫通して配置され、両端部が軸受70を介してエンドブラケット60と回転可能に固定されている。また、エンドブラケット60は、概略円筒形からなるハウジング50の両開口端部付近で固定される。 The rotor 30 has a disk center fixed to the rotating shaft 40. The rotating shaft 40 is disposed through the central portion of the stator 19, and both end portions thereof are rotatably fixed to the end bracket 60 via bearings 70. The end bracket 60 is fixed in the vicinity of both opening ends of the housing 50 having a substantially cylindrical shape.
 さらに、回転子30は、円形のヨーク33に、ローターベース32を介して永久磁石31を備えている。ヨーク33はなくとも構わないし、ローターベース32がヨークの役割を果たす材質でできていてもよい。永久磁石は、回転軸40方向を中心とする概略扇形の形状からなる複数の平板状の磁石からなり、回転方向に異なる極性の磁石が配置される。なお、永久磁石31はフェライトを適用するものとするが、これに限るものではない。 Further, the rotor 30 is provided with a permanent magnet 31 via a rotor base 32 on a circular yoke 33. The yoke 33 may not be provided, and the rotor base 32 may be made of a material that functions as a yoke. The permanent magnet is composed of a plurality of flat-plate magnets having a substantially sector shape centering on the direction of the rotation axis 40, and magnets having different polarities are arranged in the rotation direction. In addition, although the permanent magnet 31 shall apply a ferrite, it is not restricted to this.
 モータ1の電機子構成は、図1Bの斜視図に示されるようになる。固定子19は、回転軸心Aを中心方向としてハウジング50の内周に沿って配置された12個のコアユニット20からなる。一つのコアユニット20が、1スロットを構成するようになっている。また、コアユニット20同士及びハウジング50の内周面は、樹脂モールドによって互いに一体的に成形され、固定子に固定されるようになっている(後述)。 The armature configuration of the motor 1 is as shown in the perspective view of FIG. 1B. The stator 19 is composed of twelve core units 20 arranged along the inner periphery of the housing 50 with the rotation axis A as the center direction. One core unit 20 constitutes one slot. Further, the core units 20 and the inner peripheral surface of the housing 50 are formed integrally with each other by a resin mold and fixed to a stator (described later).
 次に、図2を用いてコアユニットの構成について説明する。 Next, the configuration of the core unit will be described with reference to FIG.
 コアユニット20は、図2に示されるように、ボビン22、コア21及びコイル23を備えてなる。コア21は、徐々に幅が大きくなるように成形された金属板が径方向に順次積層されてなる概略台形あるいは三角柱状の形状を有する鉄を主成分とするアモルファス金属である。なお、コア21の断面形状には、概略台形や三角形以外にも、延長方向に交点を有する二つの斜辺を有する断面であればよい。積層される金属板としては、鉄等であってもよいが、本実施形態ではアモルファスを含有する金属をテープ状に薄板化し、順次回転方向幅を大にして積層することでコア21を得るようになっている。 The core unit 20 includes a bobbin 22, a core 21, and a coil 23 as shown in FIG. The core 21 is an amorphous metal mainly composed of iron having a substantially trapezoidal or triangular prism shape formed by sequentially laminating metal plates formed so as to gradually increase in width in the radial direction. In addition, the cross-sectional shape of the core 21 may be a cross-section having two oblique sides having intersections in the extending direction other than the general trapezoidal shape or the triangular shape. The metal plate to be laminated may be iron or the like, but in this embodiment, the metal containing amorphous is thinned into a tape shape, and the core 21 is obtained by sequentially laminating the width in the rotation direction. It has become.
 次に、図3を用いてコアユニット20同士及びハウジング50内周と一体に成形する樹脂モールド工程の様子を説明する。 Next, the state of the resin molding process in which the core units 20 and the inner periphery of the housing 50 are integrally molded will be described with reference to FIG.
 コアユニット20同士及びハウジング50内周と一体に成形する樹脂モールドする際には、図3に示されるように、ハウジング50が、その内径が略一致する下金型62に挿入され、ハウジング50の反対側開口から、後に回転軸が貫通するための軸芯空間を形成するための筒状の中金型61が、下金型62の中央に配置される。コアユニット20が、中金型61を中心として環状に配列される。このとき、ボビンのつば部22bが、径方向の位置決めや隣接するコアユニット20との回転軸回転方向の位置決めを行うようになっている。 When resin molding is performed so as to be integrated with the core units 20 and the inner periphery of the housing 50, as shown in FIG. 3, the housing 50 is inserted into a lower mold 62 having substantially the same inner diameter. A cylindrical middle mold 61 for forming an axial space through which the rotating shaft passes later is disposed in the center of the lower mold 62 from the opposite opening. The core units 20 are arranged in an annular shape around the middle mold 61. At this time, the flange portion 22b of the bobbin performs positioning in the radial direction and positioning in the rotation axis rotation direction with the adjacent core unit 20.
 その後、ハウジング50の内径と概略一致する外径を有すると共に中金型61を貫通するために中央に円筒空間を有する上金型が、下金型62と反対側のハウジング開口から挿入され、コアユニット20を挟みこんで支持する。その後、上金型及び下金型62の対向面からモールド樹脂80が封入されるようになっている。モールド樹脂は、コアユニット20間、ハウジング50内周面、中金型61方向及びボビンのつば部22bの回転子30との対向面上に略隙間なく充填される。このモールド樹脂80は、成形収縮率が低く、寸法安定性が高い熱硬化性の不飽和ポリエステル樹脂(例えば、BMC(Bulk Molding Compound))が使われるのが通例である。 Thereafter, an upper mold having an outer diameter substantially matching the inner diameter of the housing 50 and having a cylindrical space in the center for penetrating the middle mold 61 is inserted from the housing opening opposite to the lower mold 62, and the core The unit 20 is sandwiched and supported. Thereafter, the mold resin 80 is sealed from the opposing surfaces of the upper mold and the lower mold 62. The mold resin is filled between the core units 20, the inner peripheral surface of the housing 50, the direction of the middle mold 61, and the surface facing the rotor 30 of the collar portion 22 b of the bobbin with almost no gap. As the mold resin 80, a thermosetting unsaturated polyester resin (for example, BMC (Bulk Molding Compound)) having a low molding shrinkage ratio and high dimensional stability is usually used.
 次に、図4ないし図9Bを用いて本実施形態のハウジングの構造について説明する。 Next, the structure of the housing of this embodiment will be described with reference to FIGS. 4 to 9B.
 アキシャルギャップ型回転電機の固定子部分を断面から見ると、図4に示されるようになり、この図4のB―B断面図を示すと、図5のようになる。ハウジング50の内周に90度間隔でモールド樹脂80と固定子19を定着されるための凹部51が設けられている。 When the stator part of the axial gap type rotating electrical machine is viewed from the cross section, it is as shown in FIG. 4, and the cross sectional view taken along the line BB in FIG. 4 is as shown in FIG. A recess 51 for fixing the mold resin 80 and the stator 19 is provided on the inner periphery of the housing 50 at intervals of 90 degrees.
 ハウジング50の内周側の一箇所に、例えば凹部51の上方に、凹部形状の引出口52が設けられており、引出口52から配線穴53を設けて配線を外部から固定子のコイル23に接続できるようになっている。 A recess-shaped outlet 52 is provided at one location on the inner peripheral side of the housing 50, for example, above the recess 51. A wiring hole 53 is provided from the outlet 52 to connect the wiring from the outside to the stator coil 23. It can be connected.
 図3により示した樹脂モールド工程により、固定子をモールド樹脂80に固定するときには、図4、図6のM-M線まで、すなわち、コアユニット20の上部を十分満たす程度にまで、モールド樹脂80が充填される。このときに、特に、充填の最終段階で、先に注入した樹脂が硬化し始めることにより樹脂の粘度が高まり、周囲の構造物にかかる圧力が増加することで、コアユニット20のボビン22のつば部22Bが高温、高圧の影響で破損しやすくなる虞がある。 When the stator is fixed to the mold resin 80 by the resin molding step shown in FIG. 3, the mold resin 80 is filled up to the line MM in FIGS. 4 and 6, that is, the upper part of the core unit 20 is sufficiently filled. Is filled. At this time, in particular, at the final stage of filling, the viscosity of the resin increases as the previously injected resin begins to harden, and the pressure applied to the surrounding structure increases, so that the collar of the bobbin 22 of the core unit 20 increases. There is a possibility that the portion 22B is likely to be damaged by the influence of high temperature and high pressure.
 そこで、本実施形態では、引出口52において下辺を拡張するようにして、図7A、図8に示されるように、引出口52の下辺に傾斜面54を形成する。これにより、図9Aに示されるように、充填の最終段階で、モールド樹脂80がこの部分に流れ込み、封入圧が低下して、コアユニット20のボビン22の破損を防止することができる。 Therefore, in the present embodiment, the lower side is expanded at the outlet 52, and the inclined surface 54 is formed on the lower side of the outlet 52 as shown in FIGS. 7A and 8. As a result, as shown in FIG. 9A, at the final stage of filling, the mold resin 80 flows into this portion, the sealing pressure is lowered, and the bobbin 22 of the core unit 20 can be prevented from being damaged.
 なお、引出口52の下辺に設ける傾斜面は、図7B、図9Bに示されるように、平面に限らず、上に凸のR(ラウンド)面55であってもよい。また、引出口52に形成される斜面の形状は、平面状の斜面やR面に限らず、階段状形状や、平面状斜面でもよく、傾斜角がだんだんと異なる傾斜形状であってもよい。 The inclined surface provided on the lower side of the outlet 52 is not limited to a flat surface as shown in FIGS. 7B and 9B, and may be an upwardly convex R (round) surface 55. Further, the shape of the slope formed at the outlet 52 is not limited to a flat slope or R surface, but may be a stepped shape, a planar slope, or an inclined shape with gradually different inclination angles.
実施形態2Embodiment 2
 以下本発明を適用した実施形態2を、図10Aないし図12Bを用いて説明する。 Embodiment 2 to which the present invention is applied will be described below with reference to FIGS. 10A to 12B.
 実施形態1では、モールド樹脂80の充填の最終段階で、引出口52の下辺に、モールド樹脂80を逃がすための傾斜面を形成した。 In the first embodiment, an inclined surface for allowing the mold resin 80 to escape is formed on the lower side of the outlet 52 at the final stage of filling with the mold resin 80.
 実施形態2では、同様に、引出口52の下辺にモールド樹脂80を逃がすための傾斜面を形成したのであるが、引出口52と凹部51の形状が異なっている。 In the second embodiment, similarly, an inclined surface for allowing the mold resin 80 to escape is formed on the lower side of the outlet 52, but the shapes of the outlet 52 and the recess 51 are different.
 本実施形態では、図10A、図11、図12Aに示されるように、引出口52の傾斜面54aと凹部51aが一体につながった形状になっている。この形状は、モールド樹脂80の流れ込みによるコアユニット20のボビン22の破損を防止するという効果に加えて、成形が容易であるという利点がある。 In this embodiment, as shown in FIGS. 10A, 11, and 12 </ b> A, the inclined surface 54 a of the outlet 52 and the recess 51 a are integrally connected. This shape has an advantage that molding is easy in addition to the effect of preventing the bobbin 22 of the core unit 20 from being damaged by the flow of the mold resin 80.
 また、図10B、図12Bに示されるように、引出口52の下辺に設ける傾斜面は、平面に限らず、上に凸のR面55であってもよい。階段状形状や、平面状斜面でもよく、傾斜角がだんだんと異なる傾斜形状であってもよい。 10B and 12B, the inclined surface provided on the lower side of the outlet 52 is not limited to a flat surface, and may be an upwardly convex R surface 55. It may be a stepped shape, a flat slope, or an inclined shape with gradually different inclination angles.
 1…モータ、19…固定子、20…コアユニット、21…コア、22…ボビン、23…コイル、30…回転子、31…永久磁石、32…ローターベース、33…ヨーク、40…回転軸、50…ハウジング、51、51a…凹部、52…引出口、53…配線穴、54、54a…傾斜面、55…R面、60…エンドブラケット、70…軸受、80…モールド樹脂 DESCRIPTION OF SYMBOLS 1 ... Motor, 19 ... Stator, 20 ... Core unit, 21 ... Core, 22 ... Bobbin, 23 ... Coil, 30 ... Rotor, 31 ... Permanent magnet, 32 ... Rotor base, 33 ... Yoke, 40 ... Rotating shaft, DESCRIPTION OF SYMBOLS 50 ... Housing, 51, 51a ... Recessed part, 52 ... Outlet, 53 ... Wiring hole, 54, 54a ... Inclined surface, 55 ... R surface, 60 ... End bracket, 70 ... Bearing, 80 ... Mold resin

Claims (3)

  1.  コアとコイルとボビンにより形成される複数のコアユニットが、回転軸を中心としてハウジング内周面に沿って環状に配置された固定子と、回転軸径方向に所定のギャップを介して前記コアの端面と面対向する回転子とを有するアキシャルギャップ型回転電機であって、
     前記ハウジングは、前記回転子への配線を外部に引き出すための引出口を有し、
     前記ハウジングの引出口の下辺に内周側が下になるような傾斜形状の面を形成したことを特徴とするアキシャルギャップ型回転電機。
    A plurality of core units formed by a core, a coil, and a bobbin are arranged in a ring shape along the inner peripheral surface of the housing with the rotation axis as a center, and a predetermined gap in the radial direction of the rotation axis. An axial gap type rotating electrical machine having an end face and a rotor facing the surface,
    The housing has an outlet for drawing the wiring to the rotor to the outside,
    An axial gap type rotating electrical machine characterized in that a sloped surface is formed on the lower side of the outlet of the housing so that the inner peripheral side is downward.
  2.  前記ハウジングは、前記引出口の下に凹部を有し、前記傾斜面と前記凹部が一体となったことを特徴とする請求項1記載のアキシャルギャップ型回転電機。 The axial gap type rotating electric machine according to claim 1, wherein the housing has a recess under the outlet, and the inclined surface and the recess are integrated.
  3.  前記傾斜形状の面は、R面であることを特徴とする請求項1記載のアキシャルギャップ型回転電機。 2. The axial gap type rotating electric machine according to claim 1, wherein the inclined surface is an R surface.
PCT/JP2017/003411 2017-01-31 2017-01-31 Axial gap-type rotary electrical machine WO2018142465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/003411 WO2018142465A1 (en) 2017-01-31 2017-01-31 Axial gap-type rotary electrical machine
CN201780077026.8A CN110073578A (en) 2017-01-31 2017-01-31 Axial-gap rotary electric machine
JP2018565105A JPWO2018142465A1 (en) 2017-01-31 2017-01-31 Axial gap type electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003411 WO2018142465A1 (en) 2017-01-31 2017-01-31 Axial gap-type rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2018142465A1 true WO2018142465A1 (en) 2018-08-09

Family

ID=63040351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003411 WO2018142465A1 (en) 2017-01-31 2017-01-31 Axial gap-type rotary electrical machine

Country Status (3)

Country Link
JP (1) JPWO2018142465A1 (en)
CN (1) CN110073578A (en)
WO (1) WO2018142465A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436702B (en) * 2020-12-28 2023-03-24 齐鲁工业大学 Rotor disc rotary drum motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233738A (en) * 1996-02-20 1997-09-05 Toshiba Corp Rotating electric machine
JP2014217148A (en) * 2013-04-25 2014-11-17 株式会社不二工機 Stator unit
WO2015162819A1 (en) * 2014-04-25 2015-10-29 株式会社日立産機システム Axial air-gap rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879121B2 (en) * 2011-12-27 2016-03-08 株式会社日立産機システム Axial gap rotating electric machine
CN205453447U (en) * 2016-03-09 2016-08-10 湖北海山科技有限公司 Magnetic conduction dielectric structure and stator disk and no iron core disk type motor that have this structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233738A (en) * 1996-02-20 1997-09-05 Toshiba Corp Rotating electric machine
JP2014217148A (en) * 2013-04-25 2014-11-17 株式会社不二工機 Stator unit
WO2015162819A1 (en) * 2014-04-25 2015-10-29 株式会社日立産機システム Axial air-gap rotary electric machine

Also Published As

Publication number Publication date
JPWO2018142465A1 (en) 2019-04-18
CN110073578A (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP6294471B2 (en) Axial air gap type rotating electrical machines and bobbins for rotating electrical machines
JP6294465B2 (en) Axial air gap type motor and bobbin for motor
JP6790783B2 (en) Manufacturing method of stator unit, motor, and stator unit
JP2011254677A (en) Rotor for motor and method for manufacturing the same
JP2008131682A (en) Axial air gap type motor
US20190199158A1 (en) Rotating Electrical Machine
TWI687026B (en) Axial gap rotary motor
CN109478813B (en) Axial gap type rotating electric machine
JP6790782B2 (en) Manufacturing method of stator unit, motor, and stator unit
JP6771590B2 (en) Axial gap type rotary electric machine
WO2018142465A1 (en) Axial gap-type rotary electrical machine
WO2018138914A1 (en) Axial gap type rotating electric machine
JP5771958B2 (en) Pump device
US20200251939A1 (en) Motor for ceiling fan
JP2013031242A (en) Rotor of axial gap motor, and manufacturing method of the same
US10862359B2 (en) Rotor, motor, air-conditioning apparatus, and method for manufacturing rotor
JP6596584B2 (en) Axial gap type rotating electrical machine
JP2010088166A (en) Axial air gap electric motor
JP4739700B2 (en) Motor rotor
WO2023007706A1 (en) Rotor, motor, and rotor manufacturing method
JPS5970154A (en) Small-sized motor
JP2017189019A (en) Axial gap rotating electric machine
KR20240014815A (en) Permanent magnet rotor structure
JP2014121175A (en) Electric motor
WO2015162825A1 (en) Axial air gap dynamo-electric machine and dynamo-electric machine bobbin

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565105

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894700

Country of ref document: EP

Kind code of ref document: A1